WO2016038670A1 - Cell analysis system and cell analysis method using same - Google Patents

Cell analysis system and cell analysis method using same Download PDF

Info

Publication number
WO2016038670A1
WO2016038670A1 PCT/JP2014/073753 JP2014073753W WO2016038670A1 WO 2016038670 A1 WO2016038670 A1 WO 2016038670A1 JP 2014073753 W JP2014073753 W JP 2014073753W WO 2016038670 A1 WO2016038670 A1 WO 2016038670A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
probe
cell
sequence
trap
Prior art date
Application number
PCT/JP2014/073753
Other languages
French (fr)
Japanese (ja)
Inventor
白井 正敬
神原 秀記
浩司 有川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/073753 priority Critical patent/WO2016038670A1/en
Publication of WO2016038670A1 publication Critical patent/WO2016038670A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/26Inoculator or sampler
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a cell analysis apparatus and a cell analysis method using the same, which can simultaneously realize gene analysis of a single cell and comprehensive gene analysis of a cell population including the cell.
  • DNA and RNA are extracted and analyzed using a large number of cells (10 3 to 10 6 or more cells) sampled from a living tissue as one type of sample.
  • a next-generation sequencer that has recently become widespread, as used in Patent Document 1
  • bulk analysis only average data of all cells can be obtained, and evaluation cannot be made even if the abundance of DNA or RNA in individual cells deviates from the average value.
  • many of the bulk analysis methods require a minimum sample amount of 1000 to 1 million times that of a single cell, it is difficult to apply it directly to the analysis of a single cell from the viewpoint of necessary sensitivity.
  • the present inventors have previously used a method for performing gene analysis of a single cell, using a pore sheet to which a nucleic acid probe including a tag sequence that differs depending on the position and a sequence for capturing a test nucleic acid is fixed.
  • a method has been proposed in which a cDNA library is prepared while maintaining positional information in a cell tissue, and the library is amplified and analyzed (Patent Document 2).
  • Patent Document 2 In order to realize such single cell analysis, various other methods for extracting a very small amount of genes from cells with high efficiency and performing analysis with high accuracy have been proposed.
  • multiple analyzes to be compared must be performed on the same sample. Performing simultaneously is an effective means for solving the above problems.
  • Such multiple analyzes are performed by editing the analysis of all genes (ie, exhaustive gene analysis) and editing the data for every cell (ie, single cell analysis) for each cell. It is feasible.
  • the analysis cost is proportional to the product of the number of measured genes and the number of measured cells, there is a problem that the cost for analysis becomes high.
  • the present inventors have completed a device for cell analysis that enables simultaneous analysis of a gene population of a cell population and a gene analysis specific to a single cell included in the population, The cell analysis method used was found.
  • the gist of the present invention is as follows.
  • An array device having a plurality of cell traps that can capture cells one by one, a nucleic acid trap that captures nucleic acid extracted from the cells trapped in the cell trap, and a reagent for adding a reagent to the array device
  • a nucleic acid trap is present for each cell trap, and the nucleic acid trap includes a fixed first probe for capturing the nucleic acid;
  • the reagent addition apparatus provides at least a second probe and a third probe to the array device,
  • the first probe has a different cell recognition sequence for each individual nucleic acid trap, and a nucleic acid capture sequence that hybridizes with a nucleic acid extracted from the cell, and optionally a first nucleic acid amplification primer sequence.
  • the second probe has a second nucleic acid amplification primer sequence, and a sequence that hybridizes to the end of the nucleic acid including a sequence synthesized using the nucleic acid captured by the first probe as a template
  • the third probe has a second nucleic acid amplification primer sequence, and a sequence that hybridizes to a known sequence contained in the nucleic acid captured by the first probe
  • the reagent addition apparatus supplies an enzyme and a substrate for synthesizing a complementary strand using the captured nucleic acid as a template after the nucleic acid extracted from the cell is captured by the first probe of the nucleic acid trap, and then the second A cell analysis apparatus characterized by supplying a probe and a third probe simultaneously or successively.
  • the first probe has a first nucleic acid amplification primer sequence
  • the cell analysis device according to (1) wherein the reagent addition device supplies a first nucleic acid amplification primer and a second nucleic acid amplification primer after supplying the second probe and the third probe.
  • the reagent addition device supplies the fourth probe having the first nucleic acid amplification primer sequence and the cell recognition sequence after the supply of the second probe and the third probe, and then for the first nucleic acid amplification
  • the known sequence contained in the nucleic acid captured by the first probe is present at a position of 150 to 250 bases from the 5 ′ end of the captured nucleic acid, in any of (1) to (3) The cell analysis apparatus described.
  • nucleic acid capture sequence of the first probe is a poly-T sequence
  • nucleic acid extracted from the cell and captured by the first probe is mRNA. Analysis device.
  • a method for simultaneously performing a comprehensive analysis of a cell population and a single cell analysis for individual cells included in the cell population Multiple cell traps capable of capturing cells one by one, and a fixed first probe for capturing nucleic acid extracted from the cells captured in the cell trap, and corresponding to each cell trap
  • Preparing an array device having a nucleic acid trap A step of extracting nucleic acids by destroying cells captured by the nucleic acid trap;
  • a first cell may have a cell recognition sequence different for each individual nucleic acid trap, and a nucleic acid capture sequence that hybridizes with a nucleic acid extracted from the cell, and optionally a first nucleic acid amplification primer sequence.
  • the first probe has a first nucleic acid amplification primer sequence
  • the method according to (8) further comprising supplying a first nucleic acid amplification primer and a second nucleic acid amplification primer after supplying the second probe and the third probe.
  • the first probe does not have the first nucleic acid amplification primer sequence
  • a fourth probe having a first nucleic acid amplification primer sequence and a cell recognition sequence is supplied, and then the first nucleic acid amplification primer and the second nucleic acid
  • the known sequence contained in the nucleic acid captured by the first probe is present at a position of 150 to 250 bases from the 5 ′ end of the captured nucleic acid, any of (8) to (10) The method described.
  • nucleic acid capture sequence of the first probe is a poly-T sequence
  • nucleic acid extracted from the cell and captured by the first probe is mRNA.
  • the cell analysis device comprising an array device and a reagent addition device, A monitoring device for observing cells captured in the cell trap of the array device, A memory device storing the sequence information of the first probe, which is different for each nucleic acid trap of the array device, and the sequence information of other probes supplied by the reagent addition device, A control device for controlling the reagent addition device with reference to the memory device; A cell analysis system comprising a sequencer for analyzing a nucleic acid amplification product obtained from an array device, and an analysis device for analyzing data obtained from the sequencer with reference to a memory device as necessary.
  • FIG. 2 is an enlarged view of a partial structure around one cell trap 3 of the two-dimensional array device 1 shown in FIG.
  • the enlarged view of the surface of the bead 7 (when using the first DNA probe 31 of the basic example).
  • the enlarged view of the surface of the bead 7 (when using the first DNA probe 31 of the basic example).
  • the enlarged view of the surface of the bead 7 (when using the first DNA probe 31a of the application example).
  • the enlarged view of the surface of the bead 7 (when using the first DNA probe 31a of the application example).
  • 1 is a schematic diagram of the structure of a nucleic acid preparation device 100.
  • FIG. The figure explaining the cell analysis apparatus and cell analysis system using a two-dimensional array device.
  • gene expression analysis refers to quantitative analysis of the expression of a gene in a sample (cell, tissue section, etc.), that is, the target test nucleic acid, and expression of the gene (test nucleic acid) in the sample. Analyzing the distribution means obtaining correlation data between specific cells in the sample and the expression level of the gene (test nucleic acid).
  • the sample is not particularly limited as long as it is a biological sample to be analyzed for gene expression, and any sample such as a cell sample, a tissue sample, or a liquid sample can be used.
  • the organism from which the sample is derived is not particularly limited, and includes vertebrates (eg, mammals, birds, reptiles, fishes, amphibians), invertebrates (eg, insects, nematodes, crustaceans), protists, Samples derived from any living body such as plants, fungi, bacteria, and viruses can be used.
  • vertebrates eg, mammals, birds, reptiles, fishes, amphibians
  • invertebrates eg, insects, nematodes, crustaceans
  • protists Samples derived from any living body such as plants, fungi, bacteria, and viruses can be used.
  • mRNA messenger RNA
  • ncRNA non-coding RNA
  • microRNA and DNA, and fragments thereof can be used as the target test nucleic acid.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a two-dimensional array device according to the cell analysis apparatus of the present invention.
  • 1A is a top view
  • FIG. 1B is a cross-sectional view taken along the alternate long and short dash line between AA ′ shown in FIG. 1A.
  • the two-dimensional array device 1 includes a cell trap 3 for fixing cells 2 introduced into the device one by one, a nucleic acid trap 4 for capturing nucleic acids contained in the cell 2 extract, and a cell trap 3
  • a flow path 5 communicating with the nucleic acid trap 4 is provided.
  • the flow path 5 can be provided, for example, by installing a substrate having a micropore or a porous resin sheet below the nucleic acid trap 4.
  • the arrow in FIG. 1 (b) indicates the flow direction of the cell 2 extract.
  • Such a device can be manufactured, for example, by applying a semiconductor manufacturing process.
  • FIG. 2 is an enlarged view for explaining in detail a partial structure around one cell trap 3 of the two-dimensional array device 1 shown in FIG.
  • the two-dimensional array device 1 When a solution in which cells are suspended flows from the upper region of the two-dimensional array device 1, the two-dimensional array device 1 is connected so that liquid can flow from the upper region to the lower region. Move on the flow and reach cell trap 3. Since the opening diameter (for example, 3 to 30 ⁇ m) of the cell trap 3 is smaller than the diameter of the cell 2, the reached cell is fixed to the cell trap 3. Since the fixed cells 2 serve as plugs for the cell trap 3, the flow of the solution goes to the cell trap 3 where the cells are not yet fixed, and another cell is also fixed there.
  • the opening diameter for example, 3 to 30 ⁇ m
  • the solution is then replaced with a solution in which the cells are suspended, and a Lysis buffer (eg, Tween 20) is used to break down the cells and proteolysis
  • a Lysis buffer eg, Tween 20
  • the enzyme mixture is flowed from the upper region of the two-dimensional array device 1.
  • an electric field is applied in the direction indicated by E in FIG. 2, and the nucleic acid 6 (mRNA) obtained by destroying the cells 3 is moved to the nucleic acid trap 4 by electrophoresis.
  • the nucleic acid 6 may be moved by the flow of the solution regardless of electrophoresis.
  • the nucleic acid trap 4 is filled with beads 7 on the surface of which probes for capturing the nucleic acid 6 are fixed. The diameter of the bead 7 is larger than that of the flow path 5 so that the bead 7 does not flow out.
  • a first DNA probe 31 is fixed on the surface of the bead 7.
  • the immobilization can be performed, for example, by modifying the 5 ′ end of the DNA probe with biotin and binding it with streptavidin immobilized on the surface of the beads 7 in advance.
  • the first DNA probe 31 has a poly T sequence 32 at the 3 ′ end, and captures the mRNA 41 by hybridizing with the poly A sequence at the 3 ′ end of the mRNA 41.
  • a known sequence that hybridizes with the analysis target may be used instead of the poly T sequence.
  • the first DNA probe 31 has a first PCR amplification primer sequence 33 at the 5 ′ end fixed to the bead 7, and further the individual cells 2 fixed to the cell trap 3 of the two-dimensional array device 1. Includes a cell recognition sequence 34 for identification.
  • the primer sequence for PCR amplification is not particularly limited as long as it is a known sequence having an appropriate length for nucleic acid amplification, and those skilled in the art can appropriately design such a sequence.
  • the primer sequence for PCR amplification can be 10-50 bases, 15-50 bases, 15-40 bases, 15-30 bases, 15-20 bases in length.
  • the first DNA probe 31 immobilized on the surface of the bead 7 has a different cell recognition sequence 34 for each of the nucleic acid traps 4 existing in the two-dimensional array device 1, so that the sequence analyzed later can be It is possible to determine whether it originates.
  • the cell recognition sequence 34 is a random sequence of 5 bases, it becomes possible to identify 4 5, that is, 1024 cells. Therefore, the cell recognition sequence 34 can be arbitrarily set according to the number of nucleic acid traps 4 to be identified, specifically, in the range of 5 to 30 bases, 5 to 20 bases, 5 to 15 bases, or 5 to 10 bases. can do.
  • FIG. 3 (a) shows a state in which the mRNA 41 extracted from the cell 2 is captured by the first DNA probe 31.
  • FIG. mRNA 41 contains a known gene-specific sequence 42.
  • the enzyme and substrate necessary for the reverse transcription reaction are supplied to the nucleic acid trap 4, and the mRNA 41 captured by the first DNA probe 31 is used as a template for the 1st cDNA strand 51 (one containing a sequence complementary to the mRNA 41). Strand DNA) is synthesized, and then unnecessary mRNA 41 is removed by enzymatic degradation or the like. In this way, a cDNA library is constructed on the beads 7.
  • a plurality of DNA amplification processes are simultaneously performed on the cDNA library to prepare samples for a plurality of types of analysis.
  • FIG. 3 (b) is a diagram showing the configuration of the 1st cDNA strand 51.
  • the 1st cDNA strand 51 includes a gene-specific sequence 52 that is complementary to the gene-specific sequence 42 contained in the mRNA.
  • a poly A continuous sequence poly A tail 53 is further added to the 3 ′ end of the 1st cDNA strand 51.
  • the present invention is characterized in that at least two types of DNA probes are used for PCR amplification of the 1st cDNA strand 51.
  • FIG. 4 (a) is a diagram for explaining the procedure for obtaining a PCR amplification product containing the full length of the first cDNA strand 51 using the second DNA probe 61.
  • the second DNA probe 61 is composed of a second PCR amplification primer sequence 62 and a poly T sequence 63, and functions as a primer by hybridizing to the poly A tail 53 added to the 1st cDNA strand 51.
  • 2st cDNA strand 51 as a template, 2nd cDNA strand 64 (single-stranded DNA containing a sequence complementary to 1st cDNA strand 51) was synthesized ( Figure 4 (a) (i)), and the first PCR amplification was performed there.
  • PCR amplification product containing double-stranded cDNA 65 having a sequence corresponding to the entire length of mRNA 41 is obtained by adding PCR primer 33 and second PCR amplification primer 62 (FIG. 4 (a)) ii) and (iii)).
  • the product obtained here is used for exhaustive analysis of the cell population.
  • FIG. 4 (b) is a diagram for explaining a procedure for obtaining a PCR amplification product containing the gene-specific sequence 52 contained in the 1st cDNA strand 51 using the third DNA probe 71.
  • the third DNA probe 71 is composed of a second PCR amplification primer sequence 62 and a sequence 73 complementary to the gene-specific sequence 52, and hybridizes to the gene-specific sequence 52 of the 1st cDNA strand 51 and functions as a primer. To do.
  • 2nd cDNA strand 74 is synthesized using 1st DNA strand 51 as a template ( Figure 4 (b) (i)), and PCR amplification is performed by adding first PCR amplification primer 33 and second PCR amplification primer 62 As a result, a PCR amplification product containing a double-stranded cDNA 75 having the gene-specific sequence 52 is obtained (FIGS. 4 (b) (ii) and (iii)). The product obtained here is used for specific analysis of a single cell.
  • the resulting PCR amplification product has a relatively short double-stranded cDNA 65 having a sequence corresponding to the entire length of mRNA 41 and a gene-specific sequence 52. Based on samples obtained under the same PCR amplification reaction conditions, a comprehensive analysis for the entire cell population using the former and a specific analysis for a single cell using the latter are included. Can be done.
  • the nucleic acid amplification was described on the assumption that a PCR amplification reaction was used, but the Nucleic Acid Sequence-Based Amplification (NASBA) method, Loop-Mediated Isothermal Amplification (LAMP) method, rolling circle amplification (RCA) reaction, etc. Other amplification methods may be used.
  • NASBA Nucleic Acid Sequence-Based Amplification
  • LAMP Loop-Mediated Isothermal Amplification
  • RCA rolling circle amplification
  • FIG. 5 and FIG. 6 are diagrams for explaining a case where the first DNA probe 31a according to the application example is used.
  • the first DNA probe 31a does not have the first PCR amplification primer sequence at the 5 ′ end fixed to the bead 7, and the 5 ′ end is the cell recognition sequence 34. It is different from the one.
  • FIG. 5 is a diagram showing a state in which the 1st cDNA strand 51a is synthesized and a poly A tail 53 is added to the 3 ′ end in the same manner as in the basic example described above.
  • FIG. 6 (a) is a diagram for explaining a procedure for obtaining a PCR amplification product containing the full length of the 1st cDNA strand 51
  • FIG. 6 (b) is a PCR amplification product containing the gene-specific sequence 52 contained in the 1st cDNA strand 51. It is a figure explaining the procedure which obtains.
  • the second DNA probe 61 and the third DNA probe 71 are used to synthesize a 2nd cDNA strand 64a or 74a, and then a fourth PCR amplification primer sequence 33 and a cell recognition sequence 34 are provided. This is also different from the basic example described above in that a complementary strand synthesis reaction is performed using the DNA probe.
  • the fourth DNA probe it is possible to amplify only a sequence derived from a specific cell.
  • the first PCR amplification primer 33 and the second PCR amplification primer 62 are added and the PCR amplification reaction is performed, so that the sequence corresponding to the full length of mRNA 41 is obtained as in the basic example described above.
  • a PCR amplification product is obtained which comprises a double stranded cDNA 65 having a relatively short double stranded cDNA 75 having a gene specific sequence 52.
  • the first DNA probe 31 described with reference to FIG. 3 (a) and the first DNA probe 31a described with reference to FIG. 5 further have different molecular recognition sequences (not shown) for each probe. You may do it.
  • the molecular recognition sequence is preferably arranged on the 3 ′ end side of the cell recognition sequence 34. For example, when a molecular recognition sequence of 7 bases is introduced, it becomes possible to identify 4 to the 7th power, that is, 1.6 ⁇ 10 4 molecules. If the molecular recognition sequence has a length of, for example, 5 to 30 bases, 5 to 25 bases, or 5 to 20 bases, a sufficient number of molecules can be identified.
  • the known sequence 52 contained in the 1st cDNA strand 51 and the mRNA 41 and the third DNA probe 71 containing sequences complementary thereto is 150 bases or more, particularly 180 bases or more, especially 190 from the 5 ′ end of the 1st cDNA strand 51. It is preferably present at a position of at least 400 bases, in particular 220 bases or less, particularly 210 bases or less, specifically 150 to 250 bases, particularly 180 to 220 bases, particularly 190 to 210 bases. If the known sequence 52 is present at such a position, the length of the double-stranded cDNA 75 contained in the PCR amplification product obtained using the third DNA probe 71 may be about several hundred bases, particularly around 200 bases. In addition, it is preferable because procedures such as fraction purification (electrophoresis, gel cutting and PCR product extraction and purification) and fragmentation can be omitted in sequencer analysis.
  • FIG. 7 is an enlarged view for explaining in detail a partial structure around one cell trap 3 of the two-dimensional array device 1 of the application example corresponding to the structure described with reference to FIG.
  • the cell trap 3 is formed by providing a through hole in a substrate having a thickness about the diameter of the cell.
  • the thickness of the substrate may be in the range of several ⁇ m to several mm as long as cells can be captured by the through-hole.
  • a substrate having a pore or a porous resin sheet is provided under the substrate constituting the cell trap 3, and the first DNA probe 31 is fixed in the pore instead of the bead.
  • the use of a transparent material as a substrate or the like has an advantage that cell observation with a microscope becomes easy.
  • the following is performed. First, an aqueous solution containing 0.3 mg / mL silane coupling agent GTMSi (3- Glycidoxypropyltrimethoxysilane) and acid catalyst 0.02% acetic acid was introduced into the substrate for silane treatment of the inner wall of the pores, and then mineral oil was immediately added. Introduce solution to separate and react for 2 hours. After washing with ethanol, all the solution is drained and heat-reacted at 110 ° C. for 2 hours. Next, 1 ⁇ M streptavidin solution is introduced into the substrate and reacted at room temperature for 6 hours to fix streptavidin in the pores.
  • GTMSi 3- Glycidoxypropyltrimethoxysilane
  • one DNA probe 31 can be immobilized at a ratio of 1 to 30 to 100 nm 2 and it is estimated that 10 7 order DNA probes can be immobilized per one nucleic acid trap 4. . Since it is known that the number of mRNA copies in one cell is 10 6 or less, it is considered that a sufficient number of first DNA probes 31 can be immobilized to capture all mRNA contained in the cell. It is done.
  • FIG. 9 is a diagram for explaining a cell analysis apparatus and a cell analysis system using a two-dimensional array device having a configuration as described above.
  • a two-dimensional array device 1 is incorporated in the nucleic acid preparation device 100, and a reagent addition apparatus 201 is connected to the nucleic acid preparation device 100.
  • the cell analysis apparatus of the present invention includes a nucleic acid preparation device 100 in which a two-dimensional array device 1 is incorporated and a reagent addition device 201.
  • the reagent addition device 201 driven by the control device 202 supplies the nucleic acid preparation device 100 with substrates, enzymes, and various probes and primers necessary for nucleic acid amplification.
  • the nucleic acid amplification product obtained by the nucleic acid preparation device 100 is sent to the sequencer 203 for sequence analysis, and the result is sent to the data analysis device 204.
  • the sequencer 203 may have preprocessing necessary for sequence analysis (for example, individual amplification processing such as emulsion PCR and bridge amplification).
  • the memory device 205 stores the sequence information of various probes and primers supplied by the reagent adding device 201 and the sequence information of the first DNA probe linked to the position information in the two-dimensional array device 1, and the data
  • the analysis device 204 performs analysis while referring to the data in the memory device 205 as necessary.
  • the control device 202 also controls the reagent adding device 201 while referring to the data in the memory device 205 as necessary.
  • the cell analysis system 200 associates the analysis result of the nucleic acid amplification product obtained from the nucleic acid preparation device 100 with the sequence data of various probes, and performs comprehensive analysis on the cell population and single cell. It is possible to simultaneously perform specific analysis for.
  • a microscope (not shown) may be installed to enable observation of cells captured by the two-dimensional array device 1.
  • the image obtained by a microscope is preferably an optical image that can be obtained without significantly destroying the shape of the cell, such as a fluorescent image, a bright field image, or a non-linear microscope image. If the position of the cell being observed with the microscope in the two-dimensional array device 1 is known, the cell recognition sequence at that position can be specified, so the observation result by the microscope image can be linked to the result of the sequence analysis. is there. It is also possible to destroy only specific cells with a laser or the like through microscopic observation.
  • the cell analysis device of the present invention can be applied not only to nucleic acid analysis as described above but also to analysis of biomolecules.
  • an arbitrary biomolecule contained in a cell is recognized as a sequence for capturing the biomolecule (for example, a ligand that can specifically bind to the biomolecule, specifically, an antibody or an aptamer). It is also possible to use the first probe including the sequence.
  • biomolecules to be analyzed include arbitrary molecules such as proteins, peptides, other macromolecules, small molecules, and the like, in which a ligand that specifically binds exists.
  • FIG. 8 (a) is a top view of the nucleic acid preparation device 100
  • FIG. 8 (b) is a cross-sectional view.
  • the upper and lower sides of the nucleic acid preparation device 100 have a structure in which a two-dimensional array device 109 is sandwiched between an upper electrode 107 and a lower electrode 108 in which a transparent electrode (ITO) is provided by sputtering on a transparent substrate.
  • ITO transparent electrode
  • An electric field can be applied to the solution filled in the inner region including 106.
  • the upper electrode 107 and the lower electrode 108 have a transmission characteristic of 40% or more in the wavelength range of 400 to 900 nm, and the cells can be observed from above with an optical microscope.
  • the distance between the upper electrode 107 and the lower electrode 108 was 2 mm.
  • a heat block with heater aluminum alloy or copper alloy
  • a temperature controller were provided separately.
  • the two-dimensional array device 109 On the surface of the two-dimensional array device 109, holes having a diameter of 10 ⁇ m were arranged in an array at 125 ⁇ m intervals as cell traps 112.
  • the two-dimensional array device 109 was a square having a side of 1.3 mm, and 11 ⁇ 11 cell traps 112 were arranged.
  • a nucleic acid trap 113 having a diameter of 50 ⁇ m was provided immediately below the cell trap 112, and magnetic beads having a diameter of 1 ⁇ m were packed in the nucleic acid trap 113.
  • the packing of the magnetic beads was performed by discharging 2 nL of the magnetic bead solution (7 ⁇ 10 9 pieces / mL) to the nucleic acid trap 113 by an ink jet printer.
  • the structure of the cell trap 112 and the nucleic acid trap 113 described above was fabricated using a semiconductor process using a PDMS (polydimethylsiloxane) substrate, but instead of the resin (polycarbonate, cyclic polyolefin) by nanoimprint technology or injection molding. , Polypropylene), or a commercially available nylon mesh or track-etched membrane can be used.
  • a porous membrane 114 having pores with a diameter of 0.2 ⁇ m, the inner walls of the pores being subjected to a hydrophilic treatment, and absorbing water but retaining magnetic beads.
  • a pore array sheet obtained by anodizing alumina was used, but instead, a monolith sheet made of porous glass, a capillary plate obtained by bundling capillaries and sliced, a nylon membrane or A gel thin film or the like can also be used.
  • the pores of the porous membrane 114 function as a flow path that connects the nucleic acid trap 113 and the lower region 106.
  • the structure comprising the PDMS substrate and the porous film 114 are bonded by plasma bonding, but thermal bonding can also be used depending on the material. Note that the structure of the above-described two-dimensional array device 109 can also be fabricated by integral processing by a semiconductor process.
  • the first DNA probe Streptavidin is immobilized on the magnetic beads in advance, and a first DNA probe (SEQ ID NO: 1) whose 5 ′ end is modified with biotin is immobilized thereon.
  • the first DNA probe is a molecular recognition sequence consisting of a 30-base PCR amplification consensus sequence (Forward) (SEQ ID NO: 2), a 5-base cell recognition sequence (1024 types), and a 7-base random sequence from the 5 'end. And an 18-base oligo (dT) sequence and a 2-base VN sequence.
  • Cell introduction and mRNA extraction After washing about 1000 cells or less (here, suspension culture cell THP1) with 500 ⁇ L of 1 ⁇ PBS buffer so as not to damage the cells, remove the washing solution so that PBS does not remain as much as possible. 50 ⁇ L of 1 ⁇ PBS buffer cooled to 4 ° C. was added.
  • the cells 111 were introduced from the cell inlet 101, and the buffer was discharged from the lower outlet 102, whereby the cells 111 were adsorbed to the cell trap 112 and arranged in an array. Excess cells were drained from the upper outlet 103.
  • Tris buffer pH 8.0
  • PEO polyethylene oxide
  • PVP polyvinyl pyrrolidone
  • Tween 20 0.1% Tween 20
  • the mRNA is guided to the nucleic acid trap 113 by electrophoresis.
  • the mRNA may be guided to the nucleic acid trap 113 by continuously flowing the PBS buffer from the upper inlet 104 toward the lower outlet 102.
  • the reverse transcription reaction was completed by raising the temperature of the solution and the device to 50 ° C. and maintaining it for 50 minutes, and a 1st cDNA strand having a structure having a complementary sequence to mRNA at the 3 ′ end of the first probe was synthesized.
  • the temperature was raised to 85 ° C. and held for 1.5 minutes to inactivate the reverse transcriptase.
  • the second DNA probe (Second DNA probe)
  • the second DNA probe (SEQ ID NO: 3) for obtaining the full-length cDNA used for the comprehensive analysis is a 23 base PCR consensus sequence (Reverse) from the 5 ′ end (SEQ ID NO: 4: Forward of SEQ ID NO: 2) Different sequences), an 18 base oligo (dT) sequence and a 2 base VN sequence.
  • the third DNA probe (SEQ ID NOs: 5 to 24) for obtaining a fragment cDNA containing a gene-specific sequence for single cell analysis is a 23 base PCR amplification consensus sequence (Reverse) (sequence) from the 5 'end. Number 4) and 20 genes (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, and OAZ1) Each having a specific sequence.
  • the gene-specific sequence uses 20 ⁇ 5 bases 109 ⁇ 8 bases upstream from the polyA tail of the target gene so that the size of the fragment cDNA obtained as a PCR product is unified to about 200 bases, which is a complicated size Fraction purification (electrophoresis, gel cutting and PCR product extraction and purification) can be omitted.
  • the solution filling the device was discharged from the lower outlet 102 and the upper outlet 103, and the reaction solution mixed above was immediately injected from the upper inlet 104.
  • the three-step process of 94 ° C. for 30 seconds ⁇ 55 ° C. for 30 seconds ⁇ 68 ° C. for 30 seconds was repeated 25 cycles.
  • the mixture was held at 68 ° C. for 3 minutes and then cooled to 4 ° C. for PCR amplification.
  • the PCR amplification product solution was recovered and purified using a PCR purification kit (Qiagen), and the remaining free common primer for PCR amplification and residual reagents were removed.
  • each target gene has a common sequence for PCR amplification (Forward and Reverse) at both ends, and also gene-specific sequence, cell recognition sequence and molecular recognition Fragment cDNA containing single sequence for single cell analysis was obtained and applied to the sequencer for gene analysis specific to single cells.
  • PCR amplification bias was corrected using molecular recognition sequences, and highly accurate quantitative data of gene expression levels were obtained.
  • Example 2 Using the cell analysis system 200 shown in FIG. 9, gene analysis was performed according to the method of the present invention.
  • the nucleic acid preparation device 100 is the same as that described with reference to FIG. 8, and a microscope (not shown) is installed so that the cells 111 adsorbed on the cell trap 112 of the nucleic acid preparation device 100 can be observed.
  • the first DNA probe (SEQ ID NO: 25) does not have a 30-base PCR amplification consensus sequence (Forward), and is derived from a cell recognition sequence, a molecular recognition sequence, an oligo (dT) sequence, and a VN sequence.
  • the difference from Example 1 was used. According to the same procedure as in Example 1, 1st cDNA strand was synthesized and poly A tail was added.
  • a 2nd cDNA chain full length was synthesized using the 1st cDNA chain as a template in the same manner as in Example 1.
  • the reagent adding apparatus 201 sequentially supplies the solution containing the DNA probe to the nucleic acid preparation device 100.
  • the fourth DNA probe (SEQ ID NOs: 26 to 29) was composed of a 30-base PCR amplification consensus sequence (Forward) and a cell recognition sequence.
  • a PCR enzyme and substrate and a PCR amplification common sequence primer (Forward, SEQ ID NO: 25 / Reverse, SEQ ID NO: 4) were added, and the PCR cycle was repeated, Each full-length cDNA of the identified cells 111 was obtained.
  • Conditions such as PCR reaction were all the same as in Example 1.
  • the obtained PCR product is made into a sample that can be sequenced by fragmentation and adapter ligation, and then introduced into the sequencer 203. From the result, the data analyzer 204 performs comprehensive analysis across multiple cells and is specific to a single cell. Genetic analysis.
  • 1 ... 2D array device 2 ... cell, 3 ... cell trap, 4 ... nucleic acid trap, 5 ... channel, 6 ... nucleic acid, 7 ... bead, 31 ... first DNA probe, 32 ... poly T array, 33 ... First PCR amplification primer (sequence), 34 ... cell recognition sequence, 41 ... mRNA, 42 ... gene specific sequence, 51 ... 1st cDNA strand, 52 ... gene specific sequence, 53 ... poly A tail, 61 ... first 2 DNA probes, 62 ... second PCR amplification primer (sequence), 63 ... poly T sequence, 64 ... 2nd cDNA strand, 65 ... double stranded cDNA, 71 ...
  • third DNA probe 73 ... gene specific Sequence complementary to sequence 52, 74 ... 2nd cDNA strand, 75 ... double stranded cDNA, 81 ... fourth DNA probe, 100 ... nucleic acid preparation device, 101 ... cell inlet, 102 ... lower outlet, 103 ... upper outlet, 104 ... upper entrance, 105 ... upper region, 106 ... lower region, 107 ... upper electrode, 108 ... lower electrode, 109 ... two-dimensional array device, 111 ... cell, 112 ... cell trap, 113 ... nucleic acid trap, 114 ... many Shitsumaku, 200 ... cell analysis system, 201 ... reagent addition device 202 ... controller, 203 ... nucleic acid sequence analyzer 204 ... data analyzer, 205 ... memory device

