WO2016125254A1 - Cell treatment device and cell treatment system - Google Patents

Cell treatment device and cell treatment system Download PDF

Info

Publication number
WO2016125254A1
WO2016125254A1 PCT/JP2015/052981 JP2015052981W WO2016125254A1 WO 2016125254 A1 WO2016125254 A1 WO 2016125254A1 JP 2015052981 W JP2015052981 W JP 2015052981W WO 2016125254 A1 WO2016125254 A1 WO 2016125254A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
cell
reagent
flow path
discharge
Prior art date
Application number
PCT/JP2015/052981
Other languages
French (fr)
Japanese (ja)
Inventor
友幸 坂井
白井 正敬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/052981 priority Critical patent/WO2016125254A1/en
Publication of WO2016125254A1 publication Critical patent/WO2016125254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a cell processing device and a cell processing system, for example, gene expression analysis, cell function analysis, biological tissue analysis method, disease diagnosis, drug discovery, and the like.
  • Non-patent Document 1 Used a bead to capture mRNA in one cell and then converted it to cDNA by reverse transcription to create a cDNA library (cDNA aggregate containing all cDNAs). Is used to accurately measure the expression levels of multiple genes contained in one cell (Non-patent Document 1).
  • Islam et al. Converted a small amount of mRNA in a single cell into cDNA by reverse transcription, amplified the nucleic acid using PCR amplification, determined the sequence of the amplified product using a large-scale DNA sequencer, and sequenced it. A method for estimating the number of mRNA molecules in one cell by counting the results and counting the number of nucleic acid sequences has been shown (Non-patent Document 2).
  • the volume of the reaction solution is limited to the order of several hundred nanoliters to microliters or more due to problems of dispensing accuracy and solvent evaporation. Therefore, even when analyzing a single cell, since an appropriate concentration of reagent must be used, the amount of the reaction reagent (number of moles) increases in proportion to the reaction volume, and the reagent cost increases proportionally. To increase. If statistically significant data cannot be obtained unless a large number of cells are measured, the reagent cost is very large.
  • Patent Document 1 a cDNA library is prepared using a porous membrane, and this is repeatedly used for the gene expression detection step, whereby a large number of cells can be detected. A method for gene expression analysis at the cellular level is shown.
  • Patent Document 2 discloses a method for gene expression analysis at a single cell level of a large number of cells using a device composed of a porous membrane or beads arranged in a two-dimensional array.
  • each reaction efficiency may decrease if the previous reaction reagent remains.
  • the cells are adsorbed to a place other than the place where the cells are originally captured on the device (for example, a flow path for moving a cell suspension as a sample to a porous membrane or a bead arranged in a two-dimensional array). There may be.
  • intracellular mRNA diffuses during the subsequent cell lysis reaction and adsorbs in an uncontrolled manner to beads arranged in a porous membrane or a two-dimensional array. May cause mRNA contamination. For this reason, it is essential to wash the device by flowing a large amount of a cleaning solution such as a buffer between the steps.
  • Patent Document 2 the above steps i) to iii) are performed in a reaction cell for capturing cells. At this time, each reaction reagent is fed from one inlet. For this reason, this method is not suitable for feeding a large amount of washing solution and an expensive reaction reagent from the same inlet.
  • Patent Document 2 it is possible to inject each solution by connecting a tube to an inlet and moving the tip of the tube to a cleaning liquid container and a reagent container. However, more reagents than necessary are required to fill the tube.
  • reaction temperature when each reaction reagent container is installed at a position where it is affected by the temperature (for example, a chip with an integrated reagent container is used) In some cases, the reaction temperature during a certain reaction may cause deterioration of reagents used in the subsequent reaction, which may reduce the reaction efficiency.
  • the present invention has been made in view of such a situation, and at the same time, when carrying out gene expression analysis of a plurality of cells at a single cell level, the amount of expensive reaction reagent used can be reduced,
  • the present invention provides a technique capable of effectively cleaning a device so as to suppress a reduction in reaction efficiency due to turbidity and prevent contamination of mRNA by cells outside the measurement target.
  • a cell treatment device includes a reaction field in which a sample derived from a living body is captured, a storage unit that temporarily stores a sample, a reagent, or a cleaning solution introduced from the outside, a reaction A first flow path connecting the field and the storage part, an opening for introducing the sample and the reagent from the outside of the device, a second flow path connecting the opening and the storage part, and an introduction port for introducing the cleaning liquid from the outside of the device And a third channel connecting the inlet and the second channel.
  • the opening, the junction between the second channel and the third channel, and the outlet to the first channel in the housing unit are arranged in descending order from the vertical direction.
  • a cell suspension which is an expensive reaction reagent or sample
  • a pipette or other dispensing device a large amount of a washing solution such as a buffer is introduced from the inlet and stored. Wash the part.
  • the present invention when gene expression analysis is performed simultaneously on a plurality of cells at a single cell level, it is possible to reduce the amount of expensive reaction reagent used. In addition, a reduction in reaction efficiency due to turbidity between reaction reagents can be suppressed. Furthermore, it is possible to effectively wash the device so as not to contaminate mRNA by cells outside the measurement target.
  • FIG. 1 is a diagram showing a schematic configuration of a system for capturing cellular nucleic acid according to a first embodiment of the present invention. It is a figure for demonstrating the introduction process of the sample and reagent in the 1st Embodiment of this invention.
  • the present invention relates to gene expression analysis, cell function analysis, biological tissue analysis method, disease diagnosis, drug discovery, and the like, and more particularly to an mRNA analysis method at a single cell level. More specifically, in the flow cell device for single cell analysis, the present invention is configured to prevent the reaction reagent from adhering to the vicinity of the introduction opening, and a large amount of washing liquid is applied to the flow channel portion where the reaction reagent touches. A configuration capable of flowing is disclosed.
  • a cDNA library sheet having a resolution of one cell level is prepared from a test nucleic acid (for example, mRNA) in living tissue, and a next-generation DNA sequencer or a DNA probe having a sequence complementary to the gene sequence to be investigated is prepared.
  • gene expression analysis means quantitative analysis of the expression of a gene or biomolecule in a sample (cell, tissue section, etc.), that is, a target test nucleic acid, It means analyzing the expression distribution of nucleic acid) or biomolecule, and obtaining correlation data between a specific position in a sample and the expression level of a gene (test nucleic acid) or biomolecule.
  • FIG. 1 is a diagram (plan view) showing a configuration of a cell nucleic acid supplementing device 100 used in an embodiment of the present invention as viewed from above.
  • FIG. 2 is a diagram (cross-sectional view) showing a cross section of the cell nucleic acid supplementing device 100.
  • the device 100 for capturing nucleic acids of cells a device in which the shape of the PDMS substrate 101 is manufactured using a semiconductor process can be used.
  • This device (for example, a size of 1 mm ⁇ 1 mm) has a configuration in which reaction tanks 104 in which cell capturing holes 102 and nucleic acid capturing holes 103 are arranged vertically are arranged in a two-dimensional array.
  • Ten reaction vessels 104 are arranged in the xy direction at intervals of 125 ⁇ m. A total of 100 reaction vessels 104 are arranged in one cell nucleic acid supplementing device 100.
  • Nucleic acid capture holes 103 are packed with magnetic beads 105 having a diameter of 1 ⁇ m.
  • the opening diameter of the cell capturing hole 102 can be set to 8 ⁇ m, for example, and the opening diameter of the nucleic acid capturing hole 103 can be set to 70 ⁇ m, for example.
  • the alumina bead sheet 106 having an opening of about 500 nm is disposed on the bottom surface of the device 100 so that the magnetic beads 105 do not leak from the lower side of FIG.
  • the PDMS substrate 101 and the pore sheet 106 are bonded by plasma bonding.
  • a substrate made of a resin (polycarbonate, cyclic polyolefin, polypropylene) manufactured by nanoimprint technology or injection molding, a commercially available nylon mesh, or a track etch membrane may be used.
  • the adhesion to the pore array sheet can be performed by thermal adhesion, or simply by pressing the PDMS substrate 101 and the pore sheet 106 from above and below with pressure.
  • FIG. 3 is a diagram showing a schematic configuration of the magnetic beads 105 for capturing nucleic acid.
  • a number of streptavidins 107 are modified around the magnetic beads 105.
  • a DNA probe 109 for capturing mRNA to which biotin 108 is bound is bound to the 5 ′ end via streptavidin 107.
  • magnetic beads are used, but in addition to this, beads are produced from resin materials (such as polystyrene), oxides (such as glass), metals (such as iron), sepharose, and combinations thereof. Can do.
  • FIG. 4 is a diagram illustrating a schematic configuration of the DNA probe 109 for capturing mRNA.
  • the DNA probe 109 for capturing mRNA in which biotin 108 is bound to the 5 ′ end of the DNA probe has, from the 5 ′ end direction, a common sequence (Forward) 110 for PCR amplification and a tag sequence 111 for cell recognition. , And a nucleic acid capture sequence 112.
  • oligo (dT) is used as the nucleic acid capture sequence.
  • oligo (dT) it is possible to hybridize with the polyA sequence of mRNA and capture mRNA of the sample cells.
  • the degree of polymerization of the oligo (dT) may be any degree of polymerization that can hybridize with the poly A sequence of mRNA and capture the mRNA on the magnetic beads 105 to which the nucleic acid probe containing oligo (dT) is immobilized. For example, it can be about 10 to 30 bases, 10 to 20 bases, 10 to 15 bases.
  • the nucleic acid to be captured is mRNA.
  • the nucleic acid capture sequence is complementary to a random sequence or a part of the target test nucleic acid. Can be used.
  • this sequence can be used as a common primer in the subsequent PCR amplification step.
  • FIG. 5 is a diagram showing a schematic configuration of the flow cell device 120 according to the first embodiment of the present invention.
  • the flow cell device 120 includes an introduction port 121 for introducing a washing buffer, an opening 122 for introducing a sample cell or reaction reagent, a storage unit 123 for temporarily storing the cell or reaction reagent, and the cell nucleic acid capturing device 100.
  • acrylic resin is used as the material of the flow cell device 120, but other resin or metal may be used. Considering ease of observation, it is preferable to use an optically transparent material. Moreover, it is necessary to avoid the material which comprises a flow path from the material which obstruct
  • the opening size of the opening 122 is not less than a size that allows introduction of a tip of a reagent storage dispenser described later.
  • the diameter of the opening 122 is set to 1 mm.
  • the cell nucleic acid capture device 100 can be optically observed in order to confirm which cell capture hole has captured the cell, and whether a plurality of cells have not been captured in one cell capture hole. desirable. Therefore, a window 127 made of an optically transparent material is provided immediately above the reaction field 124 of the flow cell device 120 so that the cell nucleic acid capturing device 100 can be optically observed. In the present embodiment, a quartz glass plate is used as the window 127. If the material of the flow cell device is an optically transparent material, it is not necessary to use another material directly above the reaction field 124. If it is not necessary to optically observe the cell nucleic acid supplementing device 100, it is not necessary to use another material directly above the reaction field 124 even if the material of the flow cell device is not an optically transparent material.
  • the distance between the objective lens and the surface of the cell nucleic acid supplementing device 100 needs to be less than or equal to the working distance of the objective lens. This is to prevent the objective lens from coming into contact with the flow cell device 120 and becoming unable to image. Therefore, the thickness of the portion immediately above the reaction field of the flow cell device 120 (that is, the thickness of the window 127) needs to be less than the working distance of the objective lens including the height of the flow path. Therefore, in the flow cell device, the surface immediately above the reaction field 124 (the upper surface portion of the window 127) is configured to be lower than the surface where the opening 122 is installed.
  • the upper surface of the opening 122 of the flow cell device 120 may be arranged in the same plane as the surface immediately above the reaction field 124 (the upper surface portion of the window 127) (there is no need to have a stepped structure as shown in FIG. 5).
  • the volume of the storage unit 123 needs to be equal to or greater than the amount of the reaction reagent to be used in order to prevent contamination of the upper part of the storage unit 123 by the sample and the reaction reagent to be used.
  • the amount of the reaction reagent to be used may be an amount that satisfies the reaction field 124. In this embodiment, since the amount of the reaction reagent to be used is 20 ⁇ L, the volume of the reagent storage unit 123 is 30 ⁇ L.
  • FIG. 6 shows a schematic diagram of a system 20 for capturing cellular nucleic acids according to the first embodiment of the present invention.
  • the cell nucleic acid capturing system 20 performs optical observation of the liquid feeding unit 200 including the flow cell device, the reagent dispensing unit 201, the temperature adjusting unit 203 for adjusting the temperature of the flow cell device, and the cell nucleic acid capturing device 100.
  • An optical observation unit 204 and a moving stage unit 205 that moves the flow cell device 120 to a desired position are provided.
  • the cleaning tube 206 is connected to the inlet 121 of the flow cell device, and one end of the cleaning tube 206 is connected to a syringe 224 filled with a cleaning buffer.
  • a syringe 211 and a syringe 212 are connected to the first outlet 125 and the second outlet 126 of the flow cell device via outlet tubes 209 and 210, respectively.
  • the reagent dispensing unit 201 is for dispensing a reagent containing dispenser 213 that contains and dispenses a reagent and a sample, and for pressurizing the reagent containing dispenser 213 for a specific time in order to dispense the reagent and the sample.
  • the pressurizer 214 includes a moving stage 215 that moves the reagent containing dispenser 213 to insert the tip of each reagent containing dispenser 213 into the opening 122 in the flow cell device 120.
  • the reagent storage dispenser 213 is composed of a polypropylene resin and a glass-made capillary with an inner / outer diameter of 75/360 ⁇ m.
  • each reagent containing dispenser 213 can be moved individually and can be pressurized individually. Since the reagent storage dispenser 213 and the flow cell device 120 are not connected, even if the temperature of the flow cell device 120 is controlled by each reaction, the influence of the temperature affects the reagent stored in the reagent storage dispenser 213. There is nothing. In this embodiment, the temperature of the reagent storage / dispensing device 213 is not adjusted. However, the temperature may be adjusted in order to prevent the deterioration of the reagent (particularly at a low temperature (eg, 4 ° C.)).
  • the temperature control unit 203 is configured to combine a Peltier and a heater so that the temperature in the flow cell device 120 can be adjusted from 4 ° C. to 85 ° C. More specifically, a structure in which a metal (for example, copper) block having good heat conduction is bonded to the surface of the Peltier element with an adhesive having good heat conduction, and a heater is introduced inside the metal can be used. Moreover, the metal block is connected to the flow cell device 120 through a heat conductive sheet.
  • a metal for example, copper
  • the beam width of the 488 nm laser light oscillated from the laser 218 is expanded by the beam expander 225.
  • the laser beam whose beam width is expanded is reflected by the dichroic mirror 222 that reflects 500 nm or less, condensed by the objective lens 219, and irradiated to the cells captured by the cell nucleic acid capturing device 100 in the flow cell device 120. Is done.
  • the fluorescence from the irradiated cells is collected by the objective lens 219.
  • the condensed laser light passes through the dichroic mirror 222, the background light is removed by the optical filter 223 that cuts the wavelength of 500 nm or less, and is imaged on the CCD camera 221 by the imaging lens 220.
  • the configuration of the epi-illumination fluorescence microscope is used, but the configuration of an epi-illumination bright field and dark field microscope for directly observing cells may be used. Further, as long as the lower surfaces of the cell nucleic acid capturing device 100 and the flow cell device 120 are made of an optically transparent material, an observation method in which excitation light or illumination light is irradiated from below the flow cell device 120 may be used.
  • the moving stage unit 205 is composed of an automatic moving stage. On the moving stage, the temperature control unit 203 and the flow cell device 120 are installed. The moving stage unit 205 is connected to the temperature control unit 203 via a heat insulating material so that it is not affected by the temperature of the temperature control unit 203. The moving stage unit 205 moves the flow cell device 120 to an appropriate position by the reaction process. For example, the moving stage unit 205 is used when the sample or reagent is introduced into the storage unit 123 at a position (measurement position) where the optical measurement unit is disposed immediately above the cell nucleic acid capturing device 100 during optical observation. The flow cell device 120 is moved to a position (reagent introduction position) where the reagent storage / dispensing device 213 is disposed immediately above the introduction port 122.
  • FIG. 7 is a diagram showing a sample (cell suspension) and reagent introduction process in the flow cell device 120 according to the first embodiment of the present invention.
  • FIG. 7A Introduction of sample or the like into the accommodating portion
  • the flow cell device 120 is moved to the reagent introduction position by the moving stage unit 205. Further, the moving stage 215 moves the tip of the reagent storage / dispensing device 213 from the opening 122 to a position 1 mm higher than the upper end of the storage 123.
  • FIG. 7A Sample introduction to the cell nucleic acid capturing device 100 The tip of the reagent containing dispenser 213 is detached from the flow cell device 120 by the moving stage 215. Next, the syringe 211 is pulled and aspirated until the sample or the reagent 128 is arranged immediately above the cell nucleic acid capturing device 100 (FIG. 7B).
  • FIG. 7C Aspiration / capture or reaction of sample, etc.
  • the sample or reagent 128 moves downward in the cell nucleic acid capture device 100 while passing through the cell nucleic acid capture device 100. (FIG. 7C).
  • the solution to be sucked is a cell suspension as a sample
  • the cells are captured on the cell nucleic acid capturing device 100 while the solution moves downward.
  • the solution to be sucked is a reagent
  • the reagent reaction proceeds on the cell nucleic acid capturing device 100 while the solution moves downward.
  • FIG. 8 is a diagram illustrating a process of cleaning the flow path in the flow cell device 120 according to the first embodiment of the present invention.
  • FIG. 8A Filling the Washing Buffer Housing Part The syringe 224 filled with the washing buffer is pushed to fill the housing part 123 with the washing buffer 129 (FIG. 8A).
  • FIG. 8B Introduction of the washing buffer to the cell nucleic acid capturing device 100 The syringe 211 is pulled and sucked until the washing buffer 129 is arranged immediately above the cell nucleic acid capturing device 100 (FIG. 8B). .
  • FIG. 8A Filling the Washing Buffer Housing Part The syringe 224 filled with the washing buffer is pushed to fill the housing part 123 with the washing buffer 129 (FIG. 8A).
  • FIG. 8B Introduction of the washing buffer to the cell nucleic acid capturing device 100 The syringe 211 is pulled and sucked until the washing buffer 129 is arranged immediately above the cell nucleic acid
  • V By executing such a washing step, the flow channel in the flow cell device can be thoroughly washed, and contamination of the sample cells and the introduced reagent can be prevented.
  • FIG. 9 is a diagram for explaining steps from introduction of a sample (cell suspension) to obtaining a gene expression profile with a next-generation (large-scale) sequencer.
  • the main steps are to capture cells in the cell nucleic acid capturing device 100 (FIG. 9 (a)), cell lysis and mRNA (FIG. 9 (b)), and 1st strand (cDNA).
  • Synthesis (FIG. 9 (c)), mRNA degradation (FIG. 9 (d)), 2nd start synthesis (FIG. 9 (e)), amplification by PCR reaction (FIG.
  • the cell suspension is introduced into the reagent containing dispenser 213, introduced into the containing portion 123 in the flow cell device 120 by the method described in FIG. 7, and the syringe 211 is pulled, whereby the cells are placed on the cell nucleic acid capturing device 100. The cells are trapped in the cell trapping holes 102 arranged on the lattice.
  • the flow path in the flow cell device 120 is washed with 200 ⁇ L of 1 ⁇ PBS which is a washing buffer.
  • FIG. 9 (b): Cell lysis and mRNA capture In the step described with reference to FIG.
  • FIG. 9 Synthesis of 1st strand (cDNA)
  • 5 ⁇ First strand buffer (Invitrogen) 4 ⁇ L, 10 mM dNTP (Invitrogen) is supplied from the reagent reservoir 213 through the opening 122.
  • the solution is passed through the reaction vessel 104.
  • the solution suction by the syringe 212 is stopped in a state where the solution still remains on the cell nucleic acid capturing device 100, the temperature inside the flow cell device 120 is adjusted to 37 ° C. by the temperature control unit 203, and left for 10 minutes.
  • the reverse transcription reaction was completed by adjusting to 50 ° C. and maintaining for 45 minutes, and 1st strand DNA (cDNA) having a sequence complementary to mRNA was synthesized.
  • the temperature inside the flow cell device 120 was adjusted to 85 ° C. by the temperature control unit 203 and maintained for 90 seconds to inactivate the reverse transcriptase. After the reverse transcriptase is deactivated, the temperature in the flow cell device 120 is returned to room temperature, and the flow path (particularly the reaction vessel 104) in the flow cell device 120 is washed with 200 ⁇ L of the washing buffer in the step described with reference to FIG. (Iv) FIG. 9 (d): Degradation of mRNA The washed device 100 for capturing nucleic acid of cells is removed from the flow cell device 120 and introduced into a resin tube (0.2 mL or 1.5 mL capacity tubes generally used).
  • a resin tube 0.2 mL or 1.5 mL capacity tubes generally used.
  • FIG. 9 (e): 2nd start synthesis After mRNA degradation, 50 ⁇ L of Tris-tween buffer (10 mM Tris-HCl, pH 8.0, 0.1% Tween solution) is introduced into the tube, and the device 100 for capturing cellular nucleic acid is installed. After washing, only the magnetic beads 105 were left in the tube using a magnet, and resuspended in 1 ⁇ L of Tris-tween buffer.
  • 20 types (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, PCR-amplified common sequence (Reverse) are added as gene-specific sequence primers.
  • DNA probes having gene-specific sequences of EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, and OAZ1) were used.
  • 20 +/- 5 bases upstream of 109 +/- 8 bases from the poly A tail of the target gene were used.
  • the magnetic beads were washed twice with 50 ⁇ L of Tris tween buffer, and finally the beads were washed with 1 ⁇ L of Tris tween buffer. Suspend.
  • FIG. 9 (f) Purification of amplification product After the PCR reaction, the above-described steps (FIG. 9 (f)) are performed for the purpose of removing residual reagents such as free PCR amplification common sequence primers and enzymes contained in the solution. The amplification product amplified in step)) is purified using PCR Purification (Qiagen).
  • FIGS. 9A to 9D are performed in the flow cell device 120, and the subsequent reaction is performed by transferring the device 100 for capturing cellular nucleic acid to another tube.
  • the process up to amplification by the PCR reaction in FIG. 9 (f) is performed in the flow cell device 120, the reaction solution from the flow cell device is recovered, and the reaction after purification of the amplification product in FIG. 9 (g) is performed in a separate tube. Also good.
  • gene expression analysis is performed using a next-generation DNA sequencer.
  • FIG. 9 (d) is performed until mRNA degradation and the device 100 for capturing cellular nucleic acid, which is a cDNA library, is prepared.
  • a method of performing analysis using hybridization and fluorescence measurement using a probe having a sequence complementary to the gene sequence to be measured and labeled with a fluorescent substance may be used while being installed in the flow cell device 120. In this case, it is possible to measure using a probe having a sequence complementary to a different gene sequence to be measured again after fluorescence measurement of the phosphor-labeled probe, desorption / washing from cDNA with heat, etc. Therefore, multiple gene expression analyzes are possible.
  • a sheet in which magnetic beads modified with a DNA probe for capturing mRNA are arranged in a two-dimensional array is used as a cell nucleic acid capturing device.
  • a quality membrane may be used.
  • Second Embodiment In the second embodiment of the present invention, using a flow cell device and system adopting a simpler washing method, a plurality of cells as samples can be expressed with a single cell level resolution. A method for performing expression analysis will be described.
  • a syringe is necessary to introduce the buffer cleaning solution.
  • the second embodiment discloses a configuration that eliminates the need for this syringe.
  • the sample / reagent introduction method and the reaction process are the same as those in the first embodiment.
  • the second embodiment as in the first embodiment, it is possible to reduce the amount of syringes used and to facilitate liquid feeding control while maintaining a reduced reagent usage amount and a high cleaning effect.
  • FIG. 10 is a diagram showing a schematic configuration of the flow cell device 130 according to the second embodiment of the present invention.
  • the flow cell device 130 has the same configuration as the flow cell device 120 according to the first embodiment, except that the flow cell device 130 includes a lid mechanism 131 that can open and close the opening 122.
  • the lid mechanism 131 is installed in the vicinity of the opening 122, and has a configuration in which the lid 132 is installed on a support bar 134 connected to the hinge 133.
  • the lid 132 is preferably made of a soft material, and for example, rubber can be used. Further, the surface of the lid 132 may be subjected to water repellent treatment so that the reaction reagent or the like does not adhere to the surface of the lid 132.
  • the lower end surface of the lid 132 needs to be arranged at a position higher than the upper end portion of the accommodating portion 123 in the flow cell device 130 when the opening 122 is closed. This is to prevent contamination of the reaction reagent on the lid 132.
  • the lid 132 has a plate shape. Thereby, even when the opening 122 is closed, the lower end surface of the lid 132 can be arranged at a position higher than the upper end of the accommodating portion 123. A spring is contained inside the hinge 133. Accordingly, the lid 132 maintains an open state with respect to the opening 122, but the opening 122 can be closed by the lid 132 by pushing the support bar 134.
  • FIG. 11 is a diagram showing a schematic configuration of a cellular nucleic acid capturing system 20 ′ according to the second embodiment of the present invention.
  • the cell nucleic acid capturing system 20 ′ includes a liquid feeding unit 200 including a flow cell device, a reagent dispensing unit 201, an opening / closing unit 202 for operating the lid 132 of the flow cell device 130, and a temperature adjustment of the flow cell device.
  • a temperature control unit 203 is provided, an optical observation unit 204 that performs optical observation of the cell nucleic acid supplementing device 100, and a moving stage unit 205 that moves the flow cell device 130 to a desired position.
  • a cleaning tube 206 is connected to the inlet 121 of the flow cell device.
  • One end of the cleaning tube 206 is connected to a buffer tank 207 filled with a cleaning buffer.
  • the cleaning tube 206 is provided with a valve 208 composed of a solenoid. By crushing the cleaning tube 206 with the valve 208, the flow path constituted by the cleaning tube 206 can be closed.
  • a syringe 211 and a syringe 212 are connected to the first outlet 125 and the second outlet 126 of the flow cell device via outlet tubes 209 and 210, respectively.
  • the reagent dispensing unit 201 Since the reagent dispensing unit 201, the temperature adjustment unit 203, the optical observation unit 204, and the moving stage unit 205 have the same configuration as in the first embodiment, description thereof is omitted.
  • the opening / closing unit 202 is composed of, for example, a metal round bar. If it is a hard material, it will not specifically limit to a metal.
  • FIG. 12 is a diagram illustrating a method for opening and closing the opening 122 in the flow cell device 130 according to the second embodiment of the present invention.
  • FIG. 12A Movement of the flow cell device 130 The flow cell device 130 is moved from right to left by the moving stage unit 205 (FIG. 12A).
  • FIG. 12B Rotation of the lid mechanism 131 The support bar 134 comes into contact with the opening / closing unit 202, and the lid mechanism 131 rotates around the hinge 133 (FIG. 12B).
  • FIG. 12A Movement of the flow cell device 130 The flow cell device 130 is moved from right to left by the moving stage unit 205 (FIG. 12A).
  • FIG. 12B Rotation of the lid mechanism 131 The support bar 134 comes into contact with the opening / closing unit 202, and the lid mechanism 131 rotates around the hinge 133 (FIG. 12B).
  • FIG. 12A Movement of the flow cell device 130 The flow cell device 130 is moved from right to left by the moving stage unit 205 (FIG. 12A).
  • FIG. 13 is a diagram for explaining a process of cleaning the flow channel in the flow cell device 130 according to the second embodiment of the present invention. Note that the sample and reagent introduction steps are the same as those in the first embodiment, and a description thereof will be omitted.
  • FIG. 13 (a): Lid closing The valve 208 is opened, and the flow stage device 205 is moved by the moving stage unit 205 so that the opening 122 is positioned immediately below the center of the opening / closing unit 202. Close (FIG. 13A).
  • FIG. 13A Lid closing The valve 208 is opened, and the flow stage device 205 is moved by the moving stage unit 205 so that the opening 122 is positioned immediately below the center of the opening / closing unit 202. Close
  • FIG. 13B Introduction of the washing buffer at a position directly above the cell nucleic acid capturing device 100 The syringe 211 is pulled and aspirated until the washing buffer 129 is arranged directly above the cell nucleic acid capturing device 100 (FIG. 13). (B)). (Iii) FIG. 13 (c): Start of washing of the flow cell device 130 The syringe 212 is pulled and sucked until the washing buffer 129 moves under the cell nucleic acid capturing device while passing through the cell nucleic acid capturing device 100 (FIG. 13). 13 (c)). (Iv) FIG.
  • the lid mechanism 131 in the second embodiment is introduced into the system, and a plurality of cells as samples are expressed with a single cell level resolution. A method for performing expression analysis will be described.
  • the flow cell device, the sample / reagent introduction method, and the reaction process are the same as those in the first embodiment.
  • the third embodiment similarly to the first and second embodiments, it is possible to reduce the amount of syringes and facilitate liquid feeding control while maintaining a reduced reagent usage amount and a high cleaning effect. It becomes. Further, unlike the second implementation system, by introducing the lid mechanism into the system, the number of parts of the flow cell device can be reduced, and the device cost can be reduced.
  • FIG. 14 is a diagram showing a schematic configuration of a cell nucleic acid capturing system 20 ′′ according to the third embodiment of the present invention.
  • the cell nucleic acid capturing system 20 ′′ according to the present embodiment includes a liquid feeding unit 227 including the flow cell device 120, a reagent dispensing unit 201, an opening / closing unit 226 for operating the lid 132 of the flow cell device 130, and a flow cell device. It has a temperature adjustment unit 203 that adjusts the temperature, an optical observation unit 204 that optically observes the cell nucleic acid supplementing device 100, and a moving stage unit 205 that moves the flow cell device 130 to a desired position.
  • the configurations and operations of the reagent dispensing unit 201, the temperature adjustment unit 203, the optical observation unit 204, and the moving stage unit 205 are the same as those in the first embodiment.
  • the configuration and operation of the liquid feeding unit 227 are the same as those in the second embodiment.
  • the opening / closing unit 226 includes a lid 216 for closing the opening 122 of the flow cell device 120, and an opening / closing means 228 for opening / closing the lid 216.
  • the lid 216 is preferably made of a soft material, and for example, rubber can be used.
  • the surface of the lid 216 is subjected to water repellent treatment so that the reaction reagent or the like does not adhere to it and become contaminated.
  • the lid 216 has a plate shape. Thereby, even when the opening 122 is closed, the lower end surface of the lid 216 can be disposed at a position higher than the upper end of the accommodating portion 123.
  • the opening / closing means 228, for example, a push type solenoid can be used.
  • the opening / closing means 228 may have any configuration as long as it can drive the lid 216 up and down, such as using a drive stage.
  • FIG. 15 is a diagram for explaining a process of cleaning the flow channel in the flow cell device 120 according to the third embodiment of the present invention.
  • FIG. 15A Lid closing The valve 208 is opened, the flow cell device 120 is moved by the moving stage unit 205 so that the opening 122 is positioned directly below the lid 216, and the opening 122 is covered by the opening / closing means 228. It closes at 216 (FIG. 15A).
  • FIG. 15A Lid closing The valve 208 is opened, the flow cell device 120 is moved by the moving stage unit 205 so that the opening 122 is positioned directly below the lid 216, and the opening 122 is covered by the opening / closing means 228. It closes at 216 (FIG. 15A).
  • FIG. 15A Lid closing The valve 208 is opened, the flow cell device 120 is moved by the moving stage unit 205 so that the opening 122 is positioned directly below the lid 216, and the opening 122 is covered by the opening / closing means 228. It closes at 216
  • FIG. 15B Introduction of the washing buffer to a position immediately above the cell nucleic acid capturing device 100 The syringe 211 is pulled and aspirated until the washing buffer 129 is arranged directly above the cell nucleic acid capturing device 100 (FIG. 15). (B)). (Iii) FIG. 15 (c): Start of washing of the flow cell device 120 The syringe 212 is pulled and sucked until the washing buffer 129 moves downward while passing through the cell nucleic acid capturing device 100 (FIG. 15). 15 (c)). (Iv) FIG.
  • FIG. 16 is a diagram showing a schematic configuration of a flow cell device 135 according to the fourth embodiment of the present invention. The rest of the configuration is the same as that of the flow cell device 120 according to the first embodiment, except for the opening 136 for introducing a cell suspension or reaction reagent, which is a sample, and the storage portion 137 for temporarily storing cells or reaction reagents. .
  • the diameter of the opening 136 is equivalent to the diameter of 5 mm of the accommodating part 137.
  • the uppermost end 139 of the solution is an outlet 138 from the introduction port 121 to the storage portion 137 of the flow path following the storage portion 137. It is located below.
  • a lid that closes the opening 136 (for example, a plate-like lid 216 as in the third embodiment) makes the lower end of the lid be higher than the upper end 139 of the solution when the opening 136 is closed. . In this way, even when the opening 136 is closed, it is possible to prevent channel contamination that may occur due to the reagent or sample solution adhering to the lid.
  • the opening size of the opening 136 is larger than the opening according to the first to third embodiments. Therefore, without moving the reagent storage / dispensing device 213 in FIG. 6 (first embodiment), the reagent and the sample solution are pressurized from the outside of the flow cell device 135 to the reagent storage / dispensing device 213 at an appropriate pressure and time. Then, it can be dispensed into the accommodating portion 137 like an ink jet (since the injection target is relatively large, the dispenser does not have to be close to the opening 136). Thereby, the moving stage for moving the reagent storage / dispensing device shown in FIG. 6 is not required, and the system configuration is simple. In addition, it is preferable that the opening size of an opening part is the same as or larger than the largest diameter of the accommodating part 137, as FIG. 16 shows.
  • a flow cell device (cell processing device) includes a reaction field (consisting of a cell nucleic acid capturing device 100 or a membrane) in which a sample derived from a living body is captured, and from the outside.
  • the opening, the junction between the second channel and the third channel, and the outlet to the first channel in the housing unit are arranged in descending order from the vertical direction.
  • the temperature of the reagent or sample introduced into the reaction field is adjusted by temperature control means. Since the reagent storage dispenser (213) and the flow cell device are not connected, even if the temperature of the flow cell device is adjusted in each reaction, the influence of the temperature affects the reagent stored in the reagent storage dispenser (213). Is not given. That is, it becomes possible to suppress the deterioration of the reaction reagent during storage due to the reaction temperature.
  • the opening is provided on the upper surface of the flow cell device and opens upward, and the second flow path and the third flow path are orthogonal to each other.
  • the flow cell device is further connected directly from the first flow path, connected to the first flow path for discharging the cleaning liquid, and the first flow path via the reaction field (flow cell or membrane), and reacted.
  • a sample or reagent that has passed through the field, and a second discharge channel for discharging the cleaning liquid By doing so, it is possible to facilitate the introduction of the sample, the reagent, and the cleaning liquid to ensure the reaction, and to wash the reaction field firmly.
  • the flow cell device may have a sealing mechanism (131) that opens and closes the opening (122). By sealing the opening, it is not necessary to provide a syringe for introducing the buffer solution, and the cost can be reduced.
  • an optically transparent window may be provided above the reaction field. By doing so, it becomes possible to observe the state and process of the reaction with an optical microscope or the like.
  • the opening is preferably arranged at a position higher than the upper surface of the window. This is to ensure the working distance of the objective lens. However, if the distance between the upper surface of the opening and the surface formed by the flow cell device is equal to or smaller than the working distance of the objective lens, the upper surface of the opening and the upper surface of the window may be in the same plane.
  • the opening size of the opening may be the same as or larger than the maximum diameter of the accommodating portion (see FIG. 16).
  • a sample etc. can be easily introduced into a storage part (123) even if a syringe for introducing a sample and a reagent is not extremely close to an opening or inserted.
  • the operation of the syringe and the valve for introducing the liquid are controlled by a computer (a normal computer can be used, and the illustration is omitted). You may do it.
  • the input device keyboard, mouse, GUI, etc.
  • the user inputs the type of liquid (sample, reagent, cleaning solution), introduction amount, timing, and presses the start button
  • the computer Panesham
  • the computer controls the operation of each syringe and valve according to a program (for example, stored in a memory), and executes liquid introduction, reaction (standby), and liquid discharge.
  • an image of the reaction state of the sample and the reagent in the reaction field may be automatically acquired by the CCD camera 221 and stored in a memory (not shown).
  • the operation of the cell processing system (system for capturing nucleic acid of cells) according to the embodiment of the present invention can be automated by a computer.
  • DESCRIPTION OF SYMBOLS 100 Cell nucleic acid capture device 101 ... PDMS substrate 102 ... Cell capture hole 103 ... Nucleic acid capture hole 104 ... Reaction tank 105 ... Magnetic bead 106 ... Pore Sheet 107 ... Streptavidin 108 ... Biotin 109 ... DNA probe for mRNA capture 110: PCR amplification common sequence 111 ... cell recognition tag sequence 112 ... oligo (dT) sequence 120 ... flow cell device 121 ... inlet 122... Opening 123... Storage 124 .. Reaction field 125... First discharge port 126... Second discharge port 127. 129 ... Washing buffer 130 ... Flow cell device 131 ... Lid mechanism 132 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Provided is a technique whereby, in the case of simultaneously analyzing gene expression of multiple cells at a single cell level, the use amount of an expensive reagent can be reduced, a lowering in reaction efficiency due to turbidity caused by reagents mixed together can be suppressed and a device can be effectively washed so as to protect mRNA from contamination with cells other than the target cells. The cell treatment device according to the present invention comprises: a reaction field in which an organism-derived sample is captured; a housing part in which the sample introduced from outside, a reagent or a washing liquor are temporarily stored; a first flow channel which connects the reaction field and the housing part; an opening through which the sample and the reagent are introduced from outside the device; a second flow channel which connects the opening and the housing part; an inlet through which the washing liquor is introduced from outside the device; and a third flow channel which connects the inlet and the second flow channel. In this cell treatment device, the opening, a joint part of the second flow channel and the third flow channel, and an outlet in the housing part toward the first flow channel are arranged in this order from top to bottom in the vertical direction.

