WO2016124575A1 - Système de pile à combustible et procédé pour le faire fonctionner - Google Patents

Système de pile à combustible et procédé pour le faire fonctionner Download PDF

Info

Publication number
WO2016124575A1
WO2016124575A1 PCT/EP2016/052152 EP2016052152W WO2016124575A1 WO 2016124575 A1 WO2016124575 A1 WO 2016124575A1 EP 2016052152 W EP2016052152 W EP 2016052152W WO 2016124575 A1 WO2016124575 A1 WO 2016124575A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
fuel cell
cathode
cell system
operating
Prior art date
Application number
PCT/EP2016/052152
Other languages
German (de)
English (en)
Inventor
Daniel Grundei
Oliver Kleppa
Original Assignee
Volkswagen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Ag filed Critical Volkswagen Ag
Publication of WO2016124575A1 publication Critical patent/WO2016124575A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system having at least one fuel cell stack with cathode chambers and at least one cathode gas supply, the one
  • Cathode gas supply path for supplying a cathode operating gas into the
  • the invention further relates to a method for operating a
  • Fuel cell system comprising at least one fuel cell stack with cathode spaces and at least one cathode gas supply.
  • Fuel cells use the chemical transformation of a fuel with oxygen to water to generate electrical energy.
  • fuel cells contain as core component the so-called membrane electrode assembly (MEA for membrane electrode assembly), which is a composite of an ion-conducting, in particular proton-conducting membrane and in each case an electrode arranged on both sides of the membrane (anode and cathode).
  • MEA membrane electrode assembly
  • the fuel in particular hydrogen H 2 or a
  • DE 101 20 947 A1, DE 10 2004 051 359 A1 and DE 10 2010 035 727 A1 each describe fuel cell systems with a two-stage compression of the cathode gas.
  • the first compressor stage can be realized by an electromotive drive and the second stage by an exhaust-gas turbocharger, in which the one in the cathode gas supply line arranged compressor is coupled to a turbine disposed in the exhaust pipe.
  • DE 10 2010 035 727 A1 these stages can also be combined in a single machine.
  • DE 10 2010 035 727 A1 describes a feed back of moist exhaust gas into the supply air of the fuel cell between the two compressor stages in order, inter alia, to achieve humidification.
  • Exhaust gas turbocharger is formed, the compressor is thus driven via an exhaust gas driven by the cathode and / or anode exhaust gas, and the second compressor stage comprises an electric motor driven compressor. Between the two
  • the cathode operating gas is humidified by water injection.
  • WO 2010 / 020332A1 discloses, in particular, how a gas stream flows through a sensor device
  • Compressor is supplied. Furthermore, it shows, to measure the exhaust air flow of the compressor by means of a valve element.
  • the knowledge of feed and discharge stream characterize the operating state of the compressor. His knowledge allows optimal control of supply and exhaust air flows of fuel cells.
  • DE 100 24 570 A1 shows the installation of two compressors on a common shaft.
  • a compressor in the cathode gas supply path (Kathodenenzustromweg) and the second compressor in the cathode exhaust gas flow path are installed.
  • the invention is based on the object of proposing a fuel cell system which at least partially eliminates these disadvantages. These objects are also achieved in part or fully by a method of operating a fuel cell system having at least one fuel cell stack having the features of the independent claims.
  • Cathode spaces and at least one cathode gas supply comprising a
  • Cathode gas supply path for supplying a cathode operating gas into the
  • the fuel cell system has at least a second compressor, the second compressor having an electric drive and is formed together with the first compressor as a parallel circuit.
  • the fuel cell system has at least a second compressor, wherein the second compressor has an electric drive and is formed as a parallel circuit together with the first compressor, the second compressor can be used as a so-called 'e-booster'.
  • An 'e-booster' serves in particular as variable
  • the 'e-booster' can be advantageously switched on when the dynamic requirements of a start-stop operation of the fuel cell system quickly require a large change in the charge pressure of the cathode operating gas. Furthermore, the 'e-booster' can be advantageously switched on when the dynamic requirements of a start-stop operation of the fuel cell system quickly require a large change in the charge pressure of the cathode operating gas. Furthermore, the 'e-booster' can be advantageously switched on when the dynamic requirements of a start-stop operation of the fuel cell system quickly require a large change in the charge pressure of the cathode operating gas. Furthermore, the
  • the first compressor switchable, so that the fuel cell stack, an increased boost pressure is provided. Because the 'e-booster' is designed small, its inert rotational masses are low. Because they are low, an e-Booster drive accelerates it quickly to a high RPM, quickly providing high boost pressure. The low inertial rotation masses of the 'e-Booster' thus increase its dynamic range compared to that of the first compressor. The first compressor can be made smaller by the combination with the 'e-booster'. Thus, weight and thus costs, especially when using fuel cell systems in vehicle construction, are reduced.
  • the second compressor is arranged in a bypass surrounding the first compressor.
  • a Cathode operating gas can also be supplied bypassing the first compressor of the fuel cell.
  • the inert rotational mass of the first compressor is greater than the sluggish
  • the efficiency of the first compressor is advantageously lower than the efficiency of the second compressor.
  • a conveyed mass flow of the first compressor is greater than the delivered mass flow of the second compressor. This allows the
  • Parallel connection of the two compressors are designed such that the second compressor is switched on or off at the optimum operating point of the first compressor.
  • the first compressor so the main compressor, always in an optimized lower
  • the main compressor can thus be designed for smaller loads and thus operates relatively more efficiently in operating areas of lower power.
  • the first compressor in a first power network and the second compressor in a second power network are arranged. This has in the
  • Low-voltage network for example, a 12V or a 48V network can be connected, while the first compressor can be powered by a high-voltage network.
  • the object is achieved in a further aspect of the invention by a method.
  • the method of operating a fuel cell system solves the problem by switching at least a second compressor to increase the pressure of the cathode operating gas above ambient pressure.
  • the turbo lag of the first compressor can be bridged.
  • the second compressor can be operated alone in the lower load range, if only small
  • Cathode operating gas mass flows are requested from the fuel cell stack.
  • At least one further method step can be carried out additionally or alternatively in any desired number and order. So the second compressor can be switched off when the first compressor reaches its operating performance. Further, the second compressor may be shut down to assist the run-up of the first compressor until it reaches its operating point.
  • FIG. 1 shows a schematic representation of a fuel cell system
  • FIG. 2 is a schematic representation of a fuel cell system with a first and second compressor in series
  • FIG. 4 shows a fuel cell system with a first compressor and a second
  • Figure 5 is a schematic enlargement of the cathode gas supply path
  • Figure 6 is a schematic representation of a fuel cell system according to a preferred embodiment of the invention with a parallel connection of two second compressors with a first compressor.
  • FIG. 1 shows a fuel cell system 1, which is used, for example, in a vehicle, not shown.
  • This vehicle is usually a
  • the fuel cell system 1 comprises as a core component a fuel cell stack 2 which has a plurality of stacked individual cells. Each individual cell comprises in each case an anode space and a cathode space 3 which are separated from one another by an ion-conducting polymer electrolyte membrane (see detail section).
  • the anode and cathode chamber 3 each comprise a catalytic electrode, the anode or the cathode (not shown), which catalyzes the respective partial reaction of the fuel cell reaction.
  • an indicated bipolar plate is further arranged in each case, which serves to supply the operating media into the anode and cathode chambers 3 and also produces the electrical connection between the individual fuel cells.
  • Fuel cell system 1 on the one hand, an anode gas supply 34 and on the other hand, a cathode supply 4.
  • the cathode gas supply 4 comprises a cathode supply path 5, which supplies an oxygen-containing cathode operating gas 6 to the cathode compartments 3 of the fuel cell stack 2, in particular air which is drawn in from the environment.
  • Cathode gas supply 4 further includes a cathode exhaust path 35 which connects the
  • Fuel cell stack 2 dissipates.
  • the cathode operating gas 6 is fed along a cathode gas supply path 5
  • Fuel cell stack 2 supplied from a first compressor 7.
  • This first compressor 7 is supplied either by a gas storage 25 with cathode operating gas 6 or is connected in the usual embodiment to the environment by means of a suction nozzle 26 and a filter 27.
  • the first compressor 7 is in the example shown as electrical
  • the ETL supports the first compressor 7 connected to an electric motor 28.
  • the first compressor 7 can be supplied with additional torque.
  • the first compressor 7 is according to the invention a second compressor 8 connected in parallel 10. To control a guided through the second compressor mass flow, which is
  • Parallel circuit 10 is provided with a valve 8a, the control of which allows feeding of cathode operating gas 6 in the parallel strand of the second compressor 8.
  • the operation of the fuel cell system 1 is thus ensured by the cathode gas supply 4, 4a, 4b.
  • the cathode gas supply 4 thus comprises inter alia the exhaust gas turbocharger 7 with turbine 16 and electric auxiliary drive 36 and a second small compressor 8 with valve 8b, the so-called 'e-booster', connected in parallel to this exhaust gas turbocharger with electric drive 28.
  • the 'e-booster' is switched into the pressure build-up of the cathode gas supply path 5 when an increased cathode operating gas pressure is requested in the cathode compartments 3 of the fuel cell stack 2.
  • the 'e-booster' is powered by its own electric drive 9, as well as the first compressor, the main compressor, here a turbocharger.
  • a control element for example a throttle flap 33, is located in the exhaust gas flow.
  • turbochargers Fundamental goals of using turbochargers in fuel cell systems are regulation of the oxygen flow, for example as a function of the power consumption of a fuel cell.
  • the regulated retrieval of power from the fuel cell is particularly important for the mobile use of fuel cells.
  • An example of mobile use is an electromotive traction of vehicles.
  • turbochargers as
  • Exhaust gas turbocharger and electric turbocharger known manner used.
  • Exhaust gas turbochargers use a portion of an exhaust stream in a turbine to produce a torque. The torque is transmitted to support the drive or the drive of the turbocharger, so exhaust gas turbine and
  • turbocharger Compressor together with an existing between them torque transmission form the exhaust gas turbocharger.
  • Electrically driven turbochargers have an electric drive whose torque drives the turbocharger.
  • turbochargers allow more flexible boost pressure control. An adjustment of the optimal boost pressure at part load is given with them.
  • the boost pressure depends, among other things, on the charge gas temperature and the compressor output.
  • An electric drive of turbochargers is usually due to the sluggish rotational masses of turbochargers.
  • the forces of an exhaust stream of fuel cells are usually not sufficient to accelerate the rotational masses quickly.
  • the inert rotational masses of turbochargers or compressors include the masses of their blades and shafts. Also fasteners that connect blades and shafts together, can be counted to the inert rotational mass.
  • the anode supply includes an anode supply path for supplying an anode operating gas into the anode spaces of the stack and a
  • Anode exhaust path for discharging an anode exhaust gas from the anode chambers for example in the direction of an exhaust gas turbocharger.
  • FIG. 2 shows a fuel cell system 1 not belonging to the present invention in an embodiment with serial connection of the first compressor 7 and the second compressor 8.
  • the pre-compressed cathode operating gas 6 from the first compressor can be compressed faster to operating pressure.
  • Both the first compressor 7 and the second compressor 8 are bypassed by a bypass 1 1.
  • the bypass 1 1 of the second compressor allows its bypass, so that only the first compressor can be supplied with cathode operating gas 6.
  • FIG. 3 shows a sectional view along the line of intersection purple - purple or IIIb - IIIb.
  • the figure shows schematically a half section of a compressor 7 or a compressor 8.
  • the compressor shaft 30 and the blades 31st are part of the inert rotational mass of the compressors 7, 8.
  • the application of increased forces takes more time.
  • This loss of time means a loss of dynamic for the first compressor 7.
  • the second compressor 8 can be added due to its lower inert rotational mass 14 in the pressure build-up of the cathode operating gas.
  • FIG. 4 shows a further schematic illustration of a fuel cell system 1.
  • a meaningful design form of both compressors can be seen.
  • the compressors are expediently designed in such a way that a conveyed mass flow of the first compressor 17a, 17b (FIG. 5), for example of cathode operating gas 6, is greater than the delivered mass flow of the second compressor 18.
  • the first compressor can be considered electric supported turbocharger for setting or laying out the base load and the middle load range.
  • Figure 6 shows a preferred embodiment of the fuel cell system with a
  • the second compressor 8 is connected in parallel with the first second compressor 8 to compensate for its loss of dynamic at startup.
  • the first compressor 7 is connected in a first power grid 19.
  • the second compressor 8 is connected in a second power network 20.
  • the second power grid is within one
  • Vehicle a low-voltage power system, such as the 12 V system or 48 V system.
  • Compressor 8 the power supply 32 of the electric drive of the first
  • Compressor 7 are designed to be smaller. This can be achieved at a power savings in the so-called turbo lag by means of the then switched on, e-Boosters' high operating pressures of the cathode operating gas 6. Consequently, there is a high
  • the cathode gas pressures in the waste gate 22 are higher, so that an exhaust gas turbocharger can be driven faster.
  • a compression is present in particular when the pressure of reactant liquids or gases is compressed above the ambient pressure 21.
  • the peak power can also be increased and a system can be easily scaled to several power classes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un système de pile à combustible comprenant au moins un empilement de cellules élémentaires de pile à combustible comprenant des chambres cathodiques, et au moins une alimentation en gaz pour les cathodes, comprenant un trajet d'alimentation en gaz cathodique permettant d'amener un gaz de travail dans les chambres cathodiques, et au moins un premier compresseur installé sur le trajet d'alimentation en gaz des cathodes. Selon l'invention, le système de pile à combustible comporte au moins un second compresseur, ledit second compresseur étant équipé d'un moteur électrique, et étant monté en parallèle avec le premier compresseur.
PCT/EP2016/052152 2015-02-05 2016-02-02 Système de pile à combustible et procédé pour le faire fonctionner WO2016124575A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202088.6A DE102015202088A1 (de) 2015-02-05 2015-02-05 Brennstoffzellensystem und Verfahren zum Betrieb eines solchen
DE102015202088.6 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016124575A1 true WO2016124575A1 (fr) 2016-08-11

Family

ID=55275100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/052152 WO2016124575A1 (fr) 2015-02-05 2016-02-02 Système de pile à combustible et procédé pour le faire fonctionner

Country Status (2)

Country Link
DE (1) DE102015202088A1 (fr)
WO (1) WO2016124575A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224721A1 (de) * 2016-12-12 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem
WO2019101593A1 (fr) * 2017-11-22 2019-05-31 Robert Bosch Gmbh Turbocompresseur, notamment pour un système de pile à combustible
CN115911488A (zh) * 2023-02-20 2023-04-04 佛山市清极能源科技有限公司 一种燃料电池的固定装置及冷启动方法
US11719118B2 (en) 2021-04-14 2023-08-08 Honeywell International Inc. Air supply system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018214710A1 (de) * 2018-08-30 2020-03-05 Audi Ag Brennstoffzellenvorrichtung, Verfahren zum Betreiben einer Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
DE102021201473A1 (de) 2021-02-16 2022-08-18 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Luftversorgung einer Brennstoffzelle
DE102021118439A1 (de) 2021-07-16 2023-01-19 Zf Cv Systems Global Gmbh Verfahren zum Betreiben eines Brennstoffzellensystems eines Nutzfahrzeugs
DE102022112099A1 (de) 2022-05-13 2023-11-16 Zf Cv Systems Global Gmbh Brennstoffzellensystem und Verfahren zu dessen Betrieb

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061023A1 (de) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Schaltbare parallele, wahlweise sequentielle Aufladung für eine Brennkraftmaschine
DE102010001221A1 (de) * 2010-01-26 2011-07-28 Robert Bosch GmbH, 70469 Verfahren zum Konditionieren eines Eingangsstoffstromes mindestens einer Brennstoffzelle eines Brennstoffzellensystems
DE102010035727A1 (de) * 2010-08-28 2012-03-01 Daimler Ag Aufladeeinrichtung für eine Brennstoffzelle, Brennstoffzelleneinrichtung sowie Verfahren zum Betreiben einer solchen Brennstoffzelleneinrichtung
DE102010052797A1 (de) * 2010-11-27 2012-05-31 Volkswagen Ag Brennstoffzellenfahrzeug
DE102011109339A1 (de) * 2011-08-03 2013-02-07 Daimler Ag Brennstoffzellenvorrichtung, Kraftwagen und Verfahren zum Betreiben des Kraftwagens
WO2014069408A1 (fr) * 2012-10-31 2014-05-08 三菱重工業株式会社 Système de génération d'énergie et procédés de déclenchement et de fonctionnement de pile à combustible dans un système de génération d'énergie
GB2509926A (en) * 2013-01-17 2014-07-23 Intelligent Energy Ltd Compressor system for fuel cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19856499C1 (de) 1998-12-08 2000-10-26 Daimler Chrysler Ag Verfahren und Vorrichtung zur zweistufigen Aufladung von Prozeßluft für eine Brennstoffzelle
DE10024570A1 (de) 2000-05-19 2002-04-18 Xcellsis Gmbh Brennstoffzellensystem sowie Verfahren zum Betreiben des Brennstoffzellensystems
DE10120947A1 (de) 2001-04-22 2002-10-24 Daimler Chrysler Ag Brennstoffzellen-Luftversorgung
US7344787B2 (en) 2003-10-29 2008-03-18 General Motors Corporation Two-stage compression for air supply of a fuel cell system
WO2008104195A1 (fr) * 2007-02-28 2008-09-04 Daimler Ag Système d'alimentation en gaz pour dispositif de piles à combustibles et procédé pour faire fonctionner un système de piles à combustible comprenant le système d'alimentation en gaz
DE102008039407A1 (de) 2008-08-22 2010-02-25 Daimler Ag Verfahren zum Betrieb eines Brennstoffzellensystems mit einer Brennstoffzelle und einem elektrisch antreibbaren Turbolader
DE102011115846A1 (de) 2011-10-13 2013-04-18 Daimler Ag Brennstoffzelleneinrichtung, insbesondere für einen Kraftwagen, sowie Kraftwagen mit einer solchen Brennstoffzelleneinrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061023A1 (de) * 2004-12-18 2006-06-22 Bayerische Motoren Werke Ag Schaltbare parallele, wahlweise sequentielle Aufladung für eine Brennkraftmaschine
DE102010001221A1 (de) * 2010-01-26 2011-07-28 Robert Bosch GmbH, 70469 Verfahren zum Konditionieren eines Eingangsstoffstromes mindestens einer Brennstoffzelle eines Brennstoffzellensystems
DE102010035727A1 (de) * 2010-08-28 2012-03-01 Daimler Ag Aufladeeinrichtung für eine Brennstoffzelle, Brennstoffzelleneinrichtung sowie Verfahren zum Betreiben einer solchen Brennstoffzelleneinrichtung
DE102010052797A1 (de) * 2010-11-27 2012-05-31 Volkswagen Ag Brennstoffzellenfahrzeug
DE102011109339A1 (de) * 2011-08-03 2013-02-07 Daimler Ag Brennstoffzellenvorrichtung, Kraftwagen und Verfahren zum Betreiben des Kraftwagens
WO2014069408A1 (fr) * 2012-10-31 2014-05-08 三菱重工業株式会社 Système de génération d'énergie et procédés de déclenchement et de fonctionnement de pile à combustible dans un système de génération d'énergie
GB2509926A (en) * 2013-01-17 2014-07-23 Intelligent Energy Ltd Compressor system for fuel cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224721A1 (de) * 2016-12-12 2018-06-14 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem
WO2019101593A1 (fr) * 2017-11-22 2019-05-31 Robert Bosch Gmbh Turbocompresseur, notamment pour un système de pile à combustible
CN111373154A (zh) * 2017-11-22 2020-07-03 罗伯特·博世有限公司 涡轮压缩机,尤其用于燃料电池系统
CN111373154B (zh) * 2017-11-22 2022-07-29 罗伯特·博世有限公司 涡轮压缩机,尤其用于燃料电池系统
US11473583B2 (en) 2017-11-22 2022-10-18 Robert Bosch Gmbh Turbo compressor, in particular for a fuel cell system
US11719118B2 (en) 2021-04-14 2023-08-08 Honeywell International Inc. Air supply system
CN115911488A (zh) * 2023-02-20 2023-04-04 佛山市清极能源科技有限公司 一种燃料电池的固定装置及冷启动方法

Also Published As

Publication number Publication date
DE102015202088A1 (de) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2016124575A1 (fr) Système de pile à combustible et procédé pour le faire fonctionner
EP2399313B1 (fr) Système de pile à combustible comportant au moins une pile à combustible
DE102016203866A1 (de) Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems
DE102016208082A1 (de) Brennstoffzellenfahrzeug mit einer Mehrzahl wählbarer Betriebsmodi
WO2013026514A1 (fr) Système de pile à combustible
DE102011087912A1 (de) Brennstoffzellensystem mit verbesserter Kathodengaszufuhr und Verfahren zum Betreiben eines Brennstoffzellensystems
WO2017067966A2 (fr) Agencement pour la recirculation cathodique d'une cellule à combustible et procédé de recirculation cathodique
DE102015207600A1 (de) Verfahren zum Steuern eines Betriebspunktwechsels eines Brennstoffzellenstapels sowie Brennstoffzellensystem
DE102015215927A1 (de) Brennstoffzellensystem sowie Verfahren zum Betreiben eines solchen
DE102015202089A1 (de) Brennstoffzellensystem sowie Fahrzeug mit einem solchen
DE102007028297A1 (de) Vorrichtung und Verfahren zur Versorgung einer Brennstoffzelle mit Oxidationsmittel
DE102018201233A1 (de) Kraftfahrzeug mit einer Brennstoffzelle
DE102009051476A1 (de) Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
DE102015222635A1 (de) Brennstoffzellensystem sowie Verfahren zum Zurückführen von Wasser in einem Brennstoffzellensystem
DE10155217A1 (de) Brennstoffzellensystem und Verfahren zum Betreiben des Brennstoffzellensystems
DE102015221597A1 (de) Kathodenversorgung für eine Brennstoffzelle
DE102016115789A1 (de) Brennstoffzelle und Verfahren zum Betreiben einer Brennstoffzelle
DE10210358B4 (de) Ein Brennstoffzellensystem mit Kompressor sowie Verfahren zum Betrieb eines solchen Brennstoffzellensystems
DE102015001352A1 (de) Brennstoffzellensystem
DE102016118346A1 (de) Kathodenversorgung für eine Brennstoffzelle
DE102016224721A1 (de) Brennstoffzellensystem
EP2754197B1 (fr) Procédé d'exploitation d'un système de piles à combustible
DE102012018712A1 (de) Luftfördereinrichtung und Brennstoffzellensystem
WO2010028664A1 (fr) Ensemble de piles à combustible
DE102007038880A1 (de) Brennstoffzellenanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16702555

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16702555

Country of ref document: EP

Kind code of ref document: A1