WO2016123843A1 - 一种中小型锅炉废气的等离子体脱硝方法 - Google Patents

一种中小型锅炉废气的等离子体脱硝方法 Download PDF

Info

Publication number
WO2016123843A1
WO2016123843A1 PCT/CN2015/074901 CN2015074901W WO2016123843A1 WO 2016123843 A1 WO2016123843 A1 WO 2016123843A1 CN 2015074901 W CN2015074901 W CN 2015074901W WO 2016123843 A1 WO2016123843 A1 WO 2016123843A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
exhaust gas
reducing gas
reaction
Prior art date
Application number
PCT/CN2015/074901
Other languages
English (en)
French (fr)
Inventor
李瑞莲
Original Assignee
山东派力迪环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东派力迪环保工程有限公司 filed Critical 山东派力迪环保工程有限公司
Publication of WO2016123843A1 publication Critical patent/WO2016123843A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants

Definitions

  • the invention belongs to the field of industrial waste gas treatment, and particularly relates to a plasma denitration method for small and medium boiler exhaust gas.
  • DeNOx technologies for existing flue gases include the commercially available selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) processes.
  • SCR selective catalytic reduction
  • SNCR selective non-catalytic reduction
  • a compound mainly composed of ammonia (NH 3 ) and ammonia is injected into the flue gas, and ammonia reduces NO by the action of the catalyst and produces harmless nitrogen and water.
  • Ammonia also contributes to the collection of fly ash in subsequent electrostatic precipitators to increase the operational efficiency of the device.
  • this reaction must be carried out at about 300-450 ° C and the engineering cost is high, it is currently only applied to large boilers. For small and medium-sized boilers that exist in China, there is always a lack of efficient and low-cost exhaust gas treatment.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and provide a plasma denitration method for small and medium-sized boiler exhaust gas, which can treat nitrogen oxides in boiler flue gas under normal temperature conditions, has high denitration efficiency and simple operation. Low operating costs and a wide range of uses.
  • a plasma denitration method for small and medium-sized boiler exhaust gas mixing NO-containing exhaust gas with a reducing gas, and then bringing the mixed gas into an electrode region in the plasma reaction device or a reaction region behind the electrode region, wherein the NO molecule in the region
  • the reducing gas molecules are activated, and then a redox reaction occurs, and the reaction product is a harmless gas such as N 2 and CO 2 .
  • the temperature of the NO-containing exhaust gas and the reducing gas is lower than 80 °C.
  • the ratio of the number of molecules of the reducing gas to NO is 1:2-5.
  • the reaction time of the mixed gas plasma is 0.01 to 5 seconds
  • the voltage is 6000 to 10000 V
  • the current is 0 to 2 A.
  • the reducing gas is at least one of hydrogen, chlorine, carbon monoxide, hydrogen sulfide, methane, sulfur dioxide, ozone, propylene, ethylene, hydrogen bromide or hydrogen iodide.
  • the plasma is a corona discharge, an electron beam or a dielectric barrier discharge plasma.
  • the main component of the NO-containing exhaust gas is NO.
  • the invention also provides a plasma denitration method for small and medium-sized boiler exhaust gas, wherein the exhaust gas containing NO is introduced into a solution containing an oxidant for oxidation absorption, and the collected gas is mixed with a reducing gas, and then the mixed gas is brought into the exhaust gas.
  • the oxidizing agent is at least one or more of sodium dichromate, potassium dichromate, potassium permanganate, nitric acid, sodium chlorate, sodium hypochlorite, and hydrogen peroxide.
  • the mass ratio of the oxidizing agent to the solvent is 1-3:100.
  • the ratio of the reducing gas to the number of molecules of NO is 1:2-5.
  • the reaction time of the mixed gas plasma is 0.01 to 5 seconds
  • the voltage is 6000 to 10000 V
  • the current is 0 to 2 A.
  • the reducing gas is at least one or more of hydrogen, chlorine, carbon monoxide, hydrogen sulfide, methane, sulfur dioxide, ozone, propylene, ethylene, hydrogen bromide or hydrogen iodide.
  • the plasma is a corona discharge, an electron beam or a dielectric barrier discharge plasma.
  • the main component of the NO-containing exhaust gas is NO.
  • the invention also provides a plasma denitration method for small and medium-sized boiler exhaust gas, which mixes the NO-containing exhaust gas with a reducing gas, and then introduces the mixed gas into the oxidant-containing solution for oxidative absorption, and brings the oxidative absorption-treated gas into the gas.
  • the oxidizing agent is at least one or more of sodium dichromate, potassium dichromate, potassium permanganate, nitric acid, sodium chlorate, sodium hypochlorite, and hydrogen peroxide.
  • the mass ratio of the oxidizing agent to the solvent is 1-3:100.
  • the ratio of the reducing gas to the number of molecules of NO is 1:2-5.
  • the reaction time of the mixed gas plasma is 0.01 to 5 seconds
  • the voltage is 6000 to 10000 V
  • the current is 0 to 2 A.
  • the reducing gas is at least one or more of hydrogen, chlorine, carbon monoxide, hydrogen sulfide, methane, sulfur dioxide, ozone, propylene, ethylene, hydrogen bromide or hydrogen iodide.
  • the plasma is a corona discharge, an electron beam or a dielectric barrier discharge plasma.
  • the main component of the NO-containing exhaust gas is NO.
  • the above method is used in the treatment of industrial furnaces or marine engine exhaust.
  • the invention can realize large air volume processing, can process air volume of 100,000 square meters or more, and can be widely applied to various types of boilers;
  • 1 is a schematic view showing a process flow of a flue gas purification process using plasma denitration according to the present invention; wherein: 1 boiler, 2 dust collector, and 4 plasma reaction device.
  • FIG. 2 is a schematic flow chart of a flue gas purification process using oxidation absorption and plasma denitration according to the present invention.
  • FIG 3 is a schematic view showing the structure of a plasma reactor used in the present invention.
  • 1-air inlet 2-frame
  • 3-spray device 4-plasma disk
  • 5-unit fuel tank 6-plate gland
  • 7-air outlet 8-unit air cylinder
  • 9- Case 10-heat sink
  • Embodiment 1 A plasma denitration method for a small and medium boiler exhaust gas
  • the exhaust gas discharged from the boiler contains NO, which is mixed with a reducing gas by a static mixer, and the mixed gas is brought into an electrode zone in the plasma reaction vessel or a reaction zone behind the electrode zone, in which NO in the exhaust gas is
  • the reducing gas is reduced to a harmless gas such as N 2 and CO 2 and water.
  • the reducing gas may be reacted with NO under the action of plasma, preferably one of hydrogen, chlorine, carbon monoxide, hydrogen sulfide, methane, sulfur dioxide, ozone, propylene, ethylene, hydrogen bromide or hydrogen iodide.
  • One or more mixed gases are one of hydrogen, chlorine, carbon monoxide, hydrogen sulfide, methane, sulfur dioxide, ozone, propylene, ethylene, hydrogen bromide or hydrogen iodide.
  • the NO in the exhaust gas is reduced to a harmless gas such as N 2 and CO 2 and water.
  • the NOx removal efficiency can be further improved by controlling the ratio of addition of the exhaust gas to the reducing gas, and it is preferable that the ratio of the number of molecules of the reducing gas to NO is 1:2-5.
  • the exhaust gas discharged from the boiler contains NO, which is mixed with a reducing gas by a static mixer, and the mixed gas is brought into an electrode zone in the plasma reaction vessel or a reaction zone behind the electrode zone, in which NO in the exhaust gas is It is reduced to a harmless gas such as N 2 and CO 2 and water.
  • the plasma reaction vessel utilizes the principle of dielectric barrier discharge. Under the action of high-energy electrons, the formation of charged particles or chemical bonds between molecules is interrupted to generate active particles such as radicals, and the entire discharge is randomly distributed in many places in space and time. The composition of the micro-discharges, the duration of these micro-discharges is very short, generally on the order of 10 ns.
  • the dielectric layer has two main effects on such discharges: one is to limit the movement of charged particles in the micro-discharge, so that the micro-discharge becomes a short pulse; the other is to make the micro-discharge uniformly and stably distributed between the entire planar electrodes. Prevent spark discharge.
  • the dielectric barrier discharge avoids the problem of corrosion of the electrode because the electrode does not directly contact the discharge gas.
  • the reaction time of the mixed gas plasma is 0.01 to 5 seconds
  • the voltage is 6000 to 10000 V
  • the current is 0 to 2 A.
  • the exhaust gas discharged from the boiler is mixed with a reducing gas, and then introduced into an oxidizing absorption tank carrying an oxidizing agent.
  • the oxidizing agent oxidizes NO to NO 2 , and the NO 2 disproportionates with water to form nitric acid, and the generated nitric acid is subsequently
  • the introduced NO is oxidized to NO 2 and nitric acid is formed, so that it does not need to be supplemented with an oxidizing agent, and the oxidant initially loaded in the oxidation absorption tank only acts as an initiator.
  • the removal rate of NO can be about 50%; preferably, in the solution containing the oxidizing agent, the mass ratio of the oxidizing agent to the solvent is 1-3:100.
  • the remaining gas is mixed and brought into the electrode zone or the reaction zone behind the electrode zone in the plasma reaction vessel, in which the NO in the exhaust gas is reduced to a harmless gas such as N 2 and CO 2 and water. .
  • the exhaust gas discharged from the boiler was directly introduced into an oxidation absorption tank carrying the oxidizing agent to carry out oxidation absorption, and the treated gas was further mixed with a reducing gas.
  • the other steps were the same as in the fourth embodiment.
  • the NOx concentration in the flue gas is 520 mg/m 3 ; after mixing with 310 mg/m 3 CO, the flow rate is 12000 m 3 /h, and after 5 seconds of treatment by the plasma reaction device
  • the treatment conditions were a voltage of 6000 V, a current of 1 A, and a concentration of NOx of 51 mg/m 3 .
  • the NOx removal efficiency was 90.2%.
  • the NOx concentration in the flue gas is 420 mg/m 3 ; after mixing with 160 mg/m 3 CO, the flow rate is 9000 m 3 /h, after being treated by the plasma reactor for 0.1 second.
  • the treatment conditions were a voltage of 8000 V, a current of 2 A, and a concentration of NOx of 31 mg/m 3 .
  • the NOx removal efficiency was 92.6%.
  • the NOx concentration in the flue gas is 490 mg/m 3 ; and it is passed into an oxidation absorption tank carrying the oxidant (the volume of the solution in the oxidation absorption tank is 10-15 m 3 ), wherein The oxidant is potassium permanganate with a mass concentration of 3%.
  • the NOx concentration in the flue gas is 240 mg/m 3 ; after mixing with 60 mg/m 3 CO, the flow rate is 11000 m 3 /h, which is treated by a plasma reactor.
  • the treatment conditions were a voltage of 8000 V, a current of 2 A, and a concentration of NOx of 4 mg/m 3 .
  • the NOx removal efficiency was 91.7%.
  • the NOx concentration in the flue gas is 535 mg/m 3 ; it is passed into an oxidation absorption tank carrying the oxidant (the volume of the solution in the oxidation absorption tank is 10-15 m 3 ), wherein The oxidant is hydrogen peroxide, the mass concentration is 10%.
  • the NOx concentration in the flue gas is 265 mg/m 3 ; after mixing with 80 mg/m 3 H 2 , the flow rate is 10000 m 3 /h, and the plasma reaction device is treated for 3 seconds. Thereafter, the treatment conditions were a voltage of 7000 V, a current of 1.5 A, and a concentration of NOx of 8 mg/m 3 .
  • the NOx removal efficiency is 90%.
  • the NOx concentration in the flue gas is 535 mg/m 3 ; after mixing with 80 mg/m 3 H 2 , it is passed into an oxidation absorption tank (oxidation absorption tank) carrying the oxidant.
  • the volume of the solution is 10-15 m 3 ), wherein the oxidant is potassium permanganate, the mass concentration is 3%, the NOx concentration in the flue gas is reduced to 265 mg/m 3 , the flow rate is 10000 m 3 /h, and then processed by the plasma reaction device.
  • the treatment conditions were a voltage of 7000 V, a current of 1.5 A, and a concentration of NOx of 4 mg/m 3 .
  • the NOx removal efficiency is 95%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种中小型锅炉废气的等离子体脱硝方法,将含NO的废气与还原性气体同时添加到等离子体反应装置进行还原法脱硝。可以在常温条件下处理锅炉烟气中的氮氧化物,无需额外加热系统。脱硝效率达90%以上,操作简单,运行费用低。

Description

一种中小型锅炉废气的等离子体脱硝方法 技术领域
本发明属于工业废气处理领域,特别涉及一种中小型锅炉废气的等离子体脱硝方法。
背景技术
工业上的废气治理问题,一直是环保部门尚待解决的主要课题。随着我国国民经济的发展,能源利用逐年增加,粉尘及排放也呈逐年上升趋势。截至2012年底,我国在用锅炉62.03万台,其中70%以上是中小型锅炉。中小型锅炉量大面广,烟囱低矮,对大气污染的影响很大。因此,为了防治大气污染,保护和改善生活环境与生态环境,节约能源,研制和开发新型废气净化装置,治理中小型燃煤锅炉对大气的污染具有十分重要的意义。2014年环保部通过了新修订的《锅炉大气污染物排放标准》,被业界称为迄今为止最严的锅炉大气污染排放标准,与现行标准相比,新标准不仅修订了传统的颗粒物和二氧化硫的排放限值,还首次提出了氮氧化物和汞的排放控制标准,倒逼制造企业不得不进行技术升级,从源头上控制锅炉大气污染物的排放。
现有烟气的脱NOx技术包括已经商业化的选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。在烟气中注入以氨气(NH3)和氨水为主的化合物,氨在催化剂的作用下还原NO并生成无害的氮气和水。氨还有助于后续的电除尘中飞灰的收集从而提高该装置的运行效率。但由于此反应必须在大约300-450℃之间进行,且工程造价较高,因此,目前仅应用于大型锅炉。对于国内大量存在的中小型锅炉来说,始终缺少一种高效、低成本的废气处理方式。
发明内容
本发明的目的是为克服上述现有技术的不足,提供了一种中小型锅炉废气的等离子体脱硝方法,可以在常温条件下处理锅炉烟气中的氮氧化物,脱硝效率高,操作简单,运行费用低,使用范围广。
为实现上述目的,本发明采用下述技术方案:
一种中小型锅炉废气的等离子体脱硝方法,将含NO的废气与还原性气体混合,然后将混合气体带入等离子体反应装置内的电极区或电极区后的反应区,在该区域NO分子、还原性气体分子被活化,然后发生氧化还原反应,反应产物为N2和CO2等无害气体。
优选的是,所述含NO的废气与还原性气体的温度低于80℃。
优选的是,所述还原性气体与NO的分子数之比为1:2-5。
优选的是,所述混合气体等离子化的反应时间为0.01-5秒,电压为6000-10000V,电流为0-2A。
优选的是,所述还原性气体为氢气、氯气、一氧化碳、硫化氢、甲烷、二氧化硫、臭氧、丙烯、乙烯、溴化氢或碘化氢中的至少一种。
优选的是,所述等离子体为电晕放电、电子束或介质阻挡放电等离子体。
优选的是,所述含NO的废气中主要成分为NO。
本发明还提供了一种中小型锅炉废气的等离子体脱硝方法,将含NO的废气导入含有氧化剂的溶液进行氧化吸收,收集处理后的气体与还原性气体混合,然后将混合后的气体带入等离子体反应装置内的电极区或电极区后的反应区,在该区域NO分子、还原性气体分子被活化,然后发生氧化还原反应,反应产物为N2和CO2等无害气体。
优选的是,所述氧化剂为重铬酸钠、重铬酸钾、高锰酸钾、硝酸、氯酸钠、次氯酸钠、双氧水中的至少一种或几种。
优选的是,所述含有氧化剂的溶液中,氧化剂与溶剂的质量比为1-3:100。
优选的是,所述还原性气体与NO的分子数之比为1:2-5.
优选的是,所述混合气体等离子化的反应时间为0.01-5秒,电压为6000-10000V,电流为0-2A。
优选的是,所述还原性气体为氢气、氯气、一氧化碳、硫化氢、甲烷、二氧化硫、臭氧、丙烯、乙烯、溴化氢或碘化氢中的至少一种或几种。
优选的是,所述等离子体为电晕放电、电子束或介质阻挡放电等离子体。
优选的是,所述含NO的废气中主要成分为NO。
本发明还提供了一种中小型锅炉废气的等离子体脱硝方法,将含NO的废气与还原性气体混合,然后将混合气体导入含有氧化剂的溶液进行氧化吸收,将经氧化吸收处理的气体带入等离子体反应装置内的电极区或电极区后的反应区,在该区域NO分子、还原性气体分子被活化,然后发生氧化还原反应,反应产物为N2和CO2等无害气体。
优选的是,所述氧化剂为重铬酸钠、重铬酸钾、高锰酸钾、硝酸、氯酸钠、次氯酸钠、双氧水中的至少一种或几种。
优选的是,所述含有氧化剂的溶液中,氧化剂与溶剂的质量比为1-3:100。
优选的是,所述还原性气体与NO的分子数之比为1:2-5.
优选的是,所述混合气体等离子化的反应时间为0.01-5秒,电压为6000-10000V,电流为0-2A。
优选的是,所述还原性气体为氢气、氯气、一氧化碳、硫化氢、甲烷、二氧化硫、臭氧、丙烯、乙烯、溴化氢或碘化氢中的至少一种或几种。
优选的是,所述等离子体为电晕放电、电子束或介质阻挡放电等离子体。
优选的是,所述含NO的废气中主要成分为NO。
上述的方法在处理工业窑炉或船舶发动机废气中的应用。
本发明由于采取以上技术方案,其具有以下优点:
1)本发明能实现大风量处理,能处理风量10万方/小时以上,可广泛应用于各种型号锅炉;
2)脱硝效率高,通过等离子排级控制,可实现脱硝效率90%以上;
3)运行费用低,反应在低温下完成,不需要额外的加热系统;
4)安全性高,无氨气制备系统,消除液氨爆炸隐患。
附图说明
图1为本发明涉及的采用等离子体脱硝的烟气净化工艺流程示意图;其中1锅炉、2除尘器、4等离子体反应装置。
图2为本发明涉及的采用氧化吸收和等离子体脱硝的烟气净化工艺流程示意图;1锅炉、2除尘器、3氧化吸收槽、4等离子体反应装置。
图3为本发明采用的等离子体反应装置的结构示意图。
其中,1-进风口,2-机架,3-喷淋装置,4-等离子盘,5-单体油箱,6-盘压盖装置,7-出风口,8-单体风筒,9-机壳,10-散热装置,11-电源
具体实施方式
以下通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规的方法和条件进行选择。
实施例1一种中小型锅炉废气的等离子体脱硝方法
锅炉排出的废气含有NO,通过静态混合器将其与还原性气体混合,将上述混合气体带入等离子体反应容器内的电极区或电极区后的反应区,在该区域,废气中的NO被还原性气体还原成N2和CO2及水等无害的气体。所述的还原性气体可在等离子体作用下与NO发生还原反应,优选的为氢气、氯气、一氧化碳、硫化氢、甲烷、二氧化硫、臭氧、丙烯、乙烯、溴化氢或碘化氢中的一种或多种的混合气体。
实施例2
将锅炉排出的废气进行降温除尘,使废气的温度低于80℃,再将上述废气与还原性气 体混合后带入等离子体反应容器内的电极区或电极区后的反应区,在该区域,废气中的NO被还原成N2和CO2及水等无害的气体。通过控制废气与还原性气体的添加比例可以进一步提高NOx的脱除效率,优选在还原性气体与NO的分子数之比为1:2-5。
实施例3
锅炉排出的废气含有NO,通过静态混合器将其与还原性气体混合,将上述混合气体带入等离子体反应容器内的电极区或电极区后的反应区,在该区域,废气中的NO被还原成N2和CO2及水等无害的气体。所述的等离子体反应容器利用介质阻挡放电原理,在高能电子的作用下,形成带电粒子或分子间的化学键被打断产生自由基等活性粒子,整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns量级。介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之间,防止火花放电。介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题。优选在于,所述混合气体等离子化的反应时间为0.01-5秒,电压为6000-10000V,电流为0-2A。
实施例4
将锅炉排出的废气与还原性气体混合后,通入载有氧化剂的氧化吸收槽中,开始时氧化剂将NO氧化为NO2,NO2与水发生歧化反应,生成硝酸,生成的硝酸将后续的通入的NO又氧化成NO2,并生成硝酸,如此往复进行,无需再补加氧化剂,氧化吸收槽中初始载有的氧化剂仅起引发作用。上述过程中,NO的去除率可达50%左右;优选在所述含有氧化剂的溶液中,氧化剂与溶剂的质量比为1-3:100。然后再将上述剩余的气体混合后带入等离子体反应容器内的电极区或电极区后的反应区,在该区域,废气中的NO被还原成N2和CO2及水等无害的气体。
实施例5
将锅炉排出的废气直接通入载有氧化剂的氧化吸收槽中,进行氧化吸收,将处理后的气体再与还原性气体混合,其他步骤与实施例4相同。
实施例6
从锅炉1排出燃煤烟气经除尘处理后,烟气中NOx浓度为520mg/m3;再与310mg/m3CO混合后,流量为12000m3/h,经过等离子体反应装置处理5秒后,处理条件为电压为6000V,电流为1A,NOx的浓度降为51mg/m3。NOx的去除效率为90.2%。
实施例7:
从锅炉1排出燃煤烟气经除尘处理后,烟气中NOx浓度为420mg/m3;再与160mg/m3CO混合后,流量为9000m3/h,经过等离子体反应装置处理0.1秒后,处理条件为电压为8000V,电流为2A,NOx的浓度降为31mg/m3。NOx的去除效率为92.6%。
实施例8:
从锅炉1排出燃煤烟气经除尘处理后,烟气中NOx浓度为490mg/m3;将其通入载有氧化剂的氧化吸收槽(氧化吸收槽中溶液体积为10-15m3),其中氧化剂为高锰酸钾,质量浓度为3%,处理后,烟气中NOx浓度为240mg/m3;再与60mg/m3CO混合后,流量为11000m3/h,经过等离子体反应装置处理3秒后,处理条件为电压为8000V,电流为2A,NOx的浓度降为4mg/m3。NOx的去除效率为91.7%。
实施例9:
从锅炉1排出燃煤烟气经除尘处理后,烟气中NOx浓度为535mg/m3;将其通入载有氧化剂的氧化吸收槽(氧化吸收槽中溶液体积为10-15m3),其中氧化剂为双氧水,质量浓度为10%,处理后,烟气中NOx浓度为265mg/m3;再与80mg/m3H2混合后,流量为10000m3/h,经过等离子体反应装置处理3秒后,处理条件为电压为7000V,电流为1.5A,NOx的浓度降为8mg/m3。NOx的去除效率为90%。
实施例10
从锅炉1排出燃煤烟气经除尘处理后,烟气中NOx浓度为535mg/m3;将其与80mg/m3H2混合后,通入载有氧化剂的氧化吸收槽(氧化吸收槽中溶液体积为10-15m3),其中氧化剂为高锰酸钾,质量浓度为3%,烟气中NOx浓度降为265mg/m3;流量为10000m3/h,再经过等离子体反应装置处理3秒后,处理条件为电压为7000V,电流为1.5A,NOx的浓度降为4mg/m3。NOx的去除效率为95%。
上述虽然对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (16)

  1. 一种中小型锅炉废气的等离子体脱硝方法,其特征在于,将含NO的废气与还原性气体混合,然后将混合气体带入等离子体反应装置内的电极区或电极区后的反应区,在该区域NO分子、还原性气体分子被活化,然后发生氧化还原反应,反应产物为N2和CO2等无害气体。
  2. 根据权利要求1所述的方法,其特征在于,所述含NO的废气与还原性气体的温度低于80℃。
  3. 根据权利要求1所述的方法,其特征在于,所述还原性气体与NO的分子数之比为1:2-5。
  4. 根据权利要求1所述的方法,其特征在于,所述混合气体等离子化的反应时间为0.01-5秒,电压为6000-10000V,电流为0-2A。
  5. 根据权利要求1所述的方法,其特征在于,所述还原性气体为氢气、氯气、一氧化碳、硫化氢、甲烷、二氧化硫、臭氧、丙烯、乙烯、溴化氢或碘化氢中的至少一种。
  6. 根据权利要求1所述的方法,其特征在于,所述等离子体为电晕放电、电子束或介质阻挡放电等离子体。
  7. 根据权利要求1所述的方法,其特征在于,所述含NO的废气中主要成分为NO。
  8. 一种中小型锅炉废气的等离子体脱硝方法,其特征在于,将含NO的废气导入含有氧化剂的溶液进行氧化吸收,收集处理后的气体与还原性气体混合,然后将混合后的气体带入等离子体反应装置内的电极区或电极区后的反应区,在该区域NO分子、还原性气体分子被活化,然后发生氧化还原反应,反应产物为N2和CO2等无害气体。
  9. 根据权利要求8所述的方法,其特征在于,所述氧化剂为重铬酸钠、重铬酸钾、高锰酸钾、硝酸、氯酸钠、次氯酸钠、双氧水中的至少一种或几种。
  10. 根据权利要求8所述的方法,其特征在于,所述含有氧化剂的溶液中,氧化剂与溶剂的质量比为1-3:100。
  11. 根据权利要求8所述的方法,其特征在于,所述还原性气体与NO的分子数之比为1:2-5。
  12. 根据权利要求8所述的方法,其特征在于,所述混合气体等离子化的反应时间为0.01-5秒,电压为6000-10000V,电流为0-2A。
  13. 根据权利要求8所述的方法,其特征在于,所述还原性气体为氢气、氯气、一氧化碳、硫化氢、甲烷、二氧化硫、臭氧、丙烯、乙烯、溴化氢或碘化氢中的至少一种或几种。
  14. 根据权利要求8所述的方法,其特征在于,所述等离子体为电晕放电、电子束或介质阻挡放电等离子体。
  15. 根据权利要求8所述的方法,其特征在于,所述含NO的废气中主要成分为NO。
  16. 权利要求1-15任一所述的方法在处理工业窑炉或船舶发动机废气中的应用。
PCT/CN2015/074901 2015-02-03 2015-03-23 一种中小型锅炉废气的等离子体脱硝方法 WO2016123843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510055819.2A CN104587813B (zh) 2015-02-03 2015-02-03 一种中小型锅炉废气的等离子体脱硝方法
CN201510055819.2 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016123843A1 true WO2016123843A1 (zh) 2016-08-11

Family

ID=53114072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074901 WO2016123843A1 (zh) 2015-02-03 2015-03-23 一种中小型锅炉废气的等离子体脱硝方法

Country Status (2)

Country Link
CN (1) CN104587813B (zh)
WO (1) WO2016123843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941016A (zh) * 2017-10-24 2018-04-20 马鞍山石冶机械制造有限公司 一种炉封气氛净化装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104587813B (zh) * 2015-02-03 2017-12-19 山东派力迪环保工程有限公司 一种中小型锅炉废气的等离子体脱硝方法
CN106853327B (zh) * 2016-03-11 2022-11-25 济南大学 一种低温烟气脱硫脱硝一体化的方法及装置
CN107638790A (zh) * 2017-09-25 2018-01-30 江苏河海新能源股份有限公司 一种烟气脱硝脱硫装置
WO2020083096A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种发动机排放处理系统和方法
CN112930434B (zh) * 2018-10-22 2023-08-15 上海必修福企业管理有限公司 一种发动机尾气臭氧净化系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792416A (zh) * 2005-11-24 2006-06-28 南京航空航天大学 吸附协同等离子体作用的顺序式脱硫脱硝方法
CN101385942A (zh) * 2008-10-13 2009-03-18 浙江大学 液相氧化-吸收两段式湿法烟气脱硝工艺
CN101642665A (zh) * 2009-09-03 2010-02-10 浙江天蓝环保技术有限公司 一种“氧化-吸收”脱硝副产物回收硝酸盐的工艺
CN102688672A (zh) * 2012-06-08 2012-09-26 深圳市泓耀环境科技发展股份有限公司 一种对燃烧系统所产生废气的脱硝方法及其装置
CN104587813A (zh) * 2015-02-03 2015-05-06 山东派力迪环保工程有限公司 一种中小型锅炉废气的等离子体脱硝方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942195A (en) * 1998-02-23 1999-08-24 General Motors Corporation Catalytic plasma exhaust converter
US7043902B2 (en) * 2003-03-07 2006-05-16 Honda Motor Co., Ltd. Exhaust gas purification system
CN1259997C (zh) * 2004-09-30 2006-06-21 大连理工大学 一种等离子体增强甲烷选择催化还原氮氧化物的方法
CN1676200A (zh) * 2005-01-21 2005-10-05 清华大学 一种还原氮氧化物的方法及系统
CN104258701B (zh) * 2014-10-08 2017-01-25 福建龙净环保股份有限公司 一种烟气脱硝的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792416A (zh) * 2005-11-24 2006-06-28 南京航空航天大学 吸附协同等离子体作用的顺序式脱硫脱硝方法
CN101385942A (zh) * 2008-10-13 2009-03-18 浙江大学 液相氧化-吸收两段式湿法烟气脱硝工艺
CN101642665A (zh) * 2009-09-03 2010-02-10 浙江天蓝环保技术有限公司 一种“氧化-吸收”脱硝副产物回收硝酸盐的工艺
CN102688672A (zh) * 2012-06-08 2012-09-26 深圳市泓耀环境科技发展股份有限公司 一种对燃烧系统所产生废气的脱硝方法及其装置
CN104587813A (zh) * 2015-02-03 2015-05-06 山东派力迪环保工程有限公司 一种中小型锅炉废气的等离子体脱硝方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941016A (zh) * 2017-10-24 2018-04-20 马鞍山石冶机械制造有限公司 一种炉封气氛净化装置
CN107941016B (zh) * 2017-10-24 2019-03-26 马鞍山石冶机械制造有限公司 一种炉封气氛净化装置

Also Published As

Publication number Publication date
CN104587813B (zh) 2017-12-19
CN104587813A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2016123843A1 (zh) 一种中小型锅炉废气的等离子体脱硝方法
Chen et al. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics
Yamamoto et al. Plasma-assisted chemical process for NO/sub x/control
WO2017059820A1 (zh) 一种还原与氧化联合脱硝系统及其脱硝方法
CN106853327B (zh) 一种低温烟气脱硫脱硝一体化的方法及装置
JP2007182812A (ja) 排ガスの脱硝方法
CN104179552A (zh) 一种基于低温等离子体的汽车尾气处理的装置及其方法
Guo et al. Simultaneous removal of SO2 and NOx with ammonia combined with gas-phase oxidation of NO using ozone
CN106989407A (zh) 一种烟气中NOx消除装置及方法
Jiang et al. High-efficiency removal of NO x from flue gas by multitooth wheel-cylinder corona discharge plasma facilitated selective catalytic reduction process
Cai et al. Removal of nitric oxide from simulated gas by the corona discharge combined with cobalt ethylenediamine solution
CN105311947A (zh) 一种锅炉烟气脱硝、脱硫除尘装置及工艺
CN207856647U (zh) 一种气相氧化协同吸收烟气多污染物净化装置
CN105642115A (zh) 一种烟气脱硝的装置和方法
CN110064290A (zh) 活性焦干法超低排放装置和方法
CN214389551U (zh) 一种氮氧化物处理系统
WO2005065805A1 (ja) 排気ガスの処理方法及び装置
CN211987967U (zh) 一种烧结烟气脱硫脱硝系统
CN205570056U (zh) 一种低温烟气脱硫脱硝一体化的装置
CN104815707B (zh) 一种失活钒钛基蜂窝状脱硝催化剂低温改性再生液及其制备方法
WO2016034153A2 (zh) 采用电浆的废气处理装置
CN102350192A (zh) 一种烟气光催化氧化结合氨法同步脱硫脱硝的方法
CN108543535B (zh) 催化剂和煤燃烧高温烟气脱硝的方法
CN110876885A (zh) 一种臭氧协同催化氧化的烟气脱硫脱硝系统及方法
JP2004089752A (ja) 排ガスの脱硝方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880798

Country of ref document: EP

Kind code of ref document: A1