WO2016127444A1 - 液晶面板像素的驱动控制方法及液晶显示面板 - Google Patents

液晶面板像素的驱动控制方法及液晶显示面板 Download PDF

Info

Publication number
WO2016127444A1
WO2016127444A1 PCT/CN2015/073408 CN2015073408W WO2016127444A1 WO 2016127444 A1 WO2016127444 A1 WO 2016127444A1 CN 2015073408 W CN2015073408 W CN 2015073408W WO 2016127444 A1 WO2016127444 A1 WO 2016127444A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
charging
liquid crystal
phase
high voltage
Prior art date
Application number
PCT/CN2015/073408
Other languages
English (en)
French (fr)
Inventor
左清成
纪飞林
Original Assignee
深圳市华星光电技术有限公司
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司, 武汉华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/646,016 priority Critical patent/US20160372065A1/en
Publication of WO2016127444A1 publication Critical patent/WO2016127444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a driving control method for a liquid crystal panel pixel and a liquid crystal display panel.
  • LCDs liquid crystal displays
  • the structure of the conventional liquid crystal display panel generally includes: an array substrate and a color filter substrate disposed on the cartridge; wherein the array substrate includes a set of data lines extending in the first direction and a set of gate lines extending in the second direction
  • the array substrate includes a set of data lines extending in the first direction and a set of gate lines extending in the second direction
  • a plurality of pixel units are arranged in an array, and each of the pixel units includes a TFT (Thin Film Transistor, TFT for short), and the color filter substrate includes a color filter.
  • the liquid crystal display panel uses the gate driving circuit to drive the TFT on the liquid crystal display panel to control the charging time of the data line, and combines the voltage on the data line to charge and discharge the pixels to achieve normal image display.
  • the current driving method of pixel charging of the liquid crystal panel includes the following steps, and the timing chart thereof is as shown in FIG. 1:
  • the first stage ie, the first frame of the screen switching
  • SOURCE_(N) provides -V 1 voltage to the liquid crystal panel pixel capacitance (including CLC)
  • the capacitor and the CST capacitor are charged.
  • T time period
  • the pixel capacitance of the liquid crystal panel is completed, and the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage -V 1 .
  • S3 in the Nth stage, when the gate driving circuit GATE_(N) is at a high level, when the TFT is turned on, SOURCE_(N) provides a +V N voltage to charge the liquid crystal panel pixel capacitance (including the CLC capacitor and the CST capacitor). After a time period T, the pixel capacitance of the liquid crystal panel is completed, and the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage +V N .
  • S4 in the N+1th stage, when the gate driving circuit GATE_(N) is at a high level, when the TFT is turned on, SOURCE_(N) provides a -V (N+1) voltage to the liquid crystal panel pixel capacitance (including the CLC capacitor and the CST). The capacitor is charged. After a period of time T, the pixel capacitance of the liquid crystal panel is completely charged, so that the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage -V (N+1) .
  • the increase in resolution requires the addition of a large number of data lines (SOURCE) and gate lines (GATE), so that the charging time of a single pixel is shorter and shorter; on the other hand, the panel
  • SOURCE data lines
  • GATE gate lines
  • the increase in size directly increases the length of the data line and the gate line, the load of the data line and the gate drive circuit is large, and the voltage signal of the data line and the gate drive circuit is attenuated severely; resulting in insufficient voltage for each pixel The voltage is saturated, which in turn causes the display quality of the liquid crystal display panel to decrease.
  • the invention provides a driving control method for a liquid crystal panel pixel and a liquid crystal display panel, so as to solve the problem that the liquid crystal pixel is insufficiently charged and the display quality is reduced due to short time and large load loss in the prior art.
  • the present invention adopts a technical solution to provide a driving control method for a pixel of a liquid crystal panel.
  • the time required for the screen of the liquid crystal panel to switch one frame is one charging cycle, and at least one charging cycle includes high voltage charging.
  • the phase and voltage correction phase; the voltage amplitude of the high voltage charging phase is greater than the preset voltage amplitude, so that the liquid crystal pixel rapidly accumulates power in a short time.
  • the voltage in the voltage correction phase is equal to the preset voltage to accurately position the voltage at a preset voltage value.
  • a voltage amplitude of each of the high voltage charging phases is the same as a magnification of the preset voltage amplitude; or, at least two of The voltage amplitude of the high voltage charging phase in the charging cycle is different from the amplification factor of the preset voltage amplitude; and the charging time of each of the high voltage charging phases is the same; or, at least two high voltage charging times The voltage amplitudes of the stages are not equal; and the high voltage charging phase includes a plurality of high voltage charging secondary stages, the voltage amplitudes of the at least two high voltage charging secondary stages being unequal.
  • the voltage amplitudes of the plurality of high voltage charging secondary stages exhibit a decreasing trend.
  • the voltage amplitudes of the plurality of high voltage charging secondary stages tend to increase and then decrease.
  • another technical solution adopted by the present invention is to provide a driving control method for a pixel of a liquid crystal panel.
  • the time required for the screen of the liquid crystal panel to switch one frame is one charging cycle, and at least one charging cycle includes a high voltage.
  • a charging phase and a voltage correction phase the voltage amplitude of the high voltage charging phase is greater than a preset voltage amplitude, so that the liquid crystal pixel rapidly accumulates power in a short time; the voltage in the voltage correction phase is equal to a preset voltage, The voltage is accurately positioned at a preset voltage value.
  • the voltage amplitude of each of the high voltage charging phases is the same as the amplification factor of the preset voltage amplitude.
  • the charging cycles including a high voltage charging phase and a voltage correcting phase
  • a voltage amplitude of the high voltage charging phase of at least two of the charging cycles is amplified with respect to the preset voltage amplitude
  • the charging time of each of the high voltage charging phases is the same.
  • the high voltage charging phase comprises a plurality of high voltage charging secondary phases, and the voltage amplitudes of the at least two high voltage charging secondary phases are not equal.
  • the voltage amplitudes of the plurality of high voltage charging secondary stages exhibit a decreasing trend.
  • the voltage amplitudes of the plurality of high voltage charging secondary stages tend to increase and then decrease.
  • the TFT when the gate driving circuit is in a high level period, the TFT is turned on, and the pixels of the liquid crystal panel are charged through the data line to enter a charging cycle.
  • a liquid crystal display panel including a liquid crystal cell, an array substrate, and a color filter substrate, wherein the array substrate and the color filter substrate are respectively located.
  • the array substrate includes a set of data lines extending in a first direction and a plurality of pixel units arranged in an array defined by a set of gate lines extending in a second direction, each a pixel unit includes a thin film field effect transistor, the color filter substrate includes a color filter;
  • the data line is used to charge the pixel, and the charging voltage of the data line includes a first charging voltage and a second a charging voltage, a voltage amplitude of the first charging voltage is greater than a preset voltage value of the pixel, and a voltage amplitude of the second charging voltage is equal to a preset voltage value of the pixel.
  • the present invention divides a charging cycle into a high voltage charging phase and a voltage correction phase, and by amplifying the preset voltage, it can compensate for the voltage drop caused by the line loss, thereby
  • the liquid crystal pixel can quickly accumulate power in a short time, and then correct the voltage with a preset voltage value, so that the voltage is accurately positioned at the preset voltage value.
  • the problem that the liquid crystal pixel is insufficiently charged due to short time and large load loss is avoided, so that the liquid crystal pixel can reach the preset voltage value in a short time, and the display quality of the liquid crystal display panel is improved.
  • FIG. 1 is a schematic flow chart of a driving control method for a liquid crystal panel pixel in the background art
  • FIG. 2 is a driving timing chart of the drive control method of FIG. 1;
  • FIG. 3 is a schematic flow chart of a first embodiment of a driving control method for a pixel of a liquid crystal panel according to the present invention
  • FIG. 4 is a driving timing chart of the drive control method of FIG. 3;
  • Fig. 5 is a flow chart showing the second embodiment of the driving control method for the pixel of the liquid crystal panel of the present invention.
  • FIG. 6 is a schematic flow chart of the first stage of the third embodiment of the driving control method for the pixel of the liquid crystal panel of the present invention.
  • Figure 7 is a schematic structural view of a liquid crystal display panel of the present invention.
  • FIG. 8 is a schematic diagram showing the circuit structure of the array substrate of FIG. 7.
  • FIG. 8 is a schematic diagram showing the circuit structure of the array substrate of FIG. 7.
  • a driving control method for a pixel of a liquid crystal panel wherein a time required for the screen of the liquid crystal panel to switch one frame is one charging cycle, and at least one charging cycle includes a high voltage charging phase and a voltage correction phase.
  • the voltage amplitude of the high voltage charging phase is greater than the preset voltage amplitude, so that the liquid crystal pixel rapidly accumulates power in a short time.
  • the voltage in the voltage correction phase is equal to the preset voltage to accurately position the voltage at the preset voltage value.
  • the present invention divides a charging cycle into a high voltage charging phase and a voltage correction phase. Since the preset voltage is amplified, the voltage drop caused by the line loss can be compensated, so that the liquid crystal pixel can be made in a relatively short time. The battery is quickly accumulated, and then the voltage is corrected with a preset voltage value so that the voltage is accurately positioned at the preset voltage value. The problem that the liquid crystal pixel is insufficiently charged due to short time and large load loss is avoided, so that the liquid crystal pixel can reach the preset voltage value in a short time, and the display quality of the liquid crystal display panel is improved.
  • FIG. 3 is a schematic flow chart of a first embodiment of a driving control method for a pixel of a liquid crystal panel according to the present invention.
  • 4 is a drive timing chart of the drive control method of FIG. 3.
  • the voltage amplitude of each high voltage charging phase is the same as the amplification factor of the preset voltage amplitude.
  • the charging time is the same for each high voltage charging phase.
  • the liquid crystal panel of the embodiment switches N+1 frames in the N+1 frame picture, that is, after N+1 charging cycles.
  • the N+1 charging cycles each include a high voltage charging phase and a voltage correction phase.
  • one charging cycle is T
  • the preset voltage value when the screen is switched to the first frame is V 1
  • the preset voltage value when the screen is switched to the Nth frame is V N
  • the preset voltage when the screen is switched to the N+1th frame is V (N+1) .
  • the driving control method of the liquid crystal panel pixel of the embodiment includes the following steps:
  • the total length of one time is completed as the period T (ie, one) After the frame time), the pixel capacitance of the liquid crystal panel is completed, and the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage -V 1 .
  • the SOURCE_(N) provides a +V N voltage to be amplified to n*(+V N ) (where: n>1), and the pixel capacitance of the liquid crystal panel (including the CLC capacitance and CST capacitor) is charged, the charging time is T/m cycles (where: m>1 and m is an integer), and then the charging voltage is restored to voltage +V N to correct the predetermined charging voltage of the pixel, and the charging time is T*(1-1/m) cycles.
  • T total length of one time is period T (ie, one frame time)
  • the pixel capacitance of the liquid crystal panel is completed, and the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage + V N .
  • the screen switches the N+1th frame, and the SOURCE_(N) is provided as a -V (N+1) voltage to be amplified to n*(-V (N+1) ) (where: n>1 ), charging the pixel capacitance of the liquid crystal panel (including the CLC capacitor and the CST capacitor), the charging time is T/m cycles (where: m>1 and m is an integer), and then the charging voltage is restored to the voltage -V (N+1) The correction is performed on the predetermined charging voltage of the pixel, and the charging time is T*(1-1/m) cycles.
  • the pixel capacitance of the liquid crystal panel is completed, so that the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage -V (N+1) .
  • steps S100 to S103 are repeated to complete the refresh of the screen.
  • the n value and the m value in each stage are equal, that is, the voltage amplitude of the high voltage charging phase of each stage is equal to the multiple of the preset voltage value, and the high voltage charging stage in each stage is equal.
  • the time is equal.
  • FIG. 5 is a schematic flow chart of a second embodiment of a method for controlling driving of a pixel of a liquid crystal panel according to the present invention.
  • the voltage amplitude of the high voltage charging phase in at least two charging cycles is larger than the preset voltage amplitude
  • the number is different.
  • the charging time is different for at least two high voltage charging phases.
  • the liquid crystal panel of the embodiment switches N+1 frames in the N+1 frame picture, that is, after N+1 charging cycles.
  • the N+1 charging cycles each include a high voltage charging phase and a voltage correction phase.
  • one charging cycle is T
  • the preset voltage value when the screen is switched to the first frame is V 1
  • the preset voltage value when the screen is switched to the Nth frame is V N
  • the preset voltage when the screen is switched to the N+1th frame is V (N+1) .
  • the driving control method of the liquid crystal panel pixel of the embodiment includes the following steps:
  • the first stage that is, the first frame of the screen switching
  • the voltage of -V 1 provided by SOURCE_(N) is amplified to n 1 *(-V 1 ) (where: n 1 >1), to n 1 *(-V 1 )
  • the voltage of the liquid crystal panel pixel capacitor (including CLC capacitor and CST capacitor) is charged, the charging time is T/m 1 cycle (where: m 1 >1, and m 1 is an integer), then the charging voltage is restored to the voltage -V 1 , to correct the predetermined charging voltage of the pixel, the charging time length is T*(1-1/m 1 ) cycles, and thus, after completing a total time length of period T (ie, one frame time), The pixel capacitance of the liquid crystal panel is completed, and the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage -V 1 .
  • S202 the Nth stage, the screen switches the Nth frame, provides SOURCE_(N) as +V N voltage is amplified to n N *(+V N ) (where: n N >1), and the pixel capacitance of the liquid crystal panel (including CLC)
  • the capacitor and the CST capacitor are charged, the charging time is T/m N cycles (where: m N >1, and m N is an integer), and then the charging voltage is restored to the voltage +V N to perform the predetermined charging voltage on the pixel. Corrected that the charging time is T*(1-1/m N ) cycles.
  • T ie, one frame time
  • the screen switches the N+1th frame, and the SOURCE_(N) is supplied as a -V (N+1) voltage to be amplified to n (N+1) *(-V (N+1) ) ( Where n (N+1) >1), the pixel capacitance of the liquid crystal panel (including the CLC capacitor and the CST capacitor) is charged, and the charging time is T/m (N+1) cycles (where: m (N+1) > 1, and m (N+1) is an integer), and then the charging voltage is restored to the voltage -V (N+1) to correct the predetermined charging voltage of the pixel, and the charging time is T*(1-1/m ( N+1 ) cycles.
  • the pixel capacitance of the liquid crystal panel is completed, so that the pixel voltage of the liquid crystal panel reaches the SOURCE_(N) charging voltage -V (N+ 1) .
  • n 1 , n N , ..., and n (N+1) are all unequal, that is, n can be changed for different frames.
  • m can be adjusted for different frames, so m 1 , m N , ..., and m (N+1) may not be equal.
  • n 1 , n N , ..., and n (N+1) may be unequal, and m 1 , m N , .... .. and m (N+1) are equal.
  • n 1 , n N , ..., and n (N+1) are all equal, and at least two of m 1 , m N , ..., and m (N+1) are not equal. .
  • FIG. 6 is a schematic flow chart of a high voltage charging phase in a third embodiment of a driving control method for a pixel of a liquid crystal panel of the present invention.
  • the high voltage charging phase includes a plurality of high voltage charging secondary stages, and the voltage amplitudes of the at least two high voltage charging secondary stages are not equal.
  • the voltage amplitude of the multiple high-voltage charging secondary stages is decreasing.
  • the voltage is adjusted to n (Y-1) *(-V 1 ), and the charging time is t 2 .
  • S (Y-1) adjusts the voltage to n 2 *(-V 1 ) and the charging time is t (Y-1) .
  • the voltage is from high to low, and the final voltage value is closest to the preset voltage value, thus preventing the problem that the voltage jumps from the voltage amplified in the high voltage stage to the preset voltage and causes excessive flicker.
  • n Y , n (Y-1) , n (Y-2) , ..., n 2 , and n 1 can also satisfy the following relationship: n Y ⁇ n (Y-1) ⁇ n (Y-2) ⁇ ... ⁇ n (x+1) ⁇ n x >n (x-1) >...>n 3 >n 2 >n 1 . That is, the voltage amplitude of the plurality of high voltage charging secondary stages may also be in a trend of increasing first and then decreasing.
  • the high-voltage charging phase is divided into multiple high-voltage charging secondary stages, which are not only applicable in the first stage, but also applicable to other stages.
  • the high-voltage charging phase of only one charging cycle can be divided into multiple high-voltage charging secondary stages, and there can be many
  • the high voltage charging phase of one charging cycle is divided into a plurality of high voltage charging secondary stages.
  • the number of segments in the secondary phase of each high voltage charging phase and the trend of the voltage amplitude may be the same or different.
  • FIG. 7 is a schematic structural diagram of a liquid crystal display panel of the present invention.
  • FIG. 8 is a schematic diagram showing the circuit structure of the array substrate of FIG. 7.
  • FIG. 7 is a schematic structural diagram of a liquid crystal display panel of the present invention.
  • FIG. 8 is a schematic diagram showing the circuit structure of the array substrate of FIG. 7.
  • the present invention further enhances a liquid crystal display panel comprising a liquid crystal cell 1, an array substrate 2, and a color filter substrate 3.
  • the array substrate 1 and the color filter substrate 3 are respectively located on both sides of the liquid crystal cell 1.
  • the array substrate 2 includes a set of data lines 21 extending in a first direction and a plurality of pixel units 23 distributed in an array defined by a set of gate lines 22 extending in a second direction, each of the pixel units 23 including a thin film field effect Transistor.
  • the color filter substrate 3 includes a color filter.
  • the data line 21 is used for charging the pixel.
  • the charging voltage of the data line 21 includes a first charging voltage and a second charging voltage.
  • the voltage amplitude of the first charging voltage is greater than a preset voltage value of the pixel, and the voltage amplitude of the second charging voltage. The value is equal to the preset voltage value of the pixel.
  • the invention amplifies the preset voltage in the high-voltage charging phase, and compensates the voltage drop caused by the line loss, so that the liquid crystal pixel can quickly accumulate the electric quantity in a short time, and corrects the voltage with the preset voltage value in the voltage correction stage, so that The voltage is accurately positioned at a preset voltage value.
  • the problem that the liquid crystal pixel is insufficiently charged due to short time and large load loss is avoided, so that the liquid crystal pixel can reach the preset voltage value in a short time, and the display quality of the liquid crystal display panel is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶面板像素的驱动控制方法及液晶显示面板。液晶面板画面切换一帧所需的时间为一个充电周期,至少一个充电周期包括高压充电阶段和电压修正阶段;高压充电阶段的电压幅值大于预设电压幅值,以使液晶像素在较短的时间内快速积累电量;电压修正阶段的电压等于预设电压,以使电压准确定位在预设电压值。因此,液晶像素短时间内能达到预设电压值,提高了液晶显示面板的显示质量。