Description

細胞処理デバイス、及び細胞処理システムCell processing device and cell processing system
 本発明は、細胞処理デバイス、及び細胞処理システムに関し、例えば、遺伝子発現解析、細胞機能解析、生体組織の解析方法および病気の診断、創薬などに関するものである。 The present invention relates to a cell processing device and a cell processing system, for example, gene expression analysis, cell function analysis, biological tissue analysis method, disease diagnosis, drug discovery, and the like.
 近年、多数の細胞から構成される生体組織のゲノム解析や遺伝子発現解析、タンパク解析を行う際に、一細胞レベルでのゲノムや遺伝子発現、タンパク質の違いに注目した解析の重要性が認識され始めている。従来の解析では、生体組織からサンプリングした多数の細胞から、1種類のサンプルとしてDNAやRNA、あるいはタンパク質を抽出して解析を行うため、サンプル中の平均的な解析を行っていた。そのため、DNAやRNA、タンパク質の個々の細胞中の存在量が平均値から乖離していたとしても、評価することが困難であった。単一細胞解析はこのような平均化の問題を解決する解析方法として重要である。
このような状況下において、谷口らは一細胞中のmRNAを、ビーズを使って捕捉した後に逆転写によりcDNAに変えてcDNAライブラリー(全てのcDNAを含んだcDNA集合体)を作製し、それらを使って一細胞中に含まれる複数遺伝子の発現量を正確に計測している(非特許文献1)。また、Islamらは、単一細胞中の微量なmRNAを逆転写によりcDNAに変え、PCR増幅を用いて核酸増幅した後に、大規模DNAシーケンサを用いてその増幅産物の配列を決定し、シーケンシング結果を集計、核酸配列数をカウントすることによって、一細胞中のmRNA分子数を推定する方法が示されている(非特許文献2)。
In recent years, when genome analysis, gene expression analysis, and protein analysis of biological tissues composed of many cells are beginning to be recognized, the importance of analysis focusing on differences in genome, gene expression, and protein at the single cell level has been recognized. Yes. In the conventional analysis, since analysis is performed by extracting DNA, RNA, or protein as a single sample from a large number of cells sampled from a living tissue, an average analysis in the sample is performed. Therefore, even if the abundance of DNA, RNA, and protein in individual cells deviates from the average value, it was difficult to evaluate. Single cell analysis is important as an analysis method for solving such an averaging problem.
Under such circumstances, Taniguchi et al. Used a bead to capture mRNA in one cell and then converted it to cDNA by reverse transcription to create a cDNA library (cDNA aggregate containing all cDNAs). Is used to accurately measure the expression levels of multiple genes contained in one cell (Non-patent Document 1). In addition, Islam et al. Converted a small amount of mRNA in a single cell into cDNA by reverse transcription, amplified the nucleic acid using PCR amplification, determined the sequence of the amplified product using a large-scale DNA sequencer, and sequenced it. A method for estimating the number of mRNA molecules in one cell by counting the results and counting the number of nucleic acid sequences has been shown (Non-patent Document 2).
 上記方法は、サンプルを含む溶液への反応試薬の混合、精製等のプロセスをすべて手作業で行っている。そのため、分注精度と溶媒の蒸発の問題から反応溶液のボリュームは数百ナノリットル~マイクロリットルオーダー以上に制限される。それゆえ、単一の細胞を解析する場合においても、適切な濃度の試薬を使わなければならないため、反応試薬量(モル数)が反応ボリュームに比例して増加し、それに比例して試薬コストが増加する。多数の細胞を計測しなければ統計的に有意なデータが得られない場合、その試薬コストは非常に大きな額となる。それゆえ、分注精度と蒸発の問題がない構造で反応ボリュームを低減する方法が求められている。また、個々の細胞の遺伝子発現量は時間的、空間的にランダムに変動しているので、統計的に生物学的・医学的指標を最終データとして抽出するために、個々の細胞を多数計測する必要がある。 In the above method, all processes such as mixing and purification of the reaction reagent into the solution containing the sample are performed manually. Therefore, the volume of the reaction solution is limited to the order of several hundred nanoliters to microliters or more due to problems of dispensing accuracy and solvent evaporation. Therefore, even when analyzing a single cell, since an appropriate concentration of reagent must be used, the amount of the reaction reagent (number of moles) increases in proportion to the reaction volume, and the reagent cost increases proportionally. To increase. If statistically significant data cannot be obtained unless a large number of cells are measured, the reagent cost is very large. Therefore, there is a need for a method for reducing the reaction volume with a structure that does not have dispensing accuracy and evaporation problems. In addition, since the gene expression level of individual cells varies randomly in time and space, a large number of individual cells are measured in order to statistically extract biological and medical indicators as final data. There is a need.
 このような非特許文献の欠点を解消するために、特許文献1では、多孔質メンブレンを使ってcDNAライブラリーを作製し、これを繰り返し遺伝子発現の検出ステップに用いることによって、多数の細胞の一細胞レベルでの遺伝子発現解析の方法が示されている。 In order to eliminate the disadvantages of such non-patent literature, in Patent Document 1, a cDNA library is prepared using a porous membrane, and this is repeatedly used for the gene expression detection step, whereby a large number of cells can be detected. A method for gene expression analysis at the cellular level is shown.
 また、特許文献2では、多孔質メンブレンもしくは2次元アレイ状に配置したビーズで構成されたデバイスを使って、多数の細胞の一細胞レベルでの遺伝子発現解析の方法が示されている。 Also, Patent Document 2 discloses a method for gene expression analysis at a single cell level of a large number of cells using a device composed of a porous membrane or beads arranged in a two-dimensional array.
特願2009-276883号公報Japanese Patent Application No. 2009-276883 WO2014/020657号公報WO2014 / 020657 Publication
 確かに、一細胞レベルでのDNA配列の解析や遺伝子発現解析を同時に多数の細胞で行うためには、特許文献1及び2で示す多孔質メンブレンや2次元アレイ状に配置したビーズを使ったデバイスを使うことが有効である。当該デバイスを使った遺伝子発現解析では、分解しやすいmRNAを保護するためにも、デバイス上で速やかに次のような操作を行う必要がある。i)デバイス上への細胞捕捉、ii)細胞溶解によるmRNA抽出とデバイス内へのmRNAの捕捉、及びiii)逆転写反応によるcDNAの合成である。 Certainly, in order to perform DNA sequence analysis and gene expression analysis on a single cell level simultaneously with a large number of cells, devices using porous membranes and beads arranged in a two-dimensional array shown in Patent Documents 1 and 2 It is effective to use In gene expression analysis using the device, it is necessary to quickly perform the following operation on the device in order to protect mRNA that is easily degraded. i) cell capture on the device, ii) mRNA extraction by cell lysis and mRNA capture in the device, and iii) cDNA synthesis by reverse transcription reaction.
 しかしながら、同じデバイス上で上記反応をシリアルに行うため、前の反応試薬が残存していると各反応効率は低下する可能性がある。また、デバイス上の本来細胞を捕捉すべき場所以外(例えば、サンプルである細胞懸濁を多孔質メンブレンや2次元アレイ状に配置したビーズまでに移動させるための流路)に細胞が吸着していることがある。この場合、その後の細胞溶解反応時に細胞内のmRNAが拡散し、それらが多孔質メンブレンや2次元アレイ状に配置したビーズに制御されていない状態で吸着することにより、測定対象外の細胞からのmRNAの汚染の原因となりえる。そのため、各工程の間ではバッファなどの洗浄液などを大量に流し、デバイスを洗浄することが必須となる。 However, since the above reaction is performed serially on the same device, each reaction efficiency may decrease if the previous reaction reagent remains. In addition, the cells are adsorbed to a place other than the place where the cells are originally captured on the device (for example, a flow path for moving a cell suspension as a sample to a porous membrane or a bead arranged in a two-dimensional array). There may be. In this case, intracellular mRNA diffuses during the subsequent cell lysis reaction and adsorbs in an uncontrolled manner to beads arranged in a porous membrane or a two-dimensional array. May cause mRNA contamination. For this reason, it is essential to wash the device by flowing a large amount of a cleaning solution such as a buffer between the steps.
 また、特許文献2では、細胞を捕獲するための反応セルにおいて、上記i)からiii)の工程を行っている。この際、各反応試薬は一つのインレットから送液されている。このため、この方式では、大量の洗浄溶液と高価な反応試薬を同じインレットから送液するには不向きである。例えば、特許文献2では、インレットにチューブを接続し、チューブの先端を洗浄液収容器、試薬収容器に移動させて各溶液を注入できるが、チューブを満たすために必要以上の試薬が必要になる。もしくは、インレットにシリンジなどの分注器を使って洗浄溶液や反応試薬を反応セル内に導入することも可能である。しかし、インレット周辺の洗浄が困難となり、前の反応試薬の混ざりが発生する可能性があるとともに、測定対象外の細胞からのmRNAの汚染の発生もありえる。 In Patent Document 2, the above steps i) to iii) are performed in a reaction cell for capturing cells. At this time, each reaction reagent is fed from one inlet. For this reason, this method is not suitable for feeding a large amount of washing solution and an expensive reaction reagent from the same inlet. For example, in Patent Document 2, it is possible to inject each solution by connecting a tube to an inlet and moving the tip of the tube to a cleaning liquid container and a reagent container. However, more reagents than necessary are required to fill the tube. Alternatively, it is also possible to introduce a cleaning solution or a reaction reagent into the reaction cell using a dispenser such as a syringe at the inlet. However, it becomes difficult to clean the vicinity of the inlet, and there is a possibility that the previous reaction reagent may be mixed, and contamination of cells from cells outside the measurement target may occur.
 さらに、反応の中には60℃と比較的高い温度を使用するため、各反応試薬収容器が温度の影響を受けるような位置に設置した場合(例えば試薬収容器も一体となったチップを使用する場合)、ある反応時に反応温度によって、その後の反応に使用する試薬の劣化が発生し、反応効率低下させる可能性がある。 Furthermore, since a relatively high temperature of 60 ° C. is used in the reaction, when each reaction reagent container is installed at a position where it is affected by the temperature (for example, a chip with an integrated reagent container is used) In some cases, the reaction temperature during a certain reaction may cause deterioration of reagents used in the subsequent reaction, which may reduce the reaction efficiency.
 本発明はこのよう状況に鑑みてなされたものであり、同時に複数の細胞を一細胞レベルで遺伝子発現解析を行う際に、高価な反応試薬の使用量の微量化を実現し、反応試薬同士の混濁による反応効率低下を抑制し、測定対象外の細胞によるmRNAの汚染しないようにデバイスを効果的に洗浄することを可能とする技術を提供するものである。 The present invention has been made in view of such a situation, and at the same time, when carrying out gene expression analysis of a plurality of cells at a single cell level, the amount of expensive reaction reagent used can be reduced, The present invention provides a technique capable of effectively cleaning a device so as to suppress a reduction in reaction efficiency due to turbidity and prevent contamination of mRNA by cells outside the measurement target.
 上記課題を解決するために、本発明による細胞処理デバイスは、生体由来のサンプルが捕捉される反応場と、外部から導入されたサンプル、試薬、又は洗浄液を一時的に保管する収容部と、反応場と収容部をつなぐ第一の流路と、デバイス外部からサンプル及び試薬を導入する開口部と、開口部と収容部をつなぐ第二の流路と、デバイス外部から洗浄液を導入する導入口と、導入口と第二の流路をつなぐ第三の流路と、を有する。そして、垂直方向から高さが高い順に、開口部、第二の流路と第三の流路との接合部、収容部における第一の流路への出口が配置されている。当該デバイスにおいては、高価な反応試薬やサンプルである細胞懸濁液を開口部からピペットなどの分注器を使って収容部へ導入し、バッファなどの洗浄液を導入口より大量に導入し、収容部を洗浄する。上記方法により、高価反応試薬使用量を微量化して、かつ、大量の洗浄液を使ってデバイスを効率的に洗浄できる。 In order to solve the above problems, a cell treatment device according to the present invention includes a reaction field in which a sample derived from a living body is captured, a storage unit that temporarily stores a sample, a reagent, or a cleaning solution introduced from the outside, a reaction A first flow path connecting the field and the storage part, an opening for introducing the sample and the reagent from the outside of the device, a second flow path connecting the opening and the storage part, and an introduction port for introducing the cleaning liquid from the outside of the device And a third channel connecting the inlet and the second channel. The opening, the junction between the second channel and the third channel, and the outlet to the first channel in the housing unit are arranged in descending order from the vertical direction. In this device, a cell suspension, which is an expensive reaction reagent or sample, is introduced from the opening into the receiving part using a pipette or other dispensing device, and a large amount of a washing solution such as a buffer is introduced from the inlet and stored. Wash the part. By the above method, the amount of expensive reaction reagent used can be reduced to a small amount, and the device can be efficiently cleaned using a large amount of cleaning liquid.
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本発明の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。 Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. The embodiments of the present invention are achieved and realized by elements and combinations of various elements and the following detailed description and appended claims.
 本明細書の記述は典型的な例示に過ぎず、本発明の請求の範囲又は適用例を如何なる意味においても限定するものではないことを理解する必要がある。 It should be understood that the descriptions in this specification are merely typical examples, and do not limit the scope of the claims or the application examples of the present invention in any way.
 本発明によれば、同時に複数の細胞を一細胞レベルで遺伝子発現解析を行う際に、高価な反応試薬の使用量の微量化を実現することが可能となる。また、反応試薬同士の混濁による反応効率低下を抑制することができる。さらに、測定対象外の細胞によるmRNAの汚染しないようにデバイスを効果的に洗浄することが可能となる。 According to the present invention, when gene expression analysis is performed simultaneously on a plurality of cells at a single cell level, it is possible to reduce the amount of expensive reaction reagent used. In addition, a reduction in reaction efficiency due to turbidity between reaction reagents can be suppressed. Furthermore, it is possible to effectively wash the device so as not to contaminate mRNA by cells outside the measurement target.
細胞核酸補足用デバイス平面図である。It is a device top view for cell nucleic acid supplementation. 細胞核酸補足用デバイス断面図である。It is a device sectional view for cell nucleic acid supplementation. 磁性ビーズの概略構成を示す図である。It is a figure which shows schematic structure of a magnetic bead. mRNA捕捉用DNAプローブの概略構成を示す図である。It is a figure which shows schematic structure of the DNA probe for mRNA capture | acquisition. 本発明の第1の実施形態によるフローセルデバイスの概略構成を示す図である。It is a figure which shows schematic structure of the flow cell device by the 1st Embodiment of this invention. 本発明の第1の実施形態による細胞核酸捕捉用システムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a system for capturing cellular nucleic acid according to a first embodiment of the present invention. 本発明の第1の実施形態における、サンプルと試薬の導入工程を説明するための図である。It is a figure for demonstrating the introduction process of the sample and reagent in the 1st Embodiment of this invention. 本発明の第1の実施形態における、フローセルデバイス内流路洗浄工程を説明するための図である。It is a figure for demonstrating the flow-cell internal flow-path washing | cleaning process in the 1st Embodiment of this invention. 細胞捕捉から遺伝子発現プロファイルを得るためまでの工程を説明するための図である。It is a figure for demonstrating the process from obtaining a gene expression profile from cell capture. 本発明の第2の実施形態によるフローセルデバイスの概略構成を示す図である。It is a figure which shows schematic structure of the flow cell device by the 2nd Embodiment of this invention. 本発明の第2の実施形態による細胞核酸捕捉用システムの概略構成を示す図である。It is a figure which shows schematic structure of the system for cell nucleic acid capture by the 2nd Embodiment of this invention. 本発明の第2の実施形態によるフローセルデバイス開口部の開閉方法を説明するための図である。It is a figure for demonstrating the opening / closing method of the flow cell device opening part by the 2nd Embodiment of this invention. 本発明の第2の実施形態における、フローセルデバイス内流路洗浄工程を説明するための図である。It is a figure for demonstrating the flow-path cleaning process in a flow cell device in the 2nd Embodiment of this invention. 本発明の第3の実施形態による細胞核酸捕捉用システムの概略構成を示す図である。It is a figure which shows schematic structure of the system for cell nucleic acid capture by the 3rd Embodiment of this invention. 本発明の第3の実施形態における、フローセルデバイス内流路洗浄工程を説明するための図である。It is a figure for demonstrating the flow-path cleaning process in a flow cell device in the 3rd Embodiment of this invention. 本発明の第4の実施形態によるフローセルデバイスの概略構成を示す図である。It is a figure which shows schematic structure of the flow cell device by the 4th Embodiment of this invention.
 本発明は遺伝子発現解析、細胞機能解析、生体組織の解析方法および病気の診断、創薬などに関し、詳しくは1細胞レベルでのmRNA解析方法に関するものである。より具体的に、本発明は、単一細胞解析用フローセルデバイスにおいて、反応試薬が導入開口部付近に付着しないようにするための構成、及び反応試薬が触れた流路部分には大量の洗浄液を流すことができる構成について開示する。本発明では、生体組織の被検核酸(例えばmRNA)から一細胞レベルの分解能を持つcDNAライブラリシートを作製し、次世代DNAシーケンサ、もしくは調査対象の遺伝子配列と相補的は配列を持つDNAプローブを利用したハイブリによる遺伝子発現解析を行う。なお、本発明において「遺伝子発現解析」とは、サンプル(細胞、組織切片など)における遺伝子又は生体分子、すなわちターゲットとなる被検核酸の発現を定量的に分析すること、サンプルにおける遺伝子(被検核酸)又は生体分子の発現分布を分析すること、サンプルにおける特定の位置と遺伝子(被検核酸)又は生体分子発現量との相関データを得ることを意味する。 The present invention relates to gene expression analysis, cell function analysis, biological tissue analysis method, disease diagnosis, drug discovery, and the like, and more particularly to an mRNA analysis method at a single cell level. More specifically, in the flow cell device for single cell analysis, the present invention is configured to prevent the reaction reagent from adhering to the vicinity of the introduction opening, and a large amount of washing liquid is applied to the flow channel portion where the reaction reagent touches. A configuration capable of flowing is disclosed. In the present invention, a cDNA library sheet having a resolution of one cell level is prepared from a test nucleic acid (for example, mRNA) in living tissue, and a next-generation DNA sequencer or a DNA probe having a sequence complementary to the gene sequence to be investigated is prepared. Perform gene expression analysis using the hybrids used. In the present invention, “gene expression analysis” means quantitative analysis of the expression of a gene or biomolecule in a sample (cell, tissue section, etc.), that is, a target test nucleic acid, It means analyzing the expression distribution of nucleic acid) or biomolecule, and obtaining correlation data between a specific position in a sample and the expression level of a gene (test nucleic acid) or biomolecule.
