WO2021238850A1 - 信道信息的处理方法及装置 - Google Patents

信道信息的处理方法及装置 Download PDF

Info

Publication number
WO2021238850A1
WO2021238850A1 PCT/CN2021/095478 CN2021095478W WO2021238850A1 WO 2021238850 A1 WO2021238850 A1 WO 2021238850A1 CN 2021095478 W CN2021095478 W CN 2021095478W WO 2021238850 A1 WO2021238850 A1 WO 2021238850A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
information
channel estimation
path
downlink channel
Prior art date
Application number
PCT/CN2021/095478
Other languages
English (en)
French (fr)
Inventor
李建军
宋扬
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to AU2021280023A priority Critical patent/AU2021280023B2/en
Priority to EP21812614.2A priority patent/EP4160930A4/en
Priority to JP2022572773A priority patent/JP2023527056A/ja
Priority to CA3184785A priority patent/CA3184785A1/en
Priority to KR1020227043938A priority patent/KR20230011374A/ko
Publication of WO2021238850A1 publication Critical patent/WO2021238850A1/zh
Priority to US17/994,681 priority patent/US20230085924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0254Channel estimation channel estimation algorithms using neural network algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response

Definitions

  • This application belongs to the field of communications, and specifically relates to a method and device for processing channel information.
  • the large-scale antenna array formed by the massive MIMO (Multiple-In Multiple-Out) technology can support more users to send and receive signals at the same time, thereby increasing the channel capacity and data traffic of the mobile network by dozens of times Or larger, and at the same time can achieve a sharp reduction in interference between multiple users.
  • massive MIMO Multiple-In Multiple-Out
  • the transmitter can obtain channel information to complete the precoding work, which requires the receiver to feed back channel information.
  • the amount of feedback of channel information has also increased by orders of magnitude.
  • OFDM Orthogonal Frequency Division Multiplexing
  • massive MIMO the channels on different sub-bands are different because of frequency selectivity. Therefore, it is necessary to simultaneously perform channel information feedback of a huge number of antennas on multiple sub-bands. It can be seen that in a massive MIMO system, due to the huge number of antennas, the pilot overhead and feedback overhead required for channel estimation and feedback are large.
  • the purpose of the embodiments of the present application is to provide a method and device for processing channel information, which can solve the problem of large pilot overhead and feedback overhead required for channel estimation and feedback due to the large number of antennas in a massive MIMO system.
  • a method for processing channel information is provided, which is applied to a network-side device, and includes: receiving first information and second information from a terminal; wherein, the first information includes information that does not have uplink and downlink channel reciprocity The first parameter, the first parameter is determined based on downlink channel estimation, the second information is used to indicate the deviation between the second parameter with uplink and downlink channel reciprocity and the third parameter, and the second parameter is based on the uplink
  • the channel estimation is determined, and the third parameter is determined based on the downlink channel estimation; and the channel information of the downlink channel is determined according to the first information, the second information, and the second parameter.
  • a device for processing channel information including: a first receiving module, configured to receive first information and second information from a terminal; wherein, the first information includes having no uplink and downlink channel reciprocity The first parameter is determined based on downlink channel estimation, and the second information is used to indicate the deviation between the second parameter and the third parameter with uplink and downlink channel reciprocity, and the second parameter is based on The uplink channel estimation is determined, and the third parameter is determined based on the downlink channel estimation; the first determining module is configured to determine the channel information of the downlink channel according to the first information, the second information, and the second parameter.
  • a method for processing channel information which is applied to a terminal, and includes: sending first information and second information to a network-side device, where the first information includes information that does not have uplink and downlink channel reciprocity The first parameter, the first parameter is determined based on downlink channel estimation, the second information is used to indicate the deviation between the second parameter with uplink and downlink channel reciprocity and the third parameter, and the second parameter is based on the uplink Channel estimation is determined, and the third parameter is determined based on downlink channel estimation.
  • a device for processing channel information including: a second sending module, configured to send first information and second information to a network-side device, where the first information includes no uplink and downlink channel interaction The first parameter of reciprocity, the first parameter is determined based on downlink channel estimation, the second information is used to indicate the deviation between the second parameter and the third parameter with uplink and downlink channel reciprocity, and the second parameter The parameter is determined based on uplink channel estimation, and the third parameter is determined based on downlink channel estimation.
  • a network-side device in a fifth aspect, includes a processor, a memory, and a program or instruction that is stored on the memory and can run on the processor.
  • the program or instruction is The processor implements the steps of the method described in the third aspect when executed.
  • a terminal in a sixth aspect, includes a processor, a memory, and a program or instruction that is stored on the memory and can run on the processor.
  • the program or instruction When the program or instruction is executed by the processor, Implement the steps of the method as described in the third aspect.
  • a readable storage medium is provided, and a program or instruction is stored on the readable storage medium.
  • the program or instruction When executed by a processor, it implements the steps of the method described in the first aspect or implements The steps of the method described in the third aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the same as described in the first aspect. Or implement the method described in the third aspect.
  • the terminal only needs to feed back channel information that does not have uplink and downlink channel reciprocity and the deviation of parameters with uplink and downlink channel reciprocity to the network side device, and the network side device is based on this part of information, namely
  • the channel information of the downlink channel can be determined, which greatly reduces the pilot and feedback overhead of downlink channel estimation, thereby solving the pilot overhead required for channel estimation and feedback due to the large number of antennas in the existing technology in the massive MIMO system And feedback on expensive issues.
  • Fig. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied
  • Fig. 2 is a first flowchart of a method for processing channel information in an embodiment of the present application
  • Fig. 3 is a second flowchart of a method for processing channel information in an embodiment of the present application
  • FIG. 4 is a first structural diagram of a channel information processing apparatus in an embodiment of the present application.
  • FIG. 5 is a second structural diagram of a channel information processing apparatus in an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a communication device implementing an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network side device that implements an embodiment of the present application.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the aforementioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer or a personal digital device.
  • UE User Equipment
  • PDA Personal Digital Assistant
  • handheld computer netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or in-vehicle device (VUE), pedestrian terminal (PUE) and other terminal side devices
  • UMPC ultra-mobile personal computer
  • MID mobile Internet device
  • Wearable Device Wearable Device
  • VUE in-vehicle device
  • PUE pedestrian terminal
  • other terminal side devices wearable devices include: bracelets, earphones, glasses, etc. It should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present application.
  • the network side device 12 may be a base station or a core network, where the base station may be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Sending Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the method for processing channel information in the embodiment of the present application involves the interaction between the network side device and the terminal, and the specific process is:
  • Step S102 The network side device sends a second parameter to the terminal; where the second parameter is determined based on uplink channel estimation and has uplink and downlink channel reciprocity;
  • Step S104 The terminal sends first information and second information to the network side device, where the first information includes a first parameter that does not have uplink and downlink channel reciprocity, and the first parameter is determined based on downlink channel estimation; the second information is used for Indicate the deviation between the second parameter and the third parameter with uplink and downlink channel reciprocity; the third parameter is determined based on downlink channel estimation and has uplink and downlink channel reciprocity;
  • Step S106 The network side device receives the first information and the second information from the terminal;
  • Step S108 The network side device determines the channel information of the downlink channel according to the first information, the second information, and the second parameter.
  • the terminal only needs to feed back channel information that does not have uplink and downlink channel reciprocity and deviations with reciprocity parameters to the network side device, and the network side device determines based on this part of the information and the uplink channel estimation
  • the information with the reciprocity of the uplink and downlink channels is used to determine the channel information of the downlink channel, which greatly reduces the pilot and feedback overhead of downlink channel estimation, thereby solving the problem of the large number of antennas in the existing technology in the massive MIMO system. This leads to the problem of large pilot overhead and feedback overhead required for channel estimation and feedback.
  • the method for processing channel information in the embodiment of the present application will be introduced from both sides of the network side device and the terminal respectively.
  • FIG. 2 is a first flowchart of a method for processing channel information in an embodiment of the present application. As shown in FIG. 2, the steps of the method include:
  • Step S202 Receive first information and second information from the terminal; where the first information includes a first parameter that does not have uplink and downlink channel reciprocity, the first parameter is determined based on downlink channel estimation, and the second information is used to indicate the The deviation between the second parameter of the channel reciprocity and the third parameter, the second parameter is determined based on uplink channel estimation, and the third parameter is determined based on downlink channel estimation;
  • first information and the second information in the embodiment of this application can be sent through one piece of signaling, or through two pieces of signaling separately, for example: the first information is sent through signaling 1, and the first information is sent through signaling 2.
  • Step S204 Determine the channel information of the downlink channel according to the first information, the second information and the second parameter.
  • the path found in the downlink channel estimation of the terminal and the path found in the uplink channel estimation of the network side device may be exactly the same or may not be exactly the same. Since the path found in the downlink channel estimation of the terminal may not be exactly the same as the path found in the uplink channel estimation of the network side device, the second information may include multiple deviations for a certain path, for example, the downlink channel estimation of the terminal obtains the path The third parameter of 1, 2, 3, and 4, and the network side device estimates the second parameter of paths 1, 3, and 4 through the uplink channel estimation, then the second information reported by the terminal may include: two deviations for path 1, or Two deviations for path 3.
  • the second information can be defaulted.
  • the deviation between the second parameter and the third parameter in the embodiment of the present application may be a quantized deviation.
  • the terminal only needs to feed back the deviation of the channel information without uplink and downlink channel reciprocity and the channel parameter with the uplink and downlink channel reciprocity to the network side device, and the network side device is based on this part Information is used to determine the channel information of the downlink channel, which greatly reduces the downlink channel estimation feedback overhead.
  • the first parameter in this application may be the gain of a target path that does not have reciprocity; of course, this is only an example, and other channel parameters that do not have reciprocity are also within the protection scope of this application.
  • the method of the present application may further include:
  • Step S200 Before receiving the first information from the terminal, perform channel estimation on the uplink channel, and determine the second parameter from the result of the channel estimation.
  • Step S201 Send a second parameter to the terminal
  • the method steps of the embodiment of the present application may also include:
  • Step S206 Receive third information from the terminal, where the third information includes a fourth parameter corresponding to the first path, and the path corresponding to the first path and the second parameter are different.
  • the method of determining the channel information of the downlink channel in the embodiment of the present application may further be: determining the channel information of the downlink channel according to the first information, the second information, the third information, and the second parameter.
  • the path corresponding to the second parameter obtained by the network side device performing uplink channel estimation may be a different path from the path corresponding to the fourth parameter obtained by the terminal performing downlink channel estimation, that is, the network side
  • the device does not find the path corresponding to the fourth parameter during uplink channel estimation, or the network-side device determines that the path corresponding to the fourth parameter is not a strong path during uplink channel estimation. That is to say, for the second parameter and the third parameter of the same path, only the deviation thereof needs to be fed back, while for the channel parameters of different paths, the terminal needs to feed back specific parameter information to the network side device.
  • the second parameter in the embodiment of the present application may include the delay of the target path and/or the spatial angle of the target path; and the third parameter in the embodiment of the present application may also include: the delay of the target path and/ Or the spatial angle of the target path.
  • the target path in the embodiment of the present application is at least one of the following: the path indicated by the network-side device, the path with deviation, and the path measured by the terminal; wherein the path indicated by the network-side device may be the first The path corresponding to the two parameters, or the measured strong path (such as the path with a strong signal measured during the uplink channel estimation process of the network side device); the path with a deviation can be the deviation between the uplink and downlink channel parameters or the deviation is greater than The threshold path, such as the path where the deviation between the second parameter and the third parameter in the embodiment of the present application is greater than the threshold value, wherein the threshold value can be set accordingly as needed.
  • the path measured by the terminal can be the path corresponding to the third parameter, or the measured strong path, that is, the path with the strong signal measured by the terminal during the downlink channel estimation process, or a combination of the two. .
  • the target path may be a path in a multipath delay channel or a path in a single path delay channel.
  • the delay or spatial angle of each path is the same. Therefore, the target path can be the one in the multipath delay channel or the single path delay channel. Any path.
  • the time delay of the target path and/or the spatial angle of the target path included in the above-mentioned second parameter and the third parameter are only the preferred mode in this application, and other channel parameters with reciprocity are also possible, that is, with reciprocity.
  • the channel parameters of the transaction are all within the protection scope of this application.
  • the second information in the embodiment of the present application is used to indicate the deviation between the second parameter and the third parameter with uplink and downlink channel reciprocity, that is, specifically: the delay in the second parameter is compared with the first parameter.
  • the deviation between the delay in the three parameters, or the deviation between the spatial angle in the second parameter and the spatial angle in the third parameter, or the delay in the second parameter and the delay in the third parameter The deviation between, and the deviation between the spatial angle in the second parameter and the spatial angle in the third parameter.
  • the second information is preferably used to indicate the delay in the second parameter and the delay in the third parameter.
  • the deviation between the delays That is, in this case, it is not necessary to indicate the deviation between the space angle in the second parameter and the space angle in the third parameter; however, if necessary, the deviation between the time delays and the space angle can also be indicated at the same time. The deviation between.
  • the method of performing channel estimation on the uplink channel involved in the above step S201 and determining the first parameter from the result of the channel estimation may further be:
  • the network side device may estimate the uplink channel information through the channel sounding reference signal SRS, and obtain the first uplink channel estimation result in the frequency domain;
  • Step S201-12 The network side device performs Fourier transform on the first uplink channel estimation result to obtain the second uplink channel estimation result in the time domain;
  • Step S201-13 The network side device determines the time delay of the target path and/or the spatial angle of the target path from the second uplink channel estimation result.
  • the first uplink channel estimation result in the frequency domain needs to be obtained first, and then Fourier transformation is performed on it to obtain the second uplink channel estimation result in the time domain, and finally from The second uplink channel estimation result determines the time delay of the target path and/or the spatial angle of the target path.
  • an OFDM-based massive MIMO system is used, and the second parameter and the third parameter both include the target path delay and/or The spatial angle of the target path, and the first parameter is the gain of the target path as an example.
  • N antennas at the transmitting end network side equipment
  • one antenna at the receiving end terminal. That is, consider the N ⁇ 1 large-scale antenna system.
  • the number of subcarriers in the OFDM frequency domain is N C. Every 12 subcarriers constitute an RB (Resource Block, resource block), and multiple RBs constitute a subband.
  • the center frequency of the uplink channel is f U
  • the center frequency of the downlink channel is f D.
  • the base station uses SRS to perform uplink channel estimation.
  • SRS is an uplink pilot signal sent by the terminal in the frequency domain; since the uplink channel is a pilot sent by a terminal with only a few transmitting antennas, the pilot overhead is relatively small.
  • the base station has N receiving antennas to receive SRS, and each receiving antenna can perform channel estimation separately. For the i-th antenna of the base station, the channel estimation value in the frequency domain within an OFDM symbol can be obtained The channel estimates of all antennas in the frequency domain form a matrix For the uplink channel, the task of channel estimation has been completed.
  • the multi-antenna delay domain channel can be expressed as:
  • ⁇ u ( ⁇ l ) is the space steering vector of the uplink N receiving antennas. It can be expressed as:
  • ⁇ l is the spatial angle of the l-th delay path
  • d is the distance between the antennas.
  • uplink frequency domain channel H UL can be expressed by the following formula:
  • the H UL expression use the channel of all antennas in the frequency domain based on SRS estimation Through DFT, all ⁇ l , ⁇ l and Value.
  • the time delay ⁇ l and the spatial angle ⁇ l and the time delay ⁇ l and the spatial angle ⁇ l on the uplink channel are reciprocal. Only the gain of each delay path is identically distributed and independent of each other, that is, ⁇ l , ⁇ l are the parameters shared by the uplink and downlink channels.
  • the method of the embodiment of the present application may further include: the network side device sends the channel state information reference signal CSI-RS to the terminal in a broadcast manner.
  • the CSI-RS is used to instruct the terminal to perform downlink channel estimation.
  • the method of determining the channel information of the downlink channel according to the first information, the second information, and the second parameter in step S204 may be as follows in the specific application scenario of the embodiment of the present application:
  • step S204 in order to obtain the gain of the target path more accurately, it may further be:
  • Step S204-11 the network side device inputs the first information to the target neural network to obtain the fourth information; wherein the target neural network is obtained by training the initial neural network through a preset training set, and the preset training set includes multiple The first information obtained at a historical moment;
  • Step S204-12 The network side device determines the channel information of the downlink channel through the fourth information, the second information, and the second parameter.
  • the network side device in order to obtain more accurate gain of the target path, the network side device inputs the obtained gain of the target path into the trained target neural network, and then obtains the gain of the output of the target neural network.
  • the neural network is used to recover the current value to the maximum extent by using the past feedback value.
  • the neural network needs to be trained; among them, the training data comes from the feedback value of the previous K moments.
  • the goal of training optimization (cost function) is the output of the neural network And actual channel The mean square error between is the smallest. which is
  • the neural network obtained by the training is used to improve the channel acquisition.
  • the base station inputs the received feedback value to the trained neural network above, and the output of the neural network is the current moment Estimated value of
  • the final high-precision acquisition of the downlink channel is as follows:
  • FIG. 3 is a second flowchart of a method for processing channel information according to an embodiment of the present application. As shown in FIG. 3, the steps of the method include:
  • Step S302 Send first information and second information to the network side device, where the first information includes a first parameter that does not have uplink and downlink channel reciprocity, the first parameter is determined based on downlink channel estimation, and the second information is used to indicate The deviation between the second parameter with uplink and downlink channel reciprocity and the third parameter, the second parameter is determined based on uplink channel estimation, and the third parameter is determined based on downlink channel estimation.
  • the terminal only needs to feed back channel parameters that do not have reciprocity to the network side device, and does not need to feed back other reciprocal parameters, thereby reducing feedback overhead.
  • step S302 there may be deviations in the parameters with the reciprocity of the uplink and downlink channels.
  • the network side equipment needs to send reciprocal parameters to the terminal.
  • the terminal determines the corresponding reciprocal parameters in the downlink channel estimation.
  • the deviation with the reciprocity parameter is sent to the network side device. Therefore, on the basis of the foregoing step S302, the method steps of the embodiment of the present application may also be:
  • the method steps of the embodiment of the present application may further include:
  • Step S301 Perform channel estimation on the downlink channel, and determine the first parameter and the third parameter from the result of the channel estimation.
  • the method steps of the embodiment of the present application may further include:
  • Step S304 Receive a second parameter sent by the network side device, where the second parameter is determined based on uplink channel estimation and has uplink and downlink channel reciprocity;
  • Step S306 Send second information to the network-side device, where the second information is used to indicate the deviation between the second parameter and the third parameter with uplink and downlink channel reciprocity.
  • the terminal in addition to feeding back channel parameters that do not have reciprocity to the network side device, the terminal also feedbacks the deviation between the reciprocity parameters, so that the network side device can obtain more accurate channel information of the downlink channel.
  • the method steps of the embodiment of the present application may further include: sending third information to the network side device, where the third information includes a fourth parameter corresponding to the first path, and the first path corresponds to the second parameter The paths are not the same.
  • the path corresponding to the second parameter obtained by the network side device performing uplink channel estimation is a different path from the fourth parameter obtained by the terminal performing downlink channel estimation.
  • the path corresponding to the four parameters performs uplink channel estimation. That is to say, for the second parameter and the third parameter of the same path, only the deviation thereof needs to be fed back, while for the channel parameters of different paths, the terminal needs to feed back to the network side device.
  • the second parameter in the embodiment of the present application may include the delay of the target path and/or the spatial angle of the target path; and the second parameter in the embodiment of the present application may also include: the delay of the target path and/ Or the spatial angle of the target path.
  • the target path may be a path in a multipath delay channel or a path in a single path delay channel.
  • the delay or spatial angle of each path is the same. Therefore, the target path can be the one in the multipath delay channel or the single path delay channel. Any path.
  • the time delay of the target path and/or the spatial angle of the target path included in the above-mentioned second parameter and the third parameter are only the preferred mode in this application, and other channel parameters with reciprocity are also possible, that is, with reciprocity.
  • the channel parameters of the transaction are all within the protection scope of this application.
  • the second information in the embodiment of the present application is used to indicate the deviation between the second parameter and the third parameter with uplink and downlink channel reciprocity, that is, specifically: the delay in the second parameter is compared with the first parameter.
  • the deviation between the delay in the three parameters, or the deviation between the spatial angle in the second parameter and the spatial angle in the third parameter, or the delay in the second parameter and the delay in the third parameter The deviation between, and the deviation between the spatial angle in the second parameter and the spatial angle in the third parameter.
  • the second information is preferably used to indicate the delay in the second parameter and the delay in the third parameter.
  • the deviation between the delays That is, in this case, it is not necessary to indicate the deviation between the spatial angle in the second parameter and the spatial angle in the third parameter.
  • the deviation between the time delays and the deviation between the spatial angles can also be indicated at the same time.
  • the method of performing channel estimation on the downlink channel involved in the foregoing step S301 and determining the first parameter and the third parameter from the result of the channel estimation may further be:
  • Step S301-11 The terminal performs channel estimation on the downlink channel to obtain the first downlink channel estimation result in the frequency domain;
  • the manner in which the terminal performs channel estimation on the downlink channel may specifically be: the terminal receives the CSI-RS sent by the network side device; and the terminal performs channel estimation on the downlink channel based on the CSI-RS.
  • Step S301-12 The terminal performs a two-dimensional Fourier transform on the first downlink channel estimation result to obtain the second downlink channel estimation result in the time domain;
  • Step S301-13 The terminal determines the time delay of the target path and/or the spatial angle of the target path from the second downlink channel estimation result.
  • taking the second parameter and the third parameter both including the time delay of the target path and/or the spatial angle of the target path, and the first parameter being the gain of the target path as an example, for the above steps S301-11 to S301-13 may be: the base station uses downlink signaling, such as RRC (Radio Resource Control, radio resource control), MAC-CE (Media Access Control)-(Control Element, control element) or DCI (Downlink Control) information, downlink control information) and the like, configuration values ⁇ l and ⁇ l to the terminal, ⁇ l and ⁇ l are obtained by estimation of an uplink channel.
  • RRC Radio Resource Control, radio resource control
  • MAC-CE Media Access Control
  • DCI Downlink Control
  • the base station also sends CSI-RS for the terminal to perform downlink channel estimation, and the terminal uses the CSI-RS to estimate the downlink channel Similar to the uplink channel H UL , the expression of the downlink frequency domain channel H DL can be obtained as follows:
  • ⁇ d ( ⁇ l ) is the space steering vector of the uplink N receiving antennas. It can be expressed as:
  • Downlink channel estimation based on all antennas in the frequency domain It can be obtained using the DFT corresponding downlink channel delay spread ⁇ 'l and a spatial angle ⁇ ' l and Value.
  • ⁇ 'l, ⁇ ' l should the base station downlink signaling configuration ⁇ l, ⁇ l is a reciprocity, i.e., downlink channel synchronization will be a certain deviation, so ⁇ 'l and uplink channel configuration l There will be a certain deviation.
  • Comparative ⁇ 'l and ⁇ l which can track the value of the deviation. Among them, for the delay deviation of different paths, the terminal can report the delay deviation of each path separately.
  • the terminal will And ⁇ are fed back to the base station. It can be seen that there is no need to separately perform channel feedback in each sub-frequency band, but all the required information is fed back at one time. Based on this information, the channel information on all sub-carriers can be calculated, thereby greatly reducing the feedback overhead.
  • the execution subject of the channel information processing method provided in the embodiments of the present application may be a channel information processing device, or a control module in the channel information processing device for executing the processing method of loading channel information.
  • the processing method of loading channel information executed by the processing apparatus of the channel information is taken as an example to illustrate the processing method of the channel information provided in the embodiment of the present application.
  • FIG. 4 is a first structural diagram of a channel information processing apparatus according to an embodiment of the present application.
  • the apparatus is applied to a network side device, and the apparatus includes:
  • the first receiving module 42 is configured to receive first information and second information from the terminal; where the first information includes a first parameter that does not have uplink and downlink channel reciprocity, the first parameter is determined based on downlink channel estimation, and the second information Used to indicate the deviation between the second parameter with uplink and downlink channel reciprocity and the third parameter, the second parameter is determined based on uplink channel estimation, and the third parameter is determined based on downlink channel estimation;
  • the first determining module 44 is configured to determine the channel information of the downlink channel according to the first information, the second information, and the second parameter.
  • the apparatus in the embodiment of the present application may further include: a first processing module, configured to perform channel estimation on the uplink channel before receiving the first information and the second information from the terminal, and determine from the result of the channel estimation The second parameter; the first sending module is used to send the second parameter to the terminal.
  • a first processing module configured to perform channel estimation on the uplink channel before receiving the first information and the second information from the terminal, and determine from the result of the channel estimation The second parameter
  • the first sending module is used to send the second parameter to the terminal.
  • the apparatus in the embodiment of the present application may further include: a second receiving module configured to receive third information from the terminal, where the third information includes a fourth parameter corresponding to the first path, and the first path The path corresponding to the second parameter is different.
  • the first determining module in the embodiment of the present application is further configured to determine the channel information of the downlink channel according to the first information, the second information, the third information, and the second parameter.
  • the second parameter and the third parameter in the embodiment of the present application both include the time delay of the target path and/or the spatial angle of the target path.
  • the target path is at least one of the following: the path indicated by the network side device, the path with deviation, and the path measured by the terminal.
  • the second information is used to indicate the difference between the time delay in the second parameter and the time delay in the third parameter. The deviation between.
  • the first processing module in the embodiment of the present application may further include: a first processing unit, configured to estimate uplink channel information to obtain the first uplink channel estimation result in the frequency domain; and a second processing unit, Used to perform Fourier transform on the first uplink channel estimation result to obtain the second uplink channel estimation result in the time domain; the third processing unit is used to determine the target path delay and/or from the second uplink channel estimation result Or the spatial angle of the target path.
  • a first processing unit configured to estimate uplink channel information to obtain the first uplink channel estimation result in the frequency domain
  • a second processing unit Used to perform Fourier transform on the first uplink channel estimation result to obtain the second uplink channel estimation result in the time domain
  • the third processing unit is used to determine the target path delay and/or from the second uplink channel estimation result Or the spatial angle of the target path.
  • the first determining module in the embodiment of the present application may further include: a first input unit, configured to input the first information into the target neural network to obtain fourth information; and the first determining unit, configured to pass the fourth information The information, the second information, and the second parameter determine the channel information of the downlink channel.
  • the target neural network in the embodiment of the present application is obtained by training the initial neural network through a preset training set; the preset training set includes first information obtained at multiple historical moments.
  • the first parameter included in the first information in the embodiment of the present application is the gain on the target path.
  • the channel estimation result of the uplink channel estimation can be used to determine the second parameter, and combined with the terminal to feed back a channel with uplink and downlink channel reciprocity to the network side device
  • the channel information of the downlink channel can be obtained without feeding back other channel parameters, thereby reducing the channel feedback overhead.
  • FIG. 5 is a second structural diagram of a channel information processing device in an embodiment of the present application.
  • the device is applied to a terminal.
  • the device includes:
  • the second sending module 52 is configured to send the first information and the second information to the network side device, where the first information includes a first parameter that does not have uplink and downlink channel reciprocity, the first parameter is determined based on downlink channel estimation, and the first parameter is determined based on downlink channel estimation.
  • the second information is used to indicate the deviation between the second parameter with uplink and downlink channel reciprocity and the third parameter, the second parameter is determined based on uplink channel estimation, and the third parameter is determined based on downlink channel estimation.
  • the apparatus in the embodiment of the present application may further include: a second processing module, configured to perform channel estimation on the downlink channel before sending the first information and the second information to the network side device, and obtain the result from the channel estimation Determine the first parameter and the third parameter in.
  • a second processing module configured to perform channel estimation on the downlink channel before sending the first information and the second information to the network side device, and obtain the result from the channel estimation Determine the first parameter and the third parameter in.
  • the apparatus in the embodiment of the present application may further include: a third receiving module, configured to receive the second parameter sent by the network side device.
  • the apparatus in the embodiment of the present application may further include: a third sending module, configured to send third information to the network side device, where the third information includes a fourth parameter corresponding to the first path, and the first The path is different from the path corresponding to the second parameter.
  • a third sending module configured to send third information to the network side device, where the third information includes a fourth parameter corresponding to the first path, and the first The path is different from the path corresponding to the second parameter.
  • the second parameter and the third parameter in the embodiment of the present application both include the time delay of the target path and/or the spatial angle of the target path.
  • the second information is used to indicate the difference between the delay in the second parameter and the delay in the third parameter. The deviation between.
  • the second processing module in the embodiment of the present application may further include: a fourth processing unit, configured to perform channel estimation on the downlink channel to obtain the first downlink channel estimation result in the frequency domain; and a fifth processing unit , Used to perform a two-dimensional Fourier transform on the first downlink channel estimation result to obtain the second downlink channel estimation result in the time domain; the sixth processing unit is used to determine the target path from the second downlink channel estimation result The time delay and/or the spatial angle of the target path.
  • a fourth processing unit configured to perform channel estimation on the downlink channel to obtain the first downlink channel estimation result in the frequency domain
  • a fifth processing unit Used to perform a two-dimensional Fourier transform on the first downlink channel estimation result to obtain the second downlink channel estimation result in the time domain
  • the sixth processing unit is used to determine the target path from the second downlink channel estimation result The time delay and/or the spatial angle of the target path.
  • the processing device applied to the channel information in FIG. 5 in the embodiment of the present application may be a device, or a component, an integrated circuit, or a chip in a terminal.
  • the device can be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but is not limited to the types of the terminal 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (PC), a television ( Television, TV), teller machines, self-service machines, etc., are not specifically limited in the embodiments of the present application.
  • the device for processing channel information in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android operating system, an IOS operating system, or other possible operating systems, which are not specifically limited in the embodiment of the present application.
  • the device for processing channel information provided in the embodiment of the present application can implement the various processes implemented in the method embodiment of FIG. 3 and achieve the same technical effect. To avoid repetition, details are not described herein again.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, and a program or instruction that is stored in the memory 602 and can run on the processor 601, for example,
  • a communication device 600 including a processor 601, a memory 602, and a program or instruction that is stored in the memory 602 and can run on the processor 601, for example,
  • the communication device 600 is a terminal, when the program or instruction is executed by the processor 601, each process of the embodiment of the method for processing channel information in FIG. 3 is implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network side device, when the program or instruction is executed by the processor 601, each process of the embodiment of the channel information processing method in FIG. 2 is realized, and the same technical effect can be achieved. To avoid repetition, here No longer.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 700 includes but is not limited to: radio frequency unit 701, network module 702, audio output unit 703, input unit 704, sensor 705, display unit 706, user input unit 707, interface unit 708, memory 709, processor 710 and other components .
  • the terminal 700 may also include a power source (such as a battery) for supplying power to various components.
  • the power source may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than those shown in the figure, or some components may be combined, or different component arrangements, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is paired by the image capture device ( For example, the image data of the still picture or video obtained by the camera) is processed.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and sends it to the processor 710 for processing; in addition, it sends the uplink data to the base station network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 may be used to store software programs or instructions and various data.
  • the memory 709 may mainly include a storage program or instruction area and a data storage area.
  • the storage program or instruction area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.).
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, where the non-volatile memory may be a read-only memory (Read-Only Memory, ROM) or a programmable read-only memory (Programmable ROM).
  • PROM erasable programmable read-only memory
  • Erasable PROM EPROM
  • Electrically erasable programmable read-only memory Electrically EPROM, EEPROM
  • flash memory For example, at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs or instructions, etc.
  • the modem processor mainly deals with wireless communication, such as a baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the radio frequency unit 701 is used to receive the first parameter sent by the network side device; where the first parameter is determined from the channel estimation result after the network side device performs channel estimation on the uplink channel,
  • the processor 710 is configured to perform channel estimation on the downlink channel, and determine the second parameter and the first gain of each path in the multipath delay channel from the result of the channel estimation;
  • the radio frequency unit 701 is also used to send the deviation parameter and the first gain of each path in the multipath delay channel to the network side device; wherein the deviation parameter is used to indicate the deviation between the first parameter and the second parameter.
  • the processor 710 is further configured to estimate uplink channel information through a channel sounding reference signal SRS to obtain a first uplink channel estimation result in the frequency domain; and perform Fourier transform on the first uplink channel estimation result Obtain the second uplink channel estimation result in the time domain; and determine the time delay of each path in the multipath delay channel and/or the spatial angle of each path from the second uplink channel estimation result.
  • SRS channel sounding reference signal
  • the embodiment of the present application also provides a network side device.
  • the network side equipment 800 includes: an antenna 81, a radio frequency device 82, and a baseband device 83.
  • the antenna 81 is connected to the radio frequency device 82.
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82, and the radio frequency device 82 processes the received information and sends it out via the antenna 81.
  • the foregoing frequency band processing device may be located in the baseband device 83, and the method executed by the network side device in the above embodiment may be implemented in the baseband device 83.
  • the baseband device 83 includes a processor 84 and a memory 85.
  • the baseband device 83 may, for example, include at least one baseband board, and multiple chips are arranged on the baseband board, as shown in FIG.
  • the network side device shown in the above method embodiment operates.
  • the baseband device 83 may also include a network interface 86 for exchanging information with the radio frequency device 82.
  • the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device of the embodiment of the present invention further includes: instructions or programs stored in the memory y5 and running on the processor 84, and the processor 84 calls the instructions or programs in the memory 85 to execute the modules shown in FIG. 4
  • the method of implementation and achieve the same technical effect, in order to avoid repetition, so I will not repeat it here.
  • the embodiment of the present application also provides a readable storage medium with a program or instruction stored on the readable storage medium.
  • the program or instruction is executed by a processor, the method for processing channel information in FIG. 2 and FIG. 3 is implemented.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks, or optical disks.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the foregoing channel information
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a network-side device program or instruction to implement the foregoing channel information
  • the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, Other electronic units or combinations thereof that perform the functions described in this application.
  • ASICs application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network side device, etc.) execute the methods described in the various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network side device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信道信息的处理方法及装置,其中,该方法包括:从终端接收第一信息和第二信息;其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定;根据所述第一信息、所述第二信息和所述第二参数,确定下行信道的信道信息。

Description

信道信息的处理方法及装置
相关申请的交叉引用
本申请主张在2020年5月28日在中国提交的中国专利申请号No.202010470360.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信领域,具体涉及一种信道信息的处理方法及装置。
背景技术
利用大规模MIMO(Multiple-In Multiple-Out,多进多出)技术形成的大规模天线阵列,可以同时支持更多用户发送和接收信号,从而将移动网络的信道容量以及数据流量提升数十倍或更大,同时能实现多用户之间干扰的急剧降低。
但是,在基于FDD(Frequency Division Duplexing,频分双工)的大规模MIMO系统中,发送端获取信道信息才能完成预编码工作,这就需要接收端反馈信道信息。随着天线规模的急剧增加,信道信息的反馈量也随着有了数量级的增加。OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)和大规模MIMO结合时,因为频率选择性,不同子频段上的信道是不同的。因此,需要在多个子频段上同时进行数目巨大天线的信道信息反馈。可见,在大规模MIMO系统中,由于天线数量巨大信道估计与反馈所需的导频开销和反馈开销大。
发明内容
本申请实施例的目的是提供一种信道信息的处理方法及装置,能够解决在大规模MIMO系统中,由于天线数量巨大导致信道估计与反馈所需的导频开销和反馈开销大的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种信道信息的处理方法,应用于网络侧设备,包括: 从终端接收第一信息和第二信息;其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定;根据所述第一信息、所述第二信息和所述第二参数,确定下行信道的信道信息。
第二方面,提供了一种信道信息的处理装置,包括:第一接收模块,用于从终端接收第一信息和第二信息;其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定;第一确定模块,用于根据所述第一信息、所述第二信息和所述第二参数,确定下行信道的信道信息。
第三方面,提供了一种信道信息的处理方法,应用于终端,包括:向网络侧设备发送第一信息和第二信息,其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定。
第四方面,提供了一种信道信息的处理装置,包括:第二发送模块,用于向网络侧设备发送第一信息和第二信息,其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第六方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或 指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
在本申请实施例中,终端只需要将不具备上下行信道互易性的信道信息,以及具有上下行信道互易性的参数的偏差反馈给网络侧设备,网络侧设备基于这部分信息,即可确定出下行信道的信道信息,大大降低了下行信道估计的导频和反馈开销,从而解决了现有技术在大规模MIMO系统中,由于天线数量巨大导致信道估计与反馈所需的导频开销和反馈开销大的问题。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中的信道信息的处理方法的流程图一;
图3是本申请实施例中的信道信息的处理方法的流程图二;
图4是本申请实施例中的信道信息的处理装置的结构示意图一;
图5是本申请实施例中的信道信息的处理装置的结构示意图二;
图6为实现本申请实施例的通信设备的结构示意图;
图7为实现本申请实施例的一种终端的硬件结构示意图;
图8为实现本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述 的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定 技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信道信息的处理方法进行详细地说明。
首先需要说明的是,本申请实施例中的信道信息的处理方法涉及到的网络侧设备与终端的交互,具体流程为:
步骤S102,网络侧设备向终端发送第二参数;其中,第二参数基于上行信道估计确定且具有上下行信道互易性;
步骤S104,终端向网络侧设备发送第一信息和第二信息,其中,第一信息包括不具有上下行信道互易性的第一参数,第一参数基于下行信道估计确定;第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差;第三参数基于下行信道估计确定且具有上下行信道互易性;
步骤S106,网络侧设备从终端接收第一信息和第二信息;
步骤S108,网络侧设备根据第一信息,第二信息以及第二参数,确定下行信道的信道信息。
可见,通过本申请实施例,终端只需要将不具备上下行信道互易性的信道信息,以及具有互易性参数的偏差反馈给网络侧设备,网络侧设备基于这部分信息以及上行信道估计确定的具备上下行信道互易性的信息,来确定出下行信道的信道信息,大大降低了下行信道估计的导频和反馈开销,从而解决了现有技术在大规模MIMO系统中,由于天线数量巨大导致信道估计与反馈所需的导频开销和反馈开销大的问题。
下面将分别从网络侧设备和终端两侧对本申请实施例中的信道信息的处理方法进行介绍。
请参见图2,图2是本申请实施例中的信道信息的处理方法的流程图一,如图2所示,该方法的步骤包括:
步骤S202,从终端接收第一信息和第二信息;其中,第一信息包括不具有上下行信道互易性的第一参数,第一参数基于下行信道估计确定,第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,第二参数基于上行信道估计确定,第三参数基于下行信道估计确定;
需要说明的是,本申请实施例中的第一信息和第二信息可以通过一条信令发送,也可以通过两条信令分别发送,例如:通过信令1发第一信息,且通过信令2发第二信息;在由两个信令分别发送时,发送信令1和信令2前后顺序不做限定。
步骤S204,根据第一信息、第二信息和第二参数,确定下行信道的信道信息。
其中,终端下行信道估计中发现的路径与网络侧设备上行信道估计中发现的路径可能完全相同,也可能不完全相同。由于可能出现终端下行信道估计中发现的路径与网络侧设备上行信道估计中发现的路径不完全相同的情况,第二信息中可以包括针对某条路径的多个偏差,例如终端下行信道估计得到路径1、2、3、4的第三参数,而网络侧设备上行信道估计得到路径1、3、4的第二参数,那么终端上报的第二信息可以包括:针对路径1的两个偏差,或针对路径3的两个偏差。
需要说明的是,当所有路径上的第二参数和第三参数均不存在偏差的时候(偏差为0),或偏差小于阈值的情况下,该第二信息可缺省。进一步地,本申请实施例中的第二参数和第三参数之间的偏差可以是量化后的偏差。
可见,通过上述步骤S202至步骤S204,终端只需要将不具备上下行信道互易性的信道信息以及具备上下行信道互易性的信道参数的偏差反馈给网络侧设备,网络侧设备基于这部分信息来确定出下行信道的信道信息,大大降低了下行信道估计反馈开销。
需要说明的是,本申请中的第一参数可以为不具备互易性的目标路径的增益;当然,这仅仅是举例说明,对于其他不具备互易性的信道参数也是在本申请的保护范围之内的。
可选地,在本申请实施例中,本申请的方法还可以包括:
步骤S200,在从终端接收第一信息之前,对上行信道进行信道估计,并从信道估计的结果中确定第二参数。
步骤S201,向终端发送第二参数;
通过上述步骤S200和步骤S201可知,在终端进行信道信息反馈之前,基站需要进行上行信道估计,并将信道估计得到的具有上下行信道互易性的 参数发送给终端。
可选地,本申请实施例的方法步骤除了上述步骤S200至步骤S204,还可以包括:
步骤S206,从终端接收第三信息,其中,第三信息包括与第一路径对应的第四参数,且第一路径与第二参数对应的路径不相同。
基于此,本申请实施例中确定下行信道的信道信息的方式,进一步可以是:根据第一信息、第二信息、第三信息和第二参数,确定下行信道的信道信息。
可见,在本申请实施例中,网络侧设备进行上行信道估计得到的第二参数所对应的路径,可能与终端进行下行信道估计得到的第四参数所对应的路径是不同的路径,即网络侧设备上行信道估计时并未发现第四参数对应的路径,或者网络侧设备上行信道估计时确定第四参数对应的路径并非强径。也就是说,对于同一路径的第二参数和第三参数则是只需要反馈其偏差,而对于不同路径的信道参数,则需要终端向网络侧设备反馈具体的参数信息。
可选地,在本申请实施例中第二参数可以包括目标路径的时延和/或目标路径的空间角度;且本申请实施例中的第三参数也可以包括:目标路径的时延和/或目标路径的空间角度。
需要说明的是,本申请实施例中的目标路径以下至少之一:网络侧设备所指示的路径、具有偏差的路径、由终端测量到的路径;其中,网络侧设备所指示的路径可以是第二参数对应的路径,或者测量到的强径(如网络侧设备上行信道估计过程中测量到的信号较强的路径);具有偏差的路径可以为上下行信道参数之间的存在偏差或偏差大于阈值的路径,如本申请实施例中第二参数与第三参数之间的偏差大于阈值的路径,其中,该阈值可以根据需要进行相应的设置。由终端测量到的路径可以是第三参数所对应的路径,也可以是测量到的强径,即终端在下行信道估计过程中测量到的信号较强的路径,也可以是前述两者的组合。
此外,该目标路径可以多径时延信道中的路径,或者是单径时延信道中的路径。进一步地,无论多径时延信道还是单径时延信道,其各个路径的时延或空间角度均是一样的,因此该目标路径可以是其多径时延信道还是单径 时延信道中的任一路径。此外,上述第二参数和第三参数所包括的目标路径的时延和/或目标路径的空间角度,仅仅本申请中的优选方式,其他的具有互易性信道参数也是可以的,即具备互易性的信道参数均是在本申请的保护范围之内的。
基于此,由于本申请实施例中的第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,即具体的是:第二参数中的时延与第三参数中的时延之间的偏差,或,第二参数中的空间角度与第三参数中的空间角度之间的偏差,或,第二参数中的时延与第三参数中的时延之间的偏差,以及第二参数中的空间角度与第三参数中的空间角度之间的偏差。
需要说明的是,在第二参数和第三参数中均包括目标路径的时延和目标路径的空间角度的情况下,第二信息优选用于指示第二参数中的时延与第三参数中的时延之间的偏差。即在该情况下,不用指示第二参数中的空间角度与第三参数中的空间角度之间的偏差;但是,在需要的情况下,也可以同时指示时延之间的偏差和空间角度之间的偏差。
因此,对于上述步骤S201中涉及到的对上行信道进行信道估计,并从信道估计的结果中确定第一参数的方式,进一步可以是:
步骤S201-11,网络侧设备可以通过信道探测参考信号SRS对上行信道信息进行估计,得到频域上的第一上行信道估计结果;
步骤S201-12,网络侧设备对第一上行信道估计结果进行傅里叶变换得到时域上的第二上行信道估计结果;
步骤S201-13,网络侧设备从第二上行信道估计结果中确定目标路径的时延和/或目标路径的空间角度。
通过上述步骤S201-11至步骤S201-13可知,需要先获取频域上的第一上行信道估计结果,对其再进行傅里叶变化,得到时域上的第二上行信道估计结果,最后从第二上行信道估计结果中确定目标路径的时延和/或目标路径的空间角度。
对于上述步骤S201-11至步骤S201-13,在本申请实施例的具体应用场景中以基于OFDM的大规模MIMO系统,且第二参数和第三参数中均包括目标路径的时延和/或目标路径的空间角度,且第一参数为目标路径的增益为例, 基于OFDM的大规模MIMO系统中,在发送端(网络侧设备)有N个天线,接收端(终端)有1个天线。即考虑N×1的大规模天线系统。OFDM频域的子载波数目为N C。每12个子载波构成一个RB(Resource Block,资源块),多个RB构成一个子频段。在FDD宽带无线通信系统中,同时具有上行链路和下行链路,分别占用不同的频段。这里假定上行信道的中心频率为f U,下行信道的中心频率为f D。下面以网络侧设备为基站,进行举例说明;
在本申请实施例中,基站利用SRS进行上行信道估计。SRS是终端在频域发送的上行导频信号;由于上行信道是只配有少量发送天线的终端发送的导频,导频开销比较小。基站则有N个接收天线接收SRS,每个接收天线可以单独进行信道估计。对于基站的第i个天线,可以获得在一个OFDM符号内频域上的信道估计值
Figure PCTCN2021095478-appb-000001
所有天线的频域上的信道估计值构成一个矩阵
Figure PCTCN2021095478-appb-000002
对于上行信道而言,信道估计的任务已经完成。
但为了支持下行链路的反馈,需要获取基于
Figure PCTCN2021095478-appb-000003
得到上下行信道具有部分互易性的那部分信息。
Figure PCTCN2021095478-appb-000004
是一个N×N C矩阵,是频域的信道估计值。
Figure PCTCN2021095478-appb-000005
和所有天线在时延域的信道估计值
Figure PCTCN2021095478-appb-000006
是一对DFT(Discrete Fourier Transform,离散傅里叶变换)变换。根据空间信道的模型,多天线的时延域信道可以表示为:
Figure PCTCN2021095478-appb-000007
其中,
Figure PCTCN2021095478-appb-000008
为第l个时延路径的增益,τ l为第l个时延路径的时延。α ul)为上行N个接收天线的空间导引矢量。可以表示为:
Figure PCTCN2021095478-appb-000009
其中,θ l为第l个时延路径的空间角度,λ UL=c/f U为上行信道中心频率载波的波长,d为天线之间的距离。
进而上行频域信道H UL可以通过如下计算式表示:
Figure PCTCN2021095478-appb-000010
其中,
Figure PCTCN2021095478-appb-000011
为矩阵的Kronecker积。F(τ l)可以表示为
F(τ)=[1 e j2πΔfτ ... j2π(N-1)Δfτ]
根据H UL表达式,利用基于SRS估计得到的所有天线在频域的信道
Figure PCTCN2021095478-appb-000012
通过DFT就可以得到所有τ l,θ l
Figure PCTCN2021095478-appb-000013
的值。其中,对于下行信道,时延τ l以及空间角度θ l和上行信道上的时延τ l以及空间角度θ l是具有互易性的。只有每个时延径的增益是同分布且相互独立的,即τ l,θ l是上下行信道共享的参数。
可选地,在接收终端反馈的目标路径的增益和第一信息之前,本申请实施例的方法还可以包括:网络侧设备通过广播的方式向终端发送信道状态信息参考信号CSI-RS。其中,该CSI-RS用于指示终端进行下行信道进行信道估计。
可选地,在本申请实施例中,对于步骤S204中根据第一信息、第二信息和第二参数,确定下行信道的信道信息的方式,在本申请实施例的具体应用场景中可以是:
在基站通过上行信道的估计获取到了θ l和τ l(l=1,2,...,L),再利用终端反馈的
Figure PCTCN2021095478-appb-000014
和Δτ,基站就可恢复出下行信道,从而大大减少了反馈量;其中,下行频域信道获取的可以通过下述公式确定:
Figure PCTCN2021095478-appb-000015
对于上述步骤S204为了使获取到目标路径的增益更加精准,进一步可以是:
步骤S204-11,网络侧设备将第一信息输入到目标神经网络得到第四信息;其中,目标神经网络是通过预设的训练集对初始神经网络进行训练得到的,预设的训练集中包括多个历史时刻获取到的第一信息;
步骤S204-12,网络侧设备通过第四信息,第二信息以及第二参数,确定下行信道的信道信息。
可见,在本申请实施例中,网络侧设备为了获取到的目标路径的增益更加精准,将获取到的目标路径的增益输入到了已经训练好的目标神经网络,进而获取目标神经网络输出的增益。
需要说明的是,在具体应用场景中,上述
Figure PCTCN2021095478-appb-000016
Figure PCTCN2021095478-appb-000017
也是随着时间来变化的,并且运动速度越快,它们变化的越快。所以,不同时刻反馈的
Figure PCTCN2021095478-appb-000018
是有相关性的。因此可以利用这个相关性,让基站对下行信道的获取更准确。
首先,把
Figure PCTCN2021095478-appb-000019
Figure PCTCN2021095478-appb-000020
建模为瑞利分布的随机变量;另外,
Figure PCTCN2021095478-appb-000021
Figure PCTCN2021095478-appb-000022
也是随着时间来变化的,并且运动速度越快,它们变化的越快。为了能够跟踪
Figure PCTCN2021095478-appb-000023
的变化,在本申请实施例中采用神经网络,利用以往的反馈值,最大限度的恢复出当前的值。
由于各个
Figure PCTCN2021095478-appb-000024
是相互独立的,所以它们可以独立的进行反馈和恢复。以一个
Figure PCTCN2021095478-appb-000025
为例,如果当前时刻为t,当前时刻没有反馈,则
Figure PCTCN2021095478-appb-000026
可以通过以前的反馈值
Figure PCTCN2021095478-appb-000027
得到,为了在基站精确得到当前信道的
Figure PCTCN2021095478-appb-000028
我们将基站收到的以前K个时刻的反馈值
Figure PCTCN2021095478-appb-000029
输入一个神经网络,这里我们采用全连接的3层神经网络。激活函数选取RELU函数。该神经网络输出为当前时刻的
Figure PCTCN2021095478-appb-000030
的估计值
Figure PCTCN2021095478-appb-000031
需要说明的是,为提高信道估计的性能,需要对该神经网络进行训练;其中,训练数据来自于以前K个时刻的反馈值
Figure PCTCN2021095478-appb-000032
训练优化的目标(代价函数cost function)为神经网络的输出
Figure PCTCN2021095478-appb-000033
和实际信道的
Figure PCTCN2021095478-appb-000034
之间均方误差最小。即
Figure PCTCN2021095478-appb-000035
训练完成后,利用训练得到的神经网络来改进信道获取。基站根据收到的反馈值输入到上面经过训练的神经网络,该神经网络输出为当前时刻的
Figure PCTCN2021095478-appb-000036
的估计值
Figure PCTCN2021095478-appb-000037
最后,利用神经网络输出的
Figure PCTCN2021095478-appb-000038
再利用终端反馈的Δτ和上行信道估计得到的θ l和τ l(l=1,2,...,L),最终高精度获取下行信道如下:
Figure PCTCN2021095478-appb-000039
下面从终端侧对本申请实施例的信道信息的处理方法进行描述;
请参见图3,图3是本申请实施例的信道信息的处理方法的流程图二,如图3所示,该方法的步骤包括:
步骤S302,向网络侧设备发送第一信息和第二信息,其中,第一信息包括不具有上下行信道互易性的第一参数,第一参数基于下行信道估计确定,第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,第二参数基于上行信道估计确定,第三参数基于下行信道估计确定。
可见,通过上述步骤S302,终端只需要向网络侧设备反馈不具备互易性 的信道参数,无需反馈其他具有互易性的参数,从而降低了反馈开销。
进一步地,在上述步骤S302中,对于具备上下行信道互易性的参数,也是有可能存在偏差的。为了能够使得网络侧设备更加精准的获取到的下行信道的信道信息,网络侧设备需要向终端发送具备互易性的参数,终端在下行信道估计中确定出对应的具备互易性的参数,终端进一步地将具备互易性参数的偏差发送给网络侧设备。因此,在上述步骤S302的基础上,本申请实施例的方法步骤还可以是:
可选地,在本申请实施例中,在向网络侧设备发送第一信息之前,本申请实施例的方法步骤还可以包括:
步骤S301,对下行信道进行信道估计,并从信道估计的结果中确定第一参数和第三参数。
基于上述步骤S301,本申请实施例的方法步骤还可以包括:
步骤S304,接收网络侧设备发送的第二参数,其中,第二参数基于上行信道估计确定且具有上下行信道互易性;
步骤S306,向网络侧设备发送第二信息,其中,第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差。
可见,终端除了向网络侧设备反馈不具备互易性的信道参数之外,还会反馈具备互易性参数之间的偏差,从而使得网络侧设备能够获取更加精准的下行信道的信道信息。
可选地,本申请实施例的方法步骤,还可以包括:向网络侧设备发送第三信息,其中,第三信息包括与第一路径对应的第四参数,且第一路径与第二参数对应的路径不相同。
可见,在本申请实施例中,网络侧设备进行上行信道估计得到的第二参数所对应的路径,与终端进行下行信道估计得到的第四参数是不同的路径,即网络侧设备并未对于第四参数对应的路径进行上行信道估计。也就是说,对于同一路径的第二参数和第三参数则是只需要反馈其偏差,而对于不同路径的信道参数,则需要终端向网络侧设备反馈。
可选地,在本申请实施例中第二参数可以包括目标路径的时延和/或目标路径的空间角度;且本申请实施例中的第二参数也可以包括:标路径的时延 和/或目标路径的空间角度。
需要说明的是,该目标路径可以多径时延信道中的路径,或者是单径时延信道中的路径。进一步地,无论多径时延信道还是单径时延信道,其各个路径的时延或空间角度均是一样的,因此该目标路径可以是其多径时延信道还是单径时延信道中的任一路径。此外,上述第二参数和第三参数所包括的目标路径的时延和/或目标路径的空间角度,仅仅本申请中的优选方式,其他的具有互易性信道参数也是可以的,即具备互易性的信道参数均是在本申请的保护范围之内的。
基于此,由于本申请实施例中的第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,即具体的是:第二参数中的时延与第三参数中的时延之间的偏差,或,第二参数中的空间角度与第三参数中的空间角度之间的偏差,或,第二参数中的时延与第三参数中的时延之间的偏差,以及第二参数中的空间角度与第三参数中的空间角度之间的偏差。
需要说明的是,在第二参数和第三参数中均包括目标路径的时延和目标路径的空间角度的情况下,第二信息优选用于指示第二参数中的时延与第三参数中的时延之间的偏差。即在该情况下,不用指示第二参数中的空间角度与第三参数中的空间角度之间的偏差。但是,在需要的情况下,也可以同时指示时延之间的偏差和空间角度之间的偏差。
可选地,在本申请实施例中,对于上述步骤S301中涉及到的对下行信道进行信道估计,并从信道估计的结果中确定第一参数和第三参数的方式,进一步可以是:
步骤S301-11,终端对下行信道进行信道估计,得到频域上的第一下行信道估计结果;
其中,终端对下行信道进行信道估计的方式,具体可以是:终端接收网络侧设备发送的CSI-RS;终端基于CSI-RS对下行信道进行信道估计。
步骤S301-12,终端对第一下行信道估计结果进行二维傅里叶变换得到时域上的第二下行信道估计结果;
步骤S301-13,终端从第二下行信道估计结果中确定出目标路径的时延和/或目标路径的空间角度。
在具体应用场景中以第二参数和第三参数中均包括目标路径的时延和/或目标路径的空间角度,且第一参数为目标路径的增益为例,对于上述步骤S301-11至步骤S301-13可以是:基站通过下行信令,例如RRC(Radio Resource Control,无线资源控制)、MAC-CE(Media Access Control媒体接入控制层)-(Control Element,控制单元)或DCI(Downlink Control Information,下行控制信息)等,向终端配置θ l和τ l的值,θ l和τ l是通过上行信道估计得到的。同时,基站还发送CSI-RS让终端进行下行信道估计,终端利用CSI-RS估计出下行信道
Figure PCTCN2021095478-appb-000040
类似于上行信道H UL,可以得到下行频域信道H DL的表达式如下:
Figure PCTCN2021095478-appb-000041
α dl)为上行N个接收天线的空间导引矢量。可以表示为:
Figure PCTCN2021095478-appb-000042
其中,λ DL=c/f D为下行信道中心频率载波的波长。
基于所有天线在频域的下行信道估计
Figure PCTCN2021095478-appb-000043
利用DFT就可以得到下行信道相应的时延扩展τ' l以及空间角度θ' l
Figure PCTCN2021095478-appb-000044
的值。其中τ' l,θ' l应该和基站下行信令配置的τ l,θ l是具有互易性的,即上下行信道的同步会出现一定的偏差,因此τ' l和上行信道配置的τ l会有一定的偏差。对比θ' l和θ l就可以这道这个偏差的值。其中,对于不同路径的时延偏差,终端可分别上报各路径的时延偏差,以L条目标路径为例,终端将L条目标路径中的第l条路径的时延偏差(τ' ll)分别上报给网络侧设备。或者,对于不同路径的时延偏差,终端可上报一个时延偏差,这种情况下,对于所有的τ l(l=1,2,...,L),这个偏差是一样。定义
Figure PCTCN2021095478-appb-000045
最后终端将
Figure PCTCN2021095478-appb-000046
和Δτ反馈给基站。可见,不需要在每个子频段分别进行信道反馈,而是一次反馈了所有需要的信息,基于这些信息可以计算出所有子载波上的信道信息,从而大大减少了反馈开销。
需要说明的是,本申请实施例提供的信道信息的处理方法,执行主体可 以为信道信息的处理装置,或者该信道信息的处理装置中的用于执行加载信道信息的处理方法的控制模块。本申请实施例中以信道信息的处理装置执行加载信道信息的处理方法为例,说明本申请实施例提供的信道信息的处理方法。
请参见图4,图4是本申请实施例的信道信息的处理装置的结构示意图一,该装置应用于网络侧设备,该装置包括:
第一接收模块42,用于从终端接收第一信息和第二信息;其中,第一信息包括不具有上下行信道互易性的第一参数,第一参数基于下行信道估计确定,第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,第二参数基于上行信道估计确定,第三参数基于下行信道估计确定;
第一确定模块44,用于根据第一信息、第二信息和第二参数,确定下行信道的信道信息。
可选地,本申请实施例中的装置还可以包括:第一处理模块,用于在从终端接收第一信息和第二信息之前,对上行信道进行信道估计,并从信道估计的结果中确定第二参数;第一发送模块,用于向终端发送第二参数。
可选地,本申请实施例中的装置,还可以包括:第二接收模块,用于从终端接收第三信息,其中,第三信息包括与第一路径对应的第四参数,且第一路径与第二参数对应的路径不相同。
可选地,本申请实施例中的第一确定模块,还用于根据第一信息、第二信息、第三信息和第二参数,确定下行信道的信道信息。
可选地,本申请实施例中的第二参数和第三参数中均包括目标路径的时延和/或目标路径的空间角度。
其中,目标路径以下至少之一:网络侧设备所指示的路径、具有偏差的路径、由终端测到的路径。
此外,在第二参数和第三参数中均包括目标路径的时延和目标路径的空间角度的情况下,第二信息用于指示第二参数中的时延与第三参数中的时延之间的偏差。
可选地,本申请实施例中的第一处理模块还可以进一步包括:第一处理单元,用于对上行信道信息进行估计,得到频域上的第一上行信道估计结果; 第二处理单元,用于对第一上行信道估计结果进行傅里叶变换,得到时域上的第二上行信道估计结果;第三处理单元,用于从第二上行信道估计结果中确定目标路径的时延和/或目标路径的空间角度。
可选地,本申请实施例中的第一确定模块还可以进一步包括:第一输入单元,用于将第一信息输入到目标神经网络得到第四信息;第一确定单元,用于通过第四信息,第二信息以及第二参数,确定下行信道的信道信息。
可选地,本申请实施例中的目标神经网络是通过预设的训练集对初始神经网络进行训练得到的;预设的训练集中包括多个历史时刻获取到的第一信息。
可选地,本申请实施例中的第一信息所包括的第一参数为目标路径上的增益。
通过上述图4本申请实施例中的装置,在进行上行信道估计之后,可以利用上行信道估计的信道估计结果确定第二参数,并结合终端向网络侧设备反馈具备上下行信道互易性的信道参数的偏差以及不具备上下行互易性的信道参数,无需反馈其他信道参数就能够获取下行信道的信道信息,从而降低了信道反馈开销。
请参见图5,图5是本申请实施例中的信道信息的处理装置的结构示意图二,该装置应用于终端,如图5所示,该装置包括:
第二发送模块52,用于向网络侧设备发送第一信息和第二信息,其中,第一信息包括不具有上下行信道互易性的第一参数,第一参数基于下行信道估计确定,第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,第二参数基于上行信道估计确定,第三参数基于下行信道估计确定。
可选地,本申请实施例中的装置还可以包括:第二处理模块,用于在向网络侧设备发送第一信息和第二信息之前,对下行信道进行信道估计,并从信道估计的结果中确定第一参数和第三参数。
可选地,本申请实施例中的装置还可以包括:第三接收模块,用于接收网络侧设备发送的第二参数。
可选地,本申请实施例中的装置还可以包括:第三发送模块,用于向网 络侧设备发送第三信息,其中,第三信息包括与第一路径对应的第四参数,且第一路径与第二参数对应的路径不相同。
可选地,本申请实施例中的第二参数和第三参数中均包括目标路径的时延和/或目标路径的空间角度。
其中,在第二参数和第三参数中均包括目标路径的时延和目标路径的空间角度的情况下,第二信息用于指示第二参数中的时延与第三参数中的时延之间的偏差。
可选地,本申请实施例中的第二处理模块还可以进一步包括:第四处理单元,用于对下行信道进行信道估计,得到频域上的第一下行信道估计结果;第五处理单元,用于对第一下行信道估计结果进行二维傅里叶变换得到时域上的第二下行信道估计结果;第六处理单元,用于从第二下行信道估计结果中确定出目标路径的时延和/或目标路径的空间角度。
通过上述图5本申请实施例中的装置,在进行信道估计之后,只需要向网络侧设备反馈具备上下行信道互易性的信道参数的偏差以及不具备上下行互易性的信道参数,无需反馈其他信道参数,从而降低了反馈开销。
需要说明的是,本申请实施例中的应用于图5中的信道信息的处理装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的信道信息的处理装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为IOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的信道信息的处理装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行 时实现上述图3中的信道信息的处理方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述图2中的信道信息的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给基站网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播 放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于接收网络侧设备发送的第一参数;其中,第一参数由网络侧设备对上行信道进行信道估计之后,从信道估计结果中确定的,
处理器710,用于对下行信道进行信道估计,并从信道估计的结果中确定第二参数和多径时延信道中各个路径的第一增益;
射频单元701,还用于向网络侧设备发送偏差参数和多径时延信道中各个路径的第一增益;其中,偏差参数用于指示第一参数与第二参数之间的偏差。
可选的,处理器710,还用于通过信道探测参考信号SRS对上行信道信息进行估计,得到频域上的第一上行信道估计结果;对所述第一上行信道估计结果进行傅里叶变换得到时域上的第二上行信道估计结果;从所述第二上行信道估计结果中确定多径时延信道中各个路径的时延和/或各个路径的空间角度。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络侧设备执 行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器y5上并可在处理器84上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图4所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图2和图3中的信道信息的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述信道信息的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
可以理解的是,本公开描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设 备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种信道信息的处理方法,应用于网络侧设备,包括:
    从终端接收第一信息和第二信息;其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定;
    根据所述第一信息、所述第二信息和所述第二参数,确定下行信道的信道信息。
  2. 根据权利要求1所述的方法,其中,在从所述终端接收第一信息和所述第二信息之前,所述方法还包括:
    对上行信道进行信道估计,并从信道估计的结果中确定所述第二参数;
    向所述终端发送所述第二参数。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    从所述终端接收第三信息,其中,所述第三信息包括与第一路径对应的第四参数,且所述第一路径与所述第二参数对应的路径不相同。
  4. 根据权利要求3所述的方法,其中,所述确定下行信道的信道信息,包括:
    根据所述第一信息、所述第二信息、所述第三信息和所述第二参数,确定下行信道的信道信息。
  5. 根据权利要求1所述的方法,其中,所述第二参数和所述第三参数中均包括目标路径的时延和/或所述目标路径的空间角度。
  6. 根据权利要求5所述的方法,其中,所述目标路径以下至少之一:网络侧设备所指示的路径、所述第二参数与所述第三参数之间的偏差大于阈值的路径、所述终端测量到的路径。
  7. 根据权利要求5所述的方法,其中,在所述第二参数和所述第三参数中均包括目标路径的时延和所述目标路径的空间角度的情况下,所述第二信息用于指示所述第二参数中的时延与所述第三参数中的时延之间的偏差。
  8. 根据权利要求2所述的方法,其中,对上行信道进行信道估计,并从 信道估计的结果中确定所述第二参数,包括:
    对上行信道信息进行估计,得到频域上的第一上行信道估计结果;
    对所述第一上行信道估计结果进行傅里叶变换,得到时域上的第二上行信道估计结果;
    从所述第二上行信道估计结果中确定目标路径的时延和/或所述目标路径的空间角度。
  9. 根据权利要求1所述的方法,其中,根据所述第一信息、所述第二信息和所述第二参数,确定下行信道的信道信息包括:
    将所述第一信息输入到目标神经网络得到第四信息;
    通过所述第四信息、所述第二信息以及第二参数,确定下行信道的信道信息。
  10. 根据权利要求9所述的方法,其中,所述目标神经网络是通过预设的训练集对初始神经网络进行训练得到的;所述预设的训练集中包括多个历史时刻获取到的第一信息。
  11. 根据权利要求10所述的方法,其中,所述第一信息中的第一参数为目标路径上的增益。
  12. 一种信道信息的处理方法,应用于终端,包括:
    向网络侧设备发送第一信息和第二信息,其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定。
  13. 根据权利要求12所述的方法,其中,在向网络侧设备发送第一信息和所述第二信息之前,所述方法包括:
    对下行信道进行信道估计,并从信道估计的结果中确定所述第一参数和第三参数。
  14. 根据权利要求12所述的方法,其中,向网络侧设备发送第一信息和第二信息之前,所述方法还包括:
    接收所述网络侧设备发送的所述第二参数。
  15. 根据权利要求12所述的方法,其中,所述方法包括:
    向所述网络侧设备发送第三信息,其中,所述第三信息包括与第一路径对应的第四参数,且所述第一路径与所述第二参数对应的路径不相同。
  16. 根据权利要求14所述的方法,其中,所述第二参数和所述第三参数中均包括目标路径的时延和/或目标路径的空间角度。
  17. 根据权利要求16所述的方法,其中,在所述第二参数和所述第三参数中均包括目标路径的时延和所述目标路径的空间角度的情况下,所述第二信息用于指示所述第二参数中的时延与所述第三参数中的时延之间的偏差。
  18. 根据权利要求13所述的方法,其中,对下行信道进行信道估计,并从信道估计的结果中确定所述第一参数,包括:
    对下行信道进行信道估计,得到频域上的第一下行信道估计结果;
    对所述第一下行信道估计结果进行二维傅里叶变换得到时域上的第二下行信道估计结果;
    从所述第二下行信道估计结果中确定出目标路径的时延和/或所述目标路径的空间角度。
  19. 一种信道信息的处理装置,包括:
    第一接收模块,用于从终端接收第一信息和第二信息;其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定;
    第一确定模块,用于根据所述第一信息、所述第二信息和所述第二参数,确定下行信道的信道信息。
  20. 根据权利要求19所述的装置,其中,所述装置还包括:
    第一处理模块,用于在从所述终端接收第一信息和所述第二信息之前,对上行信道进行信道估计,并从所述信道估计的结果中确定所述第二参数;
    第一发送模块,用于向所述终端发送所述第二参数。
  21. 根据权利要求19所述的装置,其中,
    第二接收模块,用于从所述终端接收第三信息,其中,所述第三信息包 括与第一路径对应的第四参数,且所述第一路径与所述第二参数对应的路径不相同。
  22. 根据权利要求21所述的装置,其中,所述第一确定模块,还用于根据所述第一信息、所述第二信息、所述第三信息和所述第二参数,确定下行信道的信道信息。
  23. 根据权利要求19所述的装置,其中,所述第二参数和所述第三参数中均包括目标路径的时延和/或所述目标路径的空间角度。
  24. 根据权利要求23所述的装置,其中,所述目标路径以下至少之一:网络侧设备所指示的路径、所述第二参数与所述第三参数之间的偏差大于阈值的路径、所述终端测量到的路径。
  25. 根据权利要求23所述的装置,其中,在所述第二参数和所述第三参数中均包括目标路径的时延和所述目标路径的空间角度的情况下,所述第二信息用于指示所述第二参数中的时延与所述第三参数中的时延之间的偏差。
  26. 根据权利要求20所述的装置,其中,所述第一处理模块包括:
    第一处理单元,用于对上行信道信息进行估计,得到频域上的第一上行信道估计结果;
    第二处理单元,用于对所述第一上行信道估计结果进行傅里叶变换,得到时域上的第二上行信道估计结果;
    第三处理单元,用于从所述第二上行信道估计结果中确定目标路径的时延和/或所述目标路径的空间角度。
  27. 根据权利要求19所述的装置,其中,所述第一确定模块包括:
    第一输入单元,用于将所述第一信息输入到目标神经网络得到第四信息;
    第一确定单元,用于通过所述第四信息、所述第二信息以及第二参数,确定下行信道的信道信息。
  28. 根据权利要求27所述的装置,其中,所述目标神经网络是通过预设的训练集对初始神经网络进行训练得到的;所述预设的训练集中包括多个历史时刻获取到的第一信息。
  29. 根据权利要求28所述的装置,其中,所述第一信息中的第一参数为目标路径上的增益。
  30. 一种信道信息的处理装置,包括:
    第二发送模块,用于向网络侧设备发送第一信息和第二信息,其中,所述第一信息包括不具有上下行信道互易性的第一参数,所述第一参数基于下行信道估计确定,所述第二信息用于指示具有上下行信道互易性的第二参数与第三参数之间的偏差,所述第二参数基于上行信道估计确定,所述第三参数基于下行信道估计确定。
  31. 根据权利要求30所述的装置,其中,所述装置包括:
    第二处理模块,用于在向网络侧设备发送第一信息和所述第二信息之前,对下行信道进行信道估计,并从所述信道估计的结果中确定所述第一参数和第三参数。
  32. 根据权利要求30所述的装置,其中,所述装置还包括:
    第三接收模块,用于向网络侧设备发送第一信息和第二信息之前,接收所述网络侧设备发送的所述第二参数。
  33. 根据权利要求30所述的装置,其中,所述装置包括:
    第三发送模块,用于向所述网络侧设备发送第三信息,其中,所述第三信息包括与第一路径对应的第四参数,且所述第一路径与所述第二参数对应的路径不相同。
  34. 根据权利要求30所述的装置,其中,所述第二参数和所述第三参数中均包括目标路径的时延和/或目标路径的空间角度。
  35. 根据权利要求34所述的装置,其中,在所述第二参数和所述第三参数中均包括目标路径的时延和所述目标路径的空间角度的情况下,所述第二信息用于指示所述第二参数中的时延与所述第三参数中的时延之间的偏差。
  36. 根据权利要求31所述的装置,其中,所述第二处理模块包括:
    第四处理单元,用于对下行信道进行信道估计,得到频域上的第一下行信道估计结果;
    第五处理单元,用于对所述第一下行信道估计结果进行二维傅里叶变换得到时域上的第二下行信道估计结果;
    第六处理单元,用于从所述第二下行信道估计结果中确定出目标路径的时延和/或所述目标路径的空间角度。
  37. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-11中任一项所述的信道信息的处理方法的步骤。
  38. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12-18中任一项所述的信道信息的处理方法的步骤。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-11中任一项所述的信道信息的处理方法的步骤,或者实现如权利要求12-18中任一项所述的信道信息的处理方法的步骤。
  40. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现如权利要求1-11中任一项所述的方法,或实现如权利要求12-18中任一项所述的方法。
  41. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1-11中任一项所述的方法,或实现如权利要求12-18中任一项所述的方法。
  42. 一种终端,所述终端被配置为用于执行如权利要求1-11中任一项所述的方法。
  43. 一种网络侧设备,所述网络侧设备被配置为用于执行如权利要求12-18中任一项所述的方法。
PCT/CN2021/095478 2020-05-28 2021-05-24 信道信息的处理方法及装置 WO2021238850A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2021280023A AU2021280023B2 (en) 2020-05-28 2021-05-24 Channel information processing method and apparatus
EP21812614.2A EP4160930A4 (en) 2020-05-28 2021-05-24 METHOD AND APPARATUS FOR PROCESSING CHANNEL INFORMATION
JP2022572773A JP2023527056A (ja) 2020-05-28 2021-05-24 チャネル情報の処理方法及び装置
CA3184785A CA3184785A1 (en) 2020-05-28 2021-05-24 Channel information processing method and apparatus
KR1020227043938A KR20230011374A (ko) 2020-05-28 2021-05-24 채널 정보의 처리 방법 및 장치
US17/994,681 US20230085924A1 (en) 2020-05-28 2022-11-28 Channel information processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010470360.3 2020-05-28
CN202010470360.3A CN113746509B (zh) 2020-05-28 2020-05-28 信道信息的处理方法、装置、终端、网络侧设备以及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,681 Continuation US20230085924A1 (en) 2020-05-28 2022-11-28 Channel information processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2021238850A1 true WO2021238850A1 (zh) 2021-12-02

Family

ID=78724279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095478 WO2021238850A1 (zh) 2020-05-28 2021-05-24 信道信息的处理方法及装置

Country Status (8)

Country Link
US (1) US20230085924A1 (zh)
EP (1) EP4160930A4 (zh)
JP (1) JP2023527056A (zh)
KR (1) KR20230011374A (zh)
CN (1) CN113746509B (zh)
AU (1) AU2021280023B2 (zh)
CA (1) CA3184785A1 (zh)
WO (1) WO2021238850A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222360B (zh) * 2021-12-21 2023-09-12 南京欧珀软件科技有限公司 时间同步方法、系统及相关装置
CN117119603A (zh) * 2022-05-12 2023-11-24 华为技术有限公司 通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170126437A1 (en) * 2015-10-28 2017-05-04 Huawei Technologies Canada Co., Ltd. Method and Apparatus for Downlink Channel Estimation in Massive MIMO
CN106922207A (zh) * 2014-12-16 2017-07-04 富士通株式会社 基于探测参考信号的下行信道估计方法、装置以及通信系统
CN109039403A (zh) * 2018-09-14 2018-12-18 中国人民解放军空军预警学院 大规模mimo系统中基于冗余字典的下行链路信道估计方法
CN110691049A (zh) * 2019-10-31 2020-01-14 华中科技大学 一种频分双工模式下的大规模mimo系统信道预测方法
CN111181671A (zh) * 2019-12-27 2020-05-19 东南大学 一种基于深度学习的下行信道快速重建方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3085180B1 (en) * 2013-12-20 2018-04-04 Ping Liang Method for acquiring channel state information in fdd mimo wireless networks
CN106685502A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 一种信道状态信息量化反馈方法及终端
US20180323846A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Methods and apparatus for acquiring channel state information with channel reciprocity
CN107911153B (zh) * 2017-10-31 2021-01-19 东南大学 一种面向fdd系统的基于上行csi的下行信道重建方法
US11265060B2 (en) * 2018-01-22 2022-03-01 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and device therefor
CN110430147B (zh) * 2019-07-15 2021-12-14 东南大学 一种面向fdd系统的信道跟踪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106922207A (zh) * 2014-12-16 2017-07-04 富士通株式会社 基于探测参考信号的下行信道估计方法、装置以及通信系统
US20170126437A1 (en) * 2015-10-28 2017-05-04 Huawei Technologies Canada Co., Ltd. Method and Apparatus for Downlink Channel Estimation in Massive MIMO
CN109039403A (zh) * 2018-09-14 2018-12-18 中国人民解放军空军预警学院 大规模mimo系统中基于冗余字典的下行链路信道估计方法
CN110691049A (zh) * 2019-10-31 2020-01-14 华中科技大学 一种频分双工模式下的大规模mimo系统信道预测方法
CN111181671A (zh) * 2019-12-27 2020-05-19 东南大学 一种基于深度学习的下行信道快速重建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160930A4 *

Also Published As

Publication number Publication date
EP4160930A1 (en) 2023-04-05
CA3184785A1 (en) 2021-12-02
CN113746509A (zh) 2021-12-03
JP2023527056A (ja) 2023-06-26
US20230085924A1 (en) 2023-03-23
EP4160930A4 (en) 2023-11-22
AU2021280023A1 (en) 2023-01-19
KR20230011374A (ko) 2023-01-20
AU2021280023B2 (en) 2024-05-23
CN113746509B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
EP4231693A1 (en) Configuration method for ai network parameter and device
US20230180081A1 (en) Measurement Reporting Method and Device
WO2019192385A1 (zh) 信道和信号的传输方法及通信设备
WO2022007929A1 (zh) 波束报告的发送、接收方法、装置及电子设备
US20230085924A1 (en) Channel information processing method and apparatus
US20230239032A1 (en) Beam processing method and apparatus, and related device
CN113922848B (zh) 信号发送方法、信道估计方法、发送端设备及接收端设备
CN114071690A (zh) 信息上报方法、信息接收方法及相关设备
WO2022171129A1 (zh) 信号参数上报方法、装置及设备
CN114389785A (zh) 参考信号的调整方法及装置、终端及网络侧设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
US20230291458A1 (en) Beam processing method and apparatus and communication device
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2014171129A1 (ja) 通信システムおよび通信制御方法
WO2018130093A1 (zh) 同步接入信号组的发送方法、接收方法、相关设备及系统
WO2022199664A1 (zh) 信息发送方法和设备
WO2022105913A1 (zh) 通信方法、装置及通信设备
WO2022068755A1 (zh) 信息传输方法、终端及网络侧设备
US20240088970A1 (en) Method and apparatus for feeding back channel information of delay-doppler domain, and electronic device
WO2023066307A1 (zh) 信道估计方法、装置、终端及网络侧设备
WO2022105911A1 (zh) 通信数据处理方法、装置及通信设备
WO2022057820A1 (zh) 测量方法、发送方法及相关设备
CN115333581B (zh) 终端天线面板信息的传输方法、终端及网络侧设备
WO2022078391A1 (zh) 传输方法、装置、终端及网络侧设备
WO2023072239A1 (zh) 信道预测方法、装置、网络侧设备及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3184785

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022572773

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227043938

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812614

Country of ref document: EP

Effective date: 20230102

ENP Entry into the national phase

Ref document number: 2021280023

Country of ref document: AU

Date of ref document: 20210524

Kind code of ref document: A