Abstract

The purpose of the present invention is to provide a cell analysis system whereby a comprehensive gene analysis of a cell population and a specific gene analysis of a single cell contained in the population can be carried out at the same time. The cell analysis system according to the present invention is provided with an array device, said array device comprising a plurality of cell traps each capable of capturing a single cell and nucleic acid traps each capturing a nucleic acid extracted from a cell trapped by a cell trap, and a reagent addition unit for adding a reagent to the array device, wherein a nucleic acid trap contains an immobilized first probe for capturing a nucleic acid and the reagent addition unit supplies at least a second probe and a third probe to the array device.

Description

細胞解析装置およびそれを用いた細胞解析方法Cell analysis device and cell analysis method using the same
 本発明は、単一細胞についての遺伝子解析と、その細胞を含む細胞集団についての網羅的遺伝子解析とを同時に実現可能とする細胞解析装置およびそれを用いた細胞解析方法に関する。 The present invention relates to a cell analysis apparatus and a cell analysis method using the same, which can simultaneously realize gene analysis of a single cell and comprehensive gene analysis of a cell population including the cell.
 近年、多数の細胞から構成される生体組織のゲノム解析、遺伝子発現解析または蛋白解析を行うときに、個々の細胞のゲノムや遺伝子発現や蛋白質の違いに注目して解析する単一細胞解析の重要性が認識され始めている。特に、がんやiPSC(人工多能性幹細胞:induced pluripotent stem cells)の研究では、少数の細胞が生体組織の平均的な振る舞いとはかけ離れた振る舞いをする場合があることが知られており、そのような分野における単一細胞解析の重要性が指摘されている。 In recent years, when performing genome analysis, gene expression analysis, or protein analysis of living tissue composed of a large number of cells, it is important to analyze single cells by paying attention to differences in the genome, gene expression, and protein of each cell. Sex is beginning to be recognized. Particularly in cancer and iPSC (induced pluripotent stem cells) research, it is known that a small number of cells may behave differently from the average behavior of biological tissues, The importance of single cell analysis in such fields has been pointed out.
 従来の一般的な解析法(バルク解析)では、生体組織からサンプリングした多数の細胞(103~106個以上の細胞)を1種類のサンプルとしてDNAやRNAを抽出して解析を行う。例えば、特許文献1で用いられているような、最近普及し始めた次世代シーケンサを用いることにより、1回の計測で一人のヒトの全ゲノム配列を決定することも、あるいは数万種類以上も存在する全ての遺伝子に関する発現解析を行うことも可能となった。しかし、バルク解析では、全細胞の平均データしか得ることができず、個々の細胞中におけるDNAやRNAの存在量が平均値から乖離していたとしても評価することができない。また、多くのバルク解析方法は、必要となる最小サンプル量が単一細胞レベルの1000倍から100万倍であるため、単一細胞の解析にそのまま応用することは必要感度の観点から難しい。 In the conventional general analysis method (bulk analysis), DNA and RNA are extracted and analyzed using a large number of cells (10 3 to 10 6 or more cells) sampled from a living tissue as one type of sample. For example, by using a next-generation sequencer that has recently become widespread, as used in Patent Document 1, it is possible to determine the entire genome sequence of one person in one measurement, or more than tens of thousands of types It became possible to perform expression analysis on all existing genes. However, in bulk analysis, only average data of all cells can be obtained, and evaluation cannot be made even if the abundance of DNA or RNA in individual cells deviates from the average value. In addition, since many of the bulk analysis methods require a minimum sample amount of 1000 to 1 million times that of a single cell, it is difficult to apply it directly to the analysis of a single cell from the viewpoint of necessary sensitivity.
 一方、本発明者らは以前、単一細胞の遺伝子解析を行う方法であって、位置によって異なるタグ配列と被検核酸を捕捉するための配列とを含む核酸プローブを固定した細孔シートを用い、細胞の組織内での位置情報を保持したままcDNAライブラリを作製し、それを増幅して解析する方法を提案している(特許文献2)。このような、単一細胞解析を実現するために微量な遺伝子を細胞から高効率に抽出し高精度に解析を行う方法は、他にも種々提案されている。 On the other hand, the present inventors have previously used a method for performing gene analysis of a single cell, using a pore sheet to which a nucleic acid probe including a tag sequence that differs depending on the position and a sequence for capturing a test nucleic acid is fixed. In addition, a method has been proposed in which a cDNA library is prepared while maintaining positional information in a cell tissue, and the library is amplified and analyzed (Patent Document 2). In order to realize such single cell analysis, various other methods for extracting a very small amount of genes from cells with high efficiency and performing analysis with high accuracy have been proposed.
米国特許公開第2013/0184999号US Patent Publication No. 2013/0184999 国際公開第2014/020657号International Publication No. 2014/020657
 このような背景において、細胞集団の遺伝子解析結果と単一細胞の遺伝子解析結果を比較して解析する要求が生じている。しかし、細胞集団の解析と単一細胞の解析とを別個に行うと、たとえ同じ組織からサンプリングした細胞であっても、個々の細胞の遺伝子発現のランダムな変化や、解析のための処理条件の差異に起因して、厳密な比較を行うことが困難であった。 In such a background, there is a demand for comparing and analyzing the gene analysis results of the cell population and the single cell gene analysis results. However, when cell population analysis and single cell analysis are performed separately, even if cells are sampled from the same tissue, random changes in gene expression in individual cells and the processing conditions for analysis Due to the differences, it was difficult to make a strict comparison.
 細胞中の遺伝子発現の揺らぎの影響や、計測のための核酸の処理時の反応機会ごとの反応効率偏りの影響を低減するために、全く同一のサンプルに対して、比較すべき複数の解析を同時に行うことは、上記の問題の解決のための有効な手段である。このような複数の解析は、すべての遺伝子に対する解析(すなわち、網羅的遺伝子解析)を、すべての細胞について1細胞毎に解析(すなわち、単一細胞解析)してられたデータを編集することによって実現可能である。しかし、解析コストは計測遺伝子数と計測細胞数の積に比例するため、解析のためのコストが高くなってしまうという問題がある。 In order to reduce the effects of fluctuations in gene expression in the cells and reaction efficiency bias at each reaction opportunity when processing nucleic acids for measurement, multiple analyzes to be compared must be performed on the same sample. Performing simultaneously is an effective means for solving the above problems. Such multiple analyzes are performed by editing the analysis of all genes (ie, exhaustive gene analysis) and editing the data for every cell (ie, single cell analysis) for each cell. It is feasible. However, since the analysis cost is proportional to the product of the number of measured genes and the number of measured cells, there is a problem that the cost for analysis becomes high.
 本発明者らは、細胞集団の網羅的遺伝子解析と、その集団に含まれる単一細胞に特異的な遺伝子解析とを同時に行うことを可能とする細胞解析のための装置を完成させ、それを用いた細胞解析方法を見出した。本発明の要旨は以下のとおりである。 The present inventors have completed a device for cell analysis that enables simultaneous analysis of a gene population of a cell population and a gene analysis specific to a single cell included in the population, The cell analysis method used was found. The gist of the present invention is as follows.
(1) 細胞を1個ずつ捕捉可能な複数の細胞トラップと、細胞トラップに捕捉された細胞から抽出された核酸を捕捉する核酸トラップを有するアレイデバイスと、アレイデバイスに試薬を添加するための試薬添加装置を備え、
 核酸トラップは各細胞トラップに対応して存在しており、かつ核酸トラップは核酸を捕捉するための固定された第1のプローブを含み、
 試薬添加装置は、少なくとも第2のプローブおよび第3のプローブをアレイデバイスに提供し、
 第1のプローブは、個々の核酸トラップごとに異なる細胞認識配列、および細胞から抽出された核酸とハイブリダイズする核酸捕捉配列を有し、かつ場合により第1の核酸増幅用プライマー配列を有していてもよく、
 第2のプローブは、第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸を鋳型として合成された配列を含む核酸の末端にハイブリダイズする配列を有し、
 第3のプローブは、第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸に含まれる既知配列にハイブリダイブする配列を有し、
 前記試薬添加装置は、細胞から抽出した核酸が核酸トラップの第1のプローブに捕捉された後に、捕捉された核酸を鋳型とする相補鎖合成のための酵素および基質を供給し、次いで第2のプローブおよび第3のプローブを同時にまたは連続して供給することを特徴とする、細胞解析装置。
(1) An array device having a plurality of cell traps that can capture cells one by one, a nucleic acid trap that captures nucleic acid extracted from the cells trapped in the cell trap, and a reagent for adding a reagent to the array device With an addition device,
A nucleic acid trap is present for each cell trap, and the nucleic acid trap includes a fixed first probe for capturing the nucleic acid;
The reagent addition apparatus provides at least a second probe and a third probe to the array device,
The first probe has a different cell recognition sequence for each individual nucleic acid trap, and a nucleic acid capture sequence that hybridizes with a nucleic acid extracted from the cell, and optionally a first nucleic acid amplification primer sequence. You can,
The second probe has a second nucleic acid amplification primer sequence, and a sequence that hybridizes to the end of the nucleic acid including a sequence synthesized using the nucleic acid captured by the first probe as a template,
The third probe has a second nucleic acid amplification primer sequence, and a sequence that hybridizes to a known sequence contained in the nucleic acid captured by the first probe,
The reagent addition apparatus supplies an enzyme and a substrate for synthesizing a complementary strand using the captured nucleic acid as a template after the nucleic acid extracted from the cell is captured by the first probe of the nucleic acid trap, and then the second A cell analysis apparatus characterized by supplying a probe and a third probe simultaneously or successively.
(2) 第1のプローブが、第1の核酸増幅用プライマー配列を有し、
 前記試薬添加装置が、第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する、(1)に記載の細胞解析装置。
(2) the first probe has a first nucleic acid amplification primer sequence,
The cell analysis device according to (1), wherein the reagent addition device supplies a first nucleic acid amplification primer and a second nucleic acid amplification primer after supplying the second probe and the third probe.
(3) 第1のプローブが、第1の核酸増幅用プライマー配列を有さず、
 前記試薬添加装置が、第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマー配列と細胞認識配列とを有する第4のプローブを供給し、次いで第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する、(1)に記載の細胞解析装置。
(3) the first probe does not have the first nucleic acid amplification primer sequence,
The reagent addition device supplies the fourth probe having the first nucleic acid amplification primer sequence and the cell recognition sequence after the supply of the second probe and the third probe, and then for the first nucleic acid amplification The cell analysis device according to (1), wherein a primer and a second nucleic acid amplification primer are supplied.
(4) 第1のプローブに捕捉された核酸に含まれる既知配列が、該捕捉された核酸の5'末端から150~250塩基の位置に存在する、(1)~(3)のいずれかに記載の細胞解析装置。 (4) The known sequence contained in the nucleic acid captured by the first probe is present at a position of 150 to 250 bases from the 5 ′ end of the captured nucleic acid, in any of (1) to (3) The cell analysis apparatus described.
(5) 第1のプローブが、核酸トラップに依存せず個々のプローブで異なる分子認識配列をさらに有する、(1)~(3)のいずれかに記載の細胞解析装置。 (5) The cell analyzer according to any one of (1) to (3), wherein the first probe further has a molecular recognition sequence that does not depend on the nucleic acid trap and is different for each probe.
(6) 第1のプローブの核酸捕捉配列がポリT配列であり、細胞から抽出され第1のプローブに捕捉される核酸がmRNAである、(1)~(3)のいずれかに記載の細胞解析装置。 (6) The cell according to any one of (1) to (3), wherein the nucleic acid capture sequence of the first probe is a poly-T sequence, and the nucleic acid extracted from the cell and captured by the first probe is mRNA. Analysis device.
(7) 第2のプローブがハイブリダイズする核酸の末端がポリA配列からなる、(1)~(3)のいずれかに記載の細胞解析装置。 (7) The cell analysis device according to any one of (1) to (3), wherein the end of the nucleic acid to which the second probe hybridizes comprises a poly A sequence.
(8) 細胞集団の網羅的解析と、該細胞集団に含まれる個別の細胞についての単一細胞解析とを同時に行う方法であって、
 細胞を1個ずつ捕捉可能な複数の細胞トラップと、細胞トラップに捕捉された細胞から抽出された核酸を捕捉するための固定された第1のプローブを含みかつ各細胞トラップに対応して存在する核酸トラップとを有するアレイデバイスを用意する工程、
 核酸トラップに捕捉させた細胞を破壊して核酸を抽出する工程、
 個々の核酸トラップごとに異なる細胞認識配列、および細胞から抽出された核酸とハイブリダイズする核酸捕捉配列を有し、かつ場合により第1の核酸増幅用プライマー配列を有していてもよい第1のプローブに抽出した核酸を捕捉させた後、捕捉された核酸を鋳型とする相補鎖合成のための酵素および基質をアレイデバイスに供給する工程、ならびに
 第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸を鋳型として合成された配列を含む核酸の末端にハイブリダイズする配列を有する第2のプローブと、
 第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸に含まれる既知配列にハイブリダイブする配列を有する第3のプローブと
を同時にまたは連続してアレイデバイスに供給する工程
を含む、前記方法。
(8) A method for simultaneously performing a comprehensive analysis of a cell population and a single cell analysis for individual cells included in the cell population,
Multiple cell traps capable of capturing cells one by one, and a fixed first probe for capturing nucleic acid extracted from the cells captured in the cell trap, and corresponding to each cell trap Preparing an array device having a nucleic acid trap;
A step of extracting nucleic acids by destroying cells captured by the nucleic acid trap;
A first cell may have a cell recognition sequence different for each individual nucleic acid trap, and a nucleic acid capture sequence that hybridizes with a nucleic acid extracted from the cell, and optionally a first nucleic acid amplification primer sequence. A step of allowing the probe to capture the extracted nucleic acid, then supplying an enzyme and a substrate for complementary strand synthesis using the captured nucleic acid as a template to the array device, a second nucleic acid amplification primer sequence, and a first A second probe having a sequence that hybridizes to the end of the nucleic acid containing the sequence synthesized using the nucleic acid captured by the probe as a template;
Supplying a second nucleic acid amplification primer sequence and a third probe having a sequence that hybridizes to a known sequence contained in the nucleic acid captured by the first probe to the array device simultaneously or sequentially. , Said method.
(9) 第1のプローブが、第1の核酸増幅用プライマー配列を有し、
 第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する工程をさらに含む、(8)に記載の方法。
(9) the first probe has a first nucleic acid amplification primer sequence,
The method according to (8), further comprising supplying a first nucleic acid amplification primer and a second nucleic acid amplification primer after supplying the second probe and the third probe.
(10) 第1のプローブが、第1の核酸増幅用プライマー配列を有さず、
 第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマー配列と細胞認識配列とを有する第4のプローブを供給し、次いで第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する工程をさらに含む、(8)に記載の方法。
(10) the first probe does not have the first nucleic acid amplification primer sequence,
After supplying the second probe and the third probe, a fourth probe having a first nucleic acid amplification primer sequence and a cell recognition sequence is supplied, and then the first nucleic acid amplification primer and the second nucleic acid The method according to (8), further comprising a step of supplying an amplification primer.
(11) 第1のプローブに捕捉された核酸に含まれる既知配列が、該捕捉された核酸の5'末端から150~250塩基の位置に存在する、(8)~(10)のいずれかに記載の方法。 (11) The known sequence contained in the nucleic acid captured by the first probe is present at a position of 150 to 250 bases from the 5 ′ end of the captured nucleic acid, any of (8) to (10) The method described.
(12) 第1のプローブが、核酸トラップに依存せず個々のプローブで異なる分子認識配列をさらに有する、(8)~(10)のいずれかに記載の方法。 (12) The method according to any one of (8) to (10), wherein the first probe further has a molecular recognition sequence that does not depend on the nucleic acid trap and is different for each probe.
(13) 第1のプローブの核酸捕捉配列がポリT配列であり、細胞から抽出され第1のプローブに捕捉される核酸がmRNAである、(8)~(10)のいずれかに記載の方法。 (13) The method according to any one of (8) to (10), wherein the nucleic acid capture sequence of the first probe is a poly-T sequence, and the nucleic acid extracted from the cell and captured by the first probe is mRNA. .
(14) 第2のプローブがハイブリダイズする核酸の末端がポリA配列からなる、(8)~(10)のいずれかに記載の方法。 (14) The method according to any one of (8) to (10), wherein the end of the nucleic acid to which the second probe hybridizes comprises a poly A sequence.
(15) アレイデバイスと試薬添加装置を有する(1)~(3)のいずれかに記載の細胞解析装置、
 アレイデバイスの細胞トラップに捕捉された細胞を観察するためのモニタリング装置、
 アレイデバイスの各核酸トラップごとに異なる第1のプローブの配列情報、および試薬添加装置が供給するその他のプローブの配列情報を格納したメモリ装置、
 メモリ装置を参照して試薬添加装置を制御する制御装置、
 アレイデバイスから得られた核酸増幅産物を解析するシーケンサ、ならびに
 シーケンサから得られたデータを、必要に応じてメモリ装置を参照して解析する解析装置
を有する、細胞解析システム。
(15) The cell analysis device according to any one of (1) to (3), comprising an array device and a reagent addition device,
A monitoring device for observing cells captured in the cell trap of the array device,
A memory device storing the sequence information of the first probe, which is different for each nucleic acid trap of the array device, and the sequence information of other probes supplied by the reagent addition device,
A control device for controlling the reagent addition device with reference to the memory device;
A cell analysis system comprising a sequencer for analyzing a nucleic acid amplification product obtained from an array device, and an analysis device for analyzing data obtained from the sequencer with reference to a memory device as necessary.
 本発明の細胞解析装置および細胞解析システムによれば、細胞集団の網羅的遺伝子解析と、その集団に含まれる単一細胞に特異的な遺伝子解析とを同時に、高精度で、かつ低コストで行うことが可能となる。 According to the cell analysis apparatus and the cell analysis system of the present invention, comprehensive gene analysis of a cell population and gene analysis specific to a single cell included in the population are simultaneously performed with high accuracy and low cost. It becomes possible.
2次元アレイデバイスの構成の一例を示す模式図。The schematic diagram which shows an example of a structure of a two-dimensional array device. 図1に示した2次元アレイデバイス1の一つの細胞トラップ3周辺の部分構造の拡大図。FIG. 2 is an enlarged view of a partial structure around one cell trap 3 of the two-dimensional array device 1 shown in FIG. ビーズ7の表面の拡大図(基本例の第1のDNAプローブ31を用いる場合)。The enlarged view of the surface of the bead 7 (when using the first DNA probe 31 of the basic example). ビーズ7の表面の拡大図(基本例の第1のDNAプローブ31を用いる場合)。The enlarged view of the surface of the bead 7 (when using the first DNA probe 31 of the basic example). ビーズ7の表面の拡大図(応用例の第1のDNAプローブ31aを用いる場合)。The enlarged view of the surface of the bead 7 (when using the first DNA probe 31a of the application example). ビーズ7の表面の拡大図(応用例の第1のDNAプローブ31aを用いる場合)。The enlarged view of the surface of the bead 7 (when using the first DNA probe 31a of the application example). 応用例の2次元アレイデバイス1における一つの細胞トラップ3周辺の部分構造の拡大図。The enlarged view of the partial structure around one cell trap 3 in the two-dimensional array device 1 of the application example. 核酸調製デバイス100の構造の模式図。1 is a schematic diagram of the structure of a nucleic acid preparation device 100. FIG. 2次元アレイデバイスを利用した細胞解析装置および細胞解析システムを説明する図。The figure explaining the cell analysis apparatus and cell analysis system using a two-dimensional array device.
 本明細書において「遺伝子発現解析」とは、サンプル(細胞、組織切片など)における遺伝子、すなわちターゲットとなる被検核酸の発現を定量的に分析すること、サンプルにおける遺伝子(被検核酸)の発現分布を分析すること、サンプルにおける特定の細胞と遺伝子(被検核酸)発現量との相関データを得ることを意味する。サンプルは、遺伝子発現を解析しようとする生体由来サンプルであれば特に限定されるものではなく、細胞サンプル、組織サンプル、液体サンプルなどの任意のサンプルを用いることができる。またサンプルの由来となる生体も特に限定されるものではなく、脊椎動物(例えば哺乳類、鳥類、爬虫類、魚類、両生類など)、無脊椎動物(例えば昆虫、線虫、甲殻類など)、原生生物、植物、真菌、細菌、ウイルスなどの任意の生体に由来するサンプルを用いることができる。本発明において、ターゲットとなる被検核酸としては、メッセンジャーRNA(mRNA)、非コードRNA(ncRNA)、microRNA、およびDNA、ならびにそれらの断片を用いることができる。 In the present specification, “gene expression analysis” refers to quantitative analysis of the expression of a gene in a sample (cell, tissue section, etc.), that is, the target test nucleic acid, and expression of the gene (test nucleic acid) in the sample. Analyzing the distribution means obtaining correlation data between specific cells in the sample and the expression level of the gene (test nucleic acid). The sample is not particularly limited as long as it is a biological sample to be analyzed for gene expression, and any sample such as a cell sample, a tissue sample, or a liquid sample can be used. The organism from which the sample is derived is not particularly limited, and includes vertebrates (eg, mammals, birds, reptiles, fishes, amphibians), invertebrates (eg, insects, nematodes, crustaceans), protists, Samples derived from any living body such as plants, fungi, bacteria, and viruses can be used. In the present invention, messenger RNA (mRNA), non-coding RNA (ncRNA), microRNA, and DNA, and fragments thereof can be used as the target test nucleic acid.
(アレイデバイス)
 図1は本発明の細胞解析装置に係る2次元アレイデバイスの構成の一例を示す模式図である。図1(a)は上面図であり、図1(b)は図1(a)中に示したA-A’間の一点鎖線における断面図である。2次元アレイデバイス1には、デバイス中に導入された細胞2を一つずつ固定するための細胞トラップ3、細胞2の抽出液に含まれる核酸を捕捉するための核酸トラップ4、および細胞トラップ3および核酸トラップ4と連通した流路5が備えられている。流路5は、例えば核酸トラップ4の下側に微小孔を有する基板や多孔質樹脂シートを設置することにより設けることができる。図1(b)中の矢印は細胞2の抽出液の流動方向を示す。このようなデバイスは、例えば半導体製造プロセスを応用することにより製造することができる。
(Array device)
FIG. 1 is a schematic diagram showing an example of the configuration of a two-dimensional array device according to the cell analysis apparatus of the present invention. 1A is a top view, and FIG. 1B is a cross-sectional view taken along the alternate long and short dash line between AA ′ shown in FIG. 1A. The two-dimensional array device 1 includes a cell trap 3 for fixing cells 2 introduced into the device one by one, a nucleic acid trap 4 for capturing nucleic acids contained in the cell 2 extract, and a cell trap 3 A flow path 5 communicating with the nucleic acid trap 4 is provided. The flow path 5 can be provided, for example, by installing a substrate having a micropore or a porous resin sheet below the nucleic acid trap 4. The arrow in FIG. 1 (b) indicates the flow direction of the cell 2 extract. Such a device can be manufactured, for example, by applying a semiconductor manufacturing process.
 図2は、図1に示した2次元アレイデバイス1の一つの細胞トラップ3の周辺の部分構造を詳細に説明するための拡大図である。2次元アレイデバイス1の上部領域から細胞が懸濁した溶液を流すと、2次元アレイデバイス1は、上部領域から下部領域まで相互に液体が流動可能なように連通されているため、細胞は溶液の流れに乗って移動し、細胞トラップ3まで到達する。細胞トラップ3の開口径(例えば3~30μm)は細胞2の直径よりも小さいため、到達した細胞は細胞トラップ3に固定される。固定された細胞2は細胞トラップ3の栓の役割を果たすため、溶液の流れは細胞がまだ固定されていない細胞トラップ3に向かい、そこでも別の細胞が固定される。 FIG. 2 is an enlarged view for explaining in detail a partial structure around one cell trap 3 of the two-dimensional array device 1 shown in FIG. When a solution in which cells are suspended flows from the upper region of the two-dimensional array device 1, the two-dimensional array device 1 is connected so that liquid can flow from the upper region to the lower region. Move on the flow and reach cell trap 3. Since the opening diameter (for example, 3 to 30 μm) of the cell trap 3 is smaller than the diameter of the cell 2, the reached cell is fixed to the cell trap 3. Since the fixed cells 2 serve as plugs for the cell trap 3, the flow of the solution goes to the cell trap 3 where the cells are not yet fixed, and another cell is also fixed there.
 そのようにして固定された細胞2が必要な数に達した段階で、次に細胞が懸濁した溶液に替えて、細胞を破壊するためのLysisバッファ(例えばTween20などの界面活性剤とタンパク質分解酵素の混合液)を2次元アレイデバイス1の上部領域から流す。また、それと同時に必要に応じて図2中にEとして示した方向に電界を印加し、細胞3を破壊して得られた核酸6(mRNA)を電気泳動により核酸トラップ4まで移動させる。核酸6は電気泳動によらず溶液の流れで移動させてもよい。核酸トラップ4には、核酸6を捕捉するためのプローブが表面に固定されたビーズ7が充填されている。ビーズ7の直径は流路5よりも大きくし、ビーズ7が流出しないようにする。 When the required number of cells 2 has been reached, the solution is then replaced with a solution in which the cells are suspended, and a Lysis buffer (eg, Tween 20) is used to break down the cells and proteolysis The enzyme mixture) is flowed from the upper region of the two-dimensional array device 1. At the same time, if necessary, an electric field is applied in the direction indicated by E in FIG. 2, and the nucleic acid 6 (mRNA) obtained by destroying the cells 3 is moved to the nucleic acid trap 4 by electrophoresis. The nucleic acid 6 may be moved by the flow of the solution regardless of electrophoresis. The nucleic acid trap 4 is filled with beads 7 on the surface of which probes for capturing the nucleic acid 6 are fixed. The diameter of the bead 7 is larger than that of the flow path 5 so that the bead 7 does not flow out.
 図3および4はビーズ7の表面の拡大図である。ビーズ7の表面には第1のDNAプローブ31が固定されている。固定は、例えば、DNAプローブの5’末端にビオチン修飾を行い、予めビーズ7の表面に固定させたストレプトアビジンと結合させることにより行うことができる。第1のDNAプローブ31は、3'末端にポリT配列32を有し、mRNA41の3'末端のポリA配列とハイブリダイズすることによりmRNA41を捕捉する。なお、mRNAに代えてmicroRNAなどを解析したい場合には、ポリT配列に代えて解析対象とハイブリダイズする既知配列を用いてもよい。 3 and 4 are enlarged views of the surface of the bead 7. A first DNA probe 31 is fixed on the surface of the bead 7. The immobilization can be performed, for example, by modifying the 5 ′ end of the DNA probe with biotin and binding it with streptavidin immobilized on the surface of the beads 7 in advance. The first DNA probe 31 has a poly T sequence 32 at the 3 ′ end, and captures the mRNA 41 by hybridizing with the poly A sequence at the 3 ′ end of the mRNA 41. In addition, when it is desired to analyze microRNA or the like instead of mRNA, a known sequence that hybridizes with the analysis target may be used instead of the poly T sequence.
 第1のDNAプローブ31は、ビーズ7に固定されている5'末端に第1のPCR増幅用プライマー配列33を有し、さらに2次元アレイデバイス1の細胞トラップ3に固定された個々の細胞2を識別するための細胞認識配列34を含む。PCR増幅用プライマー配列は、核酸増幅を行うために適切な長さの既知配列であれば特に限定されるものではなく、当業者であればそのような配列を適宜設計することが可能である。例えば、PCR増幅用プライマー配列は、10~50塩基、15~50塩基、15~40塩基、15~30塩基、15~20塩基長とすることができる。共通のプライマー配列をプローブに含めることによって、後の核酸増幅工程における増幅反応を簡便に実施することが可能となる。 The first DNA probe 31 has a first PCR amplification primer sequence 33 at the 5 ′ end fixed to the bead 7, and further the individual cells 2 fixed to the cell trap 3 of the two-dimensional array device 1. Includes a cell recognition sequence 34 for identification. The primer sequence for PCR amplification is not particularly limited as long as it is a known sequence having an appropriate length for nucleic acid amplification, and those skilled in the art can appropriately design such a sequence. For example, the primer sequence for PCR amplification can be 10-50 bases, 15-50 bases, 15-40 bases, 15-30 bases, 15-20 bases in length. By including a common primer sequence in the probe, an amplification reaction in the subsequent nucleic acid amplification step can be easily performed.
 ビーズ7の表面に固定された第1のDNAプローブ31は、2次元アレイデバイス1に複数存在する核酸トラップ4ごとに異なる細胞認識配列34を有し、それにより、後に分析した配列がいずれの細胞由来であるかを判別することが可能となる。例えば、細胞認識配列34を5塩基のランダム配列とした場合には、4の5乗、すなわち1024の細胞を識別することが可能となる。したがって、細胞認識配列34は、識別すべき核酸トラップ4の数に応じて任意に設定でき、具体的には5~30塩基、5~20塩基、5~15塩基または5~10塩基の範囲とすることができる。 The first DNA probe 31 immobilized on the surface of the bead 7 has a different cell recognition sequence 34 for each of the nucleic acid traps 4 existing in the two-dimensional array device 1, so that the sequence analyzed later can be It is possible to determine whether it originates. For example, when the cell recognition sequence 34 is a random sequence of 5 bases, it becomes possible to identify 4 5, that is, 1024 cells. Therefore, the cell recognition sequence 34 can be arbitrarily set according to the number of nucleic acid traps 4 to be identified, specifically, in the range of 5 to 30 bases, 5 to 20 bases, 5 to 15 bases, or 5 to 10 bases. can do.
 図3(a)は、細胞2から抽出されたmRNA41が第1のDNAプローブ31に捕捉された状態を示す。mRNA41には既知の遺伝子特異的配列42が含まれる。次に、核酸トラップ4に逆転写反応に必要な酵素と基質を供給し、第1のDNAプローブ31に捕捉されたmRNA41を鋳型にして1st cDNA鎖51(mRNA41に相補的な配列を含む一本鎖DNA)を合成させ、その後不要となったmRNA41を酵素により分解するなどして除去する。このようにして、ビーズ7上にcDNAライブラリが構築される。本発明ではこのcDNAライブラリに対して複数のDNA増幅処理を同時に行うことで、複数のタイプの解析のためのサンプル調整を行う。 FIG. 3 (a) shows a state in which the mRNA 41 extracted from the cell 2 is captured by the first DNA probe 31. FIG. mRNA 41 contains a known gene-specific sequence 42. Next, the enzyme and substrate necessary for the reverse transcription reaction are supplied to the nucleic acid trap 4, and the mRNA 41 captured by the first DNA probe 31 is used as a template for the 1st cDNA strand 51 (one containing a sequence complementary to the mRNA 41). Strand DNA) is synthesized, and then unnecessary mRNA 41 is removed by enzymatic degradation or the like. In this way, a cDNA library is constructed on the beads 7. In the present invention, a plurality of DNA amplification processes are simultaneously performed on the cDNA library to prepare samples for a plurality of types of analysis.
 図3(b)は1st cDNA鎖51の構成を示す図である。1st cDNA鎖51は、mRNAに含まれる遺伝子特異的配列42と相補である遺伝子特異的配列52を含む。次いで、図3(c)に示すように、1st cDNA鎖51の3'末端に、さらにポリAの連続配列(ポリAテール53)を付加する。 FIG. 3 (b) is a diagram showing the configuration of the 1st cDNA strand 51. The 1st cDNA strand 51 includes a gene-specific sequence 52 that is complementary to the gene-specific sequence 42 contained in the mRNA. Next, as shown in FIG. 3 (c), a poly A continuous sequence (poly A tail 53) is further added to the 3 ′ end of the 1st cDNA strand 51.