 以下、添付図面を参照して本発明の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。添付図面は本発明の原理に則った具体的な実施形態と実装例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, functionally identical elements may be denoted by the same numbers. The accompanying drawings illustrate specific embodiments and implementation examples consistent with the principles of the present invention, but are for the purpose of understanding the invention and are not to be construed as limiting the invention. It is not a thing.
 本実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 This embodiment has been described in sufficient detail for those skilled in the art to practice the present invention, but other implementations and configurations are possible without departing from the scope and spirit of the technical idea of the present invention. It is necessary to understand that the configuration and structure can be changed and various elements can be replaced. Therefore, the following description should not be interpreted as being limited to this.
(1)第1の実施形態
 第1の実施形態では、本発明の構成を持ったデバイスを用いてサンプルである複数の細胞を一細胞レベルの分解能を持って遺伝子発現解析を行う方法について説明する。
(1) First Embodiment In the first embodiment, a method for performing gene expression analysis on a plurality of cells as samples with a resolution of one cell level using a device having the configuration of the present invention will be described. .
 <細胞核酸補足用デバイスの構成>
 図1は、本発明の実施形態で用いられる細胞核酸補足用デバイス100を上から見た構成を示す図(平面図)である。図2は、当該細胞核酸補足用デバイス100の断面を示す図(断面図)である。
<Configuration of cell nucleic acid supplement device>
FIG. 1 is a diagram (plan view) showing a configuration of a cell nucleic acid supplementing device 100 used in an embodiment of the present invention as viewed from above. FIG. 2 is a diagram (cross-sectional view) showing a cross section of the cell nucleic acid supplementing device 100.
 細胞核酸補足用デバイス100として、PDMS製基板101の形状を、半導体プロセスを用いて作製したデバイスを使用することができる。このデバイス(例えば、1mm×1mmのサイズ)には、細胞捕捉用孔102と核酸捕捉用孔103が上下に配置された反応槽104を2次元アレイ状に配置した構成を有している。 As the device 100 for capturing nucleic acids of cells, a device in which the shape of the PDMS substrate 101 is manufactured using a semiconductor process can be used. This device (for example, a size of 1 mm × 1 mm) has a configuration in which reaction tanks 104 in which cell capturing holes 102 and nucleic acid capturing holes 103 are arranged vertically are arranged in a two-dimensional array.
 反応槽104は、それぞれ125μm間隔でxy方向にそれぞれ10個配置される。1つの細胞核酸補足用デバイス100に計100個の反応槽104が配置されている。 Ten reaction vessels 104 are arranged in the xy direction at intervals of 125 μm. A total of 100 reaction vessels 104 are arranged in one cell nucleic acid supplementing device 100.
 核酸捕捉用孔103には、直径1μmの磁性ビーズ105がパッキングされている。細胞捕捉用孔102の開口直径は、例えば8μm、核酸捕捉用孔103の開口直径は、例えば70μmとすることができる。 Nucleic acid capture holes 103 are packed with magnetic beads 105 having a diameter of 1 μm. The opening diameter of the cell capturing hole 102 can be set to 8 μm, for example, and the opening diameter of the nucleic acid capturing hole 103 can be set to 70 μm, for example.
 磁性ビーズ105は、図2の下方から漏出しないように、500nm程度の開口を持ったアルミナ製の細孔シート106がデバイス100の底面に配置される。なお、PDMS製基板101と細孔シート106はプラズマ接着によって接着される。ここで、PDMS製基板101の代わりにナノインプリント技術や射出成型によって作製した樹脂(ポリカービネート、サイクリックポリオレフィン、ポリプロピレン)製の基板や、市販のナイロンメッシュやトラックエッチメンブレンを用いてもよい。細孔アレイシートとの接着は熱接着を用いることもできるし、単にPDMS製基板101と細孔シート106を上下から圧力で押し付けるだけでも良い。 The alumina bead sheet 106 having an opening of about 500 nm is disposed on the bottom surface of the device 100 so that the magnetic beads 105 do not leak from the lower side of FIG. The PDMS substrate 101 and the pore sheet 106 are bonded by plasma bonding. Here, instead of the PDMS substrate 101, a substrate made of a resin (polycarbonate, cyclic polyolefin, polypropylene) manufactured by nanoimprint technology or injection molding, a commercially available nylon mesh, or a track etch membrane may be used. The adhesion to the pore array sheet can be performed by thermal adhesion, or simply by pressing the PDMS substrate 101 and the pore sheet 106 from above and below with pressure.
 <磁性ビーズの概要>
 図3は、核酸捕捉用の磁性ビーズ105の概略構成を示す図である。磁性ビーズ105の周りにはストレプトアビジン107が多数修飾されている。ストレプトアビジン107を介して5’末端にはビオチン108が結合したmRNA捕捉用DNAプローブ109が結合している。本発明の実施形態では磁性ビーズを使用したが、これ以外に、樹脂材料(ポリスチレンなど)、酸化物(ガラスなど)、金属(鉄など)、セファロース、及びこれらの組み合わせなどからビーズを作製することができる。
<Outline of magnetic beads>
FIG. 3 is a diagram showing a schematic configuration of the magnetic beads 105 for capturing nucleic acid. A number of streptavidins 107 are modified around the magnetic beads 105. A DNA probe 109 for capturing mRNA to which biotin 108 is bound is bound to the 5 ′ end via streptavidin 107. In the embodiment of the present invention, magnetic beads are used, but in addition to this, beads are produced from resin materials (such as polystyrene), oxides (such as glass), metals (such as iron), sepharose, and combinations thereof. Can do.
 <mRNA捕捉用DNAプローブ109の概要>
 図4は、mRNA捕捉用DNAプローブ109の概略構成を示す図である。図4に示されるように、DNAプローブの5’末端にビオチン108が結合したmRNA捕捉用DNAプローブ109は、5’末端方向から、PCR増幅用共通配列(Forward)110、細胞認識用タグ配列111、及び核酸捕捉配列112で構成される。
<Outline of DNA probe 109 for mRNA capture>
FIG. 4 is a diagram illustrating a schematic configuration of the DNA probe 109 for capturing mRNA. As shown in FIG. 4, the DNA probe 109 for capturing mRNA in which biotin 108 is bound to the 5 ′ end of the DNA probe has, from the 5 ′ end direction, a common sequence (Forward) 110 for PCR amplification and a tag sequence 111 for cell recognition. , And a nucleic acid capture sequence 112.
 本実施形態では、核酸捕捉配列としてオリゴ(dT)を用いている。オリゴ(dT)用いることでmRNAのポリA配列とハイブリダイズして、サンプル細胞のmRNAを捕捉することが可能となる。オリゴ(dT)の重合度として、mRNAのポリA配列とハイブリダイズして、mRNAをオリゴ(dT)を含む核酸プローブが固定された磁性ビーズ105に捕捉しうる重合度であればよい。例えば、10~30塩基、10~20塩基、10~15塩基程度とすることができる。 In this embodiment, oligo (dT) is used as the nucleic acid capture sequence. By using oligo (dT), it is possible to hybridize with the polyA sequence of mRNA and capture mRNA of the sample cells. The degree of polymerization of the oligo (dT) may be any degree of polymerization that can hybridize with the poly A sequence of mRNA and capture the mRNA on the magnetic beads 105 to which the nucleic acid probe containing oligo (dT) is immobilized. For example, it can be about 10 to 30 bases, 10 to 20 bases, 10 to 15 bases.
 また、本発明の実施形態では捕捉する核酸をmRNAとしたが、例えば捕捉する核酸がmicroRNAやゲノムDNAである場合には、核酸捕捉配列として、ランダム配列、ターゲット被検核酸の一部に相補的な配列を用いることができる。 In the embodiments of the present invention, the nucleic acid to be captured is mRNA. However, for example, when the nucleic acid to be captured is microRNA or genomic DNA, the nucleic acid capture sequence is complementary to a random sequence or a part of the target test nucleic acid. Can be used.
 さらに、PCR増幅用共通配列をmRNA捕捉用DNAプローブ109へ導入することで、後続のPCR増幅工程においてこの配列を共通プライマーとして利用することができる。 Furthermore, by introducing a common sequence for PCR amplification into the DNA probe 109 for capturing mRNA, this sequence can be used as a common primer in the subsequent PCR amplification step.
 また、細胞認識用タグ配列(例えば5塩基)をmRNA捕捉用DNAプローブ109へ導入することによって、4=1024の位置又は領域(例えば4=1024個の単一細胞)を認識することが可能となり、最終的に得られる次世代シーケンサの配列データが、どの細胞(又は位置、反応槽、若しくは領域)由来であるかを認識することが可能となる。 Further, by introducing a cell recognition tag sequence (for example, 5 bases) into the DNA probe 109 for capturing mRNA, 4 5 = 1024 positions or regions (for example, 4 5 = 1024 single cells) can be recognized. It becomes possible to recognize which cell (or position, reaction vessel, or region) the sequence data of the next-generation sequencer finally obtained is derived from.
 <フローセルデバイスの構成>
 図5は、本発明の第1の実施形態によるフローセルデバイス120の概略構成を示す図である。フローセルデバイス120は、洗浄バッファを導入する導入口121とサンプルである細胞や反応試薬を導入する開口部122と、細胞や反応試薬を一時的に保管する収容部123と、細胞核酸捕捉用デバイス100が設置された細胞捕捉と核酸捕捉がなされる反応場124と、溶液を排出する第一の排出口125と、第二の排出口126と、を有している。
<Configuration of flow cell device>
FIG. 5 is a diagram showing a schematic configuration of the flow cell device 120 according to the first embodiment of the present invention. The flow cell device 120 includes an introduction port 121 for introducing a washing buffer, an opening 122 for introducing a sample cell or reaction reagent, a storage unit 123 for temporarily storing the cell or reaction reagent, and the cell nucleic acid capturing device 100. A reaction field 124 for capturing cells and nucleic acid, a first outlet 125 for discharging the solution, and a second outlet 126.
 本実施形態では、フローセルデバイス120の材質としてアクリル樹脂を使用したが、それ以外の樹脂、金属であっても良い。観察の容易性を考慮すると、好ましくは光学的に透明な材質を用いることが好ましい。また、流路を構成する材質は、核酸捕捉やcDNA合成反応の阻害となる材質を避ける必要がある。例えば、アルミなどはcDNA合成反応の阻害となるために避ける必要がある。 In this embodiment, acrylic resin is used as the material of the flow cell device 120, but other resin or metal may be used. Considering ease of observation, it is preferable to use an optically transparent material. Moreover, it is necessary to avoid the material which comprises a flow path from the material which obstruct | occludes a nucleic acid capture or cDNA synthesis reaction. For example, aluminum must be avoided because it inhibits the cDNA synthesis reaction.
 開口部122の開口サイズとしては、後述する試薬収容分注器の先端が導入できるサイズ以上であることが望ましい。本実施形態では、試薬収容分注器の先端直径が360μmであるため、開口部122の直径を1mmとしている。 It is desirable that the opening size of the opening 122 is not less than a size that allows introduction of a tip of a reagent storage dispenser described later. In the present embodiment, since the tip diameter of the reagent storage dispenser is 360 μm, the diameter of the opening 122 is set to 1 mm.
 細胞捕捉時には、どの細胞捕捉孔に細胞が捕捉されたか、一つの細胞捕捉孔に複数の細胞が捕捉されていないかなどを確認するために、細胞核酸捕捉用デバイス100を光学的に観察できることが望ましい。そこで、フローセルデバイス120の反応場124直上には、細胞核酸捕捉用デバイス100を光学観察できるように光学的に透明な材質である窓127が設けられている。本実施形態では、窓127として、石英製のガラス板が用いられている。フローセルデバイスの材質が光学的に透明な材質であれば、あえて反応場124直上に別な材質を使用する必要はない。また、細胞核酸補足用デバイス100を光学観察する必要がなければ、フローセルデバイスの材質が光学的に透明な材質でなくても、反応場124直上に別な材質を使用する必要はない。 At the time of cell capture, the cell nucleic acid capture device 100 can be optically observed in order to confirm which cell capture hole has captured the cell, and whether a plurality of cells have not been captured in one cell capture hole. desirable. Therefore, a window 127 made of an optically transparent material is provided immediately above the reaction field 124 of the flow cell device 120 so that the cell nucleic acid capturing device 100 can be optically observed. In the present embodiment, a quartz glass plate is used as the window 127. If the material of the flow cell device is an optically transparent material, it is not necessary to use another material directly above the reaction field 124. If it is not necessary to optically observe the cell nucleic acid supplementing device 100, it is not necessary to use another material directly above the reaction field 124 even if the material of the flow cell device is not an optically transparent material.
 また、高倍率の対物レンズで細胞核酸補足用デバイス100を光学観察するためには、対物レンズと細胞核酸補足用デバイス100の表面との距離を対物レンズの作動距離以下にする必要がある。対物レンズがフローセルデバイス120に接触して撮像できなくなるのを回避するためである。従って、フローセルデバイス120の反応場直上の部分の厚さ(つまり、窓127の厚さ)は、流路の高さを含めて対物レンズの作動距離以下にする必要がある。そのため、フローセルデバイスにおいて、反応場124直上の面(窓127の上面部)は、開口部122が設置された面よりも低い位置となるように構成されている。なお、細胞核酸補足用デバイス100が成す面とフローセルデバイスにおける開口部122が設置された面との高さ方向の距離が対物レンズの作動距離以下であれば、フローセルデバイス120の開口部122の上面部は反応場124直上の面(窓127の上面部)と同一平面内に配置されても良い(図5に示されるように段差のある構成としなくても良い)。 Also, in order to optically observe the cell nucleic acid supplementing device 100 with a high-magnification objective lens, the distance between the objective lens and the surface of the cell nucleic acid supplementing device 100 needs to be less than or equal to the working distance of the objective lens. This is to prevent the objective lens from coming into contact with the flow cell device 120 and becoming unable to image. Therefore, the thickness of the portion immediately above the reaction field of the flow cell device 120 (that is, the thickness of the window 127) needs to be less than the working distance of the objective lens including the height of the flow path. Therefore, in the flow cell device, the surface immediately above the reaction field 124 (the upper surface portion of the window 127) is configured to be lower than the surface where the opening 122 is installed. If the distance in the height direction between the surface formed by the cell nucleic acid supplementing device 100 and the surface where the opening 122 is installed in the flow cell device is equal to or less than the working distance of the objective lens, the upper surface of the opening 122 of the flow cell device 120 The portion may be arranged in the same plane as the surface immediately above the reaction field 124 (the upper surface portion of the window 127) (there is no need to have a stepped structure as shown in FIG. 5).
 収容部123の容積は、サンプルや使用する反応試薬による収容部123上部の汚染を防ぐため、使用する反応試薬量と同等以上である必要がある。使用する反応試薬量は、反応場124を満たす程度の量があれば良い。なお、本実施形態では、使用する反応試薬量を20μLとしているため、試薬収容部123の容積は30μLとしている。 The volume of the storage unit 123 needs to be equal to or greater than the amount of the reaction reagent to be used in order to prevent contamination of the upper part of the storage unit 123 by the sample and the reaction reagent to be used. The amount of the reaction reagent to be used may be an amount that satisfies the reaction field 124. In this embodiment, since the amount of the reaction reagent to be used is 20 μL, the volume of the reagent storage unit 123 is 30 μL.
 <細胞核酸捕捉用システム>
 図6は、本発明の第1の実施形態による細胞核酸捕捉用システム20の概略図を示す。細胞核酸捕捉用システム20は、フローセルデバイスを含めた送液ユニット200と、試薬分注ユニット201と、フローセルデバイスの温度調整を行う温調ユニット203と、細胞核酸捕捉用デバイス100の光学観察を行う光学観察ユニット204と、フローセルデバイス120を所望の位置に移動させる移動ステージユニット205と、を有している。
<Cellular nucleic acid capture system>
FIG. 6 shows a schematic diagram of a system 20 for capturing cellular nucleic acids according to the first embodiment of the present invention. The cell nucleic acid capturing system 20 performs optical observation of the liquid feeding unit 200 including the flow cell device, the reagent dispensing unit 201, the temperature adjusting unit 203 for adjusting the temperature of the flow cell device, and the cell nucleic acid capturing device 100. An optical observation unit 204 and a moving stage unit 205 that moves the flow cell device 120 to a desired position are provided.
 送液ユニット200では、洗浄用チューブ206は、フローセルデバイスの導入口121に接続されており、洗浄用チューブ206の片方の端は、洗浄バッファが満たされたシリンジ224に接続されている。フローセルデバイスの第一の排出口125、及び第二の排出口126にはそれぞれ排出チューブ209及び210を介してシリンジ211とシリンジ212が接続されている。 In the liquid feeding unit 200, the cleaning tube 206 is connected to the inlet 121 of the flow cell device, and one end of the cleaning tube 206 is connected to a syringe 224 filled with a cleaning buffer. A syringe 211 and a syringe 212 are connected to the first outlet 125 and the second outlet 126 of the flow cell device via outlet tubes 209 and 210, respectively.
 試薬分注ユニット201は、試薬やサンプルを収容・分注する試薬収容分注器213と、試薬やサンプルを分注させるために試薬収容分注器213を特定の時間加圧するための分注用加圧器214と、各試薬収容分注器213の先端をフローセルデバイス120内の開口部122に挿入するために試薬収容分注器213を移動させる移動ステージ215と、を含む。試薬収容分注器213は、ポリプロピレン樹脂とガラス製の内/外径75/360μmのキャピラリから構成される。そして、サンプルや試薬が収容されているポリプロピレン樹脂製の収容部上部から一定の圧力、時間で加圧されると、キャピラリの先端からサンプルや試薬が分注される。各試薬収容分注器213は個別に移動でき、個別に加圧することが可能である。試薬収容分注器213とフローセルデバイス120は接続されていないため、フローセルデバイス120を各反応で温調しても、温度の影響を試薬収容分注器213に保管している試薬に影響を与えることは無い。また、本実施形態では試薬収容分注器213を温調していないが、試薬の劣化をより防ぐため(特に低い温度(4℃など)で)温調しても良い。 The reagent dispensing unit 201 is for dispensing a reagent containing dispenser 213 that contains and dispenses a reagent and a sample, and for pressurizing the reagent containing dispenser 213 for a specific time in order to dispense the reagent and the sample. The pressurizer 214 includes a moving stage 215 that moves the reagent containing dispenser 213 to insert the tip of each reagent containing dispenser 213 into the opening 122 in the flow cell device 120. The reagent storage dispenser 213 is composed of a polypropylene resin and a glass-made capillary with an inner / outer diameter of 75/360 μm. Then, when a constant pressure and time are applied from the upper part of the polypropylene resin containing portion in which the sample and reagent are accommodated, the sample and reagent are dispensed from the tip of the capillary. Each reagent containing dispenser 213 can be moved individually and can be pressurized individually. Since the reagent storage dispenser 213 and the flow cell device 120 are not connected, even if the temperature of the flow cell device 120 is controlled by each reaction, the influence of the temperature affects the reagent stored in the reagent storage dispenser 213. There is nothing. In this embodiment, the temperature of the reagent storage / dispensing device 213 is not adjusted. However, the temperature may be adjusted in order to prevent the deterioration of the reagent (particularly at a low temperature (eg, 4 ° C.)).
 温調ユニット203は、フローセルデバイス120内の温度を4℃から85℃まで調整可能にするため、ペルチェとヒータを組み合わせた構成とする。より具体的には、ペルチェ素子の表面に熱伝導の良い金属(例えば銅)ブロックを熱伝導の良い接着剤で接着し、金属内部にヒータを導入した構成とすることができる。また、金属ブロックを、熱伝導シートを介してフローセルデバイス120に接続している。 The temperature control unit 203 is configured to combine a Peltier and a heater so that the temperature in the flow cell device 120 can be adjusted from 4 ° C. to 85 ° C. More specifically, a structure in which a metal (for example, copper) block having good heat conduction is bonded to the surface of the Peltier element with an adhesive having good heat conduction, and a heater is introduced inside the metal can be used. Moreover, the metal block is connected to the flow cell device 120 through a heat conductive sheet.
