WO2016127404A1 - 一种信道估计方法、装置及系统 - Google Patents

一种信道估计方法、装置及系统 Download PDF

Info

Publication number
WO2016127404A1
WO2016127404A1 PCT/CN2015/073055 CN2015073055W WO2016127404A1 WO 2016127404 A1 WO2016127404 A1 WO 2016127404A1 CN 2015073055 W CN2015073055 W CN 2015073055W WO 2016127404 A1 WO2016127404 A1 WO 2016127404A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
units
receiving
transmitting
signal sequence
Prior art date
Application number
PCT/CN2015/073055
Other languages
English (en)
French (fr)
Inventor
颜敏
薛鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/073055 priority Critical patent/WO2016127404A1/zh
Priority to CN201580071096.3A priority patent/CN107113256B/zh
Publication of WO2016127404A1 publication Critical patent/WO2016127404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel estimation method, apparatus, and system.
  • the existing standard 802.11ad supports SISO (English: Single-Input Single-Output, Chinese: Single Input Single Output) system
  • SISO International: Single-Input Single-Output
  • the data frame includes Header (Chinese: header) and Data (Chinese: data), and also includes CE (English: Channel Estimation, Chinese: channel) Estimate) sequence.
  • the receiving end After receiving the data frame, the receiving end performs channel estimation on the channel between the sending unit and the receiving unit according to the CE sequence in the data frame, and the channel estimation result can be used to demodulate the Header, Data, and the like in the data frame.
  • a method for performing channel estimation by a receiving end includes: receiving, by a receiving unit, a target signal sequence; wherein, the target signal sequence is a signal sequence obtained by transmitting a CE sequence transmitted by the transmitting unit through a channel; The target signal sequence is cross-correlated with the preset CE sequence to obtain a time domain impulse response of the channel between the transmitting unit and the receiving unit; the time domain impulse response is transformed into a frequency domain impulse response, and the frequency domain impulse The response is the frequency domain estimation result of the channel.
  • MIMO Multiple-Input Multiple-Output
  • Chinese Multiple Input Multiple Output
  • NG60 Fifth Generation 60 Frequency
  • Chinese Next Generation High Frequency
  • the channel between the element and the multiple receiving units performs the correct channel estimation.
  • Embodiments of the present invention provide a channel estimation method, apparatus, and system, which are used to solve the problem that a channel estimation between a plurality of transmitting units and a plurality of receiving units cannot be performed after the MIMO system is introduced in the NG60.
  • a channel estimation method for a multiple input multiple output MIMO system, the method comprising:
  • the transmitting end multiplies the to-be-transmitted channel estimation CE sequence by the orthogonal matrix P to obtain a matrix R; wherein the matrix R is an N ⁇ M matrix, and the elements in the matrix R are a source signal sequence;
  • the number of transmitting units at the transmitting end where M is the number of receiving units at the receiving end; N ⁇ 2, M ⁇ 2, and N and M are integers;
  • the source signal sequence in the nth row of the matrix R is respectively sent to the M receiving units by the nth transmitting unit; to the M through the N sending units in the mth time period Receiving units send a sequence of source signals in the mth column of the matrix R;
  • the matrix P H is a conjugate transposed matrix of the orthogonal matrix P; 1 ⁇ n ⁇ N,1 ⁇ m ⁇ M,n And m is an integer;
  • the target signal sequence is a signal sequence obtained after the source signal sequence is transmitted through a channel.
  • a channel estimation method for a multiple input multiple output MIMO system, the method comprising:
  • the receiving end receives the target signal sequence through the M receiving units, and obtains a matrix W; wherein the target signal sequence is a signal sequence obtained by transmitting the source signal sequence in the matrix R in the matrix R sent by the N transmitting units of the transmitting end;
  • the matrix R is an N ⁇ M matrix obtained by multiplying a channel estimation CE sequence to be transmitted by the transmitting end by an orthogonal matrix P, and an element in the matrix R is a source signal sequence;
  • the matrix W is M ⁇ M a matrix, the elements of the a-th row and the m-th column of the matrix W are superposed after the target signal sequences obtained by the N transmitting units received by the a-th receiving end and transmitted in the m-th time period after channel transmission
  • the generated signal sequence; N ⁇ 2, M ⁇ 2, 1 ⁇ a ⁇ M, 1 ⁇ m ⁇ M, N, M, a, m are integers;
  • the channel is performed on the N ⁇ M channels between the N sending units and the M receiving units according to the matrix W and the matrix P H Estimated, including:
  • the matrix B is multiplied by the matrix P H, the matrix V to obtain a frequency domain; wherein said transmission means between the g-th receiving unit and the h-th frequency domain matrix V g column element of the first row of the h k times the frequency domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, g, h are integers.
  • the channel is performed on the N ⁇ M channels between the N sending units and the M receiving units according to the matrix W and the matrix P H Estimated, including:
  • the matrix A is multiplied by the matrix P H, the time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row and the q-th transmitting unit between the receiving unit k times the time domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q are integers.
  • the channel is performed on the N ⁇ M channels between the N sending units and the M receiving units according to the matrix W and the matrix P H Estimated, including:
  • the matrix A with a predetermined sequence CE mutual correlation operation a time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row of the transmission unit receives the q-th k times the time domain estimation result of the channel between the units; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q Is an integer.
  • the method further includes:
  • the matrix V Fourier transform the time domain, a frequency domain to obtain the matrix V; wherein V the matrix in the frequency domain of the g-th column element h is the g-th row and the h-th transmitting unit of the receiving unit
  • the frequency domain estimation result of the channel is k times; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, and g and h are integers.
  • the third aspect provides a transmitting end device, which is applied to a multiple input multiple output MIMO system, where the sending end device includes:
  • a processing unit configured to multiply a channel estimation CE sequence to be transmitted by an orthogonal matrix P, to obtain a matrix R; wherein the matrix R is an N ⁇ M matrix, and an element in the matrix R is a source signal sequence; For the number of sending units of the transmitting end, the M is the number of receiving units at the receiving end; N ⁇ 2, M ⁇ 2, and N and M are integers;
  • N transmitting units configured to send the source signal sequence in the matrix R to the M receiving units, so that the receiving end receives the target signal sequence according to the matrix P H and the M receiving units, Channel estimation is performed on the N ⁇ M channels between the N sending units and the M receiving units;
  • the source signal sequence in the nth row of the matrix R is respectively sent to the M receiving units by the nth transmitting unit; to the M through the N sending units in the mth time period Receiving units send a sequence of source signals in the mth column of the matrix R;
  • the matrix P H is a conjugate transposed matrix of the orthogonal matrix P; 1 ⁇ n ⁇ N,1 ⁇ m ⁇ M,n And m is an integer;
  • the target signal sequence is a signal sequence obtained after the source signal sequence is transmitted through a channel.
  • a receiver device for multiple input multiple output MIMO
  • the system, the receiving device includes:
  • the target signal sequence is a signal sequence obtained by transmitting a source signal sequence in a matrix R in a matrix R transmitted by N transmitting units at a transmitting end;
  • the matrix R is an N ⁇ M matrix obtained by multiplying a channel estimation CE sequence to be transmitted by the transmitting end by an orthogonal matrix P, and an element in the matrix R is a source signal sequence;
  • the matrix W is M ⁇ M a matrix, the elements of the a-th row and the m-th column of the matrix W are superposed after the target signal sequences obtained by the N transmitting units received by the a-th receiving end and transmitted in the m-th time period after channel transmission
  • the generated signal sequence; N ⁇ 2, M ⁇ 2, 1 ⁇ a ⁇ M, 1 ⁇ m ⁇ M, N, M, a, m are integers;
  • a processing unit configured to perform channel estimation on the N ⁇ M channels between the N sending units and the M receiving units according to the matrix W and the matrix P H ; wherein the matrix P H is Conjugate transposed matrix of orthogonal matrix P.
  • the processing unit is configured to:
  • the matrix B is multiplied by the matrix P H, the matrix V to obtain a frequency domain; wherein said transmission means between the g-th receiving unit and the h-th frequency domain matrix V g column element of the first row of the h k times the frequency domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, g, h are integers.
  • the processing unit is configured to:
  • the matrix A is multiplied by the matrix P H, the time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row and the q-th transmitting unit between the receiving unit k times the time domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q are integers.
  • the processing unit is configured to:
  • the matrix A with a predetermined sequence CE mutual correlation operation a time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row of the transmission unit receives the q-th k times the time domain estimation result of the channel between the units; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q Is an integer.
  • the processing unit is further configured to:
  • the matrix V Fourier transform the time domain, a frequency domain to obtain the matrix V; wherein V the matrix in the frequency domain of the g-th column element h is the g-th row and the h-th transmitting unit of the receiving unit
  • the frequency domain estimation result of the channel is k times; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, and g and h are integers.
  • a fifth aspect provides a transmitting end device, which is applied to a multiple input multiple output MIMO system, where the sending end device includes: a memory, a processor, and N sending units;
  • the memory is for storing a set of codes for controlling the processor to perform the following actions:
  • the matrix R is an N ⁇ M matrix, elements in the matrix R are source signal sequences; and the N is the transmitting end
  • M is the number of receiving units at the receiving end; N ⁇ 2, M ⁇ 2, and N and M are integers;
  • the N sending units are configured to send the source signal sequence in the matrix R to the M receiving units, so that the receiving end receives the target signal sequence according to the matrix P H and the M receiving units. And performing channel estimation on the N ⁇ M channels between the N sending units and the M receiving units;
  • the source signal sequence in the nth row of the matrix R is respectively sent to the M receiving units by the nth transmitting unit; to the M through the N sending units in the mth time period Receiving units send a sequence of source signals in the mth column of the matrix R;
  • the matrix P H is a conjugate transposed matrix of the orthogonal matrix P; 1 ⁇ n ⁇ N,1 ⁇ m ⁇ M,n And m is an integer;
  • the target signal sequence is a signal sequence obtained after the source signal sequence is transmitted through a channel.
  • a sixth aspect provides a receiving end device, which is applied to a multiple input multiple output MIMO system, where the receiving end device includes: M receiving units, a memory, and a processor;
  • the M receiving units are configured to receive a target signal sequence to obtain a matrix W; wherein the target signal sequence is in a matrix R sent by N transmitting units of the transmitting end a signal sequence obtained by transmitting a source signal sequence through a channel; wherein the matrix R is an N ⁇ M matrix obtained by multiplying a channel estimation CE sequence to be transmitted by the transmitting end by an orthogonal matrix P, where the matrix R
  • the element is a source signal sequence;
  • the matrix W is an M ⁇ M matrix, and the elements of the a-th row and the m-th column of the matrix W are the N-th transmitting unit received by the a-th receiving end in the m-th time period.
  • a signal sequence generated by superimposing a target signal sequence obtained after channel transmission; N ⁇ 2, M ⁇ 2, 1 ⁇ a ⁇ M, 1 ⁇ m ⁇ M, N, M, a, m are integers;
  • the memory is for storing a set of codes for controlling the processor to perform the following actions:
  • the processor is configured to:
  • the matrix B is multiplied by the matrix P H, the matrix V to obtain a frequency domain; wherein said transmission means between the g-th receiving unit and the h-th frequency domain matrix V g column element of the first row of the h k times the frequency domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, g, h are integers.
  • the processor is configured to:
  • the element of the i-th row and the j-th column in the matrix A is a superposition of the time-domain impulse response of the channel between the N transmitting units and the i-th receiving unit in the j-th time period; 1 ⁇ i ⁇ M , 1 ⁇ j ⁇ M, i, j are integers;
  • the matrix A is multiplied by the matrix P H, the time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row and the q-th transmitting unit between the receiving unit k times the time domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q are integers.
  • the processor is configured to:
  • the matrix A with a predetermined sequence CE mutual correlation operation a time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row of the transmission unit receives the q-th k times the time domain estimation result of the channel between the units; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q Is an integer.
  • the processor is further configured to:
  • the matrix V Fourier transform the time domain, a frequency domain to obtain the matrix V; wherein V the matrix in the frequency domain of the g-th column element h is the g-th row and the h-th transmitting unit of the receiving unit
  • the frequency domain estimation result of the channel is k times; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, and g and h are integers.
  • the seventh aspect provides a channel estimation system, comprising: the source device according to any of the third aspect, the fifth aspect, and/or the receiver device according to any of the fourth aspect, the sixth aspect.
  • the channel estimation method, device, and system provided by the embodiment of the present invention, after multiplying the CE sequence to be transmitted by the orthogonal matrix P according to the orthogonal characteristic of the orthogonal matrix P, multiple times through multiple transmitting units to the receiving end
  • the receiving unit transmits a source signal sequence
  • the receiving end performs channel estimation on the channel between the plurality of transmitting units and the plurality of receiving units according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the receiving end can calculate according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the channel estimation result is separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • FIG. 1 is a schematic diagram of a composition of a data frame in the prior art
  • FIG. 2 is a schematic diagram showing the composition of a CE sequence in a data frame in the prior art
  • FIG. 3 is a schematic diagram of a MIMO system in the prior art
  • FIG. 4 is a flowchart of a channel estimation method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another channel estimation method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of still another channel estimation method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a receiving end device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another receiving end device according to an embodiment of the present invention.
  • the data frame sent by a single transmitting unit at the transmitting end to the single receiving unit at the receiving end is as shown in FIG. 1 , and the data frame includes STF (English: Short Training Field, Chinese: short training) Sequence, CE sequence, Header, Data, and BRP (English: Beam Refinement Protocol, Chinese: Beam Precision Adjustment Protocol).
  • the CE sequence is located in the preamble field of the data frame.
  • the CE sequence is composed of 8 golay128 sequences, and the golay128 sequence is 128-bit orthogonal sequence.
  • the golay128 sequence can be further divided into Ga128 and Gb128.
  • FIG. 3 which is a schematic diagram of a MIMO system
  • the MIMO system shown in the figure includes a transmitting end and a receiving end
  • FIG. 3 takes an example in which the transmitting end includes two transmitting units and the receiving end includes two receiving units.
  • the MIMO system will be described.
  • the two transmitting units at the transmitting end are M-1T and M-2T
  • the two receiving units at the receiving end are M-1R and M-2R.
  • a target signal sequence obtained by transmitting a source signal sequence transmitted by a transmitting unit via a channel may be received by all receiving units; for example, the M-1T transmits a source signal sequence, and the source signal sequence passes through 1-1.
  • the target signal sequence obtained after channel transmission can be received by M-1R, and the target signal obtained after transmission through 1-2 channels
  • the sequence can be received by the M-2R.
  • the target signal sequences received by the same receiving unit in the same time period are superimposed.
  • the embodiment of the invention provides a channel estimation method, which can be applied to a MIMO system. As shown in FIG. 4, the method includes:
  • the transmitting end multiplies the CE sequence to be transmitted by the orthogonal matrix P to obtain a matrix R.
  • the matrix R is an N ⁇ M matrix, and the elements in the matrix R are a source signal sequence;
  • the "sender” can be a base station, a STA (English: Station, Chinese: site), or a wireless AP (English: Access Point, Chinese: Access Point), and the transmitting unit of the transmitting end can be used for sending on the transmitting end.
  • a unit of data for example, when the transmitting end is a base station, the transmitting unit may be an antenna of the base station.
  • the method provided by the embodiment of the present invention can be applied to a MIMO system.
  • Each of the data frames includes a CE sequence
  • the data frame to be sent by the sending unit is referred to as a data frame to be transmitted
  • the “CE sequence to be transmitted” refers to the CE sequence in the data frame to be transmitted.
  • the sequence of CE_1, CE_2, and CE_3 provided by the embodiment of the present invention includes four golay128 sequences, and the CE_4 sequence includes eight golay128 sequences. Therefore, the CE_1, CE_2, and CE_3 sequences can reduce the CE sequence in channel transmission compared with the CE_4 sequence. The overhead and latency in the process. At the same time, in order to make the channel estimation of CE_1, CE_2 and CE_3 sequences correct, the CE_1, CE_2 and CE_3 sequences need to meet the following characteristics:
  • the first time domain location is the same as the second time domain location; wherein the first time domain location is The time domain location of the time domain impulse response obtained by the cross-correlation operation between the CE_1, CE_2, or CE_3 sequence and the preset CE sequence; the second time domain location is obtained by performing a cross-correlation operation between the CE_4 sequence and the preset CE sequence.
  • the preset CE sequence is stored in the receiving end, and is used for performing channel estimation on the channel by using the preset CE sequence when the receiving end receives the target signal sequence; wherein the target signal sequence is obtained after the source signal sequence is transmitted through the channel.
  • the signal sequence is the same as the preset CE sequence. For example, when the CE sequence to be transmitted is CE_1, the preset CE sequence is also CE_1.
  • the "orthogonal matrix P" may be an N x M matrix, and the elements in the matrix R are obtained by multiplying the CE sequence to be transmitted by the elements in the orthogonal matrix P; for example, the elements of the second row and the first column in the matrix R It is obtained by multiplying the CE sequence to be transmitted by the elements of the second row and the first column of the orthogonal matrix P.
  • the source signal sequence in the nth row of the matrix R is respectively sent to the M receiving units by the nth transmitting unit; to the M through the N sending units in the mth time period Receiving units send a sequence of source signals in the mth column of the matrix R;
  • the matrix P H is a conjugate transposed matrix of the orthogonal matrix P; 1 ⁇ n ⁇ N,1 ⁇ m ⁇ M,n And m is an integer;
  • the target signal sequence is a signal sequence obtained after the source signal sequence is transmitted through a channel.
  • the mth time period refers to the time length of the source signal sequence in the mth column of the matrix R, that is, the time required for the transmitting end to transmit the source signal sequence.
  • the time required for the transmitting end to transmit the source signal sequence is the same as the time required for the receiving end to receive the target signal sequence.
  • the M receiving units are considered to receive in the mth time period.
  • the target signal sequence to be obtained is a signal sequence obtained after the source signal sequences transmitted by the N transmitting units in the mth time period are transmitted through the channel. Moreover, all the target signal sequences received by one receiving unit in the mth time period are superimposed.
  • the transmitting end may use the element of the nth row in the matrix R (ie, the source signal sequence of the nth row). Arranging the elements of the nth row in the order in which the nth transmitting unit sends the elements of the nth row, in place of the CE sequence in the data frame to be transmitted, and may not treat other data in the data frame (for example, STF, Data, etc.) are processed.
  • the source is sent to the multiple receiving units of the receiving end by using multiple sending units.
  • the signal sequence the receiving end performs channel estimation on the channel between the plurality of transmitting units and the plurality of receiving units according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the receiving end can calculate according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the channel estimation result is separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • the embodiment of the present invention further provides a channel estimation method, which is applied to a multiple-input multiple-output MIMO system.
  • the channel estimation method includes:
  • the receiving end receives the target signal sequence through the M receiving units, to obtain a matrix W, where the target signal sequence is a matrix sent by the N transmitting units of the transmitting end.
  • a signal sequence obtained by transmitting a source signal sequence in R through a channel wherein the matrix R is an N ⁇ M matrix obtained by multiplying a CE sequence to be transmitted by the transmitting end by an orthogonal matrix P, where the matrix R is The element is a source signal sequence;
  • the matrix W is an M ⁇ M matrix, and the elements of the a-th row and the m-th column of the matrix W are the N-th transmitting unit received by the a-th receiving end in the m-th time period a signal sequence generated by superimposing a target signal sequence obtained after channel transmission; N ⁇ 2, M ⁇ 2, 1 ⁇ a ⁇ M, 1 ⁇ m ⁇ M, N, M, a, m are integers .
  • the receiving unit does not receive the source signal sequence sent by the transmitting unit, but passes through the channel transmission.
  • the target signal sequence Moreover, the target signal sequences received by one receiving unit in the same time period are superimposed.
  • the matrix W received by the receiving end is the channel matrix multiplied by the matrix R transmitted by the transmitting end.
  • the channel matrix is an M ⁇ N matrix.
  • the matrix R sent by the transmitting end is an N ⁇ M matrix
  • the matrix W received by the receiving end is an M ⁇ M matrix.
  • the channel estimation result may be a time domain estimation result of the channel, or may be a frequency domain estimation result of the channel.
  • step 502 may specifically include the following steps 11)-13):
  • the matrix B is multiplied by the matrix P H, the matrix V to obtain a frequency domain; wherein said second matrix of the frequency domain V g column element h of the g-th line of the first transmitting unit and the receiving units h k times the frequency domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, g, h are Integer.
  • the preset CE sequence is stored in the receiving end, and is used for performing channel estimation on the channel by using the preset CE sequence when the receiving end receives the target signal sequence.
  • the cross-correlation operation may include: a convolution operation or the like.
  • the “jth time period” refers to the time required for the receiving end to receive the target signal sequence; wherein the target signal sequence refers to the source signal sequence transmitted by the N transmitting units in the jth time period.
  • the "superposition of the time domain impulse response in the jth time period” refers to the superposition of the time domain impulse response calculated by the receiving end according to the target signal sequence received in the jth time period.
  • the "qth time period” and “the superposition of the frequency domain impulse response in the qth time period” are the same.
  • step 502 may specifically include the following steps 21)-22):
  • the matrix A is multiplied by the matrix P H, the time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row and the q-th transmitting unit receiving units k times the time domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q are Integer.
  • step 502 may specifically include the following steps 31)-32):
  • V is the matrix domain of the p-th column element q of the p-th row and the second transmission unit k times the time domain estimation result of the channel between q receiving units; k is the greatest common divisor of non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p And q are integers.
  • the method may further include:
  • the matrix V Fourier transform the time domain, a frequency domain to obtain the matrix V; wherein V the matrix in the frequency domain of the g-th column element h is the g-th row and the h-th transmitting unit of the receiving unit
  • the frequency domain estimation result of the channel is k times; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, and g and h are integers.
  • the source is sent to the multiple receiving units of the receiving end by using multiple sending units.
  • the signal sequence the receiving end performs channel estimation on the channel between the plurality of transmitting units and the plurality of receiving units according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the receiving end can calculate according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the channel estimation result is separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • the channel estimation method provided by the foregoing embodiment is exemplified by taking the number of the transmitting unit of the transmitting end and the receiving unit of the receiving end as both as an example.
  • the orthogonal matrix P is
  • the CE sequence to be transmitted is recorded as CE_d
  • the preset CE sequence is recorded as CE_y.
  • CE_d and CE_y are the same CE sequence; as shown in FIG. 6, the channel estimation method includes:
  • the transmitting end multiplies CE_d by P to obtain a matrix R.
  • the transmitting end sends the source signal sequence in the matrix R to the two receiving units by using two sending units.
  • the transmission unit 1 transmits over a period T 1 (first time period) two reception unit R 11 (CE_d); transmitting R 12 (CE_d) within t 2 (second time period) two receiving units.
  • the transmitting unit 2 transmits R 21 (-CE_d) to the two receiving units in t 1 ; and transmits R 22 (CE_d) to the two receiving units in t 2 .
  • Table 1 it is the relationship between the transmission unit and the time period of transmission and the transmitted source signal sequence.
  • the receiving end receives the target signal sequence through two receiving units, to obtain a matrix W.
  • the matrix W can be written as
  • the matrix W received by the receiving end is the channel matrix multiplied by the matrix R sent by the transmitting end.
  • the matrix R transmitted by the transmitting end is an N ⁇ M matrix
  • the channel matrix is an M ⁇ N matrix.
  • the channel matrix is a 2 ⁇ 2 matrix
  • the matrix R transmitted by the transmitting end is also a 2 ⁇ 2 matrix
  • the matrix W received by the receiving end is a 2 ⁇ 2 matrix.
  • each receiving unit receives the target signal sequence obtained by transmitting the source signal sequence to the channel through the transmitting unit.
  • Receiving means within t. 1 receives the target signal sequence derived signal sequence via channel transmission transmission unit transmits within t. 1
  • the in t 2 receives the transmission unit signal sequence via the channel transmission within 2 t
  • Receiving, by the receiving unit r, the target signal sequence after the channel transmission of the source signal sequence transmitted from the transmitting unit s via the transmitting unit s to the receiving unit r is recorded as U rs , the time period of each receiving unit and the receiving target signal sequence and receiving
  • Table 2 the time period of each receiving unit and the receiving target signal sequence and receiving
  • Time period t 1 t 2 Receiving unit 1 U 11 ,-U 12 U 11 , U 12 Receiving unit 2 U 21 ,-U 22 U 21 , U 22
  • the receiving unit 1 receives the signal sequence in the target t to 1 comprises -U 12, the receiving unit 2 is received at t 2
  • the target signal sequence includes -U 22 .
  • W 11 U 11 -U 12
  • W 12 U 11 +U 12
  • W 21 U 21 -U 22
  • W 22 U 21 +U 22 .
  • the receiving end performs convolution operation on the matrix W and CE_y to obtain a matrix A.
  • matrix A can be written as Matrix then:
  • the receiving end performs Fourier transform on the matrix A to obtain a matrix B.
  • matrix B can be written as
  • Step 605 simply changes the elements in matrix A from the time domain to the frequency domain.
  • the elements in matrix B are still described as:
  • the receiving end multiplies the matrix B by the matrix P H to obtain a matrix V frequency domain .
  • the matrix V frequency domain can be recorded as
  • the matrix P H is a conjugate transposed matrix of the matrix P.
  • P ⁇ P H kE
  • the source is sent to the multiple receiving units of the receiving end by using multiple sending units.
  • the signal sequence the receiving end performs channel estimation on the channel between the plurality of transmitting units and the plurality of receiving units according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the receiving end can calculate according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the channel estimation result is separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • the embodiment of the present invention provides a transmitting end device 70, which can be applied to a multiple input multiple output MIMO system for performing the channel estimation method shown in FIG. 4.
  • the transmitting end device 70 includes: a processing unit. 701 and N transmitting units 702.
  • the processing unit 701 is configured to multiply the CE sequence to be transmitted by the orthogonal matrix P to obtain a matrix R.
  • the matrix R is an N ⁇ M matrix, and the elements in the matrix R are a source signal sequence;
  • the N sending units 702 are configured to send the source signal sequence in the matrix R to the M receiving units, so that the receiving end receives the target signal sequence according to the matrix P H and the M receiving units, Channel estimation is performed on N ⁇ M channels between the N transmitting units and the M receiving units.
  • the source signal sequence in the nth row of the matrix R is respectively sent to the M receiving units by the nth transmitting unit; to the M through the N sending units in the mth time period Receiving units send a sequence of source signals in the mth column of the matrix R;
  • the matrix P H is a conjugate transposed matrix of the orthogonal matrix P; 1 ⁇ n ⁇ N,1 ⁇ m ⁇ M,n And m is an integer;
  • the target signal sequence is a signal sequence obtained after the source signal sequence is transmitted through a channel.
  • the transmitting end device after multiplying the CE sequence to be transmitted by the orthogonal matrix P according to the orthogonal characteristic of the orthogonal matrix P, transmits the source signal to the plurality of receiving units of the receiving end device through multiple sending units.
  • the receiving device performs channel estimation on a channel between the plurality of transmitting units and the plurality of receiving units according to the matrix P H and the target signal sequence received by the plurality of receiving units.
  • the receiving end device may according to the matrix P H and the target signal sequence received through the plurality of receiving units.
  • the channel estimation result is calculated and separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • each unit in Embodiment 4 may be embedded in hardware or in a processor independent of the transmitting device, or may be stored in software in the memory of the transmitting device, so that the processor can execute the call.
  • the processor may be a central processing unit (abbreviation: CPU), a microprocessor, a single chip microcomputer, or the like.
  • a transmitting device 80 is configured to perform the channel estimation method shown in FIG. 4, where the transmitting device 80 includes: a memory 801, a processor 802, and N transmitting units. 803 and bus system 804.
  • the memory 801, the processor 802, and the N transmitting units 803 are connected.
  • the bus system 804 is coupled together, wherein the bus system 804 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus.
  • various buses are labeled as bus system 804 in the figure.
  • the memory 801 is configured to store a set of codes for controlling the processor 802 to perform the following actions:
  • the matrix R is an N ⁇ M matrix, elements in the matrix R are source signal sequences; and N is a transmitting unit of the transmitting end
  • the number of the M is the number of receiving units at the receiving end; N ⁇ 2, M ⁇ 2, and N and M are integers.
  • the N sending units 803 are configured to send the source signal sequence in the matrix R to the M receiving units, so that the receiving end receives the target signal according to the matrix P H and the M receiving units. a sequence, performing channel estimation on the N ⁇ M channels between the N transmitting units and the M receiving units.
  • the source signal sequence in the nth row of the matrix R is respectively sent to the M receiving units by the nth transmitting unit; to the M through the N sending units in the mth time period Receiving units send a sequence of source signals in the mth column of the matrix R;
  • the matrix P H is a conjugate transposed matrix of the orthogonal matrix P; 1 ⁇ n ⁇ N,1 ⁇ m ⁇ M,n And m is an integer;
  • the target signal sequence is a signal sequence obtained after the source signal sequence is transmitted through a channel.
  • the transmitting end device after multiplying the CE sequence to be transmitted by the orthogonal matrix P according to the orthogonal characteristic of the orthogonal matrix P, transmits the source signal to the plurality of receiving units of the receiving end device through multiple sending units.
  • the receiving device performs channel estimation on the channel between the plurality of transmitting units and the plurality of receiving units according to the matrix P H and the target signal sequence received through the plurality of receiving units.
  • the receiving end device may according to the matrix P H and the target signal sequence received through the plurality of receiving units.
  • the channel estimation result is calculated and separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • the embodiment of the present invention provides a receiving end device 90, which can be applied to a multiple input multiple output MIMO system, for performing the channel estimation method shown in FIG. 5.
  • the receiving end device 90 includes: M The receiving unit 901 and the processing unit 902.
  • M receiving units 901 configured to receive a target signal sequence, to obtain a matrix W; wherein the target signal sequence is a signal sequence obtained by transmitting a source signal sequence in a matrix R in a matrix R transmitted by N transmitting units at a transmitting end;
  • the matrix R is an N ⁇ M matrix obtained by multiplying a CE sequence to be transmitted by the transmitting end by an orthogonal matrix P, and an element in the matrix R is a source signal sequence;
  • the matrix W is an M ⁇ M matrix.
  • the element of the a-th row and the m-th column of the matrix W is generated by superimposing the target signal sequences obtained after the channel transmission by the N transmitting units received by the a-th receiving end in the m-th time period.
  • Signal sequence; N ⁇ 2, M ⁇ 2, 1 ⁇ a ⁇ M, 1 ⁇ m ⁇ M, N, M, a, m are integers.
  • the processing unit 902 is configured to perform channel estimation on the N ⁇ M channels between the N sending units and the M receiving units according to the matrix W and the matrix P H ; wherein the matrix P H is The conjugate transposed matrix of the orthogonal matrix P is described.
  • processing unit 902 is configured to:
  • the element of the qth column of the pth row in B is a superposition of the frequency domain impulse response of the channel between the N transmitting units and the pth receiving unit in the qth time period; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ M, p, q are integers.
  • the matrix B is multiplied by the matrix P H, the matrix V to obtain a frequency domain; wherein said transmission means between the g-th receiving unit and the h-th frequency domain matrix V g column element of the first row of the h k times the frequency domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, g, h are integers.
  • processing unit 902 is configured to:
  • the superposition of the time domain impulse response in j time periods; 1 ⁇ i ⁇ M, 1 ⁇ j ⁇ M, i, j are integers.
  • the matrix A is multiplied by the matrix P H, the time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row and the q-th transmitting unit between the receiving unit k times the time domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q are integers.
  • processing unit 902 is configured to:
  • the matrix A with a predetermined sequence CE mutual correlation operation a time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row of the transmission unit receives the q-th k times the time domain estimation result of the channel between the units; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q Is an integer.
  • processing unit 902 is further configured to:
  • the matrix V Fourier transform the time domain, a frequency domain to obtain the matrix V; wherein V the matrix in the frequency domain of the g-th column element h is the g-th row and the h-th transmitting unit of the receiving unit
  • the frequency domain estimation result of the channel is k times; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, and g and h are integers.
  • the receiving end device provided by the embodiment of the present invention performs channel estimation on a channel between multiple sending units and multiple receiving units according to a matrix P H and a target signal sequence received by multiple receiving units.
  • the receiving end device may according to the matrix P H and the target signal sequence received through the plurality of receiving units.
  • the channel estimation result is calculated and separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • each unit in Embodiment 6 may be embedded in hardware or in a processor independent of the receiving end device, or may be stored in software in the memory of the receiving end device, so that the processor can execute the call.
  • the processor may be a central processing unit (abbreviation: CPU), a microprocessor, a single chip microcomputer, or the like.
  • a receiving end device 100 is provided to perform the channel estimation method shown in FIG. 5, where the receiving end device 100 includes: M receiving units 1001, a memory 1002, and a processor. 1003 and bus system 1004.
  • the M receiving unit 1001, the memory 1002, and the processor 1003 are coupled together by a bus system 1004.
  • the bus system 1004 includes a power bus, a control bus, a status signal bus, and the like in addition to the data bus. .
  • various buses are labeled as bus system 1004 in the figure.
  • the M receiving unit 1001 is configured to receive a target signal sequence to obtain a matrix W.
  • the target signal sequence is a signal sequence obtained by transmitting a source signal sequence in a matrix R in a matrix R sent by N transmitting units at a transmitting end.
  • the matrix R is an N ⁇ M matrix obtained by multiplying a CE sequence to be transmitted by the transmitting end by an orthogonal matrix P,
  • the elements in the matrix R are a source signal sequence;
  • the matrix W is an M ⁇ M matrix, and the elements of the a-th row and the m-th column of the matrix W are the N transmitting units received by the a-th receiving end.
  • a signal sequence generated by superimposing a target signal sequence obtained after channel transmission in the mth time period; N ⁇ 2, M ⁇ 2, 1 ⁇ a ⁇ M, 1 ⁇ m ⁇ M, N, M, a m is an integer.
  • the memory 1002 is configured to store a set of codes for controlling the processor 1003 to perform the following actions:
  • the processor 1002 is configured to:
  • the matrix B is multiplied by the matrix P H, the matrix V to obtain a frequency domain; wherein said transmission means between the g-th receiving unit and the h-th frequency domain matrix V g column element of the first row of the h k times the frequency domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, g, h are integers.
  • the processor 1002 is configured to:
  • the matrix A is multiplied by the matrix P H, the time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row and the q-th transmitting unit between the receiving unit k times the time domain estimation result of the channel; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q are integers.
  • the processor 1002 is configured to:
  • the matrix A with a predetermined sequence CE mutual correlation operation a time domain to obtain the matrix V; wherein V is the matrix domain of the p-th column element q of the p-th row of the transmission unit receives the q-th k times the time domain estimation result of the channel between the units; k is the greatest common divisor of the non-zero elements in the matrix obtained after P ⁇ P H ; 1 ⁇ p ⁇ M, 1 ⁇ q ⁇ N, p, q Is an integer.
  • processor 1002 is further configured to:
  • the matrix V Fourier transform the time domain, a frequency domain to obtain the matrix V; wherein V the matrix in the frequency domain of the g-th column element h is the g-th row and the h-th transmitting unit of the receiving unit
  • the frequency domain estimation result of the channel is k times; 1 ⁇ g ⁇ M, 1 ⁇ h ⁇ N, and g and h are integers.
  • the receiving end device provided by the embodiment of the present invention performs channel estimation on a channel between multiple sending units and multiple receiving units according to a matrix P H and a target signal sequence received by multiple receiving units.
  • the receiving end device may according to the matrix P H and the target signal sequence received through the plurality of receiving units.
  • the channel estimation result is calculated and separated, so that correct channel estimation can be performed on the channel between the plurality of transmitting units and the plurality of receiving units.
  • the embodiment of the present invention further provides a channel estimation system, including: a transmitting end device according to any one of Embodiment 4 and Embodiment 5, and/or provided by any one of Embodiment 6 and Embodiment 7 Receiver device.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (English: Read-Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种信道估计方法、装置及系统,涉及通信技术领域。用于解决在NG60中引入MIMO系统后,无法对多个发送单元和多个接收单元之间的信道进行正确的信道估计的问题。该方法包括:发送端将待发送CE序列乘以正交矩阵P,得到矩阵R;其中,矩阵R为NxM矩阵,矩阵R中的元素为源信号序列;N为发送端的发送单元的个数,M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;通过N个发送单元向M个接收单元发送矩阵R中的源信号序列,以使得接收端根据矩阵PH和M个接收单元接收到的目标信号序列,对N个发送单元与M个接收单元之间的NxM条信道进行信道估计。

Description

一种信道估计方法、装置及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种信道估计方法、装置及系统。
背景技术
在60G高频WIFI(英文:Wireless Fidelity,中文:无线保真)中,现有标准802.11ad支持SISO(英文:Single-Input Single-Output,中文:单输入单输出)系统,在SISO系统中,发送端的单个发送单元向接收端的单个接收单元发送数据帧,该数据帧中包含有Header(中文:标头)和Data(中文:数据)等,还包含有CE(英文:Channel Estimation,中文:信道估计)序列。接收端接收到数据帧后,根据数据帧中的CE序列对发送单元与接收单元之间的信道进行信道估计,信道估计结果可以用于解调数据帧中的Header、Data等。
目前,在SISO系统中,接收端进行信道估计的方法包括:通过接收单元接收目标信号序列;其中,目标信号序列是指发送单元发送的CE序列经信道传输后得到的信号序列;将接收到的目标信号序列与预设CE序列进行互相关运算,得到发送单元与接收单元之间的信道的时域冲激响应;将该时域冲激响应变换为频域冲激响应,该频域冲激响应即信道的频域估计结果。
由于MIMO(英文:Multiple-Input Multiple-Output,中文:多输入多输出)技术可以增加信道容量,提高频谱效率。因此,在现有标准802.11ad的下一标准NG60(英文:Next Generation 60Frequency,中文:下一代高频)中引入了MIMO系统,在MIMO系统中,发送端的多个发送单元向接收端的多个接收单元发送数据帧,由于同一接收单元在同一时间周期内接收到的目标信号序列是叠加在一起的;因此,无法利用上述方法对多个发送单 元和多个接收单元之间的信道进行正确的信道估计。
发明内容
本发明的实施例提供一种信道估计方法、装置及系统,用以解决在NG60中引入MIMO系统后,无法对多个发送单元和多个接收单元之间的信道进行正确的信道估计的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种信道估计方法,应用于多输入多输出MIMO系统,所述方法包括:
发送端将待发送信道估计CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;
通过所述N个发送单元向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;
其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
结合第一方面,在第一种可能的实现方式中,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
第二方面,提供一种信道估计方法,应用于多输入多输出MIMO系统,所述方法包括:
接收端通过M个接收单元接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送信道估计CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数;
根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
结合第二方面,在第一种可能的实现方式中,所述根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计,包括:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数;
将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元 之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
结合第二方面,在第二种可能的实现方式中,所述根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计,包括:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
结合第二方面,在第三种可能的实现方式中,所述根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计,包括:
将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数;
将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
结合第二方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,在所述得到矩阵V时域之后,所述 方法还包括:
将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
第三方面,提供一种发送端设备,应用于多输入多输出MIMO系统,所述发送端设备包括:
处理单元,用于将待发送信道估计CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;
N个发送单元,用于向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;
其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
结合第三方面,在第一种可能的实现方式中,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
第四方面,提供一种接收端设备,应用于多输入多输出MIMO 系统,所述接收端设备包括:
M个接收单元,用于接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送信道估计CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数;
处理单元,用于根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
结合第四方面,在第一种可能的实现方式中,所述处理单元用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数;
将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
结合第四方面,在第二种可能的实现方式中,所述处理单元用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
结合第四方面,在第三种可能的实现方式中,所述处理单元用于:
将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数;
将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
结合第四方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,所述处理单元还用于:
将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
第五方面,提供一种发送端设备,应用于多输入多输出MIMO系统,所述发送端设备包括:存储器、处理器和N个发送单元;
所述存储器用于存储一组代码,该代码用于控制所述处理器执行以下动作:
将待发送信道估计CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;
所述N个发送单元,用于向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;
其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
结合第五方面,在第一种可能的实现方式中,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
第六方面,提供一种接收端设备,应用于多输入多输出MIMO系统,所述接收端设备包括:M个接收单元、存储器和处理器;
所述M个接收单元,用于接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的 源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送信道估计CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数;
所述存储器用于存储一组代码,该代码用于控制所述处理器执行以下动作:
根据所述矩阵W和矩阵PH对所述N个发送单元与M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
结合第六方面,在第一种可能的实现方式中,所述处理器用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数;
将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
结合第六方面,在第二种可能的实现方式中,所述处理器用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A; 其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
结合第六方面,在第三种可能的实现方式中,所述处理器用于:
将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数;
将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
结合第六方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,所述处理器还用于:
将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
第七方面,提供一种信道估计系统,包括:如第三方面、第五方面任一方面提供的发送端设备,和/或如第四方面、第六方面任一方面提供的接收端设备。
本发明实施例提供的信道估计方法、装置及系统,根据正交矩 阵P的正交特性,在发送端将待发送CE序列乘以正交矩阵P后,通过多个发送单元向接收端的多个接收单元发送源信号序列,接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种数据帧的组成示意图;
图2为现有技术中的一种数据帧中的CE序列的组成示意图;
图3为现有技术中的MIMO系统的示意图;
图4为本发明实施例提供的一种信道估计方法的流程图;
图5为本发明实施例提供的又一种信道估计方法的流程图;
图6为本发明实施例提供的再一种信道估计方法的流程图;
图7为本发明实施例提供的一种发送端设备的组成示意图;
图8为本发明实施例提供的又一种发送端设备的组成示意图;
图9为本发明实施例提供的一种接收端设备的组成示意图;
图10为本发明实施例提供的又一种接收端设备的组成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术 方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中的术语“多个”是指两个或两个以上。
在现有标准802.11ad支持的SISO系统中,发送端的单个发送单元向接收端的单个接收单元发送的数据帧如图1所示,数据帧中包括STF(英文:Short Training Field,中文:短训练)序列、CE序列、Header、Data和BRP(英文:Beam Refinement Protocol,中文:波束精确调整协议)等。其中,CE序列位于数据帧的前导字段中,如图2所示,CE序列由8个golay128序列组成,golay128序列为128位的正交序列;其中,golay128序列又可以分为Ga128和Gb128。
如图3所示,为MIMO系统的示意图,图中所示的MIMO系统中包括一个发送端和一个接收端,并且图3以发送端包括2个发送单元和接收端包括2个接收单元为例对MIMO系统进行说明。其中,发送端的2个发送单元为M-1T和M-2T,接收端的2个接收单元为M-1R和M-2R;2个发送单元和2个接收单元之间共存在四条信道,分别为1-1(M-1T和M-1R之间的信道)、1-2(M-1T和M-2R之间的信道)、2-1(M-2T和M-1R之间的信道)和2-2(M-2T和M-2R之间的信道)。
在MIMO系统中,一个发送单元发送的源信号序列经信道传输后得到的目标信号序列可以被所有的接收单元接收到;例如,M-1T发送一源信号序列,该源信号序列通过1-1信道传输后得到的目标信号序列可以被M-1R接收到,通过1-2信道传输后得到的目标信号 序列可以被M-2R接收到。另外,同一接收单元在同一时间周期内接收到的目标信号序列是叠加在一起的。
实施例一
本发明实施例提供了一种信道估计方法,可以应用于MIMO系统,如图4所示,所述方法包括:
401、发送端将待发送CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数。
“发送端”可以为基站、STA(英文:Station,中文:站点)或无线AP(英文:Access Point,中文:访问接入点)等设备,发送端的发送单元可以为发送端上的用于发送数据的单元;例如,当发送端为基站时,发送单元可以为基站的天线。本发明实施例提供的方法,可以应用在MIMO系统中。
其中,每个数据帧中包含一个CE序列,将发送单元将要发送的数据帧称为待发送数据帧,则“待发送CE序列”是指待发送数据帧中的CE序列。可选的,所述待发送CE序列可以包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
本发明实施例提供的CE_1、CE_2和CE_3序列中包括4个golay128序列,而CE_4序列中包括8个golay128序列,因此,CE_1、CE_2和CE_3序列与CE_4序列相比,可以减少CE序列在信道传输过程中的开销和时延。同时,为了使CE_1、CE_2和CE_3序列可以进行正确的信道估计,CE_1、CE_2和CE_3序列需要满足如下特性:
第一时域位置与第二时域位置相同;其中,第一时域位置是指 CE_1、CE_2或CE_3序列与预设CE序列进行互相关运算后得到的时域冲激响应所在的时域位置;第二时域位置是指CE_4序列与预设CE序列进行互相关运算后得到的时域冲激响应所在的时域位置。其中,预设CE序列存储在接收端中,用于接收端接收到目标信号序列时,利用该预设CE序列对信道进行信道估计;其中,目标信号序列为源信号序列经信道传输后得到的信号序列;需要说明的是,待发送CE序列与预设CE序列一致,例如,当待发送CE序列为CE_1时,预设CE序列也为CE_1。
“正交矩阵P”可以为一个N×M矩阵,矩阵R中的元素为待发送CE序列乘以正交矩阵P中的元素得到的;例如,矩阵R中的第2行第1列的元素为待发送CE序列乘以正交矩阵P中第2行第1列的元素得到的。
正交矩阵P具有如下特性:P×PH=kE;该特性称为正交矩阵P的正交特性;其中,PH为矩阵P的共轭转置矩阵,E为单位矩阵,k为P×PH后得到的矩阵中的非零元素的最大公约数。
402、通过所述N个发送单元向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计。
其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
其中,第m个时间周期是指矩阵R的第m列中的源信号序列的时间长度,即发送端发送该源信号序列需要的时间。
需要说明的是,一般情况下,发送端发送源信号序列需要的时间与接收端接收到目标信号序列需要的时间相同,则本发明实施例中认为M个接收单元在第m个时间周期内接收到的目标信号序列,是N个发送单元在第m个时间周期内发送的源信号序列经信道传输后得到的信号序列。并且,一个接收单元在第m个时间周期内接收到的全部目标信号序列是叠加在一起的。
另外,本发明实施例提供的方法在具体实现时,当第n个发送单元发送待发送数据帧时,发送端可以将矩阵R中的第n行的元素(即第n行的源信号序列)按照第n个发送单元发送该第n行的元素的顺序依次排列在待发送数据帧中,用以替代待发送数据帧中的CE序列,而可以不对待发送数据帧中的其他数据(例如,STF、Data等)进行处理。
本发明实施例提供的信道估计方法,根据正交矩阵P的正交特性,在发送端将待发送CE序列乘以正交矩阵P后,通过多个发送单元向接收端的多个接收单元发送源信号序列,接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
实施例二
本发明实施例还提供了一种信道估计方法,应用于多输入多输出MIMO系统,该实施例中的相关解释可参见实施例一。如图5所示,该信道估计方法包括:
501、接收端通过M个接收单元接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵 R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数。
需要说明的是,发送单元通过一个信道发送一个源信号序列后,由于信道本身存在噪声、多径效应等,接收单元接收到的不再是发送单元发送的源信号序列,而是经过信道传输后的目标信号序列。并且,一个接收单元在同一时间周期内接收到的目标信号序列是叠加在一起的。
另外,需要强调的是,接收端接收到的矩阵W为信道矩阵乘以发送端发送的矩阵R。当有N个发送单元,M个接收单元时,信道矩阵为一M×N矩阵。在本发明实施例提供的技术方案中,发送端发送的矩阵R为一N×M矩阵,则接收端接收到的矩阵W为一M×M矩阵。
502、根据所述矩阵W和矩阵PH对由所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
正交矩阵P具有如下特性:P×PH=kE;将该特性称为正交矩阵P的正交特性;其中,E为单位矩阵,k为P×PH后得到的矩阵中的非零元素的最大公约数。
需要说明的是,信道估计结果可以是信道的时域估计结果,也可以是信道的频域估计结果。
可选的,步骤502具体可以包括以下步骤11)-13):
11)、将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第 i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数。
12)、将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数。
13)、将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
其中,预设CE序列存储在接收端中,用于接收端接收到目标信号序列时,利用该预设CE序列对信道进行信道估计。
其中,互相关运算可以包括:卷积运算等。
该实施例中,“第j个时间周期”是指接收端接收到目标信号序列需要的时间;其中,目标信号序列是指N个发送单元在第j个时间周期内发送的源信号序列经信道传输后得到的信号序列。“第j个时间周期内的时域冲激响应的叠加”是指接收端根据第j个时间周期内接收到的目标信号序列计算得到的时域冲激响应的叠加。“第q个时间周期”和“第q个时间周期内的频域冲激响应的叠加”同理。
可选的,步骤502具体可以包括以下步骤21)-22):
21)、将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数。
22)、将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中 的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
可选的,步骤502具体可以包括以下步骤31)-32):
31)、将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数。
32)、将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
可选的,在步骤22或32之后,所述方法还可以包括:
将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
本发明实施例提供的信道估计方法,根据正交矩阵P的正交特性,在发送端将待发送CE序列乘以正交矩阵P后,通过多个发送单元向接收端的多个接收单元发送源信号序列,接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
实施例三
该实施例以发送端的发送单元和接收端的接收单元的个数均为 2为例对上述实施例提供的信道估计方法进行示例性说明,本实施例中的相关解释可以参见上述实施例。具体的,当发送单元和接收单元的个数均为2时,正交矩阵P为
Figure PCTCN2015073055-appb-000001
为了方便描述,将待发送CE序列记为CE_d,预设CE序列记为CE_y,实质上,CE_d与CE_y为相同的CE序列;如图6所示,该信道估计方法包括:
601、发送端将CE_d乘以P,得到矩阵R。
具体的,矩阵
Figure PCTCN2015073055-appb-000002
602、发送端通过2个发送单元向2个接收单元发送矩阵R中的源信号序列。
具体的,发送单元1在t1(第1个时间周期)内向2个接收单元发送R11(CE_d);在t2(第2个时间周期)内向2个接收单元发送R12(CE_d)。发送单元2在t1内向2个接收单元发送R21(-CE_d);在t2内向2个接收单元发送R22(CE_d)。如表1所示,为发送单元与发送的时间周期以及发送的源信号序列的关系。
表1
时间周期 t1 t2
发送单元1 CE_d CE_d
发送单元2 -CE_d CE_d
603、接收端通过2个接收单元接收目标信号序列,得到矩阵W。
具体的,矩阵W可以记为
Figure PCTCN2015073055-appb-000003
其中,接收端接收到的矩阵W为信道矩阵乘以发送端发送的矩阵R。当有N个发送单元,M个接收单元时,发送端发送的矩阵R为一N×M矩阵,信道矩阵为一M×N矩阵。在该实施例中,信道矩阵为一2×2矩阵,发送端发送的矩阵R也为一2×2矩阵,则接收端接收到的矩阵W为一2×2矩阵。
需要说明的是,任意一个发送单元发送的源信号序列,每个接收单元都会接收到该源信号序列经该发送单元到自身的信道传输后得到的目标信号序列。接收单元在t1内会接收到发送单元在t1内发送的源信号序列经信道传输后得到的目标信号序列,在t2内会接收到发送单元在t2内发送的源信号序列经信道传输后得到的目标信号序列。将接收单元r接收到来自发送单元s发送的源信号序列经发送单元s到接收单元r的信道传输后的目标信号序列记为Urs,则各个接收单元和接收目标信号序列的时间周期以及接收到的目标信号序列的关系如表2所示。
表2
时间周期 t1 t2
接收单元1 U11,-U12 U11,U12
接收单元2 U21,-U22 U21,U22
需要说明的是,由于发送单元2在t1内发送的源信号序列为-CE_d;因此,接收单元1在t1接收到的目标信号序列包括-U12,接收单元2在t2接收到的目标信号序列包括-U22
需要说明的是,由于一个接收单元在同一时间周期内接收到的目标信号序列是叠加在一起的,则W11=U11-U12,W12=U11+U12,W21=U21-U22,W22=U21+U22
604、接收端将矩阵W与CE_y进行卷积运算,得到矩阵A。
具体的,矩阵A可以记为
Figure PCTCN2015073055-appb-000004
则矩阵
Figure PCTCN2015073055-appb-000005
Figure PCTCN2015073055-appb-000006
则:
A11=conv(U11-U12,CE_y)=conv(U11,CE_y)-conv(U12,CE_y);
A12=conv(U11+U12,CE_y)=conv(U11,CE_y)+conv(U12,CE_y);
A21=conv(U21-U22,CE_y)=conv(U21,CE_y)-conv(U22, CE_y);
A22=conv(U21+U22,CE_y)=conv(U21,CE_y)+conv(U22,CE_y)。
605、接收端将矩阵A进行傅里叶变换,得到矩阵B。
具体的,矩阵B可以记为
Figure PCTCN2015073055-appb-000007
步骤605只是将矩阵A中的元素从时域变为了频域。为了简便描述,仍然将矩阵B中的元素描述为:
B11=conv(U11-U12,CE_y)=conv(U11,CE_y)-conv(U12,CE_y);
B12=conv(U11+U12,CE_y)=conv(U11,CE_y)+conv(U12,CE_y);
B21=conv(U21-U22,CE_y)=conv(U21,CE_y)-conv(U22,CE_y);
B22=conv(U21+U22,CE_y)=conv(U21,CE_y)+conv(U22,CE_y)。
606、接收端将矩阵B乘以矩阵PH,得到矩阵V频域
具体的,矩阵V频域可以记为
Figure PCTCN2015073055-appb-000008
其中,矩阵PH为矩阵P的共轭转置矩阵。根据正交矩阵P的正交特性,P×PH=kE,E为单位矩阵;则
Figure PCTCN2015073055-appb-000009
k=2。
Figure PCTCN2015073055-appb-000010
则:V11=B11+B12=2conv(U11,CE_y);
V12=-B11+B12=2conv(U12,CE_y);
V21=-B21+B22=2conv(U21,CE_y);
V22=B21+B22=2conv(U22,CE_y)。
其中,当
Figure PCTCN2015073055-appb-000011
时,矩阵V频域中第g列第h行的元素为第g个发送单元到第h个接收单元的信道的频域估计结果的2倍;1≤g≤2,1≤h≤2,g、h均为整数。
本发明实施例提供的信道估计方法,根据正交矩阵P的正交特性,在发送端将待发送CE序列乘以正交矩阵P后,通过多个发送单元向接收端的多个接收单元发送源信号序列,接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
实施例四
本发明实施例提供了一种发送端设备70,可以应用于多输入多输出MIMO系统,用以执行图4所示的信道估计方法,如图7所示,该发送端设备70包括:处理单元701和N个发送单元702。
处理单元701,用于将待发送CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数。
N个发送单元702,用于向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计。
其中,通过第n个发送单元分别向所述M个接收单元发送所述 矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
可选的,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
本发明实施例提供的发送端设备,根据正交矩阵P的正交特性,将待发送CE序列乘以正交矩阵P后,通过多个发送单元向接收端设备的多个接收单元发送源信号序列,接收端设备根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端设备根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
实施例五
在硬件实现上,实施例四中的各个单元可以以硬件形式内嵌于或独立于发送端设备的处理器中,也可以以软件形式存储于发送端设备的存储器中,以便于处理器调用执行以上各个单元对应的操作,该处理器可以为中央处理单元(简称:CPU)、微处理器、单片机等。
如图8所示,为本发明实施例提供的一种发送端设备80,用以执行图4所示的信道估计方法,该发送端设备80包括:存储器801、处理器802、N个发送单元803和总线系统804。
其中,存储器801、处理器802和N个发送单元803之间是通 过总线系统804耦合在一起的,其中总线系统804除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统804。
所述存储器801用于存储一组代码,该代码用于控制所述处理器802执行以下动作:
将待发送CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数。
所述N个发送单元803,用于向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计。
其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
可选的,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
本发明实施例提供的发送端设备,根据正交矩阵P的正交特性,将待发送CE序列乘以正交矩阵P后,通过多个发送单元向接收端设备的多个接收单元发送源信号序列,接收端设备根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单 元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端设备根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
实施例六
本发明实施例提供了一种接收端设备90,可以应用于多输入多输出MIMO系统,用以执行图5所示的信道估计方法,如图9所示,该接收端设备90包括:M个接收单元901和处理单元902。
M个接收单元901,用于接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数。
处理单元902,用于根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
可选的,所述处理单元902用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数。
将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵 B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数。
将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
可选的,所述处理单元902用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数。
将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
可选的,所述处理单元902用于:
将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列1≤i≤M,1≤j≤N,i、j均为整数。
将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
可选的,所述处理单元902还用于:
将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
本发明实施例提供的接收端设备,根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端设备根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
实施例七
在硬件实现上,实施例六中的各个单元可以以硬件形式内嵌于或独立于接收端设备的处理器中,也可以以软件形式存储于接收端设备的存储器中,以便于处理器调用执行以上各个单元对应的操作,该处理器可以为中央处理单元(简称:CPU)、微处理器、单片机等。
如图10所示,为本发明实施例提供的一种接收端设备100,用以执行图5所示的信道估计方法,该接收端设备100包括:M个接收单元1001、存储器1002、处理器1003和总线系统1004。
其中,M个接收单元1001、存储器1002、处理器1003之间是通过总线系统1004耦合在一起的,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1004。
所述M个接收单元1001,用于接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送CE序列乘以正交矩阵P后得到的N×M矩阵, 所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数。
所述存储器1002用于存储一组代码,该代码用于控制所述处理器1003执行以下动作:
根据所述矩阵W和矩阵PH对所述N个发送单元与M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
可选的,所述处理器1002用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数。
将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数。
将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
可选的,所述处理器1002用于:
将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤ i≤M,1≤j≤M,i、j均为整数。
将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
可选的,所述处理器1002用于:
将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数。
将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
可选的,所述处理器1002还用于:
将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
本发明实施例提供的接收端设备,根据矩阵PH和通过多个接收单元接收到的目标信号序列对多个发送单元与多个接收单元之间的信道进行信道估计。与现有技术相比,虽然一个接收单元在同一时间周期内接收到的全部目标信号序列是叠加在一起的,但是接收端设备根据矩阵PH和通过多个接收单元接收到的目标信号序列可以计算并分离出信道估计结果,因此可以对多个发送单元和多个接收单元之间的信道进行正确的信道估计。
本发明实施例还提供了一种信道估计系统,包括:如实施例四、实施例五任一实施例提供的发送端设备,和/或如实施例六、实施例七任一实施例提供的接收端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称ROM)、随机存取存储器(英文:Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种信道估计方法,其特征在于,应用于多输入多输出MIMO系统,所述方法包括:
    发送端将待发送信道估计CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;
    通过所述N个发送单元向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;
    其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
  2. 根据权利要求1所述的方法,其特征在于,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
  3. 一种信道估计方法,其特征在于,应用于多输入多输出MIMO系统,所述方法包括:
    接收端通过M个接收单元接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述 发送端将待发送信道估计CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数;
    根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计,包括:
    将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
    将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数;
    将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计,包括:
    将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
    将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计,包括:
    将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数;
    将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
  7. 根据权利要求5或6所述的方法,其特征在于,在所述得到矩阵V时域之后,所述方法还包括:
    将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
  8. 一种发送端设备,其特征在于,应用于多输入多输出MIMO系统,所述发送端设备包括:
    处理单元,用于将待发送信道估计CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;
    N个发送单元,用于向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;
    其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
  9. 根据权利要求8所述的发送端设备,其特征在于,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
  10. 一种接收端设备,其特征在于,应用于多输入多输出MIMO系统,所述接收端设备包括:
    M个接收单元,用于接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送信道估计CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发 送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数;
    处理单元,用于根据所述矩阵W和矩阵PH对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
  11. 根据权利要求10所述的接收端设备,其特征在于,所述处理单元用于:
    将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
    将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数;
    将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
  12. 根据权利要求10所述的接收端设备,其特征在于,所述处理单元用于:
    将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
    将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵 V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
  13. 根据权利要求10所述的接收端设备,其特征在于,所述处理单元用于:
    将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数;
    将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
  14. 根据权利要求12或13所述的接收端设备,其特征在于,所述处理单元还用于:
    将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
  15. 一种发送端设备,其特征在于,应用于多输入多输出MIMO系统,所述发送端设备包括:存储器、处理器和N个发送单元;
    所述存储器用于存储一组代码,该代码用于控制所述处理器执行以下动作:
    将待发送信道估计CE序列乘以正交矩阵P,得到矩阵R;其中,所述矩阵R为N×M矩阵,所述矩阵R中的元素为源信号序列;所述N为所述发送端的发送单元的个数,所述M为接收端的接收单元的个数;N≥2,M≥2,N、M均为整数;
    所述N个发送单元,用于向所述M个接收单元发送所述矩阵R中的源信号序列,以使得所述接收端根据矩阵PH和所述M个接收单元接收到的目标信号序列,对所述N个发送单元与所述M个接收单元之间的N×M条信道进行信道估计;
    其中,通过第n个发送单元分别向所述M个接收单元发送所述矩阵R的第n行中的源信号序列;在第m个时间周期内,通过所述N个发送单元向所述M个接收单元发送所述矩阵R的第m列中的源信号序列;所述矩阵PH为所述正交矩阵P的共轭转置矩阵;1≤n≤N,1≤m≤M,n、m均为整数;所述目标信号序列为所述源信号序列经信道传输后得到的信号序列。
  16. 根据权利要求15所述的发送端设备,其特征在于,所述待发送CE序列包括以下任一种:CE_1=[-Gb128,-Ga128,Gb128,-Ga128],CE_2=[Gb128,Ga128,Gb128,-Ga128],CE_3=[Gb128,-Ga128,-Gb128,-Ga128],CE_4=[-Gb128,-Ga128,Gb128,-Ga128,-Gb128,Ga128,-Gb128,-Ga128]。
  17. 一种接收端设备,其特征在于,应用于多输入多输出MIMO系统,所述接收端设备包括:M个接收单元、存储器和处理器;
    所述M个接收单元,用于接收目标信号序列,得到矩阵W;其中,所述目标信号序列为发送端的N个发送单元发送的矩阵R中的源信号序列经信道传输后得到的信号序列;其中,所述矩阵R为所述发送端将待发送信道估计CE序列乘以正交矩阵P后得到的N×M矩阵,所述矩阵R中的元素为源信号序列;所述矩阵W为M×M矩阵,所述矩阵W的第a行第m列的元素为第a个接收端接收的所述N个发送单元在第m个时间周期内发送的、经信道传输后得到的目标信号序列叠加后生成的信号序列;N≥2,M≥2,1≤a≤M,1≤m≤M,N、M、a、m均为整数;
    所述存储器用于存储一组代码,该代码用于控制所述处理器执 行以下动作:
    根据所述矩阵W和矩阵PH对所述N个发送单元与M个接收单元之间的N×M条信道进行信道估计;其中,所述矩阵PH为所述正交矩阵P的共轭转置矩阵。
  18. 根据权利要求17所述的接收端设备,其特征在于,所述处理器用于:
    将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为所述N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
    将所述矩阵A进行傅里叶变换,得到矩阵B;其中,所述矩阵B中的第p行第q列的元素为N个发送单元与第p个接收单元之间的信道在第q个时间周期内的频域冲激响应的叠加;1≤p≤M,1≤q≤M,p、q均为整数;
    将所述矩阵B乘以矩阵PH,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤g≤M,1≤h≤N,g、h均为整数。
  19. 根据权利要求17所述的接收端设备,其特征在于,所述处理器用于:
    将所述矩阵W与预设CE序列进行互相关运算,得到矩阵A;其中,矩阵A中的第i行第j列的元素为N个发送单元与第i个接收单元之间的信道在第j个时间周期内的时域冲激响应的叠加;1≤i≤M,1≤j≤M,i、j均为整数;
    将所述矩阵A乘以矩阵PH,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零 元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
  20. 根据权利要求17所述的接收端设备,其特征在于,所述处理器用于:
    将所述矩阵W乘以矩阵PH,得到矩阵A;其中,所述矩阵A中的第i列第j行的元素为第i个发送单元在第j个时间周期内发送的源信号序列对应的目标信号序列;1≤i≤M,1≤j≤N,i、j均为整数;
    将所述矩阵A与预设CE序列进行互相关运算,得到矩阵V时域;其中,所述矩阵V时域中的第p列第q行的元素为第p个发送单元与第q个接收单元之间的信道的时域估计结果的k倍;k为P×PH后得到的矩阵中的非零元素的最大公约数;1≤p≤M,1≤q≤N,p、q均为整数。
  21. 根据权利要求19或20所述的接收端设备,其特征在于,所述处理器还用于:
    将所述矩阵V时域进行傅里叶变换,得到矩阵V频域;其中,所述矩阵V频域中的第g列第h行的元素为第g个发送单元与第h个接收单元之间的信道的频域估计结果的k倍;1≤g≤M,1≤h≤N,g、h均为整数。
  22. 一种信道估计系统,其特征在于,包括:如权利要求8、9、15、16任一项所述的发送端设备,和/或如权利要求10-14、17-21任一项所述的接收端设备。
PCT/CN2015/073055 2015-02-13 2015-02-13 一种信道估计方法、装置及系统 WO2016127404A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/073055 WO2016127404A1 (zh) 2015-02-13 2015-02-13 一种信道估计方法、装置及系统
CN201580071096.3A CN107113256B (zh) 2015-02-13 2015-02-13 一种信道估计方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073055 WO2016127404A1 (zh) 2015-02-13 2015-02-13 一种信道估计方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016127404A1 true WO2016127404A1 (zh) 2016-08-18

Family

ID=56614190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073055 WO2016127404A1 (zh) 2015-02-13 2015-02-13 一种信道估计方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107113256B (zh)
WO (1) WO2016127404A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951077A (zh) * 2004-03-05 2007-04-18 高通股份有限公司 Miso和mimo系统的导频传输和信道估计
US7352688B1 (en) * 2002-12-31 2008-04-01 Cisco Technology, Inc. High data rate wireless bridging
CN101340406A (zh) * 2007-07-03 2009-01-07 中兴通讯股份有限公司 多输入多输出正交频分复用系统的信道估计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616695B1 (en) * 2004-06-17 2009-11-10 Marvell International Ltd. MIMO equalizer design: an algorithmic perspective
CN101026606A (zh) * 2006-02-24 2007-08-29 中国科学院上海微系统与信息技术研究所 一种正交导频序列设计方法
CN101692665B (zh) * 2009-09-28 2012-07-18 中兴通讯股份有限公司 正交频分复用-多输入多输出系统的解调方法及解调器
CN102130753B (zh) * 2010-01-20 2014-01-29 美国博通公司 一种处理信号的方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352688B1 (en) * 2002-12-31 2008-04-01 Cisco Technology, Inc. High data rate wireless bridging
CN1951077A (zh) * 2004-03-05 2007-04-18 高通股份有限公司 Miso和mimo系统的导频传输和信道估计
CN101340406A (zh) * 2007-07-03 2009-01-07 中兴通讯股份有限公司 多输入多输出正交频分复用系统的信道估计方法

Also Published As

Publication number Publication date
CN107113256B (zh) 2019-11-26
CN107113256A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP6951025B2 (ja) ビーム構成方法および装置
US11388094B2 (en) Uplink multi-user multiple-input and multiple-output (UL MU-MIMO) transmission request method in UL MU-MIMO communication
TWI590608B (zh) 在多使用者之多輸入多輸出系統中的平行通道培訓技術
KR101866975B1 (ko) 업링크 다중 사용자 다중 안테나 채널 액세스를 위한 액세스 포인트 및 단말들의 통신 방법
EP2717522B1 (en) Method, device and system for transmitting channel information
US11146314B2 (en) Method of transmitting and receiving frame for uplink multi-user multiple-input and multiple-output (UL MU-MIMO) communication
US9419699B2 (en) MU-MIMO protocol efficiency
WO2011150742A1 (zh) 非周期srs的传输方法和设备
JP2015515775A5 (zh)
CN108988925A (zh) 无线网络中天线极化方向的指示方法和装置
CN108243497A (zh) 用于自主上行链路信号传输的方法以及相应的终端设备和网络设备
JP2016517673A (ja) 装置間通信における信号タイミング
US20150222406A1 (en) Mu-mimo acknowledgement protocol efficiency
WO2021238850A1 (zh) 信道信息的处理方法及装置
WO2018228067A1 (zh) 一种上行控制信道传输方法及装置
WO2010083738A1 (zh) 一种参考信号发送方法、设备和系统
WO2016127404A1 (zh) 一种信道估计方法、装置及系统
WO2015039626A1 (zh) 一种发送和接收数据的方法、系统及设备
CN112188623A (zh) 通信方法和装置及计算机存储介质
US20180054329A1 (en) Channel Estimation Method, Apparatus, and System
WO2015188341A1 (zh) 用于在大规模mimo系统中获取下行数据的方法与设备
US10305713B2 (en) Trigger information exchange between wireless systems
WO2017092606A1 (zh) 一种信息的发送和接收方法及设备
KR102150037B1 (ko) Uplink MU-MIMO 통신을 위한 프레임 송신 방법
WO2016095092A1 (zh) 无线局域网中的信息发送与接收方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881566

Country of ref document: EP

Kind code of ref document: A1