WO2016121733A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2016121733A1
WO2016121733A1 PCT/JP2016/052120 JP2016052120W WO2016121733A1 WO 2016121733 A1 WO2016121733 A1 WO 2016121733A1 JP 2016052120 W JP2016052120 W JP 2016052120W WO 2016121733 A1 WO2016121733 A1 WO 2016121733A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
solar cell
light
surface side
material sheet
Prior art date
Application number
PCT/JP2016/052120
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊 赤澤
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2016121733A1 publication Critical patent/WO2016121733A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module. More specifically, the present invention relates to a solar cell module having a wavelength conversion function that improves the efficiency of power generation by sunlight.
  • a solar cell module has a configuration in which a transparent front substrate made of glass or the like, a solar cell element, and a back surface protection sheet are laminated via a sealing material sheet.
  • a sealing material sheet for a solar cell module As a sealing material sheet for a solar cell module, a sheet based on EVA (ethylene-vinyl acetate copolymer) having excellent transparency and adhesion has been widely used.
  • EVA ethylene-vinyl acetate copolymer
  • development of a sealing material sheet using a polyethylene resin having a transparency equivalent to EVA and excellent in hydrolysis resistance and the like as compared with EVA has been progressing.
  • a solar cell element has high spectral sensitivity to light in the wavelength region from visible light to near infrared.
  • a wavelength conversion layer containing a wavelength conversion agent that converts ultraviolet light into visible light has been proposed (see Patent Document 1).
  • the solar cell module having the wavelength conversion layer as described above is also referred to as a “wavelength conversion type solar cell module” in the present specification.
  • a wavelength conversion type solar cell module in which a wavelength conversion layer containing a wavelength conversion agent that converts ultraviolet light into visible light that contributes to power generation is disposed in any of the layers, as described above.
  • the wavelength conversion layer is arranged on the surface side, it is possible to enjoy the effect of suppressing the ultraviolet deterioration of each layer in the module by absorbing the ultraviolet rays.
  • the wavelength conversion layer generates short-wavelength light that does not directly enter the solar cell element and leaks to the back side of the solar cell module. Also disclosed is a solar cell module that improves power generation efficiency by improving light utilization efficiency by converting it into long-wavelength light that contributes to, for example, reflecting it toward the solar cell element with a separately disposed light reflecting layer (See Patent Document 2).
  • the wavelength conversion layer is provided on the back surface side of the solar cell element, the effect of suppressing the arrival of ultraviolet rays to each layer in the solar cell module cannot be enjoyed as in the case where the wavelength conversion layer is provided on the light receiving surface side. For this reason, the transmittance of visible light that contributes to power generation into the solar cell module is improved, but more ultraviolet rays that damage the resin base material are exposed, and it is difficult to ensure long-term durability of the solar cell module. become.
  • the power generation efficiency and the long-term durability are in a trade-off relationship, and it has been desired to develop a solar cell module in which both are balanced.
  • the present invention has been made in view of the above situation, and is a wavelength conversion type solar cell module in which a sealing material sheet having a wavelength conversion function is arranged on the non-light-receiving surface side of a solar cell element, and has a power generation efficiency. It is an object to provide a product that achieves long-term durability at a high level.
  • the inventors have arranged a back surface side sealing material sheet having a wavelength conversion layer on the non-light receiving surface side of the solar cell element in the solar cell module, and in this case, disposed on the light receiving surface side.
  • a light stabilizer to the light-receiving surface side sealing material sheet at a specific ratio of a specific ratio, it is possible to obtain a wavelength conversion type solar cell module that is excellent in long-term weather resistance and power generation efficiency.
  • the present inventors have found that this can be done and have completed the present invention. More specifically, the present invention provides the following.
  • a solar cell element a light receiving surface side sealing material sheet disposed on the light receiving surface side of the solar cell element, a back surface side sealing material sheet disposed on the back surface side of the solar cell element, and the back surface A back surface protective sheet disposed on the back side of the side sealing material sheet, wherein the light receiving surface side sealing material sheet and the back surface side sealing material sheet have a density of 0.870 g / cm. 3 to 0.970 g / cm 3 of low density polyethylene as a base resin, the light-receiving surface side sealing material sheet contains 0.08% by mass or more and 0.25% by mass or less of a hindered amine light stabilizer. Absorber and wavelength conversion agent are not substantially contained, and the back side sealing material sheet is a single layer or multilayer sheet, and at least one of the layers contains an organic wavelength conversion agent.
  • Solar cell module as conversion layer Yuru.
  • the back surface side sealing material sheet is a multilayer sheet comprising an intermediate layer and outermost layers disposed on both sides thereof, and the intermediate layer contains the wavelength conversion agent,
  • the content ratio is the solar cell module according to (1), which is smaller than the content ratio of the wavelength conversion agent in the intermediate layer.
  • the back surface side sealing material sheet is a multilayer sheet, and a light reflecting layer containing a white pigment is disposed at a position closer to the non-light receiving surface side than the wavelength conversion layer ( The solar cell module according to 1) or (2).
  • the wavelength converter is any one of pyrazine derivatives, pyridine derivatives, triazole derivatives, naphtholactam derivatives, naphthalimide derivatives, or a mixture of these derivatives (1) to (3) Solar cell module.
  • the wavelength conversion type solar cell module which has arrange
  • the solar cell module of the present invention contains a light stabilizer in a specific content range unique to the present application, and a light receiving surface side sheet substantially free of an ultraviolet absorber and a wavelength converting agent on the light receiving surface side of the solar cell element.
  • the main feature is that the back surface side sealing material sheet that is disposed and has a wavelength conversion function is disposed on the back surface side of the solar cell element.
  • one surface that is mainly a light receiving surface in the solar cell element is referred to as a light receiving surface, and the other surface opposite to the light receiving surface is referred to as a back surface.
  • one light receiving surface selected arbitrarily is referred to as a light receiving surface
  • the surface opposite to the light receiving surface is referred to as a back surface.
  • the “light-receiving surface side” and the “back surface side” in the layer configuration of the solar cell module are defined based on the definitions of the light-receiving surface and the back surface.
  • the back side of the encapsulant sheet is the surface closest to the outermost layer of the “back side” of the solar cell module, out of both sides of the encapsulant sheet in a state integrated with the solar cell module Shall be said.
  • FIG. 1 is a cross-sectional view showing an example of a layer configuration of a solar cell module 10 of the present invention.
  • the solar cell module 10 has a light-receiving surface side sealing material sheet 1 excellent in total light transmittance disposed on the light-receiving surface side of the solar cell element 3, and light in the visible light region that contributes to ultraviolet power generation.
  • This is a solar cell module in which a back surface side sealing material sheet 2 having a wavelength conversion function to be converted into a solar cell element 3 is disposed on the back surface side.
  • the light receiving surface side sealing material sheet 1 which is a UV through type sealing material, is disposed on the light receiving surface side of the solar cell element 3. This can greatly contribute to the improvement of the power generation efficiency of the battery module 10.
  • the back surface side sealing material sheet 2 including the wavelength conversion layer is disposed on the back surface side of the solar cell element 3, thereby exhibiting a wavelength conversion function with respect to transmitted light and reflected light. 10 can greatly contribute to the power generation efficiency. Moreover, in addition to the layer which has a wavelength conversion function, the back surface side sealing material sheet 2 shall be further equipped with a light reflection layer. Thereby, the power generation efficiency of the solar cell module 10 can be further remarkably improved.
  • a conventionally known protective sheet such as a resin sheet such as ETFE or water-resistant PET or a resin layer laminated on both sides with an aluminum foil layer as a core layer can be appropriately used as the back surface protective sheet 5. . Moreover, it replaces with arrange
  • a double-sided light-receiving solar cell element that easily receives light whose wavelength has been converted by the back surface side sealing material sheet 2 can be preferably used.
  • a crystalline silicon solar cell manufactured using a single crystal silicon substrate or a polycrystalline silicon substrate, a thin film solar cell (CIGS) using amorphous silicon, microcrystalline silicon, a chalcopyrite compound, or the like It is not necessarily limited to the double-sided light receiving type, and various conventionally known solar cell elements can be used without particular limitation.
  • the solar cell module 10 uses the back surface side sealing material sheet 2 made of a highly insulating polyethylene-based resin, it is a back contact type in which a plurality of electrodes having different polarities are provided on the non-light receiving surface side.
  • a solar cell element can also be preferably used.
  • the transparent front substrate 4 can use a conventionally known material such as transparent glass without any particular limitation. Since the light-receiving surface side sealing material sheet 1 is also excellent in glass adhesion and adhesion durability, the solar cell module 10 has the adhesion and adhesion durability at the interface between the light-receiving surface side sealing material sheet and the transparent front substrate 4. It becomes a module with excellent performance.
  • the layer structure of the solar cell module 10 of the present invention is not limited to the above embodiment, and may further include constituent members other than the members described above as necessary.
  • the solar cell module 10 is disposed in the outermost layer on the light receiving surface side, the solar cell element 3 disposed between the light receiving surface side sealing material sheet 1 and the back surface side sealing material sheet 2, and both the sealing materials.
  • the constituent members including the transparent front substrate 4 and the back surface protective sheet 5 disposed in the outermost layer on the back surface side are sequentially laminated and then integrated by vacuum suction or the like, and then the above-mentioned members are formed by a molding method such as a lamination method. Can be manufactured by thermocompression molding as an integral molded body.
  • the light-receiving surface side sealing material sheet 1 is a single-layer or multilayer transparent resin sheet made of a composition having a polyethylene resin as a base resin. Normally, when a light stabilizer is added to the encapsulant sheet placed on the light-receiving surface side of the solar cell module for the purpose of preventing resin deterioration due to ultraviolet rays, all the hindered amine light stabilizers that make up the encapsulant sheet It is common to add so that the content ratio of the encapsulant composition to the total resin component is about 0.3% or more.
  • the content of the hindered amine light stabilizer in the light-receiving surface side sealing material sheet 1 described above that is, all of the sealing material compositions constituting the sealing material sheet.
  • the content ratio relative to the total resin components was 0.08% by mass or more and 0.25% by mass or less, preferably 0.1% by mass or more and 0.15% by mass or less.
  • the light-receiving surface side sealing material sheet 1 does not substantially contain an ultraviolet absorber.
  • the “ultraviolet absorber” in the present specification absorbs ultraviolet rays in sunlight that are harmful to each resin substrate constituting the solar cell module such as each sealing material sheet and back surface protection sheet, It is converted into harmless heat energy in the inside to prevent excitation of the active species at the start of photodegradation of each resin substrate.
  • Specific examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, salicylate-based, and acrylonitrile-based ultraviolet absorbers.
  • substantially does not contain an ultraviolet absorber means that the content ratio of the ultraviolet absorber to the total resin components of all the sealing material compositions constituting the sealing material sheet is 0. It shall be said not to exceed 1%. Even if 0.1% or less of the ultraviolet absorber is mixed for some reason, such a trace amount cannot substantially exhibit the ultraviolet absorption performance. And what mixed such a trace amount ultraviolet absorber is not excluded from the scope of the present invention.
  • the light receiving surface side sealing material sheet 1 does not substantially contain a wavelength converting agent.
  • the “wavelength conversion agent” in the present specification refers to power generation of a solar cell module by converting light in a wavelength region with low absorption sensitivity into a wavelength region with high absorption sensitivity in a solar cell element and causing the light to enter the solar pond element.
  • the additive that can contribute to the improvement of efficiency shall be said.
  • These include various inorganic, organic, or hybrid wavelength conversion agents.
  • a wavelength conversion layer having this wavelength conversion agent is disposed on the back surface side sealing material sheet 2.
  • substantially does not contain a wavelength converting agent means, as in the case of the above-described ultraviolet absorber, all resin components of all encapsulant compositions constituting the encapsulant sheet. It shall be said that the content ratio of the ultraviolet absorber to the amount does not exceed 0.1%.
  • the light-receiving surface side sealing material sheet 1 is a so-called UV-through type sealing material in addition to the limitation of the addition amount of the light stabilizer and further eliminating the ultraviolet absorber and the wavelength converting agent.
  • the solar cell module 10 makes the light transmittance of the light-receiving surface side sealing material sheet 1 extremely high.
  • One of the features of the light-receiving surface side sealing material sheet 1 is that the total amount of the light stabilizer added is extremely small, so that the adverse effect on the glass adhesion due to the bleed-out of the light additive is extremely difficult. is there.
  • the layer structure of the light-receiving surface side sealing material sheet 1 may be a single layer or a multilayer sealing material sheet including an intermediate layer and an outermost layer disposed on both surfaces of the intermediate layer. Also good.
  • the multilayer encapsulant sheet is an encapsulant having a multilayer structure including an outermost layer formed on both surfaces of the encapsulant sheet and an intermediate layer that is a layer other than the outermost layer.
  • the intermediate layer refers to a layer other than the outermost layer, and may have a single layer structure, or the intermediate layer itself may be a multilayer encapsulant sheet having a multilayer structure composed of a plurality of layers. Good.
  • the total thickness of the light-receiving surface side sealing material sheet 1 is preferably 100 ⁇ m or more and 1000 ⁇ m or less, and more preferably 200 ⁇ m or more and 600 ⁇ m or less. If it is less than 100 ⁇ m, the impact cannot be sufficiently mitigated, and if it exceeds 1000 ⁇ m, no further effect can be obtained and it is uneconomical.
  • the outermost layer has flexibility and the intermediate layer has heat resistance. Therefore, even when the film thickness is reduced to about 500 ⁇ m or less, it is possible to provide sufficiently preferable molding properties, heat resistance, and solar cell element protection performance.
  • the ratio of the thickness of each layer Is preferably in the range of 1: 2: 1 to 1: 30: 1 in the thickness ratio of outermost layer: intermediate layer: outermost layer.
  • the polyethylene resin used as the base resin of the encapsulant composition for the light-receiving surface side encapsulant sheet is low density polyethylene (LDPE), linear low density polyethylene (LLDPE), or metallocene linear low density polyethylene ( M-LLDPE) can be preferably used.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • M-LLDPE metallocene linear low density polyethylene
  • Density polyethylene resin used as the base resin 0.870 g / cm 3 or more 0.970 g / cm 3 or less, preferably 0.870 g / cm 3 or more 0.930 g / cm 3 or less.
  • the density of the base resin for the intermediate layer is higher than that of the base resin for the outermost layer. .
  • the sealing material composition for the light-receiving surface side sealing material sheet further contains an adhesive copolymer resin such as a silane-modified polyethylene resin in addition to the base resin.
  • the silane-modified polyethylene resin is a resin obtained by graft polymerizing low-density polyethylene as a main chain, preferably linear low-density polyethylene, with an ethylenically unsaturated silane compound as a side chain. Since such a graft copolymer has a high degree of freedom of silanol groups contributing to the adhesive force, the light-receiving surface side sealing material sheet 1 in the solar cell module 10, and other transparent front substrate 4 such as glass, etc. Adhesion with the laminated member can be improved.
  • the silane-modified polyethylene resin in the present specification refers to, for example, a silane-modified polyethylene resin that can be produced by the following production method, and at least a part of a linear low-density polyethylene resin that becomes a main chain. Is a concept indicating a resin obtained by graft polymerization with an ethylenically unsaturated silane compound.
  • the resin as a main chain of the above, as with the base resin it is preferred that the density 0.870 g / cm 3 or more 0.900 g / cm 3 or less of the polyethylene resin.
  • the silane-modified polyethylene resin can be produced by the following method as described in, for example, JP-A-2003-46105.
  • one or more ⁇ -olefins, one or more ethylenically unsaturated silane compounds, and, if necessary, one or more other unsaturated monomers are desired.
  • the pressure is about 500 kg / cm 2 to 4000 kg / cm 2 , preferably 1000 kg / cm 2 to 4000 kg / cm 2 , temperature, about 100 ° C. to about 400 ° C., preferably
  • a random copolymerization is performed simultaneously or stepwise in the presence of a radical polymerization initiator and, if necessary, a chain transfer agent under the conditions of 150 ° C. or more and 350 ° C. or less, and further, it is generated by the copolymerization.
  • a silane-modified polyethylene resin can be produced by modifying or condensing the silane compound portion constituting the random copolymer.
  • linear low-density polyethylene that is an ethylene- ⁇ -olefin copolymer
  • metallocene-based linear low-density polyethylene is more preferably used.
  • Metallocene linear low density polyethylene is synthesized using a metallocene catalyst which is a single site catalyst. Such polyethylene has few side chain branches and a uniform comonomer distribution. For this reason, molecular weight distribution is narrow, it is possible to make it the above ultra-low density, and a softness
  • the content of the silane-modified polyethylene resin used in the sealing material composition for the light-receiving surface side sealing material sheet is preferably 8% by mass or more and 45% by mass or less. If the content of the silane-modified polyethylene resin is 8% by mass or more, the mechanical strength and heat resistance are excellent, but if the content is excessive, the tensile elongation and heat-fusibility tend to be inferior. In addition, when the light-receiving surface side sealing material sheet 1 is a multilayer sheet, it is particularly important to add the silane-modified polyethylene resin to the outermost layer that contributes to adhesion.
  • the encapsulant composition for the light-receiving surface side encapsulant sheet contains a hindered amine light stabilizer in an amount of 0.08% by mass to 0.25% by mass, preferably 0.1% by mass to 0.00%. Contain 15% by mass or less.
  • the hindered amine light stabilizer the following light stabilizer (A) is preferably used, or the light stabilizer (A) and the following light stabilizer (B) are preferably used in combination.
  • Each of the light stabilizer (A) and the light stabilizer (B) is a high molecular weight type having a molecular weight of 1000 or more.
  • the light stabilizer (A) is a hindered amine light stabilizer having three or more piperidine rings in the monomer unit and having a molecular weight of 1,000 or more and 10,000 or less, preferably dibutylamine-1,3,5-triazine-N, N
  • This compound is commercially available as Chimassorb 2020 and is a compound having CAS number 192268-64-7, having a molecular weight of 2600 to 3400 and a melting point of 130 ° C to 136 ° C.
  • the light stabilizer (B) is a compound marketed as KEMISTAB 62, butanedioic acid 1- [2- (4-hydroxy-2,2,6,6-tetramethylpiperidino) ethyl], It is a compound of CAS No. 65447-77-0. It has only one piperidine ring in the main chain of the monomer unit, has a molecular weight of 3100 to 4000, has a melting point of 55 ° C to 70 ° C, and is known as HALS for polyolefin applications.
  • the light stabilizer (A) has three or more piperidine rings in the side chain of the monomer unit.
  • the radical trap absorption ability is extremely excellent. Therefore, it is extremely excellent in terms of suppressing haze deterioration over time and long-term glass adhesion. Therefore, in the production method of the present invention, it is preferable to selectively use this light stabilizer (A) as the main light stabilizer.
  • the sealing material composition for the light-receiving surface side sealing material sheet may contain a crosslinking agent as required, but it is more preferable that the crosslinking agent is not added to any layer. While addition of a crosslinking aid to the intermediate layer described above allows adequate crosslinking to proceed sufficiently, a separate addition of a crosslinking agent such as an organic peroxide would result in integration with the solar cell module. This is because there is an increased risk of problems such as foaming due to degas during the heat laminating process. When adding a crosslinking agent, a well-known thing can be used and it does not specifically limit, For example, a well-known radical polymerization initiator can be used.
  • the content is 0 mass% or more and 0.5 mass% or less, More preferably, it is 0. The range is 0.02 mass% or more and 0.5 mass% or less.
  • the addition amount of the crosslinking agent exceeds 0.5% by mass, the progress of crosslinking in the crosslinking process becomes excessive, and molding characteristics are insufficient, which is not preferable.
  • a crosslinking assistant is contained in the sealing material composition for the light-receiving surface side sealing material sheet.
  • a crosslinking aid a polyfunctional monomer having a carbon-carbon double bond and / or an epoxy group can be preferably used. More preferably, a crosslinking functional agent having a polyfunctional monomer whose functional group is an allyl group, a (meth) acrylate group or a vinyl group can be used. By adding such a crosslinking aid, the crystallinity of the low-density polyethylene can be reduced, and a sealing material sheet excellent in low-temperature flexibility can be obtained.
  • polyallyl compounds such as triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, trimethylolpropane trimethacrylate (TMPT), trimethylolpropane triacrylate (TMPTA) , Ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, tricyclodecane dimethanol diacrylate, etc.
  • TAIC triallyl isocyanurate
  • TMPT trimethylolpropane trimethacrylate
  • TMPTA trimethylolpropane triacrylate
  • Ethylene glycol diacrylate ethylene glycol dimethacrylate
  • 1,4-butanediol diacrylate 1,6-hexanediol diacrylate
  • tricyclodecane dimethanol diacrylate which has a particularly high effect of improving the adhesion to the glass surface, has good compatibility with low-density polyethylene, and can be expected to improve heat resistance
  • the content of the crosslinking aid is preferably 0.01 parts by mass or more and 3 parts by mass or less, more preferably 0 with respect to 100 parts by mass in total of all resin components of the sealing material composition for the outer layer. .05 parts by mass or more and 2.0 parts by mass or less.
  • Adhesiveness with other laminated members constituting the solar cell module 10 is further added to the sealing material composition for the light-receiving surface side sealing material sheet by appropriately adding an adhesion improver. And adhesion durability can be improved.
  • a known silane coupling agent can be used.
  • the silane coupling agent is not particularly limited, but examples thereof include vinyl silane coupling agents such as vinyltrichlorosilane, vinyltrimethoxysilane, and vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyldiethoxy.
  • a methacryloxy-based silane coupling agent such as silane or 3-methacryloxypropyltriethoxysilane can be preferably used. In addition, these can also be used individually or in mixture of 2 or more types.
  • the content thereof is 0.1% by mass or more and 10.0% by mass or less in the sealing material composition, and the upper limit is preferably 5.0% by mass. It is as follows. When the content of the silane coupling agent is in the above range, and the polyolefin resin constituting the encapsulant composition contains an appropriate amount of the ethylenically unsaturated silane compound, the adhesion is more preferable. And improve. In addition, when this range is exceeded, the film-forming property may be deteriorated or the silane coupling agent may bleed out, which is not preferable.
  • the back surface side sealing material sheet 2 is a single-layer or multilayer resin sheet made of a composition having a polyethylene resin as a base resin, similar to the light receiving surface side sealing material sheet 1.
  • the back surface side sealing material sheet 2 is the light receiving surface side sealing material sheet 1 in that at least one of the layers is the wavelength conversion layers 21 and 21 ⁇ / b> A containing the wavelength converting agent.
  • the back surface side sealing material sheet 2 is a multilayer resin sheet, as shown in FIG. 2, a preferred embodiment in which the intermediate layer is a wavelength conversion layer 21 (hereinafter referred to as “first implementation”). It can be mentioned as an example. Further, as shown in FIG.
  • the outermost layer on the light receiving surface side is a wavelength conversion layer 21A
  • the light reflection layer 23 is disposed at a position closer to the back surface side in the solar cell module 10 than the wavelength conversion layer 21A, preferably at an intermediate layer position.
  • the arranged sealing material sheet can be cited as an example of another preferred embodiment (hereinafter referred to as “second embodiment” in the present specification).
  • the first embodiment of the back surface side sealing material sheet (back surface side sealing material sheet 2) shown in FIG. 2 is manufactured by adding a wavelength conversion agent only to the intermediate layer. Therefore, the content of the wavelength conversion agent in the outermost layer 22 after film formation may be 0%, or the content ratio of the wavelength conversion agent in the outermost layer 22 after film formation may be in the intermediate layer. It is smaller than the content ratio of the wavelength conversion agent, and at least immediately after film formation, it is suppressed to 1 ⁇ 2 or less of the content ratio of the wavelength conversion agent in the intermediate layer. More specifically, the content of the wavelength conversion agent in the intermediate layer in the back surface side sealing material sheet 2 after film formation is in the range of 0.05 mass% or more and 0.5 mass% or less, and the outermost layer 22.
  • the content of the wavelength converting agent is in the range of 0% by mass or more and 0.25% by mass or less.
  • the wavelength conversion agent is added after film formation or in use. Even if a part of the layer is leached from the intermediate layer and infiltrated into the outermost layer 22, the back surface can be used if the content of the wavelength conversion agent for each layer is within the above range when used as a solar cell module.
  • the substrate adhesiveness of the side sealing material sheet 2 can be maintained within a very preferable range.
  • the second embodiment of the back side sealing material sheet (back side sealing material sheet 2A) shown in FIG. 3 is a multilayer sealing material sheet, the outermost layer of which is the wavelength conversion layer 21A, and the intermediate layer is It is the sealing material sheet used as the white light reflection layer 23 formed by adding a white pigment.
  • the light reflecting layer 23 is preferably disposed in the intermediate layer, but the intermediate layer is not necessarily required as long as it is located closer to the outermost layer of the solar cell module than the wavelength conversion layer 21A.
  • the back side sealing material sheet 2A is manufactured by adding an organic wavelength conversion agent only to one outermost layer.
  • the back surface side sealing material sheet 2 ⁇ / b> A of the incident light entering the solar cell module 10, the sunlight that does not enter the solar cell element 3 and reaches the non-light-receiving surface side is again reflected by the light reflecting layer 23.
  • the light can be efficiently guided to the light receiving surface side of the element 3.
  • the power generation efficiency of the solar cell module 10 can be further remarkably improved by synergistically contributing to the improvement of power generation efficiency by this reflection action and the performance of the wavelength conversion function in the outermost layer.
  • the light reflecting layer 23 which is also an intermediate layer in the back side sealing material sheet 2A contains a white pigment in this layer.
  • a white pigment for example, an inorganic white pigment typified by titanium oxide contained in the light reflecting layer 23 is preferable.
  • Such an inorganic white pigment not only excels in light reflection performance in the visible light region but also has an action of absorbing ultraviolet rays, so an organic ultraviolet absorber in the back side sealing material sheet 2A. Even if it does not contain, ultraviolet rays can be interrupted
  • the wavelength conversion function is not deteriorated because the transfer to other layers facing each other such as an organic ultraviolet absorber hardly occurs.
  • the layer structure of the back surface side sealing material sheet 2 it is preferable that it is a multilayer sealing material sheet comprised including the outermost layer arrange
  • the sealing material composition for back surface side sealing material sheets used for manufacture of the back surface side sealing material sheet 2 (1st Embodiment) is demonstrated.
  • a sealing material composition for the back surface side sealing material sheet (first embodiment), a sealing material composition for a wavelength conversion layer and a sealing material composition for other layers are used.
  • the base resin each polyethylene-based resin similar to the above-described composition for the light-receiving surface side sealing material sheet can be appropriately used.
  • the density range of the base resin a resin having a density range similar to that of the composition for the light receiving surface side sealing material sheet can be used.
  • a wavelength converting agent is added to the sealing material composition for wavelength conversion layers used in order to form a wavelength conversion layer among the sealing material compositions for back side sealing material sheets (1st Embodiment).
  • the wavelength conversion agent means that the light generation efficiency of the solar cell module is improved by converting the light in the wavelength region with low absorption sensitivity into the wavelength region with high absorption sensitivity in the solar cell element and making it incident on the solar cell element.
  • Various wavelength conversion agents of inorganic type, organic type, or hybrid type thereof are known.
  • an organic wavelength conversion agent can be preferably used particularly for the sealing material composition for the wavelength conversion layer.
  • organic wavelength conversion agents those having a number average molecular weight of 100 or more and 1000 or less can be preferably used.
  • a sealing material By limiting the organic wavelength conversion agent excellent in compatibility with the polyethylene-based dendritic used as the base resin to only such an organic agent having a relatively large molecular weight and a number average molecular weight of 100 or more, a sealing material The optical characteristics at the initial stage of production of the sheet can be made extremely favorable.
  • the number average molecular weight of the wavelength conversion agent is set to 1000 or less, compatibility of the wavelength conversion agent into the sealing material composition is ensured, and preferable optical characteristics and adhesion of the back surface side sealing material sheet 2 are ensured. Can be held.
  • the organic wavelength converting agent is preferably in the above molecular weight range, but not limited thereto, and conventionally known agents can be used without any particular limitation.
  • pyrazine derivatives pyridine derivatives, triazole derivatives, naphtholactam derivatives, naphthalimide derivatives, benzoxazoyl derivatives, coumarin derivatives, styrene biphenyl derivatives, pyrazolone derivatives, bis (triazinylamino) stilbene disulfonic acid derivatives, bisstyryl biphenyl derivatives Bisbenzoxazolylthiophene derivatives, perylene derivatives, pyrene derivatives, pentacene derivatives, fluorescene derivatives, rhodamine derivatives, acridine derivatives, benzimidazole derivatives, flavone derivatives, and the like.
  • any one of a pyrazine derivative, a pyridine derivative, a triazole derivative, a naphtholactam derivative, and a naphthalimide derivative or a mixture of these derivatives can be preferably used.
  • the amount of these organic wavelength conversion agents added to the sealing material composition for the wavelength conversion layer is such that the content ratio in the total resin component of the sealing material sheet is 0.05% by mass or more and 0.5% by mass.
  • it is preferably adjusted according to the thickness of each layer of the encapsulant sheet so as to be 0.1 mass% or more and 0.3 mass% or less.
  • the content ratio of the wavelength conversion agent exceeds 0.5% by mass, the optical characteristics and adhesion of the sealing material sheet are deteriorated due to the bleed-out of the wavelength conversion agent, rather than the effect of improving the power generation efficiency.
  • the sealing material composition for back surface side sealing material sheets contains a hindered amine light stabilizer 0.08 mass% or more and 0.25 mass% or less, and 0.1 mass% or more and 0.15 mass%. More preferably, it is contained by mass% or less.
  • the sealing material composition for back surface side sealing material sheets used for manufacture of back surface side sealing material sheet 2A (2nd Embodiment) is demonstrated.
  • the sealing material composition for the back surface side sealing material sheet (second embodiment) the sealing material composition for the wavelength conversion layer, the sealing material composition for the light reflection layer, and other layers are used.
  • Each sealing material composition is used.
  • the base resin each polyethylene-based resin similar to the above-described composition for the light-receiving surface side sealing material sheet can be appropriately used.
  • the density range of the base resin a resin having a density range similar to that of the composition for the light receiving surface side sealing material sheet can be used. The same applies to the case where an adhesive copolymer resin such as the above-mentioned silane-modified polyethylene resin is appropriately contained in addition to the base resin.
  • the wavelength conversion layer sealing material composition used for forming the wavelength conversion layer is the first embodiment described above.
  • the same composition as in the case of can be used.
  • a wavelength conversion agent according to the thickness of a wavelength conversion layer, it adjusts suitably as needed so that content ratio with respect to the total resin amount of a sealing material sheet may become in the above-mentioned range.
  • the encapsulant composition for the light reflecting layer used for forming the light reflecting layer 23 is the above-described low density polyethylene resin. Is a base resin, and contains a coloring material for expressing a preferable appearance and light reflection performance as a white sealing material sheet.
  • An inorganic white pigment can be used as such a coloring material used for the sealing material composition for the light reflecting layer.
  • the back surface side sealing material sheet 2 ⁇ / b> A having the light reflecting layer 23 is incident on the solar cell module 10 when disposed on the non-light-receiving surface side of the solar cell module 10. Light is reflected to the solar cell element 3 side, and the power generation efficiency of the solar cell module 10 can be significantly improved.
  • inorganic white pigment for example, calcium carbonate, barium sulfate, zinc oxide and titanium oxide can be preferably used.
  • titanium oxide can be particularly preferably used from the viewpoint of versatility.
  • the above white pigment preferably has a particle size of 0.2 ⁇ m or more and 1.5 ⁇ m or less.
  • the white layer formed from the white pigment can efficiently reflect near infrared rays in addition to the visible light region.
  • a typical example of a white pigment having a particle size of 0.3 ⁇ m or more and 1.5 ⁇ m or less is titanium oxide, and it is preferable to use titanium oxide as the white pigment in order to improve the reflection performance of sunlight.
  • This inorganic white pigment is contained only in the light reflection layer 23, and the content in the light reflection layer 23 is preferably 5% by mass or more and 30% by mass or less.
  • 2 A of back surface sealing material sheets can suppress that the adhesiveness of an outermost layer falls by the influence of a white pigment by setting it as the structure by which a white pigment is contained only in the light reflection layer 23.
  • the sealing material composition for the back surface side sealing material sheet (first embodiment and second embodiment) is appropriately the same as the additive to the light receiving surface side sealing material sheet composition.
  • a crosslinking agent, a crosslinking aid, an adhesion improver, and other additives can be added as necessary.
  • Each of the light receiving surface side and back surface side sealing material sheets is a molding method usually used in ordinary thermoplastic resins, that is, injection molding, extrusion molding, hollow molding, compression molding, rotational molding, etc.
  • the various molding methods are used.
  • a method of forming by co-extrusion with two or more melt-kneading extruders can be given.
  • the lower limit of the molding temperature at the time of molding may be a temperature exceeding the melting point of each sealing material composition.
  • the upper limit of the molding temperature is, when a crosslinking agent is used, the temperature at which crosslinking does not start during film formation, that is, the gel fraction of the encapsulant composition, depending on the 1 minute half-life temperature of the crosslinking agent used.
  • the temperature may be any temperature that can be maintained at 0%.
  • a crosslinking agent is not essential in the sealing material composition, and even when a crosslinking agent is added, its content is less than 0.5% by mass. It is limited to.
  • the gel fraction does not change, and the crosslinking that substantially affects the physical properties of the resin does not proceed.
  • a crosslinking agent having a half-life temperature higher than that of the conventional one can be used, which is freed from the restriction of heating conditions in the modularization process.
  • the gel fraction of the encapsulant composition can be maintained at 0% even when the molding temperature is set higher than before. According to the manufacturing method that maintains the gel fraction of the encapsulant composition during film formation at 0%, it is possible to reduce the load on the extruder during film formation and increase the productivity of the encapsulant sheet. It is.
  • a cross-linking step of performing a cross-linking process by ionizing radiation on the uncross-linked encapsulant sheet after the sheet forming step is integrated with the other members after the completion of the sheet forming step. It is preferably performed before the start of the solar cell module integration step.
  • a sealing material sheet having a gel fraction of 2% to 80% is obtained.
  • the gel fraction (%) in this specification refers to 0.1 g of a sealing material sheet placed in a resin mesh, extracted with 60 ° C. toluene for 4 hours, then taken out of the resin mesh, dried, weighed and extracted. The mass ratio before and after is compared, the mass% of the remaining insoluble matter is measured, and this is used as the gel fraction.
  • individual crosslinking conditions are not particularly limited.
  • a rough standard of specific irradiation amount it may be appropriately set so that the gel fraction of the intermediate layer after the crosslinking treatment is in a range of about 10% or more.
  • it can be performed by ionizing radiation such as electron beam (EB), ⁇ -ray, ⁇ -ray, ⁇ -ray, neutron beam, etc.
  • EB electron beam
  • the ionizing radiation may be irradiated from either one side or both sides. From the viewpoint of improving productivity, single-sided irradiation that is irradiation only from one outermost layer side is preferable.
  • the acceleration voltage is determined by the thickness of the sheet that is the object to be irradiated, and a thicker sheet requires a larger acceleration voltage.
  • irradiation is performed at 200 kV to 1000 kV, preferably 250 kV to 1000 kV.
  • the acceleration voltage is less than 200 kV, electrons do not pass to the outermost layer on the non-irradiation surface side, and the heat resistance of the light-receiving surface side sealing material sheet 1 becomes insufficient.
  • the irradiation dose is in the range of 5 kGy to 800 kGy, preferably 100 kGy to 500 kGy. Irradiation may be in an air atmosphere or a nitrogen atmosphere.
  • this crosslinking process may be performed continuously in-line following the sheet forming step, or may be performed off-line.
  • the crosslinking treatment is a general heat treatment
  • the content of the crosslinking agent is 0.5 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of all components of the sealing material sheet.
  • the content of the crosslinking agent may be 0, and even if it is contained, it is preferably less than 0.5 parts by mass. Thereby, the risk of the productivity fall by gelatinization of the sealing material composition in the sheeting process of a sealing material composition can be reduced.
  • sealing material sheet ⁇ Manufacture of sealing material sheet>
  • the raw materials of the encapsulant composition described below are mixed so that the contents in the encapsulant composition are in the proportions shown in Table 1 below, and the inner layers of the encapsulant sheets of Examples and Comparative Examples, respectively.
  • a sealing material composition for preparing a sealing material sheet for an outer layer (referred to as sealing materials 1 to 7 in Table 1).
  • Each sealing material composition is produced by using a ⁇ 30 mm extruder and a film forming machine having a 200 mm wide T die at an extrusion temperature of 210 ° C. and a take-off speed of 1.1 m / min to produce an inner layer and an outer layer sealing material sheet.
  • these inner layer and outer layer sealing material sheets were laminated to obtain a three-layer solar cell module sealing material sheet.
  • All of these encapsulant sheets had a thickness of 600 ⁇ m, and the outer layer: inner layer: outer layer thickness ratio was 1: 4: 1.
  • the sealing materials 1 to 5 do not contain an ultraviolet absorber or a wavelength conversion agent, so-called UV-through type sealing material sheet, and the sealing material 6 has a wavelength conversion layer.
  • the material sheet and the sealing material 7 are respectively prepared as compositions for producing a sealing material sheet having a light reflection layer in addition to the wavelength conversion layer.
  • Metallocene linear low density polyethylene (M-LLDPE): Metallocene linear low density polyethylene having a density of 0.880 g / cm 3 and MFR at 190 ° C. of 3.5 g / 10 min was used as a base resin (Table 1 and described as “PE”).
  • Silane-modified polyethylene resin vinyl trimethoxy with respect to 98 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.881 g / cm 3 and an MFR at 190 ° C. of 2 g / 10 min.
  • M-LLDPE metallocene linear low density polyethylene
  • a silane crosslinkable resin composed of 2 parts by mass of silane and 0.1 parts by mass of dicumyl peroxide as a radical generator (reaction catalyst) was used as a silane-modified polyethylene resin mixed with the base resin.
  • This resin has a density of 0.884 g / cm 3 and an MFR at 190 ° C. of 1.8 g / 10 min (described as “S-PE” in Table 1).
  • Light stabilizer As a light stabilizer, hindered amine light stabilizer (Kemipro Kasei Co., Ltd .: KEMISTAB62) 2.28 mass with respect to 100 mass parts of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 The parts were mixed, melted, processed, and pelletized master batch (MB) was prepared (described as “HALS” in Table 1).
  • KEMISTAB62 hindered amine light stabilizer 2.28 mass with respect to 100 mass parts of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 The parts were mixed, melted, processed, and pelletized master batch (MB) was prepared (described as “HALS” in Table 1).
  • wavelength conversion agent 100 parts by mass of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 is mixed with 1 part by mass of a triazole derivative (number average molecular weight: 323) to be melted and processed.
  • a pelletized master batch (MB) was prepared.
  • White pigment As a white pigment, with respect to 100 parts by mass of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 , 60 parts by mass of titanium oxide (manufactured by DuPont: R105, particle size 0.3 ⁇ m) A master batch (MB) was prepared by mixing, melting, processing, and pelletizing.
  • Resin base material Polyethylene terephthalate (PET) base material: thickness 188 ⁇ m (trade name “Lumirror S10”, manufactured by Toray Industries, Inc.)
  • n-type 6-inch single crystal double-sided light receiving type manufactured by PVGS (described as “cell 1” in Table 2) and p-type 6-inch single-crystal single-sided light receiving type manufactured by T-SEC (in Table 2) , Described as “Cell 2”).
  • the solar cell module evaluation sample of an Example and a comparative example was manufactured using each said sealing material sheet
  • white plate semi-tempered glass JPT3.2 75 mm ⁇ 50 mm ⁇ 3.2 mm
  • Each of the above members was laminated according to the general layer configuration shown in FIG. 1, and vacuum heating laminating was performed under the following laminating conditions, and solar cell module evaluation samples were obtained for the respective examples and comparative examples. .
  • each sealing material sheet and each sample for solar cell module evaluation it laminated
  • Each solar cell element has one cell shown in Table 2 arranged for each module.
  • (Lamination condition) Vacuum drawing: 5.0 minutes Pressurization (0 kPa to 100 kPa): 1.0 minutes Pressure holding (100 kPa): 10.0 minutes Temperature 165 ° C.
  • PV characteristics Each PV characteristic was evaluated by measuring the initial output of each sample. Specifically, a solar simulator (EWXS-300S-50 manufactured by Eihiro Seiki Co., Ltd.) was used under the conditions of a cell back surface temperature of 25 ° C. and an illuminance of 100 mW / cm 2 . Regarding the evaluation criteria, in the case of using the double-sided light receiving type cell 1 at the initial output, “A” is 9.30A or more, “B” is 9.25A or more and less than 9.30A, and “9” is less than 9.25A. In the example using the single-sided light receiving type cell 2, “A” was evaluated as “A”, 8.95A or more and less than 9.00A as “B”, and less than 8.95A as “C”. . Table 2 shows the measurement results and the evaluation results.
  • YI yellow index
  • JISZ8722 using a KONICA MINOLTA spectrocolorimeter CM-700d under the conditions of a D65 light source and a 10 ° viewing angle, “transparent front substrate / light receiving surface side sealing material / back side sealing The measurement was performed by applying a light source from the transparent front substrate side to the laminated portion of the “stop material / back surface protective sheet”.
  • each module of the example has a significantly higher Isc value (short-circuit current, unit A) than the modules of Comparative Examples 1 and 5 in which the back surface side sealing material sheet does not have the wavelength conversion layer, and is excellent. It can be seen that the power generation efficiency can be exhibited. Further, the modules of Comparative Examples 2 to 4 and 6 to 7 in which the HALS content of the light-receiving surface side sealing material sheet is outside the specified range of the present application are inferior to the module of the present invention in terms of durability or PV characteristics. Is clear. From the results of Evaluation Examples 1 to 3, it can be seen that the solar cell module of the present invention is a solar cell module capable of maintaining good power generation efficiency over a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the invention is to provide a wavelength-conversion-type solar cell module in which a sealing material sheet having wavelength conversion functionality is arranged on the non-light-receiving surface side of a solar cell element, and that achieves both power generation efficiency and durability. Disclosed is a solar cell module 10, wherein: a light-receiving-surface-side sealing material sheet 1 and a back-surface-side sealing material sheet 2 comprise a base resin including a low-density polyethylene having a density of from 0.870 g/cm3 to 0.970 g/cm3 inclusive; the light-receiving-surface-side sealing material sheet 1 includes from 0.08 mass% to 0.25 mass% inclusive of a hindered amine-based light stabilizer, and includes substantially no UV absorber nor wavelength conversion agent; and the back-surface-side sealing material sheet 2 is a single-layer or multi-layer sheet, wherein at least one layer is a wavelength conversion layer 21 including a wavelength conversion agent.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。更に詳しくは、太陽光による発電の効率を向上させる波長変換機能を備える太陽電池モジュールに関する。 The present invention relates to a solar cell module. More specifically, the present invention relates to a solar cell module having a wavelength conversion function that improves the efficiency of power generation by sunlight.
 近年、環境問題に対する意識の高まりから、クリーンなエネルギー源としての太陽電池が注目されている。現在、種々の形態からなる太陽電池モジュールが開発され、提案されている。一般に太陽電池モジュールは、ガラス等からなる透明前面基板と太陽電池素子と裏面保護シートとが、封止材シートを介して積層された構成である。 In recent years, solar cells as a clean energy source have attracted attention due to increasing awareness of environmental issues. Currently, various types of solar cell modules have been developed and proposed. Generally, a solar cell module has a configuration in which a transparent front substrate made of glass or the like, a solar cell element, and a back surface protection sheet are laminated via a sealing material sheet.
 太陽電池モジュール用の封止材シートとして、透明性、密着性等に優れるEVA(エチレン-酢酸ビニル共重合体)をベース樹脂としたものが従来広く用いられてきた。しかし、近年においては、EVA同等の透明性を有し、EVAに比して耐加水分解性等に優れるポリエチレン系樹脂をベース樹脂とした封止材シートの開発が進んでいる。 As a sealing material sheet for a solar cell module, a sheet based on EVA (ethylene-vinyl acetate copolymer) having excellent transparency and adhesion has been widely used. However, in recent years, development of a sealing material sheet using a polyethylene resin having a transparency equivalent to EVA and excellent in hydrolysis resistance and the like as compared with EVA has been progressing.
 ここで、一般に太陽電池素子は、可視光から近赤外線の波長領域の光に対して高い分光感度を有している。そこで、紫外線を可視光に変換させる波長変換剤を含有する波長変換層を太陽電池素子の受光面側に配することにより、太陽電池素子における太陽光の利用効率を高め、発電効率を向上させることを企図した太陽電池モジュールが提案されている(特許文献1参照)。尚、以下、本明細書においてこのように波長変換層を有する太陽電池モジュールのことを「波長変換型の太陽電池モジュール」とも言う。 Here, generally, a solar cell element has high spectral sensitivity to light in the wavelength region from visible light to near infrared. Thus, by arranging a wavelength conversion layer containing a wavelength conversion agent that converts ultraviolet light into visible light on the light receiving surface side of the solar cell element, the use efficiency of sunlight in the solar cell element is increased, and the power generation efficiency is improved. Has been proposed (see Patent Document 1). Hereinafter, the solar cell module having the wavelength conversion layer as described above is also referred to as a “wavelength conversion type solar cell module” in the present specification.
 紫外線を発電に寄与する可視光域の光に変換させる波長変換剤を含有する波長変換層をいずれかの層に配置した波長変換型の太陽電池モジュールは、上記のように、太陽電池素子の受光面側に波長変換層を配置した場合には、紫外線の吸収によって、モジュール内各層の紫外線劣化を抑制する効果も享受することができる。 A wavelength conversion type solar cell module in which a wavelength conversion layer containing a wavelength conversion agent that converts ultraviolet light into visible light that contributes to power generation is disposed in any of the layers, as described above. When the wavelength conversion layer is arranged on the surface side, it is possible to enjoy the effect of suppressing the ultraviolet deterioration of each layer in the module by absorbing the ultraviolet rays.
 しかしながら、紫外線を可視光に変換させる波長変換剤を含有する波長変換層を太陽電池素子の受光面側に配した場合には、透明性の低下による可視光域の光線透過性の低下の悪影響が、波長変換による光利用効率の向上の効果を打ち消してしまう場合があり、発電効率の向上が必ずしも充分ではない場合も多く見られた。 However, when a wavelength conversion layer containing a wavelength conversion agent that converts ultraviolet light into visible light is disposed on the light receiving surface side of the solar cell element, there is an adverse effect of a decrease in light transmittance in the visible light region due to a decrease in transparency. In some cases, the effect of improving the light utilization efficiency due to the wavelength conversion may be canceled, and the improvement of the power generation efficiency is not always sufficient.
 これに対して、太陽電池素子の裏面側に、波長変換層を設けることによって、太陽電池素子に直接入射せずに太陽電池モジュールの裏面側に漏れた短波長の光を、波長変換層で発電に寄与する長波長の光に変換し、例えば、別途に配置した光反射層で太陽電池素子に向かって反射させることにより、光利用効率の向上による発電効率の向上を図った太陽電池モジュールも開示されている(特許文献2参照)。 On the other hand, by providing a wavelength conversion layer on the back side of the solar cell element, the wavelength conversion layer generates short-wavelength light that does not directly enter the solar cell element and leaks to the back side of the solar cell module. Also disclosed is a solar cell module that improves power generation efficiency by improving light utilization efficiency by converting it into long-wavelength light that contributes to, for example, reflecting it toward the solar cell element with a separately disposed light reflecting layer (See Patent Document 2).
特開2007-27271号公報JP 2007-27271 A 特開2012-129391号公報JP 2012-129391 A
 しかしながら、太陽電池素子の裏面側に波長変換層を設ける場合、波長変換層を受光面側に設けた場合のように、太陽電池モジュール内各層への紫外線の到達を抑制する効果が享受できない。このため、発電に寄与する可視光の太陽電池モジュール内への透過率が向上する一方で、樹脂基材にダメージを与える紫外線もより多く浴びることとなり、太陽電池モジュールの長期耐久性の確保が困難になる。このように波長変換型の太陽電池モジュールにおいては、発電効率と長期耐久性が事実上トレードオフの関係になっており両者をバランスよく両立させた太陽電池モジュールの開発が望まれていた。 However, when the wavelength conversion layer is provided on the back surface side of the solar cell element, the effect of suppressing the arrival of ultraviolet rays to each layer in the solar cell module cannot be enjoyed as in the case where the wavelength conversion layer is provided on the light receiving surface side. For this reason, the transmittance of visible light that contributes to power generation into the solar cell module is improved, but more ultraviolet rays that damage the resin base material are exposed, and it is difficult to ensure long-term durability of the solar cell module. become. Thus, in the wavelength conversion type solar cell module, the power generation efficiency and the long-term durability are in a trade-off relationship, and it has been desired to develop a solar cell module in which both are balanced.
 本発明は、以上の状況に鑑みてなされたものであり、波長変換機能を有する封止材シートを太陽電池素子の非受光面側に配置した波長変換型の太陽電池モジュールであって発電効率と長期耐久性を高い水準で両立させたものを提供することを課題とする。 The present invention has been made in view of the above situation, and is a wavelength conversion type solar cell module in which a sealing material sheet having a wavelength conversion function is arranged on the non-light-receiving surface side of a solar cell element, and has a power generation efficiency. It is an object to provide a product that achieves long-term durability at a high level.
 本発明者らは、鋭意検討を行った結果、太陽電池モジュールにおいて太陽電池素子の非受光面側に波長変換層を備える裏面側封止材シートを配置し、この場合において、受光面側に配置する受光面側封止材シートには、本願所定の特定割合の含有量比で光安定剤を添加することにより、長期耐候性と発電効率に優れる、波長変換型の太陽電池モジュールを得ることができることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 As a result of intensive studies, the inventors have arranged a back surface side sealing material sheet having a wavelength conversion layer on the non-light receiving surface side of the solar cell element in the solar cell module, and in this case, disposed on the light receiving surface side. By adding a light stabilizer to the light-receiving surface side sealing material sheet at a specific ratio of a specific ratio, it is possible to obtain a wavelength conversion type solar cell module that is excellent in long-term weather resistance and power generation efficiency. The present inventors have found that this can be done and have completed the present invention. More specifically, the present invention provides the following.
 (1) 太陽電池素子と、前記太陽電池素子の受光面側に配置される受光面側封止材シートと、前記太陽電池素子の裏面側に配置される裏面側封止材シートと、前記裏面側封止材シートの裏面側に配置される裏面保護シートと、を備える太陽電池モジュールであって、前記受光面側封止材シート及び前記裏面側封止材シートは、密度0.870g/cm以上0.970g/cm以下の低密度ポリエチレンをベース樹脂とし、前記受光面側封止材シートは、ヒンダードアミン系光安定剤を0.08質量%以上0.25質量%以下含有し、紫外線吸収剤及び波長変換剤は実質的に含有せず、前記裏面側封止材シートは、単層又は多層のシートであって、少なくともいずれか一の層が有機系の波長変換剤を含有する波長変換層である太陽電池モジュール。 (1) A solar cell element, a light receiving surface side sealing material sheet disposed on the light receiving surface side of the solar cell element, a back surface side sealing material sheet disposed on the back surface side of the solar cell element, and the back surface A back surface protective sheet disposed on the back side of the side sealing material sheet, wherein the light receiving surface side sealing material sheet and the back surface side sealing material sheet have a density of 0.870 g / cm. 3 to 0.970 g / cm 3 of low density polyethylene as a base resin, the light-receiving surface side sealing material sheet contains 0.08% by mass or more and 0.25% by mass or less of a hindered amine light stabilizer. Absorber and wavelength conversion agent are not substantially contained, and the back side sealing material sheet is a single layer or multilayer sheet, and at least one of the layers contains an organic wavelength conversion agent. Solar cell module as conversion layer Yuru.
 (2) 前記裏面側封止材シートが、中間層と、その両面に配置される最外層と、を含んでなる多層シートであって、前記中間層は、前記波長変換剤を含有し、前記最外層は、前記波長変換剤が含まれる場合、その含有量比は、前記中間層における前記波長変換剤の含有量比よりも小さい(1)に記載の太陽電池モジュール。 (2) The back surface side sealing material sheet is a multilayer sheet comprising an intermediate layer and outermost layers disposed on both sides thereof, and the intermediate layer contains the wavelength conversion agent, When the wavelength conversion agent is included in the outermost layer, the content ratio is the solar cell module according to (1), which is smaller than the content ratio of the wavelength conversion agent in the intermediate layer.
 (3) 前記裏面側封止材シートが、多層のシートであって、前記波長変換層よりも非受光面側寄りの位置に、白色顔料を含有してなる光反射層が配置されている(1)又は(2)に記載の太陽電池モジュール。 (3) The back surface side sealing material sheet is a multilayer sheet, and a light reflecting layer containing a white pigment is disposed at a position closer to the non-light receiving surface side than the wavelength conversion layer ( The solar cell module according to 1) or (2).
 (4) 前記波長変換剤が、ピラジン誘導体、ピリジン誘導体、トリアゾール誘導体、ナフトラクタム誘導体、ナフタルイミド誘導体のうちいずれか一の誘導体又はそれらの誘導体の混合物(1)から(3)のいずれかに記載の太陽電池モジュール。 (4) The wavelength converter is any one of pyrazine derivatives, pyridine derivatives, triazole derivatives, naphtholactam derivatives, naphthalimide derivatives, or a mixture of these derivatives (1) to (3) Solar cell module.
 本発明によれば、波長変換機能を有する封止材シートを太陽電池素子の非受光面側に配置した波長変換型の太陽電池モジュールにおける、発電効率と耐久性を高い水準で両立させることができる。 ADVANTAGE OF THE INVENTION According to this invention, in the wavelength conversion type solar cell module which has arrange | positioned the sealing material sheet | seat which has a wavelength conversion function in the non-light-receiving surface side of a solar cell element, it is possible to make power generation efficiency and durability compatible at a high level. .
本発明の太陽電池モジュールの層構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the laminated constitution of the solar cell module of this invention. 本発明の裏面側封止材シートの層構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the layer structure of the back surface side sealing material sheet of this invention. 本発明の裏面側封止材シートの層構成の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of the layer structure of the back surface side sealing material sheet of this invention.
 本発明の太陽電池モジュールは、本願独自の特定含有量範囲の光安定剤を含有し、紫外線吸収剤及び波長変換剤を実質的に含有しない受光面側シートを、太陽電池素子の受光面側に配置し、且つ、波長変換機能を有する裏面側封止材シートを太陽電池素子の裏面側に配置したものである点に主たる特徴がある。 The solar cell module of the present invention contains a light stabilizer in a specific content range unique to the present application, and a light receiving surface side sheet substantially free of an ultraviolet absorber and a wavelength converting agent on the light receiving surface side of the solar cell element. The main feature is that the back surface side sealing material sheet that is disposed and has a wavelength conversion function is disposed on the back surface side of the solar cell element.
 本明細書においては、太陽電池素子において主に光を受ける側の面となる一の面を受光面と言い、受光面とは反対側の他の面を裏面というものとする。尚、両面採光型の太陽電池素子においては、任意に選択した一方の受光面のことを受光面と言うものとし、当該受光面とは反対側の面を裏面と言うものとする。又、本明細書において、太陽電池モジュールの層構成中の「受光面側」及び「裏面側」とは、上記の受光面及び裏面の定義に基づいて規定される。例えば、「封止材シートの裏面側」とは、太陽電池モジュールに一体化された状態の封止材シートの両面のうち、太陽電池モジュールの「裏面」の最外層に近い方の面のことを言うものとする。 In the present specification, one surface that is mainly a light receiving surface in the solar cell element is referred to as a light receiving surface, and the other surface opposite to the light receiving surface is referred to as a back surface. In the double-sided solar cell element, one light receiving surface selected arbitrarily is referred to as a light receiving surface, and the surface opposite to the light receiving surface is referred to as a back surface. Further, in this specification, the “light-receiving surface side” and the “back surface side” in the layer configuration of the solar cell module are defined based on the definitions of the light-receiving surface and the back surface. For example, “the back side of the encapsulant sheet” is the surface closest to the outermost layer of the “back side” of the solar cell module, out of both sides of the encapsulant sheet in a state integrated with the solar cell module Shall be said.
 以下、先ずは、太陽電池モジュールの全体構成及びその製造方法について説明し、後に、太陽電池素子の両面にそれぞれ別途配置する上記の各封止材シートの詳細について説明し、更に、その他の構成部材についても順次説明する。 Hereinafter, first, the overall configuration of the solar cell module and the method for manufacturing the solar cell module will be described, and then the details of the respective sealing material sheets separately disposed on both surfaces of the solar cell element will be described. Will be described in turn.
 <太陽電池モジュール>
 図1は、本発明の太陽電池モジュール10の層構成の一例を示す断面図である。太陽電池モジュール10は、図1に示す通り、全光線透過性に優れる受光面側封止材シート1を太陽電池素子3の受光面側に配置し、紫外線を発電に寄与する可視光域の光に変換させる波長変換機能を備える裏面側封止材シート2を太陽電池素子3の裏面側に配置した太陽電池モジュールである。
<Solar cell module>
FIG. 1 is a cross-sectional view showing an example of a layer configuration of a solar cell module 10 of the present invention. As shown in FIG. 1, the solar cell module 10 has a light-receiving surface side sealing material sheet 1 excellent in total light transmittance disposed on the light-receiving surface side of the solar cell element 3, and light in the visible light region that contributes to ultraviolet power generation. This is a solar cell module in which a back surface side sealing material sheet 2 having a wavelength conversion function to be converted into a solar cell element 3 is disposed on the back surface side.
 太陽電池モジュール10において、UVスルータイプの封止材である受光面側封止材シート1は、太陽電池素子3の受光面側に配置されることにより、その優れた全光線透過性によって、太陽電池モジュール10の発電効率の向上に大きく寄与することができる。 In the solar cell module 10, the light receiving surface side sealing material sheet 1, which is a UV through type sealing material, is disposed on the light receiving surface side of the solar cell element 3. This can greatly contribute to the improvement of the power generation efficiency of the battery module 10.
 太陽電池モジュール10において、波長変換層を備える裏面側封止材シート2は、太陽電池素子3の裏面側に配置されることにより、透過光や反射光に対する波長変換機能を発揮して太陽電池モジュール10の発電効率に大きく寄与することができる。又、裏面側封止材シート2は、波長変換機能を有する層に加えて、更に光反射層を備えるものとすることができる。これにより、太陽電池モジュール10の発電効率を更に顕著に向上させることができる。 In the solar cell module 10, the back surface side sealing material sheet 2 including the wavelength conversion layer is disposed on the back surface side of the solar cell element 3, thereby exhibiting a wavelength conversion function with respect to transmitted light and reflected light. 10 can greatly contribute to the power generation efficiency. Moreover, in addition to the layer which has a wavelength conversion function, the back surface side sealing material sheet 2 shall be further equipped with a light reflection layer. Thereby, the power generation efficiency of the solar cell module 10 can be further remarkably improved.
 太陽電池モジュール10において、裏面保護シート5は、ETFE、耐加水PET等の樹脂シート或いはアルミ箔層をコア層として樹脂層を両面に積層したもの等、従来公知の保護シートを適宜用いることができる。又、裏面側封止材シート2に光反射層を配置することに代えて、この裏面保護シート5を、例えば、白色顔料を含有してなる光反射性の裏面保護シートとしてもよい。この場合においても、太陽電池モジュール10の発電効率を十分に向上させることができる。 In the solar cell module 10, a conventionally known protective sheet such as a resin sheet such as ETFE or water-resistant PET or a resin layer laminated on both sides with an aluminum foil layer as a core layer can be appropriately used as the back surface protective sheet 5. . Moreover, it replaces with arrange | positioning a light reflection layer in the back surface side sealing material sheet 2, and this back surface protection sheet 5 is good also as a light reflective back surface protection sheet which contains a white pigment, for example. Even in this case, the power generation efficiency of the solar cell module 10 can be sufficiently improved.
 太陽電池モジュール10において、太陽電池素子3としては、裏面側封止材シート2で波長変換された光を効率的に受光し易い両面受光型の太陽電池素子を好ましく用いることができる。但し、その他、単結晶シリコン基板や多結晶シリコン基板を用いて作製する結晶シリコン太陽電池、アモルファスシリコンや微結晶シリコン、或いはカルコパイライト系の化合物等を用いてなる薄膜系太陽電池(CIGS)等、必ずしも両面受光型に限らず、従来公知の様々な太陽電池素子を特段の制限なく用いることができる。 In the solar cell module 10, as the solar cell element 3, a double-sided light-receiving solar cell element that easily receives light whose wavelength has been converted by the back surface side sealing material sheet 2 can be preferably used. However, in addition, a crystalline silicon solar cell manufactured using a single crystal silicon substrate or a polycrystalline silicon substrate, a thin film solar cell (CIGS) using amorphous silicon, microcrystalline silicon, a chalcopyrite compound, or the like, It is not necessarily limited to the double-sided light receiving type, and various conventionally known solar cell elements can be used without particular limitation.
 又、太陽電池モジュール10は、絶縁性の高いポリエチレン系樹脂からなる裏面側封止材シート2を用いるものであるため、非受光面側に極性が異なる複数の電極が設けられたバックコンタクト型の太陽電池素子も好ましく用いることができる。 Moreover, since the solar cell module 10 uses the back surface side sealing material sheet 2 made of a highly insulating polyethylene-based resin, it is a back contact type in which a plurality of electrodes having different polarities are provided on the non-light receiving surface side. A solar cell element can also be preferably used.
 透明前面基板4は、透明ガラス等、従来公知の材料を特に制限なく使用することができる。受光面側封止材シート1はガラス密着性及び密着耐久性にも優れるものであるため、太陽電池モジュール10は、受光面側封止材シートと透明前面基板4の界面における密着性と密着耐久性にも優れたモジュールとなる。 The transparent front substrate 4 can use a conventionally known material such as transparent glass without any particular limitation. Since the light-receiving surface side sealing material sheet 1 is also excellent in glass adhesion and adhesion durability, the solar cell module 10 has the adhesion and adhesion durability at the interface between the light-receiving surface side sealing material sheet and the transparent front substrate 4. It becomes a module with excellent performance.
 尚、本発明の太陽電池モジュール10の層構成は、上記の実施形態に限られず、上記において説明した各部材以外の構成部材を必要応じて更に含むものであってもよい。 In addition, the layer structure of the solar cell module 10 of the present invention is not limited to the above embodiment, and may further include constituent members other than the members described above as necessary.
 太陽電池モジュール10は、受光面側封止材シート1と裏面側封止材シート2、及びそれらの両封止材の間に配置される太陽電池素子3、受光面側の最外層に配置される透明前面基板4、及び裏面側の最外層に配置される裏面保護シート5を含む構成部材を順次積層してから、真空吸引等により一体化し、その後、ラミネーション法等の成形法により、上記部材を一体成形体として加熱圧着成形して製造することができる。 The solar cell module 10 is disposed in the outermost layer on the light receiving surface side, the solar cell element 3 disposed between the light receiving surface side sealing material sheet 1 and the back surface side sealing material sheet 2, and both the sealing materials. The constituent members including the transparent front substrate 4 and the back surface protective sheet 5 disposed in the outermost layer on the back surface side are sequentially laminated and then integrated by vacuum suction or the like, and then the above-mentioned members are formed by a molding method such as a lamination method. Can be manufactured by thermocompression molding as an integral molded body.
 <受光面側封止材シート>
 受光面側封止材シート1は、ポリエチレン系樹脂をベース樹脂とする組成物からなる単層又は多層の透明な樹脂シートである。通常、太陽電池モジュールの受光面側に配置する封止材シートに紫外線による樹脂劣化防止を目的として光安定剤を添加する場合には、ヒンダードアミン系光安定剤を、封止材シートを構成する全ての封止材組成物の全樹脂成分に対する含有量比が、0.3%程度以上となるように添加することが一般的である。これに対して、本発明の太陽電池モジュールにおいては、受光面側封止材シート1におけるヒンダードアミン系光安定剤上記の含有量、即ち、封止材シートを構成する全ての封止材組成物の全樹脂成分に対する含有量比で、0.08質量%以上0.25質量%以下、好ましくは、0.1質量%以上0.15質量%以下に限定した。
<Light-receiving surface side sealing material sheet>
The light-receiving surface side sealing material sheet 1 is a single-layer or multilayer transparent resin sheet made of a composition having a polyethylene resin as a base resin. Normally, when a light stabilizer is added to the encapsulant sheet placed on the light-receiving surface side of the solar cell module for the purpose of preventing resin deterioration due to ultraviolet rays, all the hindered amine light stabilizers that make up the encapsulant sheet It is common to add so that the content ratio of the encapsulant composition to the total resin component is about 0.3% or more. On the other hand, in the solar cell module of the present invention, the content of the hindered amine light stabilizer in the light-receiving surface side sealing material sheet 1 described above, that is, all of the sealing material compositions constituting the sealing material sheet. The content ratio relative to the total resin components was 0.08% by mass or more and 0.25% by mass or less, preferably 0.1% by mass or more and 0.15% by mass or less.
 又、受光面側封止材シート1は紫外線吸収剤を実質的に含有しない。ここで本明細書における「紫外線吸収剤」とは、各封止材シートや裏面保護シート等太陽電池モジュールを構成する各樹脂基材に対して有害である太陽光中の紫外線を吸収し、分子内で無害な熱エネルギーへと変換して、上記各樹脂基材の光劣化開始の活性種が励起されるのを防止するものである。紫外線吸収剤の具体例としては、ベンゾフェノン系、ベンゾトリアゾール系、サルチレート系、アクリロニトリル系、等の紫外線吸収剤が挙げられる。 Moreover, the light-receiving surface side sealing material sheet 1 does not substantially contain an ultraviolet absorber. Here, the “ultraviolet absorber” in the present specification absorbs ultraviolet rays in sunlight that are harmful to each resin substrate constituting the solar cell module such as each sealing material sheet and back surface protection sheet, It is converted into harmless heat energy in the inside to prevent excitation of the active species at the start of photodegradation of each resin substrate. Specific examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, salicylate-based, and acrylonitrile-based ultraviolet absorbers.
 尚、本明細書において、「紫外線吸収剤を実質的に含有しない」とは、封止材シートを構成する全ての封止材組成物の全樹脂成分に対する紫外線吸収剤の含有量比が、0.1%を超えないことを言うものとする。何らかの理由で0.1%以下の紫外線吸収剤が混入していても、このような微量では、実質的に紫外線吸収性能は発揮しえない。そして、このような極微量の紫外線吸収剤が混入しているものについては、本発明の範囲から排除されない。 In the present specification, “substantially does not contain an ultraviolet absorber” means that the content ratio of the ultraviolet absorber to the total resin components of all the sealing material compositions constituting the sealing material sheet is 0. It shall be said not to exceed 1%. Even if 0.1% or less of the ultraviolet absorber is mixed for some reason, such a trace amount cannot substantially exhibit the ultraviolet absorption performance. And what mixed such a trace amount ultraviolet absorber is not excluded from the scope of the present invention.
 又、受光面側封止材シート1は、波長変換剤も実質的に含有しない。本明細書における「波長変換剤」とは、太陽電池素子において吸収感度の低い波長領域の光を吸収感度の高い波長領域に波長変換して太陽池素子に入射させることにより、太陽電池モジュールの発電効率の向上に寄与することができる添加剤のことを言うものとする。無機系、有機系、或いは、それらのハイブリッド系の各種の波長変換剤がこれらに含まれる。本発明の太陽電池モジュール10においては、裏面側封止材シート2に、この波長変換剤を有する波長変換層が配置される。尚、本明細書において、「波長変換剤を実質的に含有しない」とは、上述の紫外線吸収剤の場合と同様に、封止材シートを構成する全ての封止材組成物の全樹脂成分に対する紫外線吸収剤の含有量比が、0.1%を超えないことを言うものとする。 Moreover, the light receiving surface side sealing material sheet 1 does not substantially contain a wavelength converting agent. The “wavelength conversion agent” in the present specification refers to power generation of a solar cell module by converting light in a wavelength region with low absorption sensitivity into a wavelength region with high absorption sensitivity in a solar cell element and causing the light to enter the solar pond element. The additive that can contribute to the improvement of efficiency shall be said. These include various inorganic, organic, or hybrid wavelength conversion agents. In the solar cell module 10 of the present invention, a wavelength conversion layer having this wavelength conversion agent is disposed on the back surface side sealing material sheet 2. In the present specification, “substantially does not contain a wavelength converting agent” means, as in the case of the above-described ultraviolet absorber, all resin components of all encapsulant compositions constituting the encapsulant sheet. It shall be said that the content ratio of the ultraviolet absorber to the amount does not exceed 0.1%.
 以上の通り、受光面側封止材シート1は、光安定剤の添加量の限定に加えて、更に紫外線吸収剤及び波長変換剤を排除して、所謂UVスルータイプの封止材とした。これにより、太陽電池モジュール10は、受光面側封止材シート1の太陽光の透過性を極めて高いものとしている。尚、光安定剤の添加量の総量が極めて少量であるため、光添加剤のブリードアウトによるガラス密着性への悪影響が極めて起こりにくい点も受光面側封止材シート1の特徴の一つである。 As described above, the light-receiving surface side sealing material sheet 1 is a so-called UV-through type sealing material in addition to the limitation of the addition amount of the light stabilizer and further eliminating the ultraviolet absorber and the wavelength converting agent. Thereby, the solar cell module 10 makes the light transmittance of the light-receiving surface side sealing material sheet 1 extremely high. One of the features of the light-receiving surface side sealing material sheet 1 is that the total amount of the light stabilizer added is extremely small, so that the adverse effect on the glass adhesion due to the bleed-out of the light additive is extremely difficult. is there.
 受光面側封止材シート1の層構成については、単層でもよく、或いは、中間層と、中間層の両面に配置される最外層を含んで構成される多層の封止材シートであってもよい。本明細書において、多層の封止材シートとは、封止材シートの両面に成形される最外層と、最外層以外の層である中間層と、を含んでなる多層構造を有する封止材シートのことを言う。中間層とは、最外層以外の層のことを言い、単層構造であってもよく、或いは、中間層それ自体が複数の層からなる多層構造を有する多層の封止材シートであってもよい。 The layer structure of the light-receiving surface side sealing material sheet 1 may be a single layer or a multilayer sealing material sheet including an intermediate layer and an outermost layer disposed on both surfaces of the intermediate layer. Also good. In this specification, the multilayer encapsulant sheet is an encapsulant having a multilayer structure including an outermost layer formed on both surfaces of the encapsulant sheet and an intermediate layer that is a layer other than the outermost layer. Say about the sheet. The intermediate layer refers to a layer other than the outermost layer, and may have a single layer structure, or the intermediate layer itself may be a multilayer encapsulant sheet having a multilayer structure composed of a plurality of layers. Good.
 受光面側封止材シート1の総厚さは100μm以上1000μm以下であることが好ましく、200μm以上600μm以下であることがより好ましい。100μm未満であると充分に衝撃を緩和することができず、1000μmを超えてもそれ以上の効果が得られず不経済であるので好ましくない。 The total thickness of the light-receiving surface side sealing material sheet 1 is preferably 100 μm or more and 1000 μm or less, and more preferably 200 μm or more and 600 μm or less. If it is less than 100 μm, the impact cannot be sufficiently mitigated, and if it exceeds 1000 μm, no further effect can be obtained and it is uneconomical.
 特に、受光面側封止材シート1を多層の封止材シートとする場合には、最外層に柔軟性を、中間層に耐熱性を持たせる事で、ラミネート工程中の流れ出しや膜厚変化を抑えたものとすることにより、500μm以下程度に薄膜化した場合においても十分に好ましいモールディング性と耐熱性、太陽電池素子の保護性能を備えるものとすることができる。 In particular, when the light-receiving surface side sealing material sheet 1 is a multilayer sealing material sheet, the outermost layer has flexibility and the intermediate layer has heat resistance. Therefore, even when the film thickness is reduced to about 500 μm or less, it is possible to provide sufficiently preferable molding properties, heat resistance, and solar cell element protection performance.
 受光面側封止材シート1が、中間層の両面に各1層計2層の最外層が積層されてなる3層構造からなる多層の封止材シートである場合、各層の厚さの比率については、最外層:中間層:最外層との厚さ比が、1:2:1~1:30:1の範囲であることが好ましい。各層の厚さ比をこの範囲とすることによって、受光面側封止材シート1の耐熱性とモールディング特性を良好な範囲に保持することができる。 When the light-receiving surface side encapsulant sheet 1 is a multi-layer encapsulant sheet having a three-layer structure in which two outermost layers are laminated on each side of the intermediate layer, the ratio of the thickness of each layer Is preferably in the range of 1: 2: 1 to 1: 30: 1 in the thickness ratio of outermost layer: intermediate layer: outermost layer. By setting the thickness ratio of each layer within this range, the heat resistance and molding characteristics of the light-receiving surface side sealing material sheet 1 can be maintained within a favorable range.
 <受光面側封止材シート用の封止材組成物>
 以下、受光面側封止材シート1の製造に用いる受光面側封止材シート用の封止材組成物について説明する。受光面側封止材シート用の封止材組成物のベース樹脂として用いるポリエチレン系樹脂としては、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、又はメタロセン系直鎖低密度ポリエチレン(M-LLDPE)を好ましく用いることができる。
<Encapsulant composition for light-receiving surface side encapsulant sheet>
Hereinafter, the sealing material composition for the light-receiving surface side sealing material sheet used for manufacture of the light-receiving surface side sealing material sheet 1 will be described. The polyethylene resin used as the base resin of the encapsulant composition for the light-receiving surface side encapsulant sheet is low density polyethylene (LDPE), linear low density polyethylene (LLDPE), or metallocene linear low density polyethylene ( M-LLDPE) can be preferably used.
 上記ベース樹脂として用いるポリエチレン系樹脂の密度は、0.870g/cm以上0.970g/cm以下、好ましくは、0.870g/cm以上0.930g/cm以下である。尚、受光面側封止材シート1を多層の封止材シートとする場合には、中間層用のベース樹脂の密度を、最外層用のベース樹脂よりも高密度の樹脂とすることが好ましい。中間層用ベース樹脂の密度を上記範囲とすることにより、モールディング特性や太陽電池素子の保護性能を保持しながら、封止材シートの耐熱性を十分に向上させることができる。 Density polyethylene resin used as the base resin, 0.870 g / cm 3 or more 0.970 g / cm 3 or less, preferably 0.870 g / cm 3 or more 0.930 g / cm 3 or less. When the light-receiving surface side sealing material sheet 1 is a multilayer sealing material sheet, it is preferable that the density of the base resin for the intermediate layer is higher than that of the base resin for the outermost layer. . By setting the density of the base resin for the intermediate layer within the above range, it is possible to sufficiently improve the heat resistance of the encapsulant sheet while maintaining the molding characteristics and the protection performance of the solar cell element.
 受光面側封止材シート用の封止材組成物には、上記ベース樹脂の他、更にシラン変性ポリエチレン系樹脂等の密着性共重合体樹脂が含有されていることが好ましい。シラン変性ポリエチレン系樹脂は、主鎖となる低密度ポリエチレン、好ましくは直鎖低密度ポリエチレンに、エチレン性不飽和シラン化合物を側鎖としてグラフト重合してなる樹脂である。このようなグラフト共重合体は、接着力に寄与するシラノール基の自由度が高くなるため、太陽電池モジュール10における受光面側封止材シート1と、ガラス等の透明前面基板4等の他の積層部材との密着性を向上することができる。尚、本明細書におけるシラン変性ポリエチレン系樹脂とは、例えば、下記の製造方法によって製造することができるシラン変性ポリエチレン系樹脂のことを言い、主鎖となる直鎖低密度ポリエチレン樹脂の少なくとも一部が、エチレン性不飽和シラン化合物とグラフト重合してなる樹脂のことを示す概念である。尚、上記の主鎖となる樹脂は、上記ベース樹脂と同様、密度0.870g/cm以上0.900g/cm以下のポリエチレン系樹脂であることが好ましい。 It is preferable that the sealing material composition for the light-receiving surface side sealing material sheet further contains an adhesive copolymer resin such as a silane-modified polyethylene resin in addition to the base resin. The silane-modified polyethylene resin is a resin obtained by graft polymerizing low-density polyethylene as a main chain, preferably linear low-density polyethylene, with an ethylenically unsaturated silane compound as a side chain. Since such a graft copolymer has a high degree of freedom of silanol groups contributing to the adhesive force, the light-receiving surface side sealing material sheet 1 in the solar cell module 10, and other transparent front substrate 4 such as glass, etc. Adhesion with the laminated member can be improved. The silane-modified polyethylene resin in the present specification refers to, for example, a silane-modified polyethylene resin that can be produced by the following production method, and at least a part of a linear low-density polyethylene resin that becomes a main chain. Is a concept indicating a resin obtained by graft polymerization with an ethylenically unsaturated silane compound. The resin as a main chain of the above, as with the base resin, it is preferred that the density 0.870 g / cm 3 or more 0.900 g / cm 3 or less of the polyethylene resin.
 シラン変性ポリエチレン系樹脂は、例えば、特開2003-46105号公報に記載されている通り、以下の方法で製造できる。例えば、α-オレフィンの1種ないし2種以上と、エチレン性不飽和シラン化合物の1種ないし2種以上と、必要ならば、その他の不飽和モノマ-の1種ないし2種以上とを、所望の反応容器を使用し、例えば、圧力500kg/cm以上4000kg/cm以下程度、好ましくは、1000kg/cm以上4000kg/cm以下、温度、100℃以上400℃位下程度、好ましくは、150℃以上350℃以下の条件下で、ラジカル重合開始剤、及び、必要ならば連鎖移動剤の存在下で、同時に、或いは、段階的にランダム共重合させ、更には、その共重合によって生成するランダム共重合体を構成するシラン化合物の部分を変性ないし縮合させて、シラン変性ポリエチレン系樹脂を製造することができる。 The silane-modified polyethylene resin can be produced by the following method as described in, for example, JP-A-2003-46105. For example, one or more α-olefins, one or more ethylenically unsaturated silane compounds, and, if necessary, one or more other unsaturated monomers are desired. For example, the pressure is about 500 kg / cm 2 to 4000 kg / cm 2 , preferably 1000 kg / cm 2 to 4000 kg / cm 2 , temperature, about 100 ° C. to about 400 ° C., preferably A random copolymerization is performed simultaneously or stepwise in the presence of a radical polymerization initiator and, if necessary, a chain transfer agent under the conditions of 150 ° C. or more and 350 ° C. or less, and further, it is generated by the copolymerization. A silane-modified polyethylene resin can be produced by modifying or condensing the silane compound portion constituting the random copolymer.
 主鎖のポリエチレン系樹脂としては、エチレン-αオレフィン共重合体である直鎖低密度ポリエチレンを用いることが好ましく、メタロセン系直鎖低密度ポリエチレンを用いることがより好ましい。メタロセン系直鎖低密度ポリエチレンは、シングルサイト触媒であるメタロセン触媒を用いて合成されるものである。このようなポリエチレンは、側鎖の分岐が少なく、コモノマーの分布が均一である。このため、分子量分布が狭く、上記のような超低密度にすることが可能であり封止材シートに対して柔軟性を付与できる。封止材シートに柔軟性が付与される結果、封止材シートとガラス等の透明前面基板との密着性を高めることができる。 As the main chain polyethylene-based resin, linear low-density polyethylene that is an ethylene-α-olefin copolymer is preferably used, and metallocene-based linear low-density polyethylene is more preferably used. Metallocene linear low density polyethylene is synthesized using a metallocene catalyst which is a single site catalyst. Such polyethylene has few side chain branches and a uniform comonomer distribution. For this reason, molecular weight distribution is narrow, it is possible to make it the above ultra-low density, and a softness | flexibility can be provided with respect to a sealing material sheet. As a result of the flexibility imparted to the sealing material sheet, the adhesion between the sealing material sheet and a transparent front substrate such as glass can be enhanced.
 受光面側封止材シート用の封止材組成物に用いるシラン変性ポリエチレン系樹脂の含有量は、8質量%以上45質量%以下であることが好ましい。シラン変性ポリエチレン系樹脂の上記含有量が8質量%以上であれば、機械的強度及び耐熱性等に優れるが、含有量が過度になると、引っ張り伸び及び熱融着性等に劣る傾向にある。尚、受光面側封止材シート1が多層シートである場合には、特に密着性に寄与する最外層へのシラン変性ポリエチレン系樹脂の添加の重要性が高い。 The content of the silane-modified polyethylene resin used in the sealing material composition for the light-receiving surface side sealing material sheet is preferably 8% by mass or more and 45% by mass or less. If the content of the silane-modified polyethylene resin is 8% by mass or more, the mechanical strength and heat resistance are excellent, but if the content is excessive, the tensile elongation and heat-fusibility tend to be inferior. In addition, when the light-receiving surface side sealing material sheet 1 is a multilayer sheet, it is particularly important to add the silane-modified polyethylene resin to the outermost layer that contributes to adhesion.
 受光面側封止材シート用の封止材組成物は、上述の通り、ヒンダードアミン系光安定剤を0.08質量%以上0.25質量%以下、好ましくは、0.1質量%以上0.15質量%以下含有する。ヒンダードアミン系光安定剤は、下記の光安定剤(A)が用いられているか、或いは、光安定剤(A)と下記の光安定剤(B)とを併用されていることが好ましい。光安定剤(A)及び光安定剤(B)は、いずれも分子量1000以上の高分子量タイプである。
 光安定剤(A):モノマーユニットの側鎖中に、ピペリジン環を三つ以上持つ分子量1000以上10000以下のヒンダードアミン系光安定剤
 光安定剤(B):モノマーユニットの主鎖中にピペリジン環を一つだけ持つ分子量1000以上5000以下のヒンダードアミン系光安定剤
As described above, the encapsulant composition for the light-receiving surface side encapsulant sheet contains a hindered amine light stabilizer in an amount of 0.08% by mass to 0.25% by mass, preferably 0.1% by mass to 0.00%. Contain 15% by mass or less. As the hindered amine light stabilizer, the following light stabilizer (A) is preferably used, or the light stabilizer (A) and the following light stabilizer (B) are preferably used in combination. Each of the light stabilizer (A) and the light stabilizer (B) is a high molecular weight type having a molecular weight of 1000 or more.
Light stabilizer (A): A hindered amine light stabilizer having a molecular weight of 1000 or more and 10,000 or less having three or more piperidine rings in the side chain of the monomer unit. Light stabilizer (B): Piperidine ring in the main chain of the monomer unit. A single hindered amine light stabilizer with a molecular weight of 1,000 to 5,000
 光安定剤(A)は、モノマーユニット中にピペリジン環を三つ以上持つ分子量1000以上10000以下のヒンダードアミン系光安定剤であり、好ましくは、ジブチルアミン-1,3,5-トリアジン-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン-N-(2,2,6,6-テトラメメチル-4-ピペリジル)ブチルアミンの重縮合物である。この化合物はChimassorb2020として市販されており、CAS番号192268-64-7の化合物である。分子量は2600から3400であり、融点130℃から136℃である。 The light stabilizer (A) is a hindered amine light stabilizer having three or more piperidine rings in the monomer unit and having a molecular weight of 1,000 or more and 10,000 or less, preferably dibutylamine-1,3,5-triazine-N, N A polycondensate of '-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine-N- (2,2,6,6-tetramemethyl-4-piperidyl) butylamine This compound is commercially available as Chimassorb 2020 and is a compound having CAS number 192268-64-7, having a molecular weight of 2600 to 3400 and a melting point of 130 ° C to 136 ° C.
 光安定剤(B)は、KEMISTAB62として市販されている化合物であり、ブタン二酸1-[2-(4-ヒドロキシ-2,2,6,6-テトラメチルピペリジノ)エチル]であり、CAS番号65447-77-0の化合物である。モノマーユニットの主鎖中にピペリジン環を一つだけ持ち、分子量は3100から4000であり、融点55℃から70℃、ポリオレフィン用途のHALSとして知られている。 The light stabilizer (B) is a compound marketed as KEMISTAB 62, butanedioic acid 1- [2- (4-hydroxy-2,2,6,6-tetramethylpiperidino) ethyl], It is a compound of CAS No. 65447-77-0. It has only one piperidine ring in the main chain of the monomer unit, has a molecular weight of 3100 to 4000, has a melting point of 55 ° C to 70 ° C, and is known as HALS for polyolefin applications.
 ここで、種々の高分子量タイプのHALSのなかで、本発明者らが新たに得た知見によると、光安定剤(A)は、モノマーユニットの側鎖中に、ピペリジン環を3個以上持ち、ラジカルトラップ吸収能に極めて優れたものである。よって、ヘーズの経時劣化抑制及び長期ガラス密着の観点において極めて優れている。よって本発明の製造方法においては、この光安定剤(A)を主たる光安定剤として選択的に用いることが好ましい。 Here, among various high molecular weight types of HALS, according to the knowledge newly obtained by the present inventors, the light stabilizer (A) has three or more piperidine rings in the side chain of the monomer unit. The radical trap absorption ability is extremely excellent. Therefore, it is extremely excellent in terms of suppressing haze deterioration over time and long-term glass adhesion. Therefore, in the production method of the present invention, it is preferable to selectively use this light stabilizer (A) as the main light stabilizer.
 受光面側封止材シート用の封止材組成物には、必要に応じて架橋剤を含有させてもよいが、架橋剤はいずれの層にも添加しないことがより好ましい。上記の中間層への架橋助剤の添加によって、十分に適切な架橋を進行させることができる一方で、有機過酸化物等の架橋剤を別途添加したには、太陽電池モジュールとの一体化のための熱ラミネート処理時に、デガスによる発泡等の問題が生じるリスクが高まるからである。架橋剤を添加する場合、公知のものが使用でき特に限定されず、例えば公知のラジカル重合開始剤を用いることができる。 The sealing material composition for the light-receiving surface side sealing material sheet may contain a crosslinking agent as required, but it is more preferable that the crosslinking agent is not added to any layer. While addition of a crosslinking aid to the intermediate layer described above allows adequate crosslinking to proceed sufficiently, a separate addition of a crosslinking agent such as an organic peroxide would result in integration with the solar cell module. This is because there is an increased risk of problems such as foaming due to degas during the heat laminating process. When adding a crosslinking agent, a well-known thing can be used and it does not specifically limit, For example, a well-known radical polymerization initiator can be used.
 受光面側封止材シート用の封止材組成物に架橋剤を添加する場合、その含有量は、0質量%以上0.5質量%以下の含有量であることが好ましく、より好ましくは0.02質量%以上0.5質量%以下の範囲である。架橋剤の添加量が0.5質量%を超えると、架橋工程における架橋の進行が過剰となり、モールディング特性が不十分となり好ましくない。 When adding a crosslinking agent to the sealing material composition for light-receiving surface side sealing material sheets, it is preferable that the content is 0 mass% or more and 0.5 mass% or less, More preferably, it is 0. The range is 0.02 mass% or more and 0.5 mass% or less. When the addition amount of the crosslinking agent exceeds 0.5% by mass, the progress of crosslinking in the crosslinking process becomes excessive, and molding characteristics are insufficient, which is not preferable.
 受光面側封止材シート用の封止材組成物には、架橋助剤が含有されることが好ましい。架橋助剤として、炭素-炭素二重結合及び/又はエポキシ基を有する多官能モノマーを好ましく用いることができる。架橋助剤としてより好ましくは、多官能モノマーの官能基がアリル基、(メタ)アクリレート基、ビニル基であるものを用いることができる。このような架橋助剤の添加により、低密度ポリエチレンの結晶性を低下させ、低温柔軟性に優れる封止材シートを得ることができる。 It is preferable that a crosslinking assistant is contained in the sealing material composition for the light-receiving surface side sealing material sheet. As a crosslinking aid, a polyfunctional monomer having a carbon-carbon double bond and / or an epoxy group can be preferably used. More preferably, a crosslinking functional agent having a polyfunctional monomer whose functional group is an allyl group, a (meth) acrylate group or a vinyl group can be used. By adding such a crosslinking aid, the crystallinity of the low-density polyethylene can be reduced, and a sealing material sheet excellent in low-temperature flexibility can be obtained.
 具体的には、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート等のポリアリル化合物、トリメチロールプロパントリメタクリレート(TMPT)、トリメチロールプロパントリアクリレート(TMPTA)、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート等のポリ(メタ)アクリロキシ化合物、二重結合とエポキシ基を含むグリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル及びエポキシ基を2つ以上含有する1,6-ヘキサンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等のエポキシ系化合物を挙げることができる。これらは単独でもよく、二種以上を組み合わせてもよい。 Specifically, polyallyl compounds such as triallyl isocyanurate (TAIC), triallyl cyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, trimethylolpropane trimethacrylate (TMPT), trimethylolpropane triacrylate (TMPTA) , Ethylene glycol diacrylate, ethylene glycol dimethacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, tricyclodecane dimethanol diacrylate, etc. ) Acryloxy compound, glycidyl methacrylate containing double bond and epoxy group, 4-hydroxybutyl acrylate glycidyl ether and 1 containing two or more epoxy groups 6- hexanediol diglycidyl ether, and 1,4-butanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, an epoxy-based compounds such as trimethylolpropane polyglycidyl ether. These may be used alone or in combination of two or more.
 上記のなかでも、ガラス面との密着性向上の効果が特に高く、又、低密度ポリエチレンに対する相溶性が良好で、耐熱性の向上が期待できるトリシクロデカンジメタノールジアクリレートを特に好ましく使用できる。架橋助剤の含有量としては、外層用の封止材組成物の全樹脂成分の合計100質量部に対して、0.01質量部以上3質量部以下含まれることが好ましく、より好ましくは0.05質量部以上2.0質量部以下の範囲である。架橋助剤が中間層にのみ含有する多層シート構造とすることにより、封止材シートの密着性及びモールディング特性を好ましい範囲に保持したまま、同時に、封止材シートに十分な耐熱性を付与することができる。 Of the above, tricyclodecane dimethanol diacrylate, which has a particularly high effect of improving the adhesion to the glass surface, has good compatibility with low-density polyethylene, and can be expected to improve heat resistance, can be used particularly preferably. The content of the crosslinking aid is preferably 0.01 parts by mass or more and 3 parts by mass or less, more preferably 0 with respect to 100 parts by mass in total of all resin components of the sealing material composition for the outer layer. .05 parts by mass or more and 2.0 parts by mass or less. By providing a multilayer sheet structure in which the crosslinking aid is contained only in the intermediate layer, sufficient heat resistance is simultaneously imparted to the encapsulant sheet while maintaining the adhesion and molding characteristics of the encapsulant sheet within a preferable range. be able to.
 受光面側封止材シート用の封止材組成物には、いずれについても、適宜、密着性向上剤を添加することにより、更に、太陽電池モジュール10を構成する他の積層部材との密着性や密着耐久性を高めることができる。密着性向上剤としては、公知のシランカップリング剤を用いることができる。シランカップリング剤は特に限定されないが、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル系シランカップリング剤、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリロキシ系シランカップリング剤等を好ましく用いることができる。尚、これらは単独で又は二種以上を混合して使用することもできる。 Adhesiveness with other laminated members constituting the solar cell module 10 is further added to the sealing material composition for the light-receiving surface side sealing material sheet by appropriately adding an adhesion improver. And adhesion durability can be improved. As the adhesion improver, a known silane coupling agent can be used. The silane coupling agent is not particularly limited, but examples thereof include vinyl silane coupling agents such as vinyltrichlorosilane, vinyltrimethoxysilane, and vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyldiethoxy. A methacryloxy-based silane coupling agent such as silane or 3-methacryloxypropyltriethoxysilane can be preferably used. In addition, these can also be used individually or in mixture of 2 or more types.
 密着性向上剤として、シランカップリング剤を添加する場合、その含有量は、封止材組成物に0.1質量%以上10.0質量%以下であり、上限は好ましくは5.0質量%以下である。シランカップリング剤の含有量が上記範囲にあり、且つ、封止材組成物を構成するポリオレフィン系の樹脂に適量のエチレン性不飽和シラン化合物の含量されているときには、密着性がより好ましい範囲へと向上する。尚、この範囲を超えると、製膜性が低下する場合や、シランカップリング剤がブリードアウトする場合があり好ましくない。 When a silane coupling agent is added as an adhesion improver, the content thereof is 0.1% by mass or more and 10.0% by mass or less in the sealing material composition, and the upper limit is preferably 5.0% by mass. It is as follows. When the content of the silane coupling agent is in the above range, and the polyolefin resin constituting the encapsulant composition contains an appropriate amount of the ethylenically unsaturated silane compound, the adhesion is more preferable. And improve. In addition, when this range is exceeded, the film-forming property may be deteriorated or the silane coupling agent may bleed out, which is not preferable.
 <裏面側封止材シート>
 裏面側封止材シート2は、受光面側封止材シート1と同様のポリエチレン系樹脂をベース樹脂とする組成物からなる単層又は多層の樹脂シートである。但し、図2、3に示す通り、裏面側封止材シート2は、少なくともいずれか一の層が波長変換剤を含有する波長変換層21、21Aである点において受光面側封止材シート1と異なる。裏面側封止材シート2が多層の樹脂シートである場合、図2に示す通り、その中間層を波長変換層21としたものを好ましい実施形態(本明細書において、以下、「第1の実施形態」と言う。)の一例として挙げることができる。又、図3に示す通り、受光面側の最外層を波長変換層21Aとし、波長変換層21Aよりも太陽電池モジュール10における裏面側寄りの位置、好ましくは中間層の位置に光反射層23を配置した封止材シートを、他の好ましい実施形態(本明細書において、以下、「第2の実施形態」と言う。)の一例として挙げることができる。
<Back side sealing material sheet>
The back surface side sealing material sheet 2 is a single-layer or multilayer resin sheet made of a composition having a polyethylene resin as a base resin, similar to the light receiving surface side sealing material sheet 1. However, as shown in FIGS. 2 and 3, the back surface side sealing material sheet 2 is the light receiving surface side sealing material sheet 1 in that at least one of the layers is the wavelength conversion layers 21 and 21 </ b> A containing the wavelength converting agent. And different. When the back surface side sealing material sheet 2 is a multilayer resin sheet, as shown in FIG. 2, a preferred embodiment in which the intermediate layer is a wavelength conversion layer 21 (hereinafter referred to as “first implementation”). It can be mentioned as an example. Further, as shown in FIG. 3, the outermost layer on the light receiving surface side is a wavelength conversion layer 21A, and the light reflection layer 23 is disposed at a position closer to the back surface side in the solar cell module 10 than the wavelength conversion layer 21A, preferably at an intermediate layer position. The arranged sealing material sheet can be cited as an example of another preferred embodiment (hereinafter referred to as “second embodiment” in the present specification).
 図2に示す裏面側封止材シートの第1の実施形態(裏面側封止材シート2)は、中間層のみに、波長変換剤を添加して製造したものである。よって、成膜後における最外層22中の波長変換剤の含有量は0%であってもよく、或いは、成膜後における最外層22中の波長変換剤の含有量比は、中間層中の波長変換剤の含有量比よりは小さく、少なくとも、製膜直後においては、中間層中の波長変換剤の含有量比の1/2以下に抑制されている。より具体的には、成膜後の裏面側封止材シート2における中間層中の波長変換剤の含有量は、0.05質量%以上0.5質量%以下の範囲にあり、最外層22中の波長変換剤の含有量は、0質量%以上0.25質量%以下の範囲にある。例えば、組成物段階では最外層への波長変換剤への添加量が0質量%であり中間層のみに適量が添加されている場合において、製膜後、或いは、使用中において、波長変換剤の一部が中間層から浸出して最外層22中に浸入していた場合であっても、太陽電池モジュールとしての使用時における各層毎の波長変換剤の含有量が上記範囲内であれば、裏面側封止材シート2の基材密着性を極めて好ましい範囲に保持することができる。 The first embodiment of the back surface side sealing material sheet (back surface side sealing material sheet 2) shown in FIG. 2 is manufactured by adding a wavelength conversion agent only to the intermediate layer. Therefore, the content of the wavelength conversion agent in the outermost layer 22 after film formation may be 0%, or the content ratio of the wavelength conversion agent in the outermost layer 22 after film formation may be in the intermediate layer. It is smaller than the content ratio of the wavelength conversion agent, and at least immediately after film formation, it is suppressed to ½ or less of the content ratio of the wavelength conversion agent in the intermediate layer. More specifically, the content of the wavelength conversion agent in the intermediate layer in the back surface side sealing material sheet 2 after film formation is in the range of 0.05 mass% or more and 0.5 mass% or less, and the outermost layer 22. The content of the wavelength converting agent is in the range of 0% by mass or more and 0.25% by mass or less. For example, in the composition stage, when the addition amount to the wavelength conversion agent to the outermost layer is 0% by mass and an appropriate amount is added only to the intermediate layer, the wavelength conversion agent is added after film formation or in use. Even if a part of the layer is leached from the intermediate layer and infiltrated into the outermost layer 22, the back surface can be used if the content of the wavelength conversion agent for each layer is within the above range when used as a solar cell module. The substrate adhesiveness of the side sealing material sheet 2 can be maintained within a very preferable range.
 図3に示す裏面側封止材シートの第2の実施形態(裏面側封止材シート2A)は、多層の封止材シートであって、その最外層を波長変換層21Aとし、中間層を白色顔料を添加してなる白色の光反射層23とした封止材シートである。光反射層23は、中間層に配置されていることが好ましいが、波長変換層21Aよりも太陽電池モジュールの最外層寄りの位置であれば、必ずしも、中間層であることが必須ではない。裏面側封止材シート2Aは、一方の最外層のみに、有機系波長変換剤を添加して製造したものである。裏面側封止材シート2Aよれば、太陽電池モジュール10内への入射光のうち、太陽電池素子3に入射せずに非受光面側に達した太陽光を光反射層23により再度、太陽電池素子3の受光面側へと効率よく導くことができる。この反射作用と、最外層での波長変換機能の発揮とが相乗的に発電効率の向上に寄与することにより、太陽電池モジュール10の発電効率を更に顕著に向上させることができる。 The second embodiment of the back side sealing material sheet (back side sealing material sheet 2A) shown in FIG. 3 is a multilayer sealing material sheet, the outermost layer of which is the wavelength conversion layer 21A, and the intermediate layer is It is the sealing material sheet used as the white light reflection layer 23 formed by adding a white pigment. The light reflecting layer 23 is preferably disposed in the intermediate layer, but the intermediate layer is not necessarily required as long as it is located closer to the outermost layer of the solar cell module than the wavelength conversion layer 21A. The back side sealing material sheet 2A is manufactured by adding an organic wavelength conversion agent only to one outermost layer. According to the back surface side sealing material sheet 2 </ b> A, of the incident light entering the solar cell module 10, the sunlight that does not enter the solar cell element 3 and reaches the non-light-receiving surface side is again reflected by the light reflecting layer 23. The light can be efficiently guided to the light receiving surface side of the element 3. The power generation efficiency of the solar cell module 10 can be further remarkably improved by synergistically contributing to the improvement of power generation efficiency by this reflection action and the performance of the wavelength conversion function in the outermost layer.
 裏面側封止材シート2Aにおける中間層でもある光反射層23は、この層内に白色顔料が含有されている。この光反射層23に含有される例えば、酸化チタンに代表される無機系の白色顔料であることが好ましい。このような無機系の白色顔料は、可視光域における光反射性能に優れるのみならず、紫外線を吸収する作用も奏するものであるため、裏面側封止材シート2A内に有機系の紫外線吸収剤を含有させなくとも、紫外線を遮断して裏面保護シート5の紫外線劣化を防ぐことができる。又、有機系の紫外線吸収剤のような対面する他の層への移行もほとんどおこらないため、波長変換機能を低下させることもない。 The light reflecting layer 23 which is also an intermediate layer in the back side sealing material sheet 2A contains a white pigment in this layer. For example, an inorganic white pigment typified by titanium oxide contained in the light reflecting layer 23 is preferable. Such an inorganic white pigment not only excels in light reflection performance in the visible light region but also has an action of absorbing ultraviolet rays, so an organic ultraviolet absorber in the back side sealing material sheet 2A. Even if it does not contain, ultraviolet rays can be interrupted | blocked and the ultraviolet-ray deterioration of the back surface protection sheet 5 can be prevented. In addition, the wavelength conversion function is not deteriorated because the transfer to other layers facing each other such as an organic ultraviolet absorber hardly occurs.
 裏面側封止材シート2の層構成については、中間層と、中間層の両面に配置される最外層を含んで構成される多層の封止材シートであることが好ましい。又、裏面側封止材シート2の好ましい総厚さや多層の封止材シートとした場合の各層の厚さ比については受光面側封止材シート1と同様である。又、裏面側封止材シート2を多層の封止材シートとした場合、特に最外層に柔軟性を持たせる事で、十分に好ましいモールディング性と耐熱性、太陽電池素子の保護性能を備えるものとすることができる点についても受光面側封止材シート1と同様である。 About the layer structure of the back surface side sealing material sheet 2, it is preferable that it is a multilayer sealing material sheet comprised including the outermost layer arrange | positioned on both surfaces of an intermediate | middle layer and an intermediate | middle layer. Further, the preferable total thickness of the back surface side sealing material sheet 2 and the thickness ratio of each layer in the case of a multilayer sealing material sheet are the same as those of the light receiving surface side sealing material sheet 1. Moreover, when the back surface side sealing material sheet 2 is made into a multilayer sealing material sheet, it is provided with sufficiently preferable molding properties and heat resistance, and solar cell element protection performance, particularly by giving the outermost layer flexibility. It is the same as that of the light-receiving surface side sealing material sheet 1 also about the point which can be used.
 <裏面側封止材シート用の封止材組成物>
 (第1の実施形態)
 以下、裏面側封止材シート2(第1の実施形態)の製造に用いる裏面側封止材シート用の封止材組成物について説明する。裏面側封止材シート(第1の実施形態)用の封止材組成物としては、波長変換層用の封止材組成物とその他の層用の封止材組成物をそれぞれ用いる。いずれの封止材組成物も、ベース樹脂としては、上述した受光面側封止材シート用の組成物と同様の各ポリエチレン系樹脂を適宜用いることができる。同ベース樹脂の密度範囲についても上記受光面側封止材シート用の組成物と同様の密度範囲の樹脂を用いることができる。又、裏面側封止材シート用の各封止材組成物にも、上記受光面側封止材シート用の組成物と同様に、上記ベース樹脂の他、更に上述のシラン変性ポリエチレン系樹脂等の密着性共重合体樹脂が適宜含有されていることが好ましい。
<Sealing material composition for back side sealing material sheet>
(First embodiment)
Hereinafter, the sealing material composition for back surface side sealing material sheets used for manufacture of the back surface side sealing material sheet 2 (1st Embodiment) is demonstrated. As the sealing material composition for the back surface side sealing material sheet (first embodiment), a sealing material composition for a wavelength conversion layer and a sealing material composition for other layers are used. In any sealing material composition, as the base resin, each polyethylene-based resin similar to the above-described composition for the light-receiving surface side sealing material sheet can be appropriately used. Regarding the density range of the base resin, a resin having a density range similar to that of the composition for the light receiving surface side sealing material sheet can be used. Further, each of the sealing material compositions for the back surface side sealing material sheet, as well as the above base resin, as well as the above silane-modified polyethylene resin, etc. It is preferable that the adhesive copolymer resin is appropriately contained.
 裏面側封止材シート(第1の実施形態)用の封止材組成物のうち波長変換層を形成するために用いる波長変換層用の封止材組成物には、波長変換剤を添加する。ここで、波長変換剤とは、太陽電池素子において吸収感度の低い波長領域の光を吸収感度の高い波長領域に波長変換して太陽池素子に入射させることによって、太陽電池モジュールの発電効率の向上に寄与するもののことを言う。無機系、有機系、或いは、それらのハイブリッド系の各種の波長変換剤が知られている。 A wavelength converting agent is added to the sealing material composition for wavelength conversion layers used in order to form a wavelength conversion layer among the sealing material compositions for back side sealing material sheets (1st Embodiment). . Here, the wavelength conversion agent means that the light generation efficiency of the solar cell module is improved by converting the light in the wavelength region with low absorption sensitivity into the wavelength region with high absorption sensitivity in the solar cell element and making it incident on the solar cell element. Say something that contributes to Various wavelength conversion agents of inorganic type, organic type, or hybrid type thereof are known.
 これらのうち、特に波長変換層用の封止材組成物には、有機系の波長変換剤を好ましく用いることができる。又、有機系の波長変換剤のうちでも、特に、数平均分子量が100以上1000以下のものを好ましく用いることができる。ベース樹脂として用いるポリエチレン系樹枝との相溶性に優れる有機系の波長変換剤を、このような、比較的分子量の大きい数平均分子量100以上の有機系の剤のみに限定することによって、封止材シートの製造初期の光学特性を極めて好ましいものとすることができる。又、波長変換剤の数平均分子量を1000以下とすることで、波長変換剤の封止材組成物中への相溶性が担保され、裏面側封止材シート2の好ましい光学特性や密着性を保持することができる。 Among these, an organic wavelength conversion agent can be preferably used particularly for the sealing material composition for the wavelength conversion layer. Among organic wavelength conversion agents, those having a number average molecular weight of 100 or more and 1000 or less can be preferably used. By limiting the organic wavelength conversion agent excellent in compatibility with the polyethylene-based dendritic used as the base resin to only such an organic agent having a relatively large molecular weight and a number average molecular weight of 100 or more, a sealing material The optical characteristics at the initial stage of production of the sheet can be made extremely favorable. In addition, by setting the number average molecular weight of the wavelength conversion agent to 1000 or less, compatibility of the wavelength conversion agent into the sealing material composition is ensured, and preferable optical characteristics and adhesion of the back surface side sealing material sheet 2 are ensured. Can be held.
 有機系波長変換剤は、上記の分子量範囲にあるものであることが好ましいが、それに限らず、従来公知の剤を特に限定なく用いることもできる。具体的には、ピラジン誘導体、ピリジン誘導体、トリアゾール誘導体、ナフトラクタム誘導体、ナフタルイミド誘導体、ベンゾキサゾイル誘導体、クマリン誘導体、スチレンビフェニル誘導体、ピラゾロン誘導体、ビス(トリアジニルアミノ)スチルベンジスルホン酸誘導体、ビススチリルビフェニル誘導体、ビスベンゾオキサゾリルチオフェン誘導体、ペリレン誘導体、ピレン誘導体、ペンタセン誘導体、フルオレセン誘導体、ローダミン誘導体、アクリジン誘導体、ベンズイミダゾール誘導体、フラボン誘導体等が挙げられる。これらのうち、特に、ピラジン誘導体、ピリジン誘導体、トリアゾール誘導体、ナフトラクタム誘導体、ナフタルイミド誘導体のうちいずれか一の誘導体又はそれらの誘導体の混合物を好ましく用いることができる。 The organic wavelength converting agent is preferably in the above molecular weight range, but not limited thereto, and conventionally known agents can be used without any particular limitation. Specifically, pyrazine derivatives, pyridine derivatives, triazole derivatives, naphtholactam derivatives, naphthalimide derivatives, benzoxazoyl derivatives, coumarin derivatives, styrene biphenyl derivatives, pyrazolone derivatives, bis (triazinylamino) stilbene disulfonic acid derivatives, bisstyryl biphenyl derivatives Bisbenzoxazolylthiophene derivatives, perylene derivatives, pyrene derivatives, pentacene derivatives, fluorescene derivatives, rhodamine derivatives, acridine derivatives, benzimidazole derivatives, flavone derivatives, and the like. Among these, in particular, any one of a pyrazine derivative, a pyridine derivative, a triazole derivative, a naphtholactam derivative, and a naphthalimide derivative or a mixture of these derivatives can be preferably used.
 これらの有機系波長変換剤の波長変換層用の封止材組成物への添加量は、封止材シートの全樹脂成分中における含有量比が、0.05質量%以上0.5質量%以下、好ましくは、0.1質量%以上0.3質量%以下となるように封止材シートの各層の厚み等に応じて調整する。上記の波長変換剤の含有量比が0.05質量%より小さいと、十分に波長変換することができないため、太陽電池モジュールの発電効率を十分に増大させることはできない。一方、上記の波長変換剤の含有量比が、0.5質量%を超えると、発電効率の向上の効果よりも、波長変換剤のブリードアウトによる封止材シートの光学特性や密着性の低下や、製造コスト増のデメリットが大きくなるため好ましくない。 The amount of these organic wavelength conversion agents added to the sealing material composition for the wavelength conversion layer is such that the content ratio in the total resin component of the sealing material sheet is 0.05% by mass or more and 0.5% by mass. Hereinafter, it is preferably adjusted according to the thickness of each layer of the encapsulant sheet so as to be 0.1 mass% or more and 0.3 mass% or less. When the content ratio of the wavelength conversion agent is smaller than 0.05% by mass, the wavelength conversion cannot be sufficiently performed, and thus the power generation efficiency of the solar cell module cannot be sufficiently increased. On the other hand, when the content ratio of the wavelength conversion agent exceeds 0.5% by mass, the optical characteristics and adhesion of the sealing material sheet are deteriorated due to the bleed-out of the wavelength conversion agent, rather than the effect of improving the power generation efficiency. In addition, it is not preferable because the disadvantage of increasing the manufacturing cost is increased.
 尚、裏面側封止材シート用の封止材組成物は、ヒンダードアミン系光安定剤を0.08質量%以上0.25質量%以下含有することが好ましく、0.1質量%以上0.15質量%以下含有することが更に好ましい。 In addition, it is preferable that the sealing material composition for back surface side sealing material sheets contains a hindered amine light stabilizer 0.08 mass% or more and 0.25 mass% or less, and 0.1 mass% or more and 0.15 mass%. More preferably, it is contained by mass% or less.
 (第2の実施形態)
 以下、裏面側封止材シート2A(第2の実施形態)の製造に用いる裏面側封止材シート用の封止材組成物について説明する。裏面側封止材シート(第2の実施形態)用の封止材組成物としては、波長変換層用の封止材組成物と、光反射層用の封止材組成物とその他の層用の封止材組成物をそれぞれ用いる。いずれの封止材組成物も、ベース樹脂としては、上述した受光面側封止材シート用の組成物と同様の各ポリエチレン系樹脂を適宜用いることができる。同ベース樹脂の密度範囲についても上記受光面側封止材シート用の組成物と同様の密度範囲の樹脂を用いることができる。又、上記ベース樹脂の他、更に上述のシラン変性ポリエチレン系樹脂等の密着性共重合体樹脂が適宜含有されていることについても同様である。
(Second Embodiment)
Hereinafter, the sealing material composition for back surface side sealing material sheets used for manufacture of back surface side sealing material sheet 2A (2nd Embodiment) is demonstrated. As the sealing material composition for the back surface side sealing material sheet (second embodiment), the sealing material composition for the wavelength conversion layer, the sealing material composition for the light reflection layer, and other layers are used. Each sealing material composition is used. In any sealing material composition, as the base resin, each polyethylene-based resin similar to the above-described composition for the light-receiving surface side sealing material sheet can be appropriately used. Regarding the density range of the base resin, a resin having a density range similar to that of the composition for the light receiving surface side sealing material sheet can be used. The same applies to the case where an adhesive copolymer resin such as the above-mentioned silane-modified polyethylene resin is appropriately contained in addition to the base resin.
 裏面側封止材シート(第2の実施形態)用の封止材組成物のうち波長変換層を形成するために用いる波長変換層用の封止材組成物には、上記の第1実施形態の場合と同様の組成物を用いることができる。但し波長変換剤の添加量については、波長変換層の厚さに応じて、封止材シートの全樹脂量に対する含有量比が上述の範囲内となるように必要に応じて適宜調整する。 Among the sealing material compositions for the back surface side sealing material sheet (second embodiment), the wavelength conversion layer sealing material composition used for forming the wavelength conversion layer is the first embodiment described above. The same composition as in the case of can be used. However, about the addition amount of a wavelength conversion agent, according to the thickness of a wavelength conversion layer, it adjusts suitably as needed so that content ratio with respect to the total resin amount of a sealing material sheet may become in the above-mentioned range.
 裏面側封止材シート(第2の実施形態)用の封止材組成物のうち光反射層23を形成するために用いる光反射層用の封止材組成物は、上記の低密度ポリエチレン樹脂をベース樹脂とし、白色封止材シートとしての好ましい外観や光反射性能を発現させるための着色材料を含有する。 Of the encapsulant composition for the back side encapsulant sheet (second embodiment), the encapsulant composition for the light reflecting layer used for forming the light reflecting layer 23 is the above-described low density polyethylene resin. Is a base resin, and contains a coloring material for expressing a preferable appearance and light reflection performance as a white sealing material sheet.
 光反射層用の封止材組成物に用いるそのような着色材料として、無機系の白色顔料を用いることができる。そのような白色顔料を含有させることにより、光反射層23を有する裏面側封止材シート2Aは、太陽電池モジュール10における非受光面側に配置された場合に、太陽電池モジュール10内への入射光を太陽電池素子3の側に反射し、太陽電池モジュール10の発電効率を顕著に向上させることができる。 An inorganic white pigment can be used as such a coloring material used for the sealing material composition for the light reflecting layer. By including such a white pigment, the back surface side sealing material sheet 2 </ b> A having the light reflecting layer 23 is incident on the solar cell module 10 when disposed on the non-light-receiving surface side of the solar cell module 10. Light is reflected to the solar cell element 3 side, and the power generation efficiency of the solar cell module 10 can be significantly improved.
 上記の無機系の白色顔料としては、例えば、炭酸カルシウム、硫酸バリウム、酸化亜鉛及び酸化チタン等を好ましく用いることができる。それらの中でも汎用性の観点から酸化チタンを特に好ましく用いることができる。 As the above-mentioned inorganic white pigment, for example, calcium carbonate, barium sulfate, zinc oxide and titanium oxide can be preferably used. Among these, titanium oxide can be particularly preferably used from the viewpoint of versatility.
 上記の白色顔料は、粒径が0.2μm以上1.5μm以下であることが好ましい。白色顔料の粒径が上記範囲にあれば、それからなる白色層は可視光線の領域に加えて近赤外線をも効率よく反射することができる。粒径が0.3μm以上1.5μm以下の白色顔料の代表例は酸化チタンであり、太陽光線の反射性能を高めるために、白色顔料として、酸化チタンを用いることが好ましい。この無機系の白色顔料は、光反射層23にのみ含有されていて、光反射層23における含有量が、5質量%以上30質量%以下であることが好ましい。又、裏面側封止材シート2Aは、光反射層23のみに白色顔料が含有される構成とすることにより、最外層の密着性が、白色顔料の影響によって低下することを抑止できる。 The above white pigment preferably has a particle size of 0.2 μm or more and 1.5 μm or less. When the particle size of the white pigment is in the above range, the white layer formed from the white pigment can efficiently reflect near infrared rays in addition to the visible light region. A typical example of a white pigment having a particle size of 0.3 μm or more and 1.5 μm or less is titanium oxide, and it is preferable to use titanium oxide as the white pigment in order to improve the reflection performance of sunlight. This inorganic white pigment is contained only in the light reflection layer 23, and the content in the light reflection layer 23 is preferably 5% by mass or more and 30% by mass or less. Moreover, 2 A of back surface sealing material sheets can suppress that the adhesiveness of an outermost layer falls by the influence of a white pigment by setting it as the structure by which a white pigment is contained only in the light reflection layer 23. FIG.
 裏面側封止材シート(第1の実施形態及び第2の実施形態)用の封止材組成物には、いずれについても、適宜、受光面側封止材シート組成物への添加物と同様の、架橋剤、架橋助剤、密着性向上剤、その他の添加物を必要に応じて、添加することができる。 The sealing material composition for the back surface side sealing material sheet (first embodiment and second embodiment) is appropriately the same as the additive to the light receiving surface side sealing material sheet composition. A crosslinking agent, a crosslinking aid, an adhesion improver, and other additives can be added as necessary.
 <封止材シートの製造方法>
 [シート化工程]
 上記においてそれぞれその詳細を説明した受光面側及び裏面側各封止材シートは、通常の熱可塑性樹脂において通常用いられる成形法、即ち、射出成形、押出成形、中空成形、圧縮成形、回転成形等の各種成形法により行われる。多層シートとしての成形方法としては、一例として、二種以上の溶融混練押出機による共押出により成形する方法が挙げられる。
<Method for producing sealing material sheet>
[Sheet making process]
Each of the light receiving surface side and back surface side sealing material sheets, the details of which are described above, is a molding method usually used in ordinary thermoplastic resins, that is, injection molding, extrusion molding, hollow molding, compression molding, rotational molding, etc. The various molding methods are used. As an example of the forming method as the multilayer sheet, a method of forming by co-extrusion with two or more melt-kneading extruders can be given.
 成形時の成形温度の下限は各封止材組成物の融点を超える温度であればよい。成形温度の上限は、架橋剤を使用する場合には、使用する架橋剤の1分間半減期温度に応じて、製膜中に架橋が開始しない温度、即ち、封止材組成物のゲル分率を0%に維持できる温度であればよい。ここで、本発明の封止材シートの製造方法においては、封止材組成物中において架橋剤が必須ではなく、架橋剤を添加する場合であってもその含有量は0.5質量%未満に限定されている。このため、通常の低密度ポリエチレン樹脂の成形温度、例えば、120℃程度の加熱条件下では、ゲル分率の変化は現れず、樹脂の物性に実質的な影響を与えるような架橋は進行しない。又、電離放射線の照射によって架橋処理を行う場合には、モジュール化工程での加熱条件の制約から解放されて、従来よりも1分間半減期温度の高い架橋剤を使用することもできる。この場合、成形温度を従来よりも高温に設定しても、封止材組成物のゲル分率を0%に維持することができる。製膜中の封止材組成物のゲル分率を0%に維持する製造方法によれば、製膜時に押出機等にかかる負荷を低減し、封止材シートの生産性を高めることが可能である。 The lower limit of the molding temperature at the time of molding may be a temperature exceeding the melting point of each sealing material composition. The upper limit of the molding temperature is, when a crosslinking agent is used, the temperature at which crosslinking does not start during film formation, that is, the gel fraction of the encapsulant composition, depending on the 1 minute half-life temperature of the crosslinking agent used. The temperature may be any temperature that can be maintained at 0%. Here, in the method for producing a sealing material sheet of the present invention, a crosslinking agent is not essential in the sealing material composition, and even when a crosslinking agent is added, its content is less than 0.5% by mass. It is limited to. For this reason, under a normal low density polyethylene resin molding temperature, for example, a heating condition of about 120 ° C., the gel fraction does not change, and the crosslinking that substantially affects the physical properties of the resin does not proceed. In addition, when the crosslinking treatment is performed by irradiation with ionizing radiation, a crosslinking agent having a half-life temperature higher than that of the conventional one can be used, which is freed from the restriction of heating conditions in the modularization process. In this case, the gel fraction of the encapsulant composition can be maintained at 0% even when the molding temperature is set higher than before. According to the manufacturing method that maintains the gel fraction of the encapsulant composition during film formation at 0%, it is possible to reduce the load on the extruder during film formation and increase the productivity of the encapsulant sheet. It is.
 [架橋工程]
 上記のシート化工程後の未架橋の封止材シートに対して、電離放射線による架橋処理を施す架橋工程を、シート化工程の終了後、且つ、封止材シートを他の部材と一体化する太陽電池モジュール一体化工程の開始前に行うことが好ましい。この架橋処理によってゲル分率が2%以上80%以下となる封止材シートとする。尚、本明細書におけるゲル分率(%)とは、封止材シート0.1gを樹脂メッシュに入れ、60℃トルエンにて4時間抽出したのち、樹脂メッシュごと取出し乾燥処理後秤量し、抽出前後の質量比較を行い、残留不溶分の質量%を測定しこれをゲル分率としたものである。
[Crosslinking process]
A cross-linking step of performing a cross-linking process by ionizing radiation on the uncross-linked encapsulant sheet after the sheet forming step is integrated with the other members after the completion of the sheet forming step. It is preferably performed before the start of the solar cell module integration step. By this crosslinking treatment, a sealing material sheet having a gel fraction of 2% to 80% is obtained. The gel fraction (%) in this specification refers to 0.1 g of a sealing material sheet placed in a resin mesh, extracted with 60 ° C. toluene for 4 hours, then taken out of the resin mesh, dried, weighed and extracted. The mass ratio before and after is compared, the mass% of the remaining insoluble matter is measured, and this is used as the gel fraction.
 電離放射線の照射による架橋処理については、個別の架橋条件は特に限定されない。大凡の具体的な照射量の目安としては、架橋処理後の中間層のゲル分率が、10%程度以上の範囲となるように適宜設定すればよい。具体的には、電子線(EB)、α線、β線、γ線、中性子線等の電離放射線によって行うことができるが、なかでも電子線を用いることが好ましい。又、電離放射線の照射は、尚、電離放射線の照射は、片面側から或いは両面側からの照射いずれであってもよい。生産性向上の観点から、一方の最外層面側からのみの照射である片面照射が好ましい。 Regarding the crosslinking treatment by irradiation with ionizing radiation, individual crosslinking conditions are not particularly limited. As a rough standard of specific irradiation amount, it may be appropriately set so that the gel fraction of the intermediate layer after the crosslinking treatment is in a range of about 10% or more. Specifically, it can be performed by ionizing radiation such as electron beam (EB), α-ray, β-ray, γ-ray, neutron beam, etc. Among them, it is preferable to use an electron beam. Further, the ionizing radiation may be irradiated from either one side or both sides. From the viewpoint of improving productivity, single-sided irradiation that is irradiation only from one outermost layer side is preferable.
 電離放射線の照射を上記片面照射によって行う場合、加速電圧は、被照射体であるシート厚みによって決まり、厚いシートほど大きな加速電圧を必要とする。例えば、0.6mm厚みのシートでは、200kV以上1000kV以下、好ましくは250kV以上1000kV以下で照射する。加速電圧が200kV未満であると、非照射面側の最外層まで電子が透過せず、受光面側封止材シート1の耐熱性が不十分となる。一方、加速電圧が1000kVを超えると、多層シートの全層に均一に電子が透過し、封止材シートの好ましい柔軟性が保持できない場合がある。尚、照射線量は5kGy以上800kGy以下、好ましくは100kGy以上500kGy以下の範囲である。又、照射は大気雰囲気下でもよく窒素雰囲気下であってもよい。 When ionizing radiation is applied by single-sided irradiation, the acceleration voltage is determined by the thickness of the sheet that is the object to be irradiated, and a thicker sheet requires a larger acceleration voltage. For example, in the case of a sheet having a thickness of 0.6 mm, irradiation is performed at 200 kV to 1000 kV, preferably 250 kV to 1000 kV. When the acceleration voltage is less than 200 kV, electrons do not pass to the outermost layer on the non-irradiation surface side, and the heat resistance of the light-receiving surface side sealing material sheet 1 becomes insufficient. On the other hand, if the acceleration voltage exceeds 1000 kV, electrons may be transmitted uniformly to all layers of the multilayer sheet, and the preferable flexibility of the encapsulant sheet may not be maintained. The irradiation dose is in the range of 5 kGy to 800 kGy, preferably 100 kGy to 500 kGy. Irradiation may be in an air atmosphere or a nitrogen atmosphere.
 尚、この架橋処理はシート化工程に続いて連続的にインラインで行われてもよく、オフラインで行われてもよい。又、架橋処理が一般的な加熱処理である場合は、一般的に、架橋剤の含有量として封止材シートの全成分100質量部に対して0.5質量部以上1.5質量部以下が必要とされているが、本願発明の封止材シートにおいては、架橋剤の含有量が0であってもよく、含有する場合であっても0.5質量部未満であることが好ましい。これにより、封止材組成物のシート化工程における封止材組成物のゲル化による生産性低下のリスクが低減できる。 In addition, this crosslinking process may be performed continuously in-line following the sheet forming step, or may be performed off-line. Further, when the crosslinking treatment is a general heat treatment, generally, the content of the crosslinking agent is 0.5 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of all components of the sealing material sheet. However, in the sealing material sheet of the present invention, the content of the crosslinking agent may be 0, and even if it is contained, it is preferably less than 0.5 parts by mass. Thereby, the risk of the productivity fall by gelatinization of the sealing material composition in the sheeting process of a sealing material composition can be reduced.
 以上、実施形態を示して本発明を具体的に説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の範囲において、適宜変更を加えて実施することができる。 Although the present invention has been specifically described with reference to the embodiments, the present invention is not limited to the above embodiments, and can be implemented with appropriate modifications within the scope of the present invention.
 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
 <封止材シートの製造>
 以下において説明する封止材組成物の原料を、封止材組成物中の含有量が、それぞれ下記表1の割合になるように混合し、それぞれ実施例、比較例の封止材シートの内層用及び外層用封止材シートを作成するための封止材組成物(表1中、封止材1~7と記す)とした。それぞれの封止材組成物をφ30mm押出し機、200mm幅のTダイを有するフィルム成形機を用いて、押出し温度210℃、引き取り速度1.1m/minで内層用及び外層用封止材シートを作製し、これらの内層用及び外層用封止材シートを積層して、3層の太陽電池モジュール用封止材シートとした。これらの封止材シートは、いずれも、厚さ600μm、外層:内層:外層の厚さの比を1:4:1とした。尚、封止材組成物の原料としては、以下の原料を使用した。尚、表1に記す通り、封止材1~5は、紫外線吸収剤及び波長変換剤は含有しない、所謂UVスルータイプの封止材シート、封止材6は、波長変換層を有する封止材シート、封止材7は、波長変換層に加えて更に光反射層を有する封止材シートを製造するための組成物としてそれぞれ調合するものである。
<Manufacture of sealing material sheet>
The raw materials of the encapsulant composition described below are mixed so that the contents in the encapsulant composition are in the proportions shown in Table 1 below, and the inner layers of the encapsulant sheets of Examples and Comparative Examples, respectively. And a sealing material composition for preparing a sealing material sheet for an outer layer (referred to as sealing materials 1 to 7 in Table 1). Each sealing material composition is produced by using a φ30 mm extruder and a film forming machine having a 200 mm wide T die at an extrusion temperature of 210 ° C. and a take-off speed of 1.1 m / min to produce an inner layer and an outer layer sealing material sheet. Then, these inner layer and outer layer sealing material sheets were laminated to obtain a three-layer solar cell module sealing material sheet. All of these encapsulant sheets had a thickness of 600 μm, and the outer layer: inner layer: outer layer thickness ratio was 1: 4: 1. In addition, as a raw material of a sealing material composition, the following raw materials were used. As shown in Table 1, the sealing materials 1 to 5 do not contain an ultraviolet absorber or a wavelength conversion agent, so-called UV-through type sealing material sheet, and the sealing material 6 has a wavelength conversion layer. The material sheet and the sealing material 7 are respectively prepared as compositions for producing a sealing material sheet having a light reflection layer in addition to the wavelength conversion layer.
 [ポリエチレン系樹脂]
 メタロセン系直鎖低密度ポリエチレン(M-LLDPE):密度0.880g/cm、190℃でのMFRが3.5g/10分のメタロセン系直鎖状低密度ポリエチレンをベース樹脂として用いた(表1中「PE」と記載)。
[Polyethylene resin]
Metallocene linear low density polyethylene (M-LLDPE): Metallocene linear low density polyethylene having a density of 0.880 g / cm 3 and MFR at 190 ° C. of 3.5 g / 10 min was used as a base resin (Table 1 and described as “PE”).
 [シラン変性ポリエチレン系樹脂]
 シラン架橋性樹脂:密度0.881g/cmであり、190℃でのMFRが2g/10分であるメタロセン系直鎖状低密度ポリエチレン(M-LLDPE)98質量部に対して、ビニルトリメトキシシラン2質量部と、ラジカル発生剤(反応触媒)としてのジクミルパーオキサイド0.1質量部とからなるシラン架橋性樹脂をベース樹脂に混合するシラン変性ポリエチレン樹脂として用いた。この樹脂の密度は0.884g/cm、190℃でのMFRが1.8g/10分である(表1中「S-PE」と記載)。
[Silane-modified polyethylene resin]
Silane crosslinkable resin: vinyl trimethoxy with respect to 98 parts by mass of metallocene linear low density polyethylene (M-LLDPE) having a density of 0.881 g / cm 3 and an MFR at 190 ° C. of 2 g / 10 min. A silane crosslinkable resin composed of 2 parts by mass of silane and 0.1 parts by mass of dicumyl peroxide as a radical generator (reaction catalyst) was used as a silane-modified polyethylene resin mixed with the base resin. This resin has a density of 0.884 g / cm 3 and an MFR at 190 ° C. of 1.8 g / 10 min (described as “S-PE” in Table 1).
 [光安定剤]
 光安定剤として、密度0.880g/cmのチーグラー直鎖状低密度ポリエチレンを粉砕したパウダー100質量部に対して、ヒンダードアミン系光安定化剤(ケミプロ化成株式会社製:KEMISTAB62)2.28質量部を混合して溶融、加工し、ペレット化したマスターバッチ(MB)を作成した(表1中「HALS」と記載)。
[Light stabilizer]
As a light stabilizer, hindered amine light stabilizer (Kemipro Kasei Co., Ltd .: KEMISTAB62) 2.28 mass with respect to 100 mass parts of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 The parts were mixed, melted, processed, and pelletized master batch (MB) was prepared (described as “HALS” in Table 1).
 [波長変換剤]
 波長変換剤として、密度0.880g/cmのチーグラー直鎖状低密度ポリエチレンを粉砕したパウダー100質量部に対して、トリアゾール誘導体(数平均分子量:323)1質量部を混合して溶融、加工し、ペレット化したマスターバッチ(MB)を作成した。
[Wavelength conversion agent]
As a wavelength converting agent, 100 parts by mass of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 is mixed with 1 part by mass of a triazole derivative (number average molecular weight: 323) to be melted and processed. A pelletized master batch (MB) was prepared.
 [白色顔料]
 白色顔料として、密度0.880g/cmのチーグラー直鎖状低密度ポリエチレンを粉砕したパウダー100質量部に対して、酸化チタン(デュポン株式会社製:R105 粒径0.3μm)60質量部とを混合して溶融、加工し、ペレット化したマスターバッチ(MB)を作成した。
[White pigment]
As a white pigment, with respect to 100 parts by mass of powder obtained by pulverizing Ziegler linear low density polyethylene having a density of 0.880 g / cm 3 , 60 parts by mass of titanium oxide (manufactured by DuPont: R105, particle size 0.3 μm) A master batch (MB) was prepared by mixing, melting, processing, and pelletizing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <裏面保護シートの製造>
 裏面保護シートとしては、下記の樹脂基材を用いた。
 樹脂基材:ポリエチレンテレフタレート(PET)基材:厚さ188μm(商品名「ルミラーS10」、東レ社製)
<Manufacture of backside protection sheet>
The following resin base material was used as the back surface protection sheet.
Resin base material: Polyethylene terephthalate (PET) base material: thickness 188 μm (trade name “Lumirror S10”, manufactured by Toray Industries, Inc.)
 <太陽電池素子>
 太陽電池素子としては、PVGS社製n型6インチ単結晶両面受光タイプ(表2中、「セル1」と記載)と、T-SEC社製p型6インチ単結晶片面受光タイプ(表2中、「セル2」と記載)を用いた。
<Solar cell element>
As solar cell elements, n-type 6-inch single crystal double-sided light receiving type manufactured by PVGS (described as “cell 1” in Table 2) and p-type 6-inch single-crystal single-sided light receiving type manufactured by T-SEC (in Table 2) , Described as “Cell 2”).
 <太陽電池モジュールの製造>
 上記の各封止材シート、裏面保護シート、及び各太陽電池素子を用いて、実施例及び比較例の太陽電池モジュール評価用試料を製造した。透明前面基板としては、白板半強化ガラス(JPT3.2 75mm×50mm×3.2mm)を用いた。上記各部材を、図1に示す一般的な層構成に沿って積層し、下記のラミネート条件で、真空加熱ラミネート処理を行い、それぞれの実施例、比較例について太陽電池モジュール評価用試料を得た。尚、各封止材シート、各太陽電池モジュール評価用試料において、それぞれ、表2に記載の通りの配置で受光面側又は裏面側に積層した。各太陽電池素子は、表2に記載のセルを各モジュールにつき1個配置した。
 (ラミネート条件)  真空引き:5.0分
            加圧(0kPa~100kPa):1.0分
            圧力保持(100kPa):10.0分
            温度165℃
<Manufacture of solar cell modules>
The solar cell module evaluation sample of an Example and a comparative example was manufactured using each said sealing material sheet | seat, back surface protection sheet, and each solar cell element. As the transparent front substrate, white plate semi-tempered glass (JPT3.2 75 mm × 50 mm × 3.2 mm) was used. Each of the above members was laminated according to the general layer configuration shown in FIG. 1, and vacuum heating laminating was performed under the following laminating conditions, and solar cell module evaluation samples were obtained for the respective examples and comparative examples. . In addition, in each sealing material sheet and each sample for solar cell module evaluation, it laminated | stacked on the light-receiving surface side or the back surface side by arrangement | positioning as shown in Table 2, respectively. Each solar cell element has one cell shown in Table 2 arranged for each module.
(Lamination condition) Vacuum drawing: 5.0 minutes Pressurization (0 kPa to 100 kPa): 1.0 minutes Pressure holding (100 kPa): 10.0 minutes Temperature 165 ° C.
 <評価例1>
 (PV特性)
 各試料の初期の出力を測定することにより、それぞれのPV特性を評価した。具体的には、ソーラーシュミレータ(英弘精機株式会社製EWXS-300S-50)を用いて、セル裏面温度25℃、照度100mW/cmの条件で行った。評価基準については、初期出力で、両面受光タイプのセル1を用いた例については、9.30A以上を「A」、9.25A以上9.30A未満を「B」、9.25A未満を「C」とし、片面受光タイプのセル2を用いた例については、9.00A以上を「A」、8.95A以上9.00A未満を「B」、8.95A未満を「C」として評価した。測定結果と評価結果を表2に示す。
<Evaluation Example 1>
(PV characteristics)
Each PV characteristic was evaluated by measuring the initial output of each sample. Specifically, a solar simulator (EWXS-300S-50 manufactured by Eihiro Seiki Co., Ltd.) was used under the conditions of a cell back surface temperature of 25 ° C. and an illuminance of 100 mW / cm 2 . Regarding the evaluation criteria, in the case of using the double-sided light receiving type cell 1 at the initial output, “A” is 9.30A or more, “B” is 9.25A or more and less than 9.30A, and “9” is less than 9.25A. In the example using the single-sided light receiving type cell 2, “A” was evaluated as “A”, 8.95A or more and less than 9.00A as “B”, and less than 8.95A as “C”. . Table 2 shows the measurement results and the evaluation results.
 <評価例2>
 評価例1で用いた各太陽電池モジュール評価用試料について、下記の「高強度キセノン照射試験」を行い、1500時間経過後のモジュールとしてのイエローインデックス(YI)を測定して黄変の程度を評価した。YIは、JISZ8722に準拠し、D65光源、10°視野角の条件によって、KONICA MINOLTA分光測色計CM-700dを用いて、各モジュールの「透明前面基板/受光面側封止材/裏面側封止材/裏面保護シート」の積層箇所に透明前面基板側から光源を当てることで測定を行った。このYIの測定を下記耐光試験の前後で行い、その変化量ΔYI=YI(試験後)-YI(試験前)を算出してYIを評価した。評価基準については、ΔYIが、1.5未満を「A」、1.5以上3未満を「B」、3以上を「C」とした。評価結果を表2に示す。
<Evaluation Example 2>
Each solar cell module evaluation sample used in Evaluation Example 1 is subjected to the following “high-intensity xenon irradiation test”, and the yellow index (YI) as a module after 1500 hours has been measured to evaluate the degree of yellowing. did. YI is compliant with JISZ8722, using a KONICA MINOLTA spectrocolorimeter CM-700d under the conditions of a D65 light source and a 10 ° viewing angle, “transparent front substrate / light receiving surface side sealing material / back side sealing The measurement was performed by applying a light source from the transparent front substrate side to the laminated portion of the “stop material / back surface protective sheet”. This YI was measured before and after the following light resistance test, and the amount of change ΔYI = YI (after test) −YI (before test) was calculated to evaluate YI. Regarding the evaluation criteria, ΔYI was set to “A” when less than 1.5, “B” when 1.5 or more and less than 3, and “C” when 3 or more. The evaluation results are shown in Table 2.
 <評価例3>
 評価例1及び2で用いた各太陽電池モジュール評価用試料について、評価例2と同一条件で「高強度キセノン照射試験」を行い、試験後の各太陽電池モジュール評価用試料における受光面側封止材とガラス基板との密着にかかる耐久性を評価した。耐久性の測定は、上記試験(1500時間経過後)後のガラス面と封止材シートとの界面におけるデラミの発生の有無を目視で確認することにより行った。デラミの発生が全く認められなかったものを「A」、デラミの発生が認められなかったものを「C」として評価した。評価結果を表2に示す。
<Evaluation Example 3>
For each solar cell module evaluation sample used in Evaluation Examples 1 and 2, a “high-intensity xenon irradiation test” is performed under the same conditions as in Evaluation Example 2, and the light-receiving surface side sealing in each solar cell module evaluation sample after the test Durability concerning adhesion between the material and the glass substrate was evaluated. The durability was measured by visually confirming the occurrence of delamination at the interface between the glass surface and the sealing material sheet after the above test (after 1500 hours). The case where no delamination was observed was evaluated as “A”, and the case where no delamination was observed was evaluated as “C”. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例の各モジュールは、裏面側封止材シートが波長変換層を有さない比較例1、5のモジュールよりも顕著にIsc値(短絡電流、単位A)が高く、優れた発電効率を発揮しうるものであることが分かる。又、受光面側封止材シートのHALSの含有量が本願の規定範囲外である比較例2~4及び6~7のモジュールは、耐久性或いはPV特性において本発明のモジュールよりも劣後することが明らかである。評価例1~3の結果より、本発明の太陽電池モジュールは、長期に亘って良好な発電効率を維持することができる太陽電池モジュールであることが分かる。 From Table 2, each module of the example has a significantly higher Isc value (short-circuit current, unit A) than the modules of Comparative Examples 1 and 5 in which the back surface side sealing material sheet does not have the wavelength conversion layer, and is excellent. It can be seen that the power generation efficiency can be exhibited. Further, the modules of Comparative Examples 2 to 4 and 6 to 7 in which the HALS content of the light-receiving surface side sealing material sheet is outside the specified range of the present application are inferior to the module of the present invention in terms of durability or PV characteristics. Is clear. From the results of Evaluation Examples 1 to 3, it can be seen that the solar cell module of the present invention is a solar cell module capable of maintaining good power generation efficiency over a long period of time.
 1      受光面側封止材シート
 2      裏面側封止材シート
 21、21A 波長変換層
 22、22A 最外層
 23     光反射層
 3      太陽電池素子
 4      透明前面基板
 5      裏面保護シート
 10     太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 Light-receiving surface side sealing material sheet 2 Back surface side sealing material sheet 21, 21A Wavelength conversion layer 22, 22A Outermost layer 23 Light reflection layer 3 Solar cell element 4 Transparent front substrate 5 Back surface protection sheet 10 Solar cell module

Claims (4)

  1.  太陽電池素子と、
     前記太陽電池素子の受光面側に配置される受光面側封止材シートと、
     前記太陽電池素子の裏面側に配置される裏面側封止材シートと、
     前記裏面側封止材シートの裏面側に配置される裏面保護シートと、を備える太陽電池モジュールであって、
     前記受光面側封止材シート及び前記裏面側封止材シートは、密度0.870g/cm以上0.970g/cm以下の低密度ポリエチレンをベース樹脂とし、
     前記受光面側封止材シートは、ヒンダードアミン系光安定剤を0.08質量%以上0.25質量%以下含有し、紫外線吸収剤及び波長変換剤は実質的に含有せず、
     前記裏面側封止材シートは、単層又は多層のシートであって、少なくともいずれか一の層が波長変換剤を含有する波長変換層である太陽電池モジュール。
    A solar cell element;
    A light-receiving surface side sealing material sheet disposed on the light-receiving surface side of the solar cell element;
    A back side sealing material sheet disposed on the back side of the solar cell element;
    A back surface protective sheet disposed on the back surface side of the back surface side sealing material sheet, and a solar cell module comprising:
    The light receiving side sealing material sheet and the back side sealing material sheet, and a density of 0.870 g / cm 3 or more 0.970 g / cm 3 or less of low density polyethylene-based resin,
    The light-receiving surface side sealing material sheet contains 0.08% by mass or more and 0.25% by mass or less of a hindered amine light stabilizer, and does not substantially contain an ultraviolet absorber and a wavelength conversion agent.
    The said back surface side sealing material sheet | seat is a solar cell module which is a single layer or a multilayer sheet | seat, Comprising: At least any one layer is a wavelength conversion layer containing a wavelength conversion agent.
  2.  前記裏面側封止材シートが、中間層と、その両面に配置される最外層と、を含んでなる多層シートであって、
     前記中間層は、前記波長変換剤を含有し、
     前記最外層は、前記波長変換剤が含まれる場合、その含有量比は、前記中間層における前記波長変換剤の含有量比よりも小さい請求項1に記載の太陽電池モジュール。
    The back surface side sealing material sheet is a multilayer sheet comprising an intermediate layer and outermost layers disposed on both sides thereof,
    The intermediate layer contains the wavelength conversion agent,
    The said outermost layer is a solar cell module of Claim 1 whose content ratio is smaller than the content ratio of the said wavelength conversion agent in the said intermediate | middle layer, when the said wavelength conversion agent is contained.
  3.  前記裏面側封止材シートが、多層のシートであって、前記波長変換層よりも非受光面側寄りの位置に、白色顔料を含有してなる光反射層が配置されている請求項1又は2に記載の太陽電池モジュール。 The said back surface side sealing material sheet | seat is a multilayer sheet | seat, Comprising: The light reflection layer containing a white pigment is arrange | positioned in the position near the non-light-receiving surface side rather than the said wavelength conversion layer. 2. The solar cell module according to 2.
  4.  前記波長変換剤が、ピラジン誘導体、ピリジン誘導体、トリアゾール誘導体、ナフトラクタム誘導体、ナフタルイミド誘導体のうちいずれか一の誘導体又はそれらの誘導体の混合物である請求項1から3のいずれかに記載の太陽電池モジュール。 The solar cell module according to any one of claims 1 to 3, wherein the wavelength conversion agent is any one of a pyrazine derivative, a pyridine derivative, a triazole derivative, a naphtholactam derivative, and a naphthalimide derivative, or a mixture of these derivatives. .
PCT/JP2016/052120 2015-01-28 2016-01-26 Solar cell module WO2016121733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-014774 2015-01-28
JP2015014774 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121733A1 true WO2016121733A1 (en) 2016-08-04

Family

ID=56543344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052120 WO2016121733A1 (en) 2015-01-28 2016-01-26 Solar cell module

Country Status (1)

Country Link
WO (1) WO2016121733A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079916A (en) * 2017-10-24 2019-05-23 株式会社カネカ Back-contact type solar battery module
JP2020071239A (en) * 2018-10-29 2020-05-07 大日本印刷株式会社 Daylighting film, window member, and daylighting film construction method
JP7466545B2 (en) 2018-09-11 2024-04-12 ベーアーエスエフ・エスエー Receiver with luminous concentrator for optical data communications - Patents.com

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214641A (en) * 2002-12-16 2004-07-29 Dainippon Printing Co Ltd Filler sheet for solar cell module, and the solar cell module using the same
JP2006066682A (en) * 2004-08-27 2006-03-09 Canon Inc Solar cell module
JP2012129391A (en) * 2010-12-16 2012-07-05 Lintec Corp Solar cell module and backside protective sheet for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214641A (en) * 2002-12-16 2004-07-29 Dainippon Printing Co Ltd Filler sheet for solar cell module, and the solar cell module using the same
JP2006066682A (en) * 2004-08-27 2006-03-09 Canon Inc Solar cell module
JP2012129391A (en) * 2010-12-16 2012-07-05 Lintec Corp Solar cell module and backside protective sheet for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079916A (en) * 2017-10-24 2019-05-23 株式会社カネカ Back-contact type solar battery module
JP7466545B2 (en) 2018-09-11 2024-04-12 ベーアーエスエフ・エスエー Receiver with luminous concentrator for optical data communications - Patents.com
JP2020071239A (en) * 2018-10-29 2020-05-07 大日本印刷株式会社 Daylighting film, window member, and daylighting film construction method

Similar Documents

Publication Publication Date Title
JP5556934B1 (en) Manufacturing method of sealing material sheet for solar cell module
JP6822457B2 (en) A method for manufacturing a sealing material composition for a solar cell module and a sealing material sheet for a solar cell module.
WO2013084849A1 (en) Solar cell module
JP6303371B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP7347568B2 (en) Encapsulant sheet for solar cell modules
JP6106945B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP5967115B2 (en) Combination set of encapsulant composition for solar cell module, encapsulant sheet, and method for producing encapsulant sheet
JP2015147899A (en) Encapsulation material sheet for solar cell module and method for manufacturing the same
WO2016121733A1 (en) Solar cell module
JP2016021433A (en) Seal-material sheet for solar battery module use and manufacturing method thereof
JP6476967B2 (en) Sealant sheet for solar cell module
JP2022089891A (en) Sealing material sheet for solar cell module
JP5273860B2 (en) Solar cell module
JP6413411B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP6716859B2 (en) Colored encapsulant sheet for solar cell module
JP6384162B2 (en) Solar cell module
JP6303365B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP6287006B2 (en) Manufacturing method of sealing material sheet for solar cell module
JP6248669B2 (en) Sealant sheet for solar cell module
JP2018050027A (en) Solar cell module
JP6446868B2 (en) SEALING MATERIAL SHEET FOR SOLAR CELL MODULE AND METHOD FOR PRODUCING THE SAME
JP6660037B2 (en) Solar cell module
JP6724971B2 (en) Solar cell module encapsulant composition, and method for producing encapsulant sheet for solar cell module
JP6665956B2 (en) Solar cell module
JP5699382B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP