WO2016124842A1 - Adsorbants zeolithiques de haute surface externe et leurs utilisations - Google Patents

Adsorbants zeolithiques de haute surface externe et leurs utilisations Download PDF

Info

Publication number
WO2016124842A1
WO2016124842A1 PCT/FR2016/050197 FR2016050197W WO2016124842A1 WO 2016124842 A1 WO2016124842 A1 WO 2016124842A1 FR 2016050197 W FR2016050197 W FR 2016050197W WO 2016124842 A1 WO2016124842 A1 WO 2016124842A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent material
zeolite
zeolitic adsorbent
total weight
zeolitic
Prior art date
Application number
PCT/FR2016/050197
Other languages
English (en)
Inventor
Cécile LUTZ
Ludivine Bouvier
Serge Nicolas
Jullian VITTENET
Sylvie Szendrovics
Quitterie Persillon
Original Assignee
Ceca S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112017015583-4A priority Critical patent/BR112017015583A2/pt
Priority to CA2974765A priority patent/CA2974765C/fr
Priority to JP2017540722A priority patent/JP6876609B2/ja
Priority to EA201791752A priority patent/EA037828B1/ru
Priority to EP16705247.1A priority patent/EP3253483A1/fr
Priority to CN201680019844.8A priority patent/CN107810041A/zh
Priority to MX2017009826A priority patent/MX2017009826A/es
Priority to KR1020177024578A priority patent/KR102008079B1/ko
Application filed by Ceca S.A. filed Critical Ceca S.A.
Priority to AU2016214208A priority patent/AU2016214208B2/en
Priority to CN202310616246.0A priority patent/CN116440858A/zh
Priority to US15/546,847 priority patent/US10888837B2/en
Publication of WO2016124842A1 publication Critical patent/WO2016124842A1/fr
Priority to SA517382024A priority patent/SA517382024B1/ar
Priority to ZA2017/05338A priority patent/ZA201705338B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0473Rapid pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/143Injection, e.g. in a reactor or a fuel stream during fuel production of fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/64Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end by pressure-swing adsorption [PSA] at the hot end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/40Separating high boiling, i.e. less volatile components from air, e.g. CO2, hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the use of zeolite adsorbent materials in the form of agglomerates comprising at least one faujasite type zeolite, said adsorbents having a large external surface characterized by nitrogen adsorption, and a high microporous volume, for separation in the gas phase, in particular in pressure-modulated processes, either of the PSA (Pressure Swing Adsorption) type or of the VSA (Vacuum Swing Adsorption) type; English language), either of the VPSA type (hybrid process of the two previous ones), or of the RPSA type ("Rapid Pressure Swing Adsorption" in English language), in temperature modulated processes of the TSA type (temperature-modulated adsorption or "Temperature Swing”). Adsorption "in English language) and / or in processes modulated in pressure and temperature type PTSA (Pressure and T modulated adsorption "Temperature and Temperature Swing Adsorption").
  • PSA Pressure Swing Adsorption
  • VSA Va
  • the present invention also relates to a gas separation and purification process using said zeolite adsorbents having a large external surface.
  • the invention also relates to zeolitic adsorbent materials used in the context of the present invention having a large external surface and comprising lithium and / or calcium and / or sodium.
  • the first method proposed by the literature consists in reducing the size of the adsorbent particles. It is generally accepted that this has the effect of allowing a faster diffusion of the gases in the macroporous network, the material transfer kinetic constant being inversely proportional to the square of the particle diameter (or equivalent dimension, according to the morphology of the adsorbents).
  • the document WO2008 / 152319 describes the preparation, by atomization, of mechanically resistant adsorbents of small sizes, which are for example used in portable medical oxygen concentrators, as shown in the document US2013 / 0216627.
  • the main drawback of the reduction in the size of the adsorbent particles is the increase in the pressure losses in the adsorbers and the significant energy consumption associated therewith. This is particularly unacceptable in industrial gas production adsorption processes.
  • the second method is to improve the ability to intra-granular transfer adsorbents, without changing their size.
  • International Applications WO99 / 43415, WO99 / 43416, WO99 / 43418, WO2002 / 049742, WO2003 / 004135 describe adsorbents with improved kinetics obtained by zeolitic active material conversion of the agglomeration binder and the associated gas separation processes, more effective than with conventional particles.
  • WO2008 / 051904 proposes a process for manufacturing by extrusion / spheronization of zeolite adsorbent beads based on LiX zeolite with improved diffusion.
  • the document WO2008 / 109882 describes the preparation of adsorbents with high mechanical strength and improved mass transfer from LiX or LiLSX zeolites and less than 15% of silicic binder introduced in colloidal form.
  • EP1240939 proposes to select for uses in the PSA or VSA process adsorbents having a ratio between their kinetic constants for transporting the adsorbable compounds in the gas phase and in the solid phase.
  • US6328786 defines a minimum threshold of mechanical strength and a kinetic coefficient above which adsorbents are preferred for use in the PSA process.
  • EP1048345 discloses high macroporosity adsorbents made by a spheronization and lyophilization technique.
  • a third method is to improve access to the adsorbent using different shaping geometries combining both reduced thicknesses of active material and fluid passage sections sufficiently wide to allow a flow with limited pressure losses.
  • Adsorbent sheets and fabrics, monoliths of the honeycomb type, foams or others may be mentioned.
  • the document FR2794993 proposes to use heterogeneous beads, with a thin adsorbent peripheral layer encapsulating an inert core: the diffusion distance is reduced, without increasing the loss of charge.
  • This system has the defect of being of low volume efficiency: a substantial part of the adsorber is occupied by inert material in the sense of adsorption, which has a significant impact in terms of the dimensions of the installations and therefore investments, or even weight, which can be inconvenient, in the case of portable purification / separation apparatus, such as for example the medical oxygen concentrators.
  • zeolite adsorbents useful for the separation and purification of gases having good transfer properties that do not have the disadvantages associated with the use of the adsorbents of the prior art.
  • a zeolitic adsorbent having greater adsorption capacities and better adsorption / desorption kinetics, allowing in particular a more intensive use of processes, including PSA processes, TSA or VPSA.
  • the invention relates to the use for the separation of gas, of at least one zeolitic adsorbent material comprising at least one zeolite of the FAU type, said adsorbent having:
  • An external surface measured by nitrogen adsorption and expressed in m 2 per gram of adsorbent, greater than 20 m 2 . g -1 , and preferably between 20 m 2 . g -1 and 300 m 2 . g -1 , and more preferably between 30 m 2 . g -1 and 250 m 2 . g -1 and so even more preferred between 40 m 2 . g "1 and 200 m 2 g -1 , and especially between 50 m 2 . g "1 and 200 m 2 .g-
  • a non-zeolite phase content such that 0 ⁇ PNZ ⁇ 30%, preferably 3% ⁇ PNZ ⁇ 25%, more preferably 3% ⁇ PNZ ⁇ 20%, advantageously 5% ⁇ PNZ ⁇ 20%, more preferably 7% ⁇ PNZ ⁇ 18%, measured by XRD (X-Ray Diffraction), by weight relative to the total weight of the adsorbent,
  • Vmeso mesoporous volume
  • 0.08 cm 3 . 1 to 0.25 cm 3 g -1 preferably 0.08 cm 3 . g -1 and 0.22 cm 3 . g -1 , and more preferably between 0.09 cm 3 . g -1 and 0.20 cm 3 . g -1 , more preferably between 0.10 cm 3 . g -1 and 0.20 cm 3 . g -1 , limits included,
  • the term "FAU type zeolite” designates a faujasite type zeolite, advantageously a mesoporous faujasite zeolite chosen from LSX type zeolites, MSX, X, Y and mixtures thereof.
  • the zeolitic adsorbent material may also comprise one or more other zeolites chosen from zeolites of type FAU (LSX, MSX, X, Y), type LTA, type CHA (Chabazite). , of the HEU type (Clinoptilolite), and mixtures of two or more of them, and more preferably of the zeolites LSX, MSX, X, and mixtures of two or more of them.
  • zeolites may be present in minor amounts in the adsorbents of the invention or used in the process of the invention. These zeolites can be considered as pollutants, in particular because they do not contribute to the adsorption of the gases, in other words they are inert with respect to the adsorption of the gases. These zeolites include, by way of nonlimiting examples, sodalite, hydroxysodalite, zeolite P and other zeolites inert with respect to the adsorption of gases.
  • the different types of zeolites present in the zeolite adsorbent material are determined by XRD.
  • the amount of zeolites is also measured by XRD and is expressed in% by weight relative to the total weight of the adsorbent material.
  • non-zeolite phase denotes any phase present in the adsorbent material, other than the zeolite (s) defined above, referred to as “zeolite phase” or "PZ".
  • % PNZ represents the weight percentage of PNZ and% PZ the weight percentage of zeolitic phase, relative to the total weight of the adsorbent.
  • adsorbent exchanged at least 95% sodium means that at least 95% of the cationic exchangeable sites of the zeolite phase are occupied by sodium cations.
  • This zeolitic adsorbent material exchanged with at least 95% sodium can be obtained and is preferably obtained according to the following protocol: the zeolitic adsorbent material to be exchanged with sodium is introduced into a solution of sodium chloride at 1 mole of NaCl per liter, at 90 ° C., for 3 hours, with a liquid-to-solid ratio of 10 ml / g. The operation is repeated n times, n being at least 1, preferably at least 2, preferably at least 3, more preferably at least 4.
  • the solids from the exchange operations n-1 and n are successively four times washed by immersion in water at 20 mL.g -1 to remove excess salt, and then dried for 12 hours at 80 ° C under air, before being analyzed by X-ray fluorescence. If the weight percentage of sodium oxide of the zeolite adsorbent material, between the exchange operations n-1 and n, is stable at ⁇ 1%, said adsorbent material zeolitic is considered to be "in its form at least 95% exchanged with sodium". If necessary, additional exchanges are carried out as described above until a stability of the weight percentage of sodium oxide of ⁇ 1% is obtained.
  • the zeolitic adsorbent material can already be intrinsically in its sodium-exchanged form after the synthesis step when the latter is carried out exclusively in sodium alkaline medium.
  • the Si / Al atomic ratio of the zeolitic adsorbent material is measured by elemental chemical analysis in X-ray fluorescence, a technique well known to those skilled in the art and explained further in the description. If necessary, the sodium exchange is carried out before analysis according to the detailed procedure above.
  • Vmicro is meant the microporous volume of the zeolitic adsorbent material whose measurement technique is explained below.
  • Vmeso is meant the mesoporous volume of the zeolite adsorbent material whose measurement technique is explained below.
  • said at least one zeolitic adsorbent material that can be used in the context of the present invention has a ratio (Vmicro-VmésoyVmicro between -0.5 and 1.0, terminals not included, preferably between -0.1 and 0.9, terminals not included, preferably between 0 and 0.9, terminals not included, more preferably between 0.2 and 0.8, terminals not included, more preferably between 0.4 and 0.8, bounds not included, preferably between 0.6 and 0.8, limits not included, where Vmicro is the microporous volume measured by the Dubinin-Raduskevitch method and Vmeso is the mesoporous volume determined by the Barrett-method.
  • BJH Joyner-Halenda
  • said at least one zeolitic adsorbent material has a microporous volume (Vmicro, or Dubinin-Raduskevitch volume), expressed in cm 3 per gram of adsorbent material, of between 0.210 cm 3 . 1 and 0.360 cm 3 .g -1 , preferably between 0.230 cm 3 .g -1 and 0.350 cm 3 .g -1 , preferably between 0.240 cm 3 .g -1 and 0.350 cm 3 . g "1 , more preferably 0.250 cm 3 .g -1 and 0.350 cm 3 . g "1 , measured on the adsorbent material exchanged with at least 95% sodium.
  • Vmicro microporous volume
  • the total volume of macro- and meso-pores zeolitic adsorbent materials used in the context of the present invention, measured by mercury intrusion, is advantageously between 0.15 cm 3 . g "1 and 0.5 cm 3, g " 1 , preferably between 0.20 cm 3 . g "1 and 0.40 cm 3 g -1 and very preferably between 0.20 cm 3 . g "1 and 0.35 cm 3 .g -1 , the measurements being made on the adsorbent material exchanged at least 95% sodium.
  • the volume fraction of the macropores of the zeolitic adsorbent material that may be used in the context of the present invention is preferably between 0.2 and 1.0 of the total volume of the macro- and meso-pores, very preferably between 0.4 and 0.8, and even more preferably between 0.45 and 0.65 inclusive, the measurements being made on the zeolite adsorbent material exchanged at least 95% sodium.
  • zeolitic adsorbent materials that can be used in the context of the present invention are either known or can be prepared from known procedures, or are new and, as such, form an integral part of the present invention.
  • the use according to the invention uses a zeolitic adsorbent material comprising at least one mesoporous FAU type zeolite.
  • mesoporous is meant a zeolite which presents, jointly to the microporosity inherent in the structure of the zeolite, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a transmission electron microscope (TEM or "TEM” in English), as described for example in US7785563.
  • said zeolite FAU zeolite adsorbent material is a mesoporous FAU zeolite, that is to say a zeolite having an outer surface, defined by the t-plot method described below, between 40 m 2 . g -1 and 400 m 2 . g -1 , preferably between 60 m 2 . g -1 and 200 m 2 . g -1 , limits included.
  • a "non-mesoporous zeolite” is a zeolite possibly having an external surface, defined by the t-plot method described below, strictly less than 40 m 2 . g -1 .
  • the zeolitic adsorbent materials that can be used in the context of the present invention comprise at least one FAU-type zeolite, said at least one FAU-type zeolite has a Si / Al ratio corresponding to the 1 ⁇ Si / 1 inequation.
  • AI ⁇ 1.5, preferably 1 ⁇ Si / Al ⁇ 1.4, and more preferably an Si / Al atomic ratio equal to 1.00 +/- 0.05, said Si / Al ratio being measured by Resonance Nuclear magnetic (NMR) solid silicon 29 ( 29 Si NMR), according to techniques well known to those skilled in the art.
  • NMR Resonance Nuclear magnetic
  • the Si / Al ratio of each zeolite present (s) in the adsorbent is also measured by solid NMR.
  • the zeolite FAU zeolite adsorbent material is in the form of crystals whose number average diameter, measured by scanning electron microscope (SEM), is less than 20 ⁇ , preferably between 0.1 ⁇ and 20 ⁇ , preferably between 0.1 and 10 ⁇ , preferably between 0.5 ⁇ and 10 ⁇ , more preferably between 0.5 ⁇ and 5 ⁇ , terminals included.
  • SEM scanning electron microscope
  • said zeolitic adsorbent material comprises at least one cation chosen from the ions of groups IA, II A, NIA, IB, MB, IIIB of the periodic classification, the trivalent ions of the series. lanthanides or rare earths, zinc ion (II), silver ion (I), cupric ion (II), chromium ion (III), ferric ion (III), ion ammonium and / or hydronium ion, the preferred ions being calcium, lithium, sodium, potassium, barium, cesium, strontium, zinc and rare earth ions and more preferably the sodium, calcium and lithium ions.
  • U2O content between 0 and 12% by weight relative to the total weight of the zeolite adsorbent material, preferably between 3 and 12% by weight relative to the total weight of the zeolitic adsorbent material, preferably between 5 and 12% by weight relative to the total weight of the zeolitic adsorbent material, and preferably between 6.5 and 12% by weight relative to the total weight of the zeolitic adsorbent material, limits included,
  • Na 2 O content of between 0 and 22% by weight relative to the total weight of the zeolite adsorbent material preferably between 0 and 19% by weight relative to the total weight of the zeolitic adsorbent material, preferably between 0 and 15% by weight. relative to the total weight of the zeolitic adsorbent material, preferably between 0 and 10% by weight relative to the total weight of the zeolitic adsorbent material, and very preferably between 0 and 7% by weight relative to the total weight of the zeolitic adsorbent material, advantageously between 0 and 2% by weight relative to the total weight of the zeolite adsorbent material included,
  • the zeolitic adsorbent material comprises at least one of the three metals chosen from lithium, sodium and calcium,
  • Said zeolitic adsorbent material may also comprise at least one rare earth, chosen from lanthanides and actinides, preferably from lanthanides, in a content generally ranging between 0 and 10%, preferably between 0 and 7%,
  • Said zeolitic adsorbent material may also comprise, in small amounts (% expressed as oxide, less than 5%, preferably less than 2%), of one or more other cations other than lithium, sodium and calcium, for example, and preferably selected from potassium, barium, strontium, cesium, transition metals such as silver, and others.
  • the zeolitic adsorbent materials described above are particularly useful adapted and effective in the processes for separation in the gas phase, in particular in processes modulated in pressure and / or temperature, or PSA type, either of the VSA type, or of the VPSA type, or of the RPSA type, or of the TSA type type, and / or in PTSA type processes.
  • the present invention relates to the use of at least one zeolitic adsorbent material, comprising at least one FAU type zeolite, such as defined above, for gas separation.
  • gas separation is meant purifications, pre-purifications, eliminations, and other separations of one or more gaseous compounds present in a mixture of one or more gaseous compounds.
  • the zeolitic adsorbent materials that can be used for gas purification are materials that generate only a small amount of pressure drop or acceptable pressure drop for the aforementioned uses.
  • agglomerated and shaped zeolite adsorbent materials made according to all techniques known to those skilled in the art are preferred, such as extrusion, compacting, agglomeration on a granulator plate, granulator drum, atomization and the like.
  • the proportions of agglomeration binder and zeolites used are typically those of the prior art, that is to say between 5 parts and 30 parts by weight of binder for 95 parts to 70 parts by weight of zeolite .
  • the zeolitic adsorbent material that can be used in the context of the present invention generally has a mean volume diameter, or an average length (greater dimension when is not spherical), less than or equal to 7 mm, preferably between 0.05 mm and 7 mm, more preferably between 0.2 mm and 5 mm and more preferably between 0.2 mm and 2 mm, 5 mm.
  • zeolitic adsorbent materials useful in the context of the present invention also have mechanical properties that are particularly suitable for the applications for which they are intended, that is to say:
  • a bed crush strength measured according to the ASTM 7084-04 standard of between 0.5 MPa and 3 MPa, preferably between 0.75 MPa and 2.5 MPa, for a material of volume diameter medium (D50) or length (larger dimension when material is not spherical), less than 1 mm, inclusive
  • a grain crush strength measured according to ASTM D 4179 (201 1) and ASTM D 6175 (2013), of between 0.5 daN and 30 daN, preferably of between 1 daN and 20 daN, for a material of medium volume diameter (D50) or a length (larger dimension when the material is not spherical), greater than or equal to 1 mm, inclusive.
  • the use according to the invention uses at least one zeolitic adsorbent material having a high adsorption capacity, that is to say a microporous volume volume expressed in cm. 3 . cm -3 of adsorbent material exchanged at least 95% sodium, said microporous volume volume being greater than 0.10 cm 3 . cm -3 , preferably greater than 0.12 cm 3 . cm -3 , more preferably greater than 0.15 cm 3 . cm -3 , more preferably greater than 0.16 cm 3 . cm 3 , more preferably greater than 0.18 cm 3 cm -1 , most preferably greater than 0.20 cm 3 . cm "3 .
  • the use according to the invention preferably implements at least one zeolitic adsorbent material having a loss on ignition, measured at 950 ° C according to standard NF EN 196-2, included between 0 and 5%, preferably between 0 and 3% by weight.
  • the present invention relates to the use of at least one zeolite adsorbent material as just defined for the purification of natural gas, in particular for the removal of impurities and preferably for the removal of impurities. elimination of carbon dioxide and / or mercaptans, present in natural gas, and especially according to adsorption processes modulated in pressure and / or temperature (PSA or TSA or PTSA), preferably TSA or PTSA.
  • PSA or TSA or PTSA pressure and / or temperature
  • the adsorbent materials comprising a FAU zeolite, preferably mesoporous, of a type chosen from NaX and CaX, and mixtures thereof.
  • a zeolitic adsorbent material is preferred, the volume average diameter (or the greatest length) of which is between 0.3 mm and 7.0 mm, preferably between 0.8 mm and 5 mm. , 0 mm, and more preferably between 2.0 mm and 5.0 mm, inclusive.
  • the present invention relates to the use of at least one zeolite adsorbent material as just defined for the non-cryogenic separation of industrial gases and gases from the air, and in particular for nitrogen adsorption in air gas separation, in particular for the enrichment of oxygen in the air.
  • This use is particularly suitable in pressure swing adsorption devices (PSA) according to very short cycles (typically between 0.1 seconds and 10 seconds, preferably between 0.1 seconds and 5 seconds), and especially in respiratory assistance oxygen concentrators, as described for example in the application WO2008 / 152319.
  • PSA pressure swing adsorption devices
  • the zeolitic adsorbent material comprising at least one FAU zeolite is furthermore preferred. preferably mesoporous, of the type selected from NaX, LiX, CaX, LiCaX, NaLSX, LiLSX, CaLSX, LiCaLSX, and mixtures of two or more thereof, said material zeolitic adsorbent comprising at least one alkali metal or alkaline earth metal selected from sodium, calcium, lithium, mixtures of two or three of them in all proportions, whose contents expressed in oxides are as defined above.
  • the use described above is particularly suitable for the separation of nitrogen for oxygen enrichment, and especially for use in oxygen concentrators respiratory assistance. It is preferred in these cases to use at least one zeolitic adsorbent material comprising sodium, calcium and / or lithium, alone or as a mixture, and it is particularly preferred for these types of applications to use a zeolitic adsorbent material comprising at least one FAU zeolite, preferably mesoporous, of a type chosen from NaX, LiX, CaX, LiCaX, NaLSX, LiLSX, CaLSX, LiCaLSX, and mixtures of two or more of them, preferably from CaLSX, LiLSX, LiCaLSX, preferably still at least one LiLSX zeolite, preferably mesoporous LiLSX.
  • FAU zeolite preferably mesoporous
  • a zeolitic adsorbent material in the form of beads having a volume average diameter of between 0.05 mm and 5 mm is preferred, preferably between 0.05 mm and 3.0 mm, more preferably between 0.05 mm and 2.0 mm.
  • a zeolitic adsorbent material in the form of beads having a mean volume diameter of between 0.05 mm is preferred. and 1 mm, preferably between 0.1 mm and 0.7 mm, more preferably between 0.3 mm and 0.6 mm.
  • the invention relates to the use of at least one zeolite adsorbent material as just defined for the purification of synthesis gas.
  • a synthesis gas purification process is described in patent EP1312406.
  • the synthesis gases referred to herein are in particular synthesis gases based on hydrogen and carbon monoxide and / or hydrogen and nitrogen, and more particularly mixtures of hydrogen and carbon monoxide and / or hydrogen and nitrogen, these synthesis gases may further contain, or be polluted by, carbon dioxide and one or more other possible impurities, such as for example and without limitation one or more impurities selected from nitrogen , carbon monoxide, oxygen, ammonia, hydrocarbons and oxygenated derivatives, in particular alkanes, in particular methane, alcohols, in particular methanol, and others.
  • the use according to the present invention is thus particularly suitable for the removal of nitrogen, carbon monoxide, carbon dioxide, methane, and other impurities, preferably by adsorption methods modulated by pressure (PSA), for the production of hydrogen.
  • PSA adsorption methods modulated by pressure
  • the adsorbent materials comprising a FAU zeolite, preferably mesoporous, of the type chosen from NaX, LiX, LiLSX, CaX, CaLSX, LiCaX and LiCaLSX, preferably chosen from among NaX, NaLSX and LiCaLSX, are preferred. mixtures of two or more of them.
  • the invention also relates to the use of at least one zeolite adsorbent material as just defined for air purification cryogenic units ("Air Separation Units").
  • Air Separation Units In the English language or "ASU"), in particular for the removal of hydrocarbons, carbon dioxide and nitrogen oxides, upstream of the cryogenic distillation units.
  • ASU Air Separation Unit
  • zeolitic adsorbent materials comprising a FAU zeolite, preferably mesoporous, of types selected from NaX, are preferred. NaLSX, CaX, CaLSX, and mixtures of two or more of them.
  • a zeolitic adsorbent material having a volume average diameter (or the greatest length) of between 0.3 mm and 7.0 mm, and more preferably between 0.5 mm, is preferred. and 5.0 mm, terminals included.
  • the invention relates to a zeolitic adsorbent material having:
  • An Si / Al ratio of said adsorbent such that 1 ⁇ Si / Al ⁇ 2.5, preferably 1 ⁇ Si / Al ⁇ 2, more preferably 1 ⁇ Si / Al ⁇ 1, 8, and more preferably between 1 ⁇ If / AI ⁇ 1, 6,
  • Vmicro-Vmeso • ratio (Vmicro-Vmeso) / Vmicro between -0.5 and 1.0, terminals not included, preferably -0.1 and 0.9, terminals not included, preferably 0 and 0.9, terminals not included, more preferably between 0.2 and 0.8, terminals not included, more preferably between 0.4 and 0.8, terminals not included, preferably between 0.6 and 0.8, terminals not included, where Vmicro is measured by the Dubinin-Raduskevitch method and Vmeso is measured by the BJH method, and
  • a non-zeolite phase content such that 0 ⁇ PNZ ⁇ 30%, preferably 3% ⁇ PNZ ⁇ 25%, more preferably 3% ⁇ PNZ ⁇ 20%, advantageously 5% ⁇ PNZ ⁇ 20%, better still 7% ⁇ PNZ ⁇ 18%, measured by XRD, by weight relative to the total weight of the zeolitic adsorbent material,
  • the zeolitic adsorbent material of the invention as it has just been defined is a new material in that it results from the agglomeration, with a binder as written below, of at least one zeolite FAU mesoporous, where the term "mesoporous", already defined previously, designates a zeolite which, together with the microporosity inherent in the structure of the zeolite, presents internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a microscope electronic transmission (TEM or "TEM" in English), as described for example in US7785563.
  • TEM microscope electronic transmission
  • the zeolitic adsorbent material comprises at least one mesoporous FAU zeolite, that is to say a zeolite having an external surface, defined by the t-plot method described below, of between 40 m 2 . g “1 and 400 m 2, g " 1 , preferably between 60 m 2 . g “1 and 200 m 2, g " 1 , inclusive terminals.
  • the zeolitic adsorbent material according to the invention comprises at least one metal chosen from lithium, sodium, calcium and mixtures of two or more of these metals, preferably two metals chosen from lithium and sodium. , calcium, preferably sodium and lithium or sodium and calcium or sodium, lithium and calcium. Zeolite adsorbent materials in which the barium oxide content is less than 0.5%, preferably less than 0.3%, more preferably less than 0.1%, by weight relative to the total weight, are furthermore preferred. of the material.
  • the zeolitic adsorbent material according to the invention may be in any form known to those skilled in the art, and preferably in simple geometric shapes, that is to say in granular forms, for example of the bead type. or sticks, that is to say in spherical or cylindrical forms, respectively.
  • Such simple shapes are particularly well suited because they are easy to implement especially because of their shapes and sizes compatible with existing technologies.
  • these simple forms make the processes used energy-efficient, the zeolitic adsorbent material generating low pressure losses, and having improved transfer properties.
  • the zeolitic adsorbent material according to the invention may be prepared according to any method known to those skilled in the art, and in particular, and preferably, from the method of preparation of mesoporous FAU as described for example by W. Schwieger (Angew Chem Int.Ed., (2012), 51, 1962-1965) and by agglomerating the crystals obtained with at least one organic or mineral binder, preferably mineral, more preferably a binder selected from clays, zeolitizable or not, and in particular among kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sepiolites, montmorillonites, bentonites, illites and metakaolins, as well as mixtures of two or more of these clays, in all proportions.
  • organic or mineral binder preferably mineral, more preferably a binder selected from clays, zeolitizable or not, and in particular among kaolins, kaolin
  • Agglomeration and shaping can be carried out according to all the techniques known to those skilled in the art, such as extrusion, compaction, agglomeration on granulator plate, granulator drum, atomization and others. These different techniques have the advantage of allowing the preparation of adsorbent materials according to the invention having the sizes and shapes previously described and particularly well suited to the treatment of gases.
  • agglomeration binder for example clays, as indicated above
  • zeolite s
  • the proportions of agglomeration binder (for example clays, as indicated above) and of zeolite (s) used for the preparation are typically those of the prior art, and vary according to the desired PNZ content and the degree of zeolitization of the binder. These proportions are easily calculable by those skilled in the art of zeolite agglomerate synthesis.
  • the agglomerates of the zeolite adsorbent materials whether in the form of beads, extrudates or the like, generally have a mean volume diameter, or an average length (larger dimension when they are not spherical), less than or equal to 7 mm, preferably between 0.05 mm and 7 mm, more preferably between 0.2 mm and 5 mm and more preferably between 0.2 mm and 2.5 mm.
  • the process for preparing the zeolite adsorbent materials according to the invention is easily adaptable from the preparation processes known to those skilled in the art, as already indicated, the implementation of at least one mesoporous FAU zeolite not modifying These processes are not substantially known, which means that the preparation process is an easy, fast and inexpensive implementation process and is therefore easy to industrialize with a minimum of steps.
  • the zeolitic adsorbent material of the invention preferably comprises at the same time macro-pores, mesopores and micropores.
  • macro-pores is meant pores whose opening is greater than 50 nm, preferably between 50 nm and 400 nm.
  • meso-pores is meant pores whose opening is between 2 nm and 50 nm, terminals not included.
  • micro-pores is meant pores whose opening is less than 2 nm.
  • the zeolitic adsorbent material according to the present invention has a microporous volume (Dubinin-Raduskevitch volume), expressed in cm 3 per gram of zeolitic adsorbent material, of between 0.210 cm 3 . g -1 and 0.360 cm 3 . g -1 , preferably between 0.230 cm 3 . g -1 and 0.350 cm 3 . g -1 , more preferably between 0.240 cm 3 . g -1 and 0.350 cm 3 . g -1 , advantageously between 0.250 cm 3 . g -1 and 0.350 cm 3 . g -1 , said microporous volume being measured on the zeolite adsorbent material exchanged at least 95% sodium.
  • a microporous volume Dubinin-Raduskevitch volume
  • the total volume of the macro- and meso-pores of the zeolite adsorbent materials according to the invention, measured by mercury intrusion, is advantageously between 0.15 cm 3 . g -1 and 0.5 cm 3 . g -1 , preferably between 0.20 cm 3 . g -1 and 0.40 cm 3 . g -1 and very preferably between 0.20 cm 3 . g -1 and 0.35 cm 3 . g -1 , the measurements being made on the adsorbent material exchanged at least 95% sodium.
  • the volume fraction of the macropores of the zeolite adsorbent material is preferably between 0.2 and 1.0 of the total volume of the macro- and meso-pores, very preferably between 0.4 and 0.8, and even more preferably between 0.45 and 0.65 inclusive, the measurements being made on the zeolite adsorbent material exchanged at least 95% sodium.
  • the size of the FAU-type zeolite crystals used to prepare the zeolite adsorbent material of the invention, as well as the size of the FAU-type zeolite elements in the zeolitic adsorbent material, are measured by observation under a scanning electron microscope. (SEM).
  • the mean diameter of the FAU type zeolite crystals is between 0.1 ⁇ and 20 ⁇ , preferably between 0.5 ⁇ and 20 ⁇ , and more preferably between 0.5 ⁇ and 10 ⁇ .
  • the observation SEM also makes it possible to confirm the presence of non-zeolitic phase comprising, for example, residual binder (not converted during the possible zeolitization step) or any other amorphous phase in the agglomerates.
  • the zeolitic adsorbent material according to the invention has an external surface, measured by nitrogen adsorption and expressed in m 2 per gram of adsorbent, greater than 20 m 2 . g -1 , and preferably between 20 m 2 . g -1 and 300 m 2 . g -1 , and more preferably between 30 m 2 . g -1 and 250 m 2 . g -1 and more preferably between 40 m 2 . g -1 and 200 m 2 . g -1 , and especially between 50 m 2 . g -1 and 200 m 2 . g -1 measurements being made on the zeolite adsorbent material exchanged at least 95% sodium.
  • the zeolitic adsorbent material according to the invention has a high adsorption volume capacity, that is to say a microporous volume volume expressed in cm 3 . cm -3 of zeolitic adsorbent material exchanged at least 95% sodium, said microporous volume volume being greater than 0.10 cm 3 . cm -3 , preferably greater than 0.12 cm 3 . cm “3 , more preferably greater than 0.15 cm 3 cm -1 , more preferably greater than 0.16 cm 3 . cm 3 , more preferably greater than 0.18 cm 3 cm -1 , most preferably greater than 0.20 cm 3 . cm "3 .
  • the zeolitic adsorbent material according to the invention comprises at least one mesoporous FAU zeolite as defined above, said at least one zeolite having a Si / Al ratio, such that 1 ⁇ Si / Al ⁇ 1, 5, preferably 1 ⁇ Si / Al ⁇ 1, 4.
  • the Si / Al ratio of said at least one mesoporous FAU zeolite is equal to 1.00 +/- 0.05, the measurements being carried out on the zeolite adsorbent material exchanged at least 95% with sodium. .
  • said zeolitic adsorbent material comprises at least one cation chosen from the ions of groups IA, II A, NIA, IB, MB, IIIB of the periodic table, the trivalent ions of the series. lanthanides or rare earths, zinc ion (II), silver ion (I), cupric ion (II), chromium ion (III), ferric ion (III), ion ammonium and / or hydronium ion, the preferred ions being calcium, lithium, sodium, potassium, barium, cesium, strontium, zinc and rare earth ions and more preferably the sodium, calcium and lithium ions, as indicated above.
  • the metal contents of the zeolite adsorbent material according to the invention, expressed in oxides, are preferably those indicated above, and more particularly:
  • U2O content between 0 and 12% by weight relative to the total weight of the zeolite adsorbent material, preferably between 3 and 12% by weight relative to the total weight of the zeolitic adsorbent material, preferably between 5 and 12% by weight relative to the total weight of the zeolitic adsorbent material, and preferably between 6.5 and 12% by weight relative to the total weight of the adsorbent, limits included,
  • zeolitic adsorbent material preferably between 0 and 15% by weight relative to the total weight of the zeolitic adsorbent material, preferably between 0 and 10% by weight relative to the total weight of the zeolitic adsorbent material, and quite exactly preferred between 0 and 7% by weight relative to the total weight of the zeolitic adsorbent material, advantageously between 0 and 2% by weight relative to the total weight of the zeolite adsorbent material included,
  • the zeolitic adsorbent material comprises at least one of the three metals chosen from lithium, sodium and calcium,
  • Said zeolitic adsorbent material may also comprise at least one rare earth, chosen from lanthanides and actinides, preferably from lanthanides, in a content generally ranging between 0 and 10%, preferably between 0 and 7%,
  • Said zeolitic adsorbent material may also comprise, in small amounts (% expressed as oxide, less than 5%, preferably less than 2%), of one or more other cations other than lithium, sodium and calcium, for example, and preferably selected from potassium, barium, strontium, cesium, transition metals such as silver, and others.
  • zeolite adsorbent materials in which the content of barium oxide is less than 0.5%, preferably less than 0.3%, and more preferably less than 0.1%, are furthermore preferred. by weight relative to the total weight of the material.
  • the zeolitic adsorbent material according to the invention does not have a zeolite structure other than the FAU structure (faujasite).
  • the expression "does not have a zeolite structure other than the FAU structure” means that a X-ray diffraction analysis of the adsorbent material according to the invention does not make it possible to detect more than 5% by weight, of preferably not more than 2% by weight, inclusive limits, of zeolite structure other than a faujasite structure, relative to the total weight of the adsorbent material.
  • the invention relates to a zeolitic adsorbent material as defined above and having a total volume of macro- and meso-pores, measured by mercury intrusion, of between 0.15 cm 3. . g -1 and 0.5 cm 3 . g -1 , and a volume fraction of the macropores between 0.2 and 1 times said total volume of the macro- and meso-pores, preferably between 0.4 and 0.8, inclusive, the measurements being made on the adsorbent material exchanged at least 95% sodium. Characterization techniques
  • zeolite adsorbent materials The physical properties of zeolite adsorbent materials are evaluated by methods known to those skilled in the art, the main of which are recalled below.
  • the estimation of the average number diameter of zeolite crystals of FAU type contained in the zeolite adsorbent materials, and which are used for the preparation of said zeolitic adsorbent material, is carried out by observation under a scanning electron microscope (SEM).
  • a set of images is carried out at a magnification of at least 5000.
  • the diameter of at least 200 crystals is then measured using a dedicated software, for example the Smile View software from the LoGraMi editor.
  • the accuracy is of the order of 3%.
  • the determination of the average volume diameter (or "volume average diameter") of the zeolite adsorbent material of the process according to the invention is carried out by analysis of the particle size distribution of a sample of adsorbent material by imaging according to the ISO 13322 standard. -2: 2006, using a treadmill allowing the sample to pass in front of the camera lens.
  • volume mean diameter is then calculated from the particle size distribution by applying the ISO 9276-2: 2001 standard.
  • volume mean diameter or "size” is used for zeolite adsorbent materials.
  • accuracy is of the order of 0.01 mm for the size range of the adsorbent materials useful in the context of the present invention.
  • An elemental chemical analysis of a zeolite adsorbent material described above can be carried out according to various analytical techniques known to those skilled in the art. Among these techniques, mention may be made of the technique of chemical analysis by X-ray fluorescence as described in standard NF EN ISO 12677: 201 1 on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 of the Bruker company.
  • WDXRF wavelength dispersive spectrometer
  • X-ray fluorescence is a non-destructive spectral technique exploiting the photoluminescence of atoms in the X-ray domain to establish the elemental composition of a sample.
  • the excitation of atoms usually by an X-ray beam or by bombardment with electrons, generates specific radiations after returning to the ground state of the atom.
  • a measurement uncertainty of less than 0.4% by weight is obtained conventionally after calibration for each oxide.
  • AAS atomic absorption spectrometry
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • the X-ray fluorescence spectrum has the advantage of depending very little on the chemical combination of the element, which offers a precise determination, both quantitative and qualitative. After calibration for each oxide S102 and Al2O3, as well as the various oxides (such as those obtained from exchangeable cations, for example sodium), a measurement uncertainty of less than 0.4% by weight is obtained in conventional manner.
  • the ICP-AES method is particularly suitable for measuring the lithium content used to calculate the lithium oxide content.
  • the elementary chemical analyzes described above allow both to verify the Si / Al ratio of the zeolite used in the zeolite adsorbent material and the Si / Al ratio of the zeolitic adsorbent material.
  • the measurement uncertainty of the Si / Al ratio is ⁇ 5%.
  • Measurement of the Si / Al ratio of the zeolite present in the adsorbent material can also be measured by solid nuclear magnetic resonance spectroscopy (NMR) of silicon.
  • the quality of the ion exchange is related to the number of moles of the cation considered in the zeolite adsorbent material after exchange. More precisely, the exchange rate by a given cation is estimated by evaluating the ratio between the number of moles of said cation and the number of moles of all the exchangeable cations. The respective amounts of each of the cations are evaluated by chemical analysis of the corresponding cations.
  • the exchange rate by sodium ions is estimated by evaluating the ratio between the total number of Na + cation and the total number of exchangeable cations (for example Ca 2+ , K + , Li + , Ba 2+ , Cs + , Na + , etc.), the amount of each of the cations being evaluated by chemical analysis of the corresponding oxides (Na2O, CaO, K2O, BaO, L12O, CS2O, etc.).
  • This calculation method also accounts for any oxides present in the residual binder of the zeolitic adsorbent material.
  • the amount of such oxides is considered to be minor relative to the oxides originating from the cations of the exchangeable sites of the zeolite or zeolites of the zeolitic adsorbent material according to the invention. Macroporous and mesoporous volume
  • the macroporous and mesoporous volumes are measured, on a sample exchanged at least 95% sodium, by porosimetry by mercury intrusion.
  • a mercury porosimeter Autopore kind Micromeritics ® 9500 is used to analyze the distribution of the pore volume contained in macropores and the mesopores.
  • the experimental method described in the operating manual of the apparatus referring to ASTM D4284-83 consists in placing a sample of zeolite adsorbent material to be measured (known fire loss) previously weighed, in a cell. of the porosimeter, then, after a prior degassing (discharge pressure of 30 ⁇ Hg for at least 10 min), to fill the cell with mercury at a given pressure (0.0036 MPa), and then to apply increasing pressure stepwise up to 400 MPa in order to gradually penetrate the mercury into the porous network of the sample.
  • macroporous and mesoporous volumes of zeolitic adsorbent materials are thus measured by mercury intrusion and reported to the mass of the sample in anhydrous equivalent, that is to say the mass of said material corrected for loss on ignition.
  • the crush resistance in bed of zeolite adsorbent materials as described in the present invention is characterized according to ASTM 7084-04.
  • the mechanical resistance to crushing grains are determined with a device "Grain Crushing Strength" marketed by Vinci Technologies, according to ASTM D 4179 and D 6175.
  • microporous volume is estimated by conventional methods such as measurements of Dubinin-Raduskevitch volumes (adsorption of liquid nitrogen at 77 K or argon liquid at 87 K).
  • the Dubinin-Raduskevitch volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen or argon, at its liquefaction temperature, as a function of the pore opening.
  • zeolite Nitrogen will be chosen for the UF. Before the adsorption, the zeolite adsorbent material is degassed between 300 ° C and 450 ° C for a duration between 9 and 16 hours under vacuum (P ⁇ 6,7.10 "4 Pa). Measurement of isotherms adsorption is then carried out on an ASAP 2020 Micromeritics-type apparatus, taking at least 35 measuring points at relative pressures of ⁇ / ⁇ 0 ratio of between 0.002 and 1.
  • microporous volume is determined according to Dubinin and Rohskevitch from isotherm obtained by applying the ISO 15901 -3 (2007) standard
  • the microporous volume evaluated according to the Dubinin and Rohskevitch equation is expressed in cm 3 of liquid adsorbate per gram of zeolitic adsorbent material. is ⁇ 0.003 cm 3 .g -1 , the measurements being made on the zeolite adsorbent material exchanged with at least 95% sodium. Measurement of the microporous volume volume:
  • microporous volume volume is calculated from the microporous volume as defined above and by multiplying said microporous volume by the bulk density of said zeolitic adsorbent material. Bulk density is measured as described in DIN 8948 / 7.6.
  • the loss on ignition is determined in an oxidizing atmosphere, by calcination of the sample in air at a temperature of 950 ° C. ⁇ 25 ° C., as described in the NF EN standard.
  • the purity of the zeolites in the zeolite adsorbent materials is evaluated by X-ray diffraction analysis, known to those skilled in the art under the acronym.
  • the zeolitic adsorbent materials are crushed then spread and smoothed on a sample holder by simple mechanical compression.
  • the interpretation of the diffractogram obtained is performed with the EVA software with zeolites identification using the ICDD database PDF-2, release 201 1.
  • the amount of zeolite fractions FAU, by weight, is measured by XRD analysis, this method is also used to measure the amount of zeolite fractions other than FAU. This analysis is carried out on a device of Bruker brand, then the amount by weight of zeolite fractions is evaluated using the software TOPAS Bruker company. Measurement of the external surface (m 2 / g) by the so-called t-plot method:
  • a line can be drawn which defines an adsorbed Y intercept which allows the microporous surface to be calculated. If the material is not microporous the line passes through 0 the measurements being carried out on the zeolite adsorbent material exchanged with at least 95% sodium.
  • Measuring the mesoporous volume, on a sample exchanged at least 95% sodium is estimated by conventional methods such as measurements of Barret-Joyner-Halenda volumes (adsorption of liquid nitrogen at 77 K).
  • the mesoporous volume is determined from the measurement of the gas adsorption isotherm, such as nitrogen, at its liquefaction temperature, as a function of the pore opening of the zeolite: nitrogen for FAU.
  • the zeolitic adsorbent material Prior to adsorption, is degassed between 300 ° C. and 450 ° C. for a period of between 9 hours and 16 hours under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa). adsorption is then carried out on an ASAP 2020 Micromeritics type apparatus, taking at least 35 measuring points at relative pressures of P / PO ratio between 0.002 and 1.
  • the mesoporous volume is determined according to Barret-Joyner-Halenda from of the isotherm obtained by applying ISO 15901-2 (2007)
  • the mesoporous volume evaluated according to the Barret-Joyner-Halenda equation is expressed in cm 3 of liquid adsorbate per gram of zeolitic adsorbent material.
  • Step 1 Synthesis of mesoporous LSX type zeolite crystals with a Si / Al ratio equal to 1.01 and an external surface equal to 95 m 2 .g -1
  • a) Preparation of gel growth reactor stirred by Archimedean screw 250 tr.min '1.
  • a growth gel is prepared by mixing an aluminate solution containing 300 g of hydroxide hydroxide.
  • the stoichiometry of the growth gel is as follows: 4.32 Na 2 O / 1.85 K 2 O / Al 2 O 3 / 2.0 S 10 2/1 14 H 2 O. Homogenization growth gel is carried out with stirring at 250 tr.min "1 for 15 minutes at 25 ° C.
  • nucleating gel (0.4% by weight) of composition 12 Na 2 0 / Al2O3 / 10 S1O2 / 180 H 2 0 prepared in the same manner as the growth of frost, and ripened for 1 hour at 40 ° C. After 5 minutes of homogenization at 250 tr.min -1, the stirring speed was decreased to 50 tr.min -1 and continued for 30 minutes.
  • the solids are recovered on sintered and then washed with deionized water to neutral pH.
  • the drying is carried out in an oven at 90 ° C. for 8 hours.
  • the calcination of the dried product necessary to release both the microporosity (water) and the mesoporosity by eliminating the structuring agent is carried out by vacuum degassing with a gradual increase in steps of 50 ° C. to 400 ° C. C for a period of between 9 hours and 16 hours under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa).
  • the microporous volume and the external surface measured according to the t-plot method from the 77K nitrogen adsorption isotherm after degassing under vacuum at 400 ° C. for 10 hours are respectively 0.215 cm 3 . g -1 and 95 m 2 g -1 .
  • the average number diameter of the crystals is 6 ⁇ .
  • the diameters of the mesopores calculated from the nitrogen adsorption isotherm by the DFT method are between 5 nm and 10 nm.
  • the X-ray diffractogram corresponds to a pure Faujasite structure (FAU), no LTA zeolite is detected.
  • the Si / Al molar ratio of the mesoporous LSX determined by X-ray fluorescence is equal to 1.01.
  • FIG. 1 presents a photograph obtained by Transmission Electron Microscopy (TEM) of the zeolite thus synthesized.
  • Step 2 Preparation of mesoporous LSX zeolite agglomerates
  • the beads are dried overnight in a ventilated oven at 80 ° C. They are then calcined for 2 h at 550 ° C. under a nitrogen sweep and then 2 h at 550 ° C. under a decarbonated dry air sweep.
  • Step 3 Lithium exchange and activation of mesoporous LSX zeolite agglomerates
  • the beads are dried overnight in a ventilated oven at 80 ° C. They are then activated for 2 hours at 550 ° C. under a nitrogen sweep.
  • the content of lithium oxide L12O, determined by ICP-AES, is 8.9% by weight relative to the total weight of the zeolitic adsorbent material.
  • the average volume diameter of the balls is 0.55 mm.
  • the mechanical crush strength in bed of mesoporous zeolite LSX beads exchanged with lithium is 2.6 daN.
  • the zeolitic adsorbent material is at least 95% sodium exchange as follows: the zeolitic adsorbent material is introduced into a solution of sodium chloride at 1 mole of NaCl per liter, at 90.degree. ° C., for 3 h, with a liquid-to-solid ratio of 10 ml.- 1 . The operation is repeated 4 times between each exchange, the solids are successively washed four times by immersion in water at a rate of 20 mL.g -1 to remove the excess salt, and then dried for 12 h at 80 ° C. in air, before being analyzed by X-ray fluorescence.
  • the weight percentage of sodium oxide of the zeolitic adsorbent material is equal to 18, 2% and stable at less than 1% between the exchange operations 3 and 4.
  • the beads are dried overnight in a ventilated oven at 80 ° C. They are then activated for 2 hours at 550 ° C. under a nitrogen sweep.
  • the external surface is equal to 99 m 2 . g -1 of adsorbent
  • the microporous volume is 0.264 cm 3 . g -1 of sodium exchanged adsorbent
  • the microporous volume volume is 0.150 cm 3 per cm 3 of sodium exchanged zeolite adsorbent material
  • the mesoporous volume is equal to 0.165 cm 3 g -1 of sodium exchanged adsorbent.
  • the total volume of the macro- and meso-pores, measured by mercury intrusion, is 0.42 cm 3 g- 1 of sodium exchanged adsorbent.
  • the Si / Al atomic ratio of the adsorbent is 1, 25.
  • the Si / Al ratio of the zeolite present in the zeolite adsorbent material, which is equal to 1.0, is determined by solid-state NMR of silicon 29.
  • the content of non-zeolite phase (PNZ), measured by XRD and expressed by weight relative to the total weight of the adsorbent, is 15.3%.
  • CECA Siliporite® Nitroxy® SXSDM Screen is a LiLSX zeolite material bonded to attapulgite.
  • the average volume diameter of the balls is equal to 0.55 mm.
  • the content of lithium oxide L12O, measured by ICP-AES, is 9.2% by weight relative to the total weight of sieves.
  • step 4 of Example 1 sodium is exchanged to obtain a solid exchanged at least 95% sodium. As before, this result is obtained with 4 consecutive exchanges.
  • the weight percentage of sodium oxide of the zeolite adsorbent material, obtained by X-ray fluorescence, is equal to 18.4% and stable at less than 1% between the exchange operations 3 and 4.
  • the beads are dried overnight. in a ventilated oven at 80 ° C. They are then activated for 2 hours at 550 ° C. under a nitrogen sweep.
  • the external surface is equal to 31 m 2 . g -1 of adsorbent
  • the microporous volume is 0.265 cm 3 . g- 1 of sodium-exchanged adsorbent
  • the microporous volume volume is 0.172 cm 3 per cm 3 of sodium-exchanged zeolite adsorbent material
  • the mesoporous volume is equal to 0.07 cm 3 g -1 of adsorbent exchanged at
  • the total volume of the macro- and meso-pores, measured by mercury intrusion, is 0.31 cm 3 g- 1 of sodium exchanged adsorbent.
  • the Si / Al atomic ratio of the adsorbent is 1, 23.
  • Figure 2 describes the assembly carried out.
  • the feed time of the column (1) by the flow (3) is called the adsorption time.
  • the flow (3) is vented to the atmosphere by the valve (5).
  • the zeolitic adsorbent material preferentially adsorbs nitrogen, so that oxygen-enriched air exits the column through the non-return valve (6) to a buffer capacity (7).
  • a regulating valve (8) continuously delivers the output gas (9) at a constant flow rate set at 1 NL.min -1 .
  • the column (1) When the column (1) is not energized, that is to say when the valve (4) is closed and the valve (5) is open, the column (1) is depressurized by the valve ( 10) to the atmosphere (1 1) for a period called desorption time.
  • the adsorption and desorption phases succeed one another. The durations of these phases are fixed from one cycle to another and they are adjustable.
  • Table 1 shows the respective state of the valves according to the adsorption and desorption phases.
  • Example 1 The tests are carried out successively with the zeolitic adsorbent materials of Example 1 (according to the invention) and Example 2 (comparative).
  • the column is charged at constant volume, with respectively 204.5 g and 239.7 g of adsorbent materials.
  • the inlet pressure is set at 280 kPa relative.
  • the output flow rate is set at 1 NL.min -1, the adsorption time is set at 0.25 S.
  • the desorption time is variable between 0.25 s and 1, 25 s.
  • the oxygen concentration at the outlet (9) is measured using a Servomex 570A oxygen analyzer.
  • FIG. 3 shows the oxygen content of the output stream (9) as a function of the desorption time set for the materials of Example 1 and Example 2.
  • the material of Example 1 (according to the invention) is much more efficient (in terms of the oxygen content of the product gas) than the solid of Example 2 (comparative).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

La présente invention concerne l'utilisation, pour la séparation de gaz, d'au moins un matériau adsorbant zéolithique comprenant au moins une zéolithe de type FAU, ledit adsorbant présentant une surface externe supérieure à 20 m2 ⋅ g-1, une teneur en phase non zéolithique (PNZ) telle que 0 < PNZ ≤ 30%, et de ratio atomique Si/AI compris entre 1 et 2,5. L'invention concerne également un matériau adsorbant zéolithique présentant un rapport Si/AI tel que 1 ≤ Si/AI < 2,5, un volume mésoporeux compris entre 0,08 cm3⋅ g-1 à 0,25 cm3 ⋅ g-1, un rapport (Vmicro - Vméso) / Vmicro compris entre -0,5 et 1,0, bornes non incluses, et une teneur en phase non zéolithique (PNZ), telle que 0 < PNZ ≤ 30%.

Description

ADSORBANTS ZEOLITHIQUES DE HAUTE SURFACE EXTERNE ET LEURS UTILISATIONS
[0001] L'invention concerne l'utilisation de matériaux adsorbants zéolithiques sous forme d'agglomérés comprenant au moins une zéolithe de type faujasite, les dits adsorbants présentant une importante surface externe caractérisée par adsorption d'azote, et un volume microporeux élevé, pour la séparation en phase gaz, en particulier dans des procédés modulés en pression, soit de type PSA (Adsorption modulée en pression ou « Pressure Swing Adsorption » en langue anglaise) soit de type VSA (Adsorption modulée en vide ou « Vacuum Swing Adsorption » en langue anglaise), soit de type VPSA (procédé hybride des 2 précédents), soit de type RPSA (« Rapid Pressure Swing Adsorption » en langue anglaise), dans des procédés modulés en température de type TSA (Adsorption modulée en température ou « Température Swing Adsorption » en langue anglaise) et/ou dans des procédés modulés en pression et en température de type PTSA (Adsorption modulée en Pression et en Température ou « Pressure and Température Swing Adsorption » en langue anglaise).
[0002] La présente invention concerne également un procédé de séparation et de purification de gaz utilisant lesdits adsorbants zéolithiques présentant une importante surface externe.
[0003] L'invention concerne également des matériaux adsorbants zéolithiques utilisables dans le cadre de la présente invention présentant une importante surface externe et comprenant du lithium et/ou du calcium et/ou du sodium.
[0004] L'utilisation de ce type d'agglomérés est particulièrement avantageuse dans les applications où la cinétique de transfert, la capacité volumique d'adsorption, paramètres déterminants pour l'efficacité et la productivité globale du procédé, ainsi que de faibles pertes de charge sont recherchées.
[0005] Dans les technologies de séparation par adsorption, beaucoup d'efforts ont été consentis ces dernières années pour augmenter la productivité horaire des lits d'adsorbants, notamment en augmentant la fréquence des cycles d'adsorption/désorption, ce qui signifie que l'adsorbant mis en œuvre, en plus de ses propriétés thermodynamiques d'adsorption, doit pouvoir se saturer par adsorption et restituer à la désorption le gaz adsorbé dans des laps de temps de plus en plus courts. Les adsorbants doivent donc être conçus de manière à avoir un transfert de masse le plus efficace possible, c'est-à-dire de telle sorte que les gaz à séparer ou à purifier atteignent le plus rapidement possible les sites d'adsorption et soient également désorbés le plus rapidement possible. [0006] Plusieurs pistes ont été explorées pour atteindre cet objectif. La première méthode proposée par la littérature consiste à diminuer la taille des particules adsorbantes. Il est généralement admis que ceci a pour effet de permettre une diffusion plus rapide des gaz dans le réseau macroporeux, la constante cinétique de transfert de matière étant inversement proportionnelle au carré du diamètre des particules (ou dimension équivalente, selon la morphologie des adsorbants). On citera par exemple l'article « Adsorbent particle size eïïects in the séparation of air by rapid pressure swing adsorption », de E. Alpay et coll., Chemical Engineering Science, 49(18), 3059-3075, (1994).
[0007] Le document WO2008/152319 décrit la préparation, par atomisation, d'adsorbants résistants mécaniquement de petites tailles, qui sont par exemple utilisés dans des concentrateurs portables d'oxygène médical, comme le montre le document US2013/0216627. Le principal inconvénient de la réduction de la taille des particules adsorbantes est l'augmentation des pertes de charge dans les adsorbeurs et la consommation énergétique importante qui y est associée. Ceci est particulièrement rédhibitoire dans les procédés d'adsorption de production industrielle de gaz.
[0008] La deuxième méthode consiste à améliorer l'aptitude au transfert intra-granulaire des adsorbants, sans changer leur taille. Les demandes internationales W099/43415, W099/43416, W099/43418, WO2002/049742, WO2003/004135 décrivent des adsorbants à cinétique améliorée obtenus par conversion en matière active zéolithique du liant d'agglomération ainsi que les procédés associés de séparation de gaz, plus efficaces qu'avec des particules classiques.
[0009] Le document WO2008/051904 propose un procédé de fabrication par extrusion/sphéronisation de billes d'adsorbants zéolithiques à base de zéolithe LiX à diffusion améliorée. Le document WO2008/109882 décrit quant à lui la préparation d'adsorbants à haute résistance mécanique et à transfert de masse amélioré à partir de zéolithes LiX ou LiLSX et de moins de 15% de liant silicique introduit sous forme colloïdale.
[0010] La demande EP1240939 propose de sélectionner pour des utilisations en procédé PSA ou VSA des adsorbants présentant un certain rapport entre leurs constantes cinétiques de transport des composés adsorbables dans la phase gazeuse et dans la phase solide. Le document US6328786 définit un seuil minimal de résistance mécanique et un coefficient cinétique au-delà duquel les adsorbants sont préférés pour une utilisation en procédé PSA. La demande EP1048345 décrit des adsorbants à macroporosité élevée fabriqués par une technique de sphéronisation et de lyophilisation.
[0011] Une troisième méthode consiste à améliorer l'accès à l'adsorbant en utilisant différentes géométries de mise en forme combinant à la fois des épaisseurs réduites de matière active et des sections de passage du fluide suffisamment larges pour permettre un écoulement avec des pertes de charges limitées. On peut citer les feuilles et tissus adsorbants, les monolithes de type nids d'abeille, mousses ou autres.
[0012] Le document FR2794993 propose d'utiliser des billes hétérogènes, avec une couche périphérique adsorbante de faible épaisseur enrobant un cœur inerte : la distance de diffusion est donc réduite, sans augmenter les pertes de charges. Ce système a le défaut d'être d'une faible efficacité volumique : une partie conséquente de l'adsorbeur est occupée par de la matière inerte au sens de l'adsorption, ce qui a un impact important en termes de dimensions des installations et donc d'investissements, voire de poids, ce qui peut être gênant, dans le cas d'appareil de purification/séparation portatifs, tels que par exemple les concentrateurs d'oxygène médical.
[0013] Les demandes de brevets US2012/0093715 et US2013/0052126 enseignent que l'on peut former des structures zéolithiques monolithiques avec une structure hiérarchisée, par ajout d'un polymère au milieu réactionnel de synthèse : comme pour les feuilles et les tissus adsorbants, les solides obtenus présentent un volume macroporeux et un volume mésoporeux très importants, ces solides sont donc très peu denses et leur efficacité volumique est faible, du fait de leur faible capacité d'adsorption volumique.
[0014] Ainsi, toutes ces géométries adsorbantes de diverses natures posent des problèmes de mise en œuvre relativement complexe, de tenue mécanique à la fatigue ou à l'attrition et de faible efficacité volumique, puisque la teneur en matière active est souvent réduite au profit de liants inertes ou autre fibres de renforcement mécanique ou puisque les matériaux obtenus sont très peu denses.
[0015] Il reste donc un besoin pour des adsorbants zéolithiques utiles pour la séparation et la purification des gaz possédant de bonnes propriétés de transfert qui ne présentent pas les inconvénients liés à l'utilisation des adsorbants de l'art antérieur. En particulier, il reste un besoin pour un adsorbant zéolithique possédant de plus grandes capacités d'adsorption et de meilleures cinétiques d'adsorption/désorption, permettant en particulier une utilisation plus intensive des procédés, et notamment des procédés PSA, TSA ou VPSA.
[0016] Les inventeurs ont maintenant découvert que les objectifs précités peuvent être atteints en totalité ou au moins en partie grâce aux adsorbants spécifiquement dédiés aux utilisations de séparation et de purification des gaz tels qu'ils vont être décrits maintenant.
[0017] Ainsi, et selon un premier aspect, l'invention concerne l'utilisation pour la séparation de gaz, d'au moins un matériau adsorbant zéolithique comprenant au moins une zéolithe de type FAU, ledit adsorbant présentant :
• une surface externe, mesurée par adsorption d'azote et exprimée en m2 par gramme d'adsorbant, supérieure à 20 m2. g-1, et de préférence comprise entre 20 m2. g-1 et 300 m2. g-1, et de préférence encore comprise entre 30 m2. g-1 et 250 m2. g-1 et de manière encore plus préférée entre 40 m2. g"1 et 200 m2. g"1, et tout particulièrement entre 50 m2. g"1 et 200 m2.g-\
• une teneur en phase non zéolithique (PNZ), telle que 0 < PNZ < 30%, de préférence 3% < PNZ < 25%, de préférence encore 3% < PNZ < 20%, avantageusement 5% < PNZ < 20%, mieux encore 7% < PNZ < 18%, mesurée par DRX (Diffraction par Rayons X), en poids par rapport au poids total de l'adsorbant,
• un volume mésoporeux (Vméso) compris entre 0,08 cm3. g"1 à 0,25 cm3. g"1, de préférence entre 0,08 cm3. g-1 et 0,22 cm3. g-1, et de préférence encore entre 0,09 cm3. g-1 et 0,20 cm3. g-1, de préférence encore entre 0,10 cm3. g-1 et 0,20 cm3. g-1, bornes incluses,
• et de ratio atomique Si/AI de l'adsorbant compris entre 1 et 2,5, de préférence entre 1 et 2,0, de préférence encore entre 1 et 1 ,8, et de manière tout à fait préférée, entre 1 et 1 ,6, l'ensemble des mesures étant effectuées sur le matériau adsorbant échangé à au moins 95% au sodium.
[0018] Dans la présente description, le terme « zéolithe de type FAU » désigne une zéolithe de type faujasite, avantageusement une zéolithe faujasite mésoporeuse choisie parmi les zéolithes de type LSX, MSX, X, Y et leurs mélanges. Selon un mode de réalisation le matériau adsorbant zéolithique peut également comprendre une ou plusieurs autres zéolithe(s) choisie(s) parmi les zéolithes de type FAU (LSX, MSX, X, Y), de type LTA, de type CHA (Chabazite), de type HEU (Clinoptilolite), et les mélanges de deux ou plusieurs d'entre elles, et de préférence encore parmi les zéolithes LSX, MSX, X, et les mélanges de deux ou plusieurs d'entre elles.
[0019] D'autres zéolithes peuvent être présentes en quantités minoritaires dans les adsorbants de l'invention ou utilisables dans le procédé de l'invention. Ces zéolithes peuvent être considérées comme des polluants, notamment en raison du fait qu'elles ne contribuent pas à l'adsorption des gaz, autrement dit qu'elles sont inertes vis-à-vis de l'adsorption des gaz. Ces zéolithes comprennent, à titre d'exemples non limitatifs, la sodalite, l'hydroxysodalite, la zéolithe P, et autres zéolithes inertes vis-à-vis de l'adsorption des gaz.
[0020] Les différents types de zéolithes présentes dans le matériau adsorbant zéolithique sont déterminés par DRX. La quantité de zéolithes est également mesurée par DRX et est exprimée en % en poids par rapport au poids total du matériau adsorbant.
[0021] En corollaire, dans la présente invention, le terme « phase non zéolithique » (ou « PNZ ») désigne toute phase présente dans le matériau adsorbant, autre que la ou les zéolithe(s) définie(s) ci-dessus, dénommé « phase zéolithique » ou « PZ ». La quantité de phase non zéolithique est exprimée par le complément à 100% de la phase zéolithique de l'adsorbant, autrement dit : %PNZ = 100 - %PZ,
où %PNZ représente le pourcentage en poids de PNZ et %PZ le pourcentage en poids de phase zéolithique, par rapport au poids total de l'adsorbant.
[0022] Par « adsorbant échangé à au moins 95% au sodium », on entend qu'au moins 95% des sites cationiques échangeables de la phase zéolithique sont occupés par des cations sodium.
[0023] Ce matériau adsorbant zéolithique échangé à au moins 95% au sodium peut être obtenu et de préférence est obtenu selon le protocole suivant : le matériau adsorbant zéolithique à échanger au sodium est introduit dans une solution de chlorure de sodium à 1 mole de NaCI par litre, à 90°C, pendant 3 heures, avec un rapport liquide sur solide de 10 mL.g"1. L'opération est répétée n fois, n étant au moins égal à 1 , de préférence au moins égal à 2, de préférence au moins égal à 3, de préférence encore au moins égal à 4.
[0024] Les solides issus des opérations d'échange n-1 et n sont successivement quatre fois lavés par immersion dans de l'eau à raison de 20 mL.g-1 pour éliminer les excès de sel, puis séchés pendant 12 heures à 80°C sous air, avant d'être analysés par fluorescence X. Si le pourcentage massique en oxyde de sodium du matériau adsorbant zéolithique, entre les opérations d'échange n-1 et n, est stable à ± 1 %, ledit matériau adsorbant zéolithique est considéré comme étant « dans sa forme échangée à au moins 95% au sodium ». Le cas échéant, on procède à des échanges supplémentaires tels que décrit précédemment jusqu'à obtention d'une stabilité du pourcentage massique en oxyde de sodium de ± 1 %.
[0025] On pourra notamment procéder à des échanges cationiques batch successifs, avec un large excès de chlorure de sodium, jusqu'à ce que la teneur massique en oxyde de sodium du matériau adsorbant zéolithique, déterminé par analyse chimique de type fluorescence X, soit stable à ± 1 %. Cette méthode de mesure est explicitée plus loin dans la description. En variante, le matériau adsorbant zéolithique peut déjà se trouver intrinsèquement dans sa forme échangée au sodium après l'étape de synthèse lorsque cette dernière est effectuée exclusivement en milieu alcalin sodique.
[0026] Le ratio atomique Si/AI du matériau adsorbant zéolithique est mesuré par analyse chimique élémentaire en fluorescence X, technique bien connue de l'homme du métier et explicitée plus loin dans la description. On procède si nécessaire à l'échange sodium avant analyses selon le mode opératoire détaillé ci-dessus.
[0027] Par « Vmicro », on entend le volume microporeux du matériau adsorbant zéolithique dont la technique de mesure est explicitée plus loin. Par « Vméso », on entend le volume mésoporeux du matériau adsorbant zéolithique dont la technique de mesure est explicitée plus loin. [0028] Selon un mode de réalisation préféré, ledit au moins un matériau adsorbant zéolithique utilisable dans le cadre de la présente invention présente un rapport (Vmicro - VmésoyVmicro compris entre -0,5 et 1 ,0, bornes non incluses, de préférence entre -0,1 et 0,9, bornes non incluses, de préférence entre 0 et 0,9, bornes non incluses, de préférence encore entre 0,2 et 0,8, bornes non incluses, de préférence encore entre 0,4 et 0,8, bornes non incluses, de manière préférée entre 0,6 et 0,8, bornes non incluses, où Vmicro est le volume microporeux mesuré par la méthode de Dubinin-Raduskevitch et Vméso est le volume mésoporeux déterminé par la méthode Barrett-Joyner-Halenda (BJH), l'ensemble des mesures étant effectuées sur le matériau adsorbant échangé à au moins 95% au sodium.
[0029] Selon encore un autre mode de réalisation, ledit au moins un matériau adsorbant zéolithique présente un volume microporeux (Vmicro, ou encore volume de Dubinin- Raduskevitch), exprimé en cm3 par gramme de matériau adsorbant, compris entre 0,210 cm3.g-1 et 0,360 cm3.g"1, de préférence entre 0,230 cm3.g"1 et 0,350 cm3.g"1, de préférence entre 0,240 cm3. g"1 et 0,350 cm3. g"1, de préférence encore 0,250 cm3. g"1 et 0,350 cm3. g"1, mesuré sur le matériau adsorbant échangé à au moins 95% au sodium.
[0030] À partir du volume microporeux selon Dubinin-Raduskevitch mesuré sur le matériau adsorbant zéolithique échangé au sodium, on peut également calculer un volume de Dubinin-Raduskevitch global de(s) zéolithe(s) FAU, pondéré de la PNZ.
[0031] Le volume total des macro- et méso-pores des matériaux adsorbants zéolithiques utilisable dans le cadre de la présente invention, mesuré par intrusion de mercure, est avantageusement compris entre 0,15 cm3. g"1 et 0,5 cm3. g"1, de préférence compris entre 0,20 cm3. g"1 et 0,40 cm3. g"1 et de manière très préférée compris entre 0,20 cm3. g"1 et 0,35 cm3. g-1, les mesures étant réalisées sur le matériau adsorbant échangé à au moins 95% au sodium.
[0032] La fraction en volume des macropores du matériau adsorbant zéolithique utilisable dans le cadre de la présente invention est de préférence comprise entre 0,2 et 1 ,0 du volume total des macro- et méso-pores, de manière très préférée comprise entre 0,4 et 0,8, et de manière encore plus préférée entre 0,45 et 0,65 bornes incluses, les mesures étant réalisées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
[0033] Les matériaux adsorbants zéolithiques utilisables dans le cadre de la présente invention sont soit connus ou peuvent être préparés à partir de modes opératoires connus, ou encore sont nouveaux et à ce titre font partie intégrante de la présente invention.
[0034] Selon encore un mode de réalisation préféré, l'utilisation selon l'invention met en œuvre un matériau adsorbant zéolithique comprenant au moins une zéolithe de type FAU mésoporeuse. Par « mésoporeuse », on entend une zéolithe qui présente, conjointement à la microporosité inhérente à la structure de la zéolithe, des cavités internes de taille nanométrique (mésoporosité), facilement identifiables par observation au moyen d'un microscope électronique à transmission (MET ou « TEM » en langue anglaise), comme décrit par exemple dans US7785563.
[0035] Plus précisément, ladite zéolithe FAU du matériau adsorbant zéolithique est une zéolithe FAU mésoporeuse, c'est-à-dire une zéolithe présentant une surface externe, définie par la méthode du t-plot décrite plus loin, comprise entre 40 m2. g-1 et 400 m2. g-1, de préférence entre 60 m2. g-1 et 200 m2. g-1, bornes incluses. Par extension, au sens de la présente invention, une « zéolithe non mésoporeuse » est une zéolithe présentant éventuellement une surface externe, définie par la méthode du t-plot décrite plus loin, strictement inférieure à 40 m2. g-1.
[0036] En particulier, les matériaux adsorbants zéolithiques utilisables dans le cadre de la présente invention comprennent au moins une zéolithe de type FAU, ladite au moins une zéolithe de type FAU présente un ratio Si/AI répondant à l'inéquation 1 < Si/AI < 1 ,5, de préférence 1 < Si/AI < 1 ,4, et de manière encore préférée un ratio atomique Si/AI égal à 1 ,00 +/- 0,05, ledit ratio Si/AI étant mesuré par Résonance Magnétique Nucléaire (RMN) solide du silicium 29 (RMN 29Si), selon les techniques bien connues de l'homme du métier.
[0037] Le ratio Si/AI de chacune des zéolithes présente(s) dans l'adsorbant est mesuré également par RMN du solide.
[0038] Selon un mode de réalisation préféré, la zéolithe FAU du matériau adsorbant zéolithique se présente sous forme de cristaux dont le diamètre moyen en nombre, mesuré au microscope électronique à balayage (MEB), est inférieur à 20 μηι, de préférence compris entre 0,1 μηι et 20 μηι, de préférence compris entre 0,1 et 10 μηι, de préférence compris entre 0,5 μηι et 10 μηι, de manière plus préférée compris entre 0,5 μηι et 5 μηι, bornes incluses.
[0039] Selon encore un autre mode de réalisation préféré, ledit matériau adsorbant zéolithique comprend au moins un cation choisi parmi les ions des Groupes IA, Il A, NIA, IB, MB, IIIB de la classification périodique, les ions trivalents de la série des lanthanides ou terres-rares, l'ion zinc (II), l'ion argent (I), l'ion cuivrique (II), l'ion chromique (III), l'ion ferrique (III), l'ion ammonium et/ou l'ion hydronium, les ions préférés étant les ions calcium, lithium, sodium, potassium, baryum, césium, strontium, zinc et terres-rares et de préférence encore les ions sodium, calcium et lithium.
[0040] Selon un mode de réalisation, le matériau adsorbant zéolithique utilisable dans le cadre de la présente invention comprend au moins un métal alcalin ou alcalino-terreux choisi parmi sodium, calcium, lithium, les mélanges de deux ou trois d'entre eux en toutes proportions, dont les teneurs, exprimées en oxydes, sont de préférence telles que : • teneur en CaO comprise entre 0 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 7,5 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 9 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, bornes incluses,
• teneur en U2O comprise entre 0 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 5 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 6,5 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, bornes incluses,
• teneur en Na2Û comprise entre 0 et 22% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 19% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 15% en poids par rapport au poids total du matériau adsorbant zéolithique, de manière préférée entre 0 et 10% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière tout à fait préférée entre 0 et 7% en poids par rapport au poids total du matériau adsorbant zéolithique, avantageusement entre 0 et 2% en poids par rapport au poids total du matériau adsorbant zéolithique bornes incluses,
• étant entendu que le matériau adsorbant zéolithique comprend au moins un des trois métaux choisis parmi lithium, sodium et calcium,
• ledit matériau adsorbant zéolithique pouvant également comprendre au moins une terre rare, choisie parmi les lanthanides et les actinides, de préférence parmi les lanthanides, en une teneur comprise généralement entre 0 et 10%, de préférence entre 0 et 7%,
• ledit matériau adsorbant zéolithique pouvant également comprendre, dans de faibles quantités (% exprimé en oxyde, inférieur à 5%, de préférence inférieur à 2%) d'un ou plusieurs autres cations autres que lithium, sodium et calcium, par exemple et de préférence choisis parmi le potassium, baryum, strontium, césium, métaux de transition tels que argent, et autres.
[0041] Selon la présente invention, les matériaux adsorbants zéolithiques décrits ci- dessus se montrent tout particulièrement utiles adaptés et efficaces dans les procédés pour la séparation en phase gaz, en particulier dans des procédés modulés en pression et/ou en température, soit de type PSA, soit de type VSA, soit de type VPSA, soit de type RPSA, soit de type TSA et/ou dans des procédés de type PTSA.
[0042] Plus précisément, la présente invention concerne l'utilisation d'au moins un matériau adsorbant zéolithique, comprenant au moins une zéolithe de type FAU, comme défini ci-dessus, pour la séparation de gaz. Par séparation de gaz, on entend les purifications, pré-purifications, éliminations, et autres séparations d'un ou plusieurs composés gazeux présents dans un mélange d'un ou plusieurs composés gazeux.
[0043] Selon un aspect préféré de la présente invention, les matériaux adsorbants zéolithiques utilisables pour la purification des gaz sont des matériaux ne générant que peu de pertes de charge ou des pertes de charge acceptables pour les utilisations précitées.
[0044] On préfère ainsi les matériaux adsorbants zéolithiques agglomérés et mis en forme réalisés selon toutes techniques connues de l'homme du métier telles qu'extrusion, compactage, agglomération sur assiette granulatrice, tambour granulateur, atomisation et autres. Les proportions de liant d'agglomération et de zéolithes mises en œuvre sont typiquement celles de l'art antérieur, c'est-à-dire comprises entre 5 parties et 30 parties en poids de liant pour 95 parties à 70 parties en poids de zéolithe.
[0045] Le matériau adsorbant zéolithique utilisable dans le cadre de la présente invention, qu'il soit sous forme de billes, d'extrudés ou autres, présente en général un diamètre volumique moyen, ou une longueur moyenne (plus grande dimension lorsqu'il n'est pas sphérique), inférieur ou égal à 7 mm, de préférence compris entre 0,05 mm et 7 mm, de manière encore préférée compris entre 0,2 mm et 5 mm et plus préférentiellement entre 0,2 mm et 2,5 mm.
[0046] Les matériaux adsorbants zéolithiques utiles dans le contexte de la présente invention présentent en outre des propriétés mécaniques tout particulièrement appropriées aux applications auxquels ils sont destinés, c'est-à-dire :
• soit une résistance à l'écrasement en lit (REL) mesurée selon la norme ASTM 7084-04 comprise entre 0,5 MPa et 3 MPa, de préférence entre 0,75 MPa et 2,5 MPa, pour un matériau de diamètre volumique moyen (D50) ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), inférieur(e) à 1 mm, bornes incluses,
• soit une résistance à l'écrasement en grain, mesurée selon les normes ASTM D 4179 (201 1 ) et ASTM D 6175 (2013), comprise entre 0,5 daN et 30 daN, de préférence comprise entre 1 daN et 20 daN, pour un matériau de diamètre volumique moyen (D50) ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), supérieur(e) ou égal(e) à 1 mm, bornes incluses.
[0047] Selon un autre mode de réalisation préféré, l'utilisation selon l'invention met en œuvre au moins un matériau adsorbant zéolithique présentant une capacité volumique d'adsorption élevée, c'est-à-dire un volume microporeux volumique exprimé en cm3. cm-3 de matériau adsorbant échangé à au moins 95% au sodium, ledit volume microporeux volumique étant supérieur à 0,10 cm3. cm-3, de préférence supérieur à 0,12 cm3. cm-3, de préférence encore supérieur à 0,15 cm3. cm-3, de manière encore préférée supérieur à 0,16 cm3. cm"3, de préférence encore supérieur à 0,18 cm3. cm"3, de manière tout à fait préférée supérieur à 0,20 cm3. cm"3.
[0048] Selon encore un autre mode de réalisation, l'utilisation selon l'invention met de préférence en œuvre au moins un matériau adsorbant zéolithique présentant une perte au feu, mesurée à 950°C selon la norme NF EN 196-2, comprise entre 0 et 5%, de préférence entre 0 et 3% en poids.
[0049] En particulier, la présente invention concerne l'utilisation d'au moins un matériau adsorbant zéolithique tel qu'il vient d'être défini pour la purification du gaz naturel, en particulier pour l'élimination des impuretés et de préférence pour l'élimination du dioxyde de carbone et/ou des mercaptans, présent(s) dans le gaz naturel, et notamment selon des procédés d'adsorption modulés en pression et/ou température (PSA ou TSA ou PTSA), de préférence TSA ou PTSA. On préfère en particulier utiliser pour ces types d'applications, les matériaux adsorbants comprenant une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX et CaX, et leurs mélanges.
[0050] Pour ces types d'applications, on préfère un matériau adsorbant zéolithique dont le diamètre moyen volumique (ou la plus grande longueur) est compris entre 0,3 mm et 7,0 mm, de préférence entre 0,8 mm et 5,0 mm, et de préférence encore entre 2,0 mm et 5,0 mm, bornes incluses.
[0051] Selon un autre mode de réalisation, la présente invention concerne l'utilisation d'au moins un matériau adsorbant zéolithique tel qu'il vient d'être défini pour la séparation non cryogénique des gaz industriels et des gaz de l'air, et en particulier pour l'adsorption d'azote dans la séparation de gaz de l'air, en particulier pour l'enrichissement de l'oxygène de l'air. Cette utilisation est tout particulièrement adaptée dans les dispositifs d'adsorption modulés en pression (PSA) selon des cycles très courts (typiquement compris entre 0,1 seconde et 10 secondes, de préférence entre 0,1 seconde et 5 secondes), et notamment dans les concentrateurs d'oxygène d'assistance respiratoire, comme décrit par exemple dans la demande WO2008/152319.
[0052] Dans le cas de l'utilisation selon l'invention pour la séparation non cryogénique des gaz industriels et des gaz de l'air, ces procédés sont bien connus de l'art antérieur, et notamment du document EP0893157 qui décrit de manière générale les procédés de séparation/purification de gaz au moyen d'adsorbants zéolithiques.
[0053] Pour les applications de séparation non cryogénique des gaz industriels et des gaz de l'air et de préférence de séparation d'azote pour l'enrichissement en oxygène, on préfère en outre le matériau adsorbant zéolithique comprenant au moins une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX, LiX, CaX, LiCaX, NaLSX, LiLSX, CaLSX, LiCaLSX, et les mélanges de deux ou plusieurs d'entre eux, ledit matériau adsorbant zeolithique comprenant au moins un métal alcalin ou alcalino-terreux choisi parmi sodium, calcium, lithium, les mélanges de deux ou trois d'entre eux en toutes proportions, dont les teneurs exprimées en oxydes sont telles que définies précédemment.
[0054] Plus particulièrement, l'utilisation décrite ci-dessus est tout particulièrement adaptée à la séparation d'azote pour l'enrichissement en oxygène, et tout particulièrement pour l'utilisation dans des concentrateurs d'oxygène d'assistance respiratoire. On préfère dans ces cas utiliser au moins un matériau adsorbant zéolithique comprenant du sodium, du calcium et/ou du lithium, seuls ou en mélange, et on préfère tout particulièrement pour ces types d'applications, utiliser un matériau adsorbant zéolithique comprenant au moins une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX, LiX, CaX, LiCaX, NaLSX, LiLSX, CaLSX, LiCaLSX, et les mélanges de deux ou plusieurs d'entre eux, de préférence parmi CaLSX, LiLSX, LiCaLSX, de préférence encore au moins une zéolithe LiLSX, de préférence LiLSX mésoporeuse.
[0055] Pour des applications de la séparation des gaz industriels et des gaz de l'air en général, on préfère un matériau adsorbant zéolithique sous forme de billes dont le diamètre moyen volumique est compris entre 0,05 mm et 5 mm, de préférence entre 0,05 mm et 3,0 mm, de préférence encore entre 0,05 mm et 2,0 mm.
[0056] Pour des applications spécifiques d'enrichissement d'air en oxygène, par exemple des concentrateurs d'oxygène d'assistance respiratoire, on préfère un matériau adsorbant zéolithique sous forme de billes dont le diamètre moyen volumique est compris entre 0,05 mm et 1 mm, de préférence entre 0,1 mm et 0,7 mm, de préférence encore entre 0,3 mm et 0,6 mm.
[0057] Selon un autre mode de réalisation, l'invention concerne l'utilisation d'au moins un matériau adsorbant zéolithique tel qu'il vient d'être défini pour la purification de gaz de synthèse. Un exemple de procédé de purification de gaz de synthèse est décrit dans le brevet EP1312406. Les gaz de synthèse visés ici sont en particulier des gaz de synthèse à base d'hydrogène et de monoxyde de carbone et/ou d'hydrogène et d'azote, et plus particulièrement des mélanges d'hydrogène et de monoxyde de carbone et/ou d'hydrogène et d'azote, ces gaz de synthèse pouvant en outre contenir, ou être pollués par, du dioxyde de carbone et une ou plusieurs éventuelles autres impuretés, telles que par exemple et à titre non limitatif une ou plusieurs impuretés choisies parmi azote, monoxyde de carbone, oxygène, ammoniac, hydrocarbures et dérivés oxygénés, en particulier alcanes, notamment méthane, alcools, notamment méthanol, et autres.
[0058] L'utilisation selon la présente invention est ainsi tout particulièrement adaptée à l'élimination d'azote, de monoxyde de carbone, de dioxyde de carbone, de méthane, et autres impuretés, de préférence par des procédés d'adsorption modulés en pression (PSA), pour la production d'hydrogène. Pour ces types d'applications, on préfère les matériaux adsorbants comprenant une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX, LiX, LiLSX, CaX, CaLSX, LiCaX, LiCaLSX, de préférence choisi parmi NaX, NaLSX, LiCaLSX, et les mélanges de deux ou plusieurs d'entre eux.
[0059] Pour ces types d'applications, on préfère un matériau adsorbant zéolithique dont le diamètre moyen volumique (ou la plus grande longueur) est compris entre 0,3 mm et 7 mm, de préférence entre 0,8 mm et 5,0 mm, et de préférence encore entre 1 ,0 mm et 3,0 mm, bornes incluses.
[0060] Selon encore un autre mode de réalisation, l'invention concerne également l'utilisation d'au moins un matériau adsorbant zéolithique tel qu'il vient d'être défini pour la purification d'air des unités cryogéniques (« Air Séparation Units » en langue anglaise ou « ASU »), en particulier pour l'élimination d'hydrocarbures, de dioxyde de carbone et d'oxydes d'azote, en amont des unités de distillations cryogéniques. Pour ces types d'applications, de préférence mises en œuvre dans des procédés PSA, TSA ou PTSA, et de manière préférée TSA ou PTSA, on préfère les matériaux adsorbants zéolithiques comprenant une zéolithe FAU, de préférence mésoporeuse, de types choisis parmi NaX, NaLSX, CaX, CaLSX, et les mélanges de deux ou plusieurs d'entre eux.
[0061] Pour ces types d'applications, on préfère un matériau adsorbant zéolithique dont le diamètre moyen volumique (ou la plus grande longueur) est compris entre 0,3 mm et 7,0 mm, et de préférence encore entre 0,5 mm et 5,0 mm, bornes incluses.
[0062] Selon un autre aspect, l'invention concerne un matériau adsorbant zéolithique présentant :
• un rapport Si/AI dudit adsorbant, tel que 1 < Si/AI < 2,5, de préférence 1 < Si/AI < 2, de préférence encore 1 < Si/AI < 1 ,8, et de préférence encore entre 1 < Si/AI < 1 ,6,
• un volume mésoporeux compris entre 0,08 cm3. g"1 à 0,25 cm3. g"1, de préférence entre 0,08 cm3. g"1 et 0,22 cm3. g"1, et de préférence encore entre 0,09 cm3. g"1 et 0,20 cm3. g"1, de préférence encore entre 0,10 cm3. g"1 et 0,20 cm3. g"1, bornes incluses
• de rapport (Vmicro - Vméso)/Vmicro compris entre -0,5 et 1 ,0, bornes non incluses, de préférence -0,1 et 0,9, bornes non incluses, de préférence 0 et 0,9, bornes non incluses, de préférence encore entre 0,2 et 0,8, bornes non incluses, de préférence encore entre 0,4 et 0,8, bornes non incluses, de manière préférée entre 0,6 et 0,8, bornes non incluses, où le Vmicro est mesuré par la méthode de Dubinin-Raduskevitch et le Vméso est mesuré par la méthode BJH, et
• une teneur en phase non zéolithique (PNZ), telle que 0 < PNZ < 30%, de préférence 3% < PNZ < 25%, de préférence encore 3% < PNZ < 20%, avantageusement 5% < PNZ < 20%, mieux encore 7% < PNZ < 18%, mesuré par DRX, en poids par rapport au poids total du matériau adsorbant zéolithique,
l'ensemble des mesures étant effectuées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
[0063] Le matériau adsorbant zéolithique de l'invention tel qu'il vient d'être défini est un matériau nouveau en ce qu'il résulte de l'agglomération, avec un liant comme écrit plus loin, d'au moins une zéolithe FAU mésoporeuse, où le terme « mésoporeuse », déjà précédemment défini désigne une zéolithe qui présente, conjointement à la microporosité inhérente à la structure de la zéolithe, des cavités internes de taille nanométrique (mésoporosité), facilement identifiables par observation au moyen d'un microscope électronique à transmission (MET ou « TEM » en langue anglaise), comme décrit par exemple dans US7785563.
[0064] Plus précisément, le matériau adsorbant zéolithique comprend au moins une zéolithe FAU mésoporeuse, c'est-à-dire une zéolithe présentant une surface externe, définie par la méthode du t-plot décrite plus loin, comprise entre 40 m2. g"1 et 400 m2. g"1, de préférence entre 60 m2. g"1 et 200 m2. g"1, bornes incluses.
[0065] En outre le matériau adsorbant zéolithique selon l'invention comprend au moins un métal choisi parmi le lithium, le sodium, le calcium et les mélanges de deux ou plusieurs de ces métaux, de préférence deux métaux choisis parmi le lithium, le sodium, le calcium, de préférence sodium et lithium ou sodium et calcium ou sodium, lithium et calcium. On préfère en outre les matériaux adsorbants zéolithiques dans lesquels la teneur en oxyde de baryum est inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence encore inférieure à 0,1 %, en poids par rapport au poids total du matériau.
[0066] Ces caractéristiques rendent le matériau adsorbant zéolithique selon l'invention particulièrement adapté aux traitements des gaz, comme cela été décrit plus haut dans la présente description.
[0067] Le matériau adsorbant zéolithique selon l'invention peut se présenter sous toutes les formes connues de l'homme du métier, et de préférence sous formes géométriques simples, c'est-à-dire sous formes granulaires, par exemple de type billes ou bâtonnets, c'est-à-dire sous formes sphériques ou cylindriques, respectivement. De telles formes simples sont tout particulièrement bien adaptées car elles sont faciles à mettre en œuvre notamment en raison de leurs formes et de leurs tailles compatibles avec les technologies existantes. En outre, ces formes simples rendent les procédés mis en œuvre peu énergivores, le matériau adsorbant zéolithique générant peu de pertes de charge, et présentant des propriétés de transfert améliorées. [0068] Le matériau adsorbant zéolithique selon l'invention peut être préparé selon toute méthode connue de l'homme du métier, et en particulier, et de préférence, à partir du procédé de préparation de FAU mésoporeuse tel que décrit par exemple par W. Schwieger (Angew. Chem. Int. Ed., (2012), 51_, 1962-1965) et en agglomérant les cristaux obtenus avec au moins un liant organique ou minéral, de préférence minéral, de préférence encore un liant choisi parmi les argiles, zéolithisables ou non, et en particulier parmi les kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sépiolites, montmorillonites, bentonites, illites et métakaolins, ainsi que les mélanges de deux ou plusieurs de ces argiles, en toutes proportions.
[0069] L'agglomération et la mise en forme peuvent être réalisées selon toutes les techniques connues de l'homme du métier, telles qu'extrusion, compactage, agglomération sur assiette granulatrice, tambour granulateur, atomisation et autres. Ces différentes techniques présentent l'avantage de permettre la préparation de matériaux adsorbants selon l'invention possédant les tailles et formes précédemment décrites et tout particulièrement bien adaptées aux traitements des gaz.
[0070] Les proportions de liant d'agglomération (par exemple argiles, comme indiqué précédemment) et de zéolithe(s) mis en œuvre pour la préparation sont typiquement celles de l'art antérieur, et varient selon la teneur en PNZ souhaitée et le degré de zéolithisation du liant. Ces proportions sont aisément calculables par l'homme du métier spécialiste de la synthèse d'agglomérés zéolithiques.
[0071] Les agglomérés des matériaux adsorbants zéolithiques, qu'ils soient sous forme de billes, d'extrudés ou autres, ont en général un diamètre volumique moyen, ou une longueur moyenne (plus grande dimension lorsqu'ils ne sont pas sphériques), inférieur ou égal à 7 mm, de préférence compris entre 0,05 mm et 7 mm, de manière encore préférée compris entre 0,2 mm et 5 mm et plus préférentiellement entre 0,2 mm et 2,5 mm.
[0072] Le procédé de préparation des matériaux adsorbants zéolithiques selon l'invention est aisément adaptable à partir des procédés de préparation connus de l'homme du métier, comme déjà indiqué, la mise en œuvre d'au moins une zéolithe FAU mésoporeuse ne modifiant pas sensiblement ces procédés connus, ce qui fait que le procédé de préparation est un procédé de mise en œuvre aisée, rapide et économique et donc facilement industrialisable avec un minimum d'étapes.
[0073] Le matériau adsorbant zéolithique de l'invention comprend de préférence à la fois des macro-pores, des méso-pores et des micro-pores. Par « macro-pores », on entend des pores dont l'ouverture est supérieure à 50 nm, de préférence comprise entre 50 nm et 400 nm. Par « méso-pores », on entend des pores dont l'ouverture est comprise entre 2 nm et 50 nm, bornes non incluses. Par « micro-pores », on entend des pores dont l'ouverture est inférieure à 2 nm.
[0074] Selon un mode de réalisation préféré, le matériau adsorbant zéolithique selon la présente invention présente un volume microporeux (volume de Dubinin-Raduskevitch), exprimé en cm3 par gramme de matériau adsorbant zéolithique, compris entre 0,210 cm3. g-1 et 0,360 cm3. g-1, de préférence entre 0,230 cm3. g-1 et 0,350 cm3. g-1, de préférence encore entre 0,240 cm3. g-1 et 0,350 cm3. g-1, avantageusement entre 0,250 cm3. g-1 et 0,350 cm3. g-1, ledit volume microporeux étant mesuré sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
[0075] Le volume total des macro- et méso-pores des matériaux adsorbants zéolithiques selon l'invention, mesuré par intrusion de mercure, est avantageusement compris entre 0,15 cm3. g-1 et 0,5 cm3. g-1, de préférence compris entre 0,20 cm3. g-1 et 0,40 cm3. g-1 et de manière très préférée compris entre 0,20 cm3. g-1 et 0,35 cm3. g-1, les mesures étant réalisées sur le matériau adsorbant échangé à au moins 95% au sodium.
[0076] La fraction en volume des macropores du matériau adsorbant zéolithique est de préférence comprise entre 0,2 et 1 ,0 du volume total des macro- et méso-pores, de manière très préférée comprise entre 0,4 et 0,8, et de manière encore plus préférée entre 0,45 et 0,65 bornes incluses, les mesures étant réalisées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
[0077] La taille des cristaux de zéolithe de type FAU utilisées pour préparer le matériau adsorbant zéolithique de l'invention, ainsi que la taille des éléments de zéolithe de type FAU dans le matériau adsorbant zéolithique, sont mesurées par observation au microscope électronique à balayage (MEB). De manière préférée, le diamètre moyen des cristaux de zéolithe de type FAU est compris entre 0,1 μηι et 20 μηι de préférence entre 0,5 μηι et 20 μηι, et de préférence encore entre 0,5 μηι et 10 μηι. L'observation MEB permet également de confirmer la présence de phase non zéolithique comprenant par exemple du liant résiduel (non converti lors de l'éventuelle étape de zéolithisation) ou toute autre phase amorphe dans les agglomérés.
[0078] Selon un mode de réalisation préféré, la matériau adsorbant zéolithique selon l'invention présente une surface externe, mesurée par adsorption d'azote et exprimée en m2 par gramme d'adsorbant, supérieure à 20 m2. g-1, et de préférence comprise entre 20 m2. g-1 et 300 m2. g-1, et de préférence encore comprise entre 30 m2. g-1 et 250 m2. g-1 et de manière encore préférée entre 40 m2. g-1 et 200 m2. g-1, et tout particulièrement entre 50 m2. g-1 et 200 m2. g-1 les mesures étant réalisées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium. [0079] Selon un mode de réalisation préféré, la matériau adsorbant zéolithique selon l'invention présente une capacité volumique d'adsorption élevée, c'est-à-dire un volume microporeux volumique exprimé en cm3. cm-3 de matériau adsorbant zéolithique échangé à au moins 95% au sodium, ledit volume microporeux volumique étant supérieur à 0,10 cm3. cm-3, de préférence supérieur à 0,12 cm3. cm"3, de préférence encore supérieur à 0,15 cm3. cm"3, de manière encore préférée supérieur à 0,16 cm3. cm"3, de préférence encore supérieur à 0,18 cm3. cm"3, de manière tout à fait préférée supérieur à 0,20 cm3. cm"3.
[0080] Selon un mode de réalisation préféré, le matériau adsorbant zéolithique selon l'invention comprend au moins une zéolithe FAU mésoporeuse telle que définie précédemment, ladite au moins une zéolithe présentant un rapport Si/AI, tel que 1 < Si/AI < 1 ,5, de préférence 1 < Si/AI < 1 ,4. Selon un aspect tout particulièrement préféré, la ratio Si/AI de ladite au moins une zéolithe FAU mésoporeuse est égal à 1 ,00 +/- 0,05, les mesures étant réalisées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
[0081] Selon encore un autre mode de réalisation préféré, ledit matériau adsorbant zéolithique comprend au moins un cation choisi parmi les ions des Groupes IA, Il A, NIA, IB, MB, IIIB de la classification périodique, les ions trivalents de la série des lanthanides ou terres-rares, l'ion zinc (II), l'ion argent (I), l'ion cuivrique (II), l'ion chromique (III), l'ion ferrique (III), l'ion ammonium et/ou l'ion hydronium, les ions préférés étant les ions calcium, lithium, sodium, potassium, baryum, césium, strontium, zinc et terres-rares et de préférence encore les ions sodium, calcium et lithium, comme indiqué précédemment.
[0082] Les teneurs en métaux du matériau adsorbant zéolithique selon l'invention, exprimées en oxydes, sont de préférence celles indiquées précédemment, et plus particulièrement :
• teneur en CaO comprise entre 0 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 7,5 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 9 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, bornes incluses,
• teneur en U2O comprise entre 0 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 5 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 6,5 et 12% en poids par rapport au poids total de l'adsorbant, bornes incluses,
• teneur en Na2Û comprise entre 0 et 22% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 19% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 15% en poids par rapport au poids total du matériau adsorbant zéolithique, de manière préférée entre 0 et 10% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière tout à fait préférée entre 0 et 7% en poids par rapport au poids total du matériau adsorbant zéolithique, avantageusement entre 0 et 2% en poids par rapport au poids total du matériau adsorbant zéolithique bornes incluses,
• étant entendu que le matériau adsorbant zéolithique comprend au moins un des trois métaux choisis parmi lithium, sodium et calcium,
• ledit matériau adsorbant zéolithique pouvant également comprendre au moins une terre rare, choisie parmi les lanthanides et les actinides, de préférence parmi les lanthanides, en une teneur comprise généralement entre 0 et 10%, de préférence entre 0 et 7%,
• ledit matériau adsorbant zéolithique pouvant également comprendre, dans de faibles quantités (% exprimé en oxyde, inférieur à 5%, de préférence inférieur à 2%) d'un ou plusieurs autres cations autres que lithium, sodium et calcium, par exemple et de préférence choisis parmi le potassium, baryum, strontium, césium, métaux de transition tels que argent, et autres.
[0083] Comme indiqué précédemment, on préfère en outre les matériaux adsorbants zéolithiques dans lesquels la teneur en oxyde de baryum est inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence encore inférieure à 0,1 %, en poids par rapport au poids total du matériau.
[0084] Selon encore un aspect préféré, le matériau adsorbant zéolithique selon l'invention ne présente pas de structure zéolithique autre que la structure FAU (faujasite). L'expression « ne présente pas de structure zéolithique autre que la structure FAU », on entend qu'une analyse DRX (diffraction des rayons X) du matériau adsorbant selon l'invention ne permet pas de détecter plus de 5% en poids, de préférence pas plus de 2% en poids, bornes incluses, de structure zéolithique autre qu'une structure faujasite, par rapport au poids total du matériau adsorbant.
[0085] Selon encore un autre mode de réalisation préféré, l'invention concerne un matériau adsorbant zéolithique tel que défini précédemment et présentant un volume total des macro- et méso-pores, mesuré par intrusion de mercure, compris entre 0,15 cm3. g-1 et 0,5 cm3. g-1, et une fraction en volume des macropores comprise entre 0,2 et 1 fois ledit volume total des macro- et méso-pores, de préférence comprise entre 0,4 et 0,8, bornes incluses, les mesures étant réalisées sur le matériau adsorbant échangé à au moins 95% au sodium. Techniques de caractérisation
[0086] Les propriétés physiques des matériaux adsorbants zéolithiques sont évaluées par les méthodes connues de l'homme du métier, dont les principales d'entre elles sont rappelées ci-dessous.
Granulométrie des cristaux de zéolithes :
[0087] L'estimation du diamètre moyen en nombre des cristaux de zéolithe de type FAU contenus dans les matériaux adsorbants zéolithiques, et qui sont utilisés pour la préparation dudit matériau adsorbant zéolithique, est réalisée par observation au microscope électronique à balayage (MEB).
[0088] Afin d'estimer la taille des cristaux de zéolithe sur les échantillons, on effectue un ensemble de clichés à un grossissement d'au moins 5000. On mesure ensuite le diamètre d'au moins 200 cristaux à l'aide d'un logiciel dédié, par exemple le logiciel Smile View de l'éditeur LoGraMi. La précision est de l'ordre de 3%.
Granulométrie des adsorbants zéolithiques
[0089] La détermination du diamètre volumique moyen (ou « diamètre moyen en volume ») du matériau adsorbant zéolithique du procédé selon l'invention est effectuée par analyse de la distribution granulométrique d'un échantillon de matériau adsorbant par imagerie selon la norme ISO 13322-2:2006, en utilisant un tapis roulant permettant à l'échantillon de passer devant l'objectif de la caméra.
[0090] Le diamètre moyen en volume est ensuite calculé à partir de la distribution granulométrique en appliquant la norme ISO 9276-2:2001. Dans le présent document, on emploie l'appellation « diamètre moyen en volume » ou bien « taille » pour les matériaux adsorbants zéolithiques. La précision est de l'ordre de 0,01 mm pour la gamme de taille des matériaux adsorbants utiles dans le cadre de la présente invention.
Analyse chimique des matériaux adsorbants zéolithiques- ratio Si/AI et taux d'échange :
[0091] Une analyse chimique élémentaire d'un matériau adsorbant zéolithique décrit précédemment, peut être réalisée selon différentes techniques analytiques connues de l'homme du métier. Parmi ces techniques, on peut citer la technique d'analyse chimique par fluorescence de rayons X telle que décrite dans la norme NF EN ISO 12677 : 201 1 sur un spectromètre dispersif en longueur d'onde (WDXRF), par exemple Tiger S8 de la société Bruker.
[0092] La fluorescence X est une technique spectrale non destructive exploitant la photoluminescence des atomes dans le domaine des rayons X, pour établir la composition élémentaire d'un échantillon. L'excitation des atomes généralement par un faisceau de rayons X ou par bombardement avec des électrons, génère des radiations spécifiques après retour à l'état fondamental de l'atome. On obtient de manière classique après étalonnage pour chaque oxyde une incertitude de mesure inférieure à 0,4% en poids.
[0093] D'autres méthodes d'analyse sont par exemple illustrées par les méthodes par spectrométrie d'absorption atomique (AAS) et spectrométrie d'émission atomique avec plasma induit par haute fréquence (ICP-AES) décrites dans les normes NF EN ISO 21587- 3 ou NF EN ISO 21079-3 sur un appareil de type par exemple Perkin Elmer 4300DV.
[0094] Le spectre de fluorescence X a l'avantage de dépendre très peu de la combinaison chimique de l'élément, ce qui offre une détermination précise, à la fois quantitative et qualitative. On obtient de manière classique après étalonnage pour chaque oxyde S1O2 et AI2O3, ainsi que les différents oxydes (tels que ceux provenant des cations échangeables, par exemple sodium), une incertitude de mesure inférieure à 0,4% en poids. La méthode ICP-AES est particulièrement adaptée pour mesurer la teneur en lithium qui permet de calculer la teneur en oxyde de lithium.
[0095] Ainsi, les analyses chimiques élémentaires décrites ci-dessus permettent à la fois de vérifier le ratio Si/AI de la zéolithe utilisée au sein du matériau adsorbant zéolithique et le ratio Si/AI du matériau adsorbant zéolithique. Dans la description de la présente invention, l'incertitude de mesure du ratio Si/AI est de ± 5%. La mesure du ratio Si/AI de la zéolithe présente dans le matériau adsorbant peut également être mesurée par spectroscopie de Résonance Magnétique Nucléaire (RMN) solide du silicium.
[0096] La qualité de l'échange ionique est liée au nombre de moles du cation considéré dans le matériau adsorbant zéolithique après échange. Plus précisément, le taux d'échange par un cation donné est estimé en évaluant le rapport entre le nombre de moles dudit cation et le nombre de moles de l'ensemble des cations échangeables. Les quantités respectives de chacun des cations sont évaluées par analyse chimique des cations correspondants. Par exemple, le taux d'échange par les ions sodium est estimé en évaluant le rapport entre le nombre total de cation Na+ et le nombre total de cations échangeables (par exemple Ca2+, K+, Li+, Ba2+, Cs+, Na+, etc.), la quantité de chacun des cations étant évaluée par analyse chimique des oxydes correspondants (Na20, CaO, K2O, BaO, L12O, CS2O, etc.). Cette méthode de calcul comptabilise également les éventuels oxydes présents dans le liant résiduel du matériau adsorbant zéolithique. Toutefois, la quantité de tels oxydes est considérée comme mineure par rapport aux oxydes provenant des cations des sites échangeables de la ou des zéolithes du matériau adsorbant zéolithique selon l'invention. Volume macroporeux et mésoporeux
[0097] Les volumes macroporeux et mésoporeux sont mesurés, sur un échantillon échangé à au moins 95% au sodium, par porosimétrie par intrusion de mercure. Un porosimètre à mercure type Autopore® 9500 de Micromeritics est utilisé pour analyser la répartition du volume poreux contenu dans les macropores et dans les mésopores.
[0098] La méthode expérimentale, décrite dans le manuel opératoire de l'appareil faisant référence à la norme ASTM D4284-83, consiste à placer un échantillon de matériau adsorbant zéolithique à mesurer (de perte au feu connue) préalablement pesé, dans une cellule du porosimètre, puis, après un dégazage préalable (pression d'évacuation de 30 μηη Hg pendant au moins 10 min), à remplir la cellule avec du mercure à une pression donnée (0,0036 MPa), et ensuite à appliquer une pression croissante par palier jusqu'à 400 MPa afin de faire pénétrer progressivement le mercure dans le réseau poreux de l'échantillon.
[0100] Dans le présent document, les volumes macroporeux et mésoporeux des matériaux adsorbants zéolithiques, exprimés en cm3. g-1, sont ainsi mesurés par intrusion de mercure et rapportés à la masse de l'échantillon en équivalent anhydre, c'est-à-dire la masse dudit matériau corrigée de la perte au feu.
Résistance mécanique des matériaux adsorbants zéolithiques :
[0101] La résistance à l'écrasement en lit des matériaux adsorbants zéolithiques tels que décrits dans la présent invention est caractérisée selon la norme ASTM 7084-04. Les résistances mécaniques à l'écrasement en grains sont déterminées avec un appareil « Grain Crushing strength » commercialisé par Vinci Technologies, selon les normes ASTM D 4179 et D 6175.
Mesure du Volume microporeux :
[0102] La mesure du volume microporeux est estimée par des méthodes classiques telles que les mesures des volumes de Dubinin-Raduskevitch (adsorption d'azote liquide à 77 K ou d'argon liquide à 87 K).
[0103] Le volume de Dubinin-Raduskevitch est déterminé à partir de la mesure de l'isotherme d'adsorption de gaz, tel que l'azote ou l'argon, à sa température de liquéfaction, en fonction de l'ouverture de pores de la zéolithe : on choisira l'azote pour la FAU. Préalablement à l'adsorption, le matériau adsorbant zéolithique est dégazé entre 300°C et 450°C pendant une durée comprise entre 9 heures et 16 heures, sous vide (P < 6,7.10" 4 Pa). La mesure des isothermes d'adsorption est ensuite effectuée sur un appareil de type ASAP 2020 de Micromeritics, en prenant au moins 35 points de mesure à des pressions relatives de rapport Ρ/Ρ0 compris entre 0,002 et 1 . Le volume microporeux est déterminé selon Dubinin et Raduskevitch à partir de l'isotherme obtenu, en appliquant la norme ISO 15901 -3 (2007). Le volume microporeux évalué selon l'équation de Dubinin et Raduskevitch s'exprime en cm3 d'adsorbat liquide par gramme de matériau adsorbant zéolithique. L'incertitude de mesure est de ± 0,003 cm3. g-1, les mesures étant réalisées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium. Mesure du volume microporeux volumique :
[0104] Le volume microporeux volumique se calcule à partir du volume microporeux tel que défini ci-dessus et en multipliant ledit volume microporeux par la masse volumique apparente dudit matériau adsorbant zéolithique. La masse volumique apparente est mesurée comme décrit dans la norme DIN 8948/7.6.
Perte au feu des matériaux adsorbants zéolithiques :
[0105] La perte au feu est déterminée en atmosphère oxydante, par calcination de l'échantillon à l'air à une température de 950°C ± 25°C, comme décrit dans la norme NF EN
196-2 (avril 2006). L'écart-type de mesure est inférieur à 0,1 %.
Analyse qualitative et quantitative par diffraction des rayons X
[0106] La pureté des zéolithes dans les matériaux adsorbants zéolithiques est évaluée par analyse de diffraction aux rayons X, connue de l'homme du métier sous l'acronyme
DRX. Cette identification est réalisée sur un appareil DRX de la marque Bruker.
[0107] Cette analyse permet d'identifier les différentes zéolithes présentes dans le matériau adsorbant car chacune des zéolithes possède un diffractogramme unique défini par le positionnement des pics de diffraction et par leurs intensités relatives.
[0108] Les matériaux adsorbants zéolithiques sont broyés puis étalés et lissés sur un porte échantillon par simple compression mécanique.
[0109] Les conditions d'acquisition du diffractogramme réalisé sur l'appareil D5000 Brucker sont les suivantes :
• tube Cu utilisé à 40 kV - 30 mA ;
• taille des fentes (divergentes, de diffusion et d'analyse) = 0,6 mm ;
• filtre : Ni ;
• dispositif d'échantillon tournant : 15 tr.min"1 ;
• plage de mesure : 3° < 2Θ < 50° ;
• pas : 0,02° ;
• temps de comptage par pas : 2 secondes.
[0110] L'interprétation du diffractogramme obtenu s'effectue avec le logiciel EVA avec identification des zéolithes à l'aide de la base ICDD PDF-2, release 201 1 .
[0111] La quantité des fractions zéolithiques FAU, en poids, est mesurée par analyse par DRX, cette méthode est également utilisée pour mesurer la quantité des fractions zéolithiques autres que FAU. Cette analyse est réalisée sur un appareil de la marque Bruker, puis la quantité en poids des fractions zéolithiques est évaluée au moyen du logiciel TOPAS de la société Bruker. Mesure de la surface externe (m2/g) par la méthode dite du t-plot :
[0112] La méthode de calcul dite du t-plot exploite les données de l'isotherme d'adsorption Q ads = f (P/PO) et permet de calculer la surface microporeuse. On peut en déduire la surface externe en faisant la différence avec la surface BET qui calcule la surface poreuse totale en m2/g (S BET = Surface microporeuse + Surface externe).
[0113] Pour calculer la surface microporeuse par la méthode t-plot, on trace la courbe Q ads (cm3. g-1) en fonction de t = épaisseur de la couche dépendant de la pression partielle P/PO qui se formerait sur un matériau non poreux de référence (t fonction de log (P/PO) : équation de Harkins et Jura appliquée : [13, 99/(0, 034-log(P/P0))A0,5]. Dans l'intervalle t compris entre 0,35 nm et 0,5 nm, on peut tracer une droite qui définit une ordonnée à l'origine Q adsorbée qui permet de calculer la surface microporeuse. Si le matériau n'est pas microporeux la droite passe par 0, les mesures étant réalisées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
Mesure du Volume mésoporeux :
[0114] La mesure du volume mésoporeux, sur un échantillon échangé à au moins 95% au sodium, est estimée par des méthodes classiques telles que les mesures des volumes de Barret-Joyner-Halenda (adsorption d'azote liquide à 77 K).
[0115] Le volume mésoporeux est déterminé à partir de la mesure de l'isotherme d'adsorption de gaz, tel que l'azote, à sa température de liquéfaction, en fonction de l'ouverture de pores de la zéolithe : on choisira l'azote pour la FAU. Préalablement à l'adsorption, le matériau adsorbant zéolithique est dégazé entre 300°C et 450°C pendant une durée comprise entre 9 heures et 16 heures, sous vide (P < 6,7.10"4 Pa). La mesure des isothermes d'adsorption est ensuite effectuée sur un appareil de type ASAP 2020 de Micromeritics, en prenant au moins 35 points de mesure à des pressions relatives de rapport P/PO compris entre 0,002 et 1 . Le volume mésoporeux est déterminé selon Barret- Joyner-Halenda à partir de l'isotherme obtenu, en appliquant la norme ISO 15901 -2 (2007). Le volume mésoporeux évalué selon l'équation de Barret-Joyner-Halenda s'exprime en cm3 d'adsorbat liquide par gramme de matériau adsorbant zéolithique.
[0116] Les exemples suivants servent à illustrer l'invention et n'ont pas pour but d'en limiter la portée telle que définie par les revendications annexées.
Exemple 1 : Préparation d'un matériau adsorbant zéolithique selon l'invention
Étape 1 : Synthèse de cristaux de zéolithe de type LSX mésoporeuse de rapport Si/AI égal à 1 ,01 et de surface externe égale à 95 m2.g"1
a) Préparation du gel de croissance : réacteur agité par vis d'Archimède à 250 tr.min'1. [0117] Dans un réacteur en inox de 3 litres muni d'une double enveloppe chauffante, d'une sonde température et d'un agitateur, on prépare un gel de croissance en mélangeant une solution d'aluminate contenant 300 g d'hydroxyde de sodium (NaOH), 264 g d'hydroxyde de potassium à 85%, 169 g d'alumine trihydratée (AI2O3, 3H2O, contenant 65,2% en poids d'A C ) et 1200 g eau à 25°C en 5 minutes avec une vitesse d'agitation de 250 tr.min"1 avec une solution de silicate contenant 490 g de silicate de sodium, 29,4 g de NaOH et 470 g d'eau à 25°C.
[0118] La stœchiométrie du gel de croissance est la suivante : 4,32 Na2Û / 1 ,85 K2O / AI2O3 / 2,0 S1O2 / 1 14 H2O. L'homogénéisation du gel de croissance est réalisée sous agitation à 250 tr.min"1, pendant 15 minutes, à 25°C.
b) Ajout du gel de nucléation
[0119] On ajoute au gel de croissance, à 25°C sous agitation à 300 tr.min-1, 1 1 ,6 g de gel de nucléation (soit 0,4% en poids) de composition 12 Na20/ AI2O3 / 10 S1O2 / 180 H20 préparé de la même manière que le gel de croissance, et ayant mûri pendant 1 heure à 40°C. Après 5 minutes d'homogénéisation à 250 tr.min-1, la vitesse d'agitation est diminuée à 50 tr.min-1 et poursuivie pendant 30 minutes.
c) Introduction dans le milieu réactionnel de l'agent structurant
[0120] On introduit dans le milieu réactionnel 35,7 g de solution de chlorure de [3-(triméthoxysilyl)propyl]octadecyldiméthylammonium (TPOAC) à 60% dans le méthanol (MeOH) avec une vitesse d'agitation de 250 tr.min-1 pendant 5 minutes (ratio molaire TPOAC/AI2O3 = 0,04). Puis on opère à 30°C une étape de maturation pendant 20 heures à 50 tr.min-1 avant de démarrer la cristallisation.
d) Cristallisation en 2 étapes
[0121] On maintient la vitesse d'agitation à 50 tr.min-1 puis on programme une augmentation de la consigne de la double enveloppe du réacteur à 63°C de façon linéaire afin que le milieu réactionnel monte en température à 60°C en 5 heures suivi d'un palier de 21 heures à 60°C ; puis on fixe la consigne de la double enveloppe du réacteur à 102°C afin que le milieu réactionnel monte en température à 95°C en 60 minutes. Après 3 heures de palier à 95°C, on refroidit le milieu réactionnel en faisant circuler de l'eau froide dans la double enveloppe pour stopper la cristallisation.
e) F Ht ration / lavage
[0122] Les solides sont récupérés sur fritté puis lavés avec de l'eau permutée jusqu'à pH neutre.
f) Séchage / Calcination
[0123] Afin de caractériser le produit, le séchage est réalisé en étuve à 90°C pendant 8 heures. [0124] La calcination du produit séché nécessaire pour libérer à la fois la microporosité (eau) et la mésoporosité en éliminant l'agent structurant est effectuée par un dégazage sous vide avec une montée progressive par pas de 50 °C jusqu'à 400°C pendant une durée comprise entre 9 heures et 16 heures, sous vide (P < 6,7.10"4 Pa).
[0125] Le volume microporeux et la surface externe mesurés selon la méthode du t-plot à partir de l'isotherme d'adsorption d'azote à 77K après dégazage sous vide à 400°C pendant 10 heures sont respectivement 0,215 cm3. g"1 et 95 m2. g"1. Le diamètre moyen en nombre des cristaux est de 6 μηη. Les diamètres des mésopores calculés à partir de l'isotherme d'adsorption d'azote par la méthode DFT sont compris entre 5 nm à 10 nm. Le diffractogramme RX correspond à une structure Faujasite (FAU) pure, aucune zéolithe LTA n'est détectée. Le rapport molaire Si/AI de la LSX mésoporeuse déterminé par fluorescence X est égal à 1 ,01 .
[0126] La Figure 1 présente un cliché obtenu par Microscopie Électronique à Transmission (MET) de la zéolithe ainsi synthétisée.
Étape 2 : Préparation d'agglomérés de zéolithe LSX mésoporeuse
[0127] Dans ce qui suit les masses données sont exprimées en équivalent anhydre.
[0128] On prépare un mélange homogène constitué de 1700 g de cristaux de zéolithe LSX mésoporeuse obtenue à l'étape 1 , de 300 g d'attapulgite Zeoclay®, commercialisée par CECA, ainsi que de la quantité d'eau telle que la perte au feu de la pâte avant mise en forme est de 35%. On utilise la pâte ainsi préparée sur une assiette granulatrice afin de réaliser des billes de matériau adsorbant zéolithique aggloméré. Une sélection par tamisage des billes obtenues est réalisée de façon à recueillir des billes de diamètre compris entre 0,3 et 0,8 mm et de diamètre moyen en volume égal à 0,55 mm.
[0129] Les billes sont séchées une nuit en étuve ventilée à 80°C. Elles sont ensuite calcinées pendant 2 h à 550°C sous balayage à l'azote, puis 2 h à 550°C sous balayage à l'air sec décarbonaté.
Étape 3 : Echange lithium et activation des agglomérés de zéolithe LSX mésoporeuse
[0130] On procède à cinq échanges successifs au moyen de solutions de chlorure de lithium 1 M, à raison de 20 ml. g"1 de solide. Chaque échange est poursuivi pendant 4 h à 100°C, et des lavages intermédiaires sont effectués permettant d'éliminer l'excès de sel à chaque étape. A l'étape finale, on effectue quatre lavages à température ambiante, à raison de 20 ml.g-1.
[0131] Les billes sont séchées une nuit en étuve ventilée à 80°C. Elles sont ensuite activées pendant 2 h à 550°C sous balayage à l'azote. [0132] La teneur en oxyde de lithium L12O, déterminée par ICP-AES, est de 8,9 % en poids par rapport au poids total du matériau adsorbant zéolithique. Le diamètre moyen en volume des billes est de 0,55 mm. La résistance mécanique à l'écrasement en lit des billes de zéolithe LSX mésoporeuse échangée au lithium est de 2,6 daN.
Étape 4 : Caractérisations
[0133] Afin de caractériser le matériau adsorbant zéolithique, on l'échange à au moins 95% au sodium de la manière suivante : le matériau adsorbant zéolithique est introduit dans une solution de chlorure de sodium à 1 mole de NaCI par litre, à 90°C, pendant 3 h, avec un rapport liquide sur solide de 10 mL.g"1. L'opération est répétée 4 fois. Entre chaque échange, les solides sont successivement lavés quatre fois par immersion dans de l'eau à raison de 20 mL.g"1 pour éliminer les excès de sel, puis séchés pendant 12 h à 80°C sous air, avant d'être analysés par fluorescence X. Le pourcentage massique en oxyde de sodium du matériau adsorbant zéolithique est égal à 18,2 % et stable à moins de 1 % entre les opérations d'échange 3 et 4. Les billes sont séchées une nuit en étuve ventilée à 80°C. Elles sont ensuite activées pendant 2 h à 550°C sous balayage à l'azote.
[0134] La surface externe est égale à 99 m2. g-1 d'adsorbant, le volume microporeux est de 0,264 cm3. g"1 d'adsorbant échangé au sodium. Le volume microporeux volumique est de 0,150 cm3 par cm3 de matériau adsorbant zéolithique échangé au sodium. Le volume mésoporeux est égal à 0,165 cm3. g-1 d'adsorbant échangé au sodium. Le volume total des macro- et méso-pores, mesuré par intrusion mercure, est de 0,42 cm3. g"1 d'adsorbant échangé au sodium.
[0135] Le ratio atomique Si/AI de l'adsorbant est de 1 ,25. On détermine par RMN solide du silicium 29 le ratio Si/AI de la zéolithe présente dans le matériau zéolithique adsorbant, qui est égal à 1 ,01.
[0136] La teneur en phase non zéolithique (PNZ), mesurée par DRX et exprimée en poids par rapport au poids total de l'adsorbant, est de 15,3%.
Exemple 2 : Matériau adsorbant zéolithique comparatif
[0137] Le tamis Siliporite® Nitroxy® SXSDM de CECA est un matériau à base de zéolithe LiLSX agglomérée à l'attapulgite. Le diamètre volumique moyen des billes est égal à 0,55 mm. La teneur en oxyde de lithium L12O, mesurée par ICP-AES, est de 9,2 % en poids par rapport au poids total de tamis.
[0138] Comme à l'étape 4 de l'exemple 1 , on procède à des échanges sodium de façon à obtenir un solide échangé à au moins 95 % au sodium. Comme précédemment, ce résultat est obtenu avec 4 échanges consécutifs. [0139] Le pourcentage massique en oxyde de sodium du matériau adsorbant zéolithique, obtenu par fluorescence X, est égal à 18,4 % et stable à moins de 1 % entre les opérations d'échange 3 et 4. Les billes sont séchées une nuit en étuve ventilée à 80°C. Elles sont ensuite activées pendant 2 h à 550°C sous balayage à l'azote.
[0140] La surface externe est égale à 31 m2. g-1 d'adsorbant, le volume microporeux est de 0,265 cm3. g"1 d'adsorbant échangé au sodium. Le volume microporeux volumique est de 0,172 cm3 par cm3 de matériau adsorbant zéolithique échangé au sodium. Le volume mésoporeux est égal à 0,07 cm3. g-1 d'adsorbant échangé au sodium. Le volume total des macro- et méso-pores, mesuré par intrusion mercure, est de 0,31 cm3. g"1 d'adsorbant échangé au sodium.
[0141] Le ratio atomique Si/AI de l'adsorbant est de 1 ,23. La teneur en phase non zéolithique (PNZ), mesurée par DRX et exprimée en poids par rapport au poids total de l'adsorbant, est de 15,3%.
Exemple 3 :
Tests de séparation N2/O2 sur un lit fixe d'adsorbant avec modulation de l'adsorption en pression.
[0142] Un test de séparation N2 / O2 est réalisé par adsorption dans une colonne unique selon un principe présenté dans E. Alpay et coll. {ibid.).
[0143] La Figure 2 décrit le montage réalisé. Une colonne (1 ) de diamètre intérieur égal à 27,5 mm et de hauteur intérieure égale à 600 mm, remplie de matériau adsorbant zéolithique (2), est alimentée en air sec (3) par intermittence au moyen d'une vanne (4). Le temps d'alimentation de la colonne (1 ) par le flux (3) est appelé temps d'adsorption. Quand la colonne (1 ) n'est pas alimentée en air sec, le flux (3) est évacué à l'atmosphère par la vanne (5). Le matériau adsorbant zéolithique adsorbe préférentiellement l'azote, si bien qu'un air enrichi en oxygène sort de la colonne par le clapet anti-retour (6), vers une capacité tampon (7). Une vanne régulatrice (8) délivre en continu le gaz en sortie (9) à un débit constant fixé à 1 NL.min"1.
[0144] Quand la colonne (1 ) n'est pas alimentée, c'est-à-dire quand la vanne (4) est fermée et la vanne (5) est ouverte, la colonne (1 ) est dépressurisée par la vanne (10) à l'atmosphère (1 1 ), pendant une durée appelée temps de désorption. Les phases d'adsorption et de désorption se succèdent les unes aux autres. Les durées de ces phases sont fixes d'un cycle à l'autre et elles sont réglables. Le Tableau 1 indique l'état respectif des vannes en fonction des phases d'adsorption et de désorption. Tableau 1
Figure imgf000028_0001
[0145] Les tests sont réalisés successivement avec les matériaux adsorbants zéolithiques de l'exemple 1 (selon l'invention) et de l'exemple 2 (comparatif). La colonne est chargée à volume constant, avec respectivement 204,5 g et 239,7 g de matériaux adsorbants. La pression à l'entrée est fixée à 280 kPa relatifs.
[0146] Le débit en sortie est fixé à 1 NL.min"1. Le temps d'adsorption est fixé à 0,25 s. Le temps de désorption est variable entre 0,25 s et 1 ,25 s.
[0147] La concentration en oxygène en sortie (9) est mesurée au moyen d'un analyseur d'oxygène Servomex 570A.
[0148] La Figure 3 montre la teneur en oxygène du flux produit en sortie (9) en fonction du temps de désorption fixé pour les matériaux de l'exemple 1 et de l'exemple 2. En dépit d'une masse moindre chargée dans la colonne, le matériau de l'exemple 1 (selon l'invention) s'avère beaucoup plus efficace (en termes de teneur en oxygène du gaz produit) que le solide de l'exemple 2 (comparatif).

Claims

REVENDICATIONS
1. Utilisation, pour la séparation de gaz, d'au moins un matériau adsorbant zéolithique comprenant au moins une zéolithe de type FAU, ledit adsorbant présentant :
• une surface externe, mesurée par adsorption d'azote et exprimée en m2 par gramme d'adsorbant, supérieure à 20 m2. g-1, et de préférence comprise entre 20 m2. g-1 et 300 m2. g-1, et de préférence encore comprise entre 30 m2. g-1 et 250 m2. g-1 et de manière encore plus préférée entre 40 m2. g"1 et 200 m2. g"1, et tout particulièrement entre 50 m2. g"1 et 200 m2.g-1,
• une teneur en phase non zéolithique (PNZ), telle que 0 < PNZ < 30%, de préférence 3% < PNZ < 25%, de préférence encore 3% < PNZ < 20%, avantageusement 5% < PNZ < 20%, mieux encore 7% < PNZ < 18%, mesurée par DRX (Diffraction par Rayons X), en poids par rapport au poids total de l'adsorbant,
• un volume mésoporeux compris entre 0,08 cm3. g"1 à 0,25 cm3. g"1, de préférence entre 0,08 cm3. g"1 et 0,22 cm3. g"1, et de préférence encore entre 0,09 cm3. g"1 et 0,20 cm3. g"1, de préférence encore entre 0,10 cm3. g-1 et 0,20 cm3. g-1, bornes incluses,
• et de ratio atomique Si/AI de l'adsorbant compris entre 1 et 2,5, de préférence entre 1 et 2,0, de préférence encore entre 1 et 1 ,8, et de manière tout à fait préférée, entre 1 et 1 ,6, l'ensemble des mesures étant effectuées sur le matériau adsorbant échangé à au moins 95% au sodium.
2. Utilisation selon la revendication 1 , dans laquelle ledit au moins un matériau adsorbant zéolithique présente un rapport (Vmicro - Vméso)/Vmicro compris entre -0,5 et 1 ,0, bornes non incluses, de préférence entre -0,1 et 0,9, bornes non incluses, de préférence entre 0 et 0,9, bornes non incluses, de préférence encore entre 0,2 et 0,8, bornes non incluses, de préférence encore entre 0,4 et 0,8, bornes non incluses, de manière préférée entre 0,6 et 0,8, bornes non incluses, où Vmicro est le volume microporeux mesuré par la méthode de Dubinin-Raduskevitch et Vméso est le volume mésoporeux mesuré par la méthode Barrett-Joyner-Halenda (BJH), l'ensemble des mesures étant effectuées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
3. Utilisation selon l'une des revendications 1 ou 2, dans laquelle ledit au moins un matériau adsorbant zéolithique présente un volume microporeux (volume de Dubinin- Raduskevitch), exprimé en cm3 par gramme de matériau adsorbant zéolithique, compris entre 0,210 cm3.g"1 et 0,360 cm3.g"1, de préférence entre 0,230 cm3.g"1 et 0,350 cm3.g"1, de préférence entre 0,240 cm3. g"1 et 0,350 cm3. g"1, de préférence encore 0,250 cm3. g"1 et 0,350 cm3. g"1, mesuré sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
4. Utilisation selon l'une quelconque des revendications 1 à 3, dans laquelle ladite au moins une zéolithe de type FAU présente un ratio Si/AI répondant à l'inéquation 1 < Si/AI < 1 ,5, de préférence 1 < Si/AI < 1 ,4, et de manière encore préférée un ratio atomique Si/AI égal à 1 ,00 +/- 0,05, ledit ratio Si/AI étant mesuré par RMN solide du silicium 29.
5. Utilisation selon l'une quelconque des revendications 1 à 4, ledit matériau adsorbant zéolithique comprend au moins un cation choisi parmi les ions des Groupes IA, IIA, NIA, IB, MB, IIIB de la classification périodique, les ions trivalents de la série des lanthanides ou terres-rares, l'ion zinc (II), l'ion argent (I), l'ion cuivrique (II), l'ion chromique (III), l'ion ferrique (III), l'ion ammonium et/ou l'ion hydronium, les ions préférés étant les ions calcium, lithium, sodium, potassium, baryum, césium, strontium, zinc et terres-rares et de préférence encore les ions sodium, calcium et lithium.
6. Utilisation d'au moins un matériau adsorbant zéolithique selon l'une quelconque des revendications 1 à 5, dans laquelle ledit au moins un matériau comprend au moins un métal alcalin ou alcalino-terreux choisi parmi sodium, calcium, lithium, les mélanges de deux ou trois d'entre eux en toutes proportions, dont les teneurs exprimées en oxydes sont telles que :
• teneur en CaO comprise entre 0 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 7,5 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 9 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, bornes incluses,
• teneur en U2O comprise entre 0 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 5 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 6,5 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, bornes incluses, • teneur en Na2Û comprise entre 0 et 22% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 19% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 15% en poids par rapport au poids total du matériau adsorbant zéolithique, de manière préférée entre 0 et 10% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière tout à fait préférée entre 0 et 7% en poids par rapport au poids total du matériau adsorbant zéolithique, avantageusement entre 0 et 2% en poids par rapport au poids total du matériau adsorbant zéolithique bornes incluses,
• étant entendu que le matériau adsorbant zéolithique comprend au moins un des trois métaux choisis parmi lithium, sodium et calcium,
• ledit matériau adsorbant zéolithique pouvant également comprendre au moins une terre rare, choisie parmi les lanthanides et les actinides, de préférence parmi les lanthanides, en une teneur comprise généralement entre 0 et 10%, de préférence entre 0 et 7%,
• ledit matériau adsorbant zéolithique pouvant également comprendre, dans de faibles quantités (% exprimé en oxyde, inférieur à 5%, de préférence inférieur à 2%) d'un ou plusieurs autres cations autres que lithium, sodium et calcium, par exemple et de préférence choisis parmi le potassium, baryum, strontium, césium, métaux de transition tels que argent, et autres.
7. Utilisation selon l'une quelconque des revendications 1 à 6, pour la purification du gaz naturel, en particulier pour l'élimination des impuretés et de préférence pour l'élimination du dioxyde de carbone et/ou des mercaptans, présent(s) dans le gaz naturel.
8. Utilisation selon la revendication 7, dans laquelle le matériau adsorbant zéolithique comprend au moins zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX et CaX, et leurs mélanges.
9. Utilisation selon l'une quelconque des revendications 1 à 6 pour la séparation non cryogénique des gaz industriels et des gaz de l'air.
10. Utilisation selon la revendication 9, pour l'adsorption d'azote dans la séparation de gaz de l'air, en particulier pour l'enrichissement de l'oxygène de l'air.
11. Utilisation selon la revendication 9 ou la revendication 10, dans laquelle le matériau adsorbant zéolithique comprend au moins une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX, LiX, CaX, LiCaX, NaLSX, LiLSX, CaLSX, LiCaLSX, et les mélanges de deux ou plusieurs d'entre eux.
12. Utilisation selon l'une quelconque des revendications 9 à 1 1 , dans les dispositifs d'adsorption modulés en pression selon des cycles très courts, et notamment dans les concentrateurs d'oxygène d'assistance respiratoire.
13. Utilisation selon la revendication 12, dans laquelle le matériau adsorbant zéolithique comprend au moins une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi CaLSX, LiLSX, LiCaLSX, de préférence encore au moins une zéolithe LiLSX, de préférence LiLSX mésoporeuse.
14. Utilisation selon l'une quelconque des revendications 1 à 6, pour la purification de gaz de synthèse, éventuellement pollués par du dioxyde de carbone et une ou plusieurs éventuelles autres impuretés.
15. Utilisation selon la revendication 14, dans laquelle le matériau adsorbant zéolithique comprend au moins une zéolithe FAU, de préférence mésoporeuse, de type choisi parmi NaX, LiX, LiLSX, CaX, CaLSX, LiCaX, LiCaLSX, de préférence choisi parmi NaX, NaLSX, LiCaLSX, et les mélanges de deux ou plusieurs d'entre eux.
16. Utilisation selon l'une quelconque des revendications 1 à 6, pour la purification d'air des unités cryogéniques, en particulier pour l'élimination d'hydrocarbures, de dioxyde de carbone et d'oxydes d'azote, en amont des unités de distillations cryogéniques.
17. Utilisation selon la revendication 16, dans laquelle le matériau adsorbant zéolithique comprenant au moins une zéolithe FAU, de préférence mésoporeuse, de types choisis parmi NaX, NaLSX, CaX, CaLSX, et les mélanges de deux ou plusieurs d'entre eux.
18. Matériau adsorbant zéolithique présentant :
• un rapport Si/AI dudit adsorbant, tel que 1 < Si/AI < 2,5, de préférence 1 < Si/AI < 2, de préférence encore 1 < Si/AI < 1 ,8, et de préférence encore entre 1 < Si/AI < 1 ,6,
• un volume mésoporeux compris entre 0,08 cm3. g"1 à 0,25 cm3. g"1, de préférence entre 0,08 cm3. g"1 et 0,22 cm3. g"1, et de préférence encore entre 0,09 cm3. g"1 et 0,20 cm3. g"1, de préférence encore entre 0,10 cm3. g"1 et 0,20 cm3. g"1, bornes incluses • de rapport (Vmicro - Vméso)A micro compris entre -0,5 et 1 ,0, bornes non incluses, de préférence -0,1 et 0,9, bornes non incluses, de préférence 0 et 0,9, bornes non incluses, de préférence encore entre 0,2 et 0,8, bornes non incluses, de préférence encore entre 0,4 et 0,8, bornes non incluses, de manière préférée entre 0,6 et 0,8, bornes non incluses, où le Vmicro est mesuré par la méthode de Dubinin-Raduskevitch et le Vméso est mesuré par la méthode BJH, et
• une teneur en phase non zéolithique (PNZ), telle que 0 < PNZ < 30%, de préférence 3% < PNZ < 25%, de préférence encore 3% < PNZ < 20%, avantageusement 5% < PNZ < 20%, mieux encore 7% < PNZ < 18%, mesuré par DRX, en poids par rapport au poids total du matériau adsorbant zéolithique,
l'ensemble des mesures étant effectuées sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
19. Matériau adsorbant zéolithique selon la revendication 18, présentant un volume microporeux, exprimé en cm3 par gramme de matériau adsorbant zéolithique, compris entre 0,210 cm3.g-1 et 0,360 cm3.g"1, de préférence entre 0,230 cm3.g"1 et 0,350 cm3.g"1, de préférence encore entre 0,240 cm3. g"1 et 0,350 cm3. g"1, avantageusement entre 0,250 cm3. g"1 et 0,350 cm3. g"1, ledit volume microporeux étant mesuré sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
20. Matériau adsorbant zéolithique selon l'une quelconque des revendications 18 ou
19, dont le volume total des macro- et méso-pores, mesuré par intrusion de mercure, est compris entre 0,15 cm3. g"1 et 0,5 cm3. g"1, de préférence entre 0,20 cm3. g"1 et 0,40 cm3. g"1 et de manière très préférée entre 0,20 cm3. g"1 et 0,35 cm3. g"1, mesuré sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
21. Matériau adsorbant zéolithique selon l'une quelconque des revendications 18 à
20, présentant une surface externe, mesurée par adsorption d'azote et exprimée en m2 par gramme d'adsorbant, supérieure à 20 m2. g"1, et de préférence comprise entre 20 m2. g"1 et 300 m2. g"1, et de préférence encore comprise entre 30 m2. g"1 et 250 m2. g"1 et de manière encore préférée entre 40 m2. g"1 et 200 m2. g"1, et tout particulièrement entre 50 m2. g"1 et 200 m2. g"1, mesuré sur le matériau adsorbant zéolithique échangé à au moins 95% au sodium.
22. Matériau adsorbant zéolithique selon l'une quelconque des revendications 18 à
21 , présentant un volume microporeux volumique exprimé en cm3. cm"3 de matériau adsorbant zéolithique échangé à au moins 95% au sodium, supérieur à 0,10 cm3. cm-3, de préférence supérieur à 0,12 cm3. cm-3, de préférence encore supérieur à 0,15 cm3. cm-3, de manière encore préférée supérieur à 0,16 cm3. cm-3, de préférence encore supérieur à 0,18 cm3. cm"3, de manière tout à fait préférée supérieur à 0,20 cm3. cm"3.
23. Matériau adsorbant zéolithique selon l'une quelconque des revendications 18 à 22, dont les teneurs en métaux, exprimées en oxydes, sont les suivantes :
• teneur en CaO comprise entre 0 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 7,5 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 9 et 20,5% en poids par rapport au poids total du matériau adsorbant zéolithique, bornes incluses,
• teneur en U2O comprise entre 0 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 3 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 5 et 12% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière préférée entre 6,5 et 12% en poids par rapport au poids total de l'adsorbant, bornes incluses,
• teneur en Na2Û comprise entre 0 et 22% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 19% en poids par rapport au poids total du matériau adsorbant zéolithique, de préférence entre 0 et 15% en poids par rapport au poids total du matériau adsorbant zéolithique, de manière préférée entre 0 et 10% en poids par rapport au poids total du matériau adsorbant zéolithique, et de manière tout à fait préférée entre 0 et 7% en poids par rapport au poids total du matériau adsorbant zéolithique, avantageusement entre 0 et 2% en poids par rapport au poids total du matériau adsorbant zéolithique bornes incluses,
• étant entendu que le matériau adsorbant zéolithique comprend au moins un des trois métaux choisis parmi lithium, sodium et calcium,
• ledit matériau adsorbant zéolithique pouvant également comprendre au moins une terre rare, choisie parmi les lanthanides et les actinides, de préférence parmi les lanthanides, en une teneur comprise généralement entre 0 et 10%, de préférence entre 0 et 7%,
• ledit matériau adsorbant zéolithique pouvant également comprendre, dans de faibles quantités (% exprimé en oxyde, inférieur à 5%, de préférence inférieur à 2%) d'un ou plusieurs autres cations autres que lithium, sodium et calcium, par exemple et de préférence choisis parmi le potassium, baryum, strontium, césium, métaux de transition tels que argent, et autres.
24. Matériau selon l'une quelconque des revendications 18 à 23, présentant un volume total des macro- et méso-pores, mesuré par intrusion de mercure, compris entre 0,15 cm3. g-1 et 0,5 cm3. g-1, et une fraction en volume des macropores comprise entre 0,2 et 1 fois ledit volume total des macro- et méso-pores, de préférence comprise entre 0,4 et 0,8, bornes incluses, les mesures étant réalisées sur le matériau adsorbant échangé à au moins 95% au sodium.
PCT/FR2016/050197 2015-02-02 2016-01-29 Adsorbants zeolithiques de haute surface externe et leurs utilisations WO2016124842A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
MX2017009826A MX2017009826A (es) 2015-02-02 2016-01-29 Adsorbentes zeoliticos de alta superficie externa y sus usos.
JP2017540722A JP6876609B2 (ja) 2015-02-02 2016-01-29 大きな外部表面積を有するゼオライト吸着剤および当該ゼオライト吸着剤の使用
EA201791752A EA037828B1 (ru) 2015-02-02 2016-01-29 Цеолитовые адсорбенты с большой внешней поверхностью и их применение
EP16705247.1A EP3253483A1 (fr) 2015-02-02 2016-01-29 Adsorbants zeolithiques de haute surface externe et leurs utilisations
CN201680019844.8A CN107810041A (zh) 2015-02-02 2016-01-29 具有高外表面积的沸石吸附剂及其用途
BR112017015583-4A BR112017015583A2 (pt) 2015-02-02 2016-01-29 adsorventes zeolíticos de alta superfície externa e suas utilizações
KR1020177024578A KR102008079B1 (ko) 2015-02-02 2016-01-29 높은 외부 표면적을 갖는 제올라이트 흡착제들 및 그것의 용도들
CA2974765A CA2974765C (fr) 2015-02-02 2016-01-29 Adsorbants zeolithiques de haute surface externe et leurs utilisations
AU2016214208A AU2016214208B2 (en) 2015-02-02 2016-01-29 Zeolite adsorbents having a high external surface area and uses thereof
CN202310616246.0A CN116440858A (zh) 2015-02-02 2016-01-29 具有高外表面积的沸石吸附剂及其用途
US15/546,847 US10888837B2 (en) 2015-02-02 2016-01-29 Zeolite adsorbents having a high external surface area and uses thereof
SA517382024A SA517382024B1 (ar) 2015-02-02 2017-07-31 مواد امتزاز زيوليت لها مساحة سطح خارجية كبيرة واستخدامها
ZA2017/05338A ZA201705338B (en) 2015-02-02 2017-08-07 Zeolite adsorbents having a high external surface area and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550781A FR3032130B1 (fr) 2015-02-02 2015-02-02 Adsorbants zeolithiques de haute surface externe, leur procede de preparation et leurs utilisations
FR1550781 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016124842A1 true WO2016124842A1 (fr) 2016-08-11

Family

ID=54140522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050197 WO2016124842A1 (fr) 2015-02-02 2016-01-29 Adsorbants zeolithiques de haute surface externe et leurs utilisations

Country Status (14)

Country Link
US (1) US10888837B2 (fr)
EP (1) EP3253483A1 (fr)
JP (2) JP6876609B2 (fr)
KR (1) KR102008079B1 (fr)
CN (2) CN116440858A (fr)
AU (1) AU2016214208B2 (fr)
BR (1) BR112017015583A2 (fr)
CA (1) CA2974765C (fr)
EA (1) EA037828B1 (fr)
FR (1) FR3032130B1 (fr)
MX (1) MX2017009826A (fr)
SA (1) SA517382024B1 (fr)
WO (1) WO2016124842A1 (fr)
ZA (1) ZA201705338B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426284A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 一种介孔纳米x分子筛及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025789B1 (fr) * 2014-09-12 2018-04-20 Arkema France Agregats de nanocristaux de zeolithes
US10343139B2 (en) * 2017-09-28 2019-07-09 Air Products And Chemicals, Inc. Processes using improved RHO adsorbent compositions
FR3078897B1 (fr) * 2018-03-18 2022-05-06 Arkema France Procede de decarbonatation de flux gazeux
US20200063056A1 (en) * 2018-08-23 2020-02-27 M Chemical Company Adsorbent and process for methanol and oxygenates separation
CN109482145A (zh) * 2018-12-29 2019-03-19 山东华泰纸业股份有限公司 一种微纳米级除碳吸附剂的制备方法
FR3103393B1 (fr) * 2019-11-27 2022-07-01 Arkema France Séparation des gaz de l’air
KR102208032B1 (ko) * 2020-06-12 2021-01-27 주식회사 오투트리 Rvsa 방식의 고순도 산소 발생 장치
KR102516098B1 (ko) * 2021-03-25 2023-03-30 서울과학기술대학교 산학협력단 아세트알데하이드의 제거를 위한 흡착제 및 이를 이용한 아세트알데하이드의 제거 방법
WO2023119309A1 (fr) 2021-12-22 2023-06-29 Hindustan Petroleum Corporation Limited Zéolite 13x, sa méthode de synthèse et son utilisation
FR3146137A1 (fr) * 2023-02-28 2024-08-30 Arkema France Purification d’oxygène électrolytique

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893157A1 (fr) 1997-07-22 1999-01-27 Ceca S.A. Adsorbant zéolitique aggloméré amélioré, son procédé d'obtention et son utilisation pour la séparation non-cryogénique de gaz indusriels
WO1999043415A1 (fr) 1998-02-27 1999-09-02 Praxair Technology, Inc. Adsorbant a haute performance destine a l'adsorption modulee en pression
WO1999043416A1 (fr) 1998-02-27 1999-09-02 Praxair Technology, Inc. Separation de gaz plus rapide
EP1048345A1 (fr) 1999-04-29 2000-11-02 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Adsorbant à macroporosité élevée utilisable dans un procédé d'adsorption de gaz, notamment un procédé PSA
FR2794993A1 (fr) 1999-06-18 2000-12-22 Air Liquide Utilisation d'un adsorbant particulaire non homogene dans un procede de separation de gaz
EP1142622A2 (fr) * 2000-04-04 2001-10-10 Tosoh Corporation Procédé de séparation adsorbante de dioxyde de carbone
US6328786B1 (en) 1999-04-19 2001-12-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA process using an adsorbent of intrinsic strength favorable to the adsorption kinetics
EP1205231A1 (fr) * 2000-11-07 2002-05-15 Air Products And Chemicals, Inc. Utilisation de faujasite contenant du lithium dans des procédés de séparation de l'air incluant l'élimination de l'eau et/ou du dioxyde de carbone
WO2002049742A1 (fr) 2000-12-20 2002-06-27 Praxair Technology, Inc. Procede d'adsorption modulee en pression plus rapide
EP1240939A2 (fr) 2001-03-16 2002-09-18 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Absorbant a transfert de matière améliore pour procédé VSA ou PSA
WO2003004135A1 (fr) 2001-07-05 2003-01-16 Praxair Technology, Inc. Concentrateur medical d'oxygene
EP1312406A1 (fr) 2001-11-14 2003-05-21 Ceca S.A. Procédé de purification de gaz de synthèse
EP1354619A1 (fr) * 2000-12-25 2003-10-22 Sumitomo Seika Chemicals Co., Ltd. Procede de separation de gaz hydrogene
FR2873307A3 (fr) * 2004-07-21 2006-01-27 Air Liquide Preparation de zeolithes riches en aluminium pour l'adsorption des gaz
WO2008051904A1 (fr) 2006-10-20 2008-05-02 Praxair Technology, Inc. Adsorbants de séparation de gaz haut débit, et procédé de fabrication
WO2008109882A2 (fr) 2007-03-08 2008-09-12 Praxair Technology, Inc. Adsorbants à vitesse de réaction élevée et à cohésion élevée
WO2008152319A2 (fr) 2007-06-04 2008-12-18 Ceca S.A. Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse
US7785563B2 (en) 2005-10-14 2010-08-31 Korea Advanced Institute Of Science And Technology Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
US20120093715A1 (en) 2010-10-19 2012-04-19 Uop Llc Monolithic zeolite structures with and without hierarchical pore structures and methods for producing the same
US20130052126A1 (en) 2010-10-19 2013-02-28 Uop Llc Monolithic zeolite structures with and without hierarchical pore structures and methods for producing the same
US20130216627A1 (en) 2011-08-26 2013-08-22 Stephen Douglas Galbraith Portable Oxygen Enrichment Device and Method of Use
FR3009299A1 (fr) * 2013-08-05 2015-02-06 Ceca Sa Materiau zeolithique a base de zeolithe mesoporeuse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203887A (en) * 1991-12-11 1993-04-20 Praxair Technology, Inc. Adsorbent beds for pressure swing adsorption operations
IL112027A (en) * 1994-02-14 1999-03-12 Boc Group Inc A method for separating nitrogen from other gases
FR2783439B1 (fr) * 1998-09-23 2000-10-20 Air Liquide Particules d'adsorbant ellipsoidales et leur utilisation dans un procede de production de gaz
FR2800995B1 (fr) * 1999-10-05 2002-01-04 Ceca Sa Adsorbants zeolitiques, leur procede d'obtention et leur utilisation pour la decarbonation de flux gazeux
US6432171B1 (en) * 2000-08-28 2002-08-13 The Boc Group, Inc. Thermal swing adsorption process
US6432170B1 (en) * 2001-02-13 2002-08-13 Air Products And Chemicals, Inc. Argon/oxygen selective X-zeolite
FR2868338B1 (fr) * 2004-03-31 2007-02-02 Ceca Sa Sa Composition zeolitique adsorbante, son procede de preparation et son utilisation pour l'elimination de h20 et ou h2s contenus dans des melanges gazeux ou liquides
CN102316977A (zh) * 2008-12-17 2012-01-11 环球油品公司 含Li交换沸石的吸附剂介质
FR2999098B1 (fr) * 2012-12-12 2022-01-14 Ceca Sa Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
FR3009300B1 (fr) * 2013-08-05 2022-11-25 Ceca Sa Zeolithes a porosite hierarchisee
FR3010402B1 (fr) * 2013-09-09 2015-08-28 Ceca Sa Adsorbants zeolithiques de haute surface externe, leur procede de preparation et leurs utilisations
FI126195B (en) * 2014-01-28 2016-08-15 Upm Kymmene Corp Fiber-based product
FR3024667B1 (fr) * 2014-08-05 2022-01-14 Ceca Sa Adsorbants zeolithiques a faible taux de liant et a haute surface externe, leur procede de preparation et leurs utilisations

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893157A1 (fr) 1997-07-22 1999-01-27 Ceca S.A. Adsorbant zéolitique aggloméré amélioré, son procédé d'obtention et son utilisation pour la séparation non-cryogénique de gaz indusriels
WO1999043415A1 (fr) 1998-02-27 1999-09-02 Praxair Technology, Inc. Adsorbant a haute performance destine a l'adsorption modulee en pression
WO1999043416A1 (fr) 1998-02-27 1999-09-02 Praxair Technology, Inc. Separation de gaz plus rapide
WO1999043418A1 (fr) 1998-02-27 1999-09-02 Praxair Technology, Inc. Procede de separation de gaz par adsorption modulee en pression effectue a l'aide d'adsorbants a haute diffusivite intrinseque et a faibles rapports de pressions
US6328786B1 (en) 1999-04-19 2001-12-11 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA process using an adsorbent of intrinsic strength favorable to the adsorption kinetics
EP1048345A1 (fr) 1999-04-29 2000-11-02 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Adsorbant à macroporosité élevée utilisable dans un procédé d'adsorption de gaz, notamment un procédé PSA
FR2794993A1 (fr) 1999-06-18 2000-12-22 Air Liquide Utilisation d'un adsorbant particulaire non homogene dans un procede de separation de gaz
EP1142622A2 (fr) * 2000-04-04 2001-10-10 Tosoh Corporation Procédé de séparation adsorbante de dioxyde de carbone
EP1205231A1 (fr) * 2000-11-07 2002-05-15 Air Products And Chemicals, Inc. Utilisation de faujasite contenant du lithium dans des procédés de séparation de l'air incluant l'élimination de l'eau et/ou du dioxyde de carbone
WO2002049742A1 (fr) 2000-12-20 2002-06-27 Praxair Technology, Inc. Procede d'adsorption modulee en pression plus rapide
EP1354619A1 (fr) * 2000-12-25 2003-10-22 Sumitomo Seika Chemicals Co., Ltd. Procede de separation de gaz hydrogene
EP1240939A2 (fr) 2001-03-16 2002-09-18 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Absorbant a transfert de matière améliore pour procédé VSA ou PSA
WO2003004135A1 (fr) 2001-07-05 2003-01-16 Praxair Technology, Inc. Concentrateur medical d'oxygene
EP1312406A1 (fr) 2001-11-14 2003-05-21 Ceca S.A. Procédé de purification de gaz de synthèse
FR2873307A3 (fr) * 2004-07-21 2006-01-27 Air Liquide Preparation de zeolithes riches en aluminium pour l'adsorption des gaz
US7785563B2 (en) 2005-10-14 2010-08-31 Korea Advanced Institute Of Science And Technology Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
WO2008051904A1 (fr) 2006-10-20 2008-05-02 Praxair Technology, Inc. Adsorbants de séparation de gaz haut débit, et procédé de fabrication
WO2008109882A2 (fr) 2007-03-08 2008-09-12 Praxair Technology, Inc. Adsorbants à vitesse de réaction élevée et à cohésion élevée
WO2008152319A2 (fr) 2007-06-04 2008-12-18 Ceca S.A. Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse
US20120093715A1 (en) 2010-10-19 2012-04-19 Uop Llc Monolithic zeolite structures with and without hierarchical pore structures and methods for producing the same
US20130052126A1 (en) 2010-10-19 2013-02-28 Uop Llc Monolithic zeolite structures with and without hierarchical pore structures and methods for producing the same
US20130216627A1 (en) 2011-08-26 2013-08-22 Stephen Douglas Galbraith Portable Oxygen Enrichment Device and Method of Use
FR3009299A1 (fr) * 2013-08-05 2015-02-06 Ceca Sa Materiau zeolithique a base de zeolithe mesoporeuse
WO2015019014A2 (fr) * 2013-08-05 2015-02-12 Ceca S.A. Matériau zéolithique à base de zéolithe mésoporeuse

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. ALPAY: "Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption", CHEMICAL ENGINEERING SCIENCE, vol. 49, no. 18, 1994, pages 3059 - 3075
W. SCHWIEGER, ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 1962 - 1965

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426284A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 一种介孔纳米x分子筛及其制备方法
CN114426284B (zh) * 2020-10-15 2023-12-12 中国石油化工股份有限公司 一种介孔纳米x分子筛及其制备方法

Also Published As

Publication number Publication date
US20180008955A1 (en) 2018-01-11
JP2020001038A (ja) 2020-01-09
MX2017009826A (es) 2017-11-02
FR3032130A1 (fr) 2016-08-05
FR3032130B1 (fr) 2019-12-27
CN116440858A (zh) 2023-07-18
EA201791752A1 (ru) 2017-12-29
US10888837B2 (en) 2021-01-12
CA2974765A1 (fr) 2016-08-11
KR20170110672A (ko) 2017-10-11
CA2974765C (fr) 2019-11-19
AU2016214208A1 (en) 2017-08-17
CN107810041A (zh) 2018-03-16
SA517382024B1 (ar) 2021-02-14
JP6876609B2 (ja) 2021-05-26
EA037828B1 (ru) 2021-05-25
EP3253483A1 (fr) 2017-12-13
KR102008079B1 (ko) 2019-08-06
ZA201705338B (en) 2019-05-29
AU2016214208B2 (en) 2018-03-01
BR112017015583A2 (pt) 2018-03-13
JP2018505050A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
EP3253484B1 (fr) Utilisation d&#39;adsorbants zeolithiques de haute surface externe
CA2974765C (fr) Adsorbants zeolithiques de haute surface externe et leurs utilisations
EP3043902B1 (fr) Adsorbants zéolithiques de haute surface externe comprenant du baryum et/ou due potassium et leurs utilisations
CA3044620C (fr) Materiau adsorbant zeolithique, procede de preparation et utilisation pour la separation non-cryogenique des gaz industriels
CA3153854C (fr) Separation des gaz de l&#39;air
CA3122607C (fr) Materiau agglomere zeolithique, procede de preparation et utilisation pour la separation non-cryogenique de gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16705247

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016705247

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2974765

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15546847

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009826

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017540722

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015583

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016214208

Country of ref document: AU

Date of ref document: 20160129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024578

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201791752

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112017015583

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170720