WO2016122198A1 - Method for solving problem of nucleic acid detection due to threshold cycle (ct) of real-time polymerase chain reaction using pna probe - Google Patents

Method for solving problem of nucleic acid detection due to threshold cycle (ct) of real-time polymerase chain reaction using pna probe Download PDF

Info

Publication number
WO2016122198A1
WO2016122198A1 PCT/KR2016/000842 KR2016000842W WO2016122198A1 WO 2016122198 A1 WO2016122198 A1 WO 2016122198A1 KR 2016000842 W KR2016000842 W KR 2016000842W WO 2016122198 A1 WO2016122198 A1 WO 2016122198A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
target nucleic
pna probe
curve analysis
quencher
Prior art date
Application number
PCT/KR2016/000842
Other languages
French (fr)
Korean (ko)
Inventor
박재신
박희경
정진욱
Original Assignee
주식회사 시선바이오머티리얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160009512A external-priority patent/KR101845043B1/en
Application filed by 주식회사 시선바이오머티리얼스 filed Critical 주식회사 시선바이오머티리얼스
Publication of WO2016122198A1 publication Critical patent/WO2016122198A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for solving the problem of nucleic acid detection according to the critical cycle (Ct) of the real-time polymerase chain reaction using a PNA probe, and more specifically, a reporter and a quencher for detecting a target nucleic acid ( Fusion curve analysis method using a PNA probe coupled to a quencher, a method for detecting and quantifying a target nucleic acid for solving a detection problem of a target nucleic acid according to a threshold cycle (Ct) using the same, a PNA probe using the method It relates to a kit for detecting and quantifying a target nucleic acid comprising a.
  • Ct critical cycle
  • Representative probes used in the real-time polymerase chain reaction are hydrolysis probes, which are prepared by complementary base sequences for a specific gene (specific sequence) to be analyzed and include the genes. Used for amplification and fusion analysis of sequences.
  • TaqMan probe structurally has a structure in which a fluorescent (fluorescent) at the 5 'end, and a quencher at the 3' end is coupled, and the probe is subjected to an annealing step during a polymerase chain reaction (PCR) process.
  • PCR polymerase chain reaction
  • hybridization to the complementary DNA sequence hybridize
  • the development of fluorescence is suppressed by the quencher.
  • the 5 'end of fluorescence is cut off by the activity of the 5' exonuclease of Taq DNA polymerase, which results in color development.
  • the technique applying the real-time polymerase chain reaction using the hydrolysis-type probe is used for reading such as disease diagnosis and individual identification. If the reading is incorrect, it may threaten human life and cause economic loss. Accurate and fast reading is required.
  • target genes to be used for the above-described methods of diagnosis and identification of individuals analysis is performed in single or mixed individuals.
  • the quantitative detection of the target gene as described above is a result of the threshold cycle (Ct) value using a commercially available hydrolysis probe, which causes a lot of confusion during reading.
  • the target gene is detected based on a fixed Ct value. Read whether it is (Stephen A.
  • the amount of PCR amplification product can be detected by fluorescence signal.
  • Intercalating method using an intercalator that binds to double-stranded DNA as a detection method, and uses an oligonucleotide labeled with a fluorescent substance at the 5 'end and a quencher at the 3' end. How to do it.
  • the intensity of the fluorescence signal increases with increasing amount of polynucleotides as the Real-Time PCR progresses, and the user generates an amplification profile curve indicating the intensity of the fluorescence signal according to the number of amplification cycles. You get
  • Amplification profile curves generally include a baseline region where the fluorescence signal of the background does not reflect the actual amount of polynucleotides, an exponential region where the fluorescence signal increases with the increase in the amount of polynucleotide products, and PCR. When the reaction reaches saturation, it is divided into a plateau region where no increase in fluorescence signal intensity is observed. The baseline region appears early in the PCR reaction because the amount of PCR amplification products has not yet reached a detectable amount.
  • the intensity of the fluorescence signal when the point of transition from the baseline region to the exponential region, that is, when the amount of PCR amplification products reaches a detectable amount by fluorescence is called a threshold and corresponds to a threshold in the amplification profile curve.
  • the number of amplification cycles is called the threshold cycle (Ct) value.
  • the log value of the initial polynucleotide amount and the threshold cycle value are in inversely strong relations, and typically the desired polynucleotide quantification is performed using the threshold cycle value.
  • Polynucleotide quantification using real-time polymerase chain reaction has large absolute and relative quantification.
  • Absolute quantification is a method of quantitating a standard curve of critical cycle values for a polynucleotide amount by performing a real-time polymerase chain reaction with a sample having a known polynucleotide amount. This method compares the relative amount with other samples even if the nucleotide amount is not known.
  • standard curves may or may not be used. In all these cases, in order to quantify, the threshold value must first be determined to calculate the threshold cycle value.
  • the number of cells in a reliable sample of a general real-time polymerase chain reaction is about 10 2 to 10 3 . If the quantitative value of the target gene in the mixed population is less than the number of reliable cells, it will have a higher Ct value than the DNA sample with the large amount of the target gene. However, the method of determining the result through the Ct value ignores fluorescence signals below the Ct value in most cases, even though the actual target gene exists because of the quantitative limitation of the target gene. For example, the identification of microorganisms that cause disease in the blood in emergency patients is a very high risk factor and incurs time costs for further verification.
  • PNA Peptide Nucleic Acid
  • the PNA probe hybridizes in the presence of complementary gene sequences, regardless of the activity of the 5 'exonuclease of Taq DNA polymerase. Is to send.
  • the PNA probe like the TaqMan probe, may detect a target gene through an additional melting step (melting step) after the amplification is completed, including a signal during the nucleic acid amplification process.
  • the additional amplification step can solve the shortcomings of the determination method using most of the Ct value.
  • the present inventors minimize the discrimination error of the presence of the target nucleic acid due to the false positive and false negative signals according to the critical cycle (Ct) value shown in the existing Real-Time PCR process, and the target nucleic acid.
  • Ct critical cycle
  • An object of the present invention is to minimize the detection error of a target nucleic acid by false positive and false negative signals according to the threshold cycle (Ct) value shown in Real-Time PCR, and to detect a target nucleic acid. Or to provide a target nucleic acid fusion curve analysis method using a PNA probe combined with a reporter (quenching) and a reporter (quenching) to quantify, the kit for the detection or quantification of the target nucleic acid through the melting curve analysis.
  • Ct threshold cycle
  • the present invention is (a) adding a sample suspected to contain the target nucleic acid and a PNA probe and TaqMan probe to which the nucleic acid polymerase, primer, reporter and quencher are bound, hybridize, and then asymmetric polymerization Amplifying using an asymmetric polymerase chain reaction; (b) melting the hybridized product with varying temperature to obtain a melting curve; And (c) analyzing the obtained fusion curves to detect or quantify the target nucleic acid, thereby solving the problem of detecting the target nucleic acid according to the threshold cycle (Ct) of the real-time polymerase chain reaction.
  • a method for detecting or quantifying target nucleic acid through target nucleic acid fusion curve analysis using a PNA probe in which a reporter and a quencher are combined is provided.
  • the present invention also provides a kit for detecting or quantifying target nucleic acid by using a target nucleic acid fusion curve analysis using the above method and including a reporter and a quencher-coupled PNA probe.
  • the present invention also relates to (a) adding a sample suspected of containing a target nucleic acid and a nucleic acid polymerase, a primer and a TaqMan probe, hybridizing and amplifying using an asymmetric polymerase chain reaction. step; (b) adding and hybridizing the probe with the reporter and quencher to the amplification product; (c) melting the hybridized product of step (b) while varying the temperature to obtain a melting curve; And (d) analyzing the obtained fusion curves to solve the problem of detecting target nucleic acids according to a threshold cycle (Ct) of a real-time polymerase chain reaction, comprising detecting or quantifying target nucleic acids.
  • a threshold cycle (Ct) of a real-time polymerase chain reaction comprising detecting or quantifying target nucleic acids.
  • the present invention also provides a kit for detecting or quantifying target nucleic acid by using a target nucleic acid fusion curve analysis using the above method and including a reporter and a quencher-coupled PNA probe.
  • 1 is a schematic diagram showing an improved detection method of a target nucleic acid according to Ct value using a PNA probe.
  • Figure 2 shows the amplification curve and melting curve temperature conditions for confirming the detection of the target nucleic acid according to the Ct value.
  • Figure 3 compares the amplification curves according to symmetric or asymmetric gene amplification of real-time polymerase chain reaction to read the results in Ct value.
  • Figure 6 shows the peak of the melting curve using the PNA probe.
  • FIG. 7 shows an amplification curve for identifying low concentration of nonspecific amplification products using PNA probe.
  • Figure 8 shows the melting curve peaks for distinguishing actual target nucleic acids from low concentrations of nonspecific amplification products.
  • the amplification curve and the melting curve were analyzed to solve the problem of detecting the target nucleic acid according to the Ct value by mixing the artificial synthetic oligo and PNA probe.
  • WSD White Spot
  • a target nucleic acid in order to minimize the error of discrimination of the presence or absence of a target nucleic acid by false positive and false negative signals, which is a problem of nucleic acid detection according to the threshold cycle (Ct), and to effectively detect the target nucleic acid.
  • Ct threshold cycle
  • Synthetic oligo was used, and primers and probes (hydrolysis probe and PNA probe) for amplifying the nucleic acid were used.
  • the actual starting point of the asymmetric and symmetric gene amplification corresponds to 25 cycles, but slightly less than the set Ct and relative fluorescence units (RFU) value to confirm the presence of the nucleic acid It was difficult to judge the existence. Difficulty in determining the presence or absence of the target nucleic acid identified above, as shown in Figure 4, through the fusion step of the asymmetric gene amplification product was able to clearly distinguish the authenticity of the result.
  • REU relative fluorescence units
  • the present invention provides a method for preparing a hybrid target comprising: (a) adding a PNA probe and a TaqMan probe to which a sample suspected of containing a target nucleic acid and a nucleic acid polymerase, a primer, a reporter, and a quencher are bound, hybridized, and then asymmetric polymerase. Amplifying using an asymmetric polymerase chain reaction; (b) melting the hybridized product with varying temperature to obtain a melting curve; And (c) analyzing the obtained fusion curves to detect or quantify the target nucleic acid, thereby solving the problem of detecting the target nucleic acid according to the threshold cycle (Ct) of the real-time polymerase chain reaction.
  • Ct threshold cycle
  • the present invention relates to a kit for detecting or quantifying target nucleic acid through target nucleic acid fusion curve analysis using a PNA probe.
  • an amplification cycle in which the intensity of a fluorescence signal when the amount of PCR amplification products reaches a fluorescence detectable amount is called a threshold and corresponds to a threshold in an amplification profile curve.
  • the number of times is called the threshold cycle (Ct) value.
  • Ct threshold cycle
  • the log value of the initial polynucleotide amount and the threshold cycle value are in inversely strong relations, and typically the desired polynucleotide quantification is performed using the threshold cycle value.
  • solve the problem of detecting the target nucleic acid according to the threshold cycle (Ct) of real-time polymerase chain reaction is the critical cycle (Ct) appearing in the conventional real-time PCR (Real-Time PCR) process Means to minimize the error of discrimination of the presence of the target nucleic acid by false positive and false negative signal according to the value, and to effectively detect and quantify the target nucleic acid, but is not limited thereto.
  • sample includes various samples, and preferably, a biosample is analyzed using the method of the present invention.
  • Biosamples of plant, animal, human, fungus, bacterial and viral origin can be analyzed.
  • the sample may be derived from a specific tissue or organ.
  • Representative examples of tissues include connective, skin, muscle or nerve tissue.
  • Representative examples of organs include eyes, brain, lungs, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gallbladder, stomach, small intestine, testes, ovaries, uterus, rectum, nervous system, Glands and internal vessels are included.
  • the biosample to be analyzed includes any cell, tissue, fluid from a biological source, or any other medium that can be well analyzed by the present invention, which is the consumption of humans, animals, humans or animals. Samples obtained from food prepared for use are included.
  • the biological sample to be analyzed includes a bodily fluid sample, which includes blood, serum, plasma, lymph, breast milk, urine, feces, ocular fluid, saliva, semen, brain extracts (e.g., brain grinds), spinal fluid, appendix, spleen And tonsil tissue extracts, but is not limited thereto.
  • the PNA probe completely hybridizes with the base sequence of the target nucleic acid (perfect match) to show the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference It may be characterized by showing a lower melting temperature (Tm) value than expected.
  • the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 and It may be characterized in that at least one selected from the group consisting of CY5, the quencher may be characterized in that at least one selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl. have.
  • the false-positive and false-negative signals can be distinguished using the difference in the melting curve according to the target nucleic acid sequence
  • the PNA probe further comprises a locked nucleic acid (LNA) It can be characterized.
  • LNA locked nucleic acid
  • Locked nucleic acid that can be contained in the PNA probe in the present invention is a modified RNA nucleotide, modified in the form of combining the 2 'oxygen atoms and 4' carbon atoms of the ribose moiety (ribose moiety) It is.
  • LNAs can form oligonucleotides in a mixed form with DNA or RNA, and the locked ribose conformation of the blocked nucleic acids allows stacking between bases and pre-organization of the backbone. enhances the hybridization performance of oligonucleotides by promoting -organization.
  • Oligonucleotides used in molecular biological assays such as DNA microarrays, FISH probes, and Quantitative PCR (Q-PCR) probes, use LNA nucleotides to increase sensitivity and specificity.
  • nucleotides containing LNA are easy to detect short-length RNA or DNA targets, and have high resistance to nucleases, and thus are easy to use in vivo / in vitro .
  • 'Target nucleic acid' or 'synthetic oligo' of the present invention means a nucleic acid sequence to be detected or not, and includes a specific site of the nucleic acid sequence of the 'target gene' encoding a protein having physiological and biochemical functions. , Annealed or hybridized with primers or probes under hybridization, annealing or amplification conditions.
  • Hybridization' of the present invention is meant that complementary single stranded nucleic acids form a double-stranded nucleic acid.
  • Hybridization can occur when the complementarity between two nucleic acid strands is perfect or even when some mismatch base is present.
  • the degree of complementarity required for hybridization may vary depending on the hybridization conditions, and may be particularly controlled by temperature.
  • the PNA probe including the reporter and the quencher of the present invention hybridizes with the target nucleic acid and generates a fluorescence signal. As the temperature increases, the PNA probe rapidly melts with the target artificial oligo oligomer at an appropriate melting temperature of the probe, thereby extinguishing the fluorescent signal. The presence or absence of base denaturation of the target synthetic oligo may be detected through high resolution fluorescence melting curve analysis (FMCA) obtained from the fluorescence signal according to the temperature change.
  • FMCA fluorescence melting curve analysis
  • the probe of the present invention may combine a reporter and a fluorescent material of a quencher capable of quenching reporter fluorescence at both ends.
  • the reporter is reported as FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 and CY5.
  • the quencher may be one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, but is not limited thereto, preferably Dabcyl You can use (FAM-labeled).
  • kits of the present invention may optionally include reagents necessary to conduct target nucleic acid amplification reactions (eg, PCR reactions) such as buffers, DNA polymerase cofactors and deoxyribonucleotide-5-triphosphates.
  • reagents necessary to conduct target nucleic acid amplification reactions eg, PCR reactions
  • the kits of the present invention may also include various polynucleotide molecules, reverse transcriptases, various buffers and reagents, and antibodies that inhibit DNA polymerase activity.
  • the optimum amount of reagent used in a particular reaction of the kit can be easily determined by those skilled in the art having learned the disclosure herein.
  • kits of the present invention can be made in a separate package or compartment containing the aforementioned components.
  • the synthetic oligo oligonucleotide and the PNA probe were separated to analyze the amplification curve and the melting curve for solving the detection problem of the target nucleic acid according to the Ct value.
  • WSD white spot disease
  • target nucleic acids were amplified symmetrically and asymmetrically using a PNA probe suitable for high temperature.
  • the amplification curve was difficult to distinguish the presence or absence of the nucleic acid according to the set Ct Cutoff value. Therefore, an additional PNA probe was added to the amplification product and a fusion step was performed to determine the authenticity of the correct target nucleic acid.
  • FIG 6 when the target nucleic acid was added it was confirmed whether the detection by showing the peak of the melting on the melting curve.
  • a method of distinguishing an amplification product of a real target nucleic acid from a low concentration of nonspecific amplification product using a PNA probe was made.
  • the positive control when identifying the amplification curve using PROBE-3 (PNA probe) When the target nucleic acid of 0.01 ng was used, the Ct value was 36 when the RFU (light intensity or the concentration of the product of the amplified target nucleic acid) was 1000, but the Ct value was used when the low concentration of the target nucleic acid (0.001 ng / sample) was used.
  • the low concentrations of the target nucleic acid and negative control showed a slight amplification curve.
  • the dissolution curve analysis was performed using PROBE-4 (PNA probe), as shown in Figure 8, in the melting curve analysis 0.01ng target nucleic acid
  • Tm intrinsic temperature
  • the concentration of the minimum amplification product is required to confirm whether the amplification product is the actual target nucleic acid amplification product or the nonspecific amplification product at the intrinsic temperature using the PNA probe.
  • the present invention provides a method for preparing an asymmetric polymerase chain reaction, comprising: (a) adding a sample suspected of containing a target nucleic acid, a nucleic acid polymerase, a primer, and a TaqMan probe, hybridizing, and then performing an asymmetric polymerase chain reaction.
  • the present invention relates to a kit for detecting or quantifying a target nucleic acid by analyzing a target nucleic acid fusion curve including a PNA probe.
  • the PNA probe completely hybridizes with the base sequence of the target nucleic acid (perfect match) to show the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference It may be characterized by showing a lower melting temperature (Tm) value than expected.
  • the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 and It may be characterized in that at least one selected from the group consisting of CY5, the quencher may be characterized in that at least one selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl. have.
  • the false-positive and false-negative signals can be distinguished using the difference in the melting curve according to the target nucleic acid sequence
  • the PNA probe further comprises a locked nucleic acid (LNA) It can be characterized.
  • LNA locked nucleic acid
  • the WSD artificial oligo oligonucleotide was used, and primers and probes (hydrolysis probe and PNA probe) for amplifying the nucleic acid were prepared and used based on the nucleotide sequence shown in the OIE standard.
  • the PNA probe used in the present invention may be prepared to additionally contain locked nucleic acid (LNA).
  • Contained nucleic acids are modified RNA nucleotides that are modified in the form of a combination of 2 'oxygen atoms and 4' carbon atoms of a ribose moiety.
  • LNAs can form probes (oligonucleotides) in mixed form with DNA or RNA, and the locked ribose conformation of blocked nucleic acids allows stacking between bases and pre-backing of backbones. Promoting pre-organization increases the hybridization performance of the probe.
  • an artificial synthetic oligo having an OIE primer sequence but having one base sequence complementary to the probe was prepared.
  • Complementary artificial synthetic oligos capable of confirming abnormalities of the PNA probe were prepared and used (see Table 1; O in Table 1 represents a linker and K represents lysine).
  • All PNA probes (FAM-labeled, Dabcyl) used in the present invention were synthesized by HPLC purification method in Panagene (Panagene, Korea), and the purity of all synthesized probes was confirmed by mass spectrometry, and further compared with the target nucleic acid. Unnecessary secondary structures of the probes were avoided for effective binding. In addition, in order to avoid crossing with the fluorescent probes marked on the OIE, fluorescence of different wavelengths was produced.
  • PCR Polymerase Chain Reaction
  • Table 1 below shows probes and oligo sequences for the detection of artificial synthetic oligos.
  • Example 2 Analysis method of amplification curve and melting curve for solving Ct value by mixing artificial synthetic oligo and PNA probe
  • the conditions for the analysis of the amplification curve and the melting curve for minimizing the discrimination error of the presence of the target nucleic acid by false-positive and false-negative signals, the detection problems of the target nucleic acid according to the Ct value, and the effective detection of the target nucleic acid were as follows.
  • the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the process for the calcite is performed in a denaturation step of 3 minutes at 90 ° C., 1 minute at 75 ° C., and 1 minute at 55 ° C., followed by melting curve analysis to measure fluorescence by increasing the temperature from 20 ° C. to 90 ° C. in 0.5 ° C. steps. It was. It was kept stationary for 5 seconds between each step ( Figure 2).
  • the amplification curve and the melting curve analysis were performed by varying the concentration of the sample.
  • Non-specific amplification that can occur by real-time polymerase chain reaction using NTC-1 artificial oligos that are not affected by gene amplification and artificially amplified by actual samples containing target nucleic acid. band)) and below the Ct value (cycle to determine that no target nucleic acid is present).
  • the Ct value was set to 30 and the RFU (relative fluorescence units; light intensity) was set to cutoff, and the target nucleic acid was not present when the cycle was 30 or more and less than RFU 1000.
  • RFU relative fluorescence units; light intensity
  • the starting point of the actual asymmetric and symmetric gene amplification corresponds to 25 cycles, but it was difficult to determine the presence of the target nucleic acid to the extent that it is slightly below the set Ct value and RFU value to confirm the presence of the nucleic acid of the actual sample.
  • the blue line of FIG. 3 is an actual sample containing a target nucleic acid, and the red line corresponds to a negative control group (D.W). This result is seen in most real-time polymerase reactors that determine the presence or absence of a target nucleic acid by Ct value. Difficulty in determining the presence or absence of the target nucleic acid identified above, as shown in Figure 4, through the fusion step of the asymmetric gene amplification product was able to clearly distinguish the authenticity of the result.
  • Example 3 Analysis method of amplification curve and melting curve for solving Ct value by separating artificial synthetic oligo and PNA probe
  • Experimental conditions for determining the WSD of the OIE regulations should be amplified target symmetrically using a primer for amplifying the target nucleic acid.
  • a primer for amplifying the target nucleic acid In order to analyze the melting curve using the PNA probe, it is necessary to amplify the target nucleic acid asymmetrically (Asymmetric).
  • a PNA probe suitable for high temperature was manufactured.
  • Target nucleic acid amplification according to OIE criteria is performed by using a hydrolysis probe only, and when a result of the amplification curve of Ct value or non-specific band (non-specific band) is generated, the PNA probe is additionally added. It is attached and confirmed. In this manner, the target nucleic acid was single-stranded to a high temperature while complying with the OIE standard, and then the experiment was performed to bind the PNA probe.
  • the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the amplification curve was difficult to distinguish the presence or absence of the nucleic acid according to the set Ct Cut off value.
  • the blue line of Fig. 5 is a sample containing the actual target nucleic acid, and the red line corresponds to the negative control group (DW), if the Ct value is 30 or more and the RFU value is 1000 or less, it is assumed that the target nucleic acid is substantially present. In the case of the above experiment, it may be difficult to determine the result, or it may be determined that the target nucleic acid does not exist.
  • the addition of the PNA probe to the amplification product may further determine the authenticity of the target nucleic acid.
  • a general target nucleic acid can be identified by preparing a PNA probe having a binding force at a temperature higher than a denatured temperature (about 75 ° C. or more).
  • the experimental conditions for the melting curve analysis using the PNA probe were as follows; 25 [mu] l of the amplification product used for amplification curve analysis and 0.5 [mu] l (10 pmol) of PROBE-2 (SEQ ID NO: 2) were added.
  • the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the process for the calcite is performed in a denaturation step of 3 minutes at 90 ° C., 1 minute at 75 ° C., and 1 minute at 55 ° C., followed by melting curve analysis to measure fluorescence by increasing the temperature from 20 ° C. to 90 ° C. in 0.5 ° C. steps. It was.
  • the suspension was held for 5 seconds between each step.
  • the blue line of FIG. 6 is an amplification product of a sample containing a target nucleic acid
  • the red line is a negative control (D.W).
  • PROBE-3 SEQ ID NO: 3
  • PROBE-4 SEQ ID NO: 4
  • the experimental method is as follows; 2X TaqMan Universal PCR Master Mix (PE Applied Biosystems, Foster City, CA, USA) 12.5 ⁇ l, PROBE-3 (SEQ ID NO: 3) (neoprov, Korea) 1.5 ⁇ l / 1 pmol, Primer-2 so that the total volume is 25 ⁇ l.
  • the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C.
  • the concentration of primers was added symmetrically, and experiments were performed using the method of Korean Patent Application No. (10-2013-0106692) as a method for increasing the binding force of the PNA probe.
  • the experimental method is as follows; Experiments were performed by adding 0.5 ⁇ l / unit of Lambda exonulease and 0.5 ⁇ l / 10 pmol of PROBE-4 (SEQ ID NO: 4) to 0.01 ng target nucleic acid, 0.001 ng target nucleic acid, or negative control, which were amplification products per sample, respectively.
  • the melting curve analysis using the PNA probe was first performed by removing the strand bound to the phosphate group at the 5 'end of the product generated through amplification to make a single strand.
  • the melting curve analysis was performed after 5 minutes at 95 ° C, 30 seconds at 75 ° C, and 30 seconds at 55 ° C, followed by melting curve analysis at 1 ° C from 45 ° C to 80 ° C. Was performed.
  • the PNA probe was used to identify an improved melting curve analysis method that can distinguish the authenticity of low concentration nonspecific amplification products.
  • the method for confirming the presence or absence of an amplification curve of a low concentration of nonspecific amplification products was the same as the amplification method used in FIG. 7.
  • the experimental method is as follows; 5 ⁇ l of target product amplified to a total volume of 20 ⁇ l, 10 ⁇ l of 2X qPCR PreMix (Eye Biomaterials, Korea), 0.5 ⁇ l / 10 pmol of PROBE-4 (SEQ ID NO: 4), Primer-1-R (SEQ ID NO: 7) (0.5 ⁇ l / 100 pmol) and 4 ⁇ l of sterilized distilled water were added.
  • the target nucleic acid in the experiment was 0.01 ng (positive control) and 0.001 ng (low concentration of target nucleic acid) per sample, and distilled water was used as a negative control.
  • the process for melting curve analysis was performed 15 minutes at 95 ° C. for 5 minutes, 95 ° C. for 3 seconds, and 56 ° C. for 30 seconds, at 76 ° C. for 30 seconds, for 5 minutes at 95 ° C., at 75 ° C. for 30 seconds, and at 55 ° C.
  • the melting curve analysis to measure the fluorescence was carried out in 1 °C increments from 45 °C to 80 °C.

Abstract

The present invention relates to a method for solving the problem of nucleic acid detection due to a threshold cycle (Ct) of the real-time polymerase chain reaction using a PNA probe and, more specifically, to a method for analyzing a melting curve using a PNA probe to which a reporter and a quencher for detecting a target nucleic acid are bound, to a method for detecting and quantifying a target nucleic acid to solve the problem of the detection of the target nucleic acid due to a threshold cycle (Ct) using the same, and to a kit for detecting and quantifying a target nucleic acid, using the method and comprising a PNA probe. The use of the method for detecting and quantifying a target nucleic acid using a PNA probe, to which a reporter and a quencher are bound, according to the present invention leads to the solving of a technical problem caused by performing the determination on the basis of the threshold cycle (Ct) value of the real-time polymerase chain reaction, which is used in the method for the diagnosis and the identification and analysis of individuals, thereby improving the accuracy in the detection and quantification result read-out of a target nucleic acid or a target gene and reducing economic, social, and medical costs.

Description

PNA 프로브를 이용한 실시간 중합효소연쇄반응의 임계 사이클(Ct)에 따른 핵산 검출의 문제를 해결하는 방법Method for solving the problem of nucleic acid detection according to the critical cycle (Ct) of real time polymerase chain reaction using PNA probe
본 발명은 PNA 프로브를 이용한 실시간 중합효소연쇄반응의 임계 사이클(Ct)에 따른 핵산 검출의 문제를 해결하는 방법에 관한 것으로, 보다 상세하게는 표적 핵산의 검출을 위한 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용한 융해곡선 분석방법, 이를 이용한 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하기 위한 표적 핵산의 검출 및 정량 방법, 상기 방법을 이용하고 PNA 프로브를 포함하는 표적 핵산의 검출 및 정량용 키트에 관한 것이다. The present invention relates to a method for solving the problem of nucleic acid detection according to the critical cycle (Ct) of the real-time polymerase chain reaction using a PNA probe, and more specifically, a reporter and a quencher for detecting a target nucleic acid ( Fusion curve analysis method using a PNA probe coupled to a quencher, a method for detecting and quantifying a target nucleic acid for solving a detection problem of a target nucleic acid according to a threshold cycle (Ct) using the same, a PNA probe using the method It relates to a kit for detecting and quantifying a target nucleic acid comprising a.
1950년대 왓슨과 크릭(James D. Watson & Francis Crick)이 DNA의 2중 나선 구조를 규명한 이래 2000년대 이르러 대용량의 자동 DNA 합성 및 분석 기술이 개발되고, 보급되어 분자생물학 분야의 급격한 발전을 이루었으며, 다방면의 응용 분야에 활용되고 있다. 활용되는 분야 중 몇 가지 예들을 나열해 보면, DNA 혼성화 탐침(DNA hybridization probes), 프라이머를 이용한 DNA 염기서열 분석(primers for DNA sequencing), DNA 증폭 기술(DNA amplification), 올리고를 이용한 유전자 합성(Oligos for gene synthesis) 등이 있다. 특히, DNA 증폭 기술 중 실시간 중합효소연쇄반응(Real-Time PCR)은 합성 프로브(probe)를 이용하여 실시간으로 질병을 진단하거나 개체를 식별(예컨대, 성별)하는 분야 등에 사용되고 있다.Since Watson and Creek (James D. Watson & Francis Crick) identified the double helix structure of DNA in the 1950s, large-scale automated DNA synthesis and analysis techniques were developed and deployed in the 2000s to achieve rapid advances in molecular biology. It is used in various fields of application. Some examples of applications include DNA hybridization probes, primers for DNA sequencing, DNA amplification, and oligos. for gene synthesis). In particular, real-time polymerase chain reaction (Real-Time PCR) of the DNA amplification technology is used in the field of diagnosing diseases or identifying individuals (eg, sex) in real time using a synthetic probe (probe).
실시간 중합효소연쇄반응에서 사용하는 대표적인 프로브로는 가수분해(hydrolysis) 방식의 프로브가 있으며, 이들 프로브는 분석 대상인 특정 유전자(특이적인 서열)에 대한 상보적인 염기서열로 제작되고, 상기 유전자를 포함하는 염기서열의 증폭 및 융해 분석과정에 사용된다.Representative probes used in the real-time polymerase chain reaction are hydrolysis probes, which are prepared by complementary base sequences for a specific gene (specific sequence) to be analyzed and include the genes. Used for amplification and fusion analysis of sequences.
TaqMan 프로브는 구조적으로 5' 말단에 형광(fluorescent), 3' 말단에 소광자(quencher)가 결합된 구조를 가지고 있고, 상기 프로브는 중합효소연쇄반응(Polymerase Chain Reaction: PCR) 과정 중 아닐링 단계(annealing step)에서 상보적인 DNA 염기서열에 혼성(hybridize)되지만 소광자에 의하여 형광의 발색이 억제된다. 그러나 Taq DNA 중합효소(Taq DNA polymerase)의 5' 엑소뉴클레아제(5' exonuclease)의 활성으로 5' 말단의 형광이 잘리게 되어 유리되면서 발색된다.TaqMan probe structurally has a structure in which a fluorescent (fluorescent) at the 5 'end, and a quencher at the 3' end is coupled, and the probe is subjected to an annealing step during a polymerase chain reaction (PCR) process. In the (annealing step) hybridization to the complementary DNA sequence (hybridize), but the development of fluorescence is suppressed by the quencher. However, the 5 'end of fluorescence is cut off by the activity of the 5' exonuclease of Taq DNA polymerase, which results in color development.
상기 가수분해 방식의 프로브를 활용한 실시간 중합효소연쇄반응을 응용한 기술은 질병 진단과 개체 식별과 같은 판독에 사용되는데, 판독이 부정확할 경우 인명을 위협할 수 있고, 경제적 손실까지 발생할 수 있으므로, 정확하고 신속한 판독이 필요하다.The technique applying the real-time polymerase chain reaction using the hydrolysis-type probe is used for reading such as disease diagnosis and individual identification. If the reading is incorrect, it may threaten human life and cause economic loss. Accurate and fast reading is required.
상기 진단 및 개체 식별의 분석방법에 사용하는 표적(target) 유전자의 경우 단독 혹은 혼합된 개체에서 분석이 진행된다. 특히 혼합된 개체 안에 미량의 표적 유전자가 존재하는 경우 상기 유전자의 검출에 많은 어려움이 따른다. 상기와 같은 표적 유전자의 정량적 검출은 현재 상용화된 가수분해 방식의 프로브를 이용한 Ct(threshold cycle) 값에 따른 결과로 판독 시 많은 혼선이 발생하므로 대부분의 경우 고정된 Ct 값을 기준으로 표적 유전자의 검출 여부를 판독한다(Stephen A. Bustin et al, Clin Chem , 55(4):611-22, 2009; Carr, A. C. et al., PLoS One, 7(5):e37640, 2012; Schefe JH et al, J Mol Med, 84(11):901-10, 2006; Holland PM et al., Proc Natl Acad Sci USA, 88(16):7276-7280, 1991).In the case of target genes to be used for the above-described methods of diagnosis and identification of individuals, analysis is performed in single or mixed individuals. In particular, when a small amount of the target gene is present in a mixed individual, it is difficult to detect the gene. The quantitative detection of the target gene as described above is a result of the threshold cycle (Ct) value using a commercially available hydrolysis probe, which causes a lot of confusion during reading. In most cases, the target gene is detected based on a fixed Ct value. Read whether it is (Stephen A. Bustin et al, Clin Chem , 55 (4): 611-22, 2009; Carr, AC et al., PLoS One , 7 (5): e37640, 2012; Schefe JH et al, J Mol Med , 84 (11): 901-10, 2006; Holland PM et al., Proc Natl Acad Sci USA , 88 (16): 7276-7280, 1991).
Real-Time PCR에 있어 PCR 증폭 산물의 양은 형광 신호에 의해 검출할 수 있다. 검출 방법으로 이중 나선 DNA에 결합하여 형광을 나타내는 시약(intercalator)을 사용하는 인터컬레이팅(Intercalating)법, 5' 말단은 형광물질, 3' 말단은 소광자(quencher)로 표지된 올리고뉴클레오티드를 사용하는 방법 등이 있다. 상기 방법들을 이용하였을 때, Real-Time PCR이 진행되면서 증가하는 폴리뉴클레오티드 양에 따라 형광 신호의 세기가 증가하게 되고, 사용자는 증폭 사이클 횟수에 따른 형광 신호 세기를 나타내는 증폭 프로파일(amplification profile) 곡선을 얻게 된다.In real-time PCR, the amount of PCR amplification product can be detected by fluorescence signal. Intercalating method using an intercalator that binds to double-stranded DNA as a detection method, and uses an oligonucleotide labeled with a fluorescent substance at the 5 'end and a quencher at the 3' end. How to do it. When the above methods are used, the intensity of the fluorescence signal increases with increasing amount of polynucleotides as the Real-Time PCR progresses, and the user generates an amplification profile curve indicating the intensity of the fluorescence signal according to the number of amplification cycles. You get
증폭 프로파일 곡선은 일반적으로 실질적인 폴리뉴클레오티드 양이 반영되지 않은 배경의 형광신호가 나타나는 베이스라인(baseline) 영역, 폴리뉴클레오티드 생성물량의 증가에 따른 형광신호 증가가 나타나는 지수적 영역(exponential region), 및 PCR 반응이 포화 상태에 이르러 형광신호 세기의 증가가 나타나지 않는 정체 상태 영역(plateau region)으로 나누어 진다. PCR 반응 초기에 베이스라인 영역이 나타나는 이유는 PCR 증폭 산물량이 아직 검출 가능한 양에 도달하지 못했기 때문이다.Amplification profile curves generally include a baseline region where the fluorescence signal of the background does not reflect the actual amount of polynucleotides, an exponential region where the fluorescence signal increases with the increase in the amount of polynucleotide products, and PCR. When the reaction reaches saturation, it is divided into a plateau region where no increase in fluorescence signal intensity is observed. The baseline region appears early in the PCR reaction because the amount of PCR amplification products has not yet reached a detectable amount.
통상적으로 베이스라인 영역에서 지수적 영역으로 넘어가는 지점, 즉 PCR 증폭 산물량이 형광으로 검출 가능한 양에 도달한 때의 형광신호 세기를 임계값(threshold)이라고 하고 증폭 프로파일 곡선에서 임계값에 대응되는 증폭 사이클 횟수를 임계 사이클(threshold cycle: Ct) 값이라고 한다. 초기 폴리뉴클레오티드 농도를 달리하여 각각 Real-Time PCR을 수행하였을 때, 초기 폴리뉴클레오티드 양이 많을수록 증폭 산물량이 검출 가능한 양에 도달하는 증폭 사이클 횟수가 적어지므로 임계 사이클 값이 적어진다. 따라서, 초기 폴리뉴클레오티드 양의 로그값과 임계 사이클 값은 강한 반비례 관계에 있게 되며, 통상적으로 임계 사이클 값을 이용하여 원하는 폴리뉴클레오티드 정량을 수행하게 된다. 실시간 중합효소연쇄반응을 이용한 폴리뉴클레오티드 정량에는 크게 절대적 정량과 상대적 정량이 있다. 절대적 정량은 폴리뉴클레오티드 양을 알고 있는 샘플로 실시간 중합효소연쇄반응을 실시하여 폴리뉴클레오티드 양에 대한 임계사이클 값의 표준 곡선(standard curve)를 생성하여 정량을 하는 방법이고, 상대 정량은 샘플의 절대적인 폴리뉴클레오티드 양을 알지는 못하더라도 다른 샘플과의 상대적인 양을 비교하는 방법이다. 상대 정량을 하는 경우에는 표준 곡선을 이용할 수도 있고 이용하지 않을 수도 있다. 이 모든 경우에 있어, 정량을 하기 위해서는 우선적으로 임계값을 결정하여 임계 사이클 값을 산출해야 한다.In general, the intensity of the fluorescence signal when the point of transition from the baseline region to the exponential region, that is, when the amount of PCR amplification products reaches a detectable amount by fluorescence is called a threshold and corresponds to a threshold in the amplification profile curve. The number of amplification cycles is called the threshold cycle (Ct) value. When Real-Time PCR is performed at different initial polynucleotide concentrations, the larger the initial polynucleotide amount, the smaller the number of amplification cycles in which the amount of amplification products reaches a detectable amount. Thus, the log value of the initial polynucleotide amount and the threshold cycle value are in inversely strong relations, and typically the desired polynucleotide quantification is performed using the threshold cycle value. Polynucleotide quantification using real-time polymerase chain reaction has large absolute and relative quantification. Absolute quantification is a method of quantitating a standard curve of critical cycle values for a polynucleotide amount by performing a real-time polymerase chain reaction with a sample having a known polynucleotide amount. This method compares the relative amount with other samples even if the nucleotide amount is not known. For relative quantification, standard curves may or may not be used. In all these cases, in order to quantify, the threshold value must first be determined to calculate the threshold cycle value.
일반적인 실시간 중합효소연쇄반응의 신뢰할 수 있는 검체의 세포 수는 약 102∼103개 정도이다. 만약 혼합된 개체 안에서 목표 유전자의 정량 값이 신뢰할 수 있는 세포 수보다 적다면 많은 양의 표적 유전자가 있는 DNA 검체보다 더 높은 Ct 값을 갖게 된다. 하지만 Ct 값을 통하여 결과를 판정하는 방식은 표적 유전자의 정량적 한계 때문에 실제 표적 유전자가 존재함에도 불구하고 대부분 Ct 값 이하의 형광 신호는 무시하게 된다. 예컨대, 응급 환자에게서 혈액 내 질병을 일으키는 미생물 감별 시 매우 큰 위험요소가 되며, 추가적인 검증을 위한 시간적 비용이 초래된다. The number of cells in a reliable sample of a general real-time polymerase chain reaction is about 10 2 to 10 3 . If the quantitative value of the target gene in the mixed population is less than the number of reliable cells, it will have a higher Ct value than the DNA sample with the large amount of the target gene. However, the method of determining the result through the Ct value ignores fluorescence signals below the Ct value in most cases, even though the actual target gene exists because of the quantitative limitation of the target gene. For example, the identification of microorganisms that cause disease in the blood in emergency patients is a very high risk factor and incurs time costs for further verification.
모든 중합효소연쇄반응(PCR)의 단점 중 하나는 표적 핵산에 부합되는 올리고 프라이머를 제작하여 증폭을 진행함에도 비특이적 밴드(non-specific band)가 항상 존재한다는 것이다. 일반적인 중합효소연쇄반응의 경우 전기영동을 통하여 증폭된 표적 핵산이 정확한지를 유전자의 길이로 확인할 수 있지만, 실시간 중합효소연쇄반응의 경우 증폭에 따른 기계상에서 보여주는 Ct 값으로는 유전자의 진위(유전자의 존재 여부 또는 염기변이 여부)를 가리기 힘들다. 따라서, Ct 값 기준의 진단 및 개체 식별의 분석 방법은 판독에 오류를 범할 수 있는 위험 부담을 가지고 있다.One of the disadvantages of all PCR reactions is that there is always a non-specific band even when amplification is performed by preparing an oligo primer corresponding to the target nucleic acid. In general polymerase chain reaction, it is possible to confirm the gene length whether the target nucleic acid amplified by electrophoresis is accurate.However, in real time polymerase chain reaction, the authenticity of the gene (the presence of genes) is shown as the Ct value displayed on the machine according to the amplification. Or base mutations). Therefore, the method of diagnosis of Ct value criteria and analysis of individual identification carries the risk of making a mistake in reading.
진단 및 개체 식별의 분석 방법에 사용하는 PNA(Peptide Nucleic Acid)의 경우 인공핵산(Artificial nucleotide)으로 DNA 혹은 RNA와의 상보적 결합력이 탁월하다. 또한, 핵산 분해효소 및 단백질 분해효소 등에 대한 생물학적 안정성이 뛰어나며 화학적 안정성과 수용해도 또한 다른 인공합성된 올리고보다 뛰어난 장점을 가지고 있다(Nielsen PE et al, Science, 254(5037):1497-500, 1991; Santosh B et al, Biomed Res Int, 2014(Article ID 540451), 2014).Peptide Nucleic Acid (PNA), which is used for the analysis of diagnosis and individual identification, is an artificial nucleotide and has excellent complementary binding ability with DNA or RNA. In addition, it has excellent biological stability against nuclease and protease, and chemical stability and water solubility also have advantages over other artificially synthesized oligos (Nielsen PE et al, Science, 254 (5037): 1497-500, 1991). Santosh B et al, Biomed Res Int, 2014 (Article ID 540451), 2014).
PNA 프로브의 특징 중 하나는 Taq DNA 중합효소(Taq DNA polymerase)의 5' 엑소뉴클레아제(5' exonuclease)의 활성과 상관없이 상보적인 유전자의 염기서열이 존재할 경우 혼성되어(hybridize) 형광신호를 보낸다는 것이다. 특히 PNA 프로브는 TaqMan 프로브와 같이 핵산 증폭 과정 중의 신호를 포함하여 증폭이 종결된 후 추가적인 융해 단계(용해 단계, Melting step)를 통하여 표적 유전자를 검출할 수 있다. 특히 미량의 표적 유전자의 존재 여부를 확인할 경우 추가적인 증폭 단계만으로 대부분의 Ct 값을 이용하는 판별 방법의 단점을 해결할 수 있다. One characteristic of the PNA probe is that it hybridizes in the presence of complementary gene sequences, regardless of the activity of the 5 'exonuclease of Taq DNA polymerase. Is to send. In particular, the PNA probe, like the TaqMan probe, may detect a target gene through an additional melting step (melting step) after the amplification is completed, including a signal during the nucleic acid amplification process. In particular, when identifying the presence of a small amount of the target gene, the additional amplification step can solve the shortcomings of the determination method using most of the Ct value.
이에, 본 발명자들은 기존의 실시간 중합효소연쇄반응(Real-Time PCR) 과정에서 나타나는 임계 사이클(Ct) 값에 따른 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 효과적으로 검출 및 정량하기 위해 예의 노력한 결과, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하면 용해곡선 분석을 통해 표적 핵산 또는 표적 유전자를 신속·정확하게 검출 또는 정량할 수 있는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors minimize the discrimination error of the presence of the target nucleic acid due to the false positive and false negative signals according to the critical cycle (Ct) value shown in the existing Real-Time PCR process, and the target nucleic acid. Efforts have been made to effectively detect and quantify the activity of PNA probes in combination with a reporter and a quencher to enable rapid and accurate detection or quantification of target nucleic acids or target genes through lysis curve analysis. It confirmed and completed this invention.
발명의 요약Summary of the Invention
본 발명의 목적은 실시간 중합효소연쇄반응(Real-Time PCR) 과정에서 나타나는 임계 사이클(Ct) 값에 따른 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 검출 또는 정량하기 위하여 리포터(reporter) 및 소광자(quenching)가 결합된 PNA 프로브를 이용한 표적 핵산 융해곡선 분석방법, 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트를 제공하는 데 있다. Disclosure of Invention An object of the present invention is to minimize the detection error of a target nucleic acid by false positive and false negative signals according to the threshold cycle (Ct) value shown in Real-Time PCR, and to detect a target nucleic acid. Or to provide a target nucleic acid fusion curve analysis method using a PNA probe combined with a reporter (quenching) and a reporter (quenching) to quantify, the kit for the detection or quantification of the target nucleic acid through the melting curve analysis.
상기 목적을 달성하기 위하여, 본 발명은 (a) 표적 핵산을 함유하는 것으로 추정되는 검체와 핵산 중합효소, 프라이머, 리포터 및 소광자가 결합된 PNA 프로브 및 TaqMan 프로브를 첨가하고, 혼성화시킨 다음, 비대칭 중합효소연쇄반응(asymmetric Polymerase Chain Reaction)을 사용하여 증폭하는 단계; (b) 온도를 변화시키면서 상기 혼성화된 산물을 융해시켜 융해곡선을 얻는 단계; 및 (c) 상기 얻어지는 융해곡선을 분석하여, 표적 핵산의 검출 또는 정량하는 단계를 포함하는, 실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하는, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법을 제공한다. In order to achieve the above object, the present invention is (a) adding a sample suspected to contain the target nucleic acid and a PNA probe and TaqMan probe to which the nucleic acid polymerase, primer, reporter and quencher are bound, hybridize, and then asymmetric polymerization Amplifying using an asymmetric polymerase chain reaction; (b) melting the hybridized product with varying temperature to obtain a melting curve; And (c) analyzing the obtained fusion curves to detect or quantify the target nucleic acid, thereby solving the problem of detecting the target nucleic acid according to the threshold cycle (Ct) of the real-time polymerase chain reaction. A method for detecting or quantifying target nucleic acid through target nucleic acid fusion curve analysis using a PNA probe in which a reporter and a quencher are combined is provided.
본 발명은 또한, 상기 방법을 이용하고, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 포함하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트를 제공한다.The present invention also provides a kit for detecting or quantifying target nucleic acid by using a target nucleic acid fusion curve analysis using the above method and including a reporter and a quencher-coupled PNA probe.
본 발명은 또한, (a) 표적 핵산을 함유하는 것으로 추정되는 검체와 핵산 중합효소, 프라이머 및 TaqMan 프로브를 첨가하고, 혼성화시킨 다음, 비대칭 중합효소연쇄반응(asymmetric Polymerase Chain Reaction)을 사용하여 증폭하는 단계; (b) 상기 증폭 산물에 리포터 및 소광자가 결합된 프로브를 첨가하여 혼성화시키는 단계; (c) 온도를 변화시키면서 상기 (b) 단계의 혼성화된 산물을 융해시켜 융해곡선을 얻는 단계; 및 (d) 상기 얻어지는 융해곡선을 분석하여, 표적 핵산의 검출 또는 정량하는 단계를 포함하는, 실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하는, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법을 제공한다.The present invention also relates to (a) adding a sample suspected of containing a target nucleic acid and a nucleic acid polymerase, a primer and a TaqMan probe, hybridizing and amplifying using an asymmetric polymerase chain reaction. step; (b) adding and hybridizing the probe with the reporter and quencher to the amplification product; (c) melting the hybridized product of step (b) while varying the temperature to obtain a melting curve; And (d) analyzing the obtained fusion curves to solve the problem of detecting target nucleic acids according to a threshold cycle (Ct) of a real-time polymerase chain reaction, comprising detecting or quantifying target nucleic acids. A method for detecting or quantifying target nucleic acid through target nucleic acid fusion curve analysis using a PNA probe in which a reporter and a quencher are combined is provided.
본 발명은 또한, 상기 방법을 이용하고, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 포함하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트를 제공한다.The present invention also provides a kit for detecting or quantifying target nucleic acid by using a target nucleic acid fusion curve analysis using the above method and including a reporter and a quencher-coupled PNA probe.
도 1은 PNA 프로브를 활용한 Ct 값에 따른 표적 핵산의 개선된 검출 방법을 모식도로 나타낸 것이다.1 is a schematic diagram showing an improved detection method of a target nucleic acid according to Ct value using a PNA probe.
도 2는 Ct 값에 따른 표적 핵산의 검출을 확인하기 위한 증폭곡선 및 융해곡선 온도 조건을 나타낸 것이다.Figure 2 shows the amplification curve and melting curve temperature conditions for confirming the detection of the target nucleic acid according to the Ct value.
도 3은 Ct 값으로 결과를 판독하는 실시간 중합효소연쇄반응의 대칭 또는 비대칭 유전자 증폭에 따른 증폭곡선을 비교한 것이다.Figure 3 compares the amplification curves according to symmetric or asymmetric gene amplification of real-time polymerase chain reaction to read the results in Ct value.
도 4는 가수분해용 프로브와 PNA 프로브의 융해곡선의 피크를 비교한 것이다.4 compares the peaks of the melting curve of the hydrolysis probe and the PNA probe.
도 5는 가수분해용 프로브만을 이용한 증폭곡선을 나타낸 것이다.5 shows an amplification curve using only the hydrolysis probe.
도 6은 PNA 프로브를 이용한 융해곡선의 피크를 나타낸 것이다.Figure 6 shows the peak of the melting curve using the PNA probe.
도 7은 PNA 프로브를 이용하여 낮은 농도의 비특이적 증폭 산물을 확인하기 위한 증폭곡선을 나타낸 것이다.7 shows an amplification curve for identifying low concentration of nonspecific amplification products using PNA probe.
도 8은 실제 표적 핵산과 낮은 농도의 비특이적 증폭 산물을 구분하기 위한 융해곡선 피크를 나타낸 것이다. Figure 8 shows the melting curve peaks for distinguishing actual target nucleic acids from low concentrations of nonspecific amplification products.
도 9는 실제 표적 핵산과 낮은 농도의 비특이적 증폭 산물을 구분하기 위한 개선된 분석방법으로 수득한 융해곡선 피크를 나타낸 것이다. 9 shows the melting curve peaks obtained by an improved assay to distinguish between actual target nucleic acids and low concentrations of nonspecific amplification products.
발명의 상세한 설명 및 바람직한 Detailed description of the invention and preferred 구현예Embodiment
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명의 일 실시예에서는 인공합성 올리고와 PNA 프로브를 혼합하여 Ct 값에 따른 표적 핵산의 검출 문제를 해결하기 위한 증폭곡선 및 융해곡선의 분석을 수행하였다. 상기 Ct(threshold cycle)에 따른 핵산 검출의 문제점인 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 효과적으로 검출하는 방법으로 해결하기 위하여 표적 핵산으로 WSD(White Spot Disease) 인공합성 올리고를 이용하였으며, 상기 핵산의 증폭을 위한 프라이머 및 프로브(가수분해용(hydrolysis) 프로브 및 PNA 프로브)를 이용하였다. 그 결과, 도 3에 나타난 바와 같이, 실제 비대칭 및 대칭 유전자 증폭의 시작점은 25 사이클에 해당하지만 핵산의 존재 여부를 확인할 수 있는 설정된 Ct 및 RFU(relative fluorescence units) 값에 약간 못 미치는 정도로 표적 핵산의 존재 여부를 판단하기가 어려운 것으로 나타났다. 상기에서 확인된 표적 핵산의 유무를 판단하는 어려움은, 도 4에 나타난 바와 같이, 비대칭 유전자 증폭 산물의 융해단계를 통하여 결과의 진위를 확실히 구분할 수 있었다.In an embodiment of the present invention, the amplification curve and the melting curve were analyzed to solve the problem of detecting the target nucleic acid according to the Ct value by mixing the artificial synthetic oligo and PNA probe. WSD (White Spot) as a target nucleic acid in order to minimize the error of discrimination of the presence or absence of a target nucleic acid by false positive and false negative signals, which is a problem of nucleic acid detection according to the threshold cycle (Ct), and to effectively detect the target nucleic acid. Disease) Synthetic oligo was used, and primers and probes (hydrolysis probe and PNA probe) for amplifying the nucleic acid were used. As a result, as shown in Figure 3, the actual starting point of the asymmetric and symmetric gene amplification corresponds to 25 cycles, but slightly less than the set Ct and relative fluorescence units (RFU) value to confirm the presence of the nucleic acid It was difficult to judge the existence. Difficulty in determining the presence or absence of the target nucleic acid identified above, as shown in Figure 4, through the fusion step of the asymmetric gene amplification product was able to clearly distinguish the authenticity of the result.
따라서, 본 발명은 일 관점에서, (a) 표적 핵산을 함유하는 것으로 추정되는 검체와 핵산 중합효소, 프라이머, 리포터 및 소광자가 결합된 PNA 프로브 및 TaqMan 프로브를 첨가하고, 혼성화시킨 다음, 비대칭 중합효소연쇄반응(asymmetric Polymerase Chain Reaction)을 사용하여 증폭하는 단계; (b) 온도를 변화시키면서 상기 혼성화된 산물을 융해시켜 융해곡선을 얻는 단계; 및 (c) 상기 얻어지는 융해곡선을 분석하여, 표적 핵산의 검출 또는 정량하는 단계를 포함하는, 실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하는, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법, 및 상기 방법을 이용하고, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트에 관한 것이다. Therefore, in one aspect, the present invention provides a method for preparing a hybrid target comprising: (a) adding a PNA probe and a TaqMan probe to which a sample suspected of containing a target nucleic acid and a nucleic acid polymerase, a primer, a reporter, and a quencher are bound, hybridized, and then asymmetric polymerase. Amplifying using an asymmetric polymerase chain reaction; (b) melting the hybridized product with varying temperature to obtain a melting curve; And (c) analyzing the obtained fusion curves to detect or quantify the target nucleic acid, thereby solving the problem of detecting the target nucleic acid according to the threshold cycle (Ct) of the real-time polymerase chain reaction. Method of detecting or quantifying target nucleic acid by target nucleic acid fusion curve analysis using PNA probe combined with reporter and quencher, and using reporter and reporter and quencher The present invention relates to a kit for detecting or quantifying target nucleic acid through target nucleic acid fusion curve analysis using a PNA probe.
실시간 중합효소연쇄반응(Real-Time PCR)에서, PCR 증폭 산물량이 형광으로 검출 가능한 양에 도달한 때의 형광신호 세기를 임계값(threshold)이라고 하고 증폭 프로파일 곡선에서 임계값에 대응되는 증폭 사이클 횟수를 임계 사이클(threshold cycle: Ct) 값이라고 한다. 초기 폴리뉴클레오티드 농도를 달리하여 각각 Real-Time PCR을 수행하였을 때, 초기 폴리뉴클레오티드 양이 많을수록 증폭 산물량이 검출 가능한 양에 도달하는 증폭 사이클 횟수가 적어지므로 임계 사이클 값이 적어진다. 따라서, 초기 폴리뉴클레오티드 양의 로그값과 임계 사이클 값은 강한 반비례 관계에 있게 되며, 통상적으로 임계 사이클 값을 이용하여 원하는 폴리뉴클레오티드 정량을 수행하게 된다.In real-time PCR, an amplification cycle in which the intensity of a fluorescence signal when the amount of PCR amplification products reaches a fluorescence detectable amount is called a threshold and corresponds to a threshold in an amplification profile curve. The number of times is called the threshold cycle (Ct) value. When Real-Time PCR is performed at different initial polynucleotide concentrations, the larger the initial polynucleotide amount, the smaller the number of amplification cycles in which the amount of amplification products reaches a detectable amount. Thus, the log value of the initial polynucleotide amount and the threshold cycle value are in inversely strong relations, and typically the desired polynucleotide quantification is performed using the threshold cycle value.
본 발명에서 "실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결"은 기존의 실시간 중합효소연쇄반응(Real-Time PCR) 과정에서 나타나는 임계 사이클(Ct) 값에 따른 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 효과적으로 검출 및 정량하는 것을 의미하나, 이에 한정되는 것은 아니다.In the present invention, "solve the problem of detecting the target nucleic acid according to the threshold cycle (Ct) of real-time polymerase chain reaction" is the critical cycle (Ct) appearing in the conventional real-time PCR (Real-Time PCR) process Means to minimize the error of discrimination of the presence of the target nucleic acid by false positive and false negative signal according to the value, and to effectively detect and quantify the target nucleic acid, but is not limited thereto.
본 발명에서 "검체"는 다양한 시료를 포함하며, 바람직하게는, 본 발명의 방법을 이용하여 생물시료(biosample)를 분석한다. 식물, 동물, 인간, 균류, 박테리아 및 바이러스 기원의 생물시료가 분석될 수 있다. 포유류 또는 인간 기원의 시료를 분석하는 경우, 상기 시료는 특정 조직 또는 기관으로부터 유래될 수 있다. 조직의 대표적인 예로는, 결합, 피부, 근육 또는 신경 조직이 포함된다. 기관의 대표적인 예로는, 눈, 뇌, 폐, 간, 비장, 골수, 흉선, 심장, 림프, 혈액, 뼈, 연골, 췌장, 신장, 담낭, 위, 소장, 고환, 난소, 자궁, 직장, 신경계, 선 및 내부 혈관이 포함된다. 분석되는 생물시료는 생물학적 근원으로부터 나온 어떠한 세포, 조직, 유체액(fluid), 또는 본 발명에 의하여 잘 분석될 수 있는 어떠한 다른 매질(medium)도 포함하며, 이는 인간, 동물, 인간 또는 동물의 소비를 위하여 제조된 음식으로부터 얻은 시료가 포함된다. 또한, 분석되는 생물시료는 체액 시료를 포함하며, 이는 혈액, 혈청, 혈장, 림프, 모유, 소변, 분변, 안구 유액, 타액, 정액, 뇌 추출물(예컨대, 뇌 분쇄물), 척수액, 충수, 비장 및 편도선 조직 추출물이 포함되나, 이에 한정되는 것은 아니다.In the present invention, "sample" includes various samples, and preferably, a biosample is analyzed using the method of the present invention. Biosamples of plant, animal, human, fungus, bacterial and viral origin can be analyzed. When analyzing a sample of mammalian or human origin, the sample may be derived from a specific tissue or organ. Representative examples of tissues include connective, skin, muscle or nerve tissue. Representative examples of organs include eyes, brain, lungs, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gallbladder, stomach, small intestine, testes, ovaries, uterus, rectum, nervous system, Glands and internal vessels are included. The biosample to be analyzed includes any cell, tissue, fluid from a biological source, or any other medium that can be well analyzed by the present invention, which is the consumption of humans, animals, humans or animals. Samples obtained from food prepared for use are included. In addition, the biological sample to be analyzed includes a bodily fluid sample, which includes blood, serum, plasma, lymph, breast milk, urine, feces, ocular fluid, saliva, semen, brain extracts (e.g., brain grinds), spinal fluid, appendix, spleen And tonsil tissue extracts, but is not limited thereto.
본 발명에 있어서, 상기 PNA 프로브는 표적 핵산의 염기서열과 완전히 혼성화(perfect match)를 이루어 예상된 융해온도(Tm) 값을 보이며, 염기서열 차이가 있는 표적 핵산과는 불완전 혼성화(mismatch)를 이루어 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 할 수 있다.In the present invention, the PNA probe completely hybridizes with the base sequence of the target nucleic acid (perfect match) to show the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference It may be characterized by showing a lower melting temperature (Tm) value than expected.
본 발명에 있어서, 상기 리포터는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 할 수 있고, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 할 수 있다.In the present invention, the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 and It may be characterized in that at least one selected from the group consisting of CY5, the quencher may be characterized in that at least one selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl. have.
본 발명에 있어서, 상기 표적 핵산 염기서열에 따른 융해곡선의 차이를 이용하여 위양성 및 위음성 시그널을 구분할 수 있는 것을 특징으로 할 수 있고, 상기 PNA 프로브는 LNA(Locked nucleic acid)를 추가로 함유하는 것을 특징으로 할 수 있다.In the present invention, the false-positive and false-negative signals can be distinguished using the difference in the melting curve according to the target nucleic acid sequence, the PNA probe further comprises a locked nucleic acid (LNA) It can be characterized.
본 발명에서 PNA 프로브에 함유될 수 있는 봉쇄형 핵산(Locked nucleic acid, LNA)은 변형된 RNA 뉴클레오타이드로, 리보즈 모이티(ribose moiety)의 2'산소 원자와 4'탄소 원자가 결합된 형태로 변형되어 있다. LNA는 DNA 또는 RNA와 혼합된 형태로 올리고뉴클레오타이드(oligonucleotide)를 구성할 수 있으며, 봉쇄형 핵산의 봉쇄형 리보즈 형태(locked ribose conformation)는 염기 간 스태킹(stacking) 및 백본의 프리-조직화(pre-organization)를 증진시킴으로써 올리고뉴클레오타이드의 혼성화(hybridization) 성능을 증가시킨다. DNA 마이크로어레이(DNA microarrays), FISH 프로브, Q-PCR(Quantitative PCR) 프로브 등의 분자생물학적 분석에 사용되는 올리고뉴클레오타이드는 민감도(sensitivity)와 특이도(specificity)를 증가시키기 위해 LNA 뉴클레오타이드를 이용한다. 또한, LNA를 함유하는 뉴클레오타이드는 짧은 길이의 RNA 또는 DNA 표적 검출에 용이하며, 핵산분해효소에 대해 높은 저항성을 가지므로 생체 내외(in vivo/in vitro) 용도로 용이하다. Locked nucleic acid (LNA) that can be contained in the PNA probe in the present invention is a modified RNA nucleotide, modified in the form of combining the 2 'oxygen atoms and 4' carbon atoms of the ribose moiety (ribose moiety) It is. LNAs can form oligonucleotides in a mixed form with DNA or RNA, and the locked ribose conformation of the blocked nucleic acids allows stacking between bases and pre-organization of the backbone. enhances the hybridization performance of oligonucleotides by promoting -organization. Oligonucleotides used in molecular biological assays, such as DNA microarrays, FISH probes, and Quantitative PCR (Q-PCR) probes, use LNA nucleotides to increase sensitivity and specificity. In addition, nucleotides containing LNA are easy to detect short-length RNA or DNA targets, and have high resistance to nucleases, and thus are easy to use in vivo / in vitro .
본 발명의 '표적 핵산' 또는 '인공합성 올리고'는 검출 여부를 판별하고자 하는 핵산 서열을 의미하며, 생리ㆍ생화학적 기능을 가지는 단백질을 코딩하는 '표적 유전자'의 핵산 서열의 특정 부위를 포함하고, 혼성화, 어닐링 또는 증폭 조건 하에서 프라이머 또는 프로브와 어닐링 또는 혼성화된다. 'Target nucleic acid' or 'synthetic oligo' of the present invention means a nucleic acid sequence to be detected or not, and includes a specific site of the nucleic acid sequence of the 'target gene' encoding a protein having physiological and biochemical functions. , Annealed or hybridized with primers or probes under hybridization, annealing or amplification conditions.
본 발명의 '혼성화'는 상보적인 단일가닥 핵산들이 이중-가닥 핵산을 형성하는 것을 의미한다. 혼성화는 2개의 핵산 가닥 간의 상보성이 완전할 경우(perfect match) 일어나거나 또는 일부 부정합(mismatch) 염기가 존재하여도 일어날 수 있다. 혼성화에 필요한 상보성의 정도는 혼성화 조건에 따라 달라질 수 있으며, 특히 온도에 의하여 조절될 수 있다. By 'hybridization' of the present invention is meant that complementary single stranded nucleic acids form a double-stranded nucleic acid. Hybridization can occur when the complementarity between two nucleic acid strands is perfect or even when some mismatch base is present. The degree of complementarity required for hybridization may vary depending on the hybridization conditions, and may be particularly controlled by temperature.
본 발명의 리포터 및 소광자가 포함된 PNA 프로브는 표적 핵산과 혼성화된 후 형광 신호가 발생하며, 온도가 올라감에 따라 프로브의 적정 융해 온도에서 표적 인공합성 올리고와 빠르게 융해되어 형광 신호가 소광되며, 이러한 온도 변화에 따른 상기 형광 신호로부터 얻어진 고해상도의 융해곡선 분석(fluorescence melting curve analysis; FMCA)을 통하여 표적 인공합성 올리고의 염기 변성의 유무를 검출할 수 있다.The PNA probe including the reporter and the quencher of the present invention hybridizes with the target nucleic acid and generates a fluorescence signal. As the temperature increases, the PNA probe rapidly melts with the target artificial oligo oligomer at an appropriate melting temperature of the probe, thereby extinguishing the fluorescent signal. The presence or absence of base denaturation of the target synthetic oligo may be detected through high resolution fluorescence melting curve analysis (FMCA) obtained from the fluorescence signal according to the temperature change.
본 발명의 상기 프로브는 양 말단에 리포터(reporter)와 리포터 형광을 소광(quenching)할 수 있는 소광자(quencher)의 형광 물질이 결합할 수 있다. 상기 리포터(reporter)는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 하나 이상일 수 있으며, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl로 구성되는 군에서 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니며, 바람직하게는 Dabcyl(FAM-labeled)을 사용할 수 있다.The probe of the present invention may combine a reporter and a fluorescent material of a quencher capable of quenching reporter fluorescence at both ends. The reporter is reported as FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 and CY5. At least one selected from the group consisting of, the quencher may be one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, but is not limited thereto, preferably Dabcyl You can use (FAM-labeled).
본 발명의 키트는 버퍼, DNA 중합효소 조인자 및 데옥시리보뉴클레오타이드-5-트리포스페이트와 같은 표적 핵산 증폭 반응(예컨대, PCR 반응)을 실시하는데 필요한 시약을 선택적으로 포함할 수 있다. 선택적으로, 본 발명의 키트는 또한 다양한 폴리뉴클레오타이드 분자, 역전사효소, 다양한 버퍼 및 시약, 및 DNA 중합효소 활성을 억제하는 항체를 포함할 수 있다. 또한, 상기 키트는 특정 반응에서 사용되는 시약의 최적량은, 본 명세서에 개시사항을 습득한 당업자에 의해서 용이하게 결정될 수 있다. 전형적으로, 본 발명의 키트는 앞서 언급된 구성 성분들을 포함하는 별도의 포장 또는 컴파트먼트(compartment)로 제작될 수 있다.The kits of the present invention may optionally include reagents necessary to conduct target nucleic acid amplification reactions (eg, PCR reactions) such as buffers, DNA polymerase cofactors and deoxyribonucleotide-5-triphosphates. Optionally, the kits of the present invention may also include various polynucleotide molecules, reverse transcriptases, various buffers and reagents, and antibodies that inhibit DNA polymerase activity. In addition, the optimum amount of reagent used in a particular reaction of the kit can be easily determined by those skilled in the art having learned the disclosure herein. Typically, kits of the present invention can be made in a separate package or compartment containing the aforementioned components.
본 발명의 다른 실시예에서는 인공합성 올리고와 PNA 프로브를 분리하여 Ct 값에 따른 표적 핵산의 검출 문제를 해결하기 위한 증폭곡선 및 융해곡선의 분석을 수행하였다. WSD(White Spot Disease)의 검출 여부를 판별하기 위해서 높은 온도에 적합한 PNA 프로브를 사용하여 대칭(Symmetric) 및 비대칭(Asymmetric)으로 표적 핵산을 증폭하였다. 그 결과, 도 5에 나타난 바와 같이, 증폭곡선은 설정된 Ct Cutoff 값에 따라 핵산의 존재 여부를 분간하기에는 어려움이 있었다. 따라서, PNA 프로브를 증폭 산물에 추가로 첨가하고 융해단계를 진행하여 정확한 표적 핵산의 진위 여부를 결정하고자 하였다. 그 결과, 도 6에 나타난 바와 같이, 표적 핵산이 첨가된 경우 융해곡선 상에서 융해피크를 나타냄으로써 검출 여부를 확인할 수 있었다. In another embodiment of the present invention, the synthetic oligo oligonucleotide and the PNA probe were separated to analyze the amplification curve and the melting curve for solving the detection problem of the target nucleic acid according to the Ct value. To determine whether white spot disease (WSD) was detected, target nucleic acids were amplified symmetrically and asymmetrically using a PNA probe suitable for high temperature. As a result, as shown in Figure 5, the amplification curve was difficult to distinguish the presence or absence of the nucleic acid according to the set Ct Cutoff value. Therefore, an additional PNA probe was added to the amplification product and a fusion step was performed to determine the authenticity of the correct target nucleic acid. As a result, as shown in Figure 6, when the target nucleic acid was added it was confirmed whether the detection by showing the peak of the melting on the melting curve.
본 발명의 또 다른 실시예에서는 PNA 프로브를 이용하여 실제 표적 핵산의 증폭 산물과 낮은 농도의 비특이적 증폭 산물을 구분하는 방법을 확인하고자 하였다. 먼저, 표적 핵산의 분석 과정에서, 낮은 농도의 비특이적 증폭 산물의 존재에 따른 증폭곡선의 양상을 확인한 결과, 도 7에 나타난 바와 같이, PROBE-3(PNA probe)을 이용하여 증폭곡선 확인 시 양성 대조군인 0.01ng의 표적 핵산을 사용할 경우 RFU(빛의 강도 혹은 증폭된 표적 핵산의 산물의 농도) 값이 1000일 때 Ct값은 36이었으나, 낮은 농도의 표적 핵산(0.001ng/시료) 사용 시 Ct값을 정할 수 없었다. 하지만 낮은 농도의 표적 핵산과 음성 대조군에서 약간의 증폭곡선 양상을 나타내었다.In another embodiment of the present invention, a method of distinguishing an amplification product of a real target nucleic acid from a low concentration of nonspecific amplification product using a PNA probe was made. First, in the analysis of the target nucleic acid, as a result of confirming the aspect of the amplification curve according to the presence of a low concentration of non-specific amplification products, as shown in Figure 7, the positive control when identifying the amplification curve using PROBE-3 (PNA probe) When the target nucleic acid of 0.01 ng was used, the Ct value was 36 when the RFU (light intensity or the concentration of the product of the amplified target nucleic acid) was 1000, but the Ct value was used when the low concentration of the target nucleic acid (0.001 ng / sample) was used. Couldn't decide. However, low concentrations of the target nucleic acid and negative control showed a slight amplification curve.
또한, 낮은 농도의 비특이적 증폭 산물의 진위여부를 확인하고자, PROBE-4(PNA probe)를 이용하여 용해곡선 분석을 수행한 결과, 도 8에 나타난 바와 같이, 융해곡선 분석 시 0.01ng의 표적 핵산에서는 PROBE-4(PNA probe)에 해당하는 고유의 온도(Tm) 64.0℃를 확인하여 표적 핵산이 진짜임을 확인할 수 있었다. 하지만 0.001ng의 표적 핵산에서는 Tm값이 60℃, 음성 대조군은 Tm값을 보이지 않았으므로 실제 표적 핵산의 증폭 산물과 비특이적인 증폭 산물을 구분할 수 없었다. 따라서, PNA 프로브를 이용하여 고유의 온도로 증폭 산물이 실제 표적 핵산 증폭 산물 또는 비특이적 증폭 산물인지 확인하기 위해서는 최소한의 증폭 산물의 농도가 필요하다는 것을 확인할 수 있었다.In addition, in order to confirm the authenticity of the low concentration of non-specific amplification product, the dissolution curve analysis was performed using PROBE-4 (PNA probe), as shown in Figure 8, in the melting curve analysis 0.01ng target nucleic acid By checking the intrinsic temperature (Tm) 64.0 ℃ corresponding to PROBE-4 (PNA probe) it was confirmed that the target nucleic acid is real. However, in the target nucleic acid of 0.001ng, the Tm value was 60 ° C., and the negative control group did not show the Tm value, so it was not possible to distinguish the amplification product from the non-specific amplification product. Therefore, it was confirmed that the concentration of the minimum amplification product is required to confirm whether the amplification product is the actual target nucleic acid amplification product or the nonspecific amplification product at the intrinsic temperature using the PNA probe.
또한, PNA 프로브를 이용하여 낮은 농도의 비특이적 증폭 산물의 진위여부를 구분할 수 있는 개선된 융해곡선 분석방법을 확인한 결과, 도 9에 나타난 바와 같이, 음성 대조군 대비 낮은 농도의 표적 핵산(0.001ng/시료)과 추가 증폭 및 PNA 프로브의 결합력을 높이는 단계를 통하여 실제 표적 핵산과 비특이적 산물인 음성 대조군을 구분할 수 있었다. In addition, as a result of confirming the improved melting curve analysis method that can distinguish the authenticity of the low concentration of the non-specific amplification product using the PNA probe, as shown in Figure 9, the target nucleic acid (0.001 ng / sample lower than the negative control) ), And further amplification and increasing the binding capacity of the PNA probe was able to distinguish the actual target nucleic acid and the non-specific product negative control.
따라서, 본 발명은 다른 관점에서, (a) 표적 핵산을 함유하는 것으로 추정되는 검체와 핵산 중합효소, 프라이머 및 TaqMan 프로브를 첨가하고, 혼성화시킨 다음, 비대칭 중합효소연쇄반응(asymmetric Polymerase Chain Reaction)을 사용하여 증폭하는 단계; (b) 상기 증폭 산물에 리포터 및 소광자가 결합된 프로브를 첨가하여 혼성화시키는 단계; (c) 온도를 변화시키면서 상기 (b) 단계의 혼성화된 산물을 융해시켜 융해곡선을 얻는 단계; 및 (d) 상기 얻어지는 융해곡선을 분석하여, 표적 핵산의 검출 또는 정량하는 단계를 포함하는, 실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하는, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법, 그리고 상기 방법을 이용하고, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 포함하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트에 관한 것이다. Therefore, in another aspect, the present invention provides a method for preparing an asymmetric polymerase chain reaction, comprising: (a) adding a sample suspected of containing a target nucleic acid, a nucleic acid polymerase, a primer, and a TaqMan probe, hybridizing, and then performing an asymmetric polymerase chain reaction. Amplifying using; (b) adding and hybridizing the probe with the reporter and quencher to the amplification product; (c) melting the hybridized product of step (b) while varying the temperature to obtain a melting curve; And (d) analyzing the obtained fusion curves to solve the problem of detecting target nucleic acids according to a threshold cycle (Ct) of a real-time polymerase chain reaction, comprising detecting or quantifying target nucleic acids. Method of detecting or quantifying target nucleic acid by target nucleic acid fusion curve analysis using PNA probe combined with reporter and quencher, and using reporter and reporter and quencher The present invention relates to a kit for detecting or quantifying a target nucleic acid by analyzing a target nucleic acid fusion curve including a PNA probe.
본 발명에 있어서, 상기 PNA 프로브는 표적 핵산의 염기서열과 완전히 혼성화(perfect match)를 이루어 예상된 융해온도(Tm) 값을 보이며, 염기서열 차이가 있는 표적 핵산과는 불완전 혼성화(mismatch)를 이루어 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 할 수 있다.In the present invention, the PNA probe completely hybridizes with the base sequence of the target nucleic acid (perfect match) to show the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference It may be characterized by showing a lower melting temperature (Tm) value than expected.
본 발명에 있어서, 상기 리포터는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 할 수 있고, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 할 수 있다.In the present invention, the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 and It may be characterized in that at least one selected from the group consisting of CY5, the quencher may be characterized in that at least one selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl. have.
본 발명에 있어서, 상기 표적 핵산 염기서열에 따른 융해곡선의 차이를 이용하여 위양성 및 위음성 시그널을 구분할 수 있는 것을 특징으로 할 수 있고, 상기 PNA 프로브는 LNA(Locked nucleic acid)를 추가로 함유하는 것을 특징으로 할 수 있다.In the present invention, the false-positive and false-negative signals can be distinguished using the difference in the melting curve according to the target nucleic acid sequence, the PNA probe further comprises a locked nucleic acid (LNA) It can be characterized.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1: 표적 핵산 검출용 프라이머 및 프로브 제작Example 1: Preparation of primer and probe for detection of target nucleic acid
Ct(threshold cycle)에 따른 핵산 검출의 문제점인 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 효과적으로 검출하고자 표적 핵산으로 WSD(White Spot Disease) 염기서열을 기반으로 하는 WSD 인공합성 올리고를 이용하였으며, 상기 핵산의 증폭을 위한 프라이머 및 프로브(가수분해용(hydrolysis) 프로브 및 PNA 프로브)는 OIE 규격에 나와 있는 염기서열을 바탕으로 제작하여 사용하였다.Based on the WSD (White Spot Disease) sequence as the target nucleic acid to minimize the detection error of the presence of the target nucleic acid by false positive and false negative signals, which is a problem of nucleic acid detection according to the threshold cycle (Ct) The WSD artificial oligo oligonucleotide was used, and primers and probes (hydrolysis probe and PNA probe) for amplifying the nucleic acid were prepared and used based on the nucleotide sequence shown in the OIE standard.
본 발명에서 사용된 PNA 프로브는 봉쇄형 핵산(Locked nucleic acid, LNA)을 추가적으로 함유하도록 제조될 수 있다. 봉쇄형 핵산은 변형된 RNA 뉴클레오타이드로, 리보즈 모이티(ribose moiety)의 2'산소 원자와 4'탄소 원자가 결합된 형태로 변형되어 있다. LNA는 DNA 또는 RNA와 혼합된 형태로 프로브(올리고뉴클레오타이드(oligonucleotide))를 구성할 수 있으며, 봉쇄형 핵산의 봉쇄형 리보즈 형태(locked ribose conformation)는 염기 간 스태킹(stacking) 및 백본의 프리-조직화(pre-organization)를 증진시킴으로써 프로브의 혼성화(hybridization) 성능을 증가시킨다. The PNA probe used in the present invention may be prepared to additionally contain locked nucleic acid (LNA). Contained nucleic acids are modified RNA nucleotides that are modified in the form of a combination of 2 'oxygen atoms and 4' carbon atoms of a ribose moiety. LNAs can form probes (oligonucleotides) in mixed form with DNA or RNA, and the locked ribose conformation of blocked nucleic acids allows stacking between bases and pre-backing of backbones. Promoting pre-organization increases the hybridization performance of the probe.
비특이적 밴드(non-specific band) 및 Ct 값에 따른 표적 핵산의 검출 문제를 해결하기 위해서, OIE 프라이머 염기서열은 존재하지만 프로브에 상보적인 염기서열 중 한 염기가 치환된 인공합성 올리고를 제작하였고, 상기 PNA 프로브의 이상 여부를 확인할 수 있는 상보적인 인공합성 올리고를 제작하여 사용하였다(표 1 참조; 표 1의 O는 링커를, K는 라이신(lysine)을 나타냄). In order to solve the problem of detecting a target nucleic acid according to a non-specific band and a Ct value, an artificial synthetic oligo having an OIE primer sequence but having one base sequence complementary to the probe was prepared. Complementary artificial synthetic oligos capable of confirming abnormalities of the PNA probe were prepared and used (see Table 1; O in Table 1 represents a linker and K represents lysine).
본 발명에서 사용한 모든 PNA 프로브(FAM-labeled, Dabcyl)는 파나진(Panagene, 한국)에서 HPLC 정제 방법을 통해 합성하였으며, 합성된 모든 프로브의 순도는 질량분석법을 이용하여 확인하였고, 표적 핵산과의 더 효과적인 결합을 위해 프로브의 불필요한 이차구조는 피하였다. 더불어 OIE에 표기된 형광 프로브와 교차하는 것을 피하고자 서로 다른 파장의 형광으로 제작하였다. All PNA probes (FAM-labeled, Dabcyl) used in the present invention were synthesized by HPLC purification method in Panagene (Panagene, Korea), and the purity of all synthesized probes was confirmed by mass spectrometry, and further compared with the target nucleic acid. Unnecessary secondary structures of the probes were avoided for effective binding. In addition, in order to avoid crossing with the fluorescent probes marked on the OIE, fluorescence of different wavelengths was produced.
상기 합성된 인공합성 올리고 및 PNA 프로브를 사용하여 CFX96™ Real-Time 시스템(Bio-Rad 사, 미국)을 이용하여 PCR(Polymerase Chain Reaction)을 수행한 다음, 증폭곡선 및 융해곡선 분석을 수행하였다(도 1).PCR (Polymerase Chain Reaction) was performed using the synthesized synthetic oligo oligo and PNA probes using a CFX96 ™ Real-Time system (Bio-Rad, USA), followed by an amplification curve and a melting curve analysis ( 1).
하기 표 1은 인공합성 올리고의 검출을 위한 프로브 및 올리고 서열을 나타낸 것이다.Table 1 below shows probes and oligo sequences for the detection of artificial synthetic oligos.
Figure PCTKR2016000842-appb-T000001
Figure PCTKR2016000842-appb-T000001
실시예 2: 인공합성 올리고와 PNA 프로브를 혼합하여 Ct 값 해결을 위한 증폭곡선 및 융해곡선의 분석 방법Example 2: Analysis method of amplification curve and melting curve for solving Ct value by mixing artificial synthetic oligo and PNA probe
Ct 값에 따른 표적 핵산의 검출 문제점인 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 효과적으로 검출하기 위한 증폭곡선 및 융해곡선의 분석을 위한 조건은 다음과 같았다; 총 볼륨이 25㎕이 되도록 2X TaqMan Universal PCR Master Mix(PE Applied Biosystems, Foster City, CA, USA) 12.5㎕, TaqMan 프로브(PROBE-3, 서열번호 3)(네오프로브, 한국) 1.5㎕/1pmol, Primer-1-F(서열번호 5):Primer-1-R(서열번호 7)=(3㎕/1pmol:3㎕/10pmol), PROBE-1(서열번호 1) 0.5㎕/10pmol, 멸균된 증류수 3.5㎕를 첨가하여 PCR 증폭용 반응물을 준비하였다. 상기 반응물에 첨가된 표적 핵산의 경우 20ng을 사용하였으며, 비교 실험을 위한 NCT-1 인공합성 올리고 또한 실제 표적 핵산과 같은 정량 값과 Ct 값이 되도록 첨가하였다.The conditions for the analysis of the amplification curve and the melting curve for minimizing the discrimination error of the presence of the target nucleic acid by false-positive and false-negative signals, the detection problems of the target nucleic acid according to the Ct value, and the effective detection of the target nucleic acid were as follows. ; 12.5 μl 2X TaqMan Universal PCR Master Mix (PE Applied Biosystems, Foster City, Calif., USA) so that the total volume is 25 μl, TaqMan probe (PROBE-3, SEQ ID NO: 3) (neoprov, Korea) 1.5 μl / 1 pmol, Primer-1-F (SEQ ID NO: 5): Primer-1-R (SEQ ID NO: 7) = (3 μl / 1 pmol: 3 μl / 10 pmol), PROBE-1 (SEQ ID NO: 1) 0.5 μl / 10 pmol, sterile distilled water 3.5 μl was added to prepare a reaction for PCR amplification. 20ng was used for the target nucleic acid added to the reaction, and the NCT-1 artificial oligos for the comparative experiment were also added to have the same quantitative value and Ct value as the actual target nucleic acid.
증폭곡선 분석을 위한 과정은 50℃에서 2분, 95℃에서 10분, 그리고 95℃에서 15초, 60℃에서 1분간 반응을 40회 진행하였다. 융해곡석을 위한 과정은 90℃에서 3분, 75℃에서 1분, 55℃에서 1분의 변성 단계를 거친 다음, 20℃에서 90℃까지 0.5℃씩 상승시키며 형광을 측정하는 융해곡선 분석을 수행하였다. 각 단계 사이마다 5초간 정지 상태를 유지하였다(도 2). 상기 조건에서 실시간 중합효소연쇄반응으로 Ct 값에 따른 표적 핵산의 검출 문제를 해결하기 위하여 검체의 농도를 달리하여 증폭곡선 및 융해곡선 분석을 진행하였다.For the amplification curve analysis, the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C. The process for the calcite is performed in a denaturation step of 3 minutes at 90 ° C., 1 minute at 75 ° C., and 1 minute at 55 ° C., followed by melting curve analysis to measure fluorescence by increasing the temperature from 20 ° C. to 90 ° C. in 0.5 ° C. steps. It was. It was kept stationary for 5 seconds between each step (Figure 2). In order to solve the detection problem of the target nucleic acid according to the Ct value by real time polymerase chain reaction under the above conditions, the amplification curve and the melting curve analysis were performed by varying the concentration of the sample.
표적 핵산을 함유하는 실제 검체와 인위적으로 유전자 증폭에는 영향을 받지 않고 표적 핵산이 존재하지 않은 NTC-1 인공합성 올리고를 이용하여 실시간 중합효소연쇄반응으로 발생할 수 있는 비특이적 증폭(비특이적 밴드(non-specific band)) 및 Ct 값 이하(표적 핵산이 존재하지 않는다고 판단하는 사이클)에서의 표적 핵산의 미검출을 해결하고자 실험하였다. 상기 실험에서 Ct 값은 30, RFU(relative fluorescence units; 빛의 강도)는 1000을 cutoff로 설정하였으며, 사이클이 30 이상, RFU 1000 미만일 경우 표적 핵산이 존재하지 않는 것으로 정하였다. 또한, 특이적으로 PNA 프로브를 이용하기 위해서는 단일가닥 생산을 위하여 비대칭(Asymmetric) 유전자 증폭을 진행해야 하므로 대칭(Symmetric)과 비대칭을 비교하여 증폭곡선 실험을 수행하였다. Non-specific amplification (non-specific) that can occur by real-time polymerase chain reaction using NTC-1 artificial oligos that are not affected by gene amplification and artificially amplified by actual samples containing target nucleic acid. band)) and below the Ct value (cycle to determine that no target nucleic acid is present). In the experiment, the Ct value was set to 30 and the RFU (relative fluorescence units; light intensity) was set to cutoff, and the target nucleic acid was not present when the cycle was 30 or more and less than RFU 1000. In addition, in order to specifically use a PNA probe, asymmetric gene amplification must be performed for single-strand production. Thus, an amplification curve experiment was performed by comparing symmetric and asymmetric.
그 결과, 도 3에 나타난 바와 같이, 실제 검체의 표적 핵산의 존재 여부를 판단하기가 매우 어려운 것으로 확인되었다. 즉, 실제 비대칭 및 대칭 유전자 증폭의 시작점은 25 사이클에 해당하지만 실제 검체의 핵산 존재 여부를 확인할 수 있는 설정된 Ct 값 및 RFU 값에 약간 못 미치는 정도로 표적 핵산의 존재 여부를 판단하기가 어려운 것으로 나타났다. 여기서, 도 3의 청색선은 표적 핵산을 함유하는 실제 검체이며, 적색선은 음성대조군(negative control(D.W))에 해당한다. 이와 같은 결과는 Ct 값으로 표적 핵산의 존재 여부를 결정하는 대부분의 실시간 중합효소 반응기에서 나타난다. 상기에서 확인된 표적 핵산의 유무를 판단하는 어려움은, 도 4에 나타난 바와 같이, 비대칭 유전자 증폭 산물의 융해단계를 통하여 결과의 진위를 확실히 구분할 수 있었다.As a result, as shown in Figure 3, it was confirmed that it is very difficult to determine the presence of the target nucleic acid of the actual sample. In other words, the starting point of the actual asymmetric and symmetric gene amplification corresponds to 25 cycles, but it was difficult to determine the presence of the target nucleic acid to the extent that it is slightly below the set Ct value and RFU value to confirm the presence of the nucleic acid of the actual sample. Here, the blue line of FIG. 3 is an actual sample containing a target nucleic acid, and the red line corresponds to a negative control group (D.W). This result is seen in most real-time polymerase reactors that determine the presence or absence of a target nucleic acid by Ct value. Difficulty in determining the presence or absence of the target nucleic acid identified above, as shown in Figure 4, through the fusion step of the asymmetric gene amplification product was able to clearly distinguish the authenticity of the result.
실시예 3: 인공합성 올리고와 PNA 프로브를 분리하여 Ct 값 해결을 위한 증폭곡선 및 융해곡선의 분석 방법Example 3: Analysis method of amplification curve and melting curve for solving Ct value by separating artificial synthetic oligo and PNA probe
OIE 규정의 WSD를 판별하기 위한 실험 조건은 표적 핵산 증폭용 프라이머를 이용하여 대칭(Symmetric)으로 표적 핵산을 증폭해야 한다. 반면, PNA 프로브를 이용하여 융해곡선을 분석하기 위해서는 비대칭(Asymmetric)으로 표적 핵산을 증폭해야 한다. 이러한 상반된 실험 조건에 따른 단점을 해결하기 위하여 높은 온도에 적합한 PNA 프로브를 제작하였다. Experimental conditions for determining the WSD of the OIE regulations should be amplified target symmetrically using a primer for amplifying the target nucleic acid. On the other hand, in order to analyze the melting curve using the PNA probe, it is necessary to amplify the target nucleic acid asymmetrically (Asymmetric). In order to solve the disadvantages caused by these conflicting experimental conditions, a PNA probe suitable for high temperature was manufactured.
OIE 기준에 따른 표적 핵산의 증폭은 가수분해(hydrolysis) 프로브만을 이용하여 실험을 수행한 후 결과 판단에 있어서 Ct 값 이하, 혹은 비특이적 밴드(non-specific band)의 증폭곡선 발생 시 PNA 프로브를 추가로 첨부하여 확인하는 방법이다. 상기 방법으로 OIE 기준을 준수하면서 표적 핵산을 높은 온도로 단일가닥으로 만든 다음, PNA 프로브와 결합시키는 실험을 진행하였다.Target nucleic acid amplification according to OIE criteria is performed by using a hydrolysis probe only, and when a result of the amplification curve of Ct value or non-specific band (non-specific band) is generated, the PNA probe is additionally added. It is attached and confirmed. In this manner, the target nucleic acid was single-stranded to a high temperature while complying with the OIE standard, and then the experiment was performed to bind the PNA probe.
Ct 값에 따른 표적 핵산의 검출 문제를 해결하기 위한 증폭곡선 실험의 조건은 다음과 같다; 총 볼륨이 25㎕가 되도록 2X TaqMan Universal PCR Master Mix(PE Applied Biosystems, Foster City, CA, USA) 12.5㎕, TaqMan 프로브(PROBE-3, 서열번호 3)(네오프로브, 한국) 1.5㎕/1pmol, Primer-1-F(서열번호 5):Primer-1-R(서열번호 7)=(3㎕/1pmol:3㎕/10pmol), 멸균된 증류수 5㎕를 첨가하여 PCR 증폭용 반응물을 준비하였다. The conditions of the amplification curve experiment to solve the detection problem of the target nucleic acid according to the Ct value are as follows; 12.5 μl 2X TaqMan Universal PCR Master Mix (PE Applied Biosystems, Foster City, Calif., USA) so that the total volume is 25 μl, TaqMan probe (PROBE-3, SEQ ID NO: 3) (neoprov, Korea) 1.5 μl / 1 pmol, Primer-1-F (SEQ ID NO: 5): Primer-1-R (SEQ ID NO: 7) = (3 μl / 1 pmol: 3 μl / 10 pmol) and 5 μl of sterilized distilled water were added to prepare a reaction for PCR amplification.
증폭곡선 분석을 위한 과정은 50℃에서 2분, 95℃에서 10분, 그리고 95℃에서 15초, 60℃에서 1분간 반응을 40회 진행하였다.For the amplification curve analysis, the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C.
그 결과, 도 5에 나타난 바와 같이, 증폭곡선은 설정된 Ct Cut off 값에 따라 핵산의 존재 여부를 분간하기에는 어려움이 있었다. 여기서, 도 5의 청색선은 실제 표적 핵산을 포함하고 있는 검체이며, 적색선은 음성대조군(Negative control(D.W)에 해당한다. Ct 값 30 이상, RFU 값 1000 이하일 경우 실질적으로 표적 핵산이 존재한다고 가정했을 경우 위의 실험의 경우 결과를 판정하기 어렵거나 표적 핵산이 존재하지 않는다고 판정할 수 있다. As a result, as shown in Figure 5, the amplification curve was difficult to distinguish the presence or absence of the nucleic acid according to the set Ct Cut off value. Here, the blue line of Fig. 5 is a sample containing the actual target nucleic acid, and the red line corresponds to the negative control group (DW), if the Ct value is 30 or more and the RFU value is 1000 or less, it is assumed that the target nucleic acid is substantially present. In the case of the above experiment, it may be difficult to determine the result, or it may be determined that the target nucleic acid does not exist.
따라서, 상기와 같은 결과가 나오면 PNA 프로브를 증폭 산물에 추가로 첨가하여 융해단계를 진행하면 정확한 표적 핵산의 진위 여부를 결정할 수 있다. PNA 프로브가 결합할 수 있는 단일가닥을 만드는 방법의 경우 일반적인 표적 핵산은 변성(denature)되는 온도(약 75℃ 이상)보다 더 높은 온도에서 결합력을 가지는 PNA 프로브를 제작하여 확인이 가능하다. Therefore, when the above results are obtained, the addition of the PNA probe to the amplification product may further determine the authenticity of the target nucleic acid. In the case of making a single strand to which the PNA probe can bind, a general target nucleic acid can be identified by preparing a PNA probe having a binding force at a temperature higher than a denatured temperature (about 75 ° C. or more).
PNA 프로브를 이용하여 융해곡선 분석을 위한 실험 조건은 다음과 같았다; 증폭곡선 분석에 사용한 증폭 산물 25㎕, PROBE-2(서열번호 2) 0.5㎕(10pmol)를 첨가하였다.The experimental conditions for the melting curve analysis using the PNA probe were as follows; 25 [mu] l of the amplification product used for amplification curve analysis and 0.5 [mu] l (10 pmol) of PROBE-2 (SEQ ID NO: 2) were added.
증폭곡선 분석을 위한 과정은 50℃에서 2분, 95℃에서 10분, 그리고 95℃에서 15초, 60℃에서 1분간 반응을 40회 진행하였다. 융해곡석을 위한 과정은 90℃에서 3분, 75℃에서 1분, 55℃에서 1분의 변성 단계를 거친 다음, 20℃에서 90℃까지 0.5℃씩 상승시키며 형광을 측정하는 융해곡선 분석을 수행하였다. 각 단계 사이마다 5초간 정지 상태를 유지하였다. For the amplification curve analysis, the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C. The process for the calcite is performed in a denaturation step of 3 minutes at 90 ° C., 1 minute at 75 ° C., and 1 minute at 55 ° C., followed by melting curve analysis to measure fluorescence by increasing the temperature from 20 ° C. to 90 ° C. in 0.5 ° C. steps. It was. The suspension was held for 5 seconds between each step.
그 결과, 도 6에 나타난 바와 같이, 표적 핵산이 첨가된 검체인 경우 융해곡선 상에서 융해피크를 나타냄을 확인할 수 있었다. 여기서, 도 6의 청색선은 표적 핵산을 포함하고 있는 검체의 증폭 산물이며, 적색선은 음성대조군(Negative control(D.W))이다.As a result, as shown in Figure 6, it was confirmed that the melting peak in the melting curve of the sample to which the target nucleic acid is added. Here, the blue line of FIG. 6 is an amplification product of a sample containing a target nucleic acid, and the red line is a negative control (D.W).
실시예 4: PNA 프로브를 이용하여 실제 표적 핵산의 증폭 산물과 낮은 농도의 비특이적 증폭 산물을 구분하는 방법Example 4 Method of Distinguishing Amplification Products of Real Target Nucleic Acids from Low Concentration Non-Specific Amplification Products Using PNA Probes
표적 핵산의 분석 과정에서, 낮은 농도의 비특이적 증폭 산물에 대한 문제점인 위양성 및 위음성 시그널에 의한 표적 핵산의 존재 여부에 대한 판별 오류를 최소화하고, 표적 핵산을 효과적으로 검출하는 방법을 검증하고자, 표적 핵산으로 WSD(White Spot Disease) 바이러스의 염기서열을 이용하였으며, 증폭을 위한 프라이머, 프로브는 OIE 가이드라인에 나와 있는 염기서열을 가지는 포스페이트 테깅(phosphate tagging)된 프라이머를 제작하여 사용하였다. In the analysis of the target nucleic acid, in order to verify the method of effectively detecting the target nucleic acid and to minimize the error of discrimination of the presence or absence of the target nucleic acid by false-positive and false-negative signals, which is a problem with low concentration of nonspecific amplification products, The base sequence of WSD (White Spot Disease) virus was used, and a primer and a probe for amplification were prepared by using a phosphate tagging primer having a nucleotide sequence as described in OIE guidelines.
낮은 농도의 비특이적 증폭 산물의 출현에 따른 증폭곡선의 존재 여부를 확인하기 위한 프로브로는 PROBE-3(서열번호 3)(OIE hydrolysis probe), PROBE-4(서열번호 4)를 이용하였으며, 0.001ng의 WSD 유래 표적 핵산과 음성 대조군으로 증류수를 사용하여, 증폭곡선을 얻고자 하였다. 실험 방법은 다음과 같다; 총 볼륨이 25㎕가 되도록 2X TaqMan Universal PCR Master Mix(PE Applied Biosystems, Foster City, CA, USA) 12.5㎕, PROBE-3(서열번호 3)(네오프로브, 한국) 1.5㎕/1pmol, Primer-2-F(서열번호 6)와 Primer-1-R(서열번호 7)(3㎕/1pmol: 3㎕/10pmol), 멸균된 증류수 5㎕를 첨가하여 PCR 증폭용 반응물을 준비하였다. 상기 실험에서의 표적 핵산은 시료 당 0.01ng(양성 대조군) 및 0.001ng(낮은 농도의 표적 핵산)을 사용하였고, 증류수는 음성 대조군으로 사용하였다. PROBE-3 (SEQ ID NO: 3) and PROBE-4 (SEQ ID NO: 4) were used as probes to confirm the presence of an amplification curve due to the appearance of low concentration of nonspecific amplification products. WSD-derived target nucleic acid and distilled water as a negative control, to obtain an amplification curve. The experimental method is as follows; 2X TaqMan Universal PCR Master Mix (PE Applied Biosystems, Foster City, CA, USA) 12.5 μl, PROBE-3 (SEQ ID NO: 3) (neoprov, Korea) 1.5 μl / 1 pmol, Primer-2 so that the total volume is 25 μl. -F (SEQ ID NO: 6), Primer-1-R (SEQ ID NO: 7) (3 μl / 1 pmol: 3 μl / 10 pmol) and 5 μl of sterilized distilled water were added to prepare a reaction for PCR amplification. The target nucleic acid in the experiment was 0.01 ng (positive control) and 0.001 ng (low concentration of target nucleic acid) per sample, and distilled water was used as a negative control.
증폭곡선 분석을 위한 과정은 50℃에서 2분, 95℃에서 10분, 그리고 95℃에서 15초, 60℃에서 1분간 반응을 40회 진행하였다.For the amplification curve analysis, the reaction was performed 40 times for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C.
그 결과, 도 7에 나타난 바와 같이, PROBE-3(서열번호 3)을 이용하여 증폭곡선 확인 시 양성 대조군인 0.01ng의 표적 핵산을 사용할 경우 RFU(빛의 강도 혹은 증폭된 표적 핵산의 산물의 농도) 값이 1000일 때 Ct값은 36이었으나, 낮은 농도의 표적 핵산(0.001ng/시료) 사용 시 Ct값을 정할 수 없었다. 하지만 낮은 농도의 표적 핵산과 음성 대조군에서 약간의 증폭곡선 양상을 나타내었다. As a result, as shown in Figure 7, when using a target control of 0.01ng as a positive control when confirming the amplification curve using PROBE-3 (SEQ ID NO: 3) RFU (light intensity or the concentration of the product of the amplified target nucleic acid) The Ct value was 36 when the) value was 1000, but the Ct value could not be determined when using a low concentration of the target nucleic acid (0.001 ng / sample). However, low concentrations of the target nucleic acid and negative control showed a slight amplification curve.
한편, 낮은 농도의 비특이적 증폭 산물의 진위여부를 확인하고자, PROBE-4(서열번호 4)를 이용하여 용해곡선 분석을 수행하였다.On the other hand, to verify the authenticity of the low concentration of non-specific amplification product, the dissolution curve analysis was performed using PROBE-4 (SEQ ID NO: 4).
낮은 농도의 비특이적 증폭 산물의 확인을 위해, 프라이머의 농도를 대칭으로 첨가하고, PNA 프로브의 결합력을 높이기 위한 방법으로 대한민국 특허 출원번호(10-2013-0106692)의 방법을 이용하여 실험을 수행하였다. 실험 방법은 다음과 같다; 시료 당 증폭 산물인 0.01ng 표적 핵산, 0.001ng 표적 핵산, 또는 음성 대조군에 각각 Lambda exonulease 0.5㎕/unit, PROBE-4(서열번호 4) 0.5㎕/10pmol을 첨가하여 실험을 수행하였다. In order to identify low concentrations of nonspecific amplification products, the concentration of primers was added symmetrically, and experiments were performed using the method of Korean Patent Application No. (10-2013-0106692) as a method for increasing the binding force of the PNA probe. The experimental method is as follows; Experiments were performed by adding 0.5 μl / unit of Lambda exonulease and 0.5 μl / 10 pmol of PROBE-4 (SEQ ID NO: 4) to 0.01 ng target nucleic acid, 0.001 ng target nucleic acid, or negative control, which were amplification products per sample, respectively.
PNA 프로브를 이용한 융해곡선 분석을 위한 과정은, 먼저 증폭을 통해 생성된 산물의 5’말단에 인산기(phosphate)가 결합된 가닥을 제거하여 단일 가닥으로 만드는 단계로 37℃에서 30분간 반응을 진행하였고, 융해곡선 분석을 위한 과정은 95℃에서 5분, 75℃에서 30초, 55℃에서 30초의 변성 단계를 거친 다음, 45℃에서 80℃까지 1℃씩 상승시키며 형광을 측정하는 융해곡선 분석을 수행하였다.The melting curve analysis using the PNA probe was first performed by removing the strand bound to the phosphate group at the 5 'end of the product generated through amplification to make a single strand. The melting curve analysis was performed after 5 minutes at 95 ° C, 30 seconds at 75 ° C, and 30 seconds at 55 ° C, followed by melting curve analysis at 1 ° C from 45 ° C to 80 ° C. Was performed.
그 결과, 도 8에 나타난 바와 같이, 융해곡선 분석 시 0.01ng의 표적 핵산에서는 PROBE-4(서열번호 4)에 해당하는 고유의 온도(Tm) 64.0℃를 확인하여 표적 핵산이 진짜임을 확인할 수 있었다. 하지만 0.001ng의 표적 핵산에서는 Tm값이 60℃, 음성 대조군은 Tm값을 보이지 않았으므로 실제 표적 핵산의 증폭 산물과 비특이적인 증폭 산물을 구분할 수 없었다. 따라서, PNA 프로브(PROBE-4, 서열번호 4)를 이용하여 고유의 온도로 증폭 산물이 실제 표적 핵산 증폭 산물 또는 비특이적 증폭 산물인지 확인하기 위해서는 최소한의 증폭 산물의 농도가 필요하다는 것을 확인할 수 있었다.As a result, as shown in Figure 8, in the analysis of the melting curve of the target nucleic acid of 0.01ng intrinsic temperature (Tm) 64.0 ℃ corresponding to PROBE-4 (SEQ ID NO: 4) it was confirmed that the target nucleic acid is real . However, in the target nucleic acid of 0.001ng, the Tm value was 60 ° C., and the negative control group did not show the Tm value, so it was not possible to distinguish the amplification product from the non-specific amplification product. Therefore, using a PNA probe (PROBE-4, SEQ ID NO: 4) it was confirmed that the minimum amplification product concentration is necessary to confirm whether the amplification product is a real target nucleic acid amplification product or a non-specific amplification product at a unique temperature.
한편, PNA 프로브를 이용하여 낮은 농도의 비특이적 증폭 산물의 진위여부를 구분할 수 있는 개선된 융해곡선 분석방법을 확인하고자 하였다.On the other hand, the PNA probe was used to identify an improved melting curve analysis method that can distinguish the authenticity of low concentration nonspecific amplification products.
낮은 농도의 비특이적 증폭 산물의 증폭곡선의 존재 여부를 확인하기 위한 방법은, 도 7에서 사용된 증폭 방법과 같았다. 실험 방법은 다음과 같다; 총 볼륨이 20㎕이 되도록 증폭된 표적 산물 5㎕, 2X qPCR PreMix(시선바이오머티리얼스, 한국) 10㎕, PROBE-4(서열번호 4) 0.5㎕/10pmol, Primer-1-R(서열번호 7)(0.5㎕/100pmol), 멸균된 증류수 4㎕를 첨가하여 실시하였다. 상기 실험에서의 표적 핵산은 시료 당 0.01ng(양성 대조군) 및 0.001ng(낮은 농도의 표적 핵산)을 사용하였고, 증류수는 음성 대조군으로 사용하였다.The method for confirming the presence or absence of an amplification curve of a low concentration of nonspecific amplification products was the same as the amplification method used in FIG. 7. The experimental method is as follows; 5 μl of target product amplified to a total volume of 20 μl, 10 μl of 2X qPCR PreMix (Eye Biomaterials, Korea), 0.5 μl / 10 pmol of PROBE-4 (SEQ ID NO: 4), Primer-1-R (SEQ ID NO: 7) (0.5 μl / 100 pmol) and 4 μl of sterilized distilled water were added. The target nucleic acid in the experiment was 0.01 ng (positive control) and 0.001 ng (low concentration of target nucleic acid) per sample, and distilled water was used as a negative control.
융해곡선 분석을 위한 과정은 95℃에서 5분, 95℃에서 3초, 그리고 56℃에서 30초, 76℃에서 30초 15회 수행하고, 95℃에서 5분, 75℃에서 30초, 55℃에서 30초의 변성 단계를 거친 다음, 45℃에서 80℃까지 1℃씩 상승시키며 형광을 측정하는 융해곡선 분석을 수행하였다.The process for melting curve analysis was performed 15 minutes at 95 ° C. for 5 minutes, 95 ° C. for 3 seconds, and 56 ° C. for 30 seconds, at 76 ° C. for 30 seconds, for 5 minutes at 95 ° C., at 75 ° C. for 30 seconds, and at 55 ° C. After 30 seconds in the denaturation step, the melting curve analysis to measure the fluorescence was carried out in 1 ℃ increments from 45 ℃ to 80 ℃.
그 결과, 도 9에 나타난 바와 같이, 음성 대조군 대비 낮은 농도의 표적 핵산(0.001ng/시료)과 추가 증폭 및 PNA 프로브의 결합력을 높이는 단계를 통하여 실제 표적 핵산과 비특이적 산물인 음성 대조군을 구분할 수 있었다. As a result, as shown in FIG. 9, a lower concentration of the target nucleic acid (0.001 ng / sample) and the additional amplification and the binding force of the PNA probe were distinguished from the actual target nucleic acid and the non-specific product negative control as compared to the negative control. .
본 발명에 따른 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용한 표적 핵산의 검출 및 정량 방법을 사용할 경우 진단 및 개체 식별 분석 방법에 사용되는 실시간 중합효소연쇄반응의 임계 사이클(Ct) 값을 기준으로 판별하는 기술적 문제점을 해결하여 표적 핵산 또는 표적 유전자의 검출 및 정량 결과 판독의 정확성을 높일 수 있고 경제·사회·의료적 비용을 절감할 수 있다.Critical Cycle (Ct) of Real-Time Polymerase Chain Reaction Used in Diagnostic and Individual Identification Methods When Using Targeted Nucleic Acid Detection and Quantitative Methods Using a PNA Probe Associated with a Reporter and a Quencher According to the Present Invention By solving the technical problem of discriminating by reference value, the accuracy of detection and reading of quantitative results of target nucleic acid or target gene can be improved, and economic, social and medical cost can be reduced.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전자파일 첨부하였음.Electronic file attached.

Claims (23)

  1. 다음 단계를 포함하는, 실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하는, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법:Target nucleic acid using a reporter and quencher coupled PNA probe that solves the problem of detection of target nucleic acid along a threshold cycle (Ct) of real-time polymerase chain reaction, including the following steps: Methods for detecting or quantifying target nucleic acids by melting curve analysis:
    (a) 표적 핵산을 함유하는 것으로 추정되는 검체와 핵산 중합효소, 프라이머, 리포터 및 소광자가 결합된 PNA 프로브 및 TaqMan 프로브를 첨가하고, 혼성화시킨 다음, 비대칭 중합효소연쇄반응(asymmetric Polymerase Chain Reaction)을 사용하여 증폭하는 단계;(a) adding a PNA probe and TaqMan probe bound to a sample suspected of containing a target nucleic acid and a nucleic acid polymerase, primer, reporter and quencher, hybridizing, and then performing an asymmetric polymerase chain reaction. Amplifying using;
    (b) 온도를 변화시키면서 상기 혼성화된 산물을 융해시켜 융해곡선을 얻는 단계; 및 (b) melting the hybridized product with varying temperature to obtain a melting curve; And
    (c) 상기 얻어지는 융해곡선을 분석하여, 표적 핵산의 검출 또는 정량하는 단계.(c) analyzing the resulting melting curve to detect or quantify the target nucleic acid.
  2. 제1항에 있어서, 상기 PNA 프로브는 표적 핵산의 염기서열과 완전히 혼성화(perfect match)를 이루어 예상된 융해온도(Tm) 값을 보이며, 염기서열 차이가 있는 표적 핵산과는 불완전 혼성화(mismatch)를 이루어 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.The method of claim 1, wherein the PNA probe has a perfect match with the base sequence of the target nucleic acid (perfect match) to show the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference Method for detecting or quantifying target nucleic acid through a target nucleic acid fusion curve analysis, characterized in that the lower than expected temperature (Tm) value.
  3. 제1항에 있어서, 상기 리포터는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.According to claim 1, wherein the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 And one or more selected from the group consisting of CY5. A method for detecting or quantifying a target nucleic acid through a target nucleic acid fusion curve analysis.
  4. 제1항에 있어서, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.The method of claim 1, wherein the quencher is one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, detection or quantification of the target nucleic acid by target nucleic acid fusion curve analysis Way.
  5. 제1항에 있어서, 상기 표적 핵산 염기서열에 따른 융해곡선의 차이를 이용하여 위양성 및 위음성 시그널을 구분할 수 있는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법. The method of claim 1, wherein the false-positive and false-negative signals can be distinguished using the difference in the fusion curve according to the target nucleic acid sequence.
  6. 제1항에 있어서, 상기 PNA 프로브는 LNA(Locked nucleic acid)를 추가로 함유하는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법. The method of claim 1, wherein the PNA probe further comprises a locked nucleic acid (LNA).
  7. 제1항 내지 제6항 중 어느 한 항의 방법을 이용하고, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 포함하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.A kit for detecting or quantifying target nucleic acid by using a method according to any one of claims 1 to 6, comprising a PNA probe coupled with a reporter and a quencher.
  8. 제7항에 있어서, 상기 PNA 프로브는 표적 핵산의 염기서열과 완전히 혼성화(perfect match)를 이루어 예상된 융해온도(Tm) 값을 보이며, 염기서열 차이가 있는 표적 핵산과는 불완전 혼성화(mismatch)를 이루어 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.The method of claim 7, wherein the PNA probe has a perfect match with the base sequence of the target nucleic acid (perfect match) shows the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference A kit for the detection or quantification of a target nucleic acid through a target nucleic acid fusion curve analysis, characterized in that the lower than expected fusion temperature (Tm) value.
  9. 제7항에 있어서, 상기 리포터는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.The method of claim 7, wherein the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 And a target nucleic acid fusion curve analysis kit for detecting or quantifying a target nucleic acid, characterized in that at least one selected from the group consisting of CY5.
  10. 제7항에 있어서, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.The method according to claim 7, wherein the quencher is one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl detection or quantification of target nucleic acid by target nucleic acid fusion curve analysis Kit.
  11. 제7항에 있어서, 상기 표적 핵산 염기서열에 따른 융해곡선의 차이를 이용하여 위양성 및 위음성 시그널을 구분할 수 있는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트. 8. The kit according to claim 7, wherein the false positive and false negative signals can be distinguished using the difference in the fusion curve according to the target nucleic acid sequence.
  12. 다음 단계를 포함하는, 실시간 중합효소연쇄반응의 임계 사이클(threshold cycle: Ct)에 따른 표적 핵산의 검출 문제를 해결하는, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 이용하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법:Target nucleic acid using a reporter and quencher coupled PNA probe that solves the problem of detection of target nucleic acid along a threshold cycle (Ct) of real-time polymerase chain reaction, including the following steps: Methods for detecting or quantifying target nucleic acids by melting curve analysis:
    (a) 표적 핵산을 함유하는 것으로 추정되는 검체와 핵산 중합효소, 프라이머 및 TaqMan 프로브를 첨가하고, 혼성화시킨 다음, 비대칭 중합효소연쇄반응(asymmetric Polymerase Chain Reaction)을 사용하여 증폭하는 단계;(a) adding and hybridizing a sample suspected of containing the target nucleic acid with a nucleic acid polymerase, a primer and a TaqMan probe, followed by amplification using an asymmetric Polymerase Chain Reaction;
    (b) 상기 증폭 산물에 리포터 및 소광자가 결합된 프로브를 첨가하여 혼성화시키는 단계;(b) adding and hybridizing the probe with the reporter and quencher to the amplification product;
    (c) 온도를 변화시키면서 상기 (b) 단계의 혼성화된 산물을 융해시켜 융해곡선을 얻는 단계; 및 (c) melting the hybridized product of step (b) while varying the temperature to obtain a melting curve; And
    (d) 상기 얻어지는 융해곡선을 분석하여, 표적 핵산을 검출 또는 정량하는 단계.(d) analyzing the resulting melting curve to detect or quantify the target nucleic acid.
  13. 제12항에 있어서, 상기 PNA 프로브는 표적 핵산의 염기서열과 완전히 혼성화(perfect match)를 이루어 예상된 융해온도(Tm) 값을 보이며, 염기서열 차이가 있는 표적 핵산과는 불완전 혼성화(mismatch)를 이루어 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.The method of claim 12, wherein the PNA probe is completely hybridized to the base sequence of the target nucleic acid (perfect match) shows the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference Method for detecting or quantifying target nucleic acid through a target nucleic acid fusion curve analysis, characterized in that the lower than expected temperature (Tm) value.
  14. 제12항에 있어서, 상기 리포터는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.The method of claim 12, wherein the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 And one or more selected from the group consisting of CY5. A method for detecting or quantifying a target nucleic acid through a target nucleic acid fusion curve analysis.
  15. 제12항에 있어서, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.The method of claim 12, wherein the quencher is one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl detection or quantification of the target nucleic acid by target nucleic acid fusion curve analysis Way.
  16. 제12항에 있어서, 상기 표적 핵산 염기서열에 따른 융해곡선의 차이를 이용하여 위양성 및 위음성 시그널을 구분할 수 있는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법.The method of claim 12, wherein the false-positive and false-negative signals can be distinguished using the difference in the melting curve according to the target nucleic acid sequence.
  17. 제12항에 있어서, 상기 PNA 프로브는 LNA(Locked nucleic acid)를 추가로 함유하는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량 방법. The method of claim 12, wherein the PNA probe further comprises Locked Nucleic Acid (LNA).
  18. 제12항 내지 제17항 중 어느 한 항의 방법을 이용하고, 리포터(reporter) 및 소광자(quencher)가 결합된 PNA 프로브를 포함하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.18. A kit for detecting or quantifying target nucleic acid using a target nucleic acid fusion curve analysis using a method according to any one of claims 12 to 17, and comprising a PNA probe coupled with a reporter and a quencher.
  19. 제18항에 있어서, 상기 PNA 프로브는 표적 핵산의 염기서열과 완전히 혼성화(perfect match)를 이루어 예상된 융해온도(Tm) 값을 보이며, 염기서열 차이가 있는 표적 핵산과는 불완전 혼성화(mismatch)를 이루어 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.19. The method of claim 18, wherein the PNA probe is in perfect hybridization with the base sequence of the target nucleic acid (perfect match) shows the expected melting temperature (Tm) value, and incomplete hybridization (mismatch) with the target nucleic acid having a base sequence difference A kit for the detection or quantification of a target nucleic acid through a target nucleic acid fusion curve analysis, characterized in that the lower than expected fusion temperature (Tm) value.
  20. 제18항에 있어서, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.19. The method according to claim 18, wherein the quencher is one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, detection or quantification of target nucleic acid by target nucleic acid fusion curve analysis Kit.
  21. 제18항에 있어서, 상기 리포터는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 및 CY5로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.19. The method of claim 18, wherein the reporter is FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7', -tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, CY3 And a target nucleic acid fusion curve analysis kit for detecting or quantifying a target nucleic acid, characterized in that at least one selected from the group consisting of CY5.
  22. 제18항에 있어서, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl으로 구성되는 군에서 선택되는 1개 이상인 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트.19. The method according to claim 18, wherein the quencher is one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, detection or quantification of target nucleic acid by target nucleic acid fusion curve analysis Kit.
  23. 제18항에 있어서, 상기 표적 핵산 염기서열에 따른 융해곡선의 차이를 이용하여 위양성 및 위음성 시그널을 구분할 수 있는 것을 특징으로 하는 표적 핵산 융해곡선 분석을 통한 표적 핵산의 검출 또는 정량용 키트. 19. The kit for detecting or quantifying a target nucleic acid through a target nucleic acid fusion curve analysis according to claim 18, wherein false-positive and false-negative signals can be distinguished using the difference in the fusion curve according to the target nucleic acid sequence.
PCT/KR2016/000842 2015-01-30 2016-01-27 Method for solving problem of nucleic acid detection due to threshold cycle (ct) of real-time polymerase chain reaction using pna probe WO2016122198A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0015214 2015-01-30
KR20150015214 2015-01-30
KR1020160009512A KR101845043B1 (en) 2015-01-30 2016-01-26 Method of Solving Nucleic Acid Detection Problem Based on Threshold Cycle(Ct) of Polymerase Chain Reaction Using Peptide Nucleic Acid Probe
KR10-2016-0009512 2016-01-26

Publications (1)

Publication Number Publication Date
WO2016122198A1 true WO2016122198A1 (en) 2016-08-04

Family

ID=56543738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000842 WO2016122198A1 (en) 2015-01-30 2016-01-27 Method for solving problem of nucleic acid detection due to threshold cycle (ct) of real-time polymerase chain reaction using pna probe

Country Status (1)

Country Link
WO (1) WO2016122198A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100098570A (en) * 2008-12-16 2010-09-07 아크레이 가부시키가이샤 Method for detecting controls for nucleic acid amplification, and use thereof
KR20140046688A (en) * 2012-10-10 2014-04-21 주식회사 파나진 Melting curve analysis using pna probe comprising reporter and quencher, method and kit for analyzing nucleotide polymorphism using melting curve analysis
KR20140053945A (en) * 2011-07-12 2014-05-08 주식회사 파나진 Nested hybridization pna probe system having parallel binding structure
KR20140091944A (en) * 2013-01-14 2014-07-23 주식회사 시선바이오머티리얼스 Melting Curve Analysis Using Self Internal Control and PNA Probe Comprising Reporter and Quenching, Method and Kit for Analyzing Target DNA Detection Using Melting Curve Analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100098570A (en) * 2008-12-16 2010-09-07 아크레이 가부시키가이샤 Method for detecting controls for nucleic acid amplification, and use thereof
KR20140053945A (en) * 2011-07-12 2014-05-08 주식회사 파나진 Nested hybridization pna probe system having parallel binding structure
KR20140046688A (en) * 2012-10-10 2014-04-21 주식회사 파나진 Melting curve analysis using pna probe comprising reporter and quencher, method and kit for analyzing nucleotide polymorphism using melting curve analysis
KR20140091944A (en) * 2013-01-14 2014-07-23 주식회사 시선바이오머티리얼스 Melting Curve Analysis Using Self Internal Control and PNA Probe Comprising Reporter and Quenching, Method and Kit for Analyzing Target DNA Detection Using Melting Curve Analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OH ET AL.: "Detection of Low-level KRAS Mutations Using PNA-mediated Asymmetric PCR Clamping and Melting Curve Analysis with Unlabeled Probes", JOURNAL OF MOLECULAR DIAGNOSTICS, vol. 12, no. 4, 2010, pages 418 - 424 *

Similar Documents

Publication Publication Date Title
US11041190B2 (en) Genetic markers for discrimination and detection of red sea bream iridovirus causing infectious aquatic organism diseases, and method of discriminating and detecting the virus using the same
US6238866B1 (en) Detector for nucleic acid typing and methods of using the same
JP4481491B2 (en) Nucleic acid detection method
WO2017099445A1 (en) Genetic marker for discriminating and detecting causative bacteria of fish edwardsiellosis and streptococcosis, and method for discriminating and detecting causative bacteria using same
KR102044683B1 (en) Pepetide nucleic acid probe for identifying Coxiella burnetii and Method for identifying Coxiella burnetii using the same
KR101642783B1 (en) Genetic Markers for Detection of Causative Virus of Red Sea Bream Iridoviral Disease(RSIVD), and Method for Detection of Causative Virus Using the Same
US20140017692A1 (en) Method and kit for detecting target nucleic acid
WO2020096394A1 (en) Method, kit, and pcr device for detecting methylation of gene using reduction probe
KR101782489B1 (en) Development of real-time PCR using PNA probe for detection of Viral Hemorrhagic Septicemia Virus (VHSV) and Uses Thereof
KR20210122632A (en) PNA Probe and Primer for Detecting SARS-CoV-2 Causing Covid-19 Using RT-LAMP and Method for Detecting SARS-CoV-2 Infection Using Thereof
KR102061896B1 (en) PNA probe for detecting bovine viral diarrhea virus genetic type and a method for detecting bovine viral diarrhea virus genetic type using the same
WO2013122319A1 (en) Method for detecting target gene or mutation thereof using ligase reaction and nicking enzyme amplification reaction
US8642264B2 (en) Method of quantifying target and reference nucleic acid
WO2018092998A1 (en) Method for detecting genetic mutation of viral hemorrhagic septicemia virus
KR101845043B1 (en) Method of Solving Nucleic Acid Detection Problem Based on Threshold Cycle(Ct) of Polymerase Chain Reaction Using Peptide Nucleic Acid Probe
CN115976197A (en) Kit and method for rapidly detecting gout ABCG2SNP genotype based on CRISPR-Cas13
WO2016122198A1 (en) Method for solving problem of nucleic acid detection due to threshold cycle (ct) of real-time polymerase chain reaction using pna probe
WO2018048021A1 (en) Method for analyzing snp of mitochondrial dna by using pna probe and melting curve analysis
WO2012070788A2 (en) Method and kit for the quantification of nucleic acids
WO2023121335A1 (en) Composition for detecting epizootic ulcerative syndrome and method for detecting epizootic ulcerative syndrome
WO2022124823A1 (en) Composition for diagnosing acute hepatopancreatic necrosis disease in shrimp
CN117305466B (en) Detection method capable of identifying single base methylation state
WO2024034796A1 (en) Qpcr method for detection of variant through simultaneous analysis of multiple targets
KR102575618B1 (en) Method and Composition for Amplifying Target Nucleic Acid using Guide Probe and Clamping probe
CN116694816A (en) Isothermal multiplex detection reagent and detection method for SARS-CoV-2, influenza A virus and influenza B virus nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743676

Country of ref document: EP

Kind code of ref document: A1