 本発明では、1st cDNA鎖51のPCR増幅のために、少なくとも2種類のDNAプローブを用いることを特徴とする。 The present invention is characterized in that at least two types of DNA probes are used for PCR amplification of the 1st cDNA strand 51.
 図4(a)は、第2のDNAプローブ61を用いて1st cDNA鎖51の全長を含むPCR増幅産物を得る手順を説明する図である。第2のDNAプローブ61は、第2のPCR増幅用プライマー配列62とポリT配列63から構成され、1st cDNA鎖51に付加されたポリAテール53にハイブリダイズしてプライマーとして機能する。1st cDNA鎖51を鋳型にして2nd cDNA鎖64(1st cDNA鎖51に相補的な配列を含む一本鎖DNA)を合成し(図4(a)(i))、そこに第1のPCR増幅用プライマー33と第2のPCR増幅用プライマー62を加えてPCR増幅を行うことにより、mRNA41の全長に対応する配列を有する二本鎖cDNA65を含むPCR増幅産物が得られる(図4(a)(ii)および(iii))。ここで得られた産物は細胞集団に対する網羅解析に用いる。 FIG. 4 (a) is a diagram for explaining the procedure for obtaining a PCR amplification product containing the full length of the first cDNA strand 51 using the second DNA probe 61. FIG. The second DNA probe 61 is composed of a second PCR amplification primer sequence 62 and a poly T sequence 63, and functions as a primer by hybridizing to the poly A tail 53 added to the 1st cDNA strand 51. Using 2st cDNA strand 51 as a template, 2nd cDNA strand 64 (single-stranded DNA containing a sequence complementary to 1st cDNA strand 51) was synthesized (Figure 4 (a) (i)), and the first PCR amplification was performed there. PCR amplification product containing double-stranded cDNA 65 having a sequence corresponding to the entire length of mRNA 41 is obtained by adding PCR primer 33 and second PCR amplification primer 62 (FIG. 4 (a)) ii) and (iii)). The product obtained here is used for exhaustive analysis of the cell population.
 図4(b)は、第3のDNAプローブ71を用いて1st cDNA鎖51に含まれる遺伝子特異的配列52を含むPCR増幅産物を得る手順を説明する図である。第3のDNAプローブ71は、第2のPCR増幅用プライマー配列62と遺伝子特異的配列52に相補な配列73から構成され、1st cDNA鎖51の遺伝子特異的配列52にハイブリダイズしてプライマーとして機能する。1st cDNA鎖51を鋳型にして2nd cDNA鎖74を合成し(図4(b)(i))、第1のPCR増幅用プライマー33と第2のPCR増幅用プライマー62を加えてPCR増幅を行うことにより、遺伝子特異的配列52を有する二本鎖cDNA75を含むPCR増幅産物が得られる(図4(b)(ii)およ び(iii))。ここで得られた産物は単一の細胞に対する特異的解析に用いる。 FIG. 4 (b) is a diagram for explaining a procedure for obtaining a PCR amplification product containing the gene-specific sequence 52 contained in the 1st cDNA strand 51 using the third DNA probe 71. The third DNA probe 71 is composed of a second PCR amplification primer sequence 62 and a sequence 73 complementary to the gene-specific sequence 52, and hybridizes to the gene-specific sequence 52 of the 1st cDNA strand 51 and functions as a primer. To do. 2nd cDNA strand 74 is synthesized using 1st DNA strand 51 as a template (Figure 4 (b) (i)), and PCR amplification is performed by adding first PCR amplification primer 33 and second PCR amplification primer 62 As a result, a PCR amplification product containing a double-stranded cDNA 75 having the gene-specific sequence 52 is obtained (FIGS. 4 (b) (ii) and (iii)). The product obtained here is used for specific analysis of a single cell.
 上述した少なくとも2種類のDNAプローブを同時にまたは連続して供給すると、得られるPCR増幅産物には、mRNA41の全長に対応する配列を有する二本鎖cDNA65と、遺伝子特異的配列52を有する比較的短い二本鎖cDNA75とが含まれ、前者を用いた細胞集団全体に対する網羅的解析と、後者を用いた単一の細胞に対する特異的解析とを、同じPCR増幅反応条件で得られたサンプルに基づいて行うことが可能となる。 When at least two types of DNA probes described above are supplied simultaneously or sequentially, the resulting PCR amplification product has a relatively short double-stranded cDNA 65 having a sequence corresponding to the entire length of mRNA 41 and a gene-specific sequence 52. Based on samples obtained under the same PCR amplification reaction conditions, a comprehensive analysis for the entire cell population using the former and a specific analysis for a single cell using the latter are included. Can be done.
 なお、ここで核酸の増幅にはPCR増幅反応を用いる前提で記載したが、Nucleic Acid Sequence-Based Amplification(NASBA)法、Loop-Mediated Isothermal Amplification(LAMP)法、ローリングサークル増幅(RCA)反応などの他の増幅法を用いても良い。 The nucleic acid amplification was described on the assumption that a PCR amplification reaction was used, but the Nucleic Acid Sequence-Based Amplification (NASBA) method, Loop-Mediated Isothermal Amplification (LAMP) method, rolling circle amplification (RCA) reaction, etc. Other amplification methods may be used.
(第1のDNAプローブの応用例)
 図5および図6は、応用例による第1のDNAプローブ31aを用いる場合について説明する図である。第1のDNAプローブ31aは、ビーズ7に固定されている5'末端に第1のPCR増幅用プライマー配列を有さず、5'末端が細胞認識配列34である点において、上述の基本例におけるものと相違する。図5は、上述の基本例と同様にして1st cDNA鎖51aを合成し、3'末端にポリAテール53を付加した状態を示す図である。
(Application example of the first DNA probe)
FIG. 5 and FIG. 6 are diagrams for explaining a case where the first DNA probe 31a according to the application example is used. The first DNA probe 31a does not have the first PCR amplification primer sequence at the 5 ′ end fixed to the bead 7, and the 5 ′ end is the cell recognition sequence 34. It is different from the one. FIG. 5 is a diagram showing a state in which the 1st cDNA strand 51a is synthesized and a poly A tail 53 is added to the 3 ′ end in the same manner as in the basic example described above.
 図6(a)は1st cDNA鎖51の全長を含むPCR増幅産物を得る手順を説明する図であり、図6(b)は1st cDNA鎖51に含まれる遺伝子特異的配列52を含むPCR増幅産物を得る手順を説明する図である。この応用例では、第2のDNAプローブ61および第3のDNAプローブ71を用いて2nd cDNA鎖64aまたは74aを合成した後、第1のPCR増幅用プライマー配列33と細胞認識配列34を有する第4のDNAプローブを用いて相補鎖合成反応を行う点においても上述の基本例と相違する。第4のDNAプローブを用いるようにすることで、特定の細胞に由来する配列のみを増幅するようにすることが可能となる。相補鎖合成反応後、第1のPCR増幅用プライマー33と第2のPCR増幅用プライマー62を加えてPCR増幅反応を行うことにより、上述の基本例と同様に、mRNA41の全長に対応する配列を有する二本鎖cDNA65と、遺伝子特異的配列52を有する比較的短い二本鎖cDNA75とを含むPCR増幅産物が得られる。 FIG. 6 (a) is a diagram for explaining a procedure for obtaining a PCR amplification product containing the full length of the 1st cDNA strand 51, and FIG. 6 (b) is a PCR amplification product containing the gene-specific sequence 52 contained in the 1st cDNA strand 51. It is a figure explaining the procedure which obtains. In this application example, the second DNA probe 61 and the third DNA probe 71 are used to synthesize a 2nd cDNA strand 64a or 74a, and then a fourth PCR amplification primer sequence 33 and a cell recognition sequence 34 are provided. This is also different from the basic example described above in that a complementary strand synthesis reaction is performed using the DNA probe. By using the fourth DNA probe, it is possible to amplify only a sequence derived from a specific cell. After the complementary strand synthesis reaction, the first PCR amplification primer 33 and the second PCR amplification primer 62 are added and the PCR amplification reaction is performed, so that the sequence corresponding to the full length of mRNA 41 is obtained as in the basic example described above. A PCR amplification product is obtained which comprises a double stranded cDNA 65 having a relatively short double stranded cDNA 75 having a gene specific sequence 52.
(分子認識配列)
 図3(a)を用いて説明した第1のDNAプローブ31、および図5を用いて説明した第1のDNAプローブ31aは、さらに個々のプローブで互いに異なる分子認識配列(図示せず)を有していてもよい。分子認識配列は、細胞認識配列34の3'末端側に配置することが好ましい。例えば7塩基の分子認識配列を導入すると、4の7乗、すなわち1.6×104の数の分子を識別することが可能となる。分子認識配列は、例えば5~30塩基、5~25塩基、または5~20塩基の長さがあれば、十分な数の分子を識別することができる。分子認識配列を導入することにより、同じ細胞由来で同じ遺伝子配列を有する増幅産物がいずれの分子(cDNA)に由来するかを識別することができる。これによれば、増幅反応において生じた遺伝子間の増幅バイアスを補正することが可能となり、mRNAの定量を非常に高い精度で行うことが可能となる。
(Molecular recognition sequence)
The first DNA probe 31 described with reference to FIG. 3 (a) and the first DNA probe 31a described with reference to FIG. 5 further have different molecular recognition sequences (not shown) for each probe. You may do it. The molecular recognition sequence is preferably arranged on the 3 ′ end side of the cell recognition sequence 34. For example, when a molecular recognition sequence of 7 bases is introduced, it becomes possible to identify 4 to the 7th power, that is, 1.6 × 10 4 molecules. If the molecular recognition sequence has a length of, for example, 5 to 30 bases, 5 to 25 bases, or 5 to 20 bases, a sufficient number of molecules can be identified. By introducing a molecular recognition sequence, it is possible to identify from which molecule (cDNA) amplification products having the same gene sequence derived from the same cell are derived. According to this, it becomes possible to correct | amend the amplification bias between the genes which arose in amplification reaction, and it becomes possible to quantify mRNA with very high precision.
(既知配列)
 1st cDNA鎖51に含まれ、かつmRNA41および第3のDNAプローブ71にそれに相補な配列が含まれる既知配列52は、1st cDNA鎖51の5'末端から150塩基以上、特に180塩基以上、とりわけ190塩基以上あって、400塩基以下、特に220塩基以下、とりわけ210塩基以下、具体的には150~250塩基、特に180~220塩基、とりわけ190~210塩基の位置に存在することが好ましい。そのような位置に既知配列52が存在すると、第3のDNAプローブ71を用いて得たPCR増幅産物に含まれる二本鎖cDNA75の長さを数百塩基程度、特に200塩基前後とすることができ、シーケンサによる解析の際にフラクション精製(電気泳動、ゲルの切り出しおよびPCR産物の抽出精製)および断片化等の手順を省くことができるため好ましい。
(Known sequence)
The known sequence 52 contained in the 1st cDNA strand 51 and the mRNA 41 and the third DNA probe 71 containing sequences complementary thereto is 150 bases or more, particularly 180 bases or more, especially 190 from the 5 ′ end of the 1st cDNA strand 51. It is preferably present at a position of at least 400 bases, in particular 220 bases or less, particularly 210 bases or less, specifically 150 to 250 bases, particularly 180 to 220 bases, particularly 190 to 210 bases. If the known sequence 52 is present at such a position, the length of the double-stranded cDNA 75 contained in the PCR amplification product obtained using the third DNA probe 71 may be about several hundred bases, particularly around 200 bases. In addition, it is preferable because procedures such as fraction purification (electrophoresis, gel cutting and PCR product extraction and purification) and fragmentation can be omitted in sequencer analysis.
(アレイデバイスの応用例)
 図1および2を用いて説明した2次元アレイデバイス1では、核酸トラップ4に第1のDNAプローブ31が固定されたビーズ7を充填したが、必ずしもビーズ7を用いる必要はない。図7は、図2を用いて説明した構造に相当する、応用例の2次元アレイデバイス1の一つの細胞トラップ3の周辺の部分構造を詳細に説明するための拡大図である。この応用例では、細胞の直径程度の厚みを有する基板に貫通孔を設けることにより細胞トラップ3を形成している。基板の厚みは、貫通孔により細胞を捕捉することができればよく、数μm~数mmの範囲とすることができる。細胞トラップ3を構成する基板の下には細孔を有する基板あるいは多孔質樹脂シートなどを設け、ビーズに替えてその細孔内に第1のDNAプローブ31を固定する。このような応用例の2次元アレイデバイス1において、基板等を構成する材料として透明なものを用いることにより、細胞の顕微鏡観察が容易になるという利点がある。
(Application examples of array devices)
In the two-dimensional array device 1 described with reference to FIGS. 1 and 2, the nucleic acid trap 4 is filled with the beads 7 on which the first DNA probe 31 is fixed, but the beads 7 are not necessarily used. FIG. 7 is an enlarged view for explaining in detail a partial structure around one cell trap 3 of the two-dimensional array device 1 of the application example corresponding to the structure described with reference to FIG. In this application example, the cell trap 3 is formed by providing a through hole in a substrate having a thickness about the diameter of the cell. The thickness of the substrate may be in the range of several μm to several mm as long as cells can be captured by the through-hole. A substrate having a pore or a porous resin sheet is provided under the substrate constituting the cell trap 3, and the first DNA probe 31 is fixed in the pore instead of the bead. In the two-dimensional array device 1 of such an application example, the use of a transparent material as a substrate or the like has an advantage that cell observation with a microscope becomes easy.
 シリコン酸化膜材料からなる基板の細孔に第1のDNAプローブ31を固定するには、例えば以下のようにする。まず、細孔の内壁のシラン処理のために、0.3mg/mLのシランカップリング剤GTMSi(3- Glycidoxypropyltrimethoxysilane)および酸触媒である0.02%酢酸を含む水溶液を基板に導入し、その後直ちにミネラルオイルを導入して溶液を分離し2時間反応させる。エタノールで洗浄後、溶液をすべて排出し、110℃で2時間熱反応させる。次に1μMストレプトアビジン溶液を基板に導入し、6時間室温にて反応させ、ストレプトアビジンを細孔内に固定する。洗浄後、5'末端をビオチン修飾した第1のDNAプローブ31と1MのNaClおよび0.1%のTween20を含む10mMのTrisHCl溶液を基板に導入し、30分間反応させた後洗浄する。 In order to fix the first DNA probe 31 to the pores of the substrate made of a silicon oxide film material, for example, the following is performed. First, an aqueous solution containing 0.3 mg / mL silane coupling agent GTMSi (3- Glycidoxypropyltrimethoxysilane) and acid catalyst 0.02% acetic acid was introduced into the substrate for silane treatment of the inner wall of the pores, and then mineral oil was immediately added. Introduce solution to separate and react for 2 hours. After washing with ethanol, all the solution is drained and heat-reacted at 110 ° C. for 2 hours. Next, 1 μM streptavidin solution is introduced into the substrate and reacted at room temperature for 6 hours to fix streptavidin in the pores. After the washing, a 10 mM TrisHCl solution containing the first DNA probe 31 whose biotin is modified at the 5 ′ end and 1 M NaCl and 0.1% Tween 20 is introduced into the substrate, reacted for 30 minutes, and then washed.
 上記のような処理によれば、DNAプローブ31は30~100nm2に1個の割合で固定することができ、1個の核酸トラップ4につき107個オーダーのDNAプローブが固定できると推察される。1細胞中のmRNAのコピー数は106個以下であることが知られているため、細胞に含まれる全てのmRNAを捕捉するのに十分な数の第1のDNAプローブ31が固定可能と考えられる。 According to the above treatment, one DNA probe 31 can be immobilized at a ratio of 1 to 30 to 100 nm 2 and it is estimated that 10 7 order DNA probes can be immobilized per one nucleic acid trap 4. . Since it is known that the number of mRNA copies in one cell is 10 6 or less, it is considered that a sufficient number of first DNA probes 31 can be immobilized to capture all mRNA contained in the cell. It is done.
 上記の例では、1細胞中のすべてのmRNAについて捕捉して遺伝子解析を行うことが可能であるが、そのためには細胞トラップ3および核酸トラップ4のために比較的広い領域を要するため、1cm2あたり設置可能な細胞トラップ3は1000個程度となる。一方、遺伝子解析する遺伝子を数十~数百の特定のものに限定することにより、必要とする領域を狭めることができ、設置可能な細胞トラップ3の数を10万~100万個まで増やすことも可能である。 In the above example, it is possible to capture all mRNAs in one cell and perform gene analysis, but this requires a relatively large area for the cell trap 3 and nucleic acid trap 4, so 1 cm 2 The number of cell traps 3 that can be placed per unit is about 1000. On the other hand, by limiting the number of genes to be analyzed to tens to hundreds of specific ones, the required area can be narrowed, and the number of cell traps 3 that can be installed is increased from 100,000 to 1 million. Is also possible.
(細胞解析装置および細胞解析システム)
 図9はこれまで説明したような構成を有する2次元アレイデバイスを利用した細胞解析装置および細胞解析システムを説明する図である。核酸調製デバイス100には2次元アレイデバイス1が組み込まれており、試薬添加装置201が接続されている。本発明の細胞解析装置は、2次元アレイデバイス1が組み込まれた核酸調製デバイス100と試薬添加装置201とから構成される。制御装置202により駆動される試薬添加装置201は、核酸増幅に必要な基質、酵素、および各種プローブやプライマーを核酸調製デバイス100に供給する。
(Cell analysis device and cell analysis system)
FIG. 9 is a diagram for explaining a cell analysis apparatus and a cell analysis system using a two-dimensional array device having a configuration as described above. A two-dimensional array device 1 is incorporated in the nucleic acid preparation device 100, and a reagent addition apparatus 201 is connected to the nucleic acid preparation device 100. The cell analysis apparatus of the present invention includes a nucleic acid preparation device 100 in which a two-dimensional array device 1 is incorporated and a reagent addition device 201. The reagent addition device 201 driven by the control device 202 supplies the nucleic acid preparation device 100 with substrates, enzymes, and various probes and primers necessary for nucleic acid amplification.
 核酸調製デバイス100により得られた核酸増幅産物はシーケンサ203に送られて配列解析が行われ、その結果はデータ解析装置204に送られる。シーケンサ203は、配列解析に必要な前処理(たとえば、エマルジョンPCRやブリッジ増幅などの個別増幅処理)を有していてもよい。メモリ装置205には、試薬添加装置201が供給する各種プローブやプライマーの配列情報と、2次元アレイデバイス1における位置情報と紐づけた第1のDNAプローブの配列情報とを格納しておき、データ解析装置204は必要に応じてメモリ装置205のデータを参照しながら解析を行う。また、制御装置202も必要に応じてメモリ装置205のデータを参照しながら試薬添加装置201の制御を行う。細胞解析システム200はこのような構成をとることにより、核酸調製デバイス100から得られる核酸増幅産物の解析結果と、各種プローブの配列データ等を対応づけて、細胞集団に対する網羅的解析と単一細胞に対する特異的解析とを同時に行うことを可能とする。 The nucleic acid amplification product obtained by the nucleic acid preparation device 100 is sent to the sequencer 203 for sequence analysis, and the result is sent to the data analysis device 204. The sequencer 203 may have preprocessing necessary for sequence analysis (for example, individual amplification processing such as emulsion PCR and bridge amplification). The memory device 205 stores the sequence information of various probes and primers supplied by the reagent adding device 201 and the sequence information of the first DNA probe linked to the position information in the two-dimensional array device 1, and the data The analysis device 204 performs analysis while referring to the data in the memory device 205 as necessary. The control device 202 also controls the reagent adding device 201 while referring to the data in the memory device 205 as necessary. By adopting such a configuration, the cell analysis system 200 associates the analysis result of the nucleic acid amplification product obtained from the nucleic acid preparation device 100 with the sequence data of various probes, and performs comprehensive analysis on the cell population and single cell. It is possible to simultaneously perform specific analysis for.
 核酸調製デバイス100には、2次元アレイデバイス1に捕捉された細胞を観察可能とするため顕微鏡(図示せず)が設置されていてもよい。顕微鏡により得る像は、蛍光イメージ、明視野イメージや非線形顕微鏡イメージなど細胞の形状を大幅に破壊せずに取得できる光学像であることが好ましい。顕微鏡により観察している細胞の2次元アレイデバイス1における位置がわかれば、その位置における細胞認識配列を特定することができるため、顕微鏡像による観察結果と配列解析の結果を紐づけることが可能である。また、顕微鏡観察を介してレーザーなどで特定の細胞のみ破壊することも可能となる。 In the nucleic acid preparation device 100, a microscope (not shown) may be installed to enable observation of cells captured by the two-dimensional array device 1. The image obtained by a microscope is preferably an optical image that can be obtained without significantly destroying the shape of the cell, such as a fluorescent image, a bright field image, or a non-linear microscope image. If the position of the cell being observed with the microscope in the two-dimensional array device 1 is known, the cell recognition sequence at that position can be specified, so the observation result by the microscope image can be linked to the result of the sequence analysis. is there. It is also possible to destroy only specific cells with a laser or the like through microscopic observation.
(応用例)
 本発明の細胞解析装置は、これまで説明したような核酸の解析のみならず、生体分子の解析にも応用することができる。例えば、細胞に含まれる任意の生体分子を、該生体分子を捕捉するための配列(例えば、該生体分子と特異的に結合することができるリガンド、具体的には抗体又はアプタマーなど)と細胞認識配列とを含む第1のプローブに捕捉させる、といった使い方も可能である。解析対象となる生体分子としては、タンパク質、ペプチドその他の高分子、小分子などの任意の分子であって、特異的に結合するリガンドが存在するものとが挙げられる。
(Application examples)
The cell analysis device of the present invention can be applied not only to nucleic acid analysis as described above but also to analysis of biomolecules. For example, an arbitrary biomolecule contained in a cell is recognized as a sequence for capturing the biomolecule (for example, a ligand that can specifically bind to the biomolecule, specifically, an antibody or an aptamer). It is also possible to use the first probe including the sequence. Examples of biomolecules to be analyzed include arbitrary molecules such as proteins, peptides, other macromolecules, small molecules, and the like, in which a ligand that specifically binds exists.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
[実施例1]
 図8に示した核酸調製デバイス100を用いて、本発明の方法に従って遺伝子解析を行った。図8(a)は核酸調製デバイス100の上面図を、図8(b)は断面図をそれぞれ示す。核酸調製デバイス100の上下は透明な基板にスパッタリングにより透明電極(ITO)が設けられた上部電極107および下部電極108により2次元アレイデバイス109が挟まれた構造を有し、上部領域105および下部領域106を含む内部領域に満たした溶液に電界が印加可能に構成されている。上部電極107および下部電極108は400~900nmの波長範囲で40%以上の透過特性を有しており、上部から細胞を光学顕微鏡で観察できるようにした。上部電極107および下部電極108の間の距離は2mmとした。また、PCR温度サイクルを実現するために、ヒーターつきヒートブロック(アルミ合金または銅合金)と温度コントローラを別途設けた。
[Example 1]
Genetic analysis was performed according to the method of the present invention using the nucleic acid preparation device 100 shown in FIG. FIG. 8 (a) is a top view of the nucleic acid preparation device 100, and FIG. 8 (b) is a cross-sectional view. The upper and lower sides of the nucleic acid preparation device 100 have a structure in which a two-dimensional array device 109 is sandwiched between an upper electrode 107 and a lower electrode 108 in which a transparent electrode (ITO) is provided by sputtering on a transparent substrate. An electric field can be applied to the solution filled in the inner region including 106. The upper electrode 107 and the lower electrode 108 have a transmission characteristic of 40% or more in the wavelength range of 400 to 900 nm, and the cells can be observed from above with an optical microscope. The distance between the upper electrode 107 and the lower electrode 108 was 2 mm. In order to realize PCR temperature cycle, a heat block with heater (aluminum alloy or copper alloy) and a temperature controller were provided separately.
 2次元アレイデバイス109の表面には、細胞トラップ112として、直径10μmの孔を125μm間隔でアレイ状に配置した。2次元アレイデバイス109は、一辺が1.3mmの正方形とし、細胞トラップ112は11×11個配置した。細胞トラップ112の直下には直径50μmの核酸トラップ113を設け、核酸トラップ113の中には直径1μmの磁性ビーズをパッキングした。磁性ビーズのパッキングは、磁性ビーズ溶液(7×109個/mL)をインクジェットプリンタにより核酸トラップ113に2nLずつ吐出することにより行った。 On the surface of the two-dimensional array device 109, holes having a diameter of 10 μm were arranged in an array at 125 μm intervals as cell traps 112. The two-dimensional array device 109 was a square having a side of 1.3 mm, and 11 × 11 cell traps 112 were arranged. A nucleic acid trap 113 having a diameter of 50 μm was provided immediately below the cell trap 112, and magnetic beads having a diameter of 1 μm were packed in the nucleic acid trap 113. The packing of the magnetic beads was performed by discharging 2 nL of the magnetic bead solution (7 × 10 9 pieces / mL) to the nucleic acid trap 113 by an ink jet printer.
 上記の細胞トラップ112および核酸トラップ113の構造は、PDMS(ポリジメチルシロキサン)基板を用いて半導体プロセスを用いて作製したが、それに代えてナノインプリント技術や射出成型によって樹脂(ポリカービネート、サイクリックポリオレフィン、ポリプロピレン)により作製してもよく、あるいは、市販のナイロンメッシュやトラックエッチドメンブレンを用いることもできる。 The structure of the cell trap 112 and the nucleic acid trap 113 described above was fabricated using a semiconductor process using a PDMS (polydimethylsiloxane) substrate, but instead of the resin (polycarbonate, cyclic polyolefin) by nanoimprint technology or injection molding. , Polypropylene), or a commercially available nylon mesh or track-etched membrane can be used.
 核酸トラップ113の下には、直径0.2μmの細孔を有し、細孔の内壁が親水処理されており、水を吸収するが磁性ビーズは保持することができる多孔質膜114を設けた。なお、多孔質膜114としては、アルミナを陽極酸化して得られる細孔アレーシートを用いたが、それに代えて多孔質のガラスからなるモノリスシート、毛細管を束ねてスライスしたキャピラリープレート、ナイロン膜あるいはゲル薄膜などを用いることもできる。多孔質膜114の細孔は核酸トラップ113と下部領域106を連通する流路として機能する。上記のPDMS基板からなる構造と多孔質膜114の接着はプラズマ接着により行ったが、材質によっては熱接着を用いることもできる。なお、上述した2次元アレイデバイス109の構造は、半導体プロセスによる一体加工で作製することもできる。 Under the nucleic acid trap 113, there was provided a porous membrane 114 having pores with a diameter of 0.2 μm, the inner walls of the pores being subjected to a hydrophilic treatment, and absorbing water but retaining magnetic beads. As the porous membrane 114, a pore array sheet obtained by anodizing alumina was used, but instead, a monolith sheet made of porous glass, a capillary plate obtained by bundling capillaries and sliced, a nylon membrane or A gel thin film or the like can also be used. The pores of the porous membrane 114 function as a flow path that connects the nucleic acid trap 113 and the lower region 106. The structure comprising the PDMS substrate and the porous film 114 are bonded by plasma bonding, but thermal bonding can also be used depending on the material. Note that the structure of the above-described two-dimensional array device 109 can also be fabricated by integral processing by a semiconductor process.
(第1のDNAプローブ)
 磁性ビーズ上には予めストレプトアビジンが固定化されており、そこに5’末端がビオチン修飾された第1のDNAプローブ(配列番号1)を固定した。第1のDNAプローブは、5’末端から、30塩基のPCR増幅用共通配列(Forward)(配列番号2)、5塩基の細胞認識配列(1024種類)、7塩基のランダム配列からなる分子認識配列、18塩基のオリゴ(dT)配列および2塩基のVN配列を有するようにした。
(First DNA probe)
Streptavidin is immobilized on the magnetic beads in advance, and a first DNA probe (SEQ ID NO: 1) whose 5 ′ end is modified with biotin is immobilized thereon. The first DNA probe is a molecular recognition sequence consisting of a 30-base PCR amplification consensus sequence (Forward) (SEQ ID NO: 2), a 5-base cell recognition sequence (1024 types), and a 7-base random sequence from the 5 'end. And an 18-base oligo (dT) sequence and a 2-base VN sequence.
(細胞の導入およびmRNA抽出)
 1000個程度以下の細胞(ここでは浮遊系培養細胞THP1を使用した)を500μLの1×PBSバッファで細胞を傷つけないように洗浄した後、できる限りPBSが残らないように洗浄溶液を除去し、4℃に冷却された1×PBSバッファを50μL加えた。細胞111は細胞入口101から導入し、バッファを下部出口102から排出させることにより、細胞111を細胞トラップ112に吸着させ、アレイ状に配列させた。過剰な細胞は上部出口103から排出した。
(Cell introduction and mRNA extraction)
After washing about 1000 cells or less (here, suspension culture cell THP1) with 500 μL of 1 × PBS buffer so as not to damage the cells, remove the washing solution so that PBS does not remain as much as possible. 50 μL of 1 × PBS buffer cooled to 4 ° C. was added. The cells 111 were introduced from the cell inlet 101, and the buffer was discharged from the lower outlet 102, whereby the cells 111 were adsorbed to the cell trap 112 and arranged in an array. Excess cells were drained from the upper outlet 103.
 次に、上部入口104から、250μLの4%SeaPrepアガロース溶液(Cambrex Bio Science Rockland社)溶液、495μLのLysis溶液(TaqMan MicroRNA Cell-to-CT Kit、Applied Biosystems社)、および5μLのDNase Iを導入し、PBSバッファを下部出口102から排出して上部領域105をLysisバッファに置換した。細胞トラップ112付近の溶液がゲル化したことを確認し、温度を20℃まで上げて8分間反応させた後、DNaseを失活させるStopping溶液50μLをゲルの上に添加し、5分間反応させ、4℃に冷却した。なお、ここで用いたアガロースゲルは、ポリアクリルアミドゲルに代えてよく、あるいはゲル成分のないPBSバッファを用いてもよい。 Next, 250 μL of 4% SeaPrep agarose solution (Cambrex Bio Science Rockland) solution, 495 μL of Lysis solution (TaqMan MicroRNA Cell-to-CT Kit, Applied Biosystems), and 5 μL of DNase I are introduced from the top inlet 104 Then, the PBS buffer was discharged from the lower outlet 102 to replace the upper region 105 with the Lysis buffer. After confirming that the solution near the cell trap 112 has gelled, raise the temperature to 20 ° C. and react for 8 minutes, add 50 μL of Stopping solution that deactivates DNase on the gel, react for 5 minutes, Cooled to 4 ° C. The agarose gel used here may be replaced with a polyacrylamide gel, or a PBS buffer having no gel component may be used.
 0.03%のポリエチレンオキシド(PEO)(分子量60万)、0.03%のポリビニルピロリドン(PVP)、および0.1%のTween 20を含む10mMのTrisバッファ(pH 8.0)を0.5mL加え、上部領域105と下部領域106をTrisバッファで満たした。溶液およびデバイスの温度を4℃に維持したまま、上部電極107を陰極(GND)、下部電極108を陽極として+5Vを2分間印加し、負電荷を有するmRNAを細胞トラップ112の下部の核酸トラップ113の方向へと電気泳動させた。(直流電圧に替えて、オンレベル10V、オフレベル0V、周波数100kHz、デューティー比50%のパルス電圧を印加してもよい。)上記の操作により、ほとんどのmRNAは核酸トラップ113内に固定された第1のDNAプローブに捕捉されたと考えられたが、一部のmRNAが捕捉されずに下部領域106に流れ出たことも考え、溶液およびデバイスの温度を70℃まで上げて5分間待った後、下部電極108に印加する電圧の極性を反転させながら(最初に-5Vを1分間、次いで+5Vと-5Vを1分間ずつ10回繰り返し)、-0.1℃/秒の冷却速度で4℃まで冷却した。なお、ここでは電気泳動によってmRNAを核酸トラップ113へと誘導したが、上部入り口104から下部出口102に向かってPBSバッファをゆっくりと流し続けることによってmRNAを核酸トラップ113へ誘導しても良い。 Add 0.5 mL of 10 mM Tris buffer (pH 8.0) containing 0.03% polyethylene oxide (PEO) (molecular weight 600,000), 0.03% polyvinyl pyrrolidone (PVP), and 0.1% Tween 20, upper region 105 and lower region 106 was filled with Tris buffer. While maintaining the temperature of the solution and the device at 4 ° C., +5 V was applied for 2 minutes using the upper electrode 107 as the cathode (GND) and the lower electrode 108 as the anode, and the negatively charged mRNA was added to the nucleic acid trap 113 below the cell trap 112. Electrophoresis was performed in the direction of. (Instead of the DC voltage, a pulse voltage with an on level of 10 V, an off level of 0 V, a frequency of 100 kHz, and a duty ratio of 50% may be applied.) By the above operation, most mRNA was immobilized in the nucleic acid trap 113. Although it was thought that it was captured by the first DNA probe, some mRNA was not captured and flowed to the lower region 106, and the temperature of the solution and device was raised to 70 ° C and waited for 5 minutes. While reversing the polarity of the voltage applied to the electrode 108 (firstly, −5V was repeated for 1 minute, then + 5V and −5V were repeated 10 times each for 1 minute), the electrode 108 was cooled to 4 ° C. at a cooling rate of −0.1 ° C./second. In this case, the mRNA is guided to the nucleic acid trap 113 by electrophoresis. However, the mRNA may be guided to the nucleic acid trap 113 by continuously flowing the PBS buffer from the upper inlet 104 toward the lower outlet 102.
 上部入口104からTrisバッファを導入し上部出口103から排出させ、上部領域105の溶液を交換しながら、溶液およびデバイスの温度を35℃まで上げてアガロースゲルを溶解させ、必要のない細胞組織とアガロースを除去した。 While introducing the Tris buffer from the upper inlet 104 and draining it from the upper outlet 103, changing the solution in the upper region 105, the temperature of the solution and device was raised to 35 ° C to dissolve the agarose gel, and unnecessary tissue and agarose Was removed.
(1st cDNA鎖合成)
 0.1%のTween20を含む10mMのTrisバッファ(pH=8.0)585μL、10mMのdNTPミックス40μL、5xRTバッファ(SuperScript III、Invitrogen社)225μL、0.1MのDTT40μL、RNaseOUT(Invitrogen)40μL、および逆転写酵素(Superscript III、Invitrogen社)40μLを混合した。デバイスを満たしている溶液を下部出口102および上部出口103から排出し、直ちに上記で混合した逆転写酵素を含む溶液を上部入口104から注入した。溶液およびデバイスの温度を50℃に上げて50分間保つことにより逆転写反応を完了させ、第1のプローブの3’末端にmRNAと相補的配列を有する構造を持つ1st cDNA鎖を合成した。
(1st cDNA strand synthesis)
585 μL of 10 mM Tris buffer (pH = 8.0) containing 0.1% Tween20, 40 μL of 10 mM dNTP mix, 225 μL of 5 × RT buffer (SuperScript III, Invitrogen), 40 μL of 0.1 M DTT, 40 μL of RNaseOUT (Invitrogen), and reverse transcriptase ( 40 μL of Superscript III (Invitrogen) was mixed. The solution filling the device was discharged from the lower outlet 102 and the upper outlet 103, and immediately the solution containing the reverse transcriptase mixed above was injected from the upper inlet 104. The reverse transcription reaction was completed by raising the temperature of the solution and the device to 50 ° C. and maintaining it for 50 minutes, and a 1st cDNA strand having a structure having a complementary sequence to mRNA at the 3 ′ end of the first probe was synthesized.
 温度を85℃に上げて1.5分間保持して逆転写酵素を失活させた。4℃に冷却後、RNaseおよび0.1%のTween20を含む10mMのTrisバッファ(pH=8.0)10mLを上部入口104から注入し、下部出口102および上部出口103から排出させることにより、mRNAを分解した。また、同量のアルカリ変性剤を同様に流して、デバイス上の残存物および分解物を除去した。 The temperature was raised to 85 ° C. and held for 1.5 minutes to inactivate the reverse transcriptase. After cooling to 4 ° C., 10 mL of 10 mM Tris buffer (pH = 8.0) containing RNase and 0.1% Tween 20 was injected from the upper inlet 104 and discharged from the lower outlet 102 and the upper outlet 103 to decompose the mRNA. Further, the same amount of alkali modifier was flowed in the same manner to remove the residue and decomposition products on the device.
(1st cDNA鎖へのポリAテールの付加)
 1×PCRバッファにMgCl2(1.5mM)、dATP(3mM)、RNaseH酵素(0.1U/μL)およびTdT酵素(0.75U/μL)を加えた試薬を調製し、上部入口104から注入し、37℃で30分間反応させた。次いで温度を70℃に上げて5分間保持し、酵素を失活させ、十分量のバッファで洗浄した。
(Addition of poly A tail to 1st cDNA strand)
Prepare a reagent containing MgCl 2 (1.5 mM), dATP (3 mM), RNaseH enzyme (0.1 U / μL) and TdT enzyme (0.75 U / μL) in 1 × PCR buffer, inject from the top inlet 104, 37 The reaction was carried out at 30 ° C. for 30 minutes. The temperature was then raised to 70 ° C. and held for 5 minutes to inactivate the enzyme and washed with a sufficient amount of buffer.
(第2のDNAプローブ)
 網羅的解析に用いる全長cDNAを得るための第2のDNAプローブ(配列番号3)は、5’末端から、23塩基のPCR増幅用共通配列(Reverse)(配列番号4:配列番号2のForwardとは異なる配列)、18塩基のオリゴ(dT)配列および2塩基のVN配列を有するようにした。
(Second DNA probe)
The second DNA probe (SEQ ID NO: 3) for obtaining the full-length cDNA used for the comprehensive analysis is a 23 base PCR consensus sequence (Reverse) from the 5 ′ end (SEQ ID NO: 4: Forward of SEQ ID NO: 2) Different sequences), an 18 base oligo (dT) sequence and a 2 base VN sequence.
(第3のDNAプローブ)
 単一細胞解析に用いる遺伝子特異的配列を含む断片cDNAを得るための第3のDNAプローブ(配列番号5~24)は、5’末端から、23塩基のPCR増幅用共通配列(Reverse)(配列番号4)および20種類の遺伝子(ATP5B、GAPDH、GUSB、HMBS、HPRT1、RPL4、RPLP1、RPS18、RPL13A、RPS20、ALDOA、B2M、EEF1G、SDHA、TBP、VIM、RPLP0、RPLP2、RPLP27、およびOAZ1)の個々に特異的な配列を有するようにした。遺伝子特異的配列には、ターゲット遺伝子のポリAテールから109±8塩基上流の20±5塩基を用い、PCR産物として得られる断片cDNAのサイズが約200塩基に統一されるようにし、煩雑なサイズフラクション精製(電気泳動、ゲルの切り出しおよびPCR産物の抽出精製)を省略できるようにした。
(Third DNA probe)
The third DNA probe (SEQ ID NOs: 5 to 24) for obtaining a fragment cDNA containing a gene-specific sequence for single cell analysis is a 23 base PCR amplification consensus sequence (Reverse) (sequence) from the 5 'end. Number 4) and 20 genes (ATP5B, GAPDH, GUSB, HMBS, HPRT1, RPL4, RPLP1, RPS18, RPL13A, RPS20, ALDOA, B2M, EEF1G, SDHA, TBP, VIM, RPLP0, RPLP2, RPLP27, and OAZ1) Each having a specific sequence. The gene-specific sequence uses 20 ± 5 bases 109 ± 8 bases upstream from the polyA tail of the target gene so that the size of the fragment cDNA obtained as a PCR product is unified to about 200 bases, which is a complicated size Fraction purification (electrophoresis, gel cutting and PCR product extraction and purification) can be omitted.
(第2および第3のDNAプローブを用いた2nd cDNA鎖の合成)
 滅菌水690μL、10x Ex Taqバッファ(タカラバイオ社)100μL、2.5mMのdNTPミックス100μL、10μMの第2のDNAプローブ溶液100μLあるいは20種の第3のDNAプローブ溶液(いずれも10μM)各100μL、およびEx Taq Hot start version(タカラバイオ社)10μLを混合した。デバイスを満たしている溶液を下部出口102および上部出口103から排出し、直ちに上記で混合した反応溶液を上部入口104から注入した。95℃で3分間→44℃で2分間→72℃で6分間の反応を行い、1st cDNA鎖を鋳型とした2nd cDNA鎖(全長または断片)の合成を行った。
(Synthesis of 2nd cDNA strand using 2nd and 3rd DNA probes)
690 μL of sterilized water, 100 μL of 10 × Ex Taq buffer (Takara Bio Inc.), 100 μL of 2.5 mM dNTP mix, 100 μL of 10 μM second DNA probe solution or 20 types of third DNA probe solutions (each 10 μM), and 100 μL each 10 μL of Ex Taq Hot start version (Takara Bio Inc.) was mixed. The solution filling the device was discharged from the lower outlet 102 and the upper outlet 103, and the reaction solution mixed above was immediately injected from the upper inlet 104. The reaction was performed at 95 ° C. for 3 minutes → 44 ° C. for 2 minutes → 72 ° C. for 6 minutes to synthesize a 2nd cDNA strand (full length or fragment) using the 1st cDNA strand as a template.
(二本鎖cDNAの合成および増幅)
 滅菌水495μL、10x High Fidelity PCRバッファ(インビトロジェン社)100μL、2.5mMのdNTPミックス100μL、50mMのMgSO440μL、10μMのPCR増幅用共通配列プライマー(Forward、配列番号25)溶液100μL、10μMのPCR増幅用共通配列プライマー(Reverse、配列番号4)溶液100μL、Platinum Taq Polymerase High Fidelity(インビトロジェン社)15μLを混合した。デバイスを満たしている溶液を下部出口102および上部出口103から排出し、直ちに上記で混合した反応溶液を上部入口104から注入した。94℃で30秒間→55℃で30秒間→68℃で30秒間の3段階工程を25サイクル繰り返し、最後に68℃で3分間保持した後4℃に冷却してPCR増幅を行った。PCR増幅産物溶液を回収し、PCR精製キット(キアゲン社)を用いて精製し、残存するフリーのPCR増幅用共通配列プライマーや残存試薬を除去した。
(Synthesis and amplification of double-stranded cDNA)
Sterile water 495 μL, 10 × High Fidelity PCR buffer (Invitrogen) 100 μL, 2.5 mM dNTP mix 100 μL, 50 mM MgSO 4 40 μL, 10 μM common sequence primer for PCR amplification (Forward, SEQ ID NO: 25) 100 μL, 10 μM PCR amplification 100 μL of common sequence primer (Reverse, SEQ ID NO: 4) solution and 15 μL of Platinum Taq Polymerase High Fidelity (Invitrogen) were mixed. The solution filling the device was discharged from the lower outlet 102 and the upper outlet 103, and the reaction solution mixed above was immediately injected from the upper inlet 104. The three-step process of 94 ° C. for 30 seconds → 55 ° C. for 30 seconds → 68 ° C. for 30 seconds was repeated 25 cycles. Finally, the mixture was held at 68 ° C. for 3 minutes and then cooled to 4 ° C. for PCR amplification. The PCR amplification product solution was recovered and purified using a PCR purification kit (Qiagen), and the remaining free common primer for PCR amplification and residual reagents were removed.
 2nd cDNA鎖の合成工程において第2のDNAプローブを用いた場合、全長cDNAが得られた。断片化とアダプターライゲーションによりシーケンシング可能なサンプルとし、emPCR増幅またはブリッジ増幅装置に導入し、次世代シーケンサ(Life Technologies (Solid/Ion Torrent)、Illumina(High Seq)、Roche 454)に適用して網羅的な配列解析を行った。 When the second DNA probe was used in the synthesis process of the 2nd cDNA strand, a full-length cDNA was obtained. Samples that can be sequenced by fragmentation and adapter ligation, introduced into emPCR amplification or bridge amplification devices, and applied to next-generation sequencers (Life Technologies (Solid / Ion Torrent), Illumina (High Seq), Roche 454) Sequence analysis was performed.
 2nd cDNA鎖の合成工程において第3のDNAプローブを用いた場合、ターゲット遺伝子ごとに、PCR増幅用共通配列(ForwardおよびReverse)を両端に有し、さらに遺伝子特異的配列、細胞認識配列および分子認識配列を含む、単一細胞解析用の断片cDNAが得られ、それを上記シーケンサに適用して単一細胞に特異的な遺伝子解析を行った。また、分子認識配列を利用してPCR増幅バイアスの補正を行い、遺伝子発現量の高精度な定量データを得た。 When a third DNA probe is used in the synthesis process of the 2nd cDNA strand, each target gene has a common sequence for PCR amplification (Forward and Reverse) at both ends, and also gene-specific sequence, cell recognition sequence and molecular recognition Fragment cDNA containing single sequence for single cell analysis was obtained and applied to the sequencer for gene analysis specific to single cells. In addition, PCR amplification bias was corrected using molecular recognition sequences, and highly accurate quantitative data of gene expression levels were obtained.
[実施例2]
 図9に示した細胞解析システム200を用いて、本発明の方法に従って遺伝子解析を行った。核酸調製デバイス100は図8を用いて説明したものと同じであり、核酸調製デバイス100の細胞トラップ112に吸着した細胞111を観察可能なように顕微鏡(図示せず)を設置した。
[Example 2]
Using the cell analysis system 200 shown in FIG. 9, gene analysis was performed according to the method of the present invention. The nucleic acid preparation device 100 is the same as that described with reference to FIG. 8, and a microscope (not shown) is installed so that the cells 111 adsorbed on the cell trap 112 of the nucleic acid preparation device 100 can be observed.
 本実施例では、第1のDNAプローブ(配列番号25)として、30塩基のPCR増幅用共通配列(Forward)を有さず、細胞認識配列、分子認識配列、オリゴ(dT)配列およびVN配列からなる点で実施例1と相違するものを用いた。実施例1と同様の手順により、1st cDNA鎖の合成およびポリAテールの付加を行った。次いで、第2のDNAプローブ(配列番号3)を用いて、実施例1と同様に1st cDNA鎖を鋳型とした2nd cDNA鎖(全長)の合成を行った。 In this example, the first DNA probe (SEQ ID NO: 25) does not have a 30-base PCR amplification consensus sequence (Forward), and is derived from a cell recognition sequence, a molecular recognition sequence, an oligo (dT) sequence, and a VN sequence. The difference from Example 1 was used. According to the same procedure as in Example 1, 1st cDNA strand was synthesized and poly A tail was added. Next, using the second DNA probe (SEQ ID NO: 3), a 2nd cDNA chain (full length) was synthesized using the 1st cDNA chain as a template in the same manner as in Example 1.
 次に、予め顕微鏡により観察した結果に基づいて、詳細な単一細胞解析を行うべき細胞111を4つ決定した。その細胞111が吸着した場所に対応する個々に異なる細胞認識配列の情報を、制御装置202を介してメモリ装置205から取り出し、試薬添加装置201に送信し、その細胞認識配列に対応する第4のDNAプローブを含む溶液を試薬添加装置201が核酸調製デバイス100に順次供給するようにした。第4のDNAプローブ(配列番号26~29)は、30塩基のPCR増幅用共通配列(Forward)と細胞認識配列とから構成されるようにした。第4のDNAプローブを含む溶液には、PCR用の酵素と基質、およびPCR増幅用共通配列プライマー(Forward、配列番号25/Reverse、配列番号4)を加えておき、PCRサイクルを繰り返すことにより、特定した細胞111のそれぞれの全長cDNAを得た。PCR反応などの条件はいずれも実施例1と同様にした。得られたPCR産物を、断片化とアダプターライゲーションによりシーケンシング可能なサンプルとした後にシーケンサ203に導入し、その結果からデータ解析装置204により複数細胞に跨る網羅的な解析と、単一細胞に特異的な遺伝子解析とを行った。 Next, four cells 111 to be subjected to detailed single cell analysis were determined based on the results of observation with a microscope in advance. Information on individually different cell recognition sequences corresponding to the place where the cell 111 is adsorbed is taken out from the memory device 205 via the control device 202, and transmitted to the reagent adding device 201, and the fourth corresponding to the cell recognition sequence. The reagent adding apparatus 201 sequentially supplies the solution containing the DNA probe to the nucleic acid preparation device 100. The fourth DNA probe (SEQ ID NOs: 26 to 29) was composed of a 30-base PCR amplification consensus sequence (Forward) and a cell recognition sequence. To the solution containing the fourth DNA probe, a PCR enzyme and substrate and a PCR amplification common sequence primer (Forward, SEQ ID NO: 25 / Reverse, SEQ ID NO: 4) were added, and the PCR cycle was repeated, Each full-length cDNA of the identified cells 111 was obtained. Conditions such as PCR reaction were all the same as in Example 1. The obtained PCR product is made into a sample that can be sequenced by fragmentation and adapter ligation, and then introduced into the sequencer 203. From the result, the data analyzer 204 performs comprehensive analysis across multiple cells and is specific to a single cell. Genetic analysis.
1…2次元アレイデバイス、2…細胞、3…細胞トラップ、4…核酸トラップ、5…流路、6…核酸、7…ビーズ、31…第1のDNAプローブ、32…ポリT配列、33…第1のPCR増幅用プライマー(配列)、34…細胞認識配列、41…mRNA、42…遺伝子特異的配列、51…1st cDNA鎖、52…遺伝子特異的配列、53…ポリAテール、61…第2のDNAプローブ、62…第2のPCR増幅用プライマー(配列)、63…ポリT配列、64…2nd cDNA鎖、65…二本鎖cDNA、71…第3のDNAプローブ、73…遺伝子特異的配列52に相補な配列、74…2nd cDNA鎖、75…二本鎖cDNA、81…第4のDNAプローブ、100…核酸調製デバイス、101…細胞入口、102…下部出口、103…上部出口、104…上部入口、105…上部領域、106…下部領域、107…上部電極、108…下部電極、109…2次元アレイデバイス、111…細胞、112…細胞トラップ、113…核酸トラップ、114…多孔質膜、200…細胞解析システム、201…試薬添加装置、202…制御装置、203…核酸配列解析装置、204…データ解析装置、205…メモリ装置 1 ... 2D array device, 2 ... cell, 3 ... cell trap, 4 ... nucleic acid trap, 5 ... channel, 6 ... nucleic acid, 7 ... bead, 31 ... first DNA probe, 32 ... poly T array, 33 ... First PCR amplification primer (sequence), 34 ... cell recognition sequence, 41 ... mRNA, 42 ... gene specific sequence, 51 ... 1st cDNA strand, 52 ... gene specific sequence, 53 ... poly A tail, 61 ... first 2 DNA probes, 62 ... second PCR amplification primer (sequence), 63 ... poly T sequence, 64 ... 2nd cDNA strand, 65 ... double stranded cDNA, 71 ... third DNA probe, 73 ... gene specific Sequence complementary to sequence 52, 74 ... 2nd cDNA strand, 75 ... double stranded cDNA, 81 ... fourth DNA probe, 100 ... nucleic acid preparation device, 101 ... cell inlet, 102 ... lower outlet, 103 ... upper outlet, 104 ... upper entrance, 105 ... upper region, 106 ... lower region, 107 ... upper electrode, 108 ... lower electrode, 109 ... two-dimensional array device, 111 ... cell, 112 ... cell trap, 113 ... nucleic acid trap, 114 ... many Shitsumaku, 200 ... cell analysis system, 201 ... reagent addition device 202 ... controller, 203 ... nucleic acid sequence analyzer 204 ... data analyzer, 205 ... memory device

Claims (15)

  1.  細胞を1個ずつ捕捉可能な複数の細胞トラップと、細胞トラップに捕捉された細胞から抽出された核酸を捕捉する核酸トラップを有するアレイデバイスと、アレイデバイスに試薬を添加するための試薬添加装置を備え、
     核酸トラップは各細胞トラップに対応して存在しており、かつ核酸トラップは核酸を捕捉するための固定された第1のプローブを含み、
     試薬添加装置は、少なくとも第2のプローブおよび第3のプローブをアレイデバイスに提供し、
     第1のプローブは、個々の核酸トラップごとに異なる細胞認識配列、および細胞から抽出された核酸とハイブリダイズする核酸捕捉配列を有し、かつ場合により第1の核酸増幅用プライマー配列を有していてもよく、
     第2のプローブは、第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸を鋳型として合成された配列を含む核酸の末端にハイブリダイズする配列を有し、
     第3のプローブは、第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸に含まれる既知配列にハイブリダイブする配列を有し、
     前記試薬添加装置は、細胞から抽出した核酸が核酸トラップの第1のプローブに捕捉された後に、捕捉された核酸を鋳型とする相補鎖合成のための酵素および基質を供給し、次いで第2のプローブおよび第3のプローブを同時にまたは連続して供給することを特徴とする、細胞解析装置。
    A cell trap that can capture cells one by one, an array device that has a nucleic acid trap that captures nucleic acids extracted from the cells trapped in the cell trap, and a reagent addition device for adding reagents to the array device Prepared,
    A nucleic acid trap is present for each cell trap, and the nucleic acid trap includes a fixed first probe for capturing the nucleic acid;
    The reagent addition apparatus provides at least a second probe and a third probe to the array device,
    The first probe has a different cell recognition sequence for each individual nucleic acid trap, and a nucleic acid capture sequence that hybridizes with a nucleic acid extracted from the cell, and optionally a first nucleic acid amplification primer sequence. You can,
    The second probe has a second nucleic acid amplification primer sequence, and a sequence that hybridizes to the end of the nucleic acid including a sequence synthesized using the nucleic acid captured by the first probe as a template,
    The third probe has a second nucleic acid amplification primer sequence, and a sequence that hybridizes to a known sequence contained in the nucleic acid captured by the first probe,
    The reagent addition apparatus supplies an enzyme and a substrate for synthesizing a complementary strand using the captured nucleic acid as a template after the nucleic acid extracted from the cell is captured by the first probe of the nucleic acid trap, and then the second A cell analysis apparatus characterized by supplying a probe and a third probe simultaneously or successively.
  2.  第1のプローブが、第1の核酸増幅用プライマー配列を有し、
     前記試薬添加装置が、第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する、請求項1に記載の細胞解析装置。
    The first probe has a first nucleic acid amplification primer sequence,
    2. The cell analysis device according to claim 1, wherein the reagent adding device supplies the first nucleic acid amplification primer and the second nucleic acid amplification primer after supplying the second probe and the third probe.
  3.  第1のプローブが、第1の核酸増幅用プライマー配列を有さず、
     前記試薬添加装置が、第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマー配列と細胞認識配列とを有する第4のプローブを供給し、次いで第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する、請求項1に記載の細胞解析装置。
    The first probe does not have the first nucleic acid amplification primer sequence,
    The reagent addition device supplies the fourth probe having the first nucleic acid amplification primer sequence and the cell recognition sequence after the supply of the second probe and the third probe, and then for the first nucleic acid amplification 2. The cell analysis device according to claim 1, wherein the primer and the second primer for nucleic acid amplification are supplied.
  4.  第1のプローブに捕捉された核酸に含まれる既知配列が、該捕捉された核酸の5'末端から150~250塩基の位置に存在する、請求項1~3のいずれか1項に記載の細胞解析装置。 The cell according to any one of claims 1 to 3, wherein the known sequence contained in the nucleic acid captured by the first probe is present at a position of 150 to 250 bases from the 5 'end of the captured nucleic acid. Analysis device.
  5.  第1のプローブが、核酸トラップに依存せず個々のプローブで異なる分子認識配列をさらに有する、請求項1~3のいずれか1項に記載の細胞解析装置。 The cell analyzer according to any one of claims 1 to 3, wherein the first probe further has a molecular recognition sequence that does not depend on the nucleic acid trap and is different for each probe.
  6.  第1のプローブの核酸捕捉配列がポリT配列であり、細胞から抽出され第1のプローブに捕捉される核酸がmRNAである、請求項1~3のいずれか1項に記載の細胞解析装置。 The cell analyzer according to any one of claims 1 to 3, wherein the nucleic acid capture sequence of the first probe is a poly-T sequence, and the nucleic acid extracted from the cell and captured by the first probe is mRNA.
  7.  第2のプローブがハイブリダイズする核酸の末端がポリA配列からなる、請求項1~3のいずれか1項に記載の細胞解析装置。 The cell analysis device according to any one of claims 1 to 3, wherein the terminal of the nucleic acid to which the second probe hybridizes comprises a poly A sequence.
  8.  細胞集団の網羅的解析と、該細胞集団に含まれる個別の細胞についての単一細胞解析とを同時に行う方法であって、
     細胞を1個ずつ捕捉可能な複数の細胞トラップと、細胞トラップに捕捉された細胞から抽出された核酸を捕捉するための固定された第1のプローブを含みかつ各細胞トラップに対応して存在する核酸トラップとを有するアレイデバイスを用意する工程、
     核酸トラップに捕捉させた細胞を破壊して核酸を抽出する工程、
     個々の核酸トラップごとに異なる細胞認識配列、および細胞から抽出された核酸とハイブリダイズする核酸捕捉配列を有し、かつ場合により第1の核酸増幅用プライマー配列を有していてもよい第1のプローブに抽出した核酸を捕捉させた後、捕捉された核酸を鋳型とする相補鎖合成のための酵素および基質をアレイデバイスに供給する工程、ならびに
     第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸を鋳型として合成された配列を含む核酸の末端にハイブリダイズする配列を有する第2のプローブと、
     第2の核酸増幅用プライマー配列、および第1のプローブに捕捉された核酸に含まれる既知配列にハイブリダイブする配列を有する第3のプローブと
    を同時にまたは連続してアレイデバイスに供給する工程
    を含む、前記方法。
    A method of simultaneously performing a comprehensive analysis of a cell population and a single cell analysis of individual cells included in the cell population,
    Multiple cell traps capable of capturing cells one by one, and a fixed first probe for capturing nucleic acid extracted from the cells captured in the cell trap, and corresponding to each cell trap Preparing an array device having a nucleic acid trap;
    A step of extracting nucleic acids by destroying cells captured by the nucleic acid trap;
    A first cell may have a cell recognition sequence different for each individual nucleic acid trap, and a nucleic acid capture sequence that hybridizes with a nucleic acid extracted from the cell, and optionally a first nucleic acid amplification primer sequence. A step of allowing the probe to capture the extracted nucleic acid, then supplying an enzyme and a substrate for complementary strand synthesis using the captured nucleic acid as a template to the array device, a second nucleic acid amplification primer sequence, and a first A second probe having a sequence that hybridizes to the end of the nucleic acid containing the sequence synthesized using the nucleic acid captured by the probe as a template;
    Supplying a second nucleic acid amplification primer sequence and a third probe having a sequence that hybridizes to a known sequence contained in the nucleic acid captured by the first probe to the array device simultaneously or sequentially. , Said method.
  9.  第1のプローブが、第1の核酸増幅用プライマー配列を有し、
     第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する工程をさらに含む、請求項8に記載の方法。
    The first probe has a first nucleic acid amplification primer sequence,
    9. The method according to claim 8, further comprising supplying a first nucleic acid amplification primer and a second nucleic acid amplification primer after supplying the second probe and the third probe.
  10.  第1のプローブが、第1の核酸増幅用プライマー配列を有さず、
     第2のプローブおよび第3のプローブの供給の後、第1の核酸増幅用プライマー配列と細胞認識配列とを有する第4のプローブを供給し、次いで第1の核酸増幅用プライマーおよび第2の核酸増幅用プライマーを供給する工程をさらに含む、請求項8に記載の方法。
    The first probe does not have the first nucleic acid amplification primer sequence,
    After supplying the second probe and the third probe, a fourth probe having a first nucleic acid amplification primer sequence and a cell recognition sequence is supplied, and then the first nucleic acid amplification primer and the second nucleic acid 9. The method according to claim 8, further comprising supplying an amplification primer.
  11.  第1のプローブに捕捉された核酸に含まれる既知配列が、該捕捉された核酸の5'末端から150~250塩基の位置に存在する、請求項8~10のいずれか1項に記載の方法。 The method according to any one of claims 8 to 10, wherein the known sequence contained in the nucleic acid captured by the first probe is present at a position of 150 to 250 bases from the 5 'end of the captured nucleic acid. .
  12.  第1のプローブが、核酸トラップに依存せず個々のプローブで異なる分子認識配列をさらに有する、請求項8~10のいずれか1項に記載の方法。 The method according to any one of claims 8 to 10, wherein the first probe further has a molecular recognition sequence that does not depend on the nucleic acid trap and is different for each probe.
  13.  第1のプローブの核酸捕捉配列がポリT配列であり、細胞から抽出され第1のプローブに捕捉される核酸がmRNAである、請求項8~10のいずれか1項に記載の方法。 The method according to any one of claims 8 to 10, wherein the nucleic acid capture sequence of the first probe is a poly-T sequence, and the nucleic acid extracted from the cell and captured by the first probe is mRNA.
  14.  第2のプローブがハイブリダイズする核酸の末端がポリA配列からなる、請求項8~10のいずれか1項に記載の方法。 The method according to any one of claims 8 to 10, wherein the end of the nucleic acid to which the second probe hybridizes comprises a poly A sequence.
  15.  アレイデバイスと試薬添加装置を有する請求項1~3のいずれか1項に記載の細胞解析装置、
     アレイデバイスの細胞トラップに捕捉された細胞を観察するためのモニタリング装置、
     アレイデバイスの各核酸トラップごとに異なる第1のプローブの配列情報、および試薬添加装置が供給するその他のプローブの配列情報を格納したメモリ装置、
     メモリ装置を参照して試薬添加装置を制御する制御装置、
     アレイデバイスから得られた核酸増幅産物を解析するシーケンサ、ならびに
     シーケンサから得られたデータを、必要に応じてメモリ装置を参照して解析する解析装置
    を有する、細胞解析システム。
    The cell analysis device according to any one of claims 1 to 3, comprising an array device and a reagent addition device,
    A monitoring device for observing cells captured in the cell trap of the array device,
    A memory device storing the sequence information of the first probe, which is different for each nucleic acid trap of the array device, and the sequence information of other probes supplied by the reagent addition device,
    A control device for controlling the reagent addition device with reference to the memory device;
    A cell analysis system comprising a sequencer for analyzing a nucleic acid amplification product obtained from an array device, and an analysis device for analyzing data obtained from the sequencer with reference to a memory device as necessary.
PCT/JP2014/073753 2014-09-09 2014-09-09 Cell analysis system and cell analysis method using same WO2016038670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073753 WO2016038670A1 (en) 2014-09-09 2014-09-09 Cell analysis system and cell analysis method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073753 WO2016038670A1 (en) 2014-09-09 2014-09-09 Cell analysis system and cell analysis method using same

Publications (1)

Publication Number Publication Date
WO2016038670A1 true WO2016038670A1 (en) 2016-03-17

Family

ID=55458463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073753 WO2016038670A1 (en) 2014-09-09 2014-09-09 Cell analysis system and cell analysis method using same

Country Status (1)

Country Link
WO (1) WO2016038670A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168493A1 (en) * 2016-03-28 2017-10-05 株式会社日立製作所 System for capturing single cell-derived biomolecules
WO2018042725A1 (en) * 2016-09-05 2018-03-08 株式会社日立製作所 System for analyzing single cell
WO2018105608A1 (en) * 2016-12-07 2018-06-14 東京応化工業株式会社 Particle capture device
WO2018134907A1 (en) * 2017-01-18 2018-07-26 株式会社日立ハイテクノロジーズ Device and method for extracting multiple biomolecules from single cell
WO2018159008A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Single cell analyzer with washing function
WO2020012816A1 (en) * 2018-07-13 2020-01-16 株式会社日立ハイテクノロジーズ Cell analysis method
JP2021505157A (en) * 2017-12-07 2021-02-18 マサチューセッツ インスティテュート オブ テクノロジー Single cell analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145431A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 METHOD FOR AMPLIFYING cDNA DERIVED FROM TRACE AMOUNT OF SAMPLE
WO2014020657A1 (en) * 2012-07-30 2014-02-06 株式会社日立製作所 Tag-sequence-attached two-dimensional cdna library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145431A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 METHOD FOR AMPLIFYING cDNA DERIVED FROM TRACE AMOUNT OF SAMPLE
WO2014020657A1 (en) * 2012-07-30 2014-02-06 株式会社日立製作所 Tag-sequence-attached two-dimensional cdna library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168493A1 (en) * 2016-03-28 2017-10-05 株式会社日立製作所 System for capturing single cell-derived biomolecules
US11446662B2 (en) 2016-03-28 2022-09-20 Hitachi, Ltd. System for capturing single cell-derived biomolecules
JPWO2017168493A1 (en) * 2016-03-28 2018-07-26 株式会社日立製作所 Single-cell biomolecule capture system
WO2018042725A1 (en) * 2016-09-05 2018-03-08 株式会社日立製作所 System for analyzing single cell
JP2018038285A (en) * 2016-09-05 2018-03-15 株式会社日立製作所 System for single cell analysis
JPWO2018105608A1 (en) * 2016-12-07 2019-10-24 東京応化工業株式会社 Particle trapping device
US11384331B2 (en) 2016-12-07 2022-07-12 Tokyo Ohka Kogyo Co., Ltd. Particle capture device
JP7118009B2 (en) 2016-12-07 2022-08-15 東京応化工業株式会社 Particle trapping device and method for uniformly trapping particles
WO2018105608A1 (en) * 2016-12-07 2018-06-14 東京応化工業株式会社 Particle capture device
WO2018134907A1 (en) * 2017-01-18 2018-07-26 株式会社日立ハイテクノロジーズ Device and method for extracting multiple biomolecules from single cell
WO2018159008A1 (en) * 2017-03-02 2018-09-07 株式会社日立製作所 Single cell analyzer with washing function
JP2018143135A (en) * 2017-03-02 2018-09-20 株式会社日立製作所 Single cell analyzer with washing function
JP2021505157A (en) * 2017-12-07 2021-02-18 マサチューセッツ インスティテュート オブ テクノロジー Single cell analysis
US11767557B2 (en) 2017-12-07 2023-09-26 Massachusetts Institute Of Technology Single cell analyses
WO2020012816A1 (en) * 2018-07-13 2020-01-16 株式会社日立ハイテクノロジーズ Cell analysis method
JP2020010608A (en) * 2018-07-13 2020-01-23 株式会社日立ハイテクノロジーズ Cell analysis method
JP6998841B2 (en) 2018-07-13 2022-02-10 株式会社日立ハイテク Cell analysis method

Similar Documents

Publication Publication Date Title
US11680286B2 (en) Tag-sequence-attached two-dimensional cDNA library device, and gene expression analysis method and gene expression analysis apparatus each utilizing same
WO2016038670A1 (en) Cell analysis system and cell analysis method using same
JP6093436B2 (en) Two-dimensional cell array device and apparatus for gene quantification and sequence analysis
JP6875998B2 (en) Spatial mapping of molecular profiles of biological tissue samples
CN108796058B (en) Methods and products for local or spatial detection of nucleic acids in tissue samples
JP6395925B2 (en) Genetic analysis system
US11512344B2 (en) Consecutive hybridization for multiplexed analysis of biological samples
CN105209639B (en) Method for amplifying nucleic acid on solid phase carrier
JP6556856B2 (en) Analytical method and analytical device
JP6093498B2 (en) Nucleic acid amplification method
CN116391046A (en) Method for nucleic acid detection by oligo-hybridization and PCR-based amplification
JP7049103B2 (en) Comprehensive 3'end gene expression analysis method for single cells
US9862993B2 (en) Genetic analysis system
JP6244439B2 (en) Two-dimensional cell array device and apparatus for gene quantification and sequence analysis
KR20210039289A (en) Methods and apparatus for extracting nucleic acids maintaining two-dimensional spatial information from samples containing nucleic acids, and method and kit for spatial sequencing analysis using the same
US11299727B2 (en) System for analyzing single cell
CN107446953A (en) A kind of method using PCR primer restraint insect gene expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP