WO2016125681A1 - Projection optical system and projection device - Google Patents

Projection optical system and projection device Download PDF

Info

Publication number
WO2016125681A1
WO2016125681A1 PCT/JP2016/052510 JP2016052510W WO2016125681A1 WO 2016125681 A1 WO2016125681 A1 WO 2016125681A1 JP 2016052510 W JP2016052510 W JP 2016052510W WO 2016125681 A1 WO2016125681 A1 WO 2016125681A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection
image display
display element
projection optical
Prior art date
Application number
PCT/JP2016/052510
Other languages
French (fr)
Japanese (ja)
Inventor
佐野永悟
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016125681A1 publication Critical patent/WO2016125681A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present invention relates to a projection optical system and a projection apparatus for projecting an image, and more particularly to a wide-angle projection optical system including a mirror and a projection apparatus including the projection optical system.
  • a projection apparatus for enlarging and projecting an image displayed on an image display element on a screen by a projection optical system is desired to have a wide-angle projection optical system that can be projected on a large screen even at a short projection distance while being small and light. ing.
  • a projection optical system for enlarging and projecting an image displayed on an image display element on a screen by a projection optical system
  • an optical system having a configuration in which a refractive optical system having a plurality of lenses and a reflective optical system including a mirror, such as Patent Document 1, is disclosed.
  • Patent Document 1 since the optical system of Patent Document 1 has a single mirror with power in the reflective optical system, there is a limit to the enlargement ratio of the optical system, and a large screen can be projected at a sufficiently short distance. I can not say. In addition, the number of lenses in the refractive optical system increases.
  • Patent Document 2 discloses a projection optical system that can project a large screen at a short distance while arranging two mirrors having power in the reflecting optical system to further reduce the number of lenses of the refractive optical system. It is disclosed.
  • Patent Document 2 cannot be said to project a sufficiently large screen and has a large optical total length.
  • the present invention has been made in view of the problems of the background art described above, and an object of the present invention is to provide a projection optical system capable of projecting a small screen and a large screen and having good optical performance over the entire screen. .
  • a projection optical system is a projection optical system for a projection apparatus that enlarges an image obtained from an image display element and projects it on a screen, in order from the image display element side, It consists of a refractive optical system having a plurality of lenses and a reflective optical system that reflects the light emitted from the refractive optical system and guides it to the screen. An intermediate image is formed between the refractive optical system and the reflective optical system to be refracted.
  • the lens arranged on the most reflective optical system side of the optical system has negative power, and the reflective optical system has a concave mirror having one concave shape and a convex surface having one convex shape in order from the image display element side.
  • the value FLlst is the focal length of the lens arranged closest to the reflective optical system of the refractive optical system
  • FLd is the focal length of the refractive optical system
  • a projection apparatus includes the above-described projection optical system, an image display element, an illumination optical system that generates illumination light that illuminates the image display element, an element drive circuit that drives the image display element, and illumination.
  • a control circuit for controlling operations of the optical system and the element driving circuit.
  • FIG. 2 is a diagram illustrating a projection optical system according to Example 1.
  • 5A and 5B are MTF characteristic diagrams showing the performance of the projection optical system of Example 1 on the screen. It is a figure explaining the MTF evaluation point on an image display element.
  • FIG. 6 is a diagram illustrating a projection optical system of Example 2. 8A and 8B are MTF characteristic diagrams showing the performance of the projection optical system of Example 2 on the screen.
  • FIG. 6 is a diagram for explaining a projection optical system according to Example 3.
  • 10A and 10B are MTF characteristic diagrams showing the performance of the projection optical system of Example 3 on the screen. It is a figure explaining the modification of the projection optical system shown in FIG.
  • FIG. 1 shows a projection apparatus incorporating a projection optical system according to an embodiment of the present invention
  • FIG. 2 shows a projection state by the projection optical system.
  • the projection apparatus 100 has a structure in which a projection optical system 10, an illumination optical system 20, a polarizing beam splitter 30, a reflective liquid crystal element 40, an element driving circuit 50, and a control circuit 70 are incorporated.
  • the projection optical system 10 magnifies and projects an image (image displayed on the display surface DD of the reflective liquid crystal element 40) obtained from the reflective liquid crystal element 40, which is an image display element, onto the projection target.
  • the projection optical system 10 includes a refractive optical system Gr1 that is a first optical group and a reflective optical system Gr2 that is a second optical group.
  • the refractive optical system Gr1 close to the reflective liquid crystal element (image display element) 40 has a plurality of lenses, and the reflective optical system Gr2 on the screen PS side far from the reflective liquid crystal element 40 is a refractive optical system (first optical group). )
  • the light beam emitted from Gr1 is reflected and guided to the screen PS.
  • the refractive optical system Gr1 is composed of nine lenses L1 to L9 in the projection optical system 10 shown in FIG. Among these lenses L1 to L9, in particular, the lens L9 is disposed closest to the reflective optical system (second optical group) Gr2 and has a negative power. Here, power means the reciprocal of the focal length.
  • Each of the lenses L1 to L9 is made of glass or a resin material.
  • the optical surfaces of the lenses L1 to L9 are spherical or aspheric and have a rotationally symmetric shape with respect to the optical axis OA.
  • a lens close to the reflective liquid crystal element (image display element) 40 has a circular outline when viewed from the optical axis OA direction, but a lens far from the reflective liquid crystal element 40, for example, the lens L9, is An area not used in the optical path may be cut out.
  • the reflective optical system Gr2 includes, in order from the reflective liquid crystal element 40 side, a single concave mirror M1 having a concave shape and a single convex mirror M2 having a convex shape. Both mirrors M1 and M2 may be cut out in a region not used in the optical path.
  • the projection optical system 10 forms an intermediate image (an intermediate image of an image obtained from the image display element) between the refractive optical system (first optical group) Gr1 and the reflective optical system (second optical group) Gr2. is doing. That is, the projection optical system 10 is a system that re-images an image once formed.
  • the projection optical system 10 includes, in order from the reflective liquid crystal element (image display element) 40 side, a refractive optical system Gr1 that is a first optical group and a reflective optical system Gr2 that is a second optical group.
  • the intermediate image is once formed by the optical system Gr1, and then the intermediate image is enlarged and projected onto the screen PS by the reflection optical system Gr2, so that the image of the reflective liquid crystal element 40 is once formed on the screen PS. Since the magnification ratio can be shared by the refractive optical system Gr1 and the reflection optical system Gr2, compared with the case of magnifying and projecting, the configuration is advantageous as an optical system for large screen projection.
  • a large screen can be projected from a short distance by making the light beam obliquely incident on the screen PS by the reflective optical system Gr2.
  • the reflective optical system Gr2 in order of the concave mirror M1 and the convex mirror M2 from the reflective liquid crystal element 40 side, it is possible to reduce the beam bundle diameter by the concave mirror M1, so that the convex surface disposed behind it.
  • the size of the mirror M2 can be reduced.
  • each mirror M1, M2 one by one, it is possible to reduce the size of the entire projection optical system 10 while ensuring the assembly of the reflection optical system Gr2 or the mirrors M1, M2. It becomes like this.
  • the lens L9 closest to the reflective optical system Gr2 in the refractive optical system Gr1 as a negative lens, a wider-angle projection optical system can be obtained.
  • the illumination optical system 20 generates illumination light that illuminates the reflective liquid crystal element 40, and a detailed description thereof is omitted, but includes a light emission source, a condensing optical system, a polarization conversion element, and the like.
  • a light emission source for example, a light source incorporating three color LEDs or the like can be used, and the condensing optical system converts, for example, illumination light from the three color LEDs or the like into substantially parallel light.
  • the polarization conversion element converts the incident light into specific polarization without reducing the amount of incident light.
  • the polarization beam splitter 30 is obtained by bonding a pair of right-angle prisms, and a reflection surface that reflects linearly polarized light in a predetermined direction incident from the illumination optical system 20 on the inclined surface of one right-angle prism on the bonding surface. (Not shown) is formed. Thereby, the illumination light emitted from the illumination optical system 20 and linearly polarized in a predetermined direction can be reflected and incident on the reflective liquid crystal element 40.
  • the reflective liquid crystal element 40 is a display element (image display element) that forms image light, and can be said to be a light modulation element in that image light is formed from illumination light by changing the spatial transmittance.
  • the reflective liquid crystal element (image display element) 40 is an image display panel that is a plate-like electronic component.
  • the reflection type liquid crystal element 40 is a micro display also called LCOS (Liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate. When a voltage corresponding to a drive signal is applied to a liquid crystal layer for each pixel, the reflective liquid crystal element 40 modulates illumination light by changing the arrangement of liquid crystal molecules and displays a desired image. .
  • the reflective liquid crystal element 40 displays the target image, and the incident light is incident on the reflective liquid crystal element 40 while sequentially switching the emitted light of the red LED, blue LED, and green LED in a short time, thereby corresponding to the target image.
  • Each color image is shifted and reflected on the time axis, thereby forming a color image on the screen PS. Therefore, the color balance can be arbitrarily changed by individually adjusting the light emission amount or the light emission time by changing the drive current and duty ratio of the red LED, blue LED, and green LED (see, for example, JP-A-2007-79402). ).
  • the element driving circuit 50 is a circuit portion that operates the reflective liquid crystal element 40 based on an image signal.
  • the element driving circuit 50 operates based on a control signal from a control circuit 70 described later, and outputs a driving signal corresponding to the image signal to the reflective liquid crystal element 40 to perform an image display operation.
  • the control circuit 70 can appropriately operate the illumination optical system 20, the element drive circuit 50, and the like based on a program incorporated therein or an instruction from an operation unit (not shown).
  • the control circuit 70 outputs a drive signal and an image signal to the illumination optical system 20 and the element drive circuit 50 based on a video signal and other signals input from the outside, and performs a display operation on the reflective liquid crystal element 40. Let it be done.
  • the projection optical system 10 satisfies the following conditional expression. -3.0 ⁇ FLlst / FLd ⁇ -0.5 (1)
  • the value FLlst is the focal length of the lens L9 arranged closest to the reflective optical system Gr2 of the refractive optical system Gr1
  • the value FLd is the focal length of the refractive optical system Gr1.
  • the size of the entire projection optical system 10 can be reduced.
  • the value FLlst / FLd of conditional expression (1) exceeds the lower limit value, the negative power of the lens L9 closest to the reflective optical system Gr2 can be appropriately maintained, and the projection optical system 10 having a wider angle can be obtained. Can do.
  • the value FLlst / FLd is less than the upper limit value, the negative power of the lens L9 closest to the reflective optical system Gr2 is prevented from becoming too strong, and the effective diameter of the concave mirror M1 disposed behind increases. As a result, the overall size of the projection optical system 10 can be reduced.
  • the projection optical system 10 satisfies the following conditional expression. 1.0 ⁇ EDMR1 / EDL ⁇ 3.0 (2)
  • the value EDMR1 is the maximum height from the optical axis OA of the use area EA of the concave mirror M1
  • the value EDL is the lens having the largest outer diameter among the lenses L1 to L9 in the refractive optical system Gr1 (specifically The effective radius of the lens L8).
  • height EDMR1 was illustrated about the concave mirror M1 shown typically.
  • the effective area of the concave mirror M1 disposed closer to the refractive optical system Gr1 in the reflective optical system Gr2 is a light beam by a negative lens (specifically, the lens L9) closest to the reflective optical system Gr2 in the refractive optical system Gr1. Is increased by diverging. Since the value EDMR1 / EDL of the conditional expression (2) exceeds the lower limit value, the power of the negative lens (lens L9) closest to the reflective optical system Gr2 in the refractive optical system Gr1 can be appropriately maintained. This is advantageous for correction of surface curvature and distortion. On the other hand, when the value EDMR1 / EDL is less than the upper limit value, the effective area of the concave mirror M1 does not become too large, and the radial size of the entire projection optical system 10 can be kept relatively small.
  • the projection optical system 10 satisfies the following conditional expression. 1.5 ⁇ YDMR2 / YDMR1 ⁇ 3.0 (3)
  • the value YDMR2 is the size in the diagonal direction of the use area EA of the convex mirror M2
  • the value YDMR1 is the size in the diagonal direction of the use area EA of the concave mirror M1.
  • the size YDMR1 in the diagonal direction of the use area EA is illustrated for the concave mirror M1 schematically shown.
  • Conditional expression (3) is a conditional expression for appropriately setting the ratio between the size of the concave mirror M1 and the size of the convex mirror M2.
  • the value YDMR2 / YDMR1 of conditional expression (3) is below the upper limit value, the effective area of the convex mirror M2 does not become too large, and the size of the entire projection optical system 10 in the radial direction can be reduced.
  • the weight of the mirror increases with the size, the weight of the projection optical system 10 can be kept small. Further, if the distance to the screen PS and the size of the projection image are constant, the fact that the size of the convex mirror M2 is kept small means that the magnification of the projection image must be greatly borne by the convex mirror M2. .
  • the magnification burden of the convex mirror M2 can be reduced, and the aberration generated by the convex mirror M2 can be suppressed to a small value.
  • the projection optical system 10 satisfies the following conditional expression. 0.7 ⁇ TLMM / TLLM ⁇ 1.5 (4)
  • the value TLMM is that the central principal ray PL is the concave mirror M1.
  • the value TLLM is the central principal ray PL of the refractive optical system Gr1.
  • the normal direction of the display surface DD of the reflective liquid crystal element 40 from the point passing through the exit surface S92 or the rear surface of the lens L9 closest to the reflective optical system Gr2 or the screen PS side to the point hitting the concave mirror M1 (specifically Is the distance in the Z direction (see FIG. 3B).
  • Conditional expression (4) is a conditional expression for appropriately setting the ratio between the optical path length from the concave mirror M1 to the convex mirror M2 and the optical path length from the refractive optical system Gr1 to the concave mirror M1.
  • the value TLMM / TLLM of conditional expression (4) is below the upper limit value, the optical path length from the concave mirror M1 to the convex mirror M2 does not become too large, and the size of the convex mirror M2 can be kept small.
  • the value TLMM / TLLM exceeds the lower limit, the magnification burden of the convex mirror M2 can be reduced, and the aberration generated in the convex mirror M2 can be suppressed to a small value.
  • an optical element having substantially no power can be added to the refractive optical system Gr1 and the reflective optical system Gr2.
  • the projection optical system 10 described above includes the refractive optical system Gr1 and the reflective optical system Gr2 in order from the reflective liquid crystal element 40, which is an image display element, and once forms an intermediate image with the refractive optical system Gr1.
  • the intermediate optical image is magnified and projected on the screen PS by the reflective optical system Gr2, so that the magnification rate is refracted rather than the magnified projection of the image of the reflective liquid crystal element 40 on the screen PS at once.
  • the optical system Gr1 and the reflective optical system Gr2 can be divided.
  • the projection optical system 10 has an advantageous configuration for an optical system for large screen projection.
  • a large screen can be projected from a short distance by making the light rays obliquely enter the screen PS surface with the reflective optical system Gr2.
  • the reflective optical system Gr2 in order of the concave mirror M1 and the convex mirror M2 from the reflective liquid crystal element 40 side, it is possible to reduce the beam bundle diameter by the concave mirror M1, so that the convex surface disposed behind it.
  • the size of the mirror M2 can be reduced.
  • each of the mirrors M1 and M2 one by one, it is possible to reduce the size of the entire projection optical system 10 while ensuring the assembly of the mirrors.
  • the projection optical system 10 having a wider angle can be obtained by using a negative lens as the lens closest to the reflective optical system Gr2 of the refractive optical system Gr1.
  • the surface described with “*” after each surface number is a surface having an aspherical shape, and the aspherical shape has the apex of the surface as the origin and the optical axis direction. Is expressed by the following “Equation 1” where the height in the direction perpendicular to the optical axis is h. In addition, infinity is represented as “INF”, the display surface of the reflective liquid crystal element 40 is represented as “DD”, and the aperture stop is represented as “ST”. [Equation 1] However, Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
  • Table 1 below shows data such as lens surfaces of the projection optical system of Example 1.
  • Table 2 shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 1.
  • FIG. 4 is a cross-sectional view of the projection optical system 11 and the like of the first embodiment as already described.
  • the projection optical system 11 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2.
  • reference symbol ST denotes an aperture stop.
  • the reflective optical system Gr2 has a concave mirror M1 on the reduction side and a convex mirror M2 on the enlargement side.
  • Reference numeral F denotes a parallel plate (in this embodiment, a polarization beam splitter 30) assuming a prism for combining RGB colors when the image display element is a reflective liquid crystal element 40, that is, LCOS.
  • the parallel plate F may not be necessary, but the parallel plate F does not have power, so the optical system after the parallel plate F is not changed, and the parallel plate F is excluded. You can also. In that case, it is only necessary to set the air gap between the reflective liquid crystal element 40 as an image display element and the lens L1 at an optimum position.
  • FIGS. 5A and 5B are MTF (Modulation Transfer Function) characteristic diagrams of the projection optical system 11 of Example 1 on the screen PS instead of the image display element (specifically, the reflective liquid crystal element 40) side.
  • FIG. 5A is an MTF characteristic diagram of points F1 to F3 in the projection range Sc shown in FIG. 6, and
  • FIG. 5B is an MTF characteristic diagram of points F4 to F6 in the projection range Sc shown in FIG.
  • the MTF evaluation points are the same as in the first embodiment in the following embodiments.
  • Wavelength weights for calculating the MTF are as follows, and the subsequent examples are the same as those in the first example. Wavelength weight 656.3nm 34 587.6nm 63 546.1nm 100 486.1nm 83 435.8nm 26 404.7nm 8
  • Example 2 Table 3 below shows data such as lens surfaces of the projection optical system of Example 2.
  • Table 4 shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 2.
  • FIG. 7 is a sectional view of the projection optical system 12 and the like of the second embodiment.
  • the projection optical system 12 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2.
  • reference symbol ST denotes an aperture stop.
  • the reflective optical system Gr2 has a concave mirror M1 on the reduction side and a convex mirror M2 on the enlargement side.
  • the parallel plate F it can also be set as the structure except this.
  • 8A and 8B are MTF characteristics diagrams of the projection optical system 12 of Example 2 on the screen PS instead of the image display element side.
  • 8A is an MTF characteristic diagram at points F1 to F3 similar to FIG. 6
  • FIG. 8B is an MTF characteristic diagram at points F4 to F6 similar to FIG.
  • Example 3 Table 5 below shows data such as lens surfaces of the projection optical system of Example 3.
  • Table 6 shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 3.
  • FIG. 9 is a sectional view of the projection optical system 13 and the like of the third embodiment.
  • the projection optical system 13 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2.
  • reference symbol ST denotes an aperture stop.
  • the reflective optical system Gr2 has a concave mirror M1 on the reduction side and a convex mirror M2 on the enlargement side.
  • the parallel plate F it can also be set as the structure except this.
  • 10A and 10B are MTF characteristics diagrams of the projection optical system 13 of Example 3 on the screen PS instead of the image display element side.
  • 10A is an MTF characteristic diagram at points F1 to F3 similar to FIG. 6
  • FIG. 10B is an MTF characteristic diagram at points F4 to F6 similar to FIG.
  • Table 7 summarizes the values of Examples 1 to 3 corresponding to the conditional expressions (1) to (4) for reference. [Table 7]
  • an optical path bending mirror having no power can be disposed between the refractive optical system Gr1 and the reflective optical system Gr2.
  • the optical path can be bent in a direction different by 90 °, for example. Therefore, the degree of freedom of the layout of the projection optical system 10 is increased, and as a result, the size of the entire projection optical system 10 can be kept small.
  • FIG. 11 shows a modification of the projection optical system 10 shown in FIG. 1.
  • a third plane mirror M3 is arranged as an optical path bending mirror between the lens L9 and the concave mirror M1. is doing. Thereby, the optical path is bent 90 degrees between the refractive optical system Gr1 and the reflective optical system Gr2.
  • the image display element is not limited to the reflective liquid crystal element 40 such as LCOS, but a micromirror device including a micromirror, a transmissive LCD, or the like can be used.
  • the polarization beam splitter 30 is changed to an optical system suitable for each.
  • the reflective liquid crystal element 40 is not limited to being used alone, and an additional reflective liquid crystal element can be disposed facing another side surface of the polarization beam splitter 30.
  • the light source of the illumination optical system 20 is not limited to the LED, and a mercury lamp, a laser, or the like can be used, and these light sources can be used in the same type or different types.
  • the number of red, green, and blue light sources may be arbitrarily combined according to the output. Further, it is possible to increase the brightness by adding an optical system for multiplexing and arranging a plurality of light sources for white or a specific color.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Projection Apparatus (AREA)