Description

液晶面板像素的驱动控制方法及液晶显示面板 【技术领域】
本发明涉及显示技术领域,特别是涉及一种液晶面板像素的驱动控制方法及液晶显示面板。
【背景技术】
随着液晶显示器(LCD)的发展,人们对LCD清晰度要求也越来越高,相同尺寸下显示器的分辨率要求也越来越高,对面板尺寸的需求也越来越大。
现有的液晶显示面板的结构通常包括:对盒而置的阵列基板和彩膜基板;其中,阵列基板包括由沿第一方向延伸的一组数据线和沿第二方向延伸的一组栅线界定的呈阵列分布的多个像素单元,每一个像素单元内包括一个TFT(Thin Film Transistor,薄膜场效应晶体管,简称TFT),彩膜基板包括彩色滤光片。液晶显示面板是利用栅极驱动电路驱动液晶显示面板上的TFT来控制数据线充电时间,结合数据线上电压以满足对像素进行充放电,以实现正常的影像显示。目前的液晶面板像素充电的驱动方法包括以下步骤,其时序图如图1所示:
S1,当栅极驱动电路GATE_(N)为高电平周期(即GATE(N)在一帧的开启时间T)时,TFT开启,液晶面板像素通过SOURCE_(N)电压进行充电。
S2,第一阶段(即画面切换的第一帧),当栅极驱动电路GATE_(N)为高电平时,TFT开启时,SOURCE_(N)提供-V1电压对液晶面板像素电容(包括CLC电容和CST电容)进行充电,经过一个时间周期T(即一帧的时间)后,液晶面板像素电容完成充电,液晶面板像素电压到达SOURCE_(N)充电电压-V1
S3,第N阶段,当栅极驱动电路GATE_(N)为高电平时,TFT开启时,SOURCE_(N)提供+VN电压对液晶面板像素电容(包括CLC电容和CST电容)进行充电,经过一个时间周期T后,液晶面板像素电容完成充电,液晶面板像素电压到达SOURCE_(N)充电电压+VN
S4,第N+1阶段,当栅极驱动电路GATE_(N)为高电平时,TFT开启时, SOURCE_(N)提供-V(N+1)电压对液晶面板像素电容(包括CLC电容和CST电容)进行充电,经过一个时间周期T后,液晶面板像素电容完成充电,使液晶面板像素电压到达SOURCE_(N)充电电压-V(N+1)
S5,重复S1~S4步骤,完成画面的刷新。
为了满足不断提高的液晶显示面板的分辨率要求,一方面分辨率的增加需要增加大量的数据线(SOURCE)与栅线(GATE),使得单个像素充电时间越来越短;另一方面,面板尺寸的增加,直接使得数据线与栅极线长度不断的增加,数据线与栅极驱动电路的负载较大,数据线与栅极驱动电路的电压信号衰减严重;导致电压不足以使每个像素电压达到饱和状态,进而使得液晶显示面板的显示质量降低。
【发明内容】
本发明提供了一种液晶面板像素的驱动控制方法及液晶显示面板,以解决现有技术存在的因时间短,负载损耗大而造成的液晶像素充电不足而降低显示质量的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液晶面板像素的驱动控制方法,所述液晶面板画面切换一帧所需的时间为一个充电周期,至少一个充电周期包括高压充电阶段和电压修正阶段;所述高压充电阶段的电压幅值大于预设电压幅值,以使液晶像素在较短的时间内快速积累电量。所述电压修正阶段的电压等于预设电压,以使电压准确定位在预设电压值。当有多个所述充电周期包括高压充电阶段和电压修正阶段时,每个所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数相同;或者,其中至少两个所述充电周期中的所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数不同;并且,每个所述高压充电阶段的充电时间相同;或者,至少两个高压充电次级阶段的电压幅值不相等;并且,所述高压充电阶段包括多个高压充电次级阶段,至少两个高压充电次级阶段的电压幅值不相等。
其中,所述多个高压充电次级阶段的电压幅值呈递减趋势。
其中,所述多个高压充电次级阶段的电压幅值呈先递增再递减的趋势。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶面板像素的驱动控制方法,所述液晶面板画面切换一帧所需的时间为一个充电周期,至少一个充电周期包括高压充电阶段和电压修正阶段;所述高压充电阶段的电压幅值大于预设电压幅值,以使液晶像素在较短的时间内快速积累电量;所述电压修正阶段的电压等于预设电压,以使电压准确定位在预设电压值。
其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,每个所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数相同。
其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,其中至少两个所述充电周期中的所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数不同。
其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,每个所述高压充电阶段的充电时间相同。
其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,至少两个所述高压充电阶段的充电时间不同。
其中,所述高压充电阶段包括多个高压充电次级阶段,至少两个高压充电次级阶段的电压幅值不相等。
其中,所述多个高压充电次级阶段的电压幅值呈递减趋势。
其中,所述多个高压充电次级阶段的电压幅值呈先递增再递减的趋势。
其中,当栅极驱动电路为高电平周期时,TFT开启,液晶面板像素通过数据线充电而进入一个充电周期。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶显示面板,该液晶显示面板包括液晶盒、阵列基板和彩膜基板,所述阵列基板和所述彩膜基板分别位于液晶盒的两侧;所述阵列基板包括沿第一方向延伸的一组数据线和沿第二方向延伸的一组栅线界定的呈阵列分布的多个像素单元,每 一个像素单元内包括一薄膜场效应晶体管,所述彩膜基板包括彩色滤光片;所述数据线用于对所述像素进行充电,所述数据线的充电电压包括第一充电电压和第二充电电压,所述第一充电电压的电压幅值大于所述像素的预设电压值,所述第二充电电压的电压幅值等于所述像素的预设电压值。
本发明的有益效果是:区别于现有技术的情况,本发明通过将一个充电周期分为高压充电阶段和电压修正阶段,由于将预设电压放大,因而可以补偿线路损耗造成的压降,从而能使液晶像素在较短时间内快速积累电量,然后再以预设电压值对电压进行修正,使得电压准确定位在预设电压值。避免了因时间短,负载损耗大而造成的液晶像素充电不足的问题,从而能使液晶像素短时间内能达到预设电压值,提高了液晶显示面板的显示质量。
【附图说明】
图1是背景技术中的液晶面板像素的驱动控制方法的流程示意图;
图2是图1的驱动控制方法的驱动时序图;
图3是本发明液晶面板像素的驱动控制方法的第一实施例的流程示意图;
图4是图3的驱动控制方法的驱动时序图;
图5是本发明液晶面板像素的驱动控制方法的第二实施例的流程示意图。
图6是本发明液晶面板像素的驱动控制方法的第三实施例的第一阶段的流程示意图;
图7是本发明的液晶显示面板的结构示意图;
图8是图7中阵列基板的电路结构示意图。
【具体实施方式】
下面结合附图和具体实施方式对本发明进行详细说明。
一种液晶面板像素的驱动控制方法,该方法中液晶面板画面切换一帧所需的时间为一个充电周期,至少一个充电周期包括高压充电阶段和电压修正阶段。 高压充电阶段的电压幅值大于预设电压幅值,以使液晶像素在较短的时间内快速积累电量。电压修正阶段的电压等于预设电压,以使电压准确定位在预设电压值。
区别于现有技术,本发明通过将一个充电周期分为高压充电阶段和电压修正阶段,由于将预设电压放大,因而可以补偿线路损耗造成的压降,从而能使液晶像素在较短时间内快速积累电量,然后再以预设电压值对电压进行修正,使得电压准确定位在预设电压值。避免了因时间短,负载损耗大而造成的液晶像素充电不足的问题,从而能使液晶像素短时间内能达到预设电压值,提高了液晶显示面板的显示质量。
参阅图3,是本发明液晶面板像素的驱动控制方法的第一实施例的流程示意图。图4是图3的驱动控制方法的驱动时序图。
本实施例中,有多个充电周期包括高压充电阶段和电压修正阶段时,每个高压充电阶段的电压幅值相对于预设电压幅值的放大倍数相同。且每个高压充电阶段的充电时间相同。
举例而言,本实施例的液晶面板切换N+1帧画面中经过了N+1个充电阶段,即经过N+1个充电周期。本实施例中,该N+1个充电周期均包括高压充电阶段和电压修正阶段。其中,一个充电周期为T,画面切换第1帧时的预设电压值为V1,画面切换第N帧时的预设电压值为VN,画面切换第N+1帧时的预设电压值为V(N+1)
具体而言,本实施例的液晶面板像素的驱动控制方法包括以下步骤:
S100,当栅极驱动电路GATE_(N)为高电平周期(即GATE(N)在一帧的开启时间T)时,TFT开启,液晶面板像素通过SOURCE_(N)电压进行充电。
S101,第一阶段,即画面切换第一帧,当栅极驱动电路GATE_(N)为高电平时,将SOURCE_(N)提供的-V1电压放大到n*(-V1)(其中:n>1),以n*(-V1)的电压对液晶面板像素电容(包括CLC电容和CST电容)进行充电,充电时间为 T/m个周期(其中:m>1且m为整数),随后充电电压恢复到电压-V1,以对像素的预定充电电压进行修正,充电时间长度为T*(1-1/m)个周期,至此,完成一个时间总长度为周期T(即一帧的时间)后,液晶面板像素电容完成充电,液晶面板像素电压到达SOURCE_(N)充电电压-V1
S102,第N阶段,画面切换第N帧,将SOURCE_(N)提供的+VN电压放大到n*(+VN)(其中:n>1),对液晶面板像素电容(包括CLC电容和CST电容)进行充电,充电时间为T/m个周期(其中:m>1且m为整数),随后充电电压恢复到电压+VN,以对像素的预定充电电压进行修正,充电时间长度为T*(1-1/m)个周期,至此,完成一个时间总长度为周期T(即一帧的时间)后,液晶面板像素电容完成充电,液晶面板像素电压到达SOURCE_(N)充电电压+VN
S103,第N+1阶段,画面切换第N+1帧,将SOURCE_(N)提供为-V(N+1)电压放大到n*(-V(N+1))(其中:n>1),对液晶面板像素电容(包括CLC电容和CST电容)进行充电,充电时间为T/m个周期(其中:m>1且m为整数),随后充电电压恢复到电压-V(N+1),以对像素的预定充电电压进行修正,充电时间长度为T*(1-1/m)个周期。至此,完成一个时间总长度为周期T(即一帧的时间)后,液晶面板像素电容完成充电,使液晶面板像素电压到达SOURCE_(N)充电电压-V(N+1)
S104,重复步骤S100~S103来完成画面的刷新。
本实施例中,各个阶段中的n值和m值都相等,即每个阶段的高压充电阶段的电压幅值相对于预设电压值放大的倍数都相等,且每个阶段中的高压充电阶段的时间都相等。
参阅图5,是本发明液晶面板像素的驱动控制方法的第二实施例的流程示意图。
本实施例中,有多个充电周期包括高压充电阶段和电压修正阶段时,其中至少两个充电周期中的高压充电阶段的电压幅值相对于预设电压幅值的放大倍 数不同。至少两个高压充电阶段的充电时间不同。
举例而言,本实施例的液晶面板切换N+1帧画面中经过了N+1个充电阶段,即经过N+1个充电周期。本实施例中,该N+1个充电周期均包括高压充电阶段和电压修正阶段。其中,一个充电周期为T,画面切换第1帧时的预设电压值为V1,画面切换第N帧时的预设电压值为VN,画面切换第N+1帧时的预设电压值为V(N+1)
具体而言,本实施例的液晶面板像素的驱动控制方法包括以下步骤:
S200,当栅极驱动电路GATE_(N)为高电平周期(即GATE(N)在一帧的开启时间T)时,TFT开启,液晶面板像素通过SOURCE_(N)电压进行充电。
S201,第一阶段,即画面切换第一帧,将SOURCE_(N)提供的-V1电压放大到n1*(-V1)(其中:n1>1),以n1*(-V1)的电压对液晶面板像素电容(包括CLC电容和CST电容)进行充电,充电时间为T/m1个周期(其中:m1>1,且m1为整数),随后充电电压恢复到电压-V1,以对像素的预定充电电压进行修正,充电时间长度为T*(1-1/m1)个周期,至此,完成一个时间总长度为周期T(即一帧的时间)后,液晶面板像素电容完成充电,液晶面板像素电压到达SOURCE_(N)充电电压-V1
S202,第N阶段,画面切换第N帧,将SOURCE_(N)提供为+VN电压放大到nN*(+VN)(其中:nN>1),对液晶面板像素电容(包括CLC电容和CST电容)进行充电,充电时间为T/mN个周期(其中:mN>1,且mN为整数),随后充电电压恢复到电压+VN,以对像素电预定充电电压进行修正,充电时间长度为T*(1-1/mN)个周期,至此,完成一个时间总长度为周期T(即一帧的时间)后,液晶面板像素电容完成充电,液晶面板像素电压到达SOURCE_(N)充电电压+VN
S203,第N+1阶段,画面切换第N+1帧,将SOURCE_(N)提供为-V(N+1)电压放大到n(N+1)*(-V(N+1))(其中n(N+1)>1),对液晶面板像素电容(包括CLC电容和CST电容)进行充电,充电时间为T/m(N+1)个周期(其中:m(N+1)>1,且m(N+1)为整数),随后充电电压恢复到电压-V(N+1),以对像素电预定充电电压进行修正,充电时间长度为T*(1-1/m(N+1)个周期,至此,完成一个时间总长度为周期T(即 一帧的时间)后,液晶面板像素电容完成充电,使液晶面板像素电压到达SOURCE_(N)充电电压-V(N+1)
S204,重复步骤S200~S203完成画面的刷新。
本实施例中,n1、nN、......以及n(N+1)均不相等,即针对不同的帧,n可以进行变化调整。同样,针对不同的帧,m也可以进行调整,所以m1、mN、......以及m(N+1)也可以都不相等。
当然,除了本实施例的情况外,还可以是n1、nN、......以及n(N+1)中至少两个不相等,而m1、mN、......以及m(N+1)都相等。或者,n1、nN、......以及n(N+1)都相等,而m1、mN、......以及m(N+1)中至少两个不相等。
参阅图6,是本发明液晶面板像素的驱动控制方法的第三实施例中高压充电阶段的流程示意图。
本实施例中,高压充电阶段包括多个高压充电次级阶段,至少两个高压充电次级阶段的电压幅值不相等。多个高压充电次级阶段的电压幅值呈递减趋势。
例如,在第一阶段中,包括以下步骤:
S3010,将SOURCE_(N)提供的-V1电压放大到nY*(-V1)(其中:nY>1),充电时间为t1
S3011,再将电压调整为n(Y-1)*(-V1),充电时间为t2
S3012,再将电压调整为n(Y-2)*(-V1),充电时间为t3
......
S(Y-1),将电压调整为n2*(-V1),充电时间为t(Y-1)
SY,再将电压调整为n1*(-V1),充电时间为tY
本实施例是将第一阶段中的高压充电阶段分为Y个高压充电次级阶段,每个高压充电次级阶段的电压幅值不相等,并呈递减趋势,即nY>n(Y-1)>n(Y-2)>......>n2>n1,每个高压充电次级阶段的充电时间之和为高压充电阶段的时间,即t1+t2+t3+......+t(Y-1)+tY=T/m。
电压从高到低,最后的电压值是最接近预设电压值的,因而能防止电压从高压阶段放大的电压变到预设电压时跳变过大引起闪烁等问题。
此外,nY、n(Y-1)、n(Y-2)、......、n2、n1之间还可以满足以下关系:nY<n(Y-1)<n(Y-2)<......<n(x+1)<nx>n(x-1)>......>n3>n2>n1。即,多个高压充电次级阶段的电压幅值还可以呈先递增再递减的趋势。
当然,高压充电阶段分为多个高压充电次级阶段不仅适用于第一阶段中,也适用于其他阶段,可以只有一个充电周期的高压充电阶段分成多个高压充电次级阶段,也可以有多个充电周期的高压充电阶段分成多个高压充电次级阶段。并且,每个高压充电阶段的次级阶段的段数以及电压幅值的趋势可以相同也可以不同。
请参阅图7和图8,图7是本发明的液晶显示面板的结构示意图。图8是图7中阵列基板的电路结构示意图。
本发明进一步提高了一种液晶显示面板,包括液晶盒1、阵列基板2和彩膜基板3,阵列基板1和彩膜基板3分别位于液晶盒1的两侧。阵列基板2包括沿第一方向延伸的一组数据线21和沿第二方向延伸的一组栅线22界定的呈阵列分布的多个像素单元23,每一个像素单元23内包括一薄膜场效应晶体管。彩膜基板3包括彩色滤光片。数据线21用于对像素进行充电,数据线21的充电电压包括第一充电电压和第二充电电压,第一充电电压的电压幅值大于像素的预设电压值,第二充电电压的电压幅值等于像素的预设电压值。
本发明在高压充电阶段将预设电压放大,将补偿线路损耗造成的压降,从而能使液晶像素在较短时间内快速积累电量,在电压修正阶段以预设电压值对电压进行修正,使得电压准确定位在预设电压值。避免了因时间短,负载损耗大而造成的液晶像素充电不足的问题,从而能使液晶像素短时间内能达到预设电压值,提高了液晶显示面板的显示质量。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种液晶面板像素的驱动控制方法,其中,所述液晶面板画面切换一帧所需的时间为一个充电周期,至少一个充电周期包括高压充电阶段和电压修正阶段;
    所述高压充电阶段的电压幅值大于预设电压幅值,以使液晶像素在较短的时间内快速积累电量;
    所述电压修正阶段的电压等于预设电压,以使电压准确定位在预设电压值;
    当有多个所述充电周期包括高压充电阶段和电压修正阶段时,每个所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数相同;或者,其中至少两个所述充电周期中的所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数不同;并且,
    每个所述高压充电阶段的充电时间相同;或者,至少两个高压充电次级阶段的电压幅值不相等;并且,
    所述高压充电阶段包括多个高压充电次级阶段,至少两个高压充电次级阶段的电压幅值不相等。
  2. 根据权利要求1述的驱动控制方法,其中,所述多个高压充电次级阶段的电压幅值呈递减趋势。
  3. 根据权利要求1述的驱动控制方法,其中,所述多个高压充电次级阶段的电压幅值呈先递增再递减的趋势。
  4. 一种液晶面板像素的驱动控制方法,其中,所述液晶面板画面切换一帧所需的时间为一个充电周期,至少一个充电周期包括高压充电阶段和电压修正阶段;
    所述高压充电阶段的电压幅值大于预设电压幅值,以使液晶像素在较短的时间内快速积累电量;
    所述电压修正阶段的电压等于预设电压,以使电压准确定位在预设电压值。
  5. 根据权利要求4所述的驱动控制方法,其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,每个所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数相同。
  6. 根据权利要求4所述的驱动控制方法,其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,其中至少两个所述充电周期中的所述高压充电阶段的电压幅值相对于所述预设电压幅值的放大倍数不同。
  7. 根据权利要求4所述的驱动控制方法,其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,每个所述高压充电阶段的充电时间相同。
  8. 根据权利要求4所述的驱动控制方法,其中,当有多个所述充电周期包括高压充电阶段和电压修正阶段时,至少两个所述高压充电阶段的充电时间不同。
  9. 根据权利要求4所述的驱动控制方法,其中,所述高压充电阶段包括多个高压充电次级阶段,至少两个高压充电次级阶段的电压幅值不相等。
  10. 根据权利要求9所述的驱动控制方法,其中,所述多个高压充电次级阶段的电压幅值呈递减趋势。
  11. 根据权利要求9所述的驱动控制方法,其中,所述多个高压充电次级阶段的电压幅值呈先递增再递减的趋势。
  12. 根据权利要求4所述的驱动控制方法,其中,当栅极驱动电路为高电平周期时,TFT开启,液晶面板像素通过数据线充电而进入一个充电周期。
  13. 一种液晶显示面板,其中,包括液晶盒、阵列基板和彩膜基板,所述阵
    列基板和所述彩膜基板分别位于液晶盒的两侧;
    所述阵列基板包括沿第一方向延伸的一组数据线和沿第二方向延伸的一组栅线界定的呈阵列分布的多个像素单元,每一个像素单元内包括一薄膜场效应晶体管,所述彩膜基板包括彩色滤光片;
    所述数据线用于对所述像素进行充电,所述数据线的充电电压包括第一充电电压和第二充电电压,所述第一充电电压的电压幅值大于所述像素的预设电压值,所述第二充电电压的电压幅值等于所述像素的预设电压值。
PCT/CN2015/073408 2015-02-11 2015-02-28 液晶面板像素的驱动控制方法及液晶显示面板 WO2016127444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/646,016 US20160372065A1 (en) 2015-02-11 2015-02-28 Driving controlling method of liquid crystal panel pixels and liquid crystal panels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510072515.7 2015-02-11
CN201510072515.7A CN104751815B (zh) 2015-02-11 2015-02-11 液晶面板像素的驱动控制方法及液晶显示面板

Publications (1)

Publication Number Publication Date
WO2016127444A1 true WO2016127444A1 (zh) 2016-08-18

Family

ID=53591382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073408 WO2016127444A1 (zh) 2015-02-11 2015-02-28 液晶面板像素的驱动控制方法及液晶显示面板

Country Status (3)

Country Link
US (1) US20160372065A1 (zh)
CN (1) CN104751815B (zh)
WO (1) WO2016127444A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047170B (zh) * 2015-09-09 2017-08-25 深圳市华星光电技术有限公司 驱动装置及液晶显示装置
CN109285526B (zh) * 2018-12-14 2021-11-05 惠科股份有限公司 充电电路,显示面板驱动电路和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959794A (zh) * 2005-11-02 2007-05-09 中华映管股份有限公司 薄膜液晶显示器驱动方法
CN101349846A (zh) * 2008-09-05 2009-01-21 上海广电光电子有限公司 多畴液晶显示器件及其驱动方法
CN101634786A (zh) * 2008-07-23 2010-01-27 昆山龙腾光电有限公司 一种液晶面板及包含该液晶面板的显示装置
CN102163414A (zh) * 2010-02-22 2011-08-24 精工爱普生株式会社 影像处理电路、其处理方法、液晶显示装置以及电子设备
CN102667907A (zh) * 2009-11-27 2012-09-12 夏普株式会社 液晶显示装置和液晶显示装置的驱动方法
CN102799035A (zh) * 2012-05-04 2012-11-28 京东方科技集团股份有限公司 一种阵列基板、液晶面板和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512622B1 (ko) * 2000-06-08 2005-09-02 마쯔시다덴기산교 가부시키가이샤 화상 표시 장치와 화상 표시 방법
JP4494298B2 (ja) * 2005-06-24 2010-06-30 シャープ株式会社 駆動回路
KR101350398B1 (ko) * 2006-12-04 2014-01-14 삼성디스플레이 주식회사 표시 장치 및 구동 방법
US20080143697A1 (en) * 2006-12-13 2008-06-19 Tomokazu Kojima Drive voltage control device
KR20090127690A (ko) * 2008-06-09 2009-12-14 삼성전자주식회사 디스플레이장치 및 그 제어방법
JP2014211616A (ja) * 2013-04-03 2014-11-13 ソニー株式会社 データドライバおよび表示装置
WO2015005486A1 (ja) * 2013-07-11 2015-01-15 シチズンホールディングス株式会社 液晶装置
KR102134904B1 (ko) * 2013-10-30 2020-07-17 삼성디스플레이 주식회사 3차원 표시 장치 및 3차원 표시 장치용 액정 렌즈부

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1959794A (zh) * 2005-11-02 2007-05-09 中华映管股份有限公司 薄膜液晶显示器驱动方法
CN101634786A (zh) * 2008-07-23 2010-01-27 昆山龙腾光电有限公司 一种液晶面板及包含该液晶面板的显示装置
CN101349846A (zh) * 2008-09-05 2009-01-21 上海广电光电子有限公司 多畴液晶显示器件及其驱动方法
CN102667907A (zh) * 2009-11-27 2012-09-12 夏普株式会社 液晶显示装置和液晶显示装置的驱动方法
CN102163414A (zh) * 2010-02-22 2011-08-24 精工爱普生株式会社 影像处理电路、其处理方法、液晶显示装置以及电子设备
CN102799035A (zh) * 2012-05-04 2012-11-28 京东方科技集团股份有限公司 一种阵列基板、液晶面板和显示装置

Also Published As

Publication number Publication date
US20160372065A1 (en) 2016-12-22
CN104751815B (zh) 2016-06-08
CN104751815A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
US8587580B2 (en) Liquid crystal display
US20130107152A1 (en) Liquid crystal display device
CN109785803B (zh) 一种显示方法、显示单元及显示器
KR102485558B1 (ko) 타이밍 컨트롤러, 이를 포함하는 표시 장치 및 이 표시 장치의 구동 방법
US9159292B2 (en) Display panel and display apparatus having the same
US9478184B2 (en) Method of driving display panel and display apparatus for performing the same
US9715858B2 (en) Display apparatus and method of driving thereof
US20130135360A1 (en) Display device and driving method thereof
US9196208B2 (en) Gate drive method in which a flickering phenomen is eliminated and gate drive device of liquid crystal display
US9767759B2 (en) Gate driver, display apparatus including the same and method of driving display panel using the same
CN101833930A (zh) 液晶显示面板及相关驱动方法
US20150049274A1 (en) Display apparatus and method of driving thereof
WO2016127444A1 (zh) 液晶面板像素的驱动控制方法及液晶显示面板
US9536491B2 (en) Liquid-crystal display device
CN109785804B (zh) 一种显示方法、显示单元及显示器
US8330686B2 (en) Driving method of liquid crystal display device
US10453421B2 (en) Pixel circuits and methods for driving the same and display apparatuses and methods for driving the same
US20210272530A1 (en) Control device and liquid crystal display device
US9842553B2 (en) Method of driving display panel and display apparatus for performing the same
KR102132226B1 (ko) 액정표시장치 및 이의 구동방법
US9928800B2 (en) Display apparatus and a method of driving the same
KR100992135B1 (ko) 액정 표시 장치의 구동 장치
CN103135270B (zh) 薄膜晶体管液晶显示器的驱动方法
KR100961958B1 (ko) 액정 표시 장치의 구동 장치
JP2013104926A (ja) 電力供給装置、液晶モジュールおよび電力供給装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14646016

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881606

Country of ref document: EP

Kind code of ref document: A1