 光学観察ユニット204は、サンプルである細胞に標識した蛍光体GFP2(Ex/Em=483/506nm)を励起するための光源であるレーザ218と、ビームエキスパンダ225と、対物レンズ219と、結像レンズ220と、CCDカメラ221と、を有している。レーザ218から発振した488nmのレーザ光は、ビームエキスパンダ225によりビーム幅が拡大される。そして、ビーム幅が拡大されたレーザ光は、500nm以下を反射するダイクロイックミラー222によって反射され、対物レンズ219によって集光され、フローセルデバイス120内の細胞核酸捕捉用デバイス100に捕捉された細胞に照射される。照射された細胞からの蛍光は、対物レンズ219によって集光される。そして、集光されたレーザ光は、ダイクロイックミラー222を透過し、500nm以下をカットする光学フィルタ223によって背景光が除去され、結像レンズ220によってCCDカメラ221に結像される。本実施形態では落射式蛍光顕微鏡の構成を用いたが、細胞を直接観察する落射式明視野、暗視野顕微鏡の構成でも良い。また、細胞核酸捕捉用デバイス100とフローセルデバイス120の下面が光学的に透明な材料で構成されていれば、フローセルデバイス120の下方から励起光や照明光を照射した観察方式であっても良い。 The optical observation unit 204 includes a laser 218 serving as a light source for exciting a phosphor GFP2 (Ex / Em = 483/506 nm) labeled on a sample cell, a beam expander 225, an objective lens 219, and an image. A lens 220 and a CCD camera 221 are included. The beam width of the 488 nm laser light oscillated from the laser 218 is expanded by the beam expander 225. Then, the laser beam whose beam width is expanded is reflected by the dichroic mirror 222 that reflects 500 nm or less, condensed by the objective lens 219, and irradiated to the cells captured by the cell nucleic acid capturing device 100 in the flow cell device 120. Is done. The fluorescence from the irradiated cells is collected by the objective lens 219. The condensed laser light passes through the dichroic mirror 222, the background light is removed by the optical filter 223 that cuts the wavelength of 500 nm or less, and is imaged on the CCD camera 221 by the imaging lens 220. In the present embodiment, the configuration of the epi-illumination fluorescence microscope is used, but the configuration of an epi-illumination bright field and dark field microscope for directly observing cells may be used. Further, as long as the lower surfaces of the cell nucleic acid capturing device 100 and the flow cell device 120 are made of an optically transparent material, an observation method in which excitation light or illumination light is irradiated from below the flow cell device 120 may be used.
 移動ステージユニット205は、自動移動ステージから構成されている。移動ステージ上には、温調ユニット203とフローセルデバイス120が設置されている。移動ステージユニット205は、温調ユニット203と断熱材を介して接続され、温調ユニット203の温度の影響を受けないようになっている。移動ステージユニット205は、フローセルデバイス120を、反応工程によって適切な位置に移動させる。例えば、移動ステージユニット205は、光学観察する時には細胞核酸捕捉用デバイス100の直上に光学計測ユニットが配置される位置(計測時位置)に、サンプルや試薬を収容部123に導入する時には第二の導入口122の直上に試薬収容分注器213が配置される位置(試薬導入時位置)に、フローセルデバイス120を移動する。 The moving stage unit 205 is composed of an automatic moving stage. On the moving stage, the temperature control unit 203 and the flow cell device 120 are installed. The moving stage unit 205 is connected to the temperature control unit 203 via a heat insulating material so that it is not affected by the temperature of the temperature control unit 203. The moving stage unit 205 moves the flow cell device 120 to an appropriate position by the reaction process. For example, the moving stage unit 205 is used when the sample or reagent is introduced into the storage unit 123 at a position (measurement position) where the optical measurement unit is disposed immediately above the cell nucleic acid capturing device 100 during optical observation. The flow cell device 120 is moved to a position (reagent introduction position) where the reagent storage / dispensing device 213 is disposed immediately above the introduction port 122.
 <サンプル、試薬、洗浄バッファを導入する工程について>
 図7は、本発明の第1の実施形態によるフローセルデバイス120における、サンプル(細胞懸濁液)と試薬の導入工程を示す図である。
(i)図7(a):収容部へのサンプル等導入
 移動ステージユニット205によってフローセルデバイス120を試薬導入時位置に移動させる。また、移動ステージ215によって試薬収容分注器213の先端を開口部122から収容部123の上端より1mm高い位置に移動させる。続いて、分注加圧器によって所定に圧力と時間で試薬収容分注器213を加圧し、サンプルもしくは試薬128を収容部123に20μL導入する(図7(a))。
(ii)図7(b):細胞核酸捕捉用デバイス100までのサンプル等導入
 移動ステージ215によって試薬収容分注器213の先端をフローセルデバイス120から離脱させる。次に、シリンジ211を引いて、細胞核酸捕捉用デバイス100直上にサンプルもしくは試薬128が配置するまで吸引する(図7(b))。
(iii)図7(c):サンプル等の吸引・捕捉若しくは反応
 シリンジ212を引いて、細胞核酸捕捉用デバイス100を通過しながらサンプルもしくは試薬128が細胞核酸捕捉用デバイス100の下方向に移動するまで吸引する(図7(c))。この時、吸引する溶液がサンプルである細胞懸濁液であれば、溶液が下方向に移動しながら、細胞核酸捕捉用デバイス100上に細胞が捕捉される。また、吸引する溶液が試薬であれば、溶液が下方向に移動しながら、細胞核酸捕捉用デバイス100上で試薬反応が進む。
(vi)上記工程に示されるように、試薬収容部から収容部123へ試薬等を導入することにより、使用する試薬量を最大でも反応場124と収容部123から反応場124に続く流路程度まで低減することができる。また、各試薬は使用する直前まで試薬収容分注器213に保管されているため、フローセルデバイス120内の温度の影響を受けることはない。
<About the process of introducing sample, reagent, and washing buffer>
FIG. 7 is a diagram showing a sample (cell suspension) and reagent introduction process in the flow cell device 120 according to the first embodiment of the present invention.
(I) FIG. 7A: Introduction of sample or the like into the accommodating portion The flow cell device 120 is moved to the reagent introduction position by the moving stage unit 205. Further, the moving stage 215 moves the tip of the reagent storage / dispensing device 213 from the opening 122 to a position 1 mm higher than the upper end of the storage 123. Subsequently, the reagent storage dispenser 213 is pressurized at a predetermined pressure and time by a dispensing pressurizer, and 20 μL of the sample or reagent 128 is introduced into the storage portion 123 (FIG. 7A).
(Ii) FIG. 7 (b): Sample introduction to the cell nucleic acid capturing device 100 The tip of the reagent containing dispenser 213 is detached from the flow cell device 120 by the moving stage 215. Next, the syringe 211 is pulled and aspirated until the sample or the reagent 128 is arranged immediately above the cell nucleic acid capturing device 100 (FIG. 7B).
(Iii) FIG. 7C: Aspiration / capture or reaction of sample, etc. Pulling the syringe 212, the sample or reagent 128 moves downward in the cell nucleic acid capture device 100 while passing through the cell nucleic acid capture device 100. (FIG. 7C). At this time, if the solution to be sucked is a cell suspension as a sample, the cells are captured on the cell nucleic acid capturing device 100 while the solution moves downward. If the solution to be sucked is a reagent, the reagent reaction proceeds on the cell nucleic acid capturing device 100 while the solution moves downward.
(Vi) As shown in the above process, by introducing a reagent or the like from the reagent storage unit to the storage unit 123, the maximum amount of the reagent to be used is about the reaction field 124 and the flow path from the storage unit 123 to the reaction field 124. Can be reduced. Moreover, since each reagent is stored in the reagent storage / dispensing device 213 until immediately before use, it is not affected by the temperature in the flow cell device 120.
 <フローセルデバイス内の流路を洗浄する工程について>
 図8は、本発明の第1の実施形態によるフローセルデバイス120内の流路を洗浄する工程を示す図である。
(i)図8(a):洗浄バッファの収容部の充填
 洗浄バッファが充填されたシリンジ224を押し、収容部123に洗浄バッファ129を満たす(図8(a))。
(ii)図8(b):細胞核酸捕捉用デバイス100までの洗浄バッファ導入
 シリンジ211を引いて、細胞核酸捕捉用デバイス100直上に洗浄バッファ129が配置するまで吸引する(図8(b))。
(iii)図8(c):洗浄バッファの吸引
 シリンジ212を引いて、細胞核酸捕捉用デバイス100を通過しながら洗浄バッファ129が細胞核酸捕捉用デバイス下方向に移動するまで吸引する(図8(c))。
(iv)図8(d):洗浄バッファの排出
 シリンジ212を引き続けた状態で、シリンジ211も引き、フローセルデバイス120内の収容部から第一の排出口125および第二の排出口126にかけての流路内の洗浄バッファが無くなるまで両シリンジを引き続ける。(図8(d))。
(v)このような洗浄工程を実行することにより、フローセルデバイス内流路をしっかり洗浄でき、サンプルである細胞や導入試薬の汚染を防ぐことが可能となる。
<About the process of cleaning the flow path in the flow cell device>
FIG. 8 is a diagram illustrating a process of cleaning the flow path in the flow cell device 120 according to the first embodiment of the present invention.
(I) FIG. 8A: Filling the Washing Buffer Housing Part The syringe 224 filled with the washing buffer is pushed to fill the housing part 123 with the washing buffer 129 (FIG. 8A).
(Ii) FIG. 8B: Introduction of the washing buffer to the cell nucleic acid capturing device 100 The syringe 211 is pulled and sucked until the washing buffer 129 is arranged immediately above the cell nucleic acid capturing device 100 (FIG. 8B). .
(Iii) FIG. 8 (c): Aspiration of the washing buffer The syringe 212 is pulled and aspirated until the washing buffer 129 moves downward while passing through the cell nucleic acid capturing device 100 (FIG. 8 ( c)).
(Iv) FIG. 8 (d): Discharging of the washing buffer With the syringe 212 kept being pulled, the syringe 211 is also pulled, and from the accommodating part in the flow cell device 120 to the first outlet 125 and the second outlet 126. Continue drawing both syringes until there is no wash buffer in the flow path. (FIG. 8D).
(V) By executing such a washing step, the flow channel in the flow cell device can be thoroughly washed, and contamination of the sample cells and the introduced reagent can be prevented.
 <サンプル(細胞懸濁液)導入から次世代(大規模)シーケンサで遺伝子発現プロファイルを得るためまでの工程について>
 図9は、サンプル(細胞懸濁液)導入から次世代(大規模)シーケンサで遺伝子発現プロファイルを得るためまでの工程を説明するための図である。主な工程は、図9に示すように、細胞核酸捕捉用デバイス100に細胞を捕捉(図9(a))、細胞溶解とmRNAを捕捉(図9(b))、1st strand(cDNA)の合成(図9(c))、mRNAの分解(図9(d))、2nd starnd合成(図9(e))、PCR反応による増幅(図9(f))、増幅産物の精製(図9(g))、emPCRと次世代DNAシーケンサによる解析(図9(h))である。以下、より具体的に説明する。
(i)図9(a):細胞核酸捕捉用デバイス100に細胞を捕捉
 500個程度以下の細胞を500μLの1×PBSで細胞を傷つけないように洗浄し、PBS溶液中に含まれる遊離の核酸を除去するため、できる限りPBSが残らないように溶液を除去し、1×PBSバッファを20μL加えた細胞懸濁液を作製した。細胞懸濁液を試薬収容分注器213に導入し、図7で説明した方法によりフローセルデバイス120内収容部123に導入し、シリンジ211を引くことによって、細胞を細胞核酸捕捉用デバイス100上の格子上に配列された細胞捕捉用孔102に捕捉する。次に図8で説明した工程で、洗浄バッファである1×PBS 200μLによってフローセルデバイス120内流路を洗浄する。
(ii)図9(b):細胞溶解とmRNAを捕捉
 図7で説明した工程で、開口部122から試薬収容分注器213よりRealTime ready Lysisバッファ(Roche)39.5μL、Protector(Roche)39.5μL、Protector RNase Inhibitor(Roche)0.5μLで調整したLysis溶液20μLを導入し、細胞核酸捕捉用デバイス100の各反応槽104にLysis溶液を通過させる。細胞はLysis溶液によって溶解され、細胞内に存在したmRNAが溶出する。細胞を溶解しながらLysis溶液を流し続けるため、溶出したmRNAは速やかに細胞捕捉用孔102下部に配置された核酸捕捉用孔103に流れていく。この過程でmRNAは磁性ビーズ105に固定されたmRNA捕捉用DNAプローブのオリゴ(dT)部分に捕捉される。次いで図8で説明した工程で、洗浄バッファ200μLによってフローセルデバイス120内流路(特に反応槽104)を洗浄する。
(iii)図9(c):1st strand(cDNA)の合成
 図7で説明した工程で、開口部122から試薬収容分注器213より5×First strandバッファ(Invitrogen社)4μL、10mM dNTP(Invitrogen社)4μL、0.1M DTT(Invitrogen社)4μL、SuperScript III(逆転写酵素、Invitrogen社)4μL、RNaseOUT(Invitrogen社)4μLを混和した逆転写溶液を導入し、細胞核酸捕捉用デバイス100の各反応槽104に当該溶液を通過させる。当該溶液が、まだ細胞核酸捕捉用デバイス100上に残存している状態でシリンジ212による溶液吸引を停止し、温調ユニット203によってフローセルデバイス120内温度を37℃に調整し10分間静置した後に、50℃に調整し45分間保つことよって逆転写反応を完了させ、mRNAと相補的配列を持つ1st strand DNA(cDNA)を合成した。cDNA鎖を合成した後に、温調ユニット203によってフローセルデバイス120内温度を85℃に調整し90秒間保ち逆転写酵素を失活させた。逆転写酵素失活後にフローセルデバイス120内温度を室温に戻し、図8で説明した工程で、洗浄バッファ200μLによりフローセルデバイス120内流路(特に反応槽104)を洗浄する。
(iv)図9(d):mRNAの分解
 洗浄した細胞核酸捕捉用デバイス100をフローセルデバイス120から取り外し、樹脂製のチューブ(一般に用いられる0.2mLや1.5mL容量などのチューブ)に導入し、RNaseH(Invitrogen社)1μL、10×RNaseHバッファ(Invitrogen社)1μLを混和したRNaseH溶液をそれぞれのチューブに導入し、チューブを37℃30分間静置することで、mRNAを分解する。
(v)図9(e):2nd starnd合成
 mRNA分解後に上記チューブにTris-tweenバッファ(10mMTris-HCl、pH8.0、0.1%Tween溶液)50μLを導入し、細胞核酸捕捉用デバイス100を洗浄し、マグネットを使用して磁性ビーズ105のみをチューブ内に残し、Tris-tweenバッファ 1μLで再懸濁した。上記チューブに10×Platnumバッファ1μL、2.5mM dNTPs1μL、50mM MgSO0.4μL、各10μMの遺伝子特異的配列プライマー2.5μL、Platnum Taq H.F.0.1μL、滅菌水5μLを混和した2nd strand合成試薬10μLを加えてPCR装置で98℃10秒、43℃1分、68℃3分の順に反応を行い2nd strandの合成を行った。本実施形態では、遺伝子特異的配列プライマーとしてPCR増幅用共通配列(Reverse)が付加された20種(ATP5B、GAPDH、GUSB、HMBS、HPRT1、RPL4、RPLP1、RPS18、RPL13A、RPS20、ALDOA、B2M、EEF1G、SDHA、TBP、VIM、RPLP0、RPLP2、RPLP27、およびOAZ1)の遺伝子特異的配列を持ったDNAプローブを使用した。遺伝子特異的配列として、ターゲット遺伝子のポリAテールから109+/-8塩基上流部分の20+/-5塩基を使用した。2nd strand合成を行ったチューブを4℃に保管した状態でマグネットを近接させ、磁性ビーズ105のみチューブ内に残した状態で2nd strand合成試薬を取り除く。
(vi)図9(f):PCR反応による増幅
 上記チューブを4℃に、またマグネットに近接した状態で、Tris tweenバッファ50μLで磁性ビーズを2回洗浄し、最後にTris tweenバッファ1μLでビーズを懸濁する。チューブ内の磁性ビーズを洗浄した後に、Gflex(TaKaRa)7μL、PCR増幅用共通配列(Forward)を持つプライマー2μL、PCR増幅用共通配列(Reverse)を持つプライマー2μL、Gflex polymerase(TaKaRa)0.3μL、滅菌水3μLを混和したPCR用試薬14.3μLを上記チューブに導入する。上記チューブを30秒間94℃に保ち、94℃30秒間→55℃30秒間→68℃30秒間の3段階工程を40サイクル繰り返し、最後に68℃3分間保った後に、4℃に冷却してPCR増幅工程を行う。当該工程により、20種のターゲット遺伝子の目的部分が増幅されるが、いずれもPCR産物サイズは200±8塩基とほぼ均一となる。
(vii)図9(g):増幅産物の精製
 PCR反応の後に、溶液中に含まれるフリーのPCR増幅用共通配列プライマーや酵素などの残留試薬を除去する目的で、上記工程(図9(f))で増幅した増幅産物をPCR Purification(Qiagen)を用いて精製する。
(viii)図9(h):emPCRと次世代DNAシーケンサによる解析
 精製した溶液をemPCR増幅またはブリッジ増幅適用した後に、各社(Life Technologies(Solid/Ion Torrent)、Illumina(High Seq)など)の 次世代DNAシーケンサに適用して解析する。
(ix)その他
 本発明の実施形態では、図9(a)から(d)の工程をフローセルデバイス120内で行い、それ以降の反応は別のチューブに細胞核酸捕捉用デバイス100を移して行ったが、図9(f)のPCR反応による増幅までをフローセルデバイス120内で行い、フローセルデバイスからの反応液を回収して、図9(g)増幅産物の精製以降の反応を別チューブで行っても良い。
<Processes from sample (cell suspension) introduction to obtaining gene expression profiles with next-generation (large-scale) sequencers>
FIG. 9 is a diagram for explaining steps from introduction of a sample (cell suspension) to obtaining a gene expression profile with a next-generation (large-scale) sequencer. As shown in FIG. 9, the main steps are to capture cells in the cell nucleic acid capturing device 100 (FIG. 9 (a)), cell lysis and mRNA (FIG. 9 (b)), and 1st strand (cDNA). Synthesis (FIG. 9 (c)), mRNA degradation (FIG. 9 (d)), 2nd start synthesis (FIG. 9 (e)), amplification by PCR reaction (FIG. 9 (f)), purification of amplification product (FIG. 9) (G)), analysis by emPCR and next-generation DNA sequencer (FIG. 9 (h)). More specific description will be given below.
(I) FIG. 9 (a): Capturing cells in the cell nucleic acid capturing device 100 About 500 cells or less are washed with 500 μL of 1 × PBS so as not to damage the cells, and free nucleic acid contained in the PBS solution In order to remove the solution, the solution was removed so that PBS did not remain as much as possible, and a cell suspension was prepared by adding 20 μL of 1 × PBS buffer. The cell suspension is introduced into the reagent containing dispenser 213, introduced into the containing portion 123 in the flow cell device 120 by the method described in FIG. 7, and the syringe 211 is pulled, whereby the cells are placed on the cell nucleic acid capturing device 100. The cells are trapped in the cell trapping holes 102 arranged on the lattice. Next, in the process described with reference to FIG. 8, the flow path in the flow cell device 120 is washed with 200 μL of 1 × PBS which is a washing buffer.
(Ii) FIG. 9 (b): Cell lysis and mRNA capture In the step described with reference to FIG. 7, RealTime ready Lysis buffer (Roche) 39.5 μL, Protector (Roche) 39 from the reagent storage dispenser 213 through the opening 122. 20 μL of Lysis solution adjusted with 0.5 μL and 0.5 μL of Protector RNase Inhibitor (Roche) is introduced, and the Lysis solution is passed through each reaction tank 104 of the device 100 for capturing cellular nucleic acids. The cells are lysed by the Lysis solution, and mRNA present in the cells is eluted. Since the Lysis solution continues to flow while the cells are lysed, the eluted mRNA immediately flows into the nucleic acid capturing holes 103 arranged below the cell capturing holes 102. In this process, mRNA is captured by the oligo (dT) portion of the mRNA capturing DNA probe fixed to the magnetic beads 105. Next, in the process described with reference to FIG. 8, the flow path in the flow cell device 120 (particularly the reaction vessel 104) is washed with 200 μL of the washing buffer.
(Iii) FIG. 9 (c): Synthesis of 1st strand (cDNA) In the step described in FIG. 7, 5 × First strand buffer (Invitrogen) 4 μL, 10 mM dNTP (Invitrogen) is supplied from the reagent reservoir 213 through the opening 122. 4 μL, 0.1 M DTT (Invitrogen) 4 μL, SuperScript III (reverse transcriptase, Invitrogen) 4 μL, and RNaseOUT (Invitrogen) 4 μL mixed with a reverse transcription solution, The solution is passed through the reaction vessel 104. The solution suction by the syringe 212 is stopped in a state where the solution still remains on the cell nucleic acid capturing device 100, the temperature inside the flow cell device 120 is adjusted to 37 ° C. by the temperature control unit 203, and left for 10 minutes. The reverse transcription reaction was completed by adjusting to 50 ° C. and maintaining for 45 minutes, and 1st strand DNA (cDNA) having a sequence complementary to mRNA was synthesized. After synthesizing the cDNA strand, the temperature inside the flow cell device 120 was adjusted to 85 ° C. by the temperature control unit 203 and maintained for 90 seconds to inactivate the reverse transcriptase. After the reverse transcriptase is deactivated, the temperature in the flow cell device 120 is returned to room temperature, and the flow path (particularly the reaction vessel 104) in the flow cell device 120 is washed with 200 μL of the washing buffer in the step described with reference to FIG.
(Iv) FIG. 9 (d): Degradation of mRNA The washed device 100 for capturing nucleic acid of cells is removed from the flow cell device 120 and introduced into a resin tube (0.2 mL or 1.5 mL capacity tubes generally used). RNaseH (Invitrogen) 1 μL, 10 × RNaseH buffer (Invitrogen) 1 μL mixed RNaseH solution is introduced into each tube, and the tubes are allowed to stand at 37 ° C. for 30 minutes to degrade mRNA.
(V) FIG. 9 (e): 2nd start synthesis After mRNA degradation, 50 μL of Tris-tween buffer (10 mM Tris-HCl, pH 8.0, 0.1% Tween solution) is introduced into the tube, and the device 100 for capturing cellular nucleic acid is installed. After washing, only the magnetic beads 105 were left in the tube using a magnet, and resuspended in 1 μL of Tris-tween buffer. In the tube, 1 × L of 10 × Platnum buffer, 1 μL of 2.5 mM dNTPs, 0.4 μL of 50 mM MgSO 4 , 2.5 μL of 10 μM gene-specific sequence primer, Platinum Taq H. F. 10 μL of 2nd strand synthesis reagent mixed with 0.1 μL and 5 μL of sterilized water was added, and the reaction was carried out in the order of 98 ° C. for 10 seconds, 43 ° C. for 1 minute, and 68 ° C. for 3 minutes to synthesize 2nd strand. In this embodiment, 20 types (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, PCR-amplified common sequence (Reverse) are added as gene-specific sequence primers. DNA probes having gene-specific sequences of EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, and OAZ1) were used. As a gene-specific sequence, 20 +/- 5 bases upstream of 109 +/- 8 bases from the poly A tail of the target gene were used. With the tube subjected to 2nd strand synthesis stored at 4 ° C., the magnet is brought close to it, and the 2nd strand synthesis reagent is removed with only the magnetic beads 105 left in the tube.
(Vi) FIG. 9 (f): Amplification by PCR reaction With the above tube at 4 ° C. and close to the magnet, the magnetic beads were washed twice with 50 μL of Tris tween buffer, and finally the beads were washed with 1 μL of Tris tween buffer. Suspend. After washing the magnetic beads in the tube, 7 μL of Gflex (TaKaRa), 2 μL of primer having a common sequence for PCR amplification (Forward), 2 μL of primer having a common sequence for PCR amplification (Reverse), 0.3 μL of Gflex polymerase (TaKaRa) Then, 14.3 μL of a PCR reagent mixed with 3 μL of sterilized water is introduced into the tube. The above-mentioned tube is kept at 94 ° C. for 30 seconds, and the three-stage process of 94 ° C. for 30 seconds → 55 ° C. for 30 seconds → 68 ° C. for 30 seconds is repeated 40 cycles, finally kept at 68 ° C. for 3 minutes, then cooled to 4 ° C. and PCR Perform the amplification step. This process amplifies target portions of 20 target genes, but the PCR product size is almost uniform at 200 ± 8 bases in all cases.
(Vii) FIG. 9 (g): Purification of amplification product After the PCR reaction, the above-described steps (FIG. 9 (f)) are performed for the purpose of removing residual reagents such as free PCR amplification common sequence primers and enzymes contained in the solution. The amplification product amplified in step)) is purified using PCR Purification (Qiagen).
(Viii) FIG. 9 (h): Analysis by emPCR and next-generation DNA sequencer After applying the purified solution to emPCR amplification or bridge amplification, the following of each company (Life Technologies (Solid / Ion Torrent), Illumina (High Seq), etc.) Analyzes are applied to a generation DNA sequencer.
(Ix) Others In the embodiment of the present invention, the steps of FIGS. 9A to 9D are performed in the flow cell device 120, and the subsequent reaction is performed by transferring the device 100 for capturing cellular nucleic acid to another tube. However, the process up to amplification by the PCR reaction in FIG. 9 (f) is performed in the flow cell device 120, the reaction solution from the flow cell device is recovered, and the reaction after purification of the amplification product in FIG. 9 (g) is performed in a separate tube. Also good.
 本発明の実施形態では、次世代DNAシーケンサを用いて遺伝子発現解析を行っているが、例えば、図9(d)mRNAの分解まで行い、作製したcDNAライブラリーである細胞核酸捕捉用デバイス100をフローセルデバイス120に設置したまま、蛍光体が標識された計測対象の遺伝子配列と相補的な配列を持つプローブを使ったハイブリダイゼーションと蛍光計測による解析を行う方法を用いても良い。この場合、蛍光体標識プローブを蛍光計測した後に、熱などでcDNAから脱離/洗浄した後に、再度異なる計測対象の遺伝子配列と相補的な配列を持つプローブを使って計測を行うことが可能であるため、複数の遺伝子発現解析が可能となる。 In the embodiment of the present invention, gene expression analysis is performed using a next-generation DNA sequencer. For example, FIG. 9 (d) is performed until mRNA degradation and the device 100 for capturing cellular nucleic acid, which is a cDNA library, is prepared. A method of performing analysis using hybridization and fluorescence measurement using a probe having a sequence complementary to the gene sequence to be measured and labeled with a fluorescent substance may be used while being installed in the flow cell device 120. In this case, it is possible to measure using a probe having a sequence complementary to a different gene sequence to be measured again after fluorescence measurement of the phosphor-labeled probe, desorption / washing from cDNA with heat, etc. Therefore, multiple gene expression analyzes are possible.
 また、本発明の実施形態では細胞核酸捕捉用デバイスとして、mRNA捕捉用DNAプローブが修飾された磁性ビーズを2次元アレイ状に配置したシートを使用しているが、特許文献1に開示される多孔質メンブレンを使っても良い。 In the embodiment of the present invention, a sheet in which magnetic beads modified with a DNA probe for capturing mRNA are arranged in a two-dimensional array is used as a cell nucleic acid capturing device. A quality membrane may be used.
(2)第2の実施形態
 本発明の第2の実施形態では、より簡便な洗浄方式を採用したフローセルデバイスとシステムを用いて、サンプルである複数の細胞を一細胞レベルの分解能を持って遺伝子発現解析を行う方法を説明する。第1の実施形態では、バッファ洗浄液を導入するためにシリンジが必要であったが、第2の実施形態ではこのシリンジを不要とする構成について開示している。なお、サンプル/試薬導入方法と反応工程は第1の実施形態と同様である。
(2) Second Embodiment In the second embodiment of the present invention, using a flow cell device and system adopting a simpler washing method, a plurality of cells as samples can be expressed with a single cell level resolution. A method for performing expression analysis will be described. In the first embodiment, a syringe is necessary to introduce the buffer cleaning solution. However, the second embodiment discloses a configuration that eliminates the need for this syringe. The sample / reagent introduction method and the reaction process are the same as those in the first embodiment.
 第2の実施形態によれば、第1の実施形態と同様に、試薬使用量低減や高い洗浄効果を維持しながら、シリンジを1つ減らし、送液コントロールを容易にすることが可能となる。 According to the second embodiment, as in the first embodiment, it is possible to reduce the amount of syringes used and to facilitate liquid feeding control while maintaining a reduced reagent usage amount and a high cleaning effect.
 <フローセルデバイスの構成>
 図10は、本発明の第2の実施形態におけるフローセルデバイス130の概略構成を示す図である。フローセルデバイス130は、開口部122を開閉可能とする蓋機構131を有すること以外、第1の実施形態によるフローセルデバイス120と同等の構成を有している。
<Configuration of flow cell device>
FIG. 10 is a diagram showing a schematic configuration of the flow cell device 130 according to the second embodiment of the present invention. The flow cell device 130 has the same configuration as the flow cell device 120 according to the first embodiment, except that the flow cell device 130 includes a lid mechanism 131 that can open and close the opening 122.
 蓋機構131の具体的な構成について説明する。蓋機構131は、開口部122の近傍に設置されており、ヒンジ133に接続された支え棒134に蓋132が設置された構成となっている。蓋132は軟らかい材質が好ましく、例えばゴムを使用することができる。また、蓋132の表面は反応試薬などが付着して汚染しないように撥水処理を施しても良い。蓋132の下端面は、開口部122を閉じた際、フローセルデバイス130内の収容部123の上端部よりも高い位置に配置される必要がある。蓋132に対する反応試薬の汚染を防ぐためである。本実施形態では、蓋132の形状を板状としている。これにより、開口部122を閉じた際でも、蓋132の下端面は収容部123の上端部よりも高い位置に配置することができる。なお、ヒンジ133内部にバネが入っている。従った、蓋132は、開口部122に対して開いた状態を維持しているが、支え棒134を押すことにより開口部122を蓋132によって閉じることが可能となる。 A specific configuration of the lid mechanism 131 will be described. The lid mechanism 131 is installed in the vicinity of the opening 122, and has a configuration in which the lid 132 is installed on a support bar 134 connected to the hinge 133. The lid 132 is preferably made of a soft material, and for example, rubber can be used. Further, the surface of the lid 132 may be subjected to water repellent treatment so that the reaction reagent or the like does not adhere to the surface of the lid 132. The lower end surface of the lid 132 needs to be arranged at a position higher than the upper end portion of the accommodating portion 123 in the flow cell device 130 when the opening 122 is closed. This is to prevent contamination of the reaction reagent on the lid 132. In the present embodiment, the lid 132 has a plate shape. Thereby, even when the opening 122 is closed, the lower end surface of the lid 132 can be arranged at a position higher than the upper end of the accommodating portion 123. A spring is contained inside the hinge 133. Accordingly, the lid 132 maintains an open state with respect to the opening 122, but the opening 122 can be closed by the lid 132 by pushing the support bar 134.
 <細胞核酸捕捉用システムの構成>
 図11は、本発明の第2の実施形態による細胞核酸捕捉用システム20’の概略構成を示す図である。細胞核酸捕捉用システム20’は、フローセルデバイスを含めた送液ユニット200と、試薬分注ユニット201と、フローセルデバイス130の蓋132の開け閉めを操作する開閉ユニット202と、フローセルデバイスの温度調整を行う温調ユニット203と、細胞核酸補足用デバイス100の光学観察を行う光学観察ユニット204と、フローセルデバイス130を所望の位置に移動させる移動ステージユニット205と、を有している。
<Configuration of cell nucleic acid capture system>
FIG. 11 is a diagram showing a schematic configuration of a cellular nucleic acid capturing system 20 ′ according to the second embodiment of the present invention. The cell nucleic acid capturing system 20 ′ includes a liquid feeding unit 200 including a flow cell device, a reagent dispensing unit 201, an opening / closing unit 202 for operating the lid 132 of the flow cell device 130, and a temperature adjustment of the flow cell device. A temperature control unit 203 is provided, an optical observation unit 204 that performs optical observation of the cell nucleic acid supplementing device 100, and a moving stage unit 205 that moves the flow cell device 130 to a desired position.
 送液ユニット217において、フローセルデバイスの導入口121には洗浄用チューブ206が接続されている。そして、洗浄用チューブ206の片方の端は、洗浄バッファが満たされたバッファ槽207に接続されている。また、洗浄用チューブ206にはソレノイドから構成されるバルブ208が設置されている。洗浄用チューブ206をバルブ208によって潰すことにより洗浄用チューブ206で構成される流路を閉じることが可能となる。フローセルデバイスの第一の排出口125および第二の排出口126にはそれぞれ排出チューブ209及び210を介してシリンジ211とシリンジ212が接続されている。 In the liquid feeding unit 217, a cleaning tube 206 is connected to the inlet 121 of the flow cell device. One end of the cleaning tube 206 is connected to a buffer tank 207 filled with a cleaning buffer. The cleaning tube 206 is provided with a valve 208 composed of a solenoid. By crushing the cleaning tube 206 with the valve 208, the flow path constituted by the cleaning tube 206 can be closed. A syringe 211 and a syringe 212 are connected to the first outlet 125 and the second outlet 126 of the flow cell device via outlet tubes 209 and 210, respectively.
 試薬分注ユニット201、温調ユニット203、光学観察ユニット204、及び移動ステージユニット205は、第1の実施形態と同様の構成であるので、説明は省略する。 Since the reagent dispensing unit 201, the temperature adjustment unit 203, the optical observation unit 204, and the moving stage unit 205 have the same configuration as in the first embodiment, description thereof is omitted.
 開閉ユニット202は、例えば、金属製丸棒より構成される。硬い材質であれば特に金属に限定はしない。 The opening / closing unit 202 is composed of, for example, a metal round bar. If it is a hard material, it will not specifically limit to a metal.
 <開口部の開閉動作>
 図12は、本発明の第2の実施形態によるフローセルデバイス130における、開口部122の開閉方法を示す図である。
(i)図12(a):フローセルデバイス130の移動
 移動ステージユニット205によりフローセルデバイス130を右から左方向へ移動させる(図12(a))。
(ii)図12(b):蓋機構131の回転
 支え棒134が開閉ユニット202に接触し、ヒンジ133を中心に蓋機構131が回転する(図12(b))。
(iii)図12(c):開口部122の閉鎖
 フローセルデバイス130をさらに左に移動させ、開閉ユニット202の中心の直下にフローセルデバイス130の開口部122を配置させた時、蓋機構131は回転し、開口部122が蓋132によって完全に閉ざされる。
<Opening and closing operation>
FIG. 12 is a diagram illustrating a method for opening and closing the opening 122 in the flow cell device 130 according to the second embodiment of the present invention.
(I) FIG. 12A: Movement of the flow cell device 130 The flow cell device 130 is moved from right to left by the moving stage unit 205 (FIG. 12A).
(Ii) FIG. 12B: Rotation of the lid mechanism 131 The support bar 134 comes into contact with the opening / closing unit 202, and the lid mechanism 131 rotates around the hinge 133 (FIG. 12B).
(Iii) FIG. 12 (c): Closing the opening 122 When the flow cell device 130 is further moved to the left and the opening 122 of the flow cell device 130 is disposed immediately below the center of the opening / closing unit 202, the lid mechanism 131 rotates. The opening 122 is completely closed by the lid 132.
 <流路洗浄工程について>
 図13は、本発明の第2の実施形態による、フローセルデバイス130内流路を洗浄する工程を説明するための図である。なお、サンプル、試薬導入工程は第1の実施形態と同様であるので説明は省略する。
(i)図13(a):蓋閉鎖
 バルブ208を開き、移動ステージユニット205によってフローセルデバイス130を開口部122が開閉ユニット202中心の直下の位置になるよう移動させ、開口部122を蓋132で閉じる(図13(a))。
(ii)図13(b):細胞核酸捕捉用デバイス100直上の位置への洗浄バッファの導入
 シリンジ211を引いて、細胞核酸捕捉用デバイス100直上に洗浄バッファ129が配置するまで吸引する(図13(b))。
(iii)図13(c):フローセルデバイス130の洗浄開始
 シリンジ212を引いて、細胞核酸捕捉用デバイス100を通過しながら洗浄バッファ129が細胞核酸捕捉用デバイスの下に移動するまで吸引する(図13(c))。
(iv)図13(d):洗浄バッファの回収
 シリンジ212を引き続けた状態で、フローセルデバイス130を図右方向に移動させ、開口部122から蓋132を外す。そして、バルブ208を閉じ、フローセルデバイス内流路に洗浄バッファ129が無くなるまでシリンジ212及び211を引き続ける(図13(d))。
<About the channel cleaning process>
FIG. 13 is a diagram for explaining a process of cleaning the flow channel in the flow cell device 130 according to the second embodiment of the present invention. Note that the sample and reagent introduction steps are the same as those in the first embodiment, and a description thereof will be omitted.
(I) FIG. 13 (a): Lid closing The valve 208 is opened, and the flow stage device 205 is moved by the moving stage unit 205 so that the opening 122 is positioned immediately below the center of the opening / closing unit 202. Close (FIG. 13A).
(Ii) FIG. 13B: Introduction of the washing buffer at a position directly above the cell nucleic acid capturing device 100 The syringe 211 is pulled and aspirated until the washing buffer 129 is arranged directly above the cell nucleic acid capturing device 100 (FIG. 13). (B)).
(Iii) FIG. 13 (c): Start of washing of the flow cell device 130 The syringe 212 is pulled and sucked until the washing buffer 129 moves under the cell nucleic acid capturing device while passing through the cell nucleic acid capturing device 100 (FIG. 13). 13 (c)).
(Iv) FIG. 13D: Recovery of Washing Buffer With the syringe 212 kept being pulled, the flow cell device 130 is moved to the right in the figure, and the lid 132 is removed from the opening 122. Then, the valve 208 is closed, and the syringes 212 and 211 are continuously pulled until the washing buffer 129 disappears in the flow channel in the flow cell device (FIG. 13D).
 <サンプル(細胞懸濁液)導入から次世代(大規模)シーケンサで遺伝子発現プロファイルについて>
 サンプル(細胞懸濁液)導入から次世代(大規模)シーケンサで遺伝子発現プロファイルを得るためまでの工程は、第1の実施形態と同様である。
<About gene expression profile from sample (cell suspension) introduction to next-generation (large-scale) sequencer>
The steps from sample (cell suspension) introduction to obtaining a gene expression profile with a next-generation (large-scale) sequencer are the same as those in the first embodiment.
(3)第3の実施形態
 本発明の第3の実施形態では、第2の実施形態における蓋機構131をシステムに導入して、サンプルである複数の細胞を一細胞レベルの分解能を持って遺伝子発現解析を行う方法について説明する。フローセルデバイス、サンプル/試薬導入方法と反応工程については第1の実施形態と同様である。
(3) Third Embodiment In the third embodiment of the present invention, the lid mechanism 131 in the second embodiment is introduced into the system, and a plurality of cells as samples are expressed with a single cell level resolution. A method for performing expression analysis will be described. The flow cell device, the sample / reagent introduction method, and the reaction process are the same as those in the first embodiment.
 第3の実施形態によれば、第1及び第2の実施形態と同様に、試薬使用量低減や高い洗浄効果を維持しながら、シリンジを一つ減らし、送液コントロールを容易にすることが可能となる。また、第2の実施系とは異なり、蓋機構をシステムに導入したことにより、フローセルデバイスの部品点数を低減し、デバイスコストを低減することができる。 According to the third embodiment, similarly to the first and second embodiments, it is possible to reduce the amount of syringes and facilitate liquid feeding control while maintaining a reduced reagent usage amount and a high cleaning effect. It becomes. Further, unlike the second implementation system, by introducing the lid mechanism into the system, the number of parts of the flow cell device can be reduced, and the device cost can be reduced.
 <細胞核酸捕捉用システムの構成>
 図14は、本発明の第3の実施形態による細胞核酸捕捉用システム20’’の概略構成を示す図である。よる細胞核酸捕捉用システム20’’は、フローセルデバイス120を含めた送液ユニット227と、試薬分注ユニット201と、フローセルデバイス130の蓋132の開け閉めを操作する開閉ユニット226と、フローセルデバイスの温度調整を行う温調ユニット203と、細胞核酸補足用デバイス100の光学観察を行う光学観察ユニット204と、フローセルデバイス130を所望の位置に移動させる移動ステージユニット205と、を有している。
<Configuration of cell nucleic acid capture system>
FIG. 14 is a diagram showing a schematic configuration of a cell nucleic acid capturing system 20 ″ according to the third embodiment of the present invention. The cell nucleic acid capturing system 20 ″ according to the present embodiment includes a liquid feeding unit 227 including the flow cell device 120, a reagent dispensing unit 201, an opening / closing unit 226 for operating the lid 132 of the flow cell device 130, and a flow cell device. It has a temperature adjustment unit 203 that adjusts the temperature, an optical observation unit 204 that optically observes the cell nucleic acid supplementing device 100, and a moving stage unit 205 that moves the flow cell device 130 to a desired position.
 試薬分注ユニット201、温調ユニット203、光学観察ユニット204、及び移動ステージユニット205の構成及び動作は、第1の実施形態のそれらと同様である。また、送液ユニット227の構成及び動作は、第2の実施形態のそれと同様である。 The configurations and operations of the reagent dispensing unit 201, the temperature adjustment unit 203, the optical observation unit 204, and the moving stage unit 205 are the same as those in the first embodiment. The configuration and operation of the liquid feeding unit 227 are the same as those in the second embodiment.
 開閉ユニット226は、フローセルデバイス120の開口部122を閉じるための蓋216と、蓋216を開閉するための開閉手段228と、を含む。蓋216は軟らかい材質が好ましく、例えばゴムを使用することができる。また、蓋216の表面は反応試薬などが付着して汚染しないように撥水処理が施されている。 The opening / closing unit 226 includes a lid 216 for closing the opening 122 of the flow cell device 120, and an opening / closing means 228 for opening / closing the lid 216. The lid 216 is preferably made of a soft material, and for example, rubber can be used. In addition, the surface of the lid 216 is subjected to water repellent treatment so that the reaction reagent or the like does not adhere to it and become contaminated.
 第3の実施形態では、蓋216の形状を板状としている。これにより、開口部122を閉じた際でも、蓋216の下端面を収容部123の上端部よりも高い位置に配置することができる。また、開閉手段228として、例えばプッシュ型ソレノイドを使用することができる。なお、開閉手段228としては、駆動ステージを使用するなど、蓋216を上下に駆動できる手段であればどのような構成を採っても良い。 In the third embodiment, the lid 216 has a plate shape. Thereby, even when the opening 122 is closed, the lower end surface of the lid 216 can be disposed at a position higher than the upper end of the accommodating portion 123. As the opening / closing means 228, for example, a push type solenoid can be used. The opening / closing means 228 may have any configuration as long as it can drive the lid 216 up and down, such as using a drive stage.
 <流路洗浄工程について>
 サンプル、試薬導入工程については第1の実施形態と同様であるので説明は省略する。図15は、本発明の第3の実施形態による、フローセルデバイス120内流路を洗浄する工程を説明するための図である。
(i)図15(a):蓋閉鎖
 バルブ208を開き、移動ステージユニット205によってフローセルデバイス120を開口部122が蓋216の直下に位置するように移動させ、開閉手段228によって開口部122を蓋216で閉じる(図15(a))。
(ii)図15(b):細胞核酸捕捉用デバイス100直上の位置への洗浄バッファの導入
 シリンジ211を引いて、細胞核酸捕捉用デバイス100直上に洗浄バッファ129が配置するまで吸引する(図15(b))。
(iii)図15(c):フローセルデバイス120の洗浄開始
 シリンジ212を引いて、細胞核酸捕捉用デバイス100を通過しながら洗浄バッファ129が細胞核酸捕捉用デバイス下方向に移動するまで吸引する(図15(c))。
(iv)図15(d):洗浄バッファの回収
 シリンジ212を引き続けた状態で、開閉手段228によって開口部122から蓋216を外し、バルブ208を閉じ、フローセルデバイス内流路に洗浄バッファ129が無くなるまでシリンジ212および211を引き続ける(図15(d))。
<About the channel cleaning process>
Since the sample and reagent introduction step is the same as that in the first embodiment, description thereof is omitted. FIG. 15 is a diagram for explaining a process of cleaning the flow channel in the flow cell device 120 according to the third embodiment of the present invention.
(I) FIG. 15A: Lid closing The valve 208 is opened, the flow cell device 120 is moved by the moving stage unit 205 so that the opening 122 is positioned directly below the lid 216, and the opening 122 is covered by the opening / closing means 228. It closes at 216 (FIG. 15A).
(Ii) FIG. 15B: Introduction of the washing buffer to a position immediately above the cell nucleic acid capturing device 100 The syringe 211 is pulled and aspirated until the washing buffer 129 is arranged directly above the cell nucleic acid capturing device 100 (FIG. 15). (B)).
(Iii) FIG. 15 (c): Start of washing of the flow cell device 120 The syringe 212 is pulled and sucked until the washing buffer 129 moves downward while passing through the cell nucleic acid capturing device 100 (FIG. 15). 15 (c)).
(Iv) FIG. 15 (d): Recovery of Washing Buffer With the syringe 212 kept being pulled, the lid 216 is removed from the opening 122 by the opening / closing means 228, the valve 208 is closed, and the washing buffer 129 is placed in the flow cell device flow path. The syringes 212 and 211 are continuously pulled until they disappear (FIG. 15 (d)).
 <サンプル(細胞懸濁液)導入から次世代(大規模)シーケンサで遺伝子発現プロファイルについて>
 サンプル(細胞懸濁液)導入から次世代(大規模)シーケンサで遺伝子発現プロファイルを得るためまでの工程は、第1の実施形態と同様である。
<About gene expression profile from sample (cell suspension) introduction to next-generation (large-scale) sequencer>
The steps from sample (cell suspension) introduction to obtaining a gene expression profile with a next-generation (large-scale) sequencer are the same as those in the first embodiment.
(4)第4の実施形態
 本発明の第4の実施形態では、より簡便な試薬導入方法を採用したフローセルデバイスを用いてサンプルである複数の細胞を一細胞レベルの分解能を持って遺伝子発現解析を行う方法について説明する。フローセルデバイス、並びに試薬導入方法以外のデバイス、システム構成、及び反応工程は、第3の実施形態と同様である。
(4) Fourth Embodiment In the fourth embodiment of the present invention, gene expression analysis is performed on a plurality of cells as samples with a single cell level resolution using a flow cell device employing a simpler reagent introduction method. The method of performing will be described. Devices other than the flow cell device and the reagent introduction method, the system configuration, and the reaction steps are the same as those in the third embodiment.
 <フローセルデバイスの構成>
 図16は、本発明の第4の実施形態によるフローセルデバイス135の概略構成を示す図である。サンプルである細胞懸濁液や反応試薬を導入する開口部136と細胞や反応試薬を一時的に保管する収容部137以外のその他の構成は、第1の実施形態によるフローセルデバイス120と同様である。
<Configuration of flow cell device>
FIG. 16 is a diagram showing a schematic configuration of a flow cell device 135 according to the fourth embodiment of the present invention. The rest of the configuration is the same as that of the flow cell device 120 according to the first embodiment, except for the opening 136 for introducing a cell suspension or reaction reagent, which is a sample, and the storage portion 137 for temporarily storing cells or reaction reagents. .
 フローセルデバイス120において、開口部136の直径は、収容部137の直径5mmと同等としている。また、収容部137にサンプル溶液や試薬を入れた時の溶液を最上端139とすると、当該溶液の最上端139が、導入口121から収容部137に続く流路の収容部137への出口138よりも下に位置するようにしている。また、開口部136を閉じる蓋(例えば、第3の実施形態と同様に板状の蓋216)は、開口部136を閉じた時に蓋の下端が溶液上端139よりも高い位置になるようにする。このようにすることにより、開口部136を閉じた時でも、蓋に試薬やサンプル溶液が付着することにより発生しうる流路汚染を防ぐことが可能となる。 In the flow cell device 120, the diameter of the opening 136 is equivalent to the diameter of 5 mm of the accommodating part 137. Further, when the solution when the sample solution or reagent is put in the storage portion 137 is the uppermost end 139, the uppermost end 139 of the solution is an outlet 138 from the introduction port 121 to the storage portion 137 of the flow path following the storage portion 137. It is located below. In addition, a lid that closes the opening 136 (for example, a plate-like lid 216 as in the third embodiment) makes the lower end of the lid be higher than the upper end 139 of the solution when the opening 136 is closed. . In this way, even when the opening 136 is closed, it is possible to prevent channel contamination that may occur due to the reagent or sample solution adhering to the lid.
 図16に示されるように、第4の実施形態では、開口部136の開口サイズが、第1乃至第3の実施形態による開口部よりも大きい。そのため、図6(第1の実施形態)における試薬収容分注器213を移動せずにフローセルデバイス135の外部から試薬やサンプル溶液を、試薬収容分注器213に適切な圧力、時間で加圧すれば、インクジェットのように収容部137に分注することが可能(注入の的が比較的大きいので、分注器を開口部136に近づけなくても良い)となる。これにより、図6に示す試薬収容分注器移動用の移動ステージが不要となり、簡便なシステム構成となる。なお、開口部の開口サイズは、図16に示されるように、収容部137の最大径と同一或いはそれ以上であることが好ましい。 As shown in FIG. 16, in the fourth embodiment, the opening size of the opening 136 is larger than the opening according to the first to third embodiments. Therefore, without moving the reagent storage / dispensing device 213 in FIG. 6 (first embodiment), the reagent and the sample solution are pressurized from the outside of the flow cell device 135 to the reagent storage / dispensing device 213 at an appropriate pressure and time. Then, it can be dispensed into the accommodating portion 137 like an ink jet (since the injection target is relatively large, the dispenser does not have to be close to the opening 136). Thereby, the moving stage for moving the reagent storage / dispensing device shown in FIG. 6 is not required, and the system configuration is simple. In addition, it is preferable that the opening size of an opening part is the same as or larger than the largest diameter of the accommodating part 137, as FIG. 16 shows.
(5)まとめ
(i)本発明の実施形態によるフローセルデバイス(細胞処理デバイス)は、生体由来のサンプルが捕捉される反応場(細胞核酸捕捉用デバイス100やメンブレンで構成される)と、外部から導入されたサンプル、試薬、又は洗浄液を一時的に保管する収容部(123)と、反応場と収容部をつなぐ第一の流路(123から124につながる流路)と、デバイス外部からサンプル及び試薬を導入する開口部(122)と、開口部と収容部をつなぐ第二の流路(122から123につながる流路)と、デバイス外部から洗浄液を導入する導入口(121)と、導入口と第二の流路をつなぐ第三の流路(121から123につながる流路)と、を有する。そして、垂直方向から高さが高い順に、開口部、第二の流路と第三の流路との接合部、収容部における第一の流路への出口が配置されている。このようにすることにより、高価な反応試薬の使用量の微量化と反応試薬同士の混濁による反応効率低下や、反応温度による保存中の反応試薬の劣化を抑制した状態で、同時に複数の細胞を一細胞レベルで遺伝子発現解析を行うことが可能となる。また、反応場に導入された試薬やサンプルは温調手段によって温度が調整される。試薬収容分注器(213)とフローセルデバイスは接続されてないため、フローセルデバイスを各反応で温調しても、温度の影響を試薬収容分注器(213)に保管している試薬に影響を与えることは無い。つまり、反応温度による保存中の反応試薬の劣化を抑制することが可能となる。なお、開口部は、フローセルデバイスの上面に設けられ、上に向かって開口しており、第二の流路と第三の流路は、直交している。
(5) Summary (i) A flow cell device (cell processing device) according to an embodiment of the present invention includes a reaction field (consisting of a cell nucleic acid capturing device 100 or a membrane) in which a sample derived from a living body is captured, and from the outside. A storage part (123) for temporarily storing the introduced sample, reagent, or cleaning liquid, a first flow path (flow path connected to 123 to 124) that connects the reaction field and the storage part, a sample and An opening (122) for introducing a reagent, a second flow path (flow path connected to 122 to 123) connecting the opening and the housing, an inlet (121) for introducing a cleaning liquid from the outside of the device, and an inlet And a third channel (a channel connected to 121 to 123) connecting the second channels. The opening, the junction between the second channel and the third channel, and the outlet to the first channel in the housing unit are arranged in descending order from the vertical direction. By doing this, it is possible to simultaneously reduce the amount of expensive reaction reagent used and reduce reaction efficiency due to turbidity between reaction reagents, and to prevent deterioration of the reaction reagent during storage due to reaction temperature. It becomes possible to perform gene expression analysis at a single cell level. In addition, the temperature of the reagent or sample introduced into the reaction field is adjusted by temperature control means. Since the reagent storage dispenser (213) and the flow cell device are not connected, even if the temperature of the flow cell device is adjusted in each reaction, the influence of the temperature affects the reagent stored in the reagent storage dispenser (213). Is not given. That is, it becomes possible to suppress the deterioration of the reaction reagent during storage due to the reaction temperature. The opening is provided on the upper surface of the flow cell device and opens upward, and the second flow path and the third flow path are orthogonal to each other.
 フローセルデバイスは、さらに、第一の流路から直接接続され、洗浄液を排出するための第一の排出流路と、反応場(フローセル又はメンブレン)を介して第一の流路と接続され、反応場を通過したサンプル又は試薬、及び洗浄液を排出するための第二の排出流路と、を有している。このようにすることにより、サンプル、試薬、洗浄液の導入を容易にして反応を確実にし、さらに反応場をしっかりと洗浄することが可能となる。 The flow cell device is further connected directly from the first flow path, connected to the first flow path for discharging the cleaning liquid, and the first flow path via the reaction field (flow cell or membrane), and reacted. A sample or reagent that has passed through the field, and a second discharge channel for discharging the cleaning liquid. By doing so, it is possible to facilitate the introduction of the sample, the reagent, and the cleaning liquid to ensure the reaction, and to wash the reaction field firmly.
 当該フローセルデバイスは、開口部(122)を開閉する封鎖機構(131)を有しても良い。開口部を封鎖することにより、緩衝液を導入するためのシリンジを設けなくても良くなり、コストを削減することができるようになる。 The flow cell device may have a sealing mechanism (131) that opens and closes the opening (122). By sealing the opening, it is not necessary to provide a syringe for introducing the buffer solution, and the cost can be reduced.
 また、当該フローセルデバイスにおいて、反応場の上部に光学的に透明な窓を設けても良い。このようにすることにより、反応の様子や過程を光学顕微鏡等により観察することができるようになる。なお、開口部は、窓の上表面よりも高い位置に配置されるようにすることが好ましい。対物レンズの作動距離を確保するためである。ただし、開口部の上面とフローセルデバイスがなす面との距離が対物レンズの作動距離以下であれば、開口部の上面と窓の上表面は同一平面内にあっても良い。 In the flow cell device, an optically transparent window may be provided above the reaction field. By doing so, it becomes possible to observe the state and process of the reaction with an optical microscope or the like. The opening is preferably arranged at a position higher than the upper surface of the window. This is to ensure the working distance of the objective lens. However, if the distance between the upper surface of the opening and the surface formed by the flow cell device is equal to or smaller than the working distance of the objective lens, the upper surface of the opening and the upper surface of the window may be in the same plane.
 当該フローセルデバイスにおいて、開口部の開口サイズは、収容部の最大径と同一或いはそれ以上であるようにしても良い(図16参照)。このようにすることにより、サンプル及び試薬を導入するためのシリンジを開口部に極端に近づけたり、挿入したりしなくてもサンプル等を収容部(123)に容易に導入することができるようになる。
(ii)本発明の実施形態において、液体(サンプル、試薬、及び洗浄液)を導入するためのシリンジの動作やバルブの動作はコンピュータ(通常のコンピュータを用いることができるため図は省略する)によって制御しても良い。具体的には、利用者が入力デバイス(キーボード、マウス、GUI等)を操作することにより、液体の種類(サンプル、試薬、洗浄液)、導入量、タイミングを入力し、開始ボタンを押下すると、コンピュータ(CPUやMPU等のポロセッサ)が各シリンジやバルブの動作をプログラム(例えば、メモリに格納されている)に従って制御し、液体の導入、反応(待機)、液体排出を実行する。
In the flow cell device, the opening size of the opening may be the same as or larger than the maximum diameter of the accommodating portion (see FIG. 16). By doing in this way, a sample etc. can be easily introduced into a storage part (123) even if a syringe for introducing a sample and a reagent is not extremely close to an opening or inserted. Become.
(Ii) In the embodiment of the present invention, the operation of the syringe and the valve for introducing the liquid (sample, reagent, and washing solution) are controlled by a computer (a normal computer can be used, and the illustration is omitted). You may do it. Specifically, by operating the input device (keyboard, mouse, GUI, etc.), the user inputs the type of liquid (sample, reagent, cleaning solution), introduction amount, timing, and presses the start button, then the computer (Porosser such as CPU and MPU) controls the operation of each syringe and valve according to a program (for example, stored in a memory), and executes liquid introduction, reaction (standby), and liquid discharge.
 また、反応場におけるサンプルと試薬の反応の様子の画像をCCDカメラ221で自動的に取得し、メモリ(図示せず)に格納するようにしても良い。 Further, an image of the reaction state of the sample and the reagent in the reaction field may be automatically acquired by the CCD camera 221 and stored in a memory (not shown).
 以上のように、本発明お実施形態による細胞処理システム(細胞核酸捕捉用システム)における動作はコンピュータによる自動化が可能である。 As described above, the operation of the cell processing system (system for capturing nucleic acid of cells) according to the embodiment of the present invention can be automated by a computer.
100・・・細胞核酸捕捉用デバイス
101・・・PDMS製基板
102・・・細胞捕捉用孔
103・・・核酸捕捉用孔
104・・・反応槽
105・・・磁性ビーズ
106・・・細孔シート
107・・・ストレプトアビジン
108・・・ビオチン
109・・・mRNA捕捉用DNAプローブ 
110・・・PCR増幅用共通配列
111・・・細胞認識用タグ配列
112・・・オリゴ(dT)配列
120・・・フローセルデバイス
121・・・導入口 
122・・・開口部
123・・・収容部
124・・・反応場
125・・・第一の排出口
126・・・第二の排出口
127・・・窓
128・・・試薬(もしくはサンプル)
129・・・洗浄バッファ
130・・・フローセルデバイス
131・・・蓋機構
132・・・蓋
133・・・ヒンジ
134・・・支え棒
135・・・フローセルデバイス
136・・・開口部
137・・・収容部
138・・・出口
139・・・溶液最上端
200・・・送液ユニット
201・・・試薬分注ユニット
202・・・開閉ユニット
203・・・温調ユニット
204・・・光学計測ユニット
205・・・移動ステージユニット
206・・・洗浄用チューブ
207・・・バッファ槽
208・・・バルブ
209・・・排出チューブ
210・・・排出チューブ
211・・・シリンジ
212・・・シリンジ
213・・・試薬収容分注器
214・・・分注用加圧器
215・・・移動ステージ
216・・・蓋
217・・・送液ユニット
218・・・レーザ
219・・・対物レンズ
220・・・結像レンズ
221・・・CCDカメラ
222・・・ダイクロイックミラー
223・・・光学フィルタ
224・・・シリンジ
225・・・ビームエキスパンダ
226・・・開閉ユニット
227・・・送液ユニット
228・・・蓋開閉手段
DESCRIPTION OF SYMBOLS 100 ... Cell nucleic acid capture device 101 ... PDMS substrate 102 ... Cell capture hole 103 ... Nucleic acid capture hole 104 ... Reaction tank 105 ... Magnetic bead 106 ... Pore Sheet 107 ... Streptavidin 108 ... Biotin 109 ... DNA probe for mRNA capture
110: PCR amplification common sequence 111 ... cell recognition tag sequence 112 ... oligo (dT) sequence 120 ... flow cell device 121 ... inlet
122... Opening 123... Storage 124 .. Reaction field 125... First discharge port 126... Second discharge port 127.
129 ... Washing buffer 130 ... Flow cell device 131 ... Lid mechanism 132 ... Lid 133 ... Hinge 134 ... Support bar 135 ... Flow cell device 136 ... Opening 137 ... Storage unit 138... Outlet 139... Solution top end 200... Liquid feeding unit 201 .. reagent dispensing unit 202 .. opening / closing unit 203. ... Moving stage unit 206 ... Cleaning tube 207 ... Buffer tank 208 ... Valve 209 ... Discharge tube 210 ... Discharge tube 211 ... Syringe 212 ... Syringe 213 ... Reagent storage dispenser 214... Dispensing pressurizer 215... Moving stage 216... Cover 217. The 219 ... objective lens 220 ... imaging lens 221 ... CCD camera 222 ... dichroic mirror 223 ... optical filter 224 ... syringe 225 ... beam expander 226 ... opening / closing unit 227 ... Liquid feeding unit 228 ... Lid opening / closing means

Claims (14)

  1.  生体由来のサンプルが捕捉される反応場と、
     外部から導入されたサンプル、試薬、又は洗浄液を一時的に保管する収容部と、
     前記反応場と前記収容部をつなぐ第一の流路と、
     デバイス外部から前記サンプル及び前記試薬を導入する開口部と、
     前記開口部と前記収容部をつなぐ第二の流路と、
     デバイス外部から前記洗浄液を導入する導入口と、
     前記導入口と前記第二の流路をつなぐ第三の流路と、を有し、
     垂直方向から高さが高い順に、前記開口部、前記第二の流路と前記第三の流路との接合部、前記収容部における第一の流路への出口が配置されている、細胞処理デバイス。
    A reaction field where a biological sample is captured;
    A container for temporarily storing a sample, a reagent, or a cleaning solution introduced from the outside;
    A first flow path connecting the reaction field and the accommodating portion;
    An opening for introducing the sample and the reagent from the outside of the device;
    A second flow path connecting the opening and the accommodating portion;
    An inlet for introducing the cleaning liquid from the outside of the device;
    A third flow path connecting the introduction port and the second flow path,
    A cell in which the opening, the junction between the second channel and the third channel, and the outlet to the first channel in the accommodating unit are arranged in descending order from the vertical direction. Processing device.
  2.  請求項1において、
     前記反応場には、前記サンプルを補足するためのフローセル又はメンブレンが設置され、
     さらに、前記第一の流路から直接接続され、前記洗浄液を排出するための第一の排出流路と、
     前記フローセル又は前記メンブレンを介して前記第一の流路と接続され、前記反応場を通過した前記サンプル又は前記試薬、及び前記洗浄液を排出するための第二の排出流路と、
    を有する、細胞処理デバイス。
    In claim 1,
    In the reaction field, a flow cell or a membrane for supplementing the sample is installed,
    Furthermore, a first discharge channel that is directly connected from the first channel and for discharging the cleaning liquid;
    A second discharge flow path for discharging the sample or the reagent that has been connected to the first flow path through the flow cell or the membrane and passed through the reaction field, and the washing liquid;
    A cell processing device.
  3.  請求項1において、
     さらに、前記開口部を開閉する封鎖機構を有する、細胞処理デバイス。
    In claim 1,
    Furthermore, the cell processing device which has the sealing mechanism which opens and closes the said opening part.
  4.  請求項1において、
     さらに、前記反応場の上部に光学的に透明な窓を有する、細胞処理デバイス。
    In claim 1,
    Furthermore, the cell processing device which has an optically transparent window in the upper part of the said reaction field.
  5.  請求項4において、
     前記開口部は、前記窓の外表面よりも高い位置に配置されている、細胞処理デバイス。
    In claim 4,
    The cell treatment device, wherein the opening is disposed at a position higher than an outer surface of the window.
  6.  請求項1において、
     前記開口部の開口サイズは、前記収容部の最大径と同一或いはそれ以上である、細胞処理デバイス。
    In claim 1,
    The cell treatment device, wherein an opening size of the opening is the same as or larger than a maximum diameter of the housing part.
  7.  請求項1において、
     前記開口部は、前記細胞処理デバイスの上面に設けられ、上に向かって開口しており、
     前記第二の流路と前記第三の流路は、直交する、細胞処理デバイス。
    In claim 1,
    The opening is provided on the upper surface of the cell treatment device, and opens upward.
    The cell processing device, wherein the second channel and the third channel are orthogonal to each other.
  8.  請求項1に記載の細胞処理デバイスと、
     前記開口部に対して溶液を分注する分注機構と、
    を有する、細胞処理システム。
    A cell treatment device according to claim 1;
    A dispensing mechanism for dispensing a solution to the opening;
    A cell processing system.
  9.  請求項1に記載の細胞処理デバイスと、
     前記開口部を開閉する開口部封鎖機構と、
    を有する、細胞処理システム。
    A cell treatment device according to claim 1;
    An opening blocking mechanism for opening and closing the opening;
    A cell processing system.
  10.  請求項2に記載の細胞処理デバイスと、
     前記開口部に対して溶液を分注する分注機構と、
     前記導入口に接続され、前記洗浄液を前記第三の流路に導入する液導入シリンジと、
     前記第一の排出流路に接続され、導入された液体を吸引する第一の排出シリンジと、
     前記第二の排出流路に接続され、導入された液体を吸引する第二の排出シリンジと、
    を有する、細胞処理システム。
    The cell treatment device according to claim 2,
    A dispensing mechanism for dispensing a solution to the opening;
    A liquid introduction syringe connected to the introduction port and introducing the cleaning liquid into the third flow path;
    A first discharge syringe connected to the first discharge flow path and sucking the introduced liquid;
    A second discharge syringe connected to the second discharge flow path and sucking the introduced liquid;
    A cell processing system.
  11.  請求項10において、
     前記分注機構によって前記収容部に導入された前記サンプル又は前記試薬を前記第一の排出シリンジによって前記反応場まで移動させ、
     前記反応場に配置された前記サンプル又は前記試薬を前記第二の排出シリンジによって前記第二の排出流路の方向に吸引する、細胞処理システム。
    In claim 10,
    Moving the sample or the reagent introduced into the container by the dispensing mechanism to the reaction field by the first discharge syringe;
    The cell processing system which sucks the sample or the reagent arranged in the reaction field in the direction of the second discharge channel by the second discharge syringe.
  12.  請求項10において、
     前記液導入シリンジによって前記収容部に前記洗浄液を導入し、
     前記収容部に導入された前記洗浄液を前記第一の排出シリンジによって前記反応場まで移動させ、
     前記反応場に配置された前記洗浄液を前記第一及び第二の排出シリンジ及び前記第二の排出シリンジによって前記第一及び第二の排出流路方向にそれぞれ吸引する、細胞処理システム。
    In claim 10,
    Introducing the cleaning liquid into the container by the liquid introduction syringe,
    The cleaning liquid introduced into the storage unit is moved to the reaction field by the first discharge syringe,
    The cell processing system which sucks the washing solution arranged in the reaction field by the first and second discharge syringes and the second discharge syringe in the first and second discharge flow path directions, respectively.
  13.  請求項2に記載の細胞処理デバイスと、
     前記開口部に対して溶液を分注する分注機構と、
     前記開口部を開閉する開口部封鎖機構と、
     前記洗浄液を蓄えるバッファ槽と、
     前記バッファ槽と前記導入口を接続するチューブと、
     前記チューブによる流路を開閉するためのチューブ開閉機構と、
     前記第一の排出流路に接続され、導入された液体を吸引する第一の排出シリンジと、
     前記第二の排出流路に接続され、導入された液体を吸引する第二の排出シリンジと、
    を有する、細胞処理システム。
    The cell treatment device according to claim 2,
    A dispensing mechanism for dispensing a solution to the opening;
    An opening blocking mechanism for opening and closing the opening;
    A buffer tank for storing the cleaning liquid;
    A tube connecting the buffer tank and the inlet;
    A tube opening and closing mechanism for opening and closing the flow path by the tube;
    A first discharge syringe connected to the first discharge flow path and sucking the introduced liquid;
    A second discharge syringe connected to the second discharge flow path and sucking the introduced liquid;
    A cell processing system.
  14.  請求項13において、
     前記開口部封鎖機構が前記開口部を封鎖し、
     前記チューブ開閉機構が前記チューブによる前記流路を開き、
     前記液導入シリンジによって前記収容部に前記洗浄液を導入し、
     前記終了部に導入された前記洗浄液を前記第一の排出シリンジによって前記反応場まで移動させ、
     前記反応場に配置された前記洗浄液を前記第一及び第二の排出シリンジ及び前記第二の排出シリンジによって前記第一及び第二の排出流路方向にそれぞれ吸引する、細胞処理システム。
    In claim 13,
    The opening blocking mechanism seals the opening;
    The tube opening and closing mechanism opens the flow path by the tube;
    Introducing the cleaning liquid into the container by the liquid introduction syringe,
    The cleaning liquid introduced into the end portion is moved to the reaction field by the first discharge syringe,
    The cell processing system which sucks the washing solution arranged in the reaction field by the first and second discharge syringes and the second discharge syringe in the first and second discharge flow path directions, respectively.
PCT/JP2015/052981 2015-02-03 2015-02-03 Cell treatment device and cell treatment system WO2016125254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052981 WO2016125254A1 (en) 2015-02-03 2015-02-03 Cell treatment device and cell treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052981 WO2016125254A1 (en) 2015-02-03 2015-02-03 Cell treatment device and cell treatment system

Publications (1)

Publication Number Publication Date
WO2016125254A1 true WO2016125254A1 (en) 2016-08-11

Family

ID=56563619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052981 WO2016125254A1 (en) 2015-02-03 2015-02-03 Cell treatment device and cell treatment system

Country Status (1)

Country Link
WO (1) WO2016125254A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042725A1 (en) * 2016-09-05 2018-03-08 株式会社日立製作所 System for analyzing single cell
WO2018159008A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Single cell analyzer with washing function
JP2019044966A (en) * 2017-08-30 2019-03-22 国立研究開発法人 海上・港湾・航空技術研究所 Abrasion resistance improvement method for transport pipe, magnetic beads, and magnetic force generation device
WO2020158178A1 (en) * 2019-01-28 2020-08-06 ソニー株式会社 Particle capture device, particle capture method, and microscope system
CN112113822A (en) * 2019-06-21 2020-12-22 深圳迈瑞生物医疗电子股份有限公司 Biological sample dyeing device, push piece dyeing machine and biological sample dyeing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103144A1 (en) * 2012-01-05 2013-07-11 日立化成株式会社 Cell trapping device
WO2014020657A1 (en) * 2012-07-30 2014-02-06 株式会社日立製作所 Tag-sequence-attached two-dimensional cdna library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same
WO2014141386A1 (en) * 2013-03-12 2014-09-18 株式会社日立製作所 Two-dimensional cell array device and apparatus for gene quantification and sequence analysis
JP2015012839A (en) * 2013-07-05 2015-01-22 日立化成株式会社 Cell-catching system, and operational method of cell-catching system
WO2015019889A1 (en) * 2013-08-09 2015-02-12 日立化成株式会社 Cell trapping device, cell trapping system, and production method for cell trapping device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103144A1 (en) * 2012-01-05 2013-07-11 日立化成株式会社 Cell trapping device
WO2014020657A1 (en) * 2012-07-30 2014-02-06 株式会社日立製作所 Tag-sequence-attached two-dimensional cdna library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same
WO2014141386A1 (en) * 2013-03-12 2014-09-18 株式会社日立製作所 Two-dimensional cell array device and apparatus for gene quantification and sequence analysis
JP2015012839A (en) * 2013-07-05 2015-01-22 日立化成株式会社 Cell-catching system, and operational method of cell-catching system
WO2015019889A1 (en) * 2013-08-09 2015-02-12 日立化成株式会社 Cell trapping device, cell trapping system, and production method for cell trapping device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HOSOKAWA ET AL.: "Microcavity Array System for Size-Based Enrichment of Circulating Tumor Cells from the Blood of Patients with Small-Cell Lung Cancer", ANAL. CHEM., vol. 85, no. 12, May 2013 (2013-05-01), pages 5692 - 5698 *
HOSOKAWA ET AL.: "Size-Based Isolation of Circulating Tumor Cells in Lung Cancer Patients Using a Microcavity Array System", PLOS ONE, vol. 8, no. 6, June 2013 (2013-06-01), pages 1 - 9 *
HOSOKAWA ET AL.: "Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells", ANAL. CHEM., vol. 82, no. 15, 2010, pages 6629 - 6635 *
NEGISHI ET AL., 2014 NEN THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 81 KAI TAIKAI KOEN YOSHISHU, March 2014 (2014-03-01), pages 237 *
NEGISHI ET AL.: "Development of the automated circulating tumor cell recovery system with microcavity array", BIOSENSORS AND BIOELECTRONICS, vol. 15, no. 67, September 2014 (2014-09-01), pages 438 - 442 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042725A1 (en) * 2016-09-05 2018-03-08 株式会社日立製作所 System for analyzing single cell
JP2018038285A (en) * 2016-09-05 2018-03-15 株式会社日立製作所 System for single cell analysis
WO2018159008A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Single cell analyzer with washing function
JP2018143135A (en) * 2017-03-02 2018-09-20 株式会社日立製作所 Single cell analyzer with washing function
JP2019044966A (en) * 2017-08-30 2019-03-22 国立研究開発法人 海上・港湾・航空技術研究所 Abrasion resistance improvement method for transport pipe, magnetic beads, and magnetic force generation device
JP7274718B2 (en) 2017-08-30 2023-05-17 国立研究開発法人 海上・港湾・航空技術研究所 Method for improving abrasion resistance of transport pipe, magnetic beads, and magnetic force generator
WO2020158178A1 (en) * 2019-01-28 2020-08-06 ソニー株式会社 Particle capture device, particle capture method, and microscope system
CN112113822A (en) * 2019-06-21 2020-12-22 深圳迈瑞生物医疗电子股份有限公司 Biological sample dyeing device, push piece dyeing machine and biological sample dyeing method

Similar Documents

Publication Publication Date Title
JP6093436B2 (en) Two-dimensional cell array device and apparatus for gene quantification and sequence analysis
WO2016125254A1 (en) Cell treatment device and cell treatment system
US11680286B2 (en) Tag-sequence-attached two-dimensional cDNA library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same
JP6312710B2 (en) Biomolecule analyzer
JP6307179B2 (en) Single cell analysis flow cell device and single cell analysis apparatus
CN113773958B (en) Cell analysis device and cell analysis method using the same
JP2021508250A (en) Automatic nucleic acid sample preparation, detection and analysis system
JP6556856B2 (en) Analytical method and analytical device
WO2016038670A1 (en) Cell analysis system and cell analysis method using same
JP6552720B2 (en) Single-cell biomolecule capture system
JP2007306867A (en) Device and method for extracting nucleic acid
JP6500119B2 (en) Cell analysis device and cell analysis method using the same
WO2018134907A1 (en) Device and method for extracting multiple biomolecules from single cell
WO2016001963A1 (en) Array device for nucleic acid analysis, nucleic acid analysis device, and nucleic acid analysis method
JP6244439B2 (en) Two-dimensional cell array device and apparatus for gene quantification and sequence analysis
JP2008000045A (en) Method for detecting nucleic acid
US11299727B2 (en) System for analyzing single cell
JP6827847B2 (en) Single cell analyzer with cleaning function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP