WO2016123963A1 - 内嵌式触摸屏、触控检测方法及显示装置 - Google Patents

内嵌式触摸屏、触控检测方法及显示装置 Download PDF

Info

Publication number
WO2016123963A1
WO2016123963A1 PCT/CN2015/087699 CN2015087699W WO2016123963A1 WO 2016123963 A1 WO2016123963 A1 WO 2016123963A1 CN 2015087699 W CN2015087699 W CN 2015087699W WO 2016123963 A1 WO2016123963 A1 WO 2016123963A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
capacitance
capacitance electrodes
electrodes
wire
Prior art date
Application number
PCT/CN2015/087699
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
王海生
刘英明
刘伟
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/907,033 priority Critical patent/US9665207B2/en
Publication of WO2016123963A1 publication Critical patent/WO2016123963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to an in-cell touch panel, a touch detection method, and a display device.
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch screen (Add on Mode Tanel), an on-cell touch panel (On Cell Touch Panel), and an in-cell touch panel (In Cell Touch Panel).
  • the external touch screen is produced separately from the touch screen and the liquid crystal display (LCD), and then bonded together to become a liquid crystal display with touch function; the external touch screen has higher production cost and light transmittance.
  • the in-cell touch screen embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the overall thickness of the module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by major panel manufacturers.
  • the capacitance of each self-capacitance electrode is a fixed capacitance; and when the human body touches the screen, the corresponding The capacitance of the self-capacitance electrode is a fixed capacitance plus a human body capacitance.
  • the touch detection unit can determine the touch position by detecting a change in the capacitance value of each self-capacitance electrode during the touch time period.
  • FIG. 1 is a schematic structural view of a prior art in-cell touch panel.
  • a plurality of self-capacitance electrodes 11 are arranged in an array, and each of the self-capacitance electrodes 11 needs to be connected to the touch detection unit 12 through its corresponding wire 13 to determine the touch position. This results in more wires 13 being required.
  • the present invention provides an in-cell touch panel, a touch detection method, and a display device for solving the problem of more wires required for determining a touch position in the prior art.
  • an in-cell touch panel comprising: a substrate, a plurality of self-capacitance electrodes distributed in an array on the substrate, and a device for detecting self-capacitance electrodes
  • the touch detection unit that determines the touch position is changed by the capacitance value, and the self-capacitance electrode is electrically connected to the touch detection unit through a wire, and the wire includes the first a wire and a second wire;
  • the self-capacitance electrode array comprises an alternating first column self-capacitance electrode and a second column self-capacitance electrode, wherein the number of elements in each column of the self-capacitance electrode is n and there are about m of m Where n and m are both positive integers and n is greater than 1, and the first column of self-capacitance electrodes includes n/m sets of self-capacitance electrodes divided by column adjacent order, each set of m self-capacitance electrodes and the same
  • Capacitor electrode In the above-mentioned in-cell touch panel according to the present invention, since the first column of self-capacitance electrodes includes n/m groups of self-capacitance electrodes, the number of wires required is n/m; similarly, the second column of self-capacitance electrodes includes For the m-group self-capacitance electrode, the number of wires required is m, so the number of wires required to connect the adjacent two columns of self-capacitance electrodes to the touch detection unit is n/m+m.
  • the in-cell touch panel according to the present invention significantly reduces the number of wires required to connect the self-capacitance electrode to the touch detection unit for determining the touch position, when n is When the time is big, the number is reduced more significantly.
  • the self-capacitance electrodes of each of the second self-capacitance electrodes of the second column are respectively in the same order as the self-capacitance electrode groups of the first column.
  • the capacitor electrodes are adjacent to each other.
  • the self-capacitance electrode may have a square shape or a rectangle having a side length equal to twice the length of the adjacent side.
  • the in-cell touch panel may further include a plurality of additional self-capacitance electrodes, each of which is electrically connected to the touch detection unit through a separate third wire.
  • another in-cell touch panel comprising: a substrate, a plurality of self-capacitance electrodes distributed in an array on the substrate, and a change in capacitance value by detecting a self-capacitance electrode a touch detection unit that determines a touch position, the self-capacitance electrode is electrically connected to the touch detection unit through a wire, the wire includes a first wire and a second wire; wherein the self-capacitance electrode array includes an alternately distributed first Row self-capacitance electrode and second row self-capacitance electrode, the number of elements in each row of self-capacitance electrodes is n and there are about m of n, where n and m are positive integers and n is greater than 1, and the first row is Capacitor electrodes include The n/m group self-capacitance electrodes divided by adjacent rows, each set of m self-capacitance electrodes and the same set of self-capacitance electrode
  • the self-capacitance electrodes of each of the self-capacitance electrodes of the second row of self-capacitance electrodes are respectively in the same order as the respective self-capacitance electrode groups of the first row.
  • the self-capacitance electrode columns are adjacent.
  • the shape of the self-capacitance electrode is a square, or a rectangle having a side length equal to twice the length of the adjacent side.
  • the in-cell touch panel further includes a plurality of additional self-capacitance electrodes, each of which is electrically connected to the touch detection unit through a separate third wire.
  • a touch detection method for an in-cell touch panel comprising the steps of:
  • the adjacent self-capacitance electrode refers to a self-capacitance electrode And a self-capacitance electrode adjacent to the row; and when the self-capacitance electrode array is laterally connected to the touch detection unit, the adjacent self-capacitance electrode refers to a self-capacitance electrode and a self-capacitance electrode adjacent to the column;
  • the touch position is determined according to the signal on the adjacent self-capacitance electrode.
  • a display device comprising an in-cell touch screen according to the invention as described above.
  • FIG. 1 is a schematic structural view of an in-cell touch panel in the prior art
  • FIG. 2 is a schematic structural view of an in-cell touch panel according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of an in-cell touch panel according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an in-cell touch panel according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an in-cell touch panel according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an in-cell touch panel according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an in-cell touch panel according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an in-cell touch panel according to a seventh embodiment of the present invention.
  • FIG. 9 is a flowchart of a touch detection method according to an embodiment of the present invention.
  • the in-cell touch panel 20 shown in FIG. 2 includes a substrate (not shown) and a plurality of self-capacitance electrodes 21 distributed in an array on the substrate for determining touch by detecting a change in capacitance value on the self-capacitance electrode 21.
  • the first column of self-capacitance electrodes 24 and the second column of self-capacitance electrodes 25, the number of elements in each column of self-capacitance electrodes 24, 25 is n and there are about m of n, where n and m are both positive integers and n is greater than 1;
  • the first column of self-capacitance electrodes 24 includes n/m groups of self-capacitance electrodes 21 divided in column adjacent order, each group of m self-capacitance electrodes 21 and the same group of self-capacitance electrodes 21 are electrically connected by the same first wire 231
  • the second column self-capacitance electrode 25 includes m sets of sub-capacitance electrodes, each set of n/m self-capacitance electrodes 21 and the same set of self-capacitance electrodes 21 are electrically connected by the same second wire 232, wherein the same group The n/m self-capacitance electrodes 21 are respectively in the second column self-capacitance electrode
  • the small black dots in the respective self-capacitance electrodes 21 schematically show the grouping and wiring of the self-capacitance electrodes 21 of the respective columns in the above-described self-capacitance electrode array structure.
  • the self-capacitance electrodes 21 in which the same black dots are located in the same column belong to the same group and are electrically connected by the same wire (the first 231 or the second wire 232), for example, the first three self-capacitance electrodes 21 in the first column 24.
  • the small black dots are in the same position (both on the left), indicating that they belong to the same group and are electrically connected by the same first wire 231; for example, the second and sixth self-capacitance electrodes 21 in the second column 25 are black.
  • the points are in the same position (both in the middle), indicating that they belong to the same group and are electrically connected by the same second wire 232.
  • the selection of the m value needs to be coordinated with the screen size and the loading condition, which is mainly determined by the touch precision required to be realized, and the higher the precision, the larger the M value.
  • the touch position can be determined by the two adjacent self-capacitance electrode signals. Specifically, as shown in FIG. 2, assuming that the touch position is in the first column 24 and the second column 25, it is apparent that the orientation or coordinates of the X direction can be directly detected; however, due to the first column 24 and the second column 25 is grouped and electrically connected to a plurality of self-capacitance electrodes of the same group, so that the orientation or coordinates of the Y direction cannot be directly and accurately detected, and the self-capacitance with the first column 24 and the second column 25 can be utilized.
  • the above-described grouping and routing of the electrodes determines the Y-direction orientation or coordinates of the touch location. For example, firstly, it is determined that the X position of the touch position is located in the first column 24 and the second column 25; secondly, it is determined which row the Y position is located, and then, for example, the touch group is first detected in the first group of the first column 24.
  • the touch position is in the first group of the second column 25, that is, the first row or the fifth row, thereby taking the intersection of the two to obtain a touch
  • the position is in the first row, so that the touch position (ie, the adjacent self-capacitance electrodes) can be determined to be in the first row of the first column 24 and the first row of the second column 25.
  • the touch position can be determined according to the grouping manner of the self-capacitance electrodes in the self-capacitance electrode column, that is, which two rows of adjacent self-capacitance electrodes are located.
  • the first column of self-capacitance electrodes 24 since the first column of self-capacitance electrodes 24 includes n/m groups of self-capacitance electrodes 21, the number of wires required is n/m; similarly, the first The two columns of self-capacitance electrodes 25 include a total of m self-capacitance electrodes 21, and the number of wires required is m, so the number of wires required for the adjacent two columns of self-capacitance electrodes 24, 25 to be connected to the touch detection unit 22 is n. /m+m. As shown in FIG.
  • the in-cell touch panel 20 according to the first embodiment of the present invention significantly reduces the number of wires required to connect the self-capacitance electrode to the touch detection unit for determining the touch position. When larger, the number is reduced more significantly.
  • FIG. 3 is a block diagram showing the structure of an in-cell touch panel according to an embodiment of the present invention.
  • the grouping manner of the second column 25 self-capacitance electrodes 21 may preferably take the form that the elements in the group of each sub-capacitor electrode 21 of the second column 25 are respectively The self-capacitance electrodes 21 of the same order of positions in the respective self-capacitance electrodes 21 of one column 24 are adjacent to each other. As shown in FIG.
  • the n/m self-capacitance electrodes 21 in each of the second columns 25 are adjacent to the i-th self-capacitance electrode rows of the respective sets of self-capacitance electrodes 21 of the first column 24, wherein i is an integer greater than or equal to 1 and less than or equal to m.
  • n is equal to 6 and m is equal to 3
  • i may be equal to 1, 2, or 3.
  • the two elements of the first group of the second column 25 in FIG. 3 are the first and fourth self-capacitance electrodes 21 adjacent to the first element row in each of the first columns 24, respectively.
  • i is equal to 2
  • the electrode 21 is configured; when i is equal to 3, the two elements of the third group of the second column 25 in FIG. 3 are the third and sixth adjacent to the third element row in each group in the first column 24, respectively.
  • the self-capacitance electrode 21 is formed.
  • FIG. 4 is a block diagram showing the structure of an in-cell touch panel according to a third embodiment of the present invention.
  • 4 is a view showing the structure of the self-capacitance electrode structure shown in FIG.
  • the shape of the self-capacitance electrode 21 is square.
  • the self-capacitance electrode 21 may be a rectangle having a side length equal to twice the length of the adjacent side.
  • the size of the square self-capacitance electrode 21 is 4 mm * 4 mm or 5 mm * 5 mm; or the size of the rectangular self-capacitance electrode 21 is 2 mm * 4 mm.
  • FIG. 5 is a block diagram showing the structure of an in-cell touch panel according to a fourth embodiment of the present invention.
  • any number (especially a prime number) of the self-capacitance electrodes 21 to the touch detection unit 22, that is, when each column of the self-capacitance electrodes 21
  • the number n is not equal to an integer multiple of m or n is a prime number, as shown in FIG.
  • the in-cell touch panel 20 further includes: a plurality of self-capacitance electrodes 26 , each of which is electrically connected to the touch detection unit through a separate third wire 27 . twenty two.
  • the touch detection unit 22 can be a touch detection chip.
  • the touch detection unit 22 can also be other hardware devices or circuits with touch detection functions.
  • FIG. 6 is a block diagram showing the structure of an in-cell touch panel according to a fifth embodiment of the present invention.
  • the in-cell touch panel 20 according to the present invention shown in FIG. 6 includes a substrate (not shown), a plurality of self-capacitance electrodes 21 distributed in an array on the substrate, and a capacitance value detected by detecting the self-capacitance electrode 21.
  • the touch detection unit 22 is configured to determine the touch position, wherein the self-capacitance electrode 21 is electrically connected to the touch detection unit 22 through the wire 23; the wire 23 includes a first wire 231 and a second wire 232, and the self-capacitance electrode 21 is arrayed.
  • the first row of self-capacitance electrodes 27 and the second row of self-capacitance electrodes 28 are alternately distributed, and the number of elements in each row of self-capacitance electrodes 27, 28 is n and there are about m of n, where n and m are positive An integer and n is greater than 1;
  • the first row of self-capacitance electrodes 27 includes n/m sets of self-capacitance electrodes 21 divided in rows adjacent order, each set of m self-capacitance electrodes 21 and the same set of self-capacitance electrodes 21 by the same strip A wire 231 is electrically connected;
  • the second row of self-capacitance electrodes 28 includes m sets of sub-capacitor electrodes, each set of n/m self-capacitance electrodes 21 and the same set of self-capacitance electrodes 21 are electrically connected by the same second wire 232 , wherein the same group of n/m self-capacitance electrodes 21 are respectively self
  • the in-cell touch panel 20 shown in Fig. 6 is similar in structure to Fig. 2 except that Fig. 2 is a vertical wiring, and Fig. 6 is a lateral wiring, that is, the columns become rows. Therefore, similarly, the number of wires required to connect the adjacent two rows of self-capacitance electrodes 21 to the touch detection unit 22 is n/m+m, which can be reduced as compared with the prior art requiring 2n wires. The number of wires. Therefore, the in-cell touch panel 20 according to the fifth embodiment of the present invention can also be significantly compared with the prior art. Reduce the number of wires required to connect the self-capacitance electrode to the touch detection unit to determine the touch position.
  • FIG. 7 shows a schematic structural view of an in-cell touch panel according to a sixth embodiment of the present invention.
  • the manner in which the second row 28 of the self-capacitance electrodes 21 in FIG. 6 is grouped may preferably take the form that the elements in each group of sub-capacitance electrodes 21 of the second row 28 are respectively associated with the respective rows of the first row 27.
  • the self-capacitance electrodes 21 of the same order in the self-capacitance electrode group 21 are adjacent to each other. As shown in FIG.
  • the n/m self-capacitance electrodes 21 in each of the second rows 28 are adjacent to the i-th self-capacitance electrode rows of the respective sets of self-capacitance electrodes 21 of the first row 27, wherein i is an integer greater than or equal to 1 and less than or equal to m.
  • n is equal to 6 and m is equal to 3, and i may be equal to 1, 2, or 3.
  • i is equal to 1
  • the two elements of the first group of the second row 28 in FIG. 6 are the first and fourth self-capacitance electrodes 21 adjacent to the first element row in each of the first rows 27, respectively.
  • i is equal to 2
  • the electrode 21 is constructed; when i is equal to 3, the two elements of the third group of the second row 28 in FIG. 6 are the third and sixth adjacent to the third element row in each group in the first row 27, respectively.
  • the self-capacitance electrode 21 is formed.
  • FIG. 8 is a block diagram showing the structure of an in-cell touch panel according to a seventh embodiment of the present invention.
  • the shape of the self-capacitance electrode 21 is square.
  • the self-capacitance electrode 21 may also be a rectangle having a side length equal to twice the length of the adjacent side.
  • the size of the square self-capacitance electrode 21 is 4 mm * 4 mm or 5 mm * 5 mm; or the size of the rectangular self-capacitance electrode 21 is 2 mm * 4 mm.
  • a touch detection method for an in-cell touch screen in accordance with the present invention, in accordance with one embodiment of the present invention.
  • a touch detection method according to an embodiment of the present invention includes:
  • S901 Obtain a signal on a corresponding adjacent self-capacitance electrode by using the first wire and the second wire;
  • the adjacent self-capacitance electrode is a self-capacitance electrode and a self-capacitance electrode adjacent to the row (or column). Specifically, when the self-capacitance electrode array is vertically connected to the touch detection When measuring the unit, the adjacent self-capacitance electrode refers to a self-capacitance electrode and a self-capacitance electrode adjacent to the row; and when the self-capacitance electrode array is laterally connected to the touch detection unit, the adjacent self-capacitance electrode refers to A self-capacitance electrode and a self-capacitance electrode adjacent to the column.
  • the touch position can be determined by using the method of determining the touch position by using the adjacent self-capacitance electrodes described above with reference to FIG. 2 .
  • the first, second, sixth, seventh, eleventh, and twelfth wires from left to right are both The first wire 231, the third, fourth, fifth, eighth, ninth, tenth, thirteenth, fourteenth, and fifteenth wires are all the second wires 232.
  • first wire 231 and the second wire 232 are the first and third wires, respectively, the corresponding adjacent self-capacitance electrodes 21 are the first and second self-capacitance electrodes 21 in the first row;
  • the wire 231 and the second wire 232 are the second and fifth wires, respectively, and the corresponding adjacent self-capacitance electrodes 21 are the first and second self-capacitance electrodes 21 in the sixth row.
  • the fourth, fifth, ninth, tenth, fourteenth, and fifteenth wires from top to bottom are all the first wires 231, the first root, the first The second, third, sixth, seventh, eighth, eleventh, twelfth, and thirteenth wires are all second wires 232.
  • the first wire 231 and the second wire 232 are the fifth and third wires, respectively, the corresponding adjacent self-capacitance electrodes 21 are the first and second self-capacitance electrodes 21 in the first column;
  • the wire and the second wire are the 10th and 7th wires, respectively, and the corresponding adjacent self-capacitance electrodes 21 are the third and fourth self-capacitance electrodes 21 in the second column.
  • two adjacent columns (or two adjacent rows) of self-capacitance electrodes are connected to the wires required for the touch detection unit.
  • the number is n/m+m, which can reduce the number of wires required to determine the touch position compared to the prior art requiring 2n wires.
  • an embodiment of the present invention further provides a display device including the above-described in-cell touch panel 20 according to an embodiment of the present invention.
  • the number of wires required to connect the two adjacent columns (or two adjacent rows) of the self-capacitance electrodes to the touch detection unit is n/m+m, and Compared with the need for 2n wires in the prior art, the number of wires required to connect the self-capacitance electrode to the touch detection unit for determining the touch position can be reduced.

Abstract

本发明公开了一种内嵌式触摸屏、触控检测方法及显示装置。所述内嵌式触摸屏包括:包括:基板、位于所述基板上呈阵列分布的多个自电容电极、以及用于通过检测自电容电极上的电容值变化判断触控位置的触控侦测单元,自电容电极通过导线电性连接至触控侦测单元,所述导线包括第一导线及第二导线;其中,自电容电极阵列包括交替分布的第一列自电容电极和第二列自电容电极,每列自电容电极中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1,并且第一列自电容电极包括按照列相邻顺序划分的n/m组自电容电极,每组m个自电容电极且同一组的自电容电极由同一条第一导线电性连接;而第二列自电容电极包括m组子电容电极,每组n/m个自电容电极且同一组自电容电极由同一条第二导线电性连接,其中第二列自电容电极中同一组的n/m个自电容电极分别由在第二列自电容电极中的与在第一列自电容电极中属于不同组的自电容电极行相邻的自电容电极构成。

Description

内嵌式触摸屏、触控检测方法及显示装置 技术领域
本发明涉及触控技术领域,尤其涉及内嵌式触摸屏、触控检测方法及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Tanel)、覆盖表面式触摸屏(On Cell Touch Panel)以及内嵌式触摸屏(In Cell Touch Panel)。其中,外挂式触摸屏是将触摸屏与液晶显示屏(Liguid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏;外挂式触摸屏存在制作成本较高、光透过率较低、模组较厚等缺点。而内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减小模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家青睐。
在内嵌式触摸屏中,包括多个同层设置且相互绝缘的自电容电极,当人体未触碰屏幕时,各个自电容电极所承受的电容为固定电容;而当人体触碰屏幕时,对应的自电容电极所承受的电容为固定电容加人体电容。这样,触控侦测单元在触控时间段通过检测各个自电容电极的电容值变化可以判断触控位置。
图1示出了现有技术的内嵌式触摸屏的结构示意图。在图1所示的内嵌式触摸屏10中,多个自电容电极11呈阵列分布并且每个自电容电极11均需要通过自身对应的导线13连接至触控侦测单元12以便判断触控位置,从而导致所需的导线13较多。
发明内容
为了克服上述缺陷,本发明的提供了一种内嵌式触摸屏、触控检测方法及显示装置,用于解决现有技术中为判断触控位置所需的导线较多的问题。
根据本发明的第一方面,提出了一种内嵌式触摸屏,其特征在于,包括:基板、位于所述基板上呈阵列分布的多个自电容电极、以及用于通过检测自电容电极上的电容值变化判断触控位置的触控侦测单元,自电容电极通过导线电性连接至触控侦测单元,所述导线包括第 一导线及第二导线;其中,自电容电极阵列包括交替分布的第一列自电容电极和第二列自电容电极,每列自电容电极中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1,并且第一列自电容电极包括按照列相邻顺序划分的n/m组自电容电极,每组m个自电容电极且同一组的自电容电极由同一条第一导线电性连接;而第二列自电容电极包括m组子电容电极,每组n/m个自电容电极且同一组自电容电极由同一条第二导线电性连接,其中第二列自电容电极中同一组的n/m个自电容电极分别由在第二列自电容电极中的与在第一列自电容电极中属于不同组的自电容电极行相邻的自电容电极构成。在上述根据本发明内嵌式触摸屏中,由于第一列自电容电极共包括n/m组自电容电极,因而所需的导线数量为n/m;同理,第二列自电容电极共包括m组自电容电极,所需的导线数量即为m,因此相邻两列自电容电极连接至触控侦测单元所需的导线数量为n/m+m。因此,与现有技术的导线数量2n相比,根据本发明的内嵌式触摸屏明显减少了为判断触控位置而将自电容电极连接至触控侦测单元所需的导线数量,当n较大时,数量减少得更显著。
优选地,在根据本发明内嵌式触摸屏中,所述第二列自电容电极中的每组自电容电极中的自电容电极分别与第一列的各个自电容电极组中位置顺序相同的自电容电极行相邻。
在根据本发明内嵌式触摸屏中,为了更准确地判断触控位置,所述自电容电极的形状可以为正方形,或者为某一边长等于相邻边长的二倍的矩形。
在根据本发明内嵌式触摸屏中,所述内嵌式触摸屏还可以包括另外的多个自电容电极,其各自通过单独的第三导线电性连接至触控侦测单元。
根据本发明的第二方面,提出了另一种内嵌式触摸屏,包括:基板、位于所述基板上呈阵列分布的多个自电容电极、以及用于通过检测自电容电极上的电容值变化判断触控位置的触控侦测单元,自电容电极通过导线电性连接至触控侦测单元,所述导线包括第一导线及第二导线;其中,自电容电极阵列包括交替分布的第一行自电容电极和第二行自电容电极,每行自电容电极中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1,并且第一行自电容电极包括按照 行相邻顺序划分的n/m组自电容电极,每组m个自电容电极且同一组的自电容电极由同一条第一导线电性连接;而第二行自电容电极包括m组子电容电极,每组n/m个自电容电极且同一组自电容电极由同一条第二导线电性连接,其中第二行自电容电极中同一组的n/m个自电容电极分别由在第二行自电容电极中的与在第一行自电容电极中属于不同组的自电容电极行相邻的自电容电极构成。
在根据本发明第二方面的内嵌式触摸屏中,所述第二行自电容电极中的每组自电容电极中的自电容电极分别与第一行的各个自电容电极组中位置顺序相同的自电容电极列相邻。
在根据本发明第二方面的内嵌式触摸屏中,所述自电容电极的形状为正方形,或者为某一边长等于相邻边长的二倍的矩形。
在根据本发明第二方面的内嵌式触摸屏中,所述内嵌式触摸屏还包括另外的多个自电容电极,其各自通过单独的第三导线电性连接至触控侦测单元。
根据本发明的第三方面,提出了一种用于根据本发明的内嵌式触摸屏的触控检测方法,包括以下步骤:
通过第一导线及第二导线,获取对应的相邻自电容电极上的信号,其中当自电容电极阵列竖向连接至触控侦测单元时,相邻自电容电极是指某个自电容电极和与之行相邻的自电容电极;而当自电容电极阵列横向连接至触控侦测单元时,相邻自电容电极是指某个自电容电极和与之列相邻的自电容电极;
根据相邻自电容电极上的信号,判断触控位置。
根据本发明的第四方面,提出了一种显示装置,包括如如上所述的根据本发明的内嵌式触摸屏。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成现有技术及本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中内嵌式触摸屏的结构示意图;
图2为根据本发明第一实施例的内嵌式触摸屏的结构示意图;
图3为根据本发明第二实施例的内嵌式触摸屏的结构示意图;
图4为根据本发明第三实施例的内嵌式触摸屏的结构示意图;
图5为根据本发明第四实施例的内嵌式触摸屏的结构示意图;
图6为根据本发明第五实施例的内嵌式触摸屏的结构示意图;
图7为根据本发明第六实施例的内嵌式触摸屏的结构示意图;
图8为根据本发明第七实施例的内嵌式触摸屏的结构示意图;以及
图9为本发明一个实施例的触控检测方法的流程图。
附图标记:
10-内嵌式触摸屏,                   11-自电容电极,
13-导线,                           12-触控侦测单元,
20-内嵌式触摸屏,                   21-自电容电极,
22-触控侦测单元,                   23-导线,
231-第一导线,                      232-第二导线,
24-第一列自电容电极,               25-第二列自电容电极,
26-第三导线,                       27-第一行自电容电极,
28-第二行自电容电极,               21’-另外的自电容电极。
具体实施方式
为了进一步说明本发明实施例提供的内嵌式触摸屏、触控检测方法及显示装置,下面结合说明书附图进行详细描述。
图2示出了根据本发明一个实施例的内嵌式触摸屏的结构示意图。图2所示的内嵌式触摸屏20,包括:基板(未示出)、位于基板上呈阵列分布的多个自电容电极21、用于通过检测自电容电极21上的电容值变化判断触控位置的触控侦测单元22,其中自电容电极21通过导线23电性连接至触控侦测单元22;导线23包括第一导线231和第二导线232,自电容电极21阵列包括交替分布的第一列自电容电极24和第二列自电容电极25,每列自电容电极24、25中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1;第一列自电容电极24包括按照列相邻顺序划分的n/m组自电容电极21,每组m个自电容电极21且同一组的自电容电极21由同一条第一导线231电性连接,;而第二列自电容电极25包括m组子电容电极,每组n/m个自电容电极21且同一组自电容电极21由同一条第二导线232电性连接,其中同一组的n/m个自电容电极21分别由在第二列自电容电极25中的与在第一列自电容电极24中属于不同组的自电容电极21行相邻的自电容电极21构成。
如图2所示,各个自电容电极21中的小黑点示意性示出了上述自电容电极阵列结构中的各列自电容电极21的分组和布线情况。同一列中位置相同的小黑点所在的自电容电极21属于同一组且由同一条导线(第一231或第二导线232)电性连接,比如第一列24中前三个自电容电极21的小黑点位置相同(都位于左面),表示它们属于同一组并由同一条第一导线231电性连接;又如,第二列25中第二个和第六个自电容电极21小黑点位置相同(都位于中间),表示它们属于同一组并由同一条第二导线232电性连接。
在上述触摸屏20中,m值的选定需要搭配屏幕尺寸以及加载(loading)状况来协调实现,主要由所需要实现的触控精度决定,精度越高,M值越大。
此外,在根据本发明的上述内嵌式触摸屏20中,可以通过行相邻的两个自电容电极信号来确定触控位置。具体而言,如图2所示,假设触控位置在第一列24和第二列25,显然X方向的方位或坐标是可以直接探测出的;然而,由于第一列24和第二列25中都进行了分组并将同一组的多个自电容电极电性相连,因而无法直接准确检测出Y方向的方位或坐标,这时可以借助与第一列24和第二列25的自电容电极的上述分组和布线方式来确定触控位置的Y方向方位或坐标。例如,首先,确定了触控位置的X方位位于第一列24和第二列25;其次,判断Y方位位于哪一行,这时比如先检测出触控位置在第一列24的第一组中,即位于第一、第二或第三行,接着确定触控位置在第二列25的第一组中,即第一行或第五行,由此取二者的交集,得出触控位置位于第一行,于是可以确定触控位置(即行相邻的自电容电极)位于第一列24第一行和第二列25第一行。以此类推,可以根据自电容电极列中自电容电极的分组方式确定触控位置,即确定其位于哪两个行相邻的自电容电极处。
在根据本发明第一实施例的内嵌式触摸屏20中,由于第一列自电容电极24共包括n/m组自电容电极21,因而所需的导线数量为n/m;同理,第二列自电容电极25共包括m组自电容电极21,所需的导线数量即为m,因此相邻两列自电容电极24、25连接至触控侦测单元22所需的导线数量为n/m+m。而如图1所示,在现有技术的内嵌式触摸屏10中,由于每个自电容电极11均通过单独的导线12连接至触控侦测单元13,因 此,当每列自电容电极11数量为n时,相邻两列的自电容11所需的导线12数量为2n,显然2n>n/m+m。因此,与现有技术相比,根据本发明第一实施例的内嵌式触摸屏20明显减少了为判断触控位置而将自电容电极连接至触控侦测单元所需的导线数量,当n较大时,数量减少得更显著。
以图1和图2所示的实际数量为例,自电容电极数量n等于6,且m等于3。于是,图1所示的现有技术的内嵌式触摸屏10将两列自电容电极11连接至触控侦测单元13所需的导线数量2n为2x6=12,而图2所示的根据本发明第一实施例的内嵌式触摸屏20将两列自电容电极21连接至触控侦测单元22所需的导线数量n/m+m具体为6/3+3=5,明显小于图1所示的导线数量12。
图3示出了根据本发明一个实施例的内嵌式触摸屏的结构示意图。为了实现布线整齐,在图2所示的实施例中,第二列25自电容电极21的分组方式优选地可以采用如下形式:第二列25的每个子电容电极21组中的元素分别与第一列24的各个自电容电极21组中位置顺序相同的自电容电极21行相邻。如图3所示,第二列25中每组中的n/m个自电容电极21分别与第一列24的各组自电容电极21中的第i个自电容电极行相邻,其中,i为大于或者等于1并且小于或者等于m的整数。具体而言,在图3中,n等于6且m等于3,i可以等于1、2或3。当i等于1时,图3中第二列25第一组的2个元素分别为与第一列24中各组中第1个元素行相邻的第1个和第4个自电容电极21构成;当i等于2时,图3中第二列25第二组的2个元素分别为与第一列24中各组中第2个元素行相邻的第2个和第5个自电容电极21构成;当i等于3时,图3中第二列25第三组的2个元素分别为与第一列24中各组中第3个元素行相邻的第3个和第6个自电容电极21构成。这样,由于同组中的自电容电极21由同一条导线连接,因而由这种分组方式得到如图3所示的对称布线的方式更整齐、规范。
图4示出了根据本发明第三实施例的内嵌式触摸屏的结构示意图。图4是图3所示的自电容电极结构经过切割后的结构。一般地,为了提高判断触控位置的准确度,如图3所示,自电容电极21的形状为正方形。或者图4所示,自电容电极21也可以是某一边长等于相邻边长的二倍的矩形。例如,正方形自电容电极21的尺寸为4毫米*4毫米或5毫米*5毫米;或者矩形自电容电极21的尺寸为2毫米*4毫米。
图5示出了根据本发明第四实施例的内嵌式触摸屏的结构示意图。 为了在减少导线23的数量的同时,更好地实现将任意个数(尤其是素数个)的自电容电极21电性连接至触控侦测单元22,即当每列自电容电极21的个数n不等于m的整数倍或者n是素数时,如图5所示,当m<n时,可以将n分解为n=m[n/m]+q,其中[.]为高斯函数(取整),q为n除以m的余数,对于第一和第二列的前m[n/m]个自电容电极21采用前述图2-4所示的分组和布线方法进行处理,而对于剩下的q个自电容电极21,可以采用现有技术的布线方式将其各自用单独的导线连接至触控侦测单元22。除了与图3所示相同之处之外,如图5所示,内嵌式触摸屏20还包括:多个自电容电极26,其各自通过单独第三导线27电性连接至触控侦测单元22。
在根据本发明的内嵌式触摸屏的各个实施例中,触控侦测单元22可以为触控侦测芯片。当然,触控侦测单元22也可以为其他具备触控侦测功能的硬件设备或电路等。
图6示出了根据本发明第五实施例的内嵌式触摸屏的结构示意图。图6所示的根据本发明的内嵌式触摸屏20,包括:基板(未示出)、位于基板上呈阵列分布的多个自电容电极21、用于通过检测自电容电极21上的电容值变化判断触控位置的触控侦测单元22,其中自电容电极21通过导线23电性连接至触控侦测单元22;导线23包括第一导线231和第二导线232,自电容电极21阵列包括交替分布的第一行自电容电极27和第二行自电容电极28,每行自电容电极27、28中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1;第一行自电容电极27包括按照行相邻顺序划分的n/m组自电容电极21,每组m个自电容电极21且同一组的自电容电极21由同一条第一导线231电性连接,;而第二行自电容电极28包括m组子电容电极,每组n/m个自电容电极21且同一组自电容电极21由同一条第二导线232电性连接,其中同一组的n/m个自电容电极21分别由在第二行自电容电极28中的与在第一行自电容电极27中属于不同组的自电容电极21行相邻的自电容电极21构成。
图6所示的内嵌式触摸屏20在结构上与图2类似,区别在于,图2是竖向布线,而图6是横向布线,即列变为行。因此,类似地,将相邻两行自电容电极21连接至触控侦测单元22所需的导线数量为n/m+m,与现有技术中需要2n条导线相比,可以减少所需的导线数量。因此,与现有技术相比,根据本发明第五实施例的内嵌式触摸屏20也可以明显 减少为判断触控位置而将自电容电极连接至触控侦测单元所需的导线数量。
为了实现布线整齐,与图3所示的实施例类似,图7示出了根据本发明第六实施例的内嵌式触摸屏的结构示意图。如图7所示,图6中的第二行28自电容电极21的分组方式优选地可以采用如下形式:第二行28的每个子电容电极21组中的元素分别与第一行27的各个自电容电极21组中位置顺序相同的自电容电极21行相邻。如图6所示,第二行28中每组中的n/m个自电容电极21分别与第一行27的各组自电容电极21中的第i个自电容电极行相邻,其中,i为大于或者等于1并且小于或者等于m的整数。具体而言,在图6中,n等于6且m等于3,i可以等于1、2或3。当i等于1时,图6中第二行28第一组的2个元素分别为与第一行27中各组中第1个元素行相邻的第1个和第4个自电容电极21构成;当i等于2时,图6中第二行28第二组的2个元素分别为与第一行27中各组中第2个元素行相邻的第2个和第5个自电容电极21构成;当i等于3时,图6中第二行28第三组的2个元素分别为与第一行27中各组中第3个元素行相邻的第3个和第6个自电容电极21构成。这样,由于同组中的自电容电极21由同一条导线连接,因而由这种分组方式得到如图6所示的对称布线的方式更整齐、规范。
图8示出了根据本发明第七实施例的内嵌式触摸屏的结构示意图。一般地,为了提高判断触控位置的准确度,如图3和图7所示,自电容电极21的形状为正方形。或者,类似于图4,如图8所示,自电容电极21也可以是某一边长等于相邻边长的二倍的矩形。例如,正方形自电容电极21的尺寸为4毫米*4毫米或5毫米*5毫米;或者矩形自电容电极21的尺寸为2毫米*4毫米。
图9示出了根据本发明一个实施例的用于根据本发明的内嵌式触摸屏的触控检测方法的流程图。如图9所示,根据本发明实施例的触控检测方法包括:
S901、通过第一导线及第二导线,获取对应的相邻自电容电极上的信号;
S902、根据相邻自电容电极上的信号,判断触控位置。
在步骤S901中,相邻自电容电极为某个自电容电极和行(或列)相邻的自电容电极。具体而言,当自电容电极阵列竖向连接至触控侦 测单元时,相邻自电容电极是指某个自电容电极和与之行相邻的自电容电极;而当自电容电极阵列横向连接至触控侦测单元时,相邻自电容电极是指某个自电容电极和与之列相邻的自电容电极。
在步骤S902中,可以利用上文结合图2所述的利用行相邻自电容电极确定触控位置的方法来判断触控位置。
例如,如图3所示,根据本发明内嵌式触摸屏20的结构中,从左至右的第1根、第2根、第6根、第7根、第11根和第12根导线均为第一导线231,第3根、第4根、第5根、第8根、第9根、第10根、第13根、第14根和第15根导线均为第二导线232。若第一导线231和第二导线232分别为第1根和第3根导线,则对应的相邻自电容电极21为第一行中第一个和第二个自电容电极21;若第一导线231和第二导线232分别为第2根和第5根导线,则对应的相邻自电容电极21为第六行中第一个和第二个自电容电极21。
又例如,如图7所示,从上至下的第4根、第5根、第9根、第10根、第14根和第15根导线均为第一导线231,第1根、第2根、第3根、第6根、第7根、第8根、第11根、第12根和第13根导线均为第二导线232。若第一导线231和第二导线232分别为第5根和第3根导线,则对应的相邻自电容电极21为第一列中第一个和第二个自电容电极21;若第一导线和第二导线分别为第10根和第7根导线,则对应的相邻自电容电极21为第二列中第三个和第四个自电容电极21。在根据本发明上述实施例的用于根据本发明的内嵌式触摸屏的触控检测方法中,相邻两列(或相邻两行)自电容电极连接至触控侦测单元所需的导线数量为n/m+m,与现有技术中需要2n个导线相比,可以减少判断触控位置所需的导线数量。
此外,本发明实施例还提供了一种显示装置,包括上述根据本发明实施例的内嵌式触摸屏20。基于上面的描述,在根据本发明实施例的显示装置中,相邻两列(或相邻两行)自电容电极连接至触控侦测单元所需的导线数量为n/m+m,与现有技术中需要2n个导线相比,可以减少为判断触控位置将自电容电极连接至触控侦测单元所需的导线数量。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种内嵌式触摸屏,其特征在于,包括:基板、位于所述基板上呈阵列分布的多个自电容电极、以及用于通过检测自电容电极上的电容值变化判断触控位置的触控侦测单元,自电容电极通过导线电性连接至触控侦测单元,所述导线包括第一导线及第二导线;其中,自电容电极阵列包括交替分布的第一列自电容电极和第二列自电容电极,每列自电容电极中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1,并且第一列自电容电极包括按照列相邻顺序划分的n/m组自电容电极,每组m个自电容电极且同一组的自电容电极由同一条第一导线电性连接;而第二列自电容电极包括m组子电容电极,每组n/m个自电容电极且同一组自电容电极由同一条第二导线电性连接,其中第二列自电容电极中同一组的n/m个自电容电极分别由在第二列自电容电极中的与在第一列自电容电极中属于不同组的自电容电极行相邻的自电容电极构成。
  2. 根据权利要求1所述的内嵌式触摸屏,其特征在于,所述第二列自电容电极中的每组自电容电极中的自电容电极分别与第一列的各个自电容电极组中位置顺序相同的自电容电极行相邻。
  3. 根据权利要求1所述的内嵌式触摸屏,其特征在于,所述自电容电极的形状为正方形,或者为某一边长等于相邻边长的二倍的矩形。
  4. 根据权利要求1所述的内嵌式触摸屏,其特征在于,所述内嵌式触摸屏还包括另外的多个自电容电极,其各自通过单独的第三导线电性连接至触控侦测单元。
  5. 一种内嵌式触摸屏,其特征在于,包括:基板、位于所述基板上呈阵列分布的多个自电容电极、以及用于通过检测自电容电极上的电容值变化判断触控位置的触控侦测单元,自电容电极通过导线电性连接至触控侦测单元,所述导线包括第一导线及第二导线;其中,自电容电极阵列包括交替分布的第一行自电容电极和第二行自电容电极,每行自电容电极中元素的个数为n且存在n的约数m,其中n和m均为正整数且n大于1,并且第一行自电容电极包括按照行相邻顺序划分的n/m组自电容电极,每组m个自电容电极且同一组的自电容电极由同一条第一导线电性连接;而第二行自电容电极包括m组子电容电极,每 组n/m个自电容电极且同一组自电容电极由同一条第二导线电性连接,其中第二行自电容电极中同一组的n/m个自电容电极分别由在第二行自电容电极中的与在第一行自电容电极中属于不同组的自电容电极列相邻的自电容电极构成
  6. 根据权利要求5所述的内嵌式触摸屏,其特征在于,所述第二行自电容电极中的每组自电容电极中的自电容电极分别与第一行的各个自电容电极组中位置顺序相同的自电容电极列相邻。
  7. 根据权利要求5所述的内嵌式触摸屏,其特征在于,所述自电容电极的形状为正方形,或者为某一边长等于相邻边长的二倍的矩形。
  8. 根据权利要求5所述的内嵌式触摸屏,其特征在于,所述内嵌式触摸屏还包括另外的多个自电容电极,其各自通过单独的第三导线电性连接至触控侦测单元。
  9. 一种用于权利要求1-8任一项所述的内嵌式触摸屏的触控检测方法,其特征在于,包括以下步骤:
    通过第一导线及第二导线,获取对应的相邻自电容电极上的信号,其中当自电容电极阵列竖向连接至触控侦测单元时,相邻自电容电极是指某个自电容电极和与之行相邻的自电容电极;而当自电容电极阵列横向连接至触控侦测单元时,相邻自电容电极是指某个自电容电极和与之列相邻的自电容电极;
    根据相邻自电容电极上的信号,判断触控位置。
  10. 一种显示装置,其特征在于,包括如权利要求1-8中任一项所述的内嵌式触摸屏。
PCT/CN2015/087699 2015-02-02 2015-08-20 内嵌式触摸屏、触控检测方法及显示装置 WO2016123963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,033 US9665207B2 (en) 2015-02-02 2015-08-20 In-cell touch panel, touch detection method and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510054298.9 2015-02-02
CN201510054298.9A CN104571770B (zh) 2015-02-02 2015-02-02 内嵌式触摸屏、触控检测方法及显示装置

Publications (1)

Publication Number Publication Date
WO2016123963A1 true WO2016123963A1 (zh) 2016-08-11

Family

ID=53087994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087699 WO2016123963A1 (zh) 2015-02-02 2015-08-20 内嵌式触摸屏、触控检测方法及显示装置

Country Status (3)

Country Link
US (1) US9665207B2 (zh)
CN (1) CN104571770B (zh)
WO (1) WO2016123963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509092A (zh) * 2017-02-27 2018-09-07 晨星半导体股份有限公司 双层互容式触控面板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933899B2 (en) * 2014-05-30 2018-04-03 Boe Technology Group Co., Ltd. Capacitive touch structure, in-cell touch panel, display device and scanning method
CN104571770B (zh) * 2015-02-02 2017-07-28 京东方科技集团股份有限公司 内嵌式触摸屏、触控检测方法及显示装置
CN107608577B (zh) * 2015-05-29 2019-11-15 上海天马微电子有限公司 一种触摸屏、触控显示面板及触控设备
US10442533B2 (en) 2015-12-14 2019-10-15 Autel Robotics Co., Ltd. Battery used for unmanned aerial vehicle and unmanned aerial vehicle
CN107479240A (zh) * 2017-08-31 2017-12-15 广东欧珀移动通信有限公司 阵列基板、自容式触控显示面板和电子设备
CN107357466B (zh) * 2017-07-31 2019-06-25 Oppo广东移动通信有限公司 阵列基板、自容式触控显示面板和电子设备
US20190034003A1 (en) * 2017-07-31 2019-01-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Array substrate, self-capacitive touch display panel, and electronic apparatus
CN107506080B (zh) * 2017-08-31 2020-05-12 Oppo广东移动通信有限公司 阵列基板、显示面板和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258492A (zh) * 2012-02-20 2013-08-21 乐金显示有限公司 具有集成型触摸屏的显示装置及其驱动方法
CN103970392A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN104267862A (zh) * 2014-09-19 2015-01-07 京东方科技集团股份有限公司 一种触摸屏、其触控定位方法及显示装置
CN104571770A (zh) * 2015-02-02 2015-04-29 京东方科技集团股份有限公司 内嵌式触摸屏、触控检测方法及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9146644B2 (en) * 2010-03-08 2015-09-29 Nuvoton Technology Corporation Systems and methods for detecting multiple touch points in surface-capacitance type touch panels
EP2569687A2 (en) * 2010-05-14 2013-03-20 Elo Touch Solutions, Inc. System and method for detecting locations of touches on a touch sensor
US9001066B2 (en) * 2013-05-06 2015-04-07 Rajkumari Mohindra PAPR optimized OFDM touch engine with tone spaced windowed demodulation
US9372573B2 (en) * 2013-05-31 2016-06-21 Boe Technology Group Co., Ltd. Array substrate, touch panel and driving method thereof
CN104671770A (zh) 2013-12-02 2015-06-03 青岛永通电梯工程有限公司 一种制造电阻的方法
CN104020912B (zh) * 2014-05-30 2017-02-15 京东方科技集团股份有限公司 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
TWI537805B (zh) * 2014-12-11 2016-06-11 義隆電子股份有限公司 單層電容式觸控面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258492A (zh) * 2012-02-20 2013-08-21 乐金显示有限公司 具有集成型触摸屏的显示装置及其驱动方法
CN103970392A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN104267862A (zh) * 2014-09-19 2015-01-07 京东方科技集团股份有限公司 一种触摸屏、其触控定位方法及显示装置
CN104571770A (zh) * 2015-02-02 2015-04-29 京东方科技集团股份有限公司 内嵌式触摸屏、触控检测方法及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509092A (zh) * 2017-02-27 2018-09-07 晨星半导体股份有限公司 双层互容式触控面板
CN108509092B (zh) * 2017-02-27 2021-03-12 奕力科技(开曼)股份有限公司 双层互容式触控面板

Also Published As

Publication number Publication date
CN104571770A (zh) 2015-04-29
US20160370925A1 (en) 2016-12-22
US9665207B2 (en) 2017-05-30
CN104571770B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2016123963A1 (zh) 内嵌式触摸屏、触控检测方法及显示装置
US9529484B2 (en) Capacitive touch structure using block electrodes to reduce wiring
WO2016041301A1 (zh) 触摸屏、其触控定位方法及显示装置
US9626055B2 (en) In-cell touch screen, touch detection method thereof and display device
CN108563362B (zh) 触控显示面板
CN108829283B (zh) 显示面板和显示装置
US9996183B2 (en) Touch-sensitive device and method for driving the same
US11042251B2 (en) In-cell touch panel and display device
US20180059827A1 (en) Display device
KR101093326B1 (ko) 터치 스크린 패널 및 그 제작방법
CN103576998A (zh) 电容式触摸屏及单层布线电极阵列
TWI541712B (zh) 觸控螢幕、觸控板及其驅動方法
EP2811380A2 (en) Capacitive touch screen
CN103049149A (zh) 触摸面板以及具备该触摸面板的显示装置
JPWO2015186276A1 (ja) タッチセンサ用電極、タッチパネル、および、表示装置
KR20120045992A (ko) 터치 스크린 패널 일체형 액정표시장치 및 그의 구동방법
WO2016119408A1 (zh) 触控面板、显示装置及触摸驱动方法
WO2016155063A1 (zh) 自电容式触摸屏结构、内嵌式触摸屏以及液晶显示器
WO2016115813A1 (zh) 内嵌式触摸屏及显示装置
CN205644474U (zh) 触摸检测装置以及包含此的电子设备
CN107688411B (zh) 基板及其感测方法、触控面板和显示装置
CN107256106B (zh) 阵列基板、液晶显示面板、触控显示装置及触控驱动方法
US20210157430A1 (en) Touch display panel and touch display device
TW201401140A (zh) 觸控感測裝置及觸控感測方法
CN103472961A (zh) 电容式触控面板及具有该电容式触控面板的电子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14907033

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 020218)

122 Ep: pct application non-entry in european phase

Ref document number: 15880910

Country of ref document: EP

Kind code of ref document: A1