Abstract

The present invention comprises, in the following order, an image display element such as a reflecting liquid crystal element 40, a dioptric system Gr1 which has a plurality of lenses, and a catoptric system Gr2 which reflects and guides light that has exited from the dioptric system Gr1 to a screen PS. An intermediate image is formed between the dioptric system Gr1 and the catoptric system Gr2, and the lens disposed closest to the catoptric system Gr2 in the dioptric system Gr1 has a negative power. Moreover, the catoptric system Gr2 is solely constituted by, in the following order from the side of the image display element, a concave mirror M1 having a concave shape and a convex mirror M2 having a convex shape, and satisfies the conditional expression -3.0 < FLlst/FLd < -0.5 … (1) provided that the value FLlst is the focal distance of the lens disposed closest to the catoptric system Gr2 in the dioptric system Gr1, and the value FLd is the focal distance of the dioptric system Gr1.

Description

投影光学系及び投影装置Projection optical system and projection apparatus
 本発明は、画像を投影するための投影光学系及び投影装置に関するものであり、特にミラーを備える広角の投影光学系、及び当該投影光学系を備える投影装置に関する。 The present invention relates to a projection optical system and a projection apparatus for projecting an image, and more particularly to a wide-angle projection optical system including a mirror and a projection apparatus including the projection optical system.
 近年、画像表示素子に表示された画像を、投影光学系によってスクリーン上に拡大投影する投影装置には、小型軽量でありながら、短い投影距離でも大画面に映し出せる広角な投影光学系が望まれている。また、画像表示素子の高解像度化に伴い、投影光学系にも高性能化への要求が高まってきている。 In recent years, a projection apparatus for enlarging and projecting an image displayed on an image display element on a screen by a projection optical system is desired to have a wide-angle projection optical system that can be projected on a large screen even at a short projection distance while being small and light. ing. In addition, with the increase in resolution of image display elements, there is an increasing demand for higher performance in projection optical systems.
 このような投影光学系としては、例えば特許文献1のような、複数のレンズを有する屈折光学系と、ミラーを含む反射光学系とを組み合わせた構成の光学系が開示されている。 As such a projection optical system, an optical system having a configuration in which a refractive optical system having a plurality of lenses and a reflective optical system including a mirror, such as Patent Document 1, is disclosed.
 しかしながら、特許文献1の光学系は反射光学系内でパワーを有するミラーが1枚の構成であるため、光学系の拡大率に限界があり、十分短距離で大画面を投影できているとは言えない。また、屈折光学系のレンズ枚数が増大してしまう。 However, since the optical system of Patent Document 1 has a single mirror with power in the reflective optical system, there is a limit to the enlargement ratio of the optical system, and a large screen can be projected at a sufficiently short distance. I can not say. In addition, the number of lenses in the refractive optical system increases.
 そこで、反射光学系内にパワーを有するミラーを2枚配置することにより、より屈折光学系のレンズ枚数を少なく抑えつつ、短距離で大画面を投影可能とした投影光学系が例えば特許文献2に開示されている。 Therefore, for example, Patent Document 2 discloses a projection optical system that can project a large screen at a short distance while arranging two mirrors having power in the reflecting optical system to further reduce the number of lenses of the refractive optical system. It is disclosed.
 しかしながら、特許文献2に記載の投影光学系も、十分に大画面を投影できているとは言えず、光学全長も大きい。 However, the projection optical system described in Patent Document 2 cannot be said to project a sufficiently large screen and has a large optical total length.
特許第4210314号公報Japanese Patent No. 4210314 特開2007-79524号公報JP 2007-79524 A
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、小型軽量で大画面投影可能な、画面全域に亘って良好な光学性能を有する投影光学系を提供することを目的とする。 The present invention has been made in view of the problems of the background art described above, and an object of the present invention is to provide a projection optical system capable of projecting a small screen and a large screen and having good optical performance over the entire screen. .
 また、本発明は、上記投影光学系を備える投影装置を提供することを目的とする。 It is another object of the present invention to provide a projection apparatus provided with the above projection optical system.
 上記目的を達成するため、本発明に係る投影光学系は、画像表示素子から得られる像を拡大してスクリーン上に投影する投影装置用の投影光学系であって、画像表示素子側から順に、複数のレンズを有する屈折光学系と、屈折光学系から出射された光線を反射させてスクリーンまで導く反射光学系とからなり、屈折光学系と反射光学系との間に中間像を形成し、屈折光学系の最も反射光学系側に配置されたレンズは負のパワーを有し、反射光学系は画像表示素子側から順に、1枚の凹面形状を有する凹面ミラー、1枚の凸面形状を有する凸面ミラー、のみで構成され、以下の条件式を満足する。
 -3.0<FLlst/FLd<-0.5  …  (1)
ただし、値FLlstは、屈折光学系の最も反射光学系側に配置されたレンズの焦点距離であり、値FLdは、屈折光学系の焦点距離である。
In order to achieve the above object, a projection optical system according to the present invention is a projection optical system for a projection apparatus that enlarges an image obtained from an image display element and projects it on a screen, in order from the image display element side, It consists of a refractive optical system having a plurality of lenses and a reflective optical system that reflects the light emitted from the refractive optical system and guides it to the screen. An intermediate image is formed between the refractive optical system and the reflective optical system to be refracted. The lens arranged on the most reflective optical system side of the optical system has negative power, and the reflective optical system has a concave mirror having one concave shape and a convex surface having one convex shape in order from the image display element side. It consists only of mirrors and satisfies the following conditional expression.
-3.0 <FLlst / FLd <-0.5 (1)
However, the value FLlst is the focal length of the lens arranged closest to the reflective optical system of the refractive optical system, and the value FLd is the focal length of the refractive optical system.
 また、本発明に係る投影装置は、上述の投影光学系と、画像表示素子と、画像表示素子を照明する照明光を生成する照明光学系と、画像表示素子を駆動する素子駆動回路と、照明光学系及び素子駆動回路の動作を制御する制御回路とを備える。 A projection apparatus according to the present invention includes the above-described projection optical system, an image display element, an illumination optical system that generates illumination light that illuminates the image display element, an element drive circuit that drives the image display element, and illumination. A control circuit for controlling operations of the optical system and the element driving circuit.
本発明の一実施形態に係る投影光学系を組み込んだ投影装置の構造を説明する図である。It is a figure explaining the structure of the projection apparatus incorporating the projection optical system which concerns on one Embodiment of this invention. 図1に示す投影光学系を用いた投影を説明する図である。It is a figure explaining the projection using the projection optical system shown in FIG. 図3A及び3Bは、投影光学系の特徴を表すいくつかのパラメータを説明する図である。3A and 3B are diagrams illustrating some parameters representing the characteristics of the projection optical system. 実施例1の投影光学系を説明する図である。FIG. 2 is a diagram illustrating a projection optical system according to Example 1. 図5A及び5Bは、実施例1の投影光学系のスクリーン上における性能を示すMTF特性図である。5A and 5B are MTF characteristic diagrams showing the performance of the projection optical system of Example 1 on the screen. 画像表示素子上のMTF評価ポイントを説明する図である。It is a figure explaining the MTF evaluation point on an image display element. 実施例2の投影光学系を説明する図である。FIG. 6 is a diagram illustrating a projection optical system of Example 2. 図8A及び8Bは、実施例2の投影光学系のスクリーン上における性能を示すMTF特性図である。8A and 8B are MTF characteristic diagrams showing the performance of the projection optical system of Example 2 on the screen. 実施例3の投影光学系を説明する図である。FIG. 6 is a diagram for explaining a projection optical system according to Example 3. 図10A及び10Bは、実施例3の投影光学系のスクリーン上における性能を示すMTF特性図である。10A and 10B are MTF characteristic diagrams showing the performance of the projection optical system of Example 3 on the screen. 図1に示す投影光学系の変形例を説明する図である。It is a figure explaining the modification of the projection optical system shown in FIG.
 以下、図面を参照しつつ、本発明の実施形態に係る投影光学系について説明する。 Hereinafter, a projection optical system according to an embodiment of the present invention will be described with reference to the drawings.
 図1に、本発明の実施形態に係る投影光学系を組み込んだ投影装置を示し、図2に、投影光学系による投影状態を示す。この投影装置100は、投影光学系10、照明光学系20、偏光ビームスプリッター30、反射型液晶素子40、素子駆動回路50、及び制御回路70を組み込んだ構造を有する。 FIG. 1 shows a projection apparatus incorporating a projection optical system according to an embodiment of the present invention, and FIG. 2 shows a projection state by the projection optical system. The projection apparatus 100 has a structure in which a projection optical system 10, an illumination optical system 20, a polarizing beam splitter 30, a reflective liquid crystal element 40, an element driving circuit 50, and a control circuit 70 are incorporated.
 投影装置100において、投影光学系10は、画像表示素子である反射型液晶素子40から得られる像(反射型液晶素子40の表示面DDに表示される画像)を拡大して被投影体に投影する。投影光学系10は、第1光学群である屈折光学系Gr1と、第2光学群である反射光学系Gr2とからなる。反射型液晶素子(画像表示素子)40に近い屈折光学系Gr1は、複数のレンズを有し、反射型液晶素子40から遠いスクリーンPS側の反射光学系Gr2は、屈折光学系(第1光学群)Gr1から出射された光線を反射させてスクリーンPSまで導く。屈折光学系Gr1は、図1に示す投影光学系10では9枚のレンズL1~L9で構成されている。これらのレンズL1~L9のうち、特にレンズL9は、最も反射光学系(第2光学群)Gr2側に配置されて負のパワーを有する。ここで、パワーとは、焦点距離の逆数を意味する。各レンズL1~L9は、ガラスや樹脂材料で形成される。各レンズL1~L9の光学面は、球面又は非球面であり、光軸OAに対し回転対称な形状を有する。なお、レンズL1~L9のうち反射型液晶素子(画像表示素子)40に近いレンズは、光軸OA方向から見て円形の輪郭を有するが、反射型液晶素子40から遠いレンズ、例えばレンズL9は、光路に使用されていない領域が切り欠かれていてもよい。反射光学系Gr2は、反射型液晶素子40側から順に、1枚の凹面形状を有する凹面ミラーM1と、1枚の凸面形状を有する凸面ミラーM2とで構成されている。両ミラーM1,M2は、光路に使用されていない領域が切り欠かれていてもよい。 In the projection apparatus 100, the projection optical system 10 magnifies and projects an image (image displayed on the display surface DD of the reflective liquid crystal element 40) obtained from the reflective liquid crystal element 40, which is an image display element, onto the projection target. To do. The projection optical system 10 includes a refractive optical system Gr1 that is a first optical group and a reflective optical system Gr2 that is a second optical group. The refractive optical system Gr1 close to the reflective liquid crystal element (image display element) 40 has a plurality of lenses, and the reflective optical system Gr2 on the screen PS side far from the reflective liquid crystal element 40 is a refractive optical system (first optical group). ) The light beam emitted from Gr1 is reflected and guided to the screen PS. The refractive optical system Gr1 is composed of nine lenses L1 to L9 in the projection optical system 10 shown in FIG. Among these lenses L1 to L9, in particular, the lens L9 is disposed closest to the reflective optical system (second optical group) Gr2 and has a negative power. Here, power means the reciprocal of the focal length. Each of the lenses L1 to L9 is made of glass or a resin material. The optical surfaces of the lenses L1 to L9 are spherical or aspheric and have a rotationally symmetric shape with respect to the optical axis OA. Of the lenses L1 to L9, a lens close to the reflective liquid crystal element (image display element) 40 has a circular outline when viewed from the optical axis OA direction, but a lens far from the reflective liquid crystal element 40, for example, the lens L9, is An area not used in the optical path may be cut out. The reflective optical system Gr2 includes, in order from the reflective liquid crystal element 40 side, a single concave mirror M1 having a concave shape and a single convex mirror M2 having a convex shape. Both mirrors M1 and M2 may be cut out in a region not used in the optical path.
 なお、投影光学系10は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2との間に中間像(画像表示素子から得られる像の中間像)を形成している。つまり、投影光学系10は、一旦結像した像を再結像する系となっている。 The projection optical system 10 forms an intermediate image (an intermediate image of an image obtained from the image display element) between the refractive optical system (first optical group) Gr1 and the reflective optical system (second optical group) Gr2. is doing. That is, the projection optical system 10 is a system that re-images an image once formed.
 上記投影光学系10のように、反射型液晶素子(画像表示素子)40側から順に、第1光学群である屈折光学系Gr1と第2光学群である反射光学系Gr2とを有し、屈折光学系Gr1で一度中間像を結像させた上で、反射光学系Gr2によってその中間像をスクリーンPSに拡大投影するような構成とすることで、反射型液晶素子40の像をスクリーンPSに一度で拡大投影するよりも、拡大率を屈折光学系Gr1と反射光学系Gr2とで分担することができるので、大画面投影の光学系として有利な構成となっている。また、反射光学系Gr2によって光線をスクリーンPS上に斜め入射させることで、短距離からの大画面投影が可能となる。また、反射光学系Gr2を反射型液晶素子40側から凹面ミラーM1及び凸面ミラーM2の順で構成することによって、凹面ミラーM1で光線束径を絞ることができるので、その後方に配置される凸面ミラーM2の大きさを小さくすることができる。また、それぞれのミラーM1,M2を1枚ずつで構成することで、反射光学系Gr2又はミラーM1,M2の組み立て性を確保した上で、投影光学系10全系の大きさも小さくすることができるようになる。さらに、屈折光学系Gr1における最も反射光学系Gr2側のレンズL9を負レンズとすることで、より広角な投影光学系とすることができる。 Like the projection optical system 10, the projection optical system 10 includes, in order from the reflective liquid crystal element (image display element) 40 side, a refractive optical system Gr1 that is a first optical group and a reflective optical system Gr2 that is a second optical group. The intermediate image is once formed by the optical system Gr1, and then the intermediate image is enlarged and projected onto the screen PS by the reflection optical system Gr2, so that the image of the reflective liquid crystal element 40 is once formed on the screen PS. Since the magnification ratio can be shared by the refractive optical system Gr1 and the reflection optical system Gr2, compared with the case of magnifying and projecting, the configuration is advantageous as an optical system for large screen projection. In addition, a large screen can be projected from a short distance by making the light beam obliquely incident on the screen PS by the reflective optical system Gr2. In addition, by constructing the reflective optical system Gr2 in order of the concave mirror M1 and the convex mirror M2 from the reflective liquid crystal element 40 side, it is possible to reduce the beam bundle diameter by the concave mirror M1, so that the convex surface disposed behind it. The size of the mirror M2 can be reduced. Further, by configuring each mirror M1, M2 one by one, it is possible to reduce the size of the entire projection optical system 10 while ensuring the assembly of the reflection optical system Gr2 or the mirrors M1, M2. It becomes like this. Further, by setting the lens L9 closest to the reflective optical system Gr2 in the refractive optical system Gr1 as a negative lens, a wider-angle projection optical system can be obtained.
 照明光学系20は、反射型液晶素子40を照明する照明光を生成するものであり、詳細な説明を省略するが、発光源、集光光学系、偏光変換素子等を備える。発光源としては、例えば3色のLED等を組み込んだものを用いることができ、集光光学系は、例えば3色のLED等からの照明光を略平行光に変換する。また偏光変換素子は、入射した光の光量を低下させずに特定の偏光に変換する。 The illumination optical system 20 generates illumination light that illuminates the reflective liquid crystal element 40, and a detailed description thereof is omitted, but includes a light emission source, a condensing optical system, a polarization conversion element, and the like. As the light source, for example, a light source incorporating three color LEDs or the like can be used, and the condensing optical system converts, for example, illumination light from the three color LEDs or the like into substantially parallel light. The polarization conversion element converts the incident light into specific polarization without reducing the amount of incident light.
 偏光ビームスプリッター30は、一対の直角プリズムを貼り合わせたものであり、貼合わせ面において、一方の直角プリズムの斜面には、照明光学系20から入射した所定方向の直線偏光光を反射させる反射面(不図示)が形成されている。これにより、照明光学系20から射出され所定方向に直線偏光した状態の照明光を反射させ、反射型液晶素子40に入射させることができる。 The polarization beam splitter 30 is obtained by bonding a pair of right-angle prisms, and a reflection surface that reflects linearly polarized light in a predetermined direction incident from the illumination optical system 20 on the inclined surface of one right-angle prism on the bonding surface. (Not shown) is formed. Thereby, the illumination light emitted from the illumination optical system 20 and linearly polarized in a predetermined direction can be reflected and incident on the reflective liquid crystal element 40.
 反射型液晶素子40は、映像光を形成する表示素子(画像表示素子)であり、特に空間的な透過率を変化させることによって照明光から画像光を形成する点で光変調素子と言える。反射型液晶素子(画像表示素子)40は、板状の電子部品である画像表示パネルからなる。この反射型液晶素子40は、LCOS(Liquid crystal on silicon)とも称されるマイクロディスプレイであり、シリコンチップの表面に直接回路が形成され対向基板との間に液晶層を挟み込んだものである。反射型液晶素子40は、液晶層に対し駆動信号に応じた電圧が画素毎に印加されると、液晶分子の配列を変化させることで照明光を変調し、所望の画像を表示するものである。なお、反射型液晶素子40は、対象画像を表示し、短時間で赤色LED、青色LED及び緑色LEDの出射光を順次切り換えながら、反射型液晶素子40に入射させることで、対象画像に対応した各色画像を時間軸上でずらせて反射させ、これによりスクリーンPS上でカラー画像を形成するものである。よって、赤色LED、青色LED及び緑色LEDの駆動電流やデューティ比を変化させることで発光量又は発光時間を個々に調整すれば、色バランスを任意に変更できる(例えば特開2007-79402号公報参照)。 The reflective liquid crystal element 40 is a display element (image display element) that forms image light, and can be said to be a light modulation element in that image light is formed from illumination light by changing the spatial transmittance. The reflective liquid crystal element (image display element) 40 is an image display panel that is a plate-like electronic component. The reflection type liquid crystal element 40 is a micro display also called LCOS (Liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate. When a voltage corresponding to a drive signal is applied to a liquid crystal layer for each pixel, the reflective liquid crystal element 40 modulates illumination light by changing the arrangement of liquid crystal molecules and displays a desired image. . The reflective liquid crystal element 40 displays the target image, and the incident light is incident on the reflective liquid crystal element 40 while sequentially switching the emitted light of the red LED, blue LED, and green LED in a short time, thereby corresponding to the target image. Each color image is shifted and reflected on the time axis, thereby forming a color image on the screen PS. Therefore, the color balance can be arbitrarily changed by individually adjusting the light emission amount or the light emission time by changing the drive current and duty ratio of the red LED, blue LED, and green LED (see, for example, JP-A-2007-79402). ).
 素子駆動回路50は、画像信号に基づいて反射型液晶素子40を動作させる回路部分である。素子駆動回路50は、後述する制御回路70からの制御信号に基づいて動作し、反射型液晶素子40に画像信号に対応する駆動信号を出力し画像の表示動作を行わせる。 The element driving circuit 50 is a circuit portion that operates the reflective liquid crystal element 40 based on an image signal. The element driving circuit 50 operates based on a control signal from a control circuit 70 described later, and outputs a driving signal corresponding to the image signal to the reflective liquid crystal element 40 to perform an image display operation.
 制御回路70は、これに組み込まれたプログラムや不図示の操作部からの指示に基づいて、照明光学系20、素子駆動回路50等を適宜動作させることができる。また、制御回路70は、外部から入力されたビデオ信号その他の信号に基づいて照明光学系20及び素子駆動回路50に対して駆動信号や画像信号を出力し、反射型液晶素子40に表示動作を行わせる。 The control circuit 70 can appropriately operate the illumination optical system 20, the element drive circuit 50, and the like based on a program incorporated therein or an instruction from an operation unit (not shown). The control circuit 70 outputs a drive signal and an image signal to the illumination optical system 20 and the element drive circuit 50 based on a video signal and other signals input from the outside, and performs a display operation on the reflective liquid crystal element 40. Let it be done.
 以下、投影光学系10の詳細な特徴について説明する。投影光学系10は、以下の条件式を満足する。
 -3.0<FLlst/FLd<-0.5  …  (1)
ただし、値FLlstは、屈折光学系Gr1の最も反射光学系Gr2側に配置されたレンズL9の焦点距離であり、値FLdは、屈折光学系Gr1の焦点距離である。
Hereinafter, detailed features of the projection optical system 10 will be described. The projection optical system 10 satisfies the following conditional expression.
-3.0 <FLlst / FLd <-0.5 (1)
However, the value FLlst is the focal length of the lens L9 arranged closest to the reflective optical system Gr2 of the refractive optical system Gr1, and the value FLd is the focal length of the refractive optical system Gr1.
 上記条件式(1)を満足することで、投影光学系10全系の大きさを小さく抑えることができる。条件式(1)の値FLlst/FLdが下限値を上回ることで、最も反射光学系Gr2側のレンズL9の負のパワーを適度に維持することができ、より広角な投影光学系10を得ることができる。一方で、値FLlst/FLdが上限値を下回ることで、最も反射光学系Gr2側のレンズL9の負のパワーが強くなりすぎることがなくなり、後方に配置される凹面ミラーM1の有効径が大きくなりすぎず、結果として投影光学系10全系の大きさを小さくすることができる。 When the conditional expression (1) is satisfied, the size of the entire projection optical system 10 can be reduced. When the value FLlst / FLd of conditional expression (1) exceeds the lower limit value, the negative power of the lens L9 closest to the reflective optical system Gr2 can be appropriately maintained, and the projection optical system 10 having a wider angle can be obtained. Can do. On the other hand, when the value FLlst / FLd is less than the upper limit value, the negative power of the lens L9 closest to the reflective optical system Gr2 is prevented from becoming too strong, and the effective diameter of the concave mirror M1 disposed behind increases. As a result, the overall size of the projection optical system 10 can be reduced.
 また、投影光学系10は、以下の条件式を満足する。
 1.0<EDMR1/EDL<3.0  …  (2)
ただし、値EDMR1は、凹面ミラーM1の使用領域EAの光軸OAからの最大高さであり、値EDLは、屈折光学系Gr1内のレンズL1~L9のうち、最も外径の大きなレンズ(具体的にはレンズL8)の有効半径である。なお、図3Aにおいて、模式的に示す凹面ミラーM1について、高さEDMR1を例示した。
The projection optical system 10 satisfies the following conditional expression.
1.0 <EDMR1 / EDL <3.0 (2)
However, the value EDMR1 is the maximum height from the optical axis OA of the use area EA of the concave mirror M1, and the value EDL is the lens having the largest outer diameter among the lenses L1 to L9 in the refractive optical system Gr1 (specifically The effective radius of the lens L8). In addition, in FIG. 3A, height EDMR1 was illustrated about the concave mirror M1 shown typically.
 反射光学系Gr2内でより屈折光学系Gr1側に配置される凹面ミラーM1の有効領域は、屈折光学系Gr1内の最も反射光学系Gr2側の負レンズ(具体的には、レンズL9)によって光線が発散されることで増大される。条件式(2)の値EDMR1/EDLが下限値を上回ることにより、屈折光学系Gr1内の最も反射光学系Gr2側の負レンズ(レンズL9)のパワーを適度に維持することができるので、像面湾曲や歪曲収差の補正に有利となる。一方で、値EDMR1/EDLが上限値を下回ることで、凹面ミラーM1の有効領域が大きくなりすぎず、投影光学系10全系の径方向の大きさを比較的小さく抑えることができる。 The effective area of the concave mirror M1 disposed closer to the refractive optical system Gr1 in the reflective optical system Gr2 is a light beam by a negative lens (specifically, the lens L9) closest to the reflective optical system Gr2 in the refractive optical system Gr1. Is increased by diverging. Since the value EDMR1 / EDL of the conditional expression (2) exceeds the lower limit value, the power of the negative lens (lens L9) closest to the reflective optical system Gr2 in the refractive optical system Gr1 can be appropriately maintained. This is advantageous for correction of surface curvature and distortion. On the other hand, when the value EDMR1 / EDL is less than the upper limit value, the effective area of the concave mirror M1 does not become too large, and the radial size of the entire projection optical system 10 can be kept relatively small.
 また、投影光学系10は、以下の条件式を満足する。
 1.5<YDMR2/YDMR1<3.0  …  (3)
ただし、値YDMR2は、凸面ミラーM2の使用領域EAの対角線方向の大きさであり、値YDMR1は、凹面ミラーM1の使用領域EAの対角線方向の大きさである。なお、図3Aにおいて、模式的に示す凹面ミラーM1について、使用領域EAの対角線方向の大きさYDMR1を例示した。
The projection optical system 10 satisfies the following conditional expression.
1.5 <YDMR2 / YDMR1 <3.0 (3)
However, the value YDMR2 is the size in the diagonal direction of the use area EA of the convex mirror M2, and the value YDMR1 is the size in the diagonal direction of the use area EA of the concave mirror M1. In addition, in FIG. 3A, the size YDMR1 in the diagonal direction of the use area EA is illustrated for the concave mirror M1 schematically shown.
 条件式(3)は、凹面ミラーM1の大きさと凸面ミラーM2の大きさとの比を適切に設定するための条件式である。条件式(3)の値YDMR2/YDMR1が上限値を下回ることで、凸面ミラーM2の有効領域が大きくなりすぎず、投影光学系10全系の径方向の大きさを小さくすることができる。また、ミラーは大きさに伴って、重量も増大するので、投影光学系10の重量を小さく抑えることができる。また、スクリーンPSまでの距離と投影像の大きさとが一定だとすると、凸面ミラーM2の大きさが小さく抑えられているということは、凸面ミラーM2で投影像の拡大率を大きく負担しなければならなくなる。そのため、値YDMR2/YDMR1が下限値を上回ることで、凸面ミラーM2の倍率の負担を低減し、凸面ミラーM2で発生する収差を小さく抑えることができるようになる。 Conditional expression (3) is a conditional expression for appropriately setting the ratio between the size of the concave mirror M1 and the size of the convex mirror M2. When the value YDMR2 / YDMR1 of conditional expression (3) is below the upper limit value, the effective area of the convex mirror M2 does not become too large, and the size of the entire projection optical system 10 in the radial direction can be reduced. Moreover, since the weight of the mirror increases with the size, the weight of the projection optical system 10 can be kept small. Further, if the distance to the screen PS and the size of the projection image are constant, the fact that the size of the convex mirror M2 is kept small means that the magnification of the projection image must be greatly borne by the convex mirror M2. . Therefore, when the value YDMR2 / YDMR1 exceeds the lower limit value, the magnification burden of the convex mirror M2 can be reduced, and the aberration generated by the convex mirror M2 can be suppressed to a small value.
 また、投影光学系10は、以下の条件式を満足する。
 0.7<TLMM/TLLM<1.5  …  (4)
ただし、反射型液晶素子40の表示面DDの画面中心から出射してスクリーンPSの画面中心に到達する主光線を中心主光線PLとした場合に、値TLMMは、中心主光線PLが凹面ミラーM1に当たる点から、凸面ミラーM2に当たる点までの反射型液晶素子40の表示面DDの法線方向(具体的にはZ方向)に関する距離であり、値TLLMは、中心主光線PLが屈折光学系Gr1の最も反射光学系Gr2側又はスクリーンPS側のレンズL9の射出面S92又は後面を通過する点から、凹面ミラーM1に当たる点までの反射型液晶素子40の表示面DDの法線方向(具体的にはZ方向)の距離である(図3B参照)。
The projection optical system 10 satisfies the following conditional expression.
0.7 <TLMM / TLLM <1.5 (4)
However, when the principal ray that emerges from the screen center of the display surface DD of the reflective liquid crystal element 40 and reaches the screen center of the screen PS is the central principal ray PL, the value TLMM is that the central principal ray PL is the concave mirror M1. Is a distance with respect to the normal direction (specifically, the Z direction) of the display surface DD of the reflective liquid crystal element 40 from the point corresponding to the convex mirror M2, and the value TLLM is the central principal ray PL of the refractive optical system Gr1. The normal direction of the display surface DD of the reflective liquid crystal element 40 from the point passing through the exit surface S92 or the rear surface of the lens L9 closest to the reflective optical system Gr2 or the screen PS side to the point hitting the concave mirror M1 (specifically Is the distance in the Z direction (see FIG. 3B).
 条件式(4)は、凹面ミラーM1から凸面ミラーM2までの光路長と、屈折光学系Gr1から凹面ミラーM1までの光路長との比を適切に設定するための条件式である。条件式(4)の値TLMM/TLLMが上限値を下回ることで、凹面ミラーM1から凸面ミラーM2までの光路長が大きくなりすぎず、凸面ミラーM2の大きさを小さく抑えることができる。一方、値TLMM/TLLMが下限値を上回ることで、凸面ミラーM2の倍率負担を低減し、凸面ミラーM2で発生する収差を小さく抑えることができるようになる。 Conditional expression (4) is a conditional expression for appropriately setting the ratio between the optical path length from the concave mirror M1 to the convex mirror M2 and the optical path length from the refractive optical system Gr1 to the concave mirror M1. When the value TLMM / TLLM of conditional expression (4) is below the upper limit value, the optical path length from the concave mirror M1 to the convex mirror M2 does not become too large, and the size of the convex mirror M2 can be kept small. On the other hand, when the value TLMM / TLLM exceeds the lower limit, the magnification burden of the convex mirror M2 can be reduced, and the aberration generated in the convex mirror M2 can be suppressed to a small value.
 なお、上記投影光学系10において、屈折光学系Gr1や反射光学系Gr2は、実質的にパワーを持たない光学素子を追加することができる。 In the projection optical system 10, an optical element having substantially no power can be added to the refractive optical system Gr1 and the reflective optical system Gr2.
 以上説明した投影光学系10によれば、画像表示素子である反射型液晶素子40側から順に屈折光学系Gr1と反射光学系Gr2とを有し、屈折光学系Gr1で一度中間像を結像させた上で、反射光学系Gr2によってその中間像をスクリーンPSに拡大投影するような構成とすることで、反射型液晶素子40の像をスクリーンPSに一度で拡大投影するよりも、拡大率を屈折光学系Gr1と反射光学系Gr2とで分割することができる。これにより、投影光学系10は、大画面投影の光学系には有利な構成となる。また、反射光学系Gr2で光線をスクリーンPS面上に斜め入射させることで、短距離からの大画面投影が可能となる。 The projection optical system 10 described above includes the refractive optical system Gr1 and the reflective optical system Gr2 in order from the reflective liquid crystal element 40, which is an image display element, and once forms an intermediate image with the refractive optical system Gr1. In addition, the intermediate optical image is magnified and projected on the screen PS by the reflective optical system Gr2, so that the magnification rate is refracted rather than the magnified projection of the image of the reflective liquid crystal element 40 on the screen PS at once. The optical system Gr1 and the reflective optical system Gr2 can be divided. As a result, the projection optical system 10 has an advantageous configuration for an optical system for large screen projection. In addition, a large screen can be projected from a short distance by making the light rays obliquely enter the screen PS surface with the reflective optical system Gr2.
 また、反射光学系Gr2を反射型液晶素子40側から凹面ミラーM1及び凸面ミラーM2の順で構成することによって、凹面ミラーM1で光線束径を絞ることができるので、その後方に配置される凸面ミラーM2の大きさを小さくすることができる。また、それぞれのミラーM1,M2を1枚ずつで構成することで、ミラーの組み立て性を確保した上で、投影光学系10全系の大きさも小さくすることができるようになる。 In addition, by constructing the reflective optical system Gr2 in order of the concave mirror M1 and the convex mirror M2 from the reflective liquid crystal element 40 side, it is possible to reduce the beam bundle diameter by the concave mirror M1, so that the convex surface disposed behind it. The size of the mirror M2 can be reduced. Further, by configuring each of the mirrors M1 and M2 one by one, it is possible to reduce the size of the entire projection optical system 10 while ensuring the assembly of the mirrors.
 また、屈折光学系Gr1の最も反射光学系Gr2側のレンズを負レンズとすることで、より広角な投影光学系10とすることができる。 Further, the projection optical system 10 having a wider angle can be obtained by using a negative lens as the lens closest to the reflective optical system Gr2 of the refractive optical system Gr1.
〔実施例〕
 以下、本発明の投影光学系の実施例を示す。各実施例に使用する記号は下記の通りである。
R   :近軸曲率半径
D   :軸上面間隔
Nd  :レンズ材料のd線に対する屈折率
νd  :レンズ材料のアッベ数
 また、実施例1~3の投影光学系に共通する光学諸元値は以下となっている。
Fナンバー:F2.80
画像表示素子サイズ:13.5mm×7.6mm
〔Example〕
Examples of the projection optical system according to the present invention will be described below. Symbols used in each example are as follows.
R: Paraxial radius of curvature D: Axial surface spacing Nd: Refractive index νd of lens material with respect to d-line: Abbe number of lens material The optical specification values common to the projection optical systems of Examples 1 to 3 are as follows: ing.
F number: F2.80
Image display element size: 13.5mm x 7.6mm
 各実施例において、各面番号(Surf.N)の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。その他、無限大を「INF」と表し、反射型液晶素子40の表示面を「DD」と表し、開口絞りを「ST」と表している。
〔数1〕
Figure JPOXMLDOC01-appb-I000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
In each embodiment, the surface described with “*” after each surface number (Surf.N) is a surface having an aspherical shape, and the aspherical shape has the apex of the surface as the origin and the optical axis direction. Is expressed by the following “Equation 1” where the height in the direction perpendicular to the optical axis is h. In addition, infinity is represented as “INF”, the display surface of the reflective liquid crystal element 40 is represented as “DD”, and the aperture stop is represented as “ST”.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
 以下、本発明の投影光学系の具体的な実施例を説明する。 Hereinafter, specific examples of the projection optical system of the present invention will be described.
〔実施例1〕
 実施例1の投影光学系のレンズ面等のデータを以下の表1に示す。
 〔表1〕
Surf.N     R[mm]        D[mm]     Nd         νd
DD                     1.400
1          INF        27.300     1.5187     64.0
2          INF        12.000     1.8396     42.8
3          INF         1.000 
4        25.929        5.143     1.8550     23.5
5      -354.502        1.665
6        71.039        3.487     1.4891     70.0
7       -66.541        2.500     1.8550     23.5
8        22.441        1.572
9        17.777        5.521     1.4891     70.0
10      -24.118        1.200     1.8550     23.5
11       56.149        1.207 
12*      24.254        6.489     1.6347     23.9
13*     -66.531        2.899
14 ST      INF        30.533
15      -39.401        5.150     1.8550     23.5
16      -34.735        1.000
17       28.562       13.783     1.4891     70.0
18      -62.545        3.150
19*     -28.918        3.000     1.5305     56.0
20*      61.411      120.000
21*M1   -55.660     -114.298
22*M2   -62.676      250.000
PS         INF
[Example 1]
Table 1 below shows data such as lens surfaces of the projection optical system of Example 1.
[Table 1]
Surf.N R [mm] D [mm] Nd νd
DD 1.400
1 INF 27.300 1.5187 64.0
2 INF 12.000 1.8396 42.8
3 INF 1.000
4 25.929 5.143 1.8550 23.5
5 -354.502 1.665
6 71.039 3.487 1.4891 70.0
7 -66.541 2.500 1.8550 23.5
8 22.441 1.572
9 17.777 5.521 1.4891 70.0
10 -24.118 1.200 1.8550 23.5
11 56.149 1.207
12 * 24.254 6.489 1.6347 23.9
13 * -66.531 2.899
14 ST INF 30.533
15 -39.401 5.150 1.8550 23.5
16 -34.735 1.000
17 28.562 13.783 1.4891 70.0
18 -62.545 3.150
19 * -28.918 3.000 1.5305 56.0
20 * 61.411 120.000
21 * M1 -55.660 -114.298
22 * M2 -62.676 250.000
PS INF
 実施例1の投影光学系に含まれる非球面の非球面係数を以下の表2に示す。
〔表2〕
 第12面
K=2.1571E+00, A4=-6.9109E-06, A6=1.6523E-07, 
A8=-6.7297E-10, A10=1.8046E-11, A12=0.0000E+00
 第13面
K=-1.7307E+01, A4=4.4902E-05, A6=3.5378E-07, 
A8=-1.8972E-09, A10=5.4204E-11, A12=0.0000E+00
 第19面
K=0.0000E+00, A4=9.4028E-06, A6=1.9792E-08, 
A8=-4.2715E-13, A10=-8.0667E-14, A12=9.7361E-17
 第20面
K=0.0000E+00, A4=3.8404E-06, A6=2.6829E-08, 
A8=-3.4872E-11, A10=1.1459E-13, A12=-1.1273E-16
 第21面
K=-1.4847E-01, A3=-4.0358E-06, A4=1.9865E-06, 
A5=-1.7979E-08, A6=1.1716E-10, A7=0.0000E+00, 
A8=4.3467E-14, A9=0.0000E+00, A10=-1.0341E-17, 
A11=0.0000E+00, A12=3.9834E-21
 第22面
K=-7.1463E+00, A3=8.9723E-06, A4=-2.7174E-08, 
A5=-1.0619E-10, A6=-7.6719E-13, A7=0.0000E+00, 
A8=1.0374E-16, A9=0.0000E+00, A10=-2.7055E-21, 
A11=0.0000E+00, A12=0.0000E+00
 なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)をE(たとえば2.5E-02)を用いて表すものとする。
Table 2 below shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 1.
[Table 2]
12th page
K = 2.1571E + 00, A4 = -6.9109E-06, A6 = 1.6523E-07,
A8 = -6.7297E-10, A10 = 1.8046E-11, A12 = 0.0000E + 00
Side 13
K = -1.7307E + 01, A4 = 4.4902E-05, A6 = 3.5378E-07,
A8 = -1.8972E-09, A10 = 5.4204E-11, A12 = 0.0000E + 00
19th page
K = 0.0000E + 00, A4 = 9.4028E-06, A6 = 1.9792E-08,
A8 = -4.2715E-13, A10 = -8.0667E-14, A12 = 9.7361E-17
20th page
K = 0.0000E + 00, A4 = 3.8404E-06, A6 = 2.6829E-08,
A8 = -3.4872E-11, A10 = 1.1459E-13, A12 = -1.1273E-16
21st page
K = -1.4847E-01, A3 = -4.0358E-06, A4 = 1.9865E-06,
A5 = -1.7979E-08, A6 = 1.1716E-10, A7 = 0.0000E + 00,
A8 = 4.3467E-14, A9 = 0.0000E + 00, A10 = -1.0341E-17,
A11 = 0.0000E + 00, A12 = 3.9834E-21
22nd page
K = -7.1463E + 00, A3 = 8.9723E-06, A4 = -2.7174E-08,
A5 = -1.0619E-10, A6 = -7.6719E-13, A7 = 0.0000E + 00,
A8 = 1.0374E-16, A9 = 0.0000E + 00, A10 = -2.7055E-21,
A11 = 0.0000E + 00, A12 = 0.0000E + 00
In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed by using E (for example, 2.5E-02).
 図4は、既に説明したが、実施例1の投影光学系11等の断面図である。投影光学系11は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2とを有する。図中の符号Liは屈折光学系Gr1を構成する第iレンズ(i=1~9)、符号STは開口絞りを示す。反射光学系Gr2は、縮小側に凹面ミラーM1を有し、拡大側に凸面ミラーM2を有する。また、符号Fは、例えば画像表示素子を反射型液晶素子40すなわちLCOSとした場合のRGB各色を合成するためのプリズム等を想定した平行平板(本実施例では、偏光ビームスプリッター30)である。画像表示素子の方式によっては、平行平板Fは必要ない場合もあるが、平行平板Fはパワーを持たないため、平行平板F以降の光学系は変えずに平行平板Fを除いた構成とすることもできる。その場合には、画像表示素子である反射型液晶素子40とレンズL1との空気間隔を最適な位置に設定するだけでよい。 FIG. 4 is a cross-sectional view of the projection optical system 11 and the like of the first embodiment as already described. The projection optical system 11 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2. In the figure, reference symbol Li denotes an i-th lens (i = 1 to 9) constituting the refractive optical system Gr1, and reference symbol ST denotes an aperture stop. The reflective optical system Gr2 has a concave mirror M1 on the reduction side and a convex mirror M2 on the enlargement side. Reference numeral F denotes a parallel plate (in this embodiment, a polarization beam splitter 30) assuming a prism for combining RGB colors when the image display element is a reflective liquid crystal element 40, that is, LCOS. Depending on the type of image display element, the parallel plate F may not be necessary, but the parallel plate F does not have power, so the optical system after the parallel plate F is not changed, and the parallel plate F is excluded. You can also. In that case, it is only necessary to set the air gap between the reflective liquid crystal element 40 as an image display element and the lens L1 at an optimum position.
 図5A及び5Bは、実施例1の投影光学系11の、画像表示素子(具体的には反射型液晶素子40)側ではなくスクリーンPS上でのMTF(Modulation Transfer Function)特性図である。図5Aは、図6に示す投影範囲ScのうちポイントF1~F3のMTF特性図であり、図5Bは、図6に示す投影範囲ScのうちポイントF4~F6のMTF特性図である。図5A及び5B中のFi-X(i=1~6)は、Fiの位置での水平方向解像力を示し、Fi-Y(i=1~6)は、Fiの位置での垂直方向解像力を示す。MTF評価ポイントは、以降の実施例においてもこの実施例1と同様である。なお、MTFを計算する上での波長ウェイトは以下の通りであり、以降の実施例においても実施例1と同様である。
波長              重み
656.3nm           34
587.6nm           63
546.1nm          100
486.1nm           83
435.8nm           26
404.7nm            8
5A and 5B are MTF (Modulation Transfer Function) characteristic diagrams of the projection optical system 11 of Example 1 on the screen PS instead of the image display element (specifically, the reflective liquid crystal element 40) side. FIG. 5A is an MTF characteristic diagram of points F1 to F3 in the projection range Sc shown in FIG. 6, and FIG. 5B is an MTF characteristic diagram of points F4 to F6 in the projection range Sc shown in FIG. In FIGS. 5A and 5B, Fi-X (i = 1 to 6) indicates the horizontal resolving power at the position Fi, and Fi-Y (i = 1 to 6) indicates the vertical resolving power at the position Fi. Show. The MTF evaluation points are the same as in the first embodiment in the following embodiments. The wavelength weights for calculating the MTF are as follows, and the subsequent examples are the same as those in the first example.
Wavelength weight
656.3nm 34
587.6nm 63
546.1nm 100
486.1nm 83
435.8nm 26
404.7nm 8
 (実施例2)
 実施例2の投影光学系のレンズ面等のデータを以下の表3に示す。
 〔表3〕
Surf.N     R[mm]        D[mm]     Nd         νd
DD                     1.400
1          INF        27.300     1.5187     64.0
2          INF        12.000     1.8396     42.8
3          INF         2.077
4       617.797        5.367     1.8550     23.5
5       -78.889        0.500
6        36.187        6.291     1.8550     23.5
7       213.861       12.788
8       699.383        8.115     1.5914     60.8
9       -32.880        1.200     1.8550     23.5
10       27.246        0.420
11       22.886        6.866     1.4891     70.0
12      -31.915        0.500
13      -44.425        1.993     1.7617     27.2
14     -396.048        0.748
15*      51.875        2.780     1.8550     23.5
16*     496.032        0.552
17 ST      INF       140.796
18     -382.164       19.714     1.8550     23.5
19     -141.060        0.500
20       73.115       34.030     1.4891     70.0
21    -1060.931       28.578
22     -131.957        2.500     1.8081     46.3
23      106.474      162.986
24*M1   -83.633     -132.986
25*M2   -78.885      230.000
PS         INF
(Example 2)
Table 3 below shows data such as lens surfaces of the projection optical system of Example 2.
[Table 3]
Surf.N R [mm] D [mm] Nd νd
DD 1.400
1 INF 27.300 1.5187 64.0
2 INF 12.000 1.8396 42.8
3 INF 2.077
4 617.797 5.367 1.8550 23.5
5 -78.889 0.500
6 36.187 6.291 1.8550 23.5
7 213.861 12.788
8 699.383 8.115 1.5914 60.8
9 -32.880 1.200 1.8550 23.5
10 27.246 0.420
11 22.886 6.866 1.4891 70.0
12 -31.915 0.500
13 -44.425 1.993 1.7617 27.2
14 -396.048 0.748
15 * 51.875 2.780 1.8550 23.5
16 * 496.032 0.552
17 ST INF 140.796
18 -382.164 19.714 1.8550 23.5
19 -141.060 0.500
20 73.115 34.030 1.4891 70.0
21 -1060.931 28.578
22 -131.957 2.500 1.8081 46.3
23 106.474 162.986
24 * M1 -83.633 -132.986
25 * M2 -78.885 230.000
PS INF
 実施例2の投影光学系に含まれる非球面の非球面係数を以下の表4に示す。
〔表4〕
 第15面
K=-6.1778E+00, A4=-2.5493E-06, A6=-5.1140E-08, 
A8=-2.0572E-10, A10=-4.3235E-13, A12=0.0000E+00
 第16面
K=-5.0000E+01, A4=3.6952E-07, A6=-3.4903E-08, 
A8=-2.4392E-10, A10=1.3855E-13, A12=0.0000E+00
 第24面
K=-1.7621E-01, A3=5.1536E-06, A4=2.6671E-07, 
A5=-7.9058E-10, A6=1.2073E-12, A7=0.0000E+00, 
A8=6.3460E-15, A9=0.0000E+00, A10=-9.5268E-19, 
A11=0.0000E+00, A12=8.5392E-23
 第25面
K=-1.4212E+01, A3=1.5289E-06, A4=7.7158E-09, 
A5=4.5956E-11, A6=-9.8232E-13, A7=0.0000E+00, 
A8=2.2667E-17, A9=0.0000E+00, A10=-2.3350E-22, 
A11=0.0000E+00, A12=0.0000E+00
Table 4 below shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 2.
[Table 4]
15th page
K = -6.1778E + 00, A4 = -2.5493E-06, A6 = -5.1140E-08,
A8 = -2.0572E-10, A10 = -4.3235E-13, A12 = 0.0000E + 00
16th page
K = -5.0000E + 01, A4 = 3.6952E-07, A6 = -3.4903E-08,
A8 = -2.4392E-10, A10 = 1.3855E-13, A12 = 0.0000E + 00
24th page
K = -1.7621E-01, A3 = 5.1536E-06, A4 = 2.6671E-07,
A5 = -7.9058E-10, A6 = 1.2073E-12, A7 = 0.0000E + 00,
A8 = 6.3460E-15, A9 = 0.0000E + 00, A10 = -9.5268E-19,
A11 = 0.0000E + 00, A12 = 8.5392E-23
25th page
K = -1.4212E + 01, A3 = 1.5289E-06, A4 = 7.7158E-09,
A5 = 4.5956E-11, A6 = -9.8232E-13, A7 = 0.0000E + 00,
A8 = 2.2667E-17, A9 = 0.0000E + 00, A10 = -2.3350E-22,
A11 = 0.0000E + 00, A12 = 0.0000E + 00
 図7は、実施例2の投影光学系12等の断面図である。投影光学系12は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2とを有する。図中の符号Liは屈折光学系Gr1を構成する第iレンズ(i=1~10)、符号STは開口絞りを示す。反射光学系Gr2は、縮小側に凹面ミラーM1を有し、拡大側に凸面ミラーM2を有する。なお、平行平板Fについては、これを除いた構成とすることもできる。 FIG. 7 is a sectional view of the projection optical system 12 and the like of the second embodiment. The projection optical system 12 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2. In the drawing, reference symbol Li denotes an i-th lens (i = 1 to 10) constituting the refractive optical system Gr1, and reference symbol ST denotes an aperture stop. The reflective optical system Gr2 has a concave mirror M1 on the reduction side and a convex mirror M2 on the enlargement side. In addition, about the parallel plate F, it can also be set as the structure except this.
 図8A及び8Bは、実施例2の投影光学系12の、画像表示素子側ではなくスクリーンPS上でのMTF特性図である。図8Aは、図6と同様のポイントF1~F3のMTF特性図であり、図8Bは、図6と同様のポイントF4~F6のMTF特性図である。 8A and 8B are MTF characteristics diagrams of the projection optical system 12 of Example 2 on the screen PS instead of the image display element side. 8A is an MTF characteristic diagram at points F1 to F3 similar to FIG. 6, and FIG. 8B is an MTF characteristic diagram at points F4 to F6 similar to FIG.
 (実施例3)
 実施例3の投影光学系のレンズ面等のデータを以下の表5に示す。
 〔表5〕
Surf.N     R[mm]        D[mm]     Nd         νd
DD                     1.400
1          INF        27.300     1.5187     64.0 
2          INF        12.000     1.8396     42.8 
3          INF         1.000
4        30.867        4.632     1.8550     23.5 
5    -20974.654        0.500
6        87.201        2.963     1.8470     23.8 
7      -369.296        2.050
8      -237.417        7.925     1.6682     54.3 
9       -24.883        2.500     1.8470     23.8 
10       25.631        1.868
11       22.466        4.415     1.4950     69.0 
12      -24.118        1.200     1.7429     27.2 
13      -44.257        0.500
14*      57.176        2.182     1.6347     23.9 
15*      96.266        2.256
16 ST      INF        46.967
17      -80.950        6.293     1.8460     24.4 
18      -52.367        1.000         
19       54.783        9.281     1.4870     70.2 
20     2066.262       33.622
21*     -52.760        5.000     1.5305     56.0 
22*     218.326      123.145
23*M1   -66.197     -136.577
24*M2   -90.061      250.000
PS         INF
(Example 3)
Table 5 below shows data such as lens surfaces of the projection optical system of Example 3.
[Table 5]
Surf.N R [mm] D [mm] Nd νd
DD 1.400
1 INF 27.300 1.5187 64.0
2 INF 12.000 1.8396 42.8
3 INF 1.000
4 30.867 4.632 1.8550 23.5
5 -20974.654 0.500
6 87.201 2.963 1.8470 23.8
7 -369.296 2.050
8 -237.417 7.925 1.6682 54.3
9 -24.883 2.500 1.8470 23.8
10 25.631 1.868
11 22.466 4.415 1.4950 69.0
12 -24.118 1.200 1.7429 27.2
13 -44.257 0.500
14 * 57.176 2.182 1.6347 23.9
15 * 96.266 2.256
16 ST INF 46.967
17 -80.950 6.293 1.8460 24.4
18 -52.367 1.000
19 54.783 9.281 1.4870 70.2
20 2066.262 33.622
21 * -52.760 5.000 1.5305 56.0
22 * 218.326 123.145
23 * M1 -66.197 -136.577
24 * M2 -90.061 250.000
PS INF
 実施例3の投影光学系に含まれる非球面の非球面係数を以下の表6に示す。
〔表6〕
 第14面
K=3.5491E+01, A4=-1.0021E-05, A6=-1.3915E-07, 
A8=-4.7609E-10, A10=-2.1213E-11, A12=0.0000E+00
 第15面
K=5.0000E+01, A4=2.5526E-05, A6=4.4569E-08, 
A8=-8.6429E-10, A10=8.7629E-12, A12=0.0000E+00
 第21面
K=0.0000E+00, A4=1.2418E-06, A6=9.8647E-10, 
A8=-2.9277E-14, A10=2.5698E-15, A12=-1.8959E-18
 第22面
K=0.0000E+00, A4=-2.1956E-07, A6=9.5549E-10, 
A8=1.2307E-12, A10=-6.7547E-16, A12=8.7661E-19
 第23面
K=-1.6472E-01, A3=-1.1570E-06, A4=9.2981E-07, 
A5=-8.4620E-09, A6=7.0157E-11, A7=0.0000E+00, 
A8=2.0323E-14, A9=0.0000E+00, A10=-5.7871E-18, 
A11=0.0000E+00, A12=9.8459E-22
 第24面
K=-9.9531E+00, A3=2.7126E-06, A4=-2.8924E-09, 
A5=5.7897E-11, A6=-7.2237E-13, A7=0.0000E+00, 
A8=1.4781E-17, A9=0.0000E+00, A10=-1.4333E-22, 
A11=0.0000E+00, A12=0.0000E+00
Table 6 below shows the aspheric coefficients of the aspheric surfaces included in the projection optical system of Example 3.
[Table 6]
14th page
K = 3.5491E + 01, A4 = -1.0021E-05, A6 = -1.3915E-07,
A8 = -4.7609E-10, A10 = -2.1213E-11, A12 = 0.0000E + 00
15th page
K = 5.0000E + 01, A4 = 2.5526E-05, A6 = 4.4569E-08,
A8 = -8.6429E-10, A10 = 8.7629E-12, A12 = 0.0000E + 00
21st page
K = 0.0000E + 00, A4 = 1.2418E-06, A6 = 9.8647E-10,
A8 = -2.9277E-14, A10 = 2.5698E-15, A12 = -1.8959E-18
22nd page
K = 0.0000E + 00, A4 = -2.1956E-07, A6 = 9.5549E-10,
A8 = 1.2307E-12, A10 = -6.7547E-16, A12 = 8.7661E-19
23rd page
K = -1.6472E-01, A3 = -1.1570E-06, A4 = 9.2981E-07,
A5 = -8.4620E-09, A6 = 7.0157E-11, A7 = 0.0000E + 00,
A8 = 2.0323E-14, A9 = 0.0000E + 00, A10 = -5.7871E-18,
A11 = 0.0000E + 00, A12 = 9.8459E-22
24th page
K = -9.9531E + 00, A3 = 2.7126E-06, A4 = -2.8924E-09,
A5 = 5.7897E-11, A6 = -7.2237E-13, A7 = 0.0000E + 00,
A8 = 1.4781E-17, A9 = 0.0000E + 00, A10 = -1.4333E-22,
A11 = 0.0000E + 00, A12 = 0.0000E + 00
 図9は、実施例3の投影光学系13等の断面図である。投影光学系13は、屈折光学系(第1光学群)Gr1と、反射光学系(第2光学群)Gr2とを有する。図中の符号Liは屈折光学系Gr1を構成する第iレンズ(i=1~10)、符号STは開口絞りを示す。反射光学系Gr2は、縮小側に凹面ミラーM1を有し、拡大側に凸面ミラーM2を有する。なお、平行平板Fについては、これを除いた構成とすることもできる。 FIG. 9 is a sectional view of the projection optical system 13 and the like of the third embodiment. The projection optical system 13 includes a refractive optical system (first optical group) Gr1 and a reflective optical system (second optical group) Gr2. In the drawing, reference symbol Li denotes an i-th lens (i = 1 to 10) constituting the refractive optical system Gr1, and reference symbol ST denotes an aperture stop. The reflective optical system Gr2 has a concave mirror M1 on the reduction side and a convex mirror M2 on the enlargement side. In addition, about the parallel plate F, it can also be set as the structure except this.
 図10A及び10Bは、実施例3の投影光学系13の、画像表示素子側ではなくスクリーンPS上でのMTF特性図である。図10Aは、図6と同様のポイントF1~F3のMTF特性図であり、図10Bは、図6と同様のポイントF4~F6のMTF特性図である。 10A and 10B are MTF characteristics diagrams of the projection optical system 13 of Example 3 on the screen PS instead of the image display element side. 10A is an MTF characteristic diagram at points F1 to F3 similar to FIG. 6, and FIG. 10B is an MTF characteristic diagram at points F4 to F6 similar to FIG.
 以下の表7は、参考のため、各条件式(1)~(4)に対応する各実施例1~3の値をまとめたものである。
〔表7〕
Figure JPOXMLDOC01-appb-I000002
Table 7 below summarizes the values of Examples 1 to 3 corresponding to the conditional expressions (1) to (4) for reference.
[Table 7]
Figure JPOXMLDOC01-appb-I000002
 以上、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、投影光学系10において、屈折光学系Gr1と反射光学系Gr2との間にパワーを持たない光路折曲げミラーを配置することができる。この場合、光路を例えば90°異なる方向に曲げることができる。そのため、投影光学系10のレイアウトの自由度が増し、結果として投影光学系10全系の大きさを小さく抑えることができるようになる。 As mentioned above, although this invention was demonstrated according to embodiment and an Example, this invention is not limited to the said embodiment etc. For example, in the projection optical system 10, an optical path bending mirror having no power can be disposed between the refractive optical system Gr1 and the reflective optical system Gr2. In this case, the optical path can be bent in a direction different by 90 °, for example. Therefore, the degree of freedom of the layout of the projection optical system 10 is increased, and as a result, the size of the entire projection optical system 10 can be kept small.
 図11は、図1に示す投影光学系10の変形例を示しており、この投影光学系10では、レンズL9と凹面ミラーM1との間に第3の平面ミラーM3を光路折曲げミラーとして配置している。これにより、屈折光学系Gr1と反射光学系Gr2との間で光路が90°折り曲げられている。 FIG. 11 shows a modification of the projection optical system 10 shown in FIG. 1. In this projection optical system 10, a third plane mirror M3 is arranged as an optical path bending mirror between the lens L9 and the concave mirror M1. is doing. Thereby, the optical path is bent 90 degrees between the refractive optical system Gr1 and the reflective optical system Gr2.
 また、上記実施形態において、画像表示素子としては、LCOS等の反射型液晶素子40に限らず、マイクロミラーからなるマイクロミラーデバイス、透過型のLCD等を用いることができる。この場合、偏光ビームスプリッター30は、それぞれに適合する光学系に変更する。 In the above embodiment, the image display element is not limited to the reflective liquid crystal element 40 such as LCOS, but a micromirror device including a micromirror, a transmissive LCD, or the like can be used. In this case, the polarization beam splitter 30 is changed to an optical system suitable for each.
 また、上記実施形態において、反射型液晶素子40は、単独で使用する場合に限らず、偏光ビームスプリッター30の別の側面に対向して追加の反射型液晶素子を配置することもできる。 Further, in the above-described embodiment, the reflective liquid crystal element 40 is not limited to being used alone, and an additional reflective liquid crystal element can be disposed facing another side surface of the polarization beam splitter 30.
 また、上記実施形態において、照明光学系20の光源としては、LEDに限らず、水銀ランプ、レーザー等を用いることができ、これらの光源を同種又は異種で組み合わせることもできる。特に、LEDやレーザーを光源とする場合、赤色・緑色・青色の光源数は出力に合わせ任意に組み合わせても良い。また、合波するための光学系を追加し、白色又は特定色に関して複数の光源を配置することで明るさを上げることもできる。 In the above embodiment, the light source of the illumination optical system 20 is not limited to the LED, and a mercury lamp, a laser, or the like can be used, and these light sources can be used in the same type or different types. In particular, when LEDs or lasers are used as light sources, the number of red, green, and blue light sources may be arbitrarily combined according to the output. Further, it is possible to increase the brightness by adding an optical system for multiplexing and arranging a plurality of light sources for white or a specific color.

Claims (7)

  1.  画像表示素子から得られる像を拡大してスクリーン上に投影する投影装置用の投影光学系であって、前記画像表示素子側から順に、
     複数のレンズを有する屈折光学系と、
     前記屈折光学系から出射された光線を反射させてスクリーンまで導く反射光学系とからなり、
     前記屈折光学系と前記反射光学系との間に中間像を形成し、
     前記屈折光学系の最も前記反射光学系側に配置されたレンズは負のパワーを有し、
     前記反射光学系は前記画像表示素子側から順に、1枚の凹面形状を有する凹面ミラー、1枚の凸面形状を有する凸面ミラー、のみで構成され、以下の条件式を満足する投影光学系。
     -3.0<FLlst/FLd<-0.5  …  (1)
    ただし、
     FLlst:前記屈折光学系の最も前記反射光学系側に配置されたレンズの焦点距離
     FLd:前記屈折光学系の焦点距離
    A projection optical system for a projection apparatus that magnifies and projects an image obtained from an image display element on a screen, in order from the image display element side,
    A refractive optical system having a plurality of lenses;
    A reflective optical system that reflects the light emitted from the refractive optical system and guides it to the screen;
    Forming an intermediate image between the refractive optical system and the reflective optical system;
    The lens disposed closest to the reflective optical system of the refractive optical system has a negative power,
    The projection optical system is composed of only one concave mirror having a concave shape and one convex mirror having a convex shape in order from the image display element side, and satisfies the following conditional expression.
    -3.0 <FLlst / FLd <-0.5 (1)
    However,
    FLlst: focal length of the lens disposed closest to the reflective optical system of the refractive optical system FLd: focal length of the refractive optical system
  2.  以下の条件式を満足する、請求項1に記載の投影光学系。
     1.0<EDMR1/EDL<3.0  …  (2)
    ただし、
     EDMR1:前記凹面ミラーの使用領域の光軸からの最大高さ
     EDL:前記屈折光学系内のレンズのうち、最も外径の大きなレンズの有効半径
    The projection optical system according to claim 1, wherein the following conditional expression is satisfied.
    1.0 <EDMR1 / EDL <3.0 (2)
    However,
    EDMR1: Maximum height from the optical axis of the use area of the concave mirror EDL: Effective radius of the lens having the largest outer diameter among the lenses in the refractive optical system
  3.  以下の条件式を満足する、請求項1または2に記載の投影光学系。
     1.5<YDMR2/YDMR1<3.0  …  (3)
    ただし、
     YDMR2:前記凸面ミラーの使用領域の対角線方向の大きさ
     YDMR1:前記凹面ミラーの使用領域の対角線方向の大きさ
    The projection optical system according to claim 1, wherein the following conditional expression is satisfied.
    1.5 <YDMR2 / YDMR1 <3.0 (3)
    However,
    YDMR2: size in the diagonal direction of the usage area of the convex mirror YDMR1: size in the diagonal direction of the usage area of the concave mirror
  4.  以下の条件式を満足する、請求項1から3までのいずれか一項に記載の投影光学系。
     0.7<TLMM/TLLM<1.5  …  (4)
    ただし、前記画像表示素子の表示面における画面中心から出射してスクリーン面の画面中心に到達する主光線を中心主光線とすると、
     TLMM:前記中心主光線が前記凹面ミラー面に当たる点から、前記凸面ミラー面に当たる点までの画像表示素子の表示面の法線方向の距離
     TLLM:前記中心主光線が前記屈折光学系の最もスクリーン側に配置されたレンズの射出面を通過する点から、前記凹面ミラー面に当たる点までの画像表示素子の表示面の法線方向の距離
    The projection optical system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    0.7 <TLMM / TLLM <1.5 (4)
    However, when the principal ray that emerges from the center of the screen on the display surface of the image display element and reaches the screen center of the screen surface is the central principal ray,
    TLMM: Distance in the normal direction of the display surface of the image display element from the point where the central principal ray hits the concave mirror surface to the point where the central principal ray hits the convex mirror surface. TLLM: The central principal ray is closest to the screen side of the refractive optical system. The distance in the normal direction of the display surface of the image display element from the point passing through the exit surface of the lens arranged at the point to the point hitting the concave mirror surface
  5.  前記屈折光学系と前記反射光学系との間にパワーを持たない光路折曲げミラーを有する、請求項1から4までのいずれか一項に記載の投影光学系。 The projection optical system according to any one of claims 1 to 4, further comprising an optical path bending mirror having no power between the refractive optical system and the reflective optical system.
  6.  実質的にパワーを持たない光学素子をさらに有する、請求項1から5までのいずれか一項に記載の投影光学系。 The projection optical system according to any one of claims 1 to 5, further comprising an optical element having substantially no power.
  7.  請求項1から6までのいずれか一項に記載の投影光学系と、
     画像表示素子と、
     前記画像表示素子を照明する照明光を生成する照明光学系と、


     前記画像表示素子を駆動する素子駆動回路と、
     前記照明光学系及び前記素子駆動回路の動作を制御する制御回路と、
    を備える投影装置。
    A projection optical system according to any one of claims 1 to 6;
    An image display element;
    An illumination optical system for generating illumination light for illuminating the image display element;


    An element driving circuit for driving the image display element;
    A control circuit for controlling operations of the illumination optical system and the element driving circuit;
    A projection apparatus comprising:
PCT/JP2016/052510 2015-02-05 2016-01-28 Projection optical system and projection device WO2016125681A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-021673 2015-02-05
JP2015021673 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125681A1 true WO2016125681A1 (en) 2016-08-11

Family

ID=56564028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052510 WO2016125681A1 (en) 2015-02-05 2016-01-28 Projection optical system and projection device

Country Status (1)

Country Link
WO (1) WO2016125681A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008199A1 (en) * 2016-07-04 2018-07-05 パナソニックIpマネジメント株式会社 Projection optical system and image projection apparatus
CN109557645A (en) * 2017-09-25 2019-04-02 佳能株式会社 Optical system and image projection device
CN110873949A (en) * 2018-08-29 2020-03-10 理光工业解决方案有限公司 Projection optical system and image projection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043666A1 (en) * 2004-10-21 2006-04-27 Sony Corporation Projection optical system and projection type image display device
JP2009157223A (en) * 2007-12-27 2009-07-16 Konica Minolta Opto Inc Oblique projection optical system
JP2009222806A (en) * 2008-03-13 2009-10-01 Ricoh Co Ltd Projection optical system and image projection apparatus
JP2010186120A (en) * 2009-02-13 2010-08-26 Seiko Epson Corp Projection optical system and projection image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043666A1 (en) * 2004-10-21 2006-04-27 Sony Corporation Projection optical system and projection type image display device
JP2009157223A (en) * 2007-12-27 2009-07-16 Konica Minolta Opto Inc Oblique projection optical system
JP2009222806A (en) * 2008-03-13 2009-10-01 Ricoh Co Ltd Projection optical system and image projection apparatus
JP2010186120A (en) * 2009-02-13 2010-08-26 Seiko Epson Corp Projection optical system and projection image display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008199A1 (en) * 2016-07-04 2018-07-05 パナソニックIpマネジメント株式会社 Projection optical system and image projection apparatus
US10444612B2 (en) 2016-07-04 2019-10-15 Panasonic Intellectual Property Management Co., Ltd. Projection optical system and image projection device for projecting an image light flux onto a projection surface
CN109557645A (en) * 2017-09-25 2019-04-02 佳能株式会社 Optical system and image projection device
JP2019060982A (en) * 2017-09-25 2019-04-18 キヤノン株式会社 Optical system, zoom lens, and image projection device
US11029586B2 (en) 2017-09-25 2021-06-08 Canon Kabushiki Kaisha Optical system and image projection apparatus
CN109557645B (en) * 2017-09-25 2021-12-31 佳能株式会社 Optical system and image projection apparatus
CN110873949A (en) * 2018-08-29 2020-03-10 理光工业解决方案有限公司 Projection optical system and image projection apparatus
CN110873949B (en) * 2018-08-29 2023-02-28 理光工业解决方案有限公司 Projection optical system and image projection apparatus

Similar Documents

Publication Publication Date Title
US10908484B2 (en) Projection optical system and projector
JP5480089B2 (en) Projection lens and projection display device
US20070263294A1 (en) Projection zoom lens and projection-type display device
JP5259353B2 (en) Projection lens and projection display device using the same
JP2012002906A (en) Projection lens and projection device
JP5480064B2 (en) Projection lens and projection display device
JP2009003259A (en) Zoom lens for projection and projection type display device
JP2008287181A (en) Projection lens and projection type display device using the same
JP2011221055A (en) Projection lens and projection type display device using the same
JP2007079107A (en) Two-group zoom projection lens and projection type display device
JPWO2012105181A1 (en) Projection lens and projection display device
JP2011033657A (en) Wide-angle projection zoom lens and projection display
JP2016206528A (en) Optical system and optical device using the same
JP2012027420A (en) Projection optical system and projection device
JP2007304268A (en) Zoom lens and image projection device having the same
JP2009116106A (en) Lens for projection and projection image display device
WO2016125681A1 (en) Projection optical system and projection device
JP2015200829A (en) Projection optical system, projector device, and image capturing device
CN110927941B (en) Projection optical system and projection type image display device
JP2008309991A (en) Projection lens and projection display apparatus using the same
JP2009058904A (en) Projection lens and projection type display device using same
JP2009025754A (en) Projection wide-angle zoom lens and projection type display apparatus
JP4211373B2 (en) Projection lens and projector provided with the same
JP2012073337A (en) Projection lens and projection type display apparatus
JP2015096887A (en) Projection optical system and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP