WO2016123807A1 - 电容触摸屏及其制造方法 - Google Patents

电容触摸屏及其制造方法 Download PDF

Info

Publication number
WO2016123807A1
WO2016123807A1 PCT/CN2015/072450 CN2015072450W WO2016123807A1 WO 2016123807 A1 WO2016123807 A1 WO 2016123807A1 CN 2015072450 W CN2015072450 W CN 2015072450W WO 2016123807 A1 WO2016123807 A1 WO 2016123807A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch screen
capacitive touch
trunk
electrodes
conductive layer
Prior art date
Application number
PCT/CN2015/072450
Other languages
English (en)
French (fr)
Inventor
刘自鸿
余晓军
魏鹏
邹翔
周瑜
陈鑫
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to KR1020177023332A priority Critical patent/KR102012574B1/ko
Priority to PCT/CN2015/072450 priority patent/WO2016123807A1/zh
Priority to EP15880763.6A priority patent/EP3255532A4/en
Priority to JP2017540855A priority patent/JP2018505486A/ja
Priority to CN201580000932.9A priority patent/CN105493016B/zh
Priority to US15/548,913 priority patent/US10437397B2/en
Publication of WO2016123807A1 publication Critical patent/WO2016123807A1/zh
Priority to US16/427,974 priority patent/US20190317623A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention relates to a touch screen, and more particularly to a capacitive touch screen and a method of fabricating the same.
  • capacitive touch screens have become an indispensable component of electronic products such as mobile phones, tablets and notebook computers.
  • the structure of a common capacitive touch screen includes a single-layer bridge structure and a two-layer structure.
  • the process of the single-layer bridge structure capacitive touch screen is relatively complicated, and the double-layer structure capacitive touch screen has a large thickness because it needs to be stacked. Therefore, it is necessary to provide a capacitive touch screen that is simple in process and small in thickness.
  • the transparent conductive layer for forming the capacitive sensing touch function can be subjected to a non-removal processing method, that is, a part of the conductive layer becomes non-conductive without the need to remove the processing mode of the portion, and is more high-performance.
  • the design of the point capacitive touch screen provides further room for development.
  • Embodiments of the present invention provide a capacitive touch screen that can solve the above technical problems and a method of fabricating the same.
  • a capacitive touch screen comprising a substrate and a transparent conductive layer disposed on the substrate, the transparent conductive layer comprising a sensing region, the sensing region having a first side and an opposite second side, further comprising: a plurality of transparent conductive first electrodes, each of the first electrodes includes a first trunk extending from the first side toward the second side; a plurality of transparent conductive second electrodes, each of the second electrodes including the first a second trunk extending laterally to the second side and a trace connected to the second trunk, each second trunk cooperates with the corresponding first trunk to function as a sensing touch position; a transparent non-conductive pattern
  • the method is located between the first and second electrodes to electrically isolate the two.
  • a method for fabricating a capacitive touch screen comprising: providing a substrate; providing a transparent transparent conductive layer having a sensing region on the substrate, the sensing region having a first side and an opposite second side; setting laser parameters
  • the transparent conductive property of the transparent conductive layer can be made transparent and non-conductive without removing the laser; the movement parameter is set, and the laser moves according to the path set by the movement parameter; according to the laser parameter and the movement parameter
  • the laser is irradiated to the sensing region to form a non-conductive pattern thereon, the non-conductive pattern forming a plurality of transparent conductive first electrodes and a second electrically isolated by the non-conductive pattern on the sensing region An electrode; wherein each of the first electrodes includes a first trunk extending from the first side to the second side; each of the second electrodes includes a second trunk extending from the first side to the second side A trace connected to the second trunk, each of the second trunks cooperating with the corresponding first trunk to function to sense the touch position.
  • a capacitive touch screen is formed by using a conductive layer, the process is simple and the thickness is small.
  • FIG. 1 is a flow chart of a method of fabricating a capacitive touch screen according to a first embodiment of the present invention.
  • Fig. 2 is a side elevational view showing the laser light irradiated on a nanosilver film provided on a substrate according to the manufacturing method of Fig. 1.
  • Fig. 3 is a microscopic view showing a portion irradiated with and not irradiated in a partial region of the nanosilver film of Fig. 1.
  • FIG. 4 is a plan view of a capacitive touch screen fabricated in accordance with the method of FIG. 1.
  • Figure 5 is a diagram of a first embodiment of the present invention for sensing touches on the capacitive touch screen of Figure 4 An enlarged schematic view of a portion of the pattern of operation.
  • 6a to 6c are enlarged schematic views of partial patterns on a capacitive touch screen provided by the second to fourth embodiments of the present invention.
  • FIG. 7 is an enlarged schematic view showing a partial pattern on a capacitive touch screen according to a fifth embodiment of the present invention.
  • FIG. 8 is an enlarged schematic view showing a partial pattern on a capacitive touch screen according to a sixth embodiment of the present invention.
  • FIG. 9 is a flow chart of a method of fabricating a capacitive touch screen according to a second embodiment of the present invention.
  • the present invention provides a capacitive touch screen and a method of fabricating the same.
  • a method of manufacturing a capacitive touch screen will be described first.
  • the structure of the capacitive touch screen is also mentioned to better The manufacturing method is described. Therefore, the description of the structure of the capacitive touch screen is not separately described in the present specification.
  • the structure of the capacitive touch screen can be clearly understood by those skilled in the art according to the description of the manufacturing method.
  • FIG. 1 and FIG. 2 are flowcharts of a method for fabricating a capacitive touch screen according to an embodiment of the present invention, including the following steps:
  • Step S10 Providing the substrate 12.
  • the substrate 12 can be made of a transparent material, such as glass or polyethylene terephthalate (PET), to facilitate the production of touch-enabled display screen modules or other applications requiring transparency.
  • PET polyethylene terephthalate
  • the optional PET is used to fabricate the substrate 12, which has the advantages of good light transmission and flexibility, and is easy to manufacture.
  • the thickness of the substrate 12 made of PET may be about It is 0.01 to 0.5 mm (mm), preferably 0.015 to 0.2 mm, more preferably 0.1 mm, and the substrate within this thickness has good flexibility.
  • the thickness of the substrate 12 may be other options as well as other non-transparent materials, such as metals.
  • Step S20 A transparent conductive nanosilver film 14 having a sensing region is disposed on the substrate 12.
  • the nanosilver film 14 is a film comprising a polymer matrix having nanosilver filaments, and the nanosilver filaments are uniformly distributed disorderly in the film to make the film transparent and electrically conductive.
  • the square resistance of the nanosilver film 14 can be about 5-80 ⁇ /sq, which is greatly reduced compared to ITO.
  • the nanosilver film 14 can be attached to the substrate 12 by coating, silk printing or spraying.
  • the substrate 12 and the nanosilver film 14 disposed on one surface thereof constitute the basic elements of the capacitive touch screen 10.
  • the capacitive touch screen 10 includes a sensing region 20 (shown in FIG.
  • the capacitive touch screen 10 further includes a protective layer 16 on the side of the substrate 12 facing away from the nanosilver film 14, and the protective layer 16 may be fixed to the substrate 12 by a scratch-resistant material such as a polycarbonate material or the like.
  • Step S30 setting the laser parameters so that the characteristics of the transparent conductive of the nanosilver film 14 can be made transparent and non-conductive without the laser 11 being removed.
  • the laser parameters include pulse width, pulse flux, pulse energy, spot size, pulse repetition rate, and the like.
  • the nanosilver in the irradiated portion will change from conductive to non-conductive, and at the same time, the transparency of the irradiated portion hardly changes, and The nano-silver film 14 is hardly peeled off by any of the irradiated portions.
  • the silver wire is not described herein because the above process is prior art.
  • conductive and non-conductive is relative to the field of printed electronics, touch sensing or optoelectronics.
  • a square resistance of about 30 to 250 ⁇ /sq can be considered to be electrically conductive
  • a square resistance of about 20 M ⁇ /sq can be considered to be non-conductive.
  • the conductive and non-conductive may be differently defined, and the above laser parameters are set according to specific application scenarios.
  • Step S40 setting a movement parameter, and the laser moves according to a path set by the movement parameter.
  • the movement parameters include the scanning speed and the movement path.
  • the above scanning speed may be 1 m/s.
  • the moving path can actually be regarded as a pattern, and after the laser moves according to the moving parameter, the area irradiated by the laser will form one of the patterns.
  • the specific shape of the moving path will be further understood in the description of the following steps.
  • Step S50 The laser light is irradiated to the sensing region 20 of the nanosilver film 14 according to the setting of the laser parameter and the moving parameter to form a non-conductive pattern 24 thereon, and the partial non-conductive pattern 24 is as shown in FIG.
  • the non-conductive pattern 24 is a portion in which the nano-silver film 14 is transparent and non-conductive after being irradiated by the laser 11 without being removed. Referring to FIG. 3, an enlarged view of a portion of the non-conductive pattern 24 and portions thereof that are not illuminated by the laser light 11 is illustrated. As shown in Fig. 3, after looking at 200 times, it can be seen that the transparent characteristics and the conductive portion of the non-conductive pattern 24 are slightly changed.
  • the non-conductive pattern 24 cannot be distinguished by the naked eye without any magnification tool. With respect to the portion not irradiated by the laser 11, this is verified in the actual product, that is, the non-conductive pattern 24 after being irradiated by the laser 11 is also transparent.
  • the presence of the non-conductive pattern 24 causes a plurality of electrically isolated transparent conductive first electrodes 26 and second electrodes 28 , a first electrode 26 and a second electrode 28 , to be formed on the sensing region 20 . That is, the portion of the sensing region 20 of the nanosilver film 14 that is not irradiated with the laser light 11.
  • Each of the first electrodes 26 includes a first stem 26a that extends in a first direction 31 (vertical in Figure 4).
  • Each of the second electrodes 28 includes a second stem 28a that also extends in the first direction and a trace 28b that is coupled to the second stem 28a.
  • Each of the second stems 28a is spaced apart in the first direction 32.
  • traces 28b connected to the respective second trunks 28a also extend in the first direction and are spaced apart in a second direction 32 (lateral direction in FIG. 4), only close to the end of the corresponding second trunk 28a.
  • the corresponding second trunk 28a is extended to effect the connection.
  • Each of the second trunks 28a cooperates with the corresponding first trunk 26a to function to sense the touch position.
  • the width of each of the traces 28b in the second direction is generally smaller than that of the first trunk 26a and the second trunk 28a.
  • the laser may first follow the dotted line shown in FIG. 33 walking, a portion of the non-conductive pattern corresponding to the broken line 33 forms a second electrode 28. The laser then travels along the dashed line 34 to form another second electrode 28, wherein the side of the dashed line 34 adjacent the first trunk 26a is in contact with the dashed line 33. After a sufficient second electrode 28 is formed in the same manner, the laser travels along the broken line 35 to form the first stem 26a.
  • the ITO film has a high square resistance, and the touch screen sensing pattern and the overall structure are limited.
  • the OGS structure of the touch screen is limited by the square resistance, and its size is usually less than 6 inches. If the size is large, the channel impedance will be too high and the remote performance will be poor.
  • the present invention adopts a nano silver thin film with greatly reduced square resistance. Therefore, the sensing pattern and size of the touch screen have a large design space, and the limitation of the square resistance is greatly reduced.
  • the thickness of the nanosilver film is relatively thin, so that the light transmittance is also much higher. Conversely, when the nanosilver film 14 and the ITO film have the same transmittance, the square resistance of the nanosilver film 14 is much lower. At the same time, the nanosilver film 14 is also more resistant to bending than the ITO film. Moreover, since the laser light travels substantially linearly in the first direction 31 during the formation of the non-conductive pattern 24, the distance of the laser walking is greatly reduced compared with the dense pleat shape in the prior art, thereby improving the production efficiency.
  • the first and second electrodes are not limited to the nano-silver film, and may be other transparent conductive films having a nano-dimensional metal, including a single metal in a nanometer dimension,
  • a film formed of an alloy, a metal compound or any combination thereof, for example, a film other than the nanowire, may further include a film of nano metal particles, a film of a nano metal mesh.
  • it may be a graphene film, a carbon nanotube film, an organic conductive polymer film, or a transparent conductive layer formed by any combination of the above.
  • the process of the touch screen using these materials is similar to the above, and the present invention will not be described again.
  • due to A capacitive touch screen is fabricated by using a conductive layer, which has a simple manufacturing process and a small thickness.
  • FIG. 6a is an enlarged schematic view of a partial pattern on the capacitive touch screen provided by the second embodiment of the present invention.
  • the first electrode further includes a plurality of first branches 26b extending from the first trunk 26a in the second direction, and each of the second electrodes further includes a second trunk 28a.
  • the second branch 28c extending in the second direction, the second branch 28c and the first branch 26b are spaced apart in the first direction.
  • each of the second electrodes 28 has a second branch 28c, and the first electrode 26 is provided with a first branch 26b corresponding to a second electrode 28.
  • each second electrode may have two second branches on both sides of the first branch 26b, as shown in FIG. 6b; for example, each second electrode 28 When there is one second branch 28c, the first electrode is provided with two first branches 26b on both sides of the second branch 28c corresponding to one second electrode; or other numbers and combinations, which are not enumerated here.
  • FIG. 7 is an enlarged schematic diagram of a partial pattern on a capacitive touch screen provided by a fifth embodiment of the present invention.
  • the first electrode further includes a plurality of first branches 26b extending from the first trunk 26a in the second direction and a plurality of end edges respectively corresponding to the corresponding first branches 26b.
  • the third branch 26c extends in the first direction.
  • the second trunk 28a is at least partially located between its corresponding third branch 26c and the first trunk 26a.
  • the first trunk 26a, the adjacent first branch 26b and the adjacent third branch 26c partially surround the second trunk 28a, and the trace 28b is connected to the second trunk through a gap between the adjacent third branches 26c 28a.
  • the third branch 26c and the first branch 26a are substantially T-shaped; the first trunk 26a, the second trunk 28a, the third branch 26c, and most of the trace 28b extend in a straight line in the first direction 31. The same can be achieved to improve production efficiency.
  • the first and second directions are not limited to the vertical direction of the figure and the horizontal direction perpendicular thereto. In other embodiments, as long as the two directions are at an angle to each other, .
  • FIG. 8 is an enlarged schematic diagram of a partial pattern on a capacitive touch screen provided by a sixth embodiment of the present invention.
  • the main difference from the fifth embodiment is that in the process of extending from one side (upper side in FIG. 8) of the self-capacitive touch screen 10 to the opposite side (lower side in FIG. 8), the first The trunk 26a, the second trunk 28a, the third branch 26c, and most of the traces 28b do not extend in a straight line, but have a small bend.
  • the first trunk 26a is bent once, i.e., can be abstracted into two segments of mutually angled segments to form a generally V-shaped bend line that forms the length of the ends of the opening. Also a unit length L.
  • the unit length L may be greater than 1 millimeter (mm) and less than 15 mm, that is, the range may be (1 mm, 15 mm), the preferred range may be (3 mm, 8 mm), and more preferably the range may be (4 mm, 7 mm), and further preferably The range may be (4.5 mm, 6 mm), such as 4.7 mm, 5.0 mm, 5.5 mm; the distance H between the highest point and the bottom point of the bending line in the second direction may be greater than 0 and less than 0.866L.
  • the preferred range may be (0, 0.5 L), more preferably the range may be (0, 0.2887 L), and the more preferred range may be (0, 0.134 L), such as may be 0.088 L, 0.044 L;
  • the angle ⁇ between the line segments of the angle may be greater than 60° and less than 180°, preferably in the range of (90°, 180°), more preferably in the range of (120°, 180°), and further preferably in the range (150).
  • °, 180° for example, 160°, 170°
  • the ratio of the total length of the mutually intersecting line segments in the bending line to the unit length L may be greater than 1 and less than 2, preferably in the range (1, 1.414).
  • the range may be (1, 1.15), and the further preferred range may be (1, 1.035), such as 1.015, 1.004.
  • Each of the second main rods 28a and 28b is in close contact with the first trunk 26a or the third branch 26c adjacent thereto, so as to be in a slightly curved form similar to the first trunk 26a, and is not a straight line.
  • the sixth embodiment proposes a form of small bending, which is equally applicable to the first to fourth embodiments described above, and those skilled in the art can modify the above embodiment in the same manner inspired by the sixth embodiment. Achieve a small bending form, in addition, the unit identified in the figure The bending in the length L may not be symmetrical, and will not be enumerated in detail herein.
  • the manufacturing method of the capacitive touch screen includes: providing a substrate; and providing a transparent conductive nano-silver film having a sensing region on the substrate, the sensing The region has a first side and an opposite second side; the laser parameter is set such that the transparent conductive property of the nanosilver film is transparent and non-conductive in a manner that the laser can be removed; setting a movement parameter, the laser according to the movement parameter Setting a path movement; and illuminating the sensing area with the laser parameter and the setting of the moving parameter to form a non-conductive pattern thereon, the non-conductive pattern forming a plurality of the sensing area a transparent conductive first electrode and a second electrode electrically isolated from each other; wherein each of the first electrode
  • the nano-silver film 14 further includes a lead region 22 located at the periphery of the sensing region 20 as shown in FIG. 4, and the method for fabricating the capacitive touch screen provided by the embodiment of the present invention is between the above steps S40 and S50, as shown in the figure. As shown in 9, it also includes:
  • Step S45 the laser light is irradiated to the lead region 22 according to the setting of the laser parameter and the movement parameter.
  • a plurality of first leads 41 respectively electrically connected to the first trunk 26a and second leads 42 electrically connected to the respective traces 28b are formed on the lead region.
  • the laser first illuminates the nano-silver film 14 from the lead region 22 in the first direction, and directly enters the sensing region 22, so that the first lead 41 and the first trunk 26a corresponding thereto, and the second lead 42 and the corresponding The trace 28b is generated by laser at a time.
  • the lead area and the sensing area of the touch screen are separately manufactured by two processes as in the prior art, and only one laser process is required, which is improved. Productivity. This preferred step is used in the first to sixth embodiments described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电容触摸屏,包括一基材(12)及设置于该基材(12)的一透明的导电层,该导电层包括感测区(20),该感测区(20)具有第一侧及相对的第二侧,还包括:多个透明导电的第一电极(26),各第一电极(26)包括一个自该第一侧向该第二侧延伸的第一主干(26a);多个透明导电的第二电极(28),各第二电极(28)包括都自该第一侧向该第二侧延伸的一个第二主干(28a)及一个连接至该第二主干(28a)的走线(28b),各第二主干(28a)与对应的第一主干(26a)配合起到感测触摸位置的作用;透明的非导电图案,其位于该第一及第二电极之间以将该两者电性隔离。该电容触摸屏用的纳米银丝薄膜方阻低、透光率高、耐弯折性好,触摸屏的感测图案及尺寸有较大的设计空间。还提供了一种电容触摸屏的制作方法。

Description

电容触摸屏及其制造方法 技术领域
本发明涉及触摸屏,尤其涉及电容触摸屏及其制造方法。
背景技术
目前,电容触摸屏已经成为手机、平板电脑及笔记本电脑等电子产品不可或缺的元件。为了实现多点触摸,常见的电容触摸屏的结构包括单层架桥结构及双层结构。其中单层架桥结构电容触摸屏的工艺较为复杂,而双层结构的电容触摸屏由于需要堆叠,其厚度较大。因此,有必要提供一种工艺简单且厚度较小的电容触摸屏。并且,近来可对用于形成电容感测触摸功能的透明导电层进行不去除式的加工方式,即将部分导电层变成不导电而无需去除该部分的加工方式的出现,为更高性能的多点式电容触摸屏的设计提供了进一步的发展空间。
发明内容
本发明的实施方式提供了一种可解决上述技术问题的电容触摸屏及其制作方法。
一种电容触摸屏,包括一基材及设置于该基材的一透明的导电层,该透明的导电层包括感测区,该感测区具有第一侧及相对的第二侧,还包括:多个透明导电的第一电极,各第一电极包括一个自该第一侧向该第二侧延伸的第一主干;多个透明导电的第二电极,各第二电极包括均自该第一侧向该第二侧延伸的一个第二主干及一个连接至该第二主干的走线,各第二主干与对应的第一主干配合起到感测触摸位置的作用;透明的非导电图 案,其位于该第一及第二电极之间以将该两者电性隔离。
一种电容触摸屏的制作方法,包括:提供基材;在该基材上设置具有感测区的透明的透明的导电层,该感测区具有第一侧及相对的第二侧;设置激光参数,使激光可以不去除的方式将该透明的导电层透明导电的特性变成透明且不导电;设置移动参数,该激光按照该移动参数设定的路径移动;按该激光参数及移动参数的设定使该激光照射该感测区,以在其上形成非导电图案,该非导电图案使该感测区上形成多个被该非导电图案电性隔离的透明导电的第一电极及第二电极;其中,各第一电极包括沿一个自该第一侧向该第二侧延伸的第一主干;各第二电极包括均自该第一侧向该第二侧延伸的一个第二主干及一个连接至该第二主干的走线,各第二主干与对应的第一主干配合起到感测触摸位置的作用。
在本发明中,由于采用了一层导电层制成了电容触摸屏,其制程工艺简单,厚度也较小。
附图说明
下列附图用于结合具体实施方式详细说明本发明的各个实施方式。应当理解,附图中示意出的各元件并不代表实际的大小及比例关系,仅是为了清楚说明而示意出来的示意图,不应理解成对本发明的限制。
图1是本发明第一实施方式提供的电容触摸屏的制作方法的流程图。
图2是根据图1的制作方法,激光照射在设置于基材上的纳米银丝薄膜时的侧面示意图。
图3是图1的纳米银丝薄膜的部分区域中被照射部分跟不被照射部分的微观示意图。
图4是根据图1的方法制作的电容触摸屏的平面视图。
图5是根据本发明的第一实施方式,图4电容触摸屏上用于感测触摸 操作的部分图案的放大示意图。
图6a至6c是本发明第二至第四实施方式提供的电容触摸屏上的部分图案的放大示意图。
图7是本发明第五实施方式提供的电容触摸屏上的部分图案的放大示意图。
图8是本发明第六实施方式提供的电容触摸屏上的部分图案的放大示意图。
图9是本发明第二实施方式提供的电容触摸屏的制作方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合多个实施方式及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种电容触摸屏及其制造方法,在下述实施方式中,将先对电容触摸屏的制造方法进行描述,然而,在描述过程中,也需提及到电容触摸屏的结构以更好地说明其制造方法,因此,本说明书中将不再单独地对电容触摸屏的结构进行与其制造方法分离的说明,本领域技术人员根据对制作方法的描述可清楚得知电容触摸屏的结构。
请结合图1及图2,其是本发明的实施方式提供的电容触摸屏的制作方法的流程图,包括以下步骤:
步骤S10:提供基材12。基材12可由透明材料制成,比如玻璃或聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET),以利于制作具有触摸功能的显示屏幕模组或其它需透明特性的应用场景。当需电容触摸屏10具有柔性时,可选PET制作基材12,PET具有透光性及柔韧性好,易于制造等优点。在本实施方式中,由PET制成的基材12的厚度可以约 为0.01至0.5毫米(mm),优选可以0.015至0.2mm,更优选可以为为0.1mm,这个厚度内的基材具有较好的柔韧性。当然,在其它无需透明特性的情况下,基材12的厚度也可以是其他选择,也可由非透明的材料,比如金属制成。
步骤S20:在基材12上设置具有感测区的透明导电纳米银丝薄膜14。纳米银丝薄膜14为包括一层具有纳米银丝的聚合物基体的薄膜,纳米银丝在薄膜中无序均匀分布,以使薄膜具有透明及导电的特征。纳米银丝薄膜14的方阻可以约为5-80Ω/sq,相比ITO大为降低。纳米银丝薄膜14可通过涂布、丝印或喷射的方式附设至基材12。基材12及设置在其一表面上的纳米银丝薄膜14构成了电容触摸屏10基本要素。电容触摸屏10包括位于其中间部位的由纳米银丝薄膜14加工而形成的感测区20(如图4所示),用于感测用户的触摸。优选地,电容触摸屏10还包括位于基材12背对纳米银丝薄膜14一侧的保护层16,保护层16可由耐刮材料,比如聚碳酸脂材料等通过涂布方式固定至基材12。
步骤S30:设置激光参数,使激光11可以不去除的方式将纳米银丝薄膜14透明导电的特性变成透明且不导电。所述激光参数包括了脉冲宽度,脉冲通量,脉冲能量,光斑尺寸,脉冲重复率等。在选择适当的上述各个参数的情况下,激光11照射纳米银丝薄膜14后,被照射部分中的纳米银丝将从导电变为不导电,同时,被照射部分的透明度几乎不发生改变,而且,纳米银丝薄膜14被照射部分几乎不会有任何被剥离的情况发生。银丝由于上述工艺是现有技术,在此不做赘述。必须指出的是,导电跟不导电的界定是相对于印刷电子器件、触摸感测或光电原件领域来讲的。比如,对于方阻约在30至250Ω/sq可认为是导电的,而方阻约在20MΩ/sq可认为是不导电的。然而应当理解,在不同的领域中,导电与非导电可能有不同的界定,需根据具体的应用场景设定上述激光参数。
步骤S40:设置移动参数,该激光按照该移动参数设定的路径移动。移动参数包括扫描速度及移动路径等。上述扫描速度可以是1m/s。移动路径实际上可看成一个图案,激光按照该移动参数移动后,被激光照射过的区域将形成一个所述的图案。该移动路径的具体形状,将可在以下步骤的描述中得到进一步的了解。
步骤S50:按该激光参数及移动参数的设定使该激光照射纳米银丝薄膜14的感测区20,以在其上形成非导电图案24,部分非导电图案24如图3所示。非导电图案24即是纳米银丝薄膜14被激光11可以不去除的方式照射后变成透明且不导电的部分。请结合图3,其放大地示意出部分非导电图案24及其两侧的未被激光11照射的部分。如图3所示,放200倍大后看,才能看出非导电图案24部分的透明特性与导电部分有些许变化,因此,仅凭肉眼而不借助任何放大工具,无法分辨出非导电图案24与未被激光11照射的部分,这在实际产品中以得到验证,即是说,被激光11照射后的非导电图案24同样是透明的。
请结合图4及图5,非导电图案24的存在使感测区20上形成了多个电性隔离的透明导电的第一电极26及第二电极28,第一电极26及第二电极28即是纳米银丝薄膜14的感测区20内未被激光11照射的部分。各第一电极26包括沿一个第一方向31(图4中的竖向)延伸的第一主干26a。各第二电极28包括一个同样沿第一方向延伸的第二主干28a及一个连接至第二主干28a的走线28b。各第二主干28a在第一方向32上间隔排列。连接至各第二主干28a的走线28b大部分同样沿第一方向延伸并且在一个第二方向32(图4中的横向)上间隔排列,仅其接近对应的第二主干28a的一端向该对应的第二主干28a延伸而实现连接。各第二主干28a与对应的第一主干26a配合起到感测触摸位置的作用。各走线28b的在第二方向上的宽度通常比第一主干26a及第二主干28a的小。
制作过程中,在制作第一电极26以及第二电极28,比如图5所示的部分第一主干26a、第二主干28a以及其走线28b时,激光可先沿图5中所示的虚线33行走,虚线33对应的部分非导电图案便可形成一个第二电极28。激光再沿虚线34行走,便形成了另一个第二电极28,其中虚线34靠近第一主干26a的一侧与虚线33接触。以同样的方式形成足够的第二电极28后,激光再沿虚线35行走,便可形成第一主干26a。
在传统的设计中,ITO薄膜方阻较高,触摸屏感测图案以及整体结构会受到限制。比如OGS结构的触摸屏因方阻限制,其尺寸通常都小于6寸,尺寸再大的话通道阻抗会太高而产生远端性能差等问题。相较于传统ITO设计,本发明采用了方阻大为降低的纳米银丝薄膜,因此,触摸屏的感测图案及尺寸有较大的设计空间,受方阻的限制大为降低。
另外,由于利用纳米银丝薄膜14的方阻低,与ITO薄膜具有相同方阻时,纳米银丝薄膜的厚度相对会薄很多,因此,其透光率也会高很多。反过来讲,当纳米银丝薄膜14与ITO薄膜具有相同透光度时,纳米银丝薄膜14的方阻又低很多。同时,纳米银丝薄膜14的耐弯折性也比ITO薄膜好。再者,由于形成非导电图案24的过程中,激光基本都沿第一方向31直线地行走,因此,对比现有技术中密集的褶皱形状,激光行走的路程大大降低,从而提高了生产效率。
然而应当理解,在其它实施方式中,用于形成第一及第二电极的并不限于纳米银丝薄膜,也可以是其它透明导电的具有纳米维度的金属的薄膜,包括纳米维度的单一金属、合金、金属化合物或其以上任意组合形成的薄膜,例如除了纳米金属丝的薄膜,还可包括纳米金属颗粒的薄膜、纳米金属网格的薄膜。当然也可以是石墨烯薄膜、碳纳米管薄膜、有机导电高分子聚合物薄膜,或者以上任意组合而形成的透明的导电层。利用这些材料的触摸屏的制程与上述类似,本发明将不做赘述。在本发明中,由于 采用了一层导电层制成了电容触摸屏,其制程工艺简单,厚度也较小。
请结合图6a,其是本发明第二实施方式提供的电容触摸屏上的部分图案的放大示意图。其与第一实施方式的主要不同之处在于,第一电极还包括多个自第一主干26a沿第二方向延伸出来的第一分支26b,各第二电极还包括一个自第二主干28a沿第二方向延伸出来的第二分支28c,第二分支28c与第一分支26b在第一方向上间隔设置。在图6a的实施方式中,各第二电极28具有一个第二分支28c,而第一电极26对应一个第二电极28处设置有一个第一分支26b。然而可以理解,各分支的数量不限于上述实施方式,比如,各第二电极可具有两个位于第一分支26b两侧的第二分支,如图6b所示;又比如,各第二电极28具有一个第二分支28c时,第一电极对应一个第二电极处设置有两个位于第二分支28c两侧的第一分支26b;或者是其它的数量及组合,在此不一一列举。
请结合图7,其是本发明第五实施方式提供的电容触摸屏上的部分图案的放大示意图。其与第一实施方式的主要不同之处在于,第一电极还包括多个自第一主干26a沿第二方向延伸出来的第一分支26b以及多个分别自对应的第一分支26b的末端沿第一方向延伸的第三分支26c。第二主干28a至少部分位于与其对应的第三分支26c及第一主干26a之间。优选地,第一主干26a、相邻的第一分支26b及相邻的第三分支26c半包围第二主干28a,走线28b通过相邻的第三分支26c之间的间隙连接至第二主干28a。在本实施方式中,第三分支26c及第一分支26a大致呈T形;第一主干26a、第二主干28a、第三分支26c及大部分的走线28b在第一方向31上沿直线延伸,同样可以达到提高生产效率的目的。
必须指出的是,上述多个实施方式中,第一及第二方向不限于图示的竖向及与其垂直的横向,在其它实施方式中,只要该两个方向相互间夹设一个角度便可。
请结合图8其是本发明第六实施方式提供的电容触摸屏上的部分图案的放大示意图。其与第五实施方式的主要不同之处在于,在自电容触摸屏10的一侧(图8中的上侧)延伸至相对的另一侧(图8中的下侧)的过程中,第一主干26a、第二主干28a、第三分支26c及大部分的走线28b并非沿直线延伸,而是具有小幅的弯折。
在一个单位长度L内,第一主干26a进行一次弯折,即,可抽象成由两段互成角度的线段组成,从而形成一个大致呈V形的弯折线,该弯折线形成开口两端的长度也为一个单位长度L。其中,单位长度L可以大于1毫米(mm)且小于15mm,即范围可以是(1mm,15mm),优选的范围可以是(3mm,8mm),更优选范围可以为(4mm,7mm),再优选范围可以为(4.5mm,6mm),比如可以是4.7mm,5.0mm,5.5mm;所述弯折线在第二方向上的最高点与最底点之间的距离H可以大于0且小于0.866L,优选范围可以为(0,0.5L),更优选范围可以为(0,0.2887L),再优选范围可以为(0,0.134L),比如可以是0.088L,0.044L;弯折线中互成角度的线段之间的夹角α可以大于60°并且小于180°,优选范围可以为(90°,180°),更优选范围可以为(120°,180°),再优选范围可以为(150°,180°),比如可以是160°,170°;弯折线中互成角度的线段的总长度与单位长度L之比值λ的范围可以大于1且小于2,优选范围为(1,1.414),更优选范围可以为(1,1.15),再优选范围可以为(1,1.035),比如可以是1.015,1.004。各第二主杆28a及走线28b紧贴与其靠近的第一主干26a或第三分支26c,从而也呈与第一主干26a相似的小幅的弯折形态,而并非直线。
必须指出的是,第六实施方式提出小幅的弯折的形态,同样适用于上述第一至第四实施方式,本领域技术人员可在第六实施方式的启发下对上述实施方式进行改动而同样实现小幅的弯折形态,另外,图中标识的单位 长度L内的弯折也可以不是对称的,在此不再详细列举做说明。
另外,至于第一及第二电极的形状,本领域技术人员应理解还可以有其它不同的实施方式,比如螺旋形,在本申请中也无法做一一列举。然而,本领域技术人员根据上述多个实施的记载应理解,只要电容触摸屏的制作方法,包括:提供基材;在该基材上设置具有感测区的透明导电纳米银丝薄膜,该感测区具有第一侧及相对的第二侧;设置激光参数,使激光可以不去除的方式将该纳米银丝薄膜透明导电的特性变成透明且不导电;设置移动参数,该激光按照该移动参数设定的路径移动;以及按该激光参数及移动参数的设定使该激光照射该感测区,以在其上形成非导电图案,该非导电图案使该感测区上形成多个被该非导电图案电性隔离的透明导电的第一电极及第二电极;其中,各第一电极包括沿一个自该第一侧向该第二侧延伸的第一主干;各第二电极包括均自该第一侧向该第二侧延伸的一个第二主干及一个连接至该第二主干的走线,各第二主干与对应的第一主干配合起到感测触摸位置的作用,等步骤;只要电容触摸屏包括一基材及设置于该基材的一纳米银丝薄膜,该纳米银丝薄膜包括具有第一侧及相对的第二侧的感测区,并且该感测区还包括多个透明导电的第一电极、第二电极及位于该第一及第二电极之间以将该两者电性隔离的透明的非导电图案,其中,各第一电极包括沿一个自该第一侧向该第二侧延伸的第一主干;各第二电极包括均自该第一侧向该第二侧延伸的一个第二主干及一个连接至该第二主干的走线,各第二主干与对应的第一主干配合起到感测触摸位置的作用,便属于本发明的电容触摸屏及其制造方法的保护范围。
优选地,纳米银丝薄膜14还包括如图4所示的位于感测区20外围的引线区22,本发明的实施方式提供的电容触摸屏的制作方法在上述步骤S40及S50之间,如图9所示,还包括:
步骤S45:按该激光参数及移动参数的设定使该激光照射引线区22, 以在引线区上形成多个分别与第一主干26a电性连接的第一引线41及分别与各走线28b电性连接的第二引线42。激光沿第一方向先从引线区22开始照射纳米银丝薄膜14,并直接进入感测区22,以使得第一引线41及与其对应的第一主干26a,以及第二引线42及与其对应的走线28b通过激光的方式一次生成,如此,制作整个电容触摸屏的过程中便无需像现有技术一样通过两次工艺分别制作完成触摸屏的引线区及感测区,仅需一次激光制程,提高了生产效率。该优选的步骤使用于上述第一至第六实施方式。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (35)

  1. 一种电容触摸屏,包括一基材及设置于该基材的一透明的导电层,该导电层包括感测区,该感测区具有第一侧及相对的第二侧,还包括:
    多个透明导电的第一电极,各第一电极包括一个自该第一侧向该第二侧延伸的第一主干;
    多个透明导电的第二电极,各第二电极包括都自该第一侧向该第二侧延伸的一个第二主干及一个连接至该第二主干的走线,各第二主干与对应的第一主干配合起到感测触摸位置的作用;
    透明的非导电图案,其位于该第一及第二电极之间以将该两者电性隔离。
  2. 如权利要求1所述的电容触摸屏,其特征在于,各第一电极还包括多个自其第一主干向外延伸的第一分支,各第二电极还包括至少一个自其第二主干向外延伸的第二分支;各第一分支与对应的第二分支在自该第一侧向该第二侧延伸的方向上间隔设置。
  3. 如权利要求2所述的电容触摸屏,其特征在于,各第一分支与两个该第二分支对应并夹设在该两个第二分支之间。
  4. 如权利要求2所述的电容触摸屏,其特征在于,各第二分支与两个该第一分支对应并夹设在该两个第一分支之间。
  5. 如权利要求1所述的电容触摸屏,其特征在于,各第一电极还包括多个自其第一主干向外延伸的第一分支以及多个分别自对应的第一分支的末端沿自该第一侧向该第二侧延伸的方向延伸的第三分支;各第二主干至 少部分位于与其对应的第三分支及该第一主干之间。
  6. 如权利要求5所述的电容触摸屏,其特征在于,该第一主干、相邻的第一分支及相邻的第三分支半包围对应的第二主干,对应的走线通过相邻的第三分支之间的间隙连接至该第二主干。
  7. 如权利要求6所述的电容触摸屏,其特征在于,各第一分支与对应的第三分支组合形成T形。
  8. 如权利要求1至7任一项所述的电容触摸屏,其特征在于,各第一主干自该第一侧沿直线向该第二侧延伸,各第二主干自该第一侧沿直线向该第二侧延伸。
  9. 如权利要求8所述的电容触摸屏,其特征在于,各第二主干一端跟与其另一端相邻的第二主干的靠近所述第二主干的一端之间在所述沿直线延伸的第一方向上的直线距离为一个单位长度,该单位长度大于1mm且小于15mm。
  10. 如权利要求8所述的电容触摸屏,其特征在于,该单位长度大于4mm且小于7mm。
  11. 如权利要求1至7任一项所述的电容触摸屏,其特征在于,在自该第一侧沿直线向该第二侧延伸的一个第一方向上,各第二主干一端跟与其另一端相邻的第二主干的靠近所述第二主干的一端之间在第一方向上的直线距离为一个单位长度L,并且1mm<L<15mm。
  12. 如权利要求11所述的电容触摸屏,其特征在于,该4mm<L<7mm。
  13. 如权利要求12所述的电容触摸屏,其特征在于,各第一主干由多个V形的弯折部分组成,在一个单位长度L内,第一主干具有一个完整的该 弯折部分。
  14. 如权利要求13所述的电容触摸屏,其特征在于,各弯折部分在一个垂直于该第一方向的第二方向上的最高点与最底点之间的距离H大于零且小于0.866L。
  15. 如权利要求14所述的电容触摸屏,其特征在于,0<H<0.2887L。
  16. 如权利要求13所述的电容触摸屏,其特征在于,各弯折部分沿一个垂直于该第一方向的第二方向对称,并且其弯折线中互成角度的线段之间的夹角α大于60°并且小于180°。
  17. 如权利要求16所述的电容触摸屏,其特征在于,150°<α<180°。
  18. 如权利要求13所述的电容触摸屏,其特征在于,各弯折线中互成角度的线段的总长度与该单位长度之比值λ大于1且小于2。
  19. 如权利要求18所述的电容触摸屏,其特征在于,1<λ<1.15。
  20. 如权利要求1所述的电容触摸屏,其特征在于,该纳米银丝薄膜还包括与该感测区相邻引线区,该引线区包括多个分别与各第一主干电性连接的第一引线及多个分别与各走线电性连接的第二引线。
  21. 如权利要求20所述的电容触摸屏,其特征在于,各第一引线及对应的第一主干在同个直线上自该第一侧向该第二侧延伸,各第二引线及对应的走线在同个直线上自该第一侧向该第二侧延伸。
  22. 如权利要求1所述的电容触摸屏,其特征在于,该透明的导电层包括具有纳米维度的金属的薄膜。
  23. 如权利要求1所述的电容触摸屏,其特征在于,该导电层包括纳米银丝薄膜。
  24. 如权利要求1所述的电容触摸屏,其特征在于,该透明的导电层包括碳纳米管薄膜。
  25. 如权利要求1所述的电容触摸屏,其特征在于,该透明的导电层包括石墨烯薄膜。
  26. 如权利要求1所述的电容触摸屏,其特征在于,该透明的导电层包括有机导电高分子薄膜。
  27. 如权利要求1所述的电容触摸屏,其特征在于,该透明的导电层包括ITO薄膜。
  28. 如权利要求1所述的电容触摸屏,其特征在于,该导电层包括具有纳米维度的金属薄膜、碳纳米管薄膜、石墨烯薄膜、有机导电高分子薄膜、ITO薄膜的任意组合。
  29. 一种电容触摸屏的制作方法,包括:
    提供基材;
    在该基材上设置具有感测区的透明的导电层,该感测区具有第一侧及相对的第二侧;
    设置激光参数,使激光可以不去除的方式将该导电层透明导电的特性变成透明且不导电;
    设置移动参数,该激光按照该移动参数设定的路径移动;
    按该激光参数及移动参数的设定使该激光照射该感测区,以在其上形成非导电图案,该非导电图案使该感测区上形成多个被该非导电图案电性 隔离的透明导电的第一电极及第二电极;
    其中,各第一电极包括沿一个自该第一侧向该第二侧延伸的第一主干;各第二电极包括都自该第一侧向该第二侧延伸的一个第二主干及一个连接至该第二主干的走线,各第二主干与对应的第一主干配合起到感测触摸位置的作用。
  30. 如权利要求29所述的制作方法,其特征在于,在该形成非导电图案的步骤中,该激光自该第一侧沿直线向该第二侧移动以形成各第一电极。
  31. 如权利要求30所述的制作方法,其特征在于,在该形成非导电图案的步骤中,该激光沿所述直线所在方向移动以形成各第二电极。
  32. 如权利要求29所述的制作方法,其特征在于,在该形成非导电图案的步骤中,该激光自该第一侧沿V形的弯折线向该第二侧移动以形成各第一电极及各第二电极。
  33. 如权利要求29所述的制作方法,其特征在于,该导电层还包括与该感测区相邻引线区,在使该激光照射该感测区的步骤之前还包括:使该激光照射该引线区,使该引线区上形成多个分别与各第一主干电性连接的第一引线及多个分别与各走线电性连接的第二引线。
  34. 如权利要求29所述的制作方法,其特征在于,该导电层包括具有纳米维度的金属薄膜。
  35. 如权利要求29所述的制作方法,其特征在于,该导电层包括纳米银丝薄膜。
PCT/CN2015/072450 2015-02-06 2015-02-06 电容触摸屏及其制造方法 WO2016123807A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177023332A KR102012574B1 (ko) 2015-02-06 2015-02-06 용량성 터치 스크린 및 그 제조 방법
PCT/CN2015/072450 WO2016123807A1 (zh) 2015-02-06 2015-02-06 电容触摸屏及其制造方法
EP15880763.6A EP3255532A4 (en) 2015-02-06 2015-02-06 Capacitive touchscreen and manufacturing method therefor
JP2017540855A JP2018505486A (ja) 2015-02-06 2015-02-06 静電容量タッチスクリーンおよびその製造方法
CN201580000932.9A CN105493016B (zh) 2015-02-06 2015-02-06 电容触摸屏及其制造方法
US15/548,913 US10437397B2 (en) 2015-02-06 2015-02-06 Capacitive touchscreen and manufacturing method thereof
US16/427,974 US20190317623A1 (en) 2015-02-06 2019-05-31 Capacitive touchscreens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072450 WO2016123807A1 (zh) 2015-02-06 2015-02-06 电容触摸屏及其制造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/548,913 A-371-Of-International US10437397B2 (en) 2015-02-06 2015-02-06 Capacitive touchscreen and manufacturing method thereof
US16/427,974 Continuation US20190317623A1 (en) 2015-02-06 2019-05-31 Capacitive touchscreens

Publications (1)

Publication Number Publication Date
WO2016123807A1 true WO2016123807A1 (zh) 2016-08-11

Family

ID=55678491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072450 WO2016123807A1 (zh) 2015-02-06 2015-02-06 电容触摸屏及其制造方法

Country Status (6)

Country Link
US (2) US10437397B2 (zh)
EP (1) EP3255532A4 (zh)
JP (1) JP2018505486A (zh)
KR (1) KR102012574B1 (zh)
CN (1) CN105493016B (zh)
WO (1) WO2016123807A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10572080B2 (en) * 2016-06-13 2020-02-25 Samsung Display Co., Ltd. Optical touch film, display device including the same, and manufacturing method thereof
CN106526935B (zh) * 2016-11-25 2019-08-20 武汉华星光电技术有限公司 一种触控单元、彩膜基板和液晶显示器
WO2018116136A1 (en) * 2016-12-20 2018-06-28 3M Innovative Properties Company Electrode pattern for capacitive touch sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174578A (ja) * 2011-02-23 2012-09-10 Gunze Ltd 透明電極フィルムおよび透明タッチパネル
CN103218099A (zh) * 2013-04-25 2013-07-24 苏州瀚瑞微电子有限公司 单层电容式电极布局结构
GB2506347A (en) * 2012-09-13 2014-04-02 M Solv Ltd Forming an electrode structure for a capacitive touch sensor by laser ablation
CN104111758A (zh) * 2013-04-18 2014-10-22 上海海尔集成电路有限公司 电容触摸屏和触摸显示器
TW201442081A (zh) * 2013-01-22 2014-11-01 M Solv Ltd 在透明基板之相對側上之塗層形成圖案的方法及裝置
CN104182081A (zh) * 2013-05-24 2014-12-03 胜华科技股份有限公司 触控感测电极结构及触控装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390265B1 (ko) * 1998-01-23 2003-07-07 프레스텍, 인크. 습식 석판 인쇄용 레이저-화상 형성 인쇄 부재
US20060261924A1 (en) * 2005-05-20 2006-11-23 Swenson Edward J Method of forming passive electronic components on a substrate by direct write technique using shaped uniform laser beam
US8487898B2 (en) 2008-04-25 2013-07-16 Apple Inc. Ground guard for capacitive sensing
CN102227703B (zh) * 2008-11-06 2014-01-08 Uico公司 电容触摸屏及用于制作触摸屏的策略性几何形状隔离图案化方法
JP2012169081A (ja) 2011-02-10 2012-09-06 Shin Etsu Polymer Co Ltd 導電パターン形成基板およびその製造方法、入力装置
US20140210784A1 (en) * 2011-02-24 2014-07-31 Cypress Semiconductor Corporation Touch sensor device
US9292143B2 (en) * 2011-07-29 2016-03-22 Sharp Kabushiki Kaisha Touch panel substrate and electro-optical device
WO2013018591A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 タッチパネル基板および電気光学装置
KR20130021214A (ko) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN202649986U (zh) 2012-02-16 2013-01-02 洋华光电股份有限公司 电容式触控装置
KR20130115621A (ko) * 2012-04-12 2013-10-22 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2013222590A (ja) 2012-04-16 2013-10-28 Shin Etsu Polymer Co Ltd 導電パターン形成基板及びその製造方法
US8502796B1 (en) 2012-08-27 2013-08-06 Atmel Corporation Interpolated single-layer touch sensor
CN103164091A (zh) * 2012-08-31 2013-06-19 敦泰科技有限公司 单层电极互电容触摸屏
TW201430661A (zh) 2013-01-24 2014-08-01 Wintek Corp 觸控面板
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking
CN103425325B (zh) 2013-03-30 2016-12-28 南昌欧菲光显示技术有限公司 偏光片模块及其制备方法和触摸显示屏
KR101448094B1 (ko) 2013-05-15 2014-10-13 (주)멜파스 단층 감지 패턴을 이용한 터치 센싱 장치 및 터치 센싱 장치의 제조 방법
CN203276241U (zh) 2013-05-15 2013-11-06 南昌欧菲光显示技术有限公司 单层多点电容触摸屏
US9310944B2 (en) 2013-07-25 2016-04-12 Atmel Corporation Oncell single-layer touch sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174578A (ja) * 2011-02-23 2012-09-10 Gunze Ltd 透明電極フィルムおよび透明タッチパネル
GB2506347A (en) * 2012-09-13 2014-04-02 M Solv Ltd Forming an electrode structure for a capacitive touch sensor by laser ablation
TW201442081A (zh) * 2013-01-22 2014-11-01 M Solv Ltd 在透明基板之相對側上之塗層形成圖案的方法及裝置
CN104111758A (zh) * 2013-04-18 2014-10-22 上海海尔集成电路有限公司 电容触摸屏和触摸显示器
CN103218099A (zh) * 2013-04-25 2013-07-24 苏州瀚瑞微电子有限公司 单层电容式电极布局结构
CN104182081A (zh) * 2013-05-24 2014-12-03 胜华科技股份有限公司 触控感测电极结构及触控装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255532A4 *

Also Published As

Publication number Publication date
US20190317623A1 (en) 2019-10-17
CN105493016A (zh) 2016-04-13
US10437397B2 (en) 2019-10-08
JP2018505486A (ja) 2018-02-22
US20180032172A1 (en) 2018-02-01
KR102012574B1 (ko) 2019-08-20
KR20170107037A (ko) 2017-09-22
EP3255532A1 (en) 2017-12-13
EP3255532A4 (en) 2018-09-12
CN105493016B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
US10048820B2 (en) Touch panel and manufacturing method thereof
US20140333555A1 (en) Touch sensor and electronic device having the same
TWI485603B (zh) 觸控面板之結構及製造方法
KR101357585B1 (ko) 터치패널의 전극 패턴 및 그 제조 방법
CN105320318B (zh) 触控装置
KR20150009846A (ko) 터치 스크린 패널 및 그 제조 방법
KR20110100034A (ko) 정전 용량 방식 터치 패널 및 그 제조방법
CN102968201A (zh) 制造触摸板的方法
CN104793781A (zh) 触摸传感器
US20190317623A1 (en) Capacitive touchscreens
WO2016002461A1 (ja) 入力装置およびその製造方法
KR20150022215A (ko) 터치 패널 및 그의 제조방법
TWI474385B (zh) 觸控單元
KR20160141525A (ko) 터치 패널
US20180173344A1 (en) Touch panel
KR102286210B1 (ko) 터치 패널
US20170045966A1 (en) Touch screen panel
TWM593003U (zh) 雙觸控感應器結構
US10228580B2 (en) Touch panel
KR102303064B1 (ko) 터치 윈도우
KR101987329B1 (ko) 터치 패널 및 그 제조 방법
KR102288813B1 (ko) 터치 윈도우
WO2016123810A1 (zh) 电容触摸屏及其制造方法
US20140015790A1 (en) Capacitive touch control sensor
KR102175779B1 (ko) 전극 부재 및 이를 포함하는 터치 윈도우

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000932.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015880763

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177023332

Country of ref document: KR

Kind code of ref document: A