WO2016126020A1 - 렌즈 및 이를 포함하는 발광 소자 패키지 - Google Patents

렌즈 및 이를 포함하는 발광 소자 패키지 Download PDF

Info

Publication number
WO2016126020A1
WO2016126020A1 PCT/KR2016/000446 KR2016000446W WO2016126020A1 WO 2016126020 A1 WO2016126020 A1 WO 2016126020A1 KR 2016000446 W KR2016000446 W KR 2016000446W WO 2016126020 A1 WO2016126020 A1 WO 2016126020A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
angle
lens
incident
exit
Prior art date
Application number
PCT/KR2016/000446
Other languages
English (en)
French (fr)
Inventor
김기현
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to US15/541,926 priority Critical patent/US9997681B2/en
Publication of WO2016126020A1 publication Critical patent/WO2016126020A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • Embodiments relate to a lens and a light emitting device package including the same.
  • Light emitting devices such as light emitting diodes or laser diodes (LDs) using semiconductors of Group 3-5 or 2-6 compound semiconductor materials are developed using thin film growth technology and device materials.
  • Various colors such as blue and ultraviolet light can be realized, and efficient white light can be realized by using fluorescent materials or color combinations, and low power consumption, semi-permanent life, and fast response speed compared to conventional light sources such as fluorescent and incandescent lamps. It has the advantages of safety, environmental friendliness.
  • Light emitting device packages are widely used in lighting devices and display devices.
  • the light emitting device package may generally include a body, lead frames located in the body, and a light emitting device (eg, an LED) positioned in any one of the lead frames.
  • a light emitting device eg, an LED
  • the light emitting device package may further include a lens, and a light distribution pattern of the light emitting device package may be determined according to the shape of the lens.
  • the embodiment provides a lens and a light emitting device package including the same, in which a reduction ratio of the illuminance of light emitted from the center of the lens is lowered and the illuminance of the light emitted on the third plane is increased.
  • the embodiment relates to a lens including a lower end having an incident surface through which light is incident, and an upper end having an exit surface through which light passing through the incident surface passes.
  • the ratio of the incident angle and the exit angle in the two planes is at least one less than the ratio of the incident angle and the exit angle in the third plane, the incident angle is the angle of the light incident on the incident surface with respect to the central axis, the exit angle Is an angle of light emitted to the exit plane with respect to the central axis, wherein each of the first to third planes is a plane passing through the central axis and parallel to the first direction, and the first plane is parallel to the second plane.
  • the third plane is located between the first plane and the second plane, the central axis passing through the center of the lens and parallel to the first direction, the first direction being the Is a direction directed from the end to the lower end.
  • An angle of incidence of each of the first to third planes may be greater than 30 ° and less than or equal to 60 °.
  • An angle of incidence of each of the first to third planes may be greater than or equal to 40 ° and less than or equal to 60 °.
  • the lens may be symmetrical with respect to the first plane.
  • the lens may be symmetrical with respect to the second plane.
  • the lens may be symmetrical with respect to the first plane and symmetrical with respect to the second plane.
  • the central axis may be an axis passing through the center of the incident surface and the center of the exit surface.
  • An angle between the first plane and the third plane may be 30 ° to 50 °.
  • the ratio of the incident angle and the exit angle in the third plane with respect to the same incident angle of the first to third planes is the ratio of the incident angle and the exit angle in the first plane and the ratio of the incident angle and the exit angle in the second plane. Can be greater than
  • Another embodiment relates to a lens including a lower end having an incident surface through which light is incident and an upper end having an exit surface through which light passing through the incident surface passes, the lower end being in a first direction from a lower surface of the upper end.
  • a convex shape including a groove recessed in a direction opposite to the first direction, and a side wall positioned to surround the groove, the incident surface including a lower surface of the groove, the first to third planes
  • at least one of the ratio of the incident angle and the exit angle in the first plane or the ratio of the incident angle and the exit angle in the second plane is smaller than the ratio of the incident angle and the exit angle in the third plane
  • the incident angle is an angle of light incident on the incident surface based on the central axis
  • the exit angle is an angle of light emitted to the exit surface based on the central axis.
  • the central axis corresponds to the Z axis
  • the first plane corresponds to the xz plane
  • the second plane corresponds to the yz plane
  • the third plane corresponds to the first plane and the second plane.
  • the first direction is a direction from the upper end to the lower end.
  • the lower surface of the groove may be a curved surface convex in the first direction.
  • the bottom end of the lower end may be located below the center of the incident surface.
  • the exit surface may include an upper surface of the upper end portion, and the upper surface of the upper end portion may include a first portion corresponding to the incident surface and a second portion disposed around the first portion and corresponding to the sidewall.
  • the distance from the center of the exit surface to the center of the entrance surface may be shorter than the distance from the center of the exit surface to the bottom end of the side wall.
  • the first portion may be convex in a direction opposite to the first direction.
  • the second portion may be an inclined surface inclined downward in the direction of the center of the upper end at the edge of the upper end.
  • the upper end may have a stepped portion protruding in a second direction with respect to the side surface of the lower end, and the second direction may be a direction perpendicular to the first direction.
  • An angle between the first plane and the third plane may be 30 ° to 50 °.
  • the center of the first portion may be aligned with the center of the incident surface.
  • the light emitting device package includes a package body; First and second conductive layers disposed on the package body; A light emitting device electrically connected to the first and second conductive layers; And a lens according to the above-described embodiment disposed on the package body and refracting light generated from the light emitting device.
  • the reduction rate of the illuminance of the light emitted from the center of the lens may be lowered and the illuminance of the light emitted onto the third plane may be increased.
  • FIG. 1 is a perspective view of a light emitting device package according to an embodiment.
  • FIG. 2 is a plan view of the light emitting device package illustrated in FIG. 1.
  • FIG. 3 is a cross-sectional view of the AB direction of the light emitting device package illustrated in FIG. 2.
  • FIG. 4A shows a perspective view of the lens shown in FIG. 1.
  • FIG. 4B is a cross-sectional view taken along the first plane of the lens illustrated in FIG. 4A.
  • FIG. 4C shows a first plane, a second plane, and a third plane for the lens shown in FIG. 4A.
  • FIG. 5 shows the refraction of light in the first plane of the lens shown in FIG. 1.
  • FIG. 6 shows the refraction of light in the second plane of the lens shown in FIG. 1.
  • FIG. 7 shows the refraction of light in the third plane of the lens shown in FIG. 1.
  • FIG. 9 illustrates a beam pattern measured by shining light emitted from a light emitting device package onto a screen according to an embodiment.
  • FIG. 10 shows the illuminance for each position on the screen of FIG. 9.
  • FIG. 11 illustrates a beam pattern measured by illuminating a screen irradiated with light emitted from a light emitting device package equipped with a general symmetric lens.
  • FIG. 12 shows the illuminance of the central field on the screen of FIG. 11 and the illuminance of the first field parallel to each plane.
  • FIG. 13 illustrates a beam pattern measured by shining light emitted from a light emitting device package onto a screen according to an embodiment.
  • FIG. 14 shows the illuminance of the central field on the screen of FIG. 12 and the illuminance of the first field parallel to each plane.
  • each layer (region), region, pattern, or structure is “on” or “under” the substrate, each layer (film), region, pad, or pattern.
  • “up” and “under” include both “directly” or “indirectly” formed through another layer. do.
  • the criteria for up / down or down / down each layer will be described with reference to the drawings.
  • Like reference numerals denote like elements throughout the description of the drawings.
  • FIG. 1 is a perspective view of a light emitting device package 100 according to an embodiment
  • FIG. 2 is a plan view of the light emitting device package 100 shown in FIG. 1
  • FIG. 3 is a light emitting device package 100 shown in FIG. 2.
  • the cross section of the AB direction of () is shown.
  • the light emitting device package 100 includes a package body 110, a first conductive layer 122, a second conductive layer 124, a light emitting device 130, and a lens ( 150).
  • the package body 110 supports the first conductive layer 122, the second conductive layer 124, the light emitting device 130, and the lens 150.
  • the package body 110 may be formed of a resin material having high light reflectivity, for example, polyphthalamide (PPA), EMC resin, PC resin, or PCT resin.
  • PPA polyphthalamide
  • EMC resin EMC resin
  • PC resin PCT resin
  • the embodiment is not limited to the material, structure, and shape of the body described above.
  • the package body 110 may be a silicon based wafer level package, a silicon substrate, silicon carbide (SiC), aluminum nitride (AlN), Al 2 O 3 , GaN, ZnO, SiO 2 , Au, Si 3 N 4 , AuSn, etc. may be formed of a substrate having a good insulation or thermal conductivity, it may be a structure in which a plurality of substrates are stacked.
  • the package body 110 may absorb light in order to increase contrast between lighting and turning off the light emitting device 130, or may be formed of a member having a low light reflectance, for example, a black resin. It may be formed through injection molding.
  • the package body 110 may be made of polyphthalamide (PPA) resin, black epoxy mold compound (EMC) resin, or black silicon mixed with carbon black.
  • the package body 110 may have a cavity 101 consisting of a bottom 102 and a side 103.
  • the upper portion of the cavity 101 may be opened out of the upper surface of the package body 110.
  • the cavity 101 of the package body 110 may have a cup shape, a concave container shape, or the like, and the side surface 103 of the cavity 101 may be inclined with respect to the bottom 102 of the cavity 101. .
  • the shape of the cavity 101 of the package body 110 may be circular, elliptical, or polygonal (eg, rectangular) when viewed from above, and the corner portion of the cavity 101 of the package body 110 which is a polygon may be a curved surface. However, it is not limited thereto.
  • the first conductive layer 122 and the second conductive layer 124 are disposed in the package body 110 to be electrically separated from each other.
  • the first and second conductive layers 122 and 124 may be used in terms of first and second lead frames.
  • the first conductive layer 122 and the second conductive layer 124 are conductive materials such as titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), and aluminum (Al). , Tantalum (Ta), platinum (Pt), tin (Sn), silver (Ag), phosphorus (P), or may be formed of an alloy containing at least one of them, and may be formed of a single layer or a multilayer. It may be a structure.
  • a surface of the first and second conductive layers 122 and 124 may be coated with a reflective material, for example, Ag, which may reflect light emitted from the light emitting device 130.
  • first and second conductive layers 122 and 124 may be exposed out of the package body 110.
  • first conductive layer 122 may be exposed to the first side of the package body 110
  • one end of the second conductive layer 124 may be exposed to the second side of the package body 110.
  • the first side and the second side of the package body 110 may be sides facing each other, but are not limited thereto.
  • a portion of the package body 110 may be disposed between the first conductive layer 122 and the second conductive layer 124.
  • the bottom 102 of the package body 110 may be disposed between the first conductive layer 122 and the second conductive layer 124.
  • Top surfaces of each of the first and second conductive layers 122 and 124 may be exposed by the cavity 101.
  • one end of each of the first and second conductive layers 122 and 124 may be exposed to the side surface and / or the bottom surface of the package body 110.
  • the light emitting device 130 is disposed in the cavity 101 of the package body 110, is electrically connected to the first and second conductive layers 122 and 124, and generates light.
  • the light emitting device 130 may be disposed on an upper surface of the first conductive layer 122 exposed by the cavity 101.
  • the light emitting device 130 may be a light emitting diode (LED), and may be electrically connected to the first and second conductive layers 122 and 124 by die bonding or wire bonding. Can be connected.
  • LED light emitting diode
  • the lens 150 is disposed on the package body 110 and refracts light generated from the light emitting device 130.
  • the lens 150 may be disposed on an upper surface of the package body 110, and a lower surface of the lens 150 may contact the upper surface of the package body 110.
  • the package body 110 may have a protrusion 140 protruding in a horizontal direction from the side surface 103 of the cavity 101.
  • the horizontal direction may be a direction from the side surface 103 of the cavity 101 toward the center of the cavity 101.
  • the protrusion 140 of the package body 110 may have a ring shape formed along the side surface 103 of the cavity 101, and may be spaced apart from the top end of the side surface 103 of the cavity 101.
  • the edge of the lens 150 may be disposed on the protrusion 140, and the edge of the lens 150 may be supported by the protrusion 140.
  • the lens 130 disposed on the protrusion 140 may be spaced apart from the light emitting device 130.
  • the lens 130 may be formed of a transparent resin material or a glass material, but is not limited thereto.
  • Air may be filled in the space between the light emitting element 130 in the cavity 101 of the package body 110 and the incident surface 152 of the lens 150, but is not limited thereto.
  • the cavity 101 space below the incident surface 152 of the lens 150 may be filled with a material having a constant refractive index, for example, a resin.
  • the filled resin may be in contact with the entrance surface and / or the exit surface of the lens 150.
  • the lens 150 may include an incident surface 152 through which light is incident, and an exit surface 154 through which light passing through the incident surface 152 passes.
  • FIG. 4A illustrates a perspective view of the lens 150 illustrated in FIG. 1
  • FIG. 4B illustrates a cross-sectional view of the lens 150 illustrated in FIG. 4A taken along a first plane V
  • FIG. 4C illustrates a cross-sectional view of FIG. 4A.
  • the first plane V, the second plane H, and the third plane ⁇ for the illustrated lens 150 are shown.
  • 4A and 4B the lens 150 illustrated in FIG. 1 is rotated 180 degrees.
  • the lens 150 includes a lower end S1 having an incident surface 152, and an upper end S2 positioned on the lower end 152 and having an exit surface 154.
  • the lower end S1 and the upper end S2 of the lens 150 may be in contact with each other, and the upper end S2 and the lower end S1 may be integrally formed.
  • the lower end S1 of the lens 150 is wrapped around the incident surface 152 convex in the first direction 301, and the incident surface 152 and in the first direction 301 based on the incident surface 152. It may include a protruding side wall 401.
  • the first direction 301 may be a direction from the exit surface 154 of the upper end S2 toward the incident surface 152 of the lower end S1.
  • the incident surface 152 of the lower end S1 of the lens 150 may be concave in the first direction 301 or include both concave and convex portions.
  • the lower end S1 of the lens 150 may be formed of an incident surface 152 and an inner surface 152a of the sidewall 401, and may have a groove 153 structure recessed in a direction opposite to the first direction 301. have.
  • the shape of the sidewall 401 may be a polygonal shape including a circle, an ellipse, and a rectangle, but is not limited thereto.
  • the lower end S1 of the lens 150 may have a dome shape convex in a first direction from a lower surface of the upper end S2 of the lens 150, and a groove recessed in a direction opposite to the first direction 301 at the center thereof. 153, and sidewalls 401 positioned to surround the grooves 153.
  • the groove 153 of the lens 150 may include a lower surface and a side surface, and the lower surface of the groove 153 may be a convex curved surface in the first direction 301, but is not limited thereto.
  • the incident surface of the lens 150 may include a bottom surface of the groove 153.
  • the incident surface of the lens 150 may include a lower surface and a side surface of the groove 153.
  • the side surface of the groove 153 of the lens 150 or the inner surface of the side wall 401 may be an inclined surface.
  • the diameter of the groove 153 of the lens 150 may decrease as it progresses in the first direction 301.
  • the lower end S1 of the lens 150 may be located in the cavity 101 of the package body 110.
  • the incident surface 152 and the side wall 401 of the lower end S1 of the lens 150 may be located in the cavity 101 of the package body 110.
  • the bottom end 401a of the side wall 401 of the lower end S1 of the lens 150 may be located below the center 152-1 of the incident surface 152 of the lens 150. Can be.
  • the distance H1 from the center 154-1 of the exit surface 154 of the lens 150 to the center 152-1 of the entrance surface 152 of the lens 150 is the exit of the lens 150. It may be shorter than the distance H2 from the center 154-1 of the surface 154 to the bottom end 401a of the sidewall 401 of the lens 150 (H1 ⁇ H2).
  • the upper end S2 of the lens 150 may include an emission surface 154 through which light passing through the incident surface 152 passes, and a stepped portion 402 protruding in the second direction 302.
  • the exit surface 154 of the lens 150 may include convex, concave, or both concave and convex portions in the first direction 301.
  • the emission surface 154 of the lens 150 may include an upper surface of the upper end S2.
  • the upper surface of the upper end portion S2 may be positioned at the center and surround the first portion 154a and the first portion 154a corresponding to the incident surface 152 in the first direction 301. And a second portion 154b located around 154a.
  • the center of the first portion 154a may be aligned with the center of the incident surface 152 in the first direction 301.
  • the second portion 154b of the upper surface of the upper end S2 may correspond to the sidewall 401 of the lower end S1 or may overlap the sidewall 401 of the lower end S1 in the first direction.
  • the first portion 154a may be convex in a direction opposite to the first direction, but is not limited thereto.
  • the second portion 154b may have an upper portion (401b) at the edge 401b of the upper portion S2 of the lens 150. It may be an inclined surface inclined downward in the center direction of S2).
  • the stepped portion 402 of the lens 150 may protrude in the second direction 302 based on the side surface of the lower portion S1 or the outer circumferential surface of the side wall 401 of the lower portion S1.
  • the second direction 302 may be a direction perpendicular to the first direction 301.
  • the second direction 302 may be a direction from the center or central axis 501 of the lens 150 to the outer circumferential surface of the lens 150.
  • the stepped portion 402 of the lens 150 may be disposed on the top surface of the package body 110 and may be supported by the top surface of the package body 110.
  • the stepped portion 402 of the lens 150 may be disposed on the protrusion 140 of the package body 110 and may be supported by the protrusion 140 of the package body 110.
  • light emitted from the light emitting device 130 may mainly be incident on the incident surface 152 of the lens 150, and the light passing through the incident surface 152 may be about 60 ° based on the central axis 501.
  • the following light distribution characteristics may be exhibited, but are not limited thereto.
  • some of the light generated from the light emitting element 130 may be incident on the inner side surface 152a of the side wall 401 of the lower end S1 of the lens 150, and the light incident on the inner side surface 152a. May be mainly totally reflected by the outer circumferential surface 152b of the sidewall 401, but is not limited thereto.
  • the light totally reflected by the outer circumferential surface 152b of the side wall 401 of the lower end S1 of the lens 150 passes through the second portion 154b of the exit surface 154 of the upper end S2 of the lens 150.
  • the light passing through the second portion 154b of the emission surface 154 may exhibit light distribution characteristics exceeding 60 ° with respect to the central axis 501.
  • the first portion 154a of the emission surface 154 is convex in a direction opposite to the first direction 301, the light is focused to have a light distribution characteristic of 30 ° or less with respect to the central axis 501. Can play a role.
  • the second portion 154b of the exit surface 154 may serve to have a light distribution characteristic exceeding about 30 ° with respect to the central axis 501.
  • Shapes of the lower end S1 and the upper end S2 of the lens 150 described with reference to FIG. 4B are incident angles ⁇ 1 e , ⁇ 2 e , ⁇ 3 e of each of the first to third planes V, H, and ⁇ described later. ) And only one embodiment that satisfies the magnitude relationship between the ratios of the emission angles ⁇ 1 o , ⁇ 2 o , ⁇ 3 o ). That is, the shape of the lens 150 may be implemented in various forms as long as it satisfies the magnitude relationship between the incident angles ⁇ 1 e , ⁇ 2 e , ⁇ 3 e and the exit angles ⁇ 1 o , ⁇ 2 o , ⁇ 3 o , which will be described later. .
  • the central axis 501 of the lens 150 passes through the center of the lens 150 and may be an axis parallel to the first direction 301.
  • the central axis 501 of the lens 150 may be aligned with the center of the light emitting device 130.
  • the central axis 501 of the lens 150 passes through the center 152-1 of the incident surface 152 and the center 154-1 of the exit surface 154, and is parallel to the first direction 301. It can be an axis.
  • the central axis 501 of the lens 150 may be perpendicular to the top surfaces of the first and second conductive layers 122 and 124.
  • the first plane V may be a plane parallel to the first direction 301 after passing through the center or the central axis 501 of the lens 150.
  • the second plane H may be a plane passing through the central or central axis 501 of the lens 150, parallel to the first direction 301, and perpendicular to the first plane V.
  • the third plane ⁇ passes through the central or central axis 501 of the lens 150, is parallel to the first direction 301, and is positioned between the first plane V and the second plane H.
  • the angle ⁇ between the first plane V and the third plane ⁇ may be a preset angle, and the preset angle may be 30 ° to 50 °.
  • the predetermined angle may be 45 degrees.
  • the reason for setting the predetermined angle ⁇ to 30 ° to 50 ° is that the lens 150 has a beam pattern that can increase the illuminance of the first field 1.0 field ( ⁇ ) parallel to the third plane ⁇ .
  • the predetermined angle ⁇ is smaller than 30 ° or larger than 50 °, the effect of increasing the illuminance of the first field 1.0 field ( ⁇ ) parallel to the third plane ⁇ is effective. Because it appears small.
  • the angle ⁇ preset based on the second plane H may be about 37 °.
  • the predetermined angle ⁇ may be slightly over 30 °.
  • the predetermined angle ⁇ may be about 45 °.
  • each of the first plane V, the second plane H, and the third plane ⁇ may be perpendicular to the top surfaces of the first and second conductive layers 122 and 124.
  • the central axis 501 of the lens 150 may correspond to the Z axis
  • the first plane V may correspond to the xz plane
  • the second plane H may correspond to the yz plane.
  • the third plane ⁇ may be located between the xz plane and the yz plane, and may be a plane parallel to each of the xz plane and the yz plane
  • the first direction 301 may be parallel to the Z axis and the upper end S2.
  • the lens 150 is symmetrical with respect to at least one of the first plane V and the second plane H.
  • the lens 150 may be symmetrical with respect to the first plane V.
  • FIG. 1 the lens 150 may be symmetrical with respect to the first plane V.
  • the lens 150 may be symmetrical with respect to the second plane H.
  • the lens 150 may be symmetrical with respect to the first plane V and symmetrical with respect to the second plane H.
  • Angles eg, ⁇ 1 e , ⁇ 2 e ,
  • incident angle the angle at which light incident on the incident surface 152 exits from the exit surface 154 of the upper end S2
  • the shape of the lens 150 may be determined by the ratio of “an exit angle”.
  • the incident angle of the lens 150 may be an inclination angle of light incident on the incident surface 152 of the lens 150 with respect to the central axis 501 of the lens 150, and the exit angle of the lens 150 may be It may be an inclination angle of the light exiting to the exit surface 154 of the lens 150 based on the central axis 501 of the lens 150 or the axis 501a parallel to the central axis 501.
  • FIG. 5 shows the refraction of light in the first plane V of the lens 150 shown in FIG. 1
  • FIG. 6 shows the light in the second plane H of the lens 150 shown in FIG. 1.
  • Figure 7 shows the refraction of light in a third plane ( ⁇ ) of the lens 150 shown in Figure 1
  • Figure 8 is the angle of incidence of the light in each plane ( ⁇ 1 e, ⁇ 2 e, ⁇ 3 e ), The exit angle ( ⁇ 1 o , ⁇ 2 o , ⁇ 3 o ), and the ratio of the incident angle ( ⁇ 1 e , ⁇ 2 e , ⁇ 3 e ) and the exit angle ( ⁇ 1 o , ⁇ 2 o , ⁇ 3 o ) ( ⁇ 1 o / ⁇ 1 e , ⁇ 2 o / ⁇ 2 e , ⁇ 3 o / ⁇ 3 e ).
  • Incident light emitted from the light emitting element 130 in each plane V, H, ⁇ is irradiated from one side (eg, left) of each plane V, H, ⁇ with respect to the central axis 501.
  • the first incident light a1, a2, a3, and the second incident light b1, b2, b3 irradiated from the other side (eg, the right side) of each plane V, H, ⁇ may be included.
  • Outgoing light emitted from the lens 150 in each plane V, H, and ⁇ is output to one side (eg, left) of each plane V, H, and ⁇ with respect to the central axis 501.
  • the first output light c1, c2, and c3 and the second output light d1, d2, and d3 emitted from the other side (eg, the right side) of each plane V, H, and ⁇ may be included.
  • the incident angle of the first incident light a1, a2, a3 and the exit angle of the first exit light c1, c2, c3 may be set to a positive value
  • the incident angle of the second incident light b1, b2, b3 may be set.
  • the emission angles of the second emission lights d1, d2, and d3 may be set to negative values.
  • the light in the ratio ⁇ 1 o / ⁇ 1 e or the second plane H of the incident angle ⁇ 1 e and the exit angle ⁇ 1 o of the light in the first plane V The ratio between the incident angle ⁇ 2 e and the exit angle ⁇ 2 o of ⁇ 2 o / ⁇ 2 e is at least one of the incident angle ⁇ 3 e and the exit angle ⁇ 3 o of the light in the third plane ⁇ . Less than the ratio ⁇ 3 o / ⁇ 3 e ( ⁇ 1 o / ⁇ 1 e ⁇ 3 o / ⁇ 3 e , ⁇ 2 o / ⁇ 2 e ⁇ 3 o / ⁇ 3 e ).
  • the ratio of the incident angle and the exit angle in each plane V, H, and ⁇ may be a ratio of the absolute value of the incident angle and the absolute value of the exit angle.
  • the ratio ⁇ 1 o / ⁇ 1 e of the incident angle ⁇ 1 e of the light in the first plane V and the exit angle ⁇ 1 o is the third plane ⁇ It may be less than the ratio ( ⁇ 3 o / ⁇ 3 e ) of the light incident angle ( ⁇ 3 e ) and the exit angle ( ⁇ 3 o ). Incident angles of the planes to be compared may be the same.
  • the ratio ⁇ 2 o / ⁇ 2 e of the incident angle ⁇ 2 e of the light in the second plane H and the exit angle ⁇ 2 o with respect to the same incident angle of the first to third planes may be determined by the third plane ( It may be smaller than the ratio ( ⁇ 3 o / ⁇ 3 e ) of the incident angle ⁇ 3 e and the exit angle ⁇ 3 o of light at ⁇ ).
  • the ratio of the angle of incidence and the angle of incidence in the third plane ⁇ with respect to the same angle of incidence of the first to third planes is the ratio of the angle of incidence and the angle of exit in the first plane V and in the second plane H. It may be greater than the ratio of the incident angle and the exit angle of each.
  • the incident angles ⁇ 1 e , ⁇ 2 e , ⁇ 3 e of each of the first to third planes V, H, and ⁇ may be greater than 30 ° and less than or equal to 60 °. This is because the incidence angles ⁇ 1 e , ⁇ 2 e , ⁇ 3 e of light having a predetermined or more luminous flux that determines a light distribution pattern among the light emitted from the light emitting device 130 are greater than 30 ° and less than or equal to 60 °.
  • the range of the angle of incidence of the main effective light having the luminous intensity of 50% or more among the light irradiated from the light emitting device 130 while affecting the outside of the beam pattern is greater than 30 ° and less than or equal to 60 °.
  • the incident angles ⁇ 1 e , ⁇ 2 e , ⁇ 3 e of each of the first to third planes V, H, and ⁇ may be greater than or equal to 40 ° and smaller than or equal to 60 °.
  • each of the first to third planes V, H, and ⁇ are 40 ° to 60 °
  • the ratio ( ⁇ 1 o / ⁇ 1 e ) of the incident angle ( ⁇ 1 e ) of the light in the first plane (V) and the exit angle ( ⁇ 1 o ) and the incident angle ( ⁇ 2 e ) and the exit angle of the light in the second plane (H) ( ⁇ 2 o) the ratio of ( ⁇ 2 o / e ⁇ 2) may be smaller than the ratio ( ⁇ 3 o / e ⁇ 3) of the third plane ( ⁇ ) angle of incidence (e ⁇ 3) and the emission angle ( ⁇ 3 o) of the light in.
  • the incident angles ⁇ 1 e , ⁇ 2 e , ⁇ 3 e of each of the first to third planes V, H, and ⁇ may be 45 ° or 60 °.
  • the ratio of the exit angle to the angle of incidence (45 °) of light in the third plane ⁇ is 0.92 (see FIG. 8).
  • (V) may be greater than the ratio of the incident angle of the light (45 °) and the exit angle (0.83), and the ratio of the incident angle of light (45 °) and the exit angle (0.85) in the second plane (H). .
  • the lens 150 has a ratio ( ⁇ 1 o / ⁇ 1 e , ⁇ 2) of the emission angles ⁇ 1 o and ⁇ 2 o to the incident angles ⁇ 1 e and ⁇ 2 e of the first plane V and the second plane H, respectively. Since o / ⁇ 2 e has a shape smaller than the ratio ( ⁇ 3 o / ⁇ 3 e ) of the exit angle ⁇ 3 o to the incident angle ⁇ 3 e of the third plane ⁇ , the embodiment of the lens 150 The decrease rate of the illuminance in the center can be lowered, and the illuminance in the diagonal direction of the lens 150, for example, the third plane ⁇ can be increased.
  • FIG. 9 illustrates a beam pattern measured by illuminating light emitted from the light emitting device package 100 according to an embodiment on a screen
  • FIG. 10 illustrates illuminance for each position on the screen of FIG. 9.
  • the distance between the light emitting device package 100 and the screen is 1000 mm
  • the field of view (FOV) is 80
  • the horizontal ⁇ vertical size of the screen is 1342,559 mm ⁇ 1006.92 mm.
  • the screen may be divided into a plurality of fields having a constant area as shown in FIG. 9.
  • a field adjacent to four corners of the screen may be defined as one field (1.0F), the center of the screen may be defined as 0.1 field, and the space therebetween may be divided into a plurality of fields. Can be.
  • a field located at the center of the screen may correspond to the center of the lens 150, and the first fields aligned with a vertical straight line passing through the center of the screen may be formed by the lens 150.
  • the second fields which correspond to the first plane V and are aligned in a horizontal straight line passing through the center of the screen may correspond to the second plane H of the lens 150 and pass through the center of the screen to the first field.
  • the third fields located between the fields and the second fields may correspond to the third plane ⁇ of the lens 150.
  • the illuminance in the center of the screen is 87.64 [Lux], and the illuminance in the first field 1.0F of the screen is 30% or more than the illuminance in the center of the screen.
  • the third plane ⁇ of the lens 150 and the third plane ⁇ of the lens 150 may be arranged such that the amount of illuminance in a diagonal direction, that is, in a direction parallel to the third plane ⁇ of the lens 150, is 30% or more relative to the center illuminance of the screen. The amount of illuminance in the parallel direction can be improved.
  • FIG. 11 illustrates a beam pattern measured by illuminating a screen irradiated with light emitted from a light emitting device package equipped with a general symmetric lens
  • FIG. 12 is an illuminance of a center field on the screen of FIG.
  • FIG. 13 illustrates a beam pattern measured by illuminating light emitted from the light emitting device package 100 on a screen
  • FIG. 14 illustrates a center on the screen of FIG. 12. The illumination intensity of the field center and the illumination intensity of the 1st field parallel to each plane are shown.
  • the distance between the light emitting device package and the screen is 1000 mm
  • the field of view (FOV) is 80
  • the horizontal ⁇ vertical size of the screen is 1335 mm ⁇ 1001 mm.
  • the remaining components of the light emitting device package except for the lens are the same in FIGS. 11 and 13.
  • the illuminance in the center of the screen is 72.05 [Lux]
  • the illuminance in the first field (1.0 Field (V)) parallel to the first plane V is 35.97 [Lux]
  • the illuminance of the first field (1.0 Field (H)) parallel to the second plane (H) is 23.69 [Lux]
  • the measure is 27.14 [Lux].
  • the illuminance of the first field (1.0 Field (V), 1.0 Field (H), 1.0 Field ( ⁇ )) parallel to each plane (V, H, ⁇ ) is compared with the illuminance of the center field of the screen. Or 30% or more.
  • the illuminance of the center of the screen is 108.82.05 [Lux]
  • the illuminance of the first field (1.0 Field (V)) parallel to the first plane V is 95.27 [Lux].
  • the illuminance of the first field (1.0 Field (H)) parallel to the second plane (H) is 67.41 [Lux]
  • the illuminance of is 40.31 [Lux].
  • the illuminance of the first field (1.0 Field (V), 1.0 Field (H), 1.0 Field ( ⁇ )) parallel to each plane (V, H, ⁇ ) is compared with the illuminance of the center field of the screen. Or 30% or more.
  • the illuminance of the first field (1.0 Field (V), 1.0 Field (H), 1.0 Field ( ⁇ )) can be improved to 30% or more compared to the illuminance of the center field.
  • the intensity of illumination of the central field drops sharply.
  • 13 and 14 improve the illuminance of the first field (1.0 Field (V), 1.0 Field (H), 1.0 Field ( ⁇ )) to 30% or more compared to the illuminance of the center field (Center)
  • the lowering rate of the illuminance of the field can be lowered, whereby the uniformity of the total illuminance can be improved.
  • a light emitting device package including a lens, an illumination device, a display device, and a head lamp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

실시 예는 빛이 입사되는 입사면을 갖는 하단부, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 갖는 상단부를 포함하는 렌즈에 관한 것으로, 제1 평면에서의 입사각과 출사각의 비율 또는 제2 평면에서의 입사각과 출사각의 비율은 중 적어도 하나는 제3 평면에서의 입사각과 출사각의 비율보다 작고, 상기 입사각은 중앙축을 기준으로 상기 입사면으로 입사되는 빛의 각도이고, 상기 출사각은 상기 중앙축을 기준으로 상기 출사면으로 출사되는 빛의 각도이고, 상기 제1 평면 내지 제3 평면들 각각은 중앙축을 지나고 제1 방향과 평행인 평면이고, 상기 제1 평면은 상기 제2 평면과 수직이고, 상기 제3 평면은 상기 제1 평면과 상기 제2 평면 사이에 위치하고, 상기 중앙축은 상기 렌즈의 중앙을 지나고 상기 제1 방향과 평행하고, 상기 제1 방향은 상기 상단부에서 상기 하단부로 향하는 방향이다.

Description

렌즈 및 이를 포함하는 발광 소자 패키지
실시 예는 렌즈 및 이를 포함하는 발광 소자 패키지에 관한 것이다.
반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode:LD)와 같은 발광 소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비 전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.
조명 장치나 표시 장치에는 발광 소자 패키지가 널리 사용되고 있다. 발광 소자 패키지는 일반적으로 몸체, 몸체 내에 위치하는 리드 프레임들, 및 리드 프레임들 중 어느 하나에 위치하는 발광 소자(예컨대, LED)를 포함할 수 있다.
또한 발광 소자 패키지는 렌즈를 더 포함할 수 있으며, 렌즈의 형상에 따라 발광 소자 패키지의 배광 패턴이 결정될 수 있다.
실시 예는 렌즈의 중심으로부터 출사되는 빛의 조도량의저하율은 낮추고, 제3 평면 상으로 출사되는 빛의 조도량은 높일 수 있는 렌즈 및 이를 포함하는 발광 소자 패키지를 제공한다.
실시 예는 빛이 입사되는 입사면을 갖는 하단부, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 갖는 상단부를 포함하는 렌즈에 관한 것으로, 제1 평면에서의 입사각과 출사각의 비율 또는 제2 평면에서의 입사각과 출사각의 비율은 중 적어도 하나는 제3 평면에서의 입사각과 출사각의 비율보다 작고, 상기 입사각은 중앙축을 기준으로 상기 입사면으로 입사되는 빛의 각도이고, 상기 출사각은 상기 중앙축을 기준으로 상기 출사면으로 출사되는 빛의 각도이고, 상기 제1 평면 내지 제3 평면들 각각은 중앙축을 지나고 제1 방향과 평행인 평면이고, 상기 제1 평면은 상기 제2 평면과 수직이고, 상기 제3 평면은 상기 제1 평면과 상기 제2 평면 사이에 위치하고, 상기 중앙축은 상기 렌즈의 중앙을 지나고 상기 제1 방향과 평행하고, 상기 제1 방향은 상기 상단부에서 상기 하단부로 향하는 방향이다.
상기 제1 내지 제3 평면들 각각의 입사각은 30°보다 크고, 60°보다 작거나 같을 수 있다.
상기 제1 내지 제3 평면들 각각의 입사각은 40°보다 크거나 같고, 60°보다 작거나 같을 수 있다.
상기 렌즈는 상기 제1 평면을 기준으로 좌우 대칭일 수 있다.
상기 렌즈는 상기 제2 평면을 기준으로 좌우 대칭일 수 있다.
상기 렌즈는 상기 제1 평면을 기준으로 좌우 대칭이고, 상기 제2 평면을 기준으로 좌우 대칭일 수 있다.
상기 중앙축은 상기 입사면의 중앙 및 상기 출사면의 중앙을 지나는 축일 수 있다.
상기 제1 평면과 상기 제3 평면 사이의 각도는 30°~ 50°일 수 있다.
상기 제1 내지 제3 평면들의 동일한 입사각에 관하여 상기 제3 평면에서의 입사각과 출사각의 비율은 상기 제1 평면에서의 입사각과 출사각의 비율 및 상기 제2 평면에서의 입사각과 출사각의 비율보다 클 수 있다.
다른 실시 예는 빛이 입사되는 입사면을 갖는 하단부, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 갖는 상단부를 포함하는 렌즈에 관한 것으로, 상기 하단부는 상기 상단부의 하면으로부터 제1 방향으로 볼록한 형상이고, 중앙에 상기 제1 방향과 반대 방향으로 함몰되는 홈, 및 상기 홈을 감싸도록 위치하는 측벽을 포함하며, 상기 입사면은 상기 홈의 하면을 포함하며, 제1 내지 제3 평면들의 동일한 입사각에 관하여, 상기 제1 평면에서의 입사각과 출사각의 비율 또는 상기 제2 평면에서의 입사각과 출사각의 비율 중 적어도 하나는 상기 제3 평면에서의 입사각과 출사각의 비율보다 작고, 상기 입사각은 중앙축을 기준으로 상기 입사면으로 입사되는 빛의 각도이고, 상기 출사각은 상기 중앙축을 기준으로 상기 출사면으로 출사되는 빛의 각도이고, xyz 좌표계에서 상기 중앙축은 Z축에 해당하고, 상기 제1 평면은 xz 평면에 해당하고, 상기 제2 평면은 yz 평면에 해당하고, 상기 제3 평면은 상기 제1 평면과 상기 제2 평면 사이에 위치하고 상기 제1 및 제2 평면들 각각과 평행하고, 상기 제1 방향은 상기 상단부에서 상기 하단부로 향하는 방향이다.
상기 홈의 하면은 상기 제1 방향으로 볼록한 곡면일 수 있다.
상기 하단부의 최하단은 상기 입사면의 중앙보다 아래에 위치할 수 있다.
상기 출사면은 상기 상단부의 상부면을 포함하고, 상기 상단부의 상부면은 상기 입사면에 대응하는 제1 부분 및 상기 제1 부분 주위에 위치하고 상기 측벽에 대응하는 제2 부분을 포함할 수 있다.
상기 출사면의 중앙으로부터 상기 입사면의 중앙까지의 거리는 상기 출사면의 중앙으로부터 상기 측벽의 최하단까지의 거리보다 짧을 수 있다.
상기 제1 부분은 상기 제1 방향과 반대 방향으로 볼록할 수 있다.
상기 제2 부분은 상기 상단부의 가장 자리에서 상기 상단부의 중심 방향으로 아래로 기울어진 경사면일 수 있다.
상기 상단부는 상기 하단부의 측면을 기준으로 제2 방향으로 돌출되는 단턱부를 가지며, 상기 제2 방향은 상기 제1 방향과 수직인 방향일 수 있다.
상기 제1 평면과 상기 제3 평면 사이의 각도는 30°~ 50°일 수 있다.
상기 제1 부분의 중심은 상기 입사면의 중심에 정렬될 수 있다.
실시 예에 따른 발광 소자 패키지는 패키지 바디; 상기 패키지 바디 상에 배치되는 제1 및 제2 도전층들; 상기 제1 및 제2 도전층들과 전기적으로 연결되는 발광 소자; 및 상기 패키지 바디 상에 배치되고, 상기 발광 소자로부터 발생하는 빛을 굴절시키는 상술한 실시 예에 따른 렌즈를 포함한다.
실시 예는 렌즈의 중심으로부터 출사되는 빛의 조도량의 저하율은 낮추고, 제3 평면 상으로 출사되는 빛의 조도량은 높일 수 있다.
도 1은 실시 예에 따른 발광 소자 패키지의 사시도를 나타낸다.
도 2는 도 1에 도시된 발광 소자 패키지의 평면도를 나타낸다.
도 3은 도 2에 도시된 발광 소자 패키지의 AB 방향의 단면도를 나타낸다.
도 4a는 도 1에 도시된 렌즈의 사시도를 나타낸다.
도 4b는 도 4a에 도시된 렌즈를 제1 평면을 따라서 절단한 단면도를 나타낸다.
도 4c는 도 4a에 도시된 렌즈에 대한 제1 평면, 제2 평면, 및 제3 평면을 나타낸다.
도 5는 도 1에 도시된 렌즈의 제1 평면에서의 빛의 굴절을 나타낸다.
도 6은 도 1에 도시된 렌즈의 제2 평면에서의 빛의 굴절을 나타낸다.
도 7은 도 1에 도시된 렌즈의 제3 평면에서의 빛의 굴절을 나타낸다.
도 8은 각 평면에서의 빛의 입사각, 출사각, 및 입사각과 출사각의 비율을 나타낸다.
도 9는 실시 예에 따른 발광 소자 패키지로부터 조사되는 광을 스크린에 비추어 측정한 빔 패턴을 나타낸다.
도 10은 도 9의 스크린 상의 위치별조도량을 나타낸다.
도 11은 일반적인 대칭 렌즈를 장착한 발광 소자 패키지로부터 조사되는 광을 스크린에 비추어 측정한 빔 패턴을 나타낸다.
도 12는 도 11의 스크린 상의 중앙 필드의 조도량, 및 각 평면에 평행한 제1 필드의 조도량을 나타낸다.
도 13은 실시 예에 따른 발광 소자 패키지로부터 조사되는 광을 스크린에 비추어 측정한 빔 패턴을 나타낸다.
도 14는 도 12의 스크린 상의 중앙 필드의 조도량, 및 각 평면에 평행한 제1 필드의 조도량을 나타낸다.
이하, 실시 예들은 첨부된 도면 및 실시 예들에 대한 설명을 통하여 명백하게 드러나게 될 것이다. 실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다. 또한 동일한 참조번호는 도면의 설명을 통하여 동일한 요소를 나타낸다.
도 1은 실시 예에 따른 발광 소자 패키지(100)의 사시도를 나타내고, 도 2는 도 1에 도시된 발광 소자 패키지(100)의 평면도를 나타내고, 도 3은 도 2에 도시된 발광 소자 패키지(100)의 AB 방향의 단면도를 나타낸다.
도 1 내지 도 3을 참조하면, 발광 소자 패키지(100)는 패키지 바디(package body, 110), 제1 도전층(122), 제2 도전층(124), 발광 소자(130), 및 렌즈(150)를 포함한다.
패키지 바디(110)는 제1 도전층(122), 제2 도전층(124), 발광 소자(130), 및 렌즈(150)를 지지한다.
패키지 바디(110)는 광 반사도가 높은 수지 재질, 예컨대, 폴리프탈아미드(PPA:Polyphthalamide), EMC 수지, PC 수지, 또는 PCT 수지로 형성될 수 있다. 다만 실시 예는 상술한 몸체의 재질, 구조, 및 형상으로 한정되지 않는다.
또는 다른 실시 예에서 패키지 바디(110)는 실리콘 기반의 웨이퍼 레벨 패키지(wafer level package), 실리콘 기판, 실리콘 카바이드(SiC), 질화알루미늄(aluminum nitride, AlN), Al2O3, GaN, ZnO, SiO2, Au, Si3N4, AuSn 등과 같이 절연성 또는 열전도율이 좋은 기판으로 형성될 수 있으며, 복수 개의 기판이 적층되는 구조일 수 있다.
또는 다른 실시 예에서 패키지 바디(110)는 발광 소자(130)의 점등 및 소등 간의 콘트라스트(contrast)를 높이기 위하여 빛을 흡수하거나, 광 반사율이 낮은 부재, 예컨대, 흑색 수지(black resin)로 이루어질 수 있으며, 사출 성형을 통하여 형성될 수 있다. 예컨대, 패키지 바디(110)는 카본 블랙이 혼합된 폴리프탈아미드(Polyphtalamide, PPA) 수지, 블랙 EMC(Epoxy Mold Compound) 수지, 또는 블랙 실리콘(black silicon)으로 이루어질 수 있다.
패키지 바디(110)는 바닥(102) 및 측면(103)으로 이루어지는 캐비티(cavity, 101)를 가질 수 있다. 캐비티(101)의 상부는 패키지 바디(110)의 상부면 밖으로 개방될 수 있다.
패키지 바디(110)의 캐비티(101)는 단면의 형상이 컵 형상, 오목한 용기 형상 등일 수 있으며, 캐비티(101)의 측면(103)은 캐비티(101)의 바닥(102)에 대해 경사질 수 있다.
패키지 바디(110)의 캐비티(101)의 형상은 위에서 보았을 때, 원형, 타원형, 다각형(예컨대, 사각형)일 수 있으며, 다각형인 패키지 바디(110)의 캐비티(101)의 모서리 부분은 곡면일 수도 있으나, 이에 한정하지 않는다.
제1 도전층(122) 및 제2 도전층(124)은 서로 전기적으로 분리되도록 패키지 바디(110)에 배치된다. 제1 및 제2 도전층들(122,124)은 제1 및 제2 리드 프레임들(lead frames)의 용어로 사용될 수도 있다.
제1 도전층(122) 및 제2 도전층(124)은 도전성 물질, 예컨대, 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 알루미늄(Al), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P) 중 적어도 하나로 형성되거나, 또는 이들 중 적어도 하나를 포함하는 합금으로 형성될 수 있으며, 단층 또는 다층 구조일 수 있다.
제1 및 제2 도전층들(122, 124)의 표면, 예컨대, 상부면에는 발광 소자(130)에서 방출된 빛을 반사시킬 수 있는 반사 물질, 예컨대, Ag이 코팅될 수도 있다.
제1 및 제2 도전층들(122, 124) 각각의 일단은 패키지 바디(110)의 밖으로 노출될 수 있다. 예컨대, 제1 도전층(122)의 일단은 패키지 바디(110)의 제1 측면으로 노출될 수 있고, 제2 도전층(124)의 일단은 패키지 바디(110)의 제2 측면으로 노출될 수 있으며, 패키지 바디(110)의 제1 측면과 제2 측면은 서로 마주 보는 측면일 수 있으나, 이에 한정되는 것은 아니다.
제1 도전층(122)과 제2 도전층(124) 사이에는 패키지 바디(110)의 일부가 배치될 수 있다. 예컨대, 제1 도전층(122)과 제2 도전층(124) 사이에는 패키지 바디(110)의 바닥(102)이 배치될 수 있다.
제1 및 제2 도전층들(122, 124) 각각의 상부면은 캐비티(101)에 의하여 노출될 수 있다. 또한 제1 및 제2 도전층들(122, 124) 각각의 일단은 패키지 바디(110)의 측면 또는/및 하면으로 노출될 수 있다.
발광 소자(130)는 패키지 바디(110)의 캐비티(101) 내에 배치되며, 제1 및 제2 도전층들(122,124)과 전기적으로 연결되며, 빛을 발생한다.
발광 소자(130)는 캐비티(101)에 의하여 노출되는 제1 도전층(122)의 상부면 상에 배치될 수 있다.
예컨대, 발광 소자(130)는 발광 다이오드(light emitting diode, LED)일 수 있으며, 다이 본딩(die bonding) 또는 와이어 본딩(wire bonding)에 의하여 제1 및 제2 도전층들(122,124)과 전기적으로 연결될 수 있다.
렌즈(150)는 패키지 바디(110) 상에 배치되며, 발광 소자(130)로부터 발생하는 빛을 굴절시킨다. 예컨대, 렌즈(150)는 패키지 바디(110)의 상부면 상에 배치될 수 있으며, 렌즈(150)의 하면은 패키지 바디(110)의 상부면에 접촉할 수 있다.
패키지 바디(110)는 캐비티(101)의 측면(103)으로부터 수평 방향으로 돌출되는 돌출부(140)를 가질 수 있다. 예컨대, 수평 방향은 캐비티(101)의 측면(103)으로부터 캐비티(101)의 중앙으로 향하는 방향일 수 있다.
패키지 바디(110)의 돌출부(140)는 캐비티(101)의 측면(103)을 따라서 형성되는 링 형상일 수 있으며, 캐비티(101)의 측면(103)의 최상단으로부터 이격하여 위치할 수 있다.
렌즈(150)의 가장 자리는 돌출부(140) 상에 배치될 수 있고, 돌출부(140)에 의하여 렌즈(150)의 가장 자리는 지지될 수 있다.
돌출부(140) 상에 배치된 렌즈(130)는 발광 소자(130)로부터 이격할 수 있다. 렌즈(130)는 투광성의 수지 재질이거나 유리 재질로 형성될 수 있으나, 이에 한정되는 것은 아니다.
패키지 바디(110)의 캐비티(101) 내의 발광 소자(130)와 렌즈(150)의 입사면(152) 사이의 공간에는 공기가 채워질 수 있으나, 이에 한정되는 것은 아니다. 렌즈(150)의 입사면(152) 아래의 캐비티(101) 공간에는 일정한 굴절률을 갖는 물질, 예컨대, 수지가 채워질 수도 있다. 이때 채워지는 수지는 렌즈(150)의 입사면 또는/및 출사면과 접할 수 있다.
렌즈(150)는 빛이 입사하는 입사면(152), 및 입사면(152)을 통과한 빛이 통과하는 출사면(154)을 포함할 수 있다.
도 4a는 도 1에 도시된 렌즈(150)의 사시도를 나타내고, 도 4b는 도 4a에 도시된 렌즈(150)를 제1 평면(V)을 따라서 절단한 단면도를 나타내고, 도 4c는 도 4a에 도시된 렌즈(150)에 대한 제1 평면(V), 제2 평면(H), 및 제3 평면(α)을 나타낸다. 도 4a 및 도 4b에서는 도 1에 도시된 렌즈(150)를 180도 회전하여 도시한다.
도 4a 내지 도 4b를 참조하면, 렌즈(150)는 입사면(152)을 갖는 하단부(S1), 및 하단부(152) 상에 위치하고, 출사면(154)을 갖는 상단부(S2)를 포함한다.
렌즈(150)의 하단부(S1)와 상단부(S2)는 서로 접하고, 상단부(S2)와 하단부(S1)는 일체로 형성될 수 있다.
예컨대, 렌즈(150)의 하단부(S1)는 제1 방향(301)으로 볼록한 입사면(152), 및 입사면(152) 주위를 감싸고 입사면(152)을 기준으로 제1 방향(301)으로 돌출되는 측벽(401)을 포함할 수 있다. 예컨대, 제1 방향(301)은 상단부(S2)의 출사면(154)에서 하단부(S1)의 입사면(152)으로 향하는 방향일 수 있다.
다른 실시 예에서는 렌즈(150)의 하단부(S1)의 입사면(152)은 제1 방향으로(301)으로 오목하거나, 또는 오목한 부분과 볼록한 부분을 모두 포함할 수도 있다.
렌즈(150)의 하단부(S1)는 입사면(152)과 측벽(401)의 내측면(152a)으로 이루어지고, 제1 방향(301)과 반대 방향으로 함몰되는 홈(153) 구조를 가질 수 있다.
예컨대, 발광 소자(130)로부터 조사되는 빛은 입사면(152), 및 측벽(401)의 내측면(152a)으로 입사될 수 있다. 도 4a에 도시된 바와 같이, 측벽(401)의 형상은 원형, 타원형, 사각형을 포함하는 다각형 형상일 수 있으나, 이에 한정되는 것은 아니다.
예컨대, 렌즈(150)의 하단부(S1)는 렌즈(150)의 상단부(S2)의 하면으로부터 제1 방향으로 볼록한 돔 형상일 수 있고, 중앙에 제1 방향(301)과 반대 방향으로 함몰되는 홈(153), 및 홈(153)을 감싸도록 위치하는 측벽(401)을 포함할 수 있다.
렌즈(150)의 홈(153)은 하면과 측면을 포함할 수 있으며, 홈(153)의 하면은 제1 방향(301)으로 볼록한 곡면일 수 있으나, 이에 한정되는 것은 아니다.
렌즈(150)의 입사면은 홈(153)의 하면을 포함할 수 있다. 또한 렌즈(150)의 입사면은 홈(153)의 하면 및 측면을 포함할 수도 있다.
렌즈(150)의 홈(153)의 측면, 또는 측벽(401)의 내측면은 경사면일 수 있다. 예컨대, 렌즈(150)의 홈(153)의 직경은 제1 방향(301)으로 진행할수록 감소할 수 있다.
도 3에 도시된 바와 같이, 렌즈(150)의 하단부(S1)는 패키지 바디(110)의 캐비티(101) 내에 위치할 수 있다. 예컨대, 렌즈(150)의 하단부(S1)의 입사면(152), 및 측벽(401)은 패키지 바디(110)의 캐비티(101) 내에 위치할 수 있다.
도 4b에 도시된 바와 같이, 렌즈(150)의 하단부(S1)의 측벽(401)의 최하단(401a)은 렌즈(150)의 입사면(152)의 중앙(152-1)보다 아래에 위치할 수 있다.
예컨대, 렌즈(150)의 출사면(154)의 중앙(154-1)으로부터 렌즈(150)의 입사면(152)의 중앙(152-1)까지의 거리(H1)는 렌즈(150)의 출사면(154)의 중앙(154-1)으로부터 렌즈(150)의 측벽(401)의 최하단(401a)까지의 거리(H2)보다 짧을 수 있다(H1<H2).
렌즈(150)의 상단부(S2)는 입사면(152)을 통과한 빛을 통과시키는 출사면(154), 및 제2 방향(302)으로 돌출되는 단턱부(402)를 포함할 수 있다.
렌즈(150)의 출사면(154)은 제1 방향으로(301)으로 볼록하거나, 또는 오목하거나 또는 오목한 부분과 볼록한 부분을 모두 포함할 수도 있다.
예컨대, 렌즈(150)의 출사면(154)은 상단부(S2)의 상부면을 포함할 수 있다. 또한 예컨대, 상단부(S2)의 상부면은 중앙에 위치하고 제1 방향(301)으로 입사면(152)에 대응하는 제1 부분(154a), 및 제1 부분(154a)을 감싸도록 제1 부분(154a) 주위에 위치하는 제2 부분(154b)을 포함할 수 있다.
상기 제1 부분(154a)의 중심은 입사면(152)의 중심에 제1 방향(301)으로 정렬될 수 있다.
상단부(S2)의 상부면의 제2 부분(154b)은 하단부(S1)의 측벽(401)에 대응하거나 또는 제1 방향으로 하단부(S1)의 측벽(401)에 오버랩될 수 있다.
제1 부분(154a)은 제1 방향과 반대 방향으로 볼록할 수 있으나, 이에 한정되는 것은 아니며, 제2 부분(154b)은 렌즈(150)의 상단부(S2)의 가장 자리(401b)에서 상단부(S2)의 중심 방향으로 아래로 기울어진 경사면일 수 있다.
렌즈(150)의 단턱부(402)는 하단부(S1)의 측면, 또는 하단부(S1)의 측벽(401)의 외주면을 기준으로 제2 방향(302)으로 돌출될 수 있다. 제2 방향(302)은 제1 방향(301)과 수직인 방향일 수 있다. 예컨대, 제2 방향(302)은 렌즈(150)의 중앙 또는 중앙축(501)으로부터 렌즈(150)의 외주면으로 향하는 방향일 수 있다.
렌즈(150)의 단턱부(402)는 패키지 바디(110)의 상부면에 배치될 수 있고, 패키지 바디(110)의 상부면에 의하여 지지될 수 있다.
예컨대, 렌즈(150)의 단턱부(402)는 패키지 바디(110)의 돌출부(140) 상에 배치될 수 있고, 패키지 바디(110)의 돌출부(140)에 의하여 지지될 수 있다.
예컨대, 발광 소자(130)로부터 발생하는 빛은 주로 렌즈(150)의 입사면(152)으로 입사될 수 있으며, 입사면(152)을 통과한 빛은 중심축(501)을 기준으로 약 60°이하의 배광 특성을 나타낼 수 있으나, 이에 한정되는 것은 아니다.
또한 예컨대, 발광 소자(130)로부터 발생하는 빛 중 일부는 렌즈(150)의 하단부(S1)의 측벽(401)의 내측면(152a)으로 입사될 수 있으며, 내측면(152a)으로 입사된 빛은 주로 측벽(401)의 외주면(152b)에 의하여 전반사될 수 있으나, 이에 한정되는 것은 아니다.
렌즈(150)의 하단부(S1)의 측벽(401)의 외주면(152b)에 의하여 전반사된 빛은 렌즈(150)의 상단부(S2)의 출사면(154)의 제2 부분(154b)을 통과하여 출사될 수 있으며, 출사면(154)의 제2 부분(154b)을 통과한 빛은 중심축(501)을 기준으로 60°를 초과하는 배광 특성을 나타낼 수 있다.
또한 예컨대, 출사면(154)의 제1 부분(154a)은 제1 방향(301)과 반대 방향으로 볼록하기 때문에, 중심축(501)을 기준으로 30°이하의 배광 특성을 갖도록 광을 집중시키는 역할을 할 수 있다. 또한 예컨대, 출사면(154)의 제2 부분(154b)은 중심축(501)을 기준으로 약 30°를 초과하는 배광 특성을 갖도록 하는 역할을 할 수 있다.
도 4b에서 설명한 렌즈(150)의 하단부(S1), 및 상단부(S2)의 형상은 후술하는 제1 내지 제3 평면들(V,H,α) 각각의 입사각(θ1e,θ2e,θ3e)과 출사각(θ1o,θ2o, θ3o)의 비율의 대소 관계를 만족하는 하나의 실시 예에 지나지 않는다. 즉 렌즈(150)의 형상은 후술하는 입사각(θ1e,θ2e,θ3e )과 출사각(θ1o,θ2o, θ3o)의 비율의 대소 관계를 만족하는 한 다양한 형태로 구현될 수 있다.
렌즈(150)의 중앙축(501)은 렌즈(150)의 중앙을 지나고, 제1 방향(301)과 평행한 축일 수 있다. 렌즈(150)의 중앙축(501)은 발광 소자(130)의 중앙에 정렬될 수 있다.
예컨대, 렌즈(150)의 중앙축(501)은 입사면(152)의 중앙(152-1)과 출사면(154)의 중앙(154-1)을 지나고, 제1 방향(301)과 평행한 축일 수 있다. 예컨대, 렌즈(150)의 중앙축(501)은 제1 및 제2 도전층들(122,124)의 상부면에 대하여 수직일 수 있다.
제1 평면(V)은 렌즈(150)의 중앙, 또는 중앙축(501)을 지나고, 제1 방향(301)과 평행인 평면일 수 있다.
제2 평면(H)은 렌즈(150)의 중앙 또는 중앙축(501)을 지나고, 제1 방향(301)과 평행이며, 제1 평면(V)과 수직인 평면일 수 있다.
제3 평면(α)은 렌즈(150)의 중앙 또는 중앙축(501)을 지나고, 제1 방향(301)과 평행이며, 제1 평면(V)과 제2 평면(H) 사이에 위치하는 평면일 수 있다. 예컨대, 제1 평면(V)과 제3 평면(α) 사이의 각도(β)는 기설정된 각도일 수 있으며, 기설정된 각도는 30°~ 50°일 수 있다. 예컨대, 기설정된 각도는 45°일 수 있다.
기설정된 각도(β)를 30°~ 50°로 하는 이유는 제3 평면(α)에 평행한 제1 필드(1.0 Field(α))의 조도량을 높일 수 있는 빔 패턴을 갖도록 렌즈(150)의 형상을 만들기 위함이다. 예컨대, 기설정된 각도(β)가 30°보다 작거나, 또는 50°보다 큰 경우에는 제3 평면(α)에 평행한 제1 필드(1.0 Field(α))의 조도량을 높일 수 있는 효과가 작게 나타나기 때문이다.
도 9에서 설명하는 바와 같이, 스크린의 가로 및 세로의 비가 약 4:3 정도일 때, 제2 평면(H) 기준으로 기설정된 각도(β)는 약 37°정도가 될 수 있다. 또한 스크린의 가로 및 세로의 비가 약 5:3 정도일 때, 기설정된 각도(β)는 30°를 조금 넘을 수 있다. 또한 스크린의 가로 및 세로의 비가 약 1:1 정도일 때, 기설정된 각도(β)는 약 45°정도일 수 있다.
예컨대, 제1 평면(V), 제2 평면(H), 및 제3 평면(α) 각각은 제1 및 제2 도전층들(122,124)의 상부면에 대하여 수직일 수 있다.
예컨대, xyz 좌표계에서, 렌즈(150)의 중앙축(501)은 Z축에 해당할 수 있고, 제1 평면(V)은 xz 평면에 해당할 수 있고, 제2 평면(H)은 yz평면에 해당할 수 있고, 제3 평면(α)은 xz 평면과 yz평면 사이에 위치하고, xz 평면과 yz평면 각각과 평행한 평면일 수 있고, 제1 방향(301)은 Z축과 평행하고 상단부(S2)에서 하단부(S1)로 향하는 방향일 수 있다.
렌즈(150)는 제1 평면(V) 또는 제2 평면(H) 중 적어도 하나를 기준으로 좌우 대칭이다.
예컨대, 렌즈(150)는 제1 평면(V)을 기준으로 좌우 대칭일 수 있다.
또는 예컨대, 렌즈(150)는 제2 평면(H)을 기준으로 좌우 대칭일 수 있다. 또는 렌즈(150)는 제1 평면(V)을 기준으로 좌우 대칭임과 동시에 제2 평면(H)을 기준으로 좌우 대칭일 수 있다.
제1 내지 제3 평면들(V,H,α) 각각에 대하여 발광 소자(130)로부터 발생하는 빛이 하단부(S1)의 입사면(152)으로 입사하는 각도(예컨대, θ1e, θ2e, θ3e)(이하 "입사각"이라 한다)와 입사면(152)으로 입사한 빛이 상단부(S2)의 출사면(154)으로부터 출사하는 각도(예컨대, θ1o, θ2o, θ3o)(이하 "출사각"이라 한다)의 비율에 의하여 렌즈(150)의 형상이 결정될 수 있다.
렌즈(150)의 입사각은 렌즈(150)의 중앙축(501)을 기준으로 렌즈(150)의 입사면(152)으로 입사하는 빛의 기울어진 각도일 수 있고, 렌즈(150)의 출사각은 렌즈(150)의 중앙축(501) 또는 중앙축(501)과 평행한 축(501a)을 기준으로 렌즈(150)의 출사면(154)으로 출사하는 빛의 기울어진 각도일 수 있다.
도 5는 도 1에 도시된 렌즈(150)의 제1 평면(V)에서의 빛의 굴절을 나타내고, 도 6은 도 1에 도시된 렌즈(150)의 제2 평면(H)에서의 빛의 굴절을 나타내고, 도 7은 도 1에 도시된 렌즈(150)의 제3 평면(α)에서의 빛의 굴절을 나타내고, 도 8은 각 평면에서의 빛의 입사각(θ1e,θ2e,θ3e), 출사각(θ1o,θ2o, θ3o), 및 입사각(θ1e,θ2e ,θ3e )과 출사각(θ1o,θ2o, θ3o)의 비율(θ1o/θ1e,θ2o/θ2e,θ3o/θ3e)을 나타낸다.
각 평면(V, H,α)에서의 발광 소자(130)로부터 조사되는 입사광은 중앙축(501)을 기준으로 각 평면(V, H,α)의 일 측(예컨대, 좌측)으로부터 조사되는 제1 입사광(a1,a2,a3), 및 각 평면(V, H,α)의 타 측(예컨대, 우측)으로부터 조사되는 제2 입사광(b1,b2,b3)을 포함할 수 있다.
각 평면(V, H,α)에서의 렌즈(150)로부터 출사되는 출사광은 중앙축(501)을 기준으로 각 평면(V, H,α)의 일 측(예컨대, 좌측)으로 출사되는 제1 출사광(c1,c2,c3), 및 각 평면(V, H,α)의 타 측(예컨대, 우측)으로부터 출사되는 제2 출사광(d1,d2,d3)을 포함할 수 있다.
예컨대, 제1 입사광(a1,a2,a3)의 입사각 및 제1 출사광(c1,c2,c3)의 출사각은 양의 값으로 설정할 수 있고, 제2 입사광(b1,b2,b3)의 입사각 및 제2 출사광(d1,d2,d3)의 출사각은 음의 값으로 설정할 수 있다.
도 5 내지 도 8을 참조하면, 제1 평면(V)에서의 빛의 입사각(θ1e)과 출사각(θ1o)의 비율(θ1o/θ1e) 또는 제2 평면(H)에서의 빛의 입사각(θ2e)과 출사각(θ2o)의 비율(θ2o/θ2e)은 중 적어도 하나는 제3 평면(α)에서의 빛의 입사각(θ3e)과 출사각(θ3o)의 비율(θ3o/θ3e)보다 작다(θ1o/θ1e<θ3o/θ3e, θ2o/θ2e <θ3o/θ3e). 각 평면(V,H,α)에서 입사각과 출사각의 비율은 입사각의 절대값과 출사각의 절대값의 비율일 수 있다.
예컨대, 제1 내지 제3 평면들의 동일한 입사각에 관하여 제1 평면(V)에서의 빛의 입사각(θ1e)과 출사각(θ1o)의 비율(θ1o/θ1e)은 제3 평면(α)에서의 빛의 입사각(θ3e)과 출사각(θ3o)의 비율(θ3o/θ3e)보다 작을 수 있다. 비교 대상이 되는 각 평면의 입사각들은 서로 동일할 수 있다.
또한 예컨대, 제1 내지 제3 평면들의 동일한 입사각에 관하여 제2 평면(H)에서의 빛의 입사각(θ2e)과 출사각(θ2o)의 비율(θ2o/θ2e)은 제3 평면(α)에서의 빛의 입사각(θ3e)과 출사각(θ3o)의 비율(θ3o/θ3e)보다 작을 수 있다.
예컨대, 제1 내지 제3 평면들의 동일한 입사각에 관하여 제3 평면(α)에서의 입사각과 출삭각의 비율은 제1 평면(V)에서의 입사각과 출사각의 비율 및 제2 평면(H)에서의 입사각과 출사각의 비율 각각보다 클 수 있다.
이때 제1 내지 제3 평면들(V,H,α) 각각의 입사각(θ1e,θ2e ,θ3e )은 30°보다 크고, 60°보다 작거나 같을 수 있다. 이는 발광 소자(130)로부터 조사되는 빛 중에서 배광 패턴을 결정하는 기설정된 이상의 광속을 갖는 빛의 입사각(θ1e,θ2e,θ3e )이 30°보다 크고 60°보다 작거나 같기 때문이다.
즉 빔 패턴의 외곽에 영향을 미치면서 발광 소자(130)에서 조사되는 빛 중에서 광도가 50% 이상인 주요 유효 광의 입삭각의 범위가 30°보다 크고 60°보다 작거나 같기 때문이다.
예컨대, 제1 내지 제3 평면들(V,H,α) 각각의 입사각(θ1e,θ2e ,θ3e )은 40°보다 크거나 같고, 60°보다 작거나 같을 수 있다.
예컨대, 제1 내지 제3 평면들(V,H,α) 각각의 입사각(θ1e,θ2e ,θ3e )이 40°~ 60°일 경우, 제1 내지 제3 평면들의 동일한 입사각에 관하여 제1 평면(V)에서의 빛의 입사각(θ1e)과 출사각(θ1o)의 비율(θ1o/θ1e) 및 제2 평면(H)에서의 빛의 입사각(θ2e)과 출사각(θ2o)의 비율(θ2o/θ2e)은 제3 평면(α)에서의 빛의 입사각(θ3e)과 출사각(θ3o)의 비율(θ3o/θ3e)보다 작을 수 있다.
또한 예컨대, 제1 내지 제3 평면들(V,H,α) 각각의 입사각(θ1e,θ2e ,θ3e )은 45° 또는 60°일 수 있다. 예컨대, 제1 내지 제3 평면들 각각의 입사각이 45°일 때, 제3 평면(α)에서의 빛의 입사각(45°)에 대한 출사각의 비율(0.92, 도 8 참조)은 제1 평면(V)에서의 빛의 입사각(45°)과 출사각의 비율(0.83), 및 제2 평면(H)에서의 빛의 입사각(45°)과 출사각의 비율들(0.85)보다 클 수 있다.
렌즈(150)는 제1 평면(V), 및 제2 평면(H) 각각의 입사각(θ1e,θ2e)에 대한 출사각(θ1o,θ2o)의 비율(θ1o/θ1e,θ2o/θ2e)이 제3 평면(α)의 입사각(θ3e)에 대한 출사각(θ3o)의 비율(θ3o/θ3e)보다 작은 형상을 갖기 때문에, 실시 예는 렌즈(150)의 중심에서의 조도량의 저하율은 낮추고, 렌즈(150)의 대각선 방향, 예컨대, 제3 평면(α)에서의 조도량은 높일 수 있다.
도 9는 실시 예에 따른 발광 소자 패키지(100)로부터 조사되는 광을 스크린에 비추어 측정한 빔 패턴을 나타내며, 도 10은 도 9의 스크린 상의 위치별 조도량을 나타낸다. 발광 소자 패키지(100)와 스크린까지의 거리는 1000mm이고, FOV(Field of View)는 80이고, 스크린의 가로 × 세로의 사이즈는 1342,559mm × 1006.92mm이다. 스크린은 도 9에 도시된 바와 같이 일정한 면적을 갖는 복수의 필드들로 구분될 수 있다.
예컨대, 스크린의 4개의 모서리에 인접하는 필드를 1필드(1.0F)로 정의할 수 있고, 스크린 중앙을 0.1 필드로 정의할 수 있고, 그 사이의 공간을 일정하게 분할하여 복수의 필드들로 구분할 수 있다.
도 9 및 도 10을 참조하면, 스크린의 중앙에 위치하는 필드는 렌즈(150)의 중앙에 대응할 수 있고, 스크린의 중앙을 지나는 수직 방향의 직선에 정렬되는 제1 필드들은 렌즈(150)의 제1 평면(V)에 대응할 수 있고, 스크린의 중앙을 지나는 수평 방향의 직선에 정렬되는 제2 필드들은 렌즈(150)의 제2 평면(H)에 대응할 수 있고, 스크린의 중앙을 지나고 제1 필드들과 제2 필드들 사이에 위치하는 제3 필드들은 렌즈(150)의 제3 평면(α)에 대응할 수 있다.
스크린의 중앙의 조도량은 87.64[Lux]이고, 스크린의 제1 필드(1.0F)의 조도량은 스크린의 중앙의 조도량 대비 30%이상인 것을 알 수 있다. 실시 예는 대각선 방향, 즉 렌즈(150)의 제3 평면(α)과 평행한 방향으로의 조도량이 스크린의 중앙 조도량 대비 30% 이상을 갖도록, 렌즈(150)의 제3 평면(α)과 평행한 방향으로의 조도량을 향상시킬 수 있다.
도 11은 일반적인 대칭 렌즈(symmetric lens)를 장착한 발광 소자 패키지로부터 조사되는 광을 스크린에 비추어 측정한 빔 패턴을 나타내며, 도 12는 도 11의 스크린 상의 중앙 필드(center)의 조도량, 및 각 평면에 평행한 제1 필드의 조도량을 나타내고, 도 13은 실시 예에 따른 발광 소자 패키지(100)로부터 조사되는 광을 스크린에 비추어 측정한 빔 패턴을 나타내며, 도 14는 도 12의 스크린 상의 중앙 필드(center)의 조도량, 및 각 평면에 평행한 제1 필드의 조도량을 나타낸다.
도 11 및 도 13 각각에서 발광 소자 패키지와 스크린까지의 거리는 1000mm이고, FOV(Field of View)는 80이고, 스크린의 가로 × 세로의 사이즈는 1335mm × 1001mm이다. 또한 렌즈를 제외한 발광 소자 패키지의 나머지 구성 요소들을 도 11 및 도 13에서 동일하다.
도 11 및 도 12를 참조하면, 스크린 중앙의 조도량은 72.05[Lux]이고, 제1 평면(V)에 평행한 제1 필드(1.0 Field(V))의 조도량은 35.97[Lux]이고, 제2 평면(H)에 평행한 제1 필드(1.0 Field(H))의 조도량은 23.69[Lux]이고, 제3 평면(α)에 평행한 제1 필드(1.0 Field(α))의 조도량은 27.14[Lux]이다. 그리고 각 평면(V, H,α)에 평행한 제1 필드(1.0 Field(V), 1.0 Field(H),1.0 Field(α))의 조도량은 스크린의 중앙 필드(Center)의 조도량 대비 30% 이상일 수 있다.
도 13 및 도 14를 참조하면, 스크린 중앙의 조도량은 108.82.05[Lux]이고, 제1 평면(V)에 평행한 제1 필드(1.0 Field(V))의 조도량은 95.27[Lux]이고, 제2 평면(H)에 평행한 제1 필드(1.0 Field(H))의 조도량은 67.41[Lux]이고, 제3 평면(α)에 평행한 제1 필드(1.0 Field(α))의 조도량은 40.31[Lux]이다. 그리고 각 평면(V, H,α)에 평행한 제1 필드(1.0 Field(V), 1.0 Field(H),1.0 Field(α))의 조도량은 스크린의 중앙 필드(Center)의 조도량 대비 30% 이상일 수 있다.
도 11 및 도 12에서의 각 평면(V, H,α)에 평행한 제1 필드(1.0 Field(V), 1.0 Field(H),1.0 Field(α))의 조도량, 및 도 13 및 도 14에서의 각 평면(V, H,α)에 평행한 제1 필드(1.0 Field(V), 1.0 Field(H),1.0 Field(α))의 조도량은 모두 스크린의 중앙 필드(Center)의 조도량 대비 30% 이상이다. 그러나 도 11 및 도 12에서의 중앙 필드(center)의 조도량은 도 13 및 도 14에서의 중앙 필드의 조도량에 비하여 36.77[Lux]만큼 떨어지는 것을 알 수 있다.
즉 도 11 및 도 12에서는 제1 필드(1.0 Field(V), 1.0 Field(H),1.0 Field(α))의 조도량은 중앙 필드(Center)의 조도량 대비 30% 이상으로 향상시킬 수 있지만, 중앙 필드의 조도량이 급격히 떨어짐을 알 수 있다. 도 13 및 도 14에서는 제1 필드(1.0 Field(V), 1.0 Field(H),1.0 Field(α))의 조도량을 중앙 필드(Center)의 조도량 대비 30% 이상으로 향상시킴과 동시에 중앙 필드의 조도량의저하율은 낮춤으로써, 전체 조도량의균일도를 향상시킬 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
렌즈를 포함하는 발광 소자 패키지, 조명 장치, 표시 장치, 및 해드 램프 등에 사용될 수 있다.

Claims (20)

  1. 빛이 입사되는 입사면을 갖는 하단부, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 갖는 상단부를 포함하는 렌즈에 있어서,
    제1 평면에서의 입사각과 출사각의 비율 또는 제2 평면에서의 입사각과 출사각의 비율은 중 적어도 하나는 제3 평면에서의 입사각과 출사각의 비율보다 작고,
    상기 입사각은 중앙축을 기준으로 상기 입사면으로 입사되는 빛의 각도이고,
    상기 출사각은 상기 중앙축을 기준으로 상기 출사면으로 출사되는 빛의 각도이고,
    상기 제1 평면 내지 제3 평면들 각각은 중앙축을 지나고 제1 방향과 평행인 평면이고, 상기 제1 평면은 상기 제2 평면과 수직이고, 상기 제3 평면은 상기 제1 평면과 상기 제2 평면 사이에 위치하고, 상기 중앙축은 상기 렌즈의 중앙을 지나고 상기 제1 방향과 평행하고, 상기 제1 방향은 상기 상단부에서 상기 하단부로 향하는 방향인 렌즈.
  2. 제1항에 있어서,
    상기 제1 내지 제3 평면들 각각의 입사각은 30°보다 크고, 60°보다 작거나 같은 렌즈.
  3. 제1항에 있어서,
    상기 제1 내지 제3 평면들 각각의 입사각은 40°보다 크거나 같고, 60°보다 작거나 같은 렌즈.
  4. 제1항에 있어서, 상기 렌즈는,
    상기 제1 평면을 기준으로 좌우 대칭인 렌즈.
  5. 제1항에 있어서, 상기 렌즈는,
    상기 제2 평면을 기준으로 좌우 대칭인 렌즈.
  6. 제1항에 있어서, 상기 렌즈는,
    상기 제1 평면을 기준으로 좌우 대칭이고, 상기 제2 평면을 기준으로 좌우 대칭인 렌즈.
  7. 제1항에 있어서,
    상기 중앙축은 상기 입사면의 중앙 및 상기 출사면의 중앙을 지나는 축인 렌즈.
  8. 제1항에 있어서,
    상기 제1 평면과 상기 제3 평면 사이의 각도는 30°~ 50°인 렌즈.
  9. 제1항에 있어서,
    상기 제1 내지 제3 평면들의 동일한 입사각에 관하여 상기 제3 평면에서의 입사각과 출사각의 비율은 상기 제1 평면에서의 입사각과 출사각의 비율 및 상기 제2 평면에서의 입사각과 출사각의 비율보다 큰 렌즈.
  10. 빛이 입사되는 입사면을 갖는 하단부, 및 상기 입사면을 통과한 빛을 통과시키는 출사면을 갖는 상단부를 포함하는 렌즈에 있어서,
    상기 하단부는 상기 상단부의 하면으로부터 제1 방향으로 볼록한 형상이고, 중앙에 상기 제1 방향과 반대 방향으로 함몰되는 홈, 및 상기 홈을 감싸도록 위치하는 측벽을 포함하며, 상기 입사면은 상기 홈의 하면을 포함하며,
    제1 내지 제3 평면들의 동일한 입사각에 관하여, 상기 제1 평면에서의 입사각과 출사각의 비율 또는 상기 제2 평면에서의 입사각과 출사각의 비율 중 적어도 하나는 상기 제3 평면에서의 입사각과 출사각의 비율보다 작고,
    상기 입사각은 중앙축을 기준으로 상기 입사면으로 입사되는 빛의 각도이고, 상기 출사각은 상기 중앙축을 기준으로 상기 출사면으로 출사되는 빛의 각도이고, xyz 좌표계에서 상기 중앙축은 Z축에 해당하고, 상기 제1 평면은 xz 평면에 해당하고, 상기 제2 평면은 yz 평면에 해당하고, 상기 제3 평면은 상기 제1 평면과 상기 제2 평면 사이에 위치하고 상기 제1 및 제2 평면들 각각과 평행하고, 상기 제1 방향은 상기 상단부에서 상기 하단부로 향하는 방향인 렌즈.
  11. 제10항에 있어서,
    상기 홈의 하면은 상기 제1 방향으로 볼록한 곡면인 렌즈
  12. 제10항에 있어서,
    상기 하단부의 최하단은 상기 입사면의 중앙보다 아래에 위치하는 렌즈.
  13. 제10항에 있어서,
    상기 출사면은 상기 상단부의 상부면을 포함하고,
    상기 상단부의 상부면은 상기 입사면에 대응하는 제1 부분 및 상기 제1 부분 주위에 위치하고 상기 측벽에 대응하는 제2 부분을 포함하는 렌즈.
  14. 제13항에 있어서,
    상기 출사면의 중앙으로부터 상기 입사면의 중앙까지의 거리는 상기 출사면의 중앙으로부터 상기 측벽의 최하단까지의 거리보다 짧은 렌즈.
  15. 제13항에 있어서,
    상기 제1 부분은 상기 제1 방향과 반대 방향으로 볼록한 렌즈.
  16. 제13항에 있어서,
    상기 제2 부분은 상기 상단부의 가장 자리에서 상기 상단부의 중심 방향으로 아래로 기울어진 경사면인 렌즈.
  17. 제10항에 있어서,
    상기 상단부는 상기 하단부의 측면을 기준으로 제2 방향으로 돌출되는 단턱부를 가지며, 상기 제2 방향은 상기 제1 방향과 수직인 방향인 렌즈.
  18. 제10항에 있어서,
    상기 제1 평면과 상기 제3 평면 사이의 각도는 30°~ 50°인 렌즈.
  19. 제13항에 있어서,
    상기 제1 부분의 중심은 상기 입사면의 중심에 정렬되는 렌즈.
  20. 패키지 바디;
    상기 패키지 바디 상에 배치되는 제1 및 제2 도전층들;
    상기 제1 및 제2 도전층들과 전기적으로 연결되는 발광 소자; 및
    상기 패키지 바디 상에 배치되고, 상기 발광 소자로부터 발생하는 빛을 굴절시키는 렌즈를 포함하며,
    상기 렌즈는 상기 제1항 내지 제19항 중 어느 한 항에 기재된 렌즈인 발광 소자 패키지.
PCT/KR2016/000446 2015-02-02 2016-01-15 렌즈 및 이를 포함하는 발광 소자 패키지 WO2016126020A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,926 US9997681B2 (en) 2015-02-02 2016-01-15 Lens and light emitting diode package including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150015841A KR102408719B1 (ko) 2015-02-02 2015-02-02 렌즈 및 이를 포함하는 발광 소자 패키지
KR10-2015-0015841 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016126020A1 true WO2016126020A1 (ko) 2016-08-11

Family

ID=56564309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000446 WO2016126020A1 (ko) 2015-02-02 2016-01-15 렌즈 및 이를 포함하는 발광 소자 패키지

Country Status (3)

Country Link
US (1) US9997681B2 (ko)
KR (1) KR102408719B1 (ko)
WO (1) WO2016126020A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000442U (ko) * 2017-08-08 2019-02-18 시아먼 산안 옵토일렉트로닉스 테크놀로지 캄파니 리미티드 Led 발광 장치
WO2019063084A1 (en) * 2017-09-28 2019-04-04 Osram Opto Semiconductors Gmbh OPTOELECTRONIC COMPONENT
JP6828715B2 (ja) * 2018-05-31 2021-02-10 日亜化学工業株式会社 光源モジュール
CN209525505U (zh) * 2018-11-19 2019-10-22 瑞声科技(新加坡)有限公司 玻璃镜片及使用该玻璃镜片的镜头模组
EP3792549B1 (en) * 2019-09-11 2022-11-16 Ledil Oy An optical device for modifying a light distribution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059073A (ja) * 2005-08-22 2007-03-08 Toshiba Lighting & Technology Corp レンズおよび照明装置
JP2007227410A (ja) * 2006-01-24 2007-09-06 Enplas Corp 発光装置、面光源装置、表示装置及び光束制御部材
JP2014048547A (ja) * 2012-09-01 2014-03-17 Rabo Sufia Kk バルク型レンズ及びそれを用いた発光体並びに照明装置
KR20140094759A (ko) * 2013-01-22 2014-07-31 삼성전자주식회사 조도 분포 조절용 렌즈 및 그 렌즈를 포함한 led 패키지
KR20140097724A (ko) * 2013-01-29 2014-08-07 (주)보임기술 직사각형 광 분포를 갖는 디스플레이용 확산 비구면 렌즈

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543911B1 (en) * 2000-05-08 2003-04-08 Farlight Llc Highly efficient luminaire having optical transformer providing precalculated angular intensity distribution and method therefore
TWI395908B (zh) * 2008-06-30 2013-05-11 E Pin Optical Industry Co Ltd 非球面正照角發光二極體光學鏡片及其所構成的發光二極體組件
TWI361261B (en) * 2008-06-30 2012-04-01 E Pin Optical Industry Co Ltd Aspherical led angular lens for wide distribution patterns and led assembly using the same
TWI422074B (zh) * 2010-01-07 2014-01-01 首爾半導體股份有限公司 非球面led鏡片以及含有此鏡片的發光元件
US8558161B2 (en) * 2010-08-10 2013-10-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Lens having multiple conic sections for LEDs and proximity sensors
KR101189652B1 (ko) * 2011-01-12 2012-10-12 (주)보임기술 Led용 조명렌즈 및 이를 이용한 어레이 타입 조명렌즈
JP5620285B2 (ja) * 2011-01-19 2014-11-05 株式会社エンプラス 光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059073A (ja) * 2005-08-22 2007-03-08 Toshiba Lighting & Technology Corp レンズおよび照明装置
JP2007227410A (ja) * 2006-01-24 2007-09-06 Enplas Corp 発光装置、面光源装置、表示装置及び光束制御部材
JP2014048547A (ja) * 2012-09-01 2014-03-17 Rabo Sufia Kk バルク型レンズ及びそれを用いた発光体並びに照明装置
KR20140094759A (ko) * 2013-01-22 2014-07-31 삼성전자주식회사 조도 분포 조절용 렌즈 및 그 렌즈를 포함한 led 패키지
KR20140097724A (ko) * 2013-01-29 2014-08-07 (주)보임기술 직사각형 광 분포를 갖는 디스플레이용 확산 비구면 렌즈

Also Published As

Publication number Publication date
KR20160094635A (ko) 2016-08-10
US20180006202A1 (en) 2018-01-04
KR102408719B1 (ko) 2022-06-15
US9997681B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2016126020A1 (ko) 렌즈 및 이를 포함하는 발광 소자 패키지
WO2013168949A1 (ko) 조명 장치
WO2018159977A1 (ko) 디스플레이 장치, 백라이트 유닛, 발광모듈 및 렌즈
WO2015194804A1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
TWI422074B (zh) 非球面led鏡片以及含有此鏡片的發光元件
WO2017069372A1 (en) Light emitting diode chip having distributed bragg reflector
WO2016208957A1 (ko) 광학 렌즈, 발광 소자 및 이를 구비한 발광 모듈
WO2019168233A1 (ko) 발광소자 패키지 및 발광소자 패키지 제조 방법
WO2012108636A2 (en) Light emitting device having wavelength converting layer
WO2019221431A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2017164672A1 (ko) 광학 모듈
EP2753976A1 (en) Optical member, display device, and light emitting device having the same
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2013129820A1 (en) Light emitting device package
WO2016080676A1 (ko) 발광소자 패키지
WO2016148539A1 (ko) 발광 소자 및 이를 구비한 카메라 모듈
WO2012165739A1 (en) Semiconductor light-emitting device, method of fabricating the same, and package comprising the same
WO2013162337A1 (en) Light emitting device and light emitting device package
WO2015147518A1 (ko) 렌즈, 이를 포함하는 발광소자 모듈
WO2019144854A1 (en) Package body and light emitting device using same
WO2011049373A2 (ko) 발광소자 패키지 및 이를 구비한 조명 시스템
WO2018174425A1 (ko) 분포 브래그 반사기 적층체를 구비하는 발광 다이오드
WO2013036061A1 (en) Lighting device
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2016200012A1 (ko) 광 출사 유닛 및 이를 포함하는 광원 유닛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746761

Country of ref document: EP

Kind code of ref document: A1