WO2016121655A1 - Glass material and method for manufacturing same - Google Patents

Glass material and method for manufacturing same Download PDF

Info

Publication number
WO2016121655A1
WO2016121655A1 PCT/JP2016/051902 JP2016051902W WO2016121655A1 WO 2016121655 A1 WO2016121655 A1 WO 2016121655A1 JP 2016051902 W JP2016051902 W JP 2016051902W WO 2016121655 A1 WO2016121655 A1 WO 2016121655A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass material
content
raw material
present
Prior art date
Application number
PCT/JP2016/051902
Other languages
French (fr)
Japanese (ja)
Inventor
太志 鈴木
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015224404A external-priority patent/JP6694154B2/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201680007774.4A priority Critical patent/CN107207321A/en
Priority to US15/503,012 priority patent/US10227254B2/en
Publication of WO2016121655A1 publication Critical patent/WO2016121655A1/en
Priority to US15/704,126 priority patent/US10093574B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a glass material suitable for a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, and a magnetic sensor, and a manufacturing method thereof.
  • a glass material containing terbium oxide which is a paramagnetic compound, exhibits a Faraday effect which is one of magneto-optical effects.
  • the Faraday effect is an effect of rotating the polarization plane of linearly polarized light passing through a material placed in a magnetic field. Such effects are used in optical isolators, magnetic field sensors, and the like.
  • the optical rotation (rotation angle of the polarization plane) ⁇ due to the Faraday effect is expressed by the following equation, where H is the strength of the magnetic field and L is the length of the substance through which the polarized light passes.
  • V is a constant depending on the type of substance, and is called Verde's constant.
  • the Verde constant is a positive value for a diamagnetic material and a negative value for a paramagnetic material. The greater the absolute value of the Verde constant, the greater the absolute value of the optical rotation, resulting in a large Faraday effect.
  • an object of the present invention is to provide a glass material that exhibits a Faraday effect greater than that of the conventional art.
  • the glass material of the present invention is characterized by containing 48% or more (but not including 48%) of Tb 2 O 3 in mol%.
  • the glass material of the present invention has a large Verde constant due to containing a large amount of Tb 2 O 3 as described above. As a result, the Faraday effect which is larger than the conventional one is shown.
  • glass materials containing a large amount of Tb 2 O 3 are generally difficult to crow.
  • the content of Tb 2 O 3 is preferably 80% or less in terms of mol%. If the content of Tb 2 O 3 is in the above range, vitrification can be performed relatively easily.
  • the glass material of the present invention further contains, in mol%, SiO 2 0-50%, B 2 O 3 0-50%, Al 2 O 3 0-50%, P 2 O 5 0-50%. Is preferred. Since SiO 2 , B 2 O 3 , Al 2 O 3 , and P 2 O 5 are components constituting a glass skeleton, vitrification can be performed relatively easily by containing these components.
  • the glass material of the present invention can be used as a magneto-optical element.
  • the glass material of the present invention can be used as a Faraday rotation element which is a kind of magneto-optical element. By using it for the above application, the effects of the present invention can be enjoyed.
  • the method for producing a glass material according to the present invention is a method for producing the above glass material, and after the glass material lump is suspended and held, the glass material lump is heated and melted to obtain a molten glass. And a step of cooling the molten glass.
  • a glass material is produced by melting a raw material in a melting container such as a crucible and cooling (melting method).
  • a melting container such as a crucible and cooling (melting method).
  • the glass material of the present invention has a composition containing a large amount of Tb 2 O 3 that does not basically constitute a glass skeleton as described above, and is a material that is difficult to vitrify. There is a problem that crystallization proceeds from the contact interface with the substrate.
  • composition Even if the composition is difficult to vitrify, it can be vitrified by eliminating contact at the interface with the melting vessel.
  • a containerless floating method in which a raw material is melted and cooled in a suspended state is known. When this method is used, since the molten glass hardly comes into contact with the melting vessel, crystallization starting from the interface with the melting vessel can be prevented, and vitrification becomes possible.
  • the glass material of the present invention contains 48% or more (but not 48%) of Tb 2 O 3 in mol%, preferably 49% or more, particularly preferably 50% or more.
  • Tb 2 O 3 is too small, the absolute value of the Verdet constant is reduced, a sufficient Faraday effect is difficult to obtain.
  • the content of Tb 2 O 3 is too large, vitrification tends to be difficult, and therefore it is preferably 80% or less, 75% or less, and particularly preferably 70% or less.
  • the content of trivalent oxide is prescribed
  • the magnetic moment that causes the Verde constant for Tb is greater for Tb 3+ than for Tb 4+ . Therefore, the larger the ratio of Tb 3+ in the glass material, the greater the Faraday effect, which is preferable.
  • the ratio of Tb 3+ in the total Tb is preferably 50% or more, 60% or more, 70% or more, 80% or more, and particularly 90% or more in mol%.
  • the glass material of the present invention can contain various components shown below. In the following description regarding the content of each component, “%” means “mol%” unless otherwise specified.
  • SiO 2 , B 2 O 3 and P 2 O 5 are components that become a glass skeleton and widen the vitrification range. However, since these components do not contribute to the improvement of the Verde constant, if the content is too large, it is difficult to obtain a sufficient Faraday effect. Accordingly, the contents of SiO 2 , B 2 O 3 and P 2 O 5 are preferably 0 to 50%, 1 to 45%, particularly 2 to 40%, respectively.
  • the total amount of SiO 2 and B 2 O 3 is preferably 0 to 52%, 15 to 51%, particularly 20 to 50%.
  • the total amount of B 2 O 3 and P 2 O 5 is preferably 0 to 52%, 15 to 51%, particularly preferably 20 to 50%.
  • the total amount of SiO 2 , B 2 O 3 and P 2 O 5 is preferably 0 to 52%, 15 to 51%, particularly preferably 20 to 50%.
  • Al 2 O 3 is a component that forms a glass skeleton as an intermediate oxide and widens the vitrification range.
  • the content of Al 2 O 3 is preferably 0 to 50%, 0.1 to 40%, 1 to 30%, 1 to 20%, particularly 1 to 10%.
  • La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , and Y 2 O 3 have the effect of stabilizing the glass, but if the content is too large, it becomes difficult to vitrify. Therefore, the contents of La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 and Y 2 O 3 are each preferably 10% or less, particularly preferably 5% or less.
  • Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 stabilize the glass and contribute to the improvement of the Verde constant.
  • the contents of Dy 2 O 3 , Eu 2 O 3 and Ce 2 O 3 are each preferably 15% or less, particularly preferably 10% or less.
  • the content of the trivalent oxide is specified, but for oxides other than trivalent (for example, CeO 2 etc.), the content when converted to the trivalent oxide The amount is preferably within the above range.
  • the content of these components is preferably 0 to 10%, particularly 0 to 5%.
  • Ga 2 O 3 has the effect of increasing the glass forming ability and expanding the vitrification range. However, when there is too much the content, it will become easy to devitrify. Further, since the Ga 2 O 3 it does not contribute to the improvement of the Verdet constant, when the content is too large, a sufficient Faraday effect difficult to obtain. Therefore, the Ga 2 O 3 content is preferably 0 to 6%, particularly preferably 0 to 5%.
  • Fluorine has the effect of increasing the glass forming ability and expanding the vitrification range. However, if the content is too large, the composition volatilizes during melting and the composition may change, or the stability of the glass may be affected. Therefore, the fluorine content (F 2 conversion) is preferably 0 to 10%, more preferably 0 to 7%, and still more preferably 0 to 5%.
  • Sb 2 O 3 can be added as a reducing agent.
  • the content of Sb 2 O 3 is preferably 0.1% or less in order to avoid coloring or in consideration of environmental load.
  • the glass material of the present invention preferably has a light transmission loss as small as possible particularly when used as a magneto-optical element such as an isolator. Therefore, the light transmittance of the glass material of the present invention is preferably 50% or more, 60%, particularly 70% or more at a wavelength of 633 nm.
  • FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus for producing a glass material by a containerless floating method.
  • FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus for producing a glass material by a containerless floating method.
  • the manufacturing method of the glass material of this invention is demonstrated, referring FIG.
  • the glass material manufacturing apparatus 1 has a mold 10.
  • the mold 10 also serves as a melting container.
  • the molding die 10 has a molding surface 10a and a plurality of gas ejection holes 10b opened in the molding surface 10a.
  • the gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b.
  • the type of gas is not particularly limited, and may be, for example, air or oxygen, or a reducing gas containing nitrogen gas, argon gas, helium gas, carbon monoxide gas, carbon dioxide gas, or hydrogen. Good.
  • the glass raw material lump 12 is first arrange
  • the glass raw material block 12 for example, a raw material powder integrated by press molding or the like, a sintered body obtained by integrating raw material powder by press molding or the like, and a composition equivalent to the target glass composition are used. For example, an aggregate of crystals.
  • the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in a state where it is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser light irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass.
  • Table 1 shows examples and comparative examples of the present invention.
  • Each sample was prepared as follows. First, raw materials prepared so as to have the glass composition shown in the table were press-molded, and sintered at 1100 to 1400 ° C. for 12 hours to produce a glass raw material lump.
  • the glass raw material lump was roughly pulverized in a mortar to obtain small pieces of 0.05 to 0.5 g.
  • a glass material (about 1 to 8 mm in diameter) was produced by the containerless floating method using the apparatus according to FIG. A 100 W CO 2 laser oscillator was used as the heat source.
  • nitrogen gas was used as a gas for floating the raw material lump, and was supplied at a flow rate of 1 to 30 L / min.
  • the Verde constant of the obtained glass material was measured using a Kerr effect measuring device (manufactured by JASCO Corporation, product number: K-250). Specifically, the obtained glass material was polished to a thickness of about 1 mm, the Faraday rotation angle at a wavelength of 400 to 850 nm was measured in a magnetic field of 15 kOe, and the Verde constant at wavelengths of 633 nm and 850 nm was calculated. . The wavelength sweep rate was 6 nm / min. The results are shown in Table 1.
  • the glass materials of Examples 1 to 7 exhibited Verde constants of ⁇ 0.69 to ⁇ 1.04 at a wavelength of 633 nm and ⁇ 0.34 to ⁇ 0.52 at a wavelength of 850 nm.
  • the Verde constant of the glass material of Comparative Example 1 was ⁇ 0.37 at a wavelength of 633 nm and ⁇ 0.18 at a wavelength of 850 nm, and the absolute value was small.
  • the glass material of the present invention is suitable as a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, or a magnetic sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a glass composition which exhibits a greater Faraday effect than before. This glass composition is characterized by comprising, in mol%, over 48% (excluding 48%) of Tb2O3.

Description

ガラス材及びその製造方法Glass material and manufacturing method thereof
 本発明は、光アイソレータ、光サーキュレータ、磁気センサ等の磁気デバイスを構成する磁気光学素子に好適なガラス材及びその製造方法に関する。 The present invention relates to a glass material suitable for a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, and a magnetic sensor, and a manufacturing method thereof.
 常磁性化合物である酸化テルビウムを含むガラス材は、磁気光学効果の一つであるファラデー効果を示すことが知られている。ファラデー効果とは、磁場中におかれた材料を通過する直線偏光の偏光面を回転させる効果である。このような効果は光アイソレータや磁界センサなどに利用されている。 It is known that a glass material containing terbium oxide, which is a paramagnetic compound, exhibits a Faraday effect which is one of magneto-optical effects. The Faraday effect is an effect of rotating the polarization plane of linearly polarized light passing through a material placed in a magnetic field. Such effects are used in optical isolators, magnetic field sensors, and the like.
 ファラデー効果による旋光度(偏光面の回転角)θは、磁場の強さをH、偏光が通過する物質の長さをLとして、以下の式により表される。式中において、Vは物質の種類に依存する定数であり、ベルデ定数と呼ばれる。ベルデ定数は反磁性体の場合は正の値、常磁性体の場合は負の値となる。ベルデ定数の絶対値が大きいほど、旋光度の絶対値も大きくなり、結果として大きなファラデー効果を示す。 The optical rotation (rotation angle of the polarization plane) θ due to the Faraday effect is expressed by the following equation, where H is the strength of the magnetic field and L is the length of the substance through which the polarized light passes. In the formula, V is a constant depending on the type of substance, and is called Verde's constant. The Verde constant is a positive value for a diamagnetic material and a negative value for a paramagnetic material. The greater the absolute value of the Verde constant, the greater the absolute value of the optical rotation, resulting in a large Faraday effect.
  θ=VHL Θ = VHL
 従来、ファラデー効果を示すガラス材として、SiO-B-Al-Tb系のガラス材(特許文献1参照)、P-B-Tb系のガラス材(特許文献2参照)、あるいはP-TbF-RF(Rはアルカリ土類金属)系のガラス材(特許文献3参照)等が知られている。 Conventionally, as a glass material exhibiting the Faraday effect, SiO 2 —B 2 O 3 —Al 2 O 3 —Tb 2 O 3 glass material (see Patent Document 1), P 2 O 5 —B 2 O 3 —Tb 2 An O 3 glass material (see Patent Document 2), a P 2 O 5 —TbF 3 —RF 2 (R is an alkaline earth metal) glass material (see Patent Document 3), or the like is known.
特公昭51-46524号公報Japanese Patent Publication No. 51-46524 特公昭52-32881号公報Japanese Patent Publication No.52-32881 特公昭55-42942号公報Japanese Patent Publication No. 55-42942
 上記のガラス材はある程度のファラデー効果を示すものの、近年、ますます磁気デバイスの小型化が進んでいることから、小さな部材でも十分な旋光度を示すよう、さらなるファラデー効果の向上が要求されている。 Although the above glass materials show a certain Faraday effect, in recent years, since the miniaturization of magnetic devices has been further advanced, further improvement of the Faraday effect is required so that even a small member can exhibit a sufficient optical rotation. .
 以上に鑑み、本発明は、従来よりも大きいファラデー効果を示すガラス材を提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass material that exhibits a Faraday effect greater than that of the conventional art.
 本発明のガラス材は、モル%で、Tbを48%以上(ただし48%は含まない)含有することを特徴とする。本発明のガラス材は、Tbを上記の通り多量に含有することに起因してベルデ定数の絶対値が大きくなる。その結果、従来よりも大きいファラデー効果を示す。なお、上記の通り多量にTbを含有するガラス材は、一般にカラス化が困難である。しかしながら、後述の無容器浮遊法によれば、このようにガラス化困難な組成であっても容易にガラス化することが可能となる。 The glass material of the present invention is characterized by containing 48% or more (but not including 48%) of Tb 2 O 3 in mol%. The glass material of the present invention has a large Verde constant due to containing a large amount of Tb 2 O 3 as described above. As a result, the Faraday effect which is larger than the conventional one is shown. As described above, glass materials containing a large amount of Tb 2 O 3 are generally difficult to crow. However, according to the containerless floating method described later, it is possible to easily vitrify even such a composition that is difficult to vitrify.
 本発明のガラス材において、モル%で、Tbの含有量が80%以下であることが好ましい。Tbの含有量が上記範囲であれば、比較的容易にガラス化を行うことができる。 In the glass material of the present invention, the content of Tb 2 O 3 is preferably 80% or less in terms of mol%. If the content of Tb 2 O 3 is in the above range, vitrification can be performed relatively easily.
 本発明のガラス材は、さらに、モル%で、SiO 0~50%、B 0~50%、Al 0~50%、P 0~50%を含有することが好ましい。SiO、B、Al、Pはガラス骨格を構成する成分であるため、これらの成分を含有させることにより、比較的容易にガラス化を行うことができる。 The glass material of the present invention further contains, in mol%, SiO 2 0-50%, B 2 O 3 0-50%, Al 2 O 3 0-50%, P 2 O 5 0-50%. Is preferred. Since SiO 2 , B 2 O 3 , Al 2 O 3 , and P 2 O 5 are components constituting a glass skeleton, vitrification can be performed relatively easily by containing these components.
 本発明のガラス材は、磁気光学素子として用いることができる。例えば、本発明のガラス材は、磁気光学素子の一種であるファラデー回転素子として用いることができる。上記の用途に用いることにより、本発明の効果を享受することができる。 The glass material of the present invention can be used as a magneto-optical element. For example, the glass material of the present invention can be used as a Faraday rotation element which is a kind of magneto-optical element. By using it for the above application, the effects of the present invention can be enjoyed.
 本発明のガラス材の製造方法は、上記のガラス材を製造するための方法であって、ガラス原料塊を浮遊させて保持した状態で、ガラス原料塊を加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却する工程を備えることを特徴とする。 The method for producing a glass material according to the present invention is a method for producing the above glass material, and after the glass material lump is suspended and held, the glass material lump is heated and melted to obtain a molten glass. And a step of cooling the molten glass.
 一般に、ガラス材は原料を坩堝等の溶融容器内で溶融し、冷却することにより作製される(溶融法)。しかしながら、本発明のガラス材は、基本的にガラス骨格を構成しないTbを上記の通り多量に含有する組成を有しており、ガラス化しにくい材料であるため、溶融法では、溶融容器との接触界面を起点として結晶化が進行してしまうという問題がある。 Generally, a glass material is produced by melting a raw material in a melting container such as a crucible and cooling (melting method). However, the glass material of the present invention has a composition containing a large amount of Tb 2 O 3 that does not basically constitute a glass skeleton as described above, and is a material that is difficult to vitrify. There is a problem that crystallization proceeds from the contact interface with the substrate.
 ガラス化しにくい組成であっても、溶融容器との界面での接触をなくすことによりガラス化が可能となる。このような方法として、原料を浮遊させた状態で溶融、冷却する無容器浮遊法が知られている。当該方法を用いると、溶融ガラスが溶融容器にほとんど接触することがないため、溶融容器との界面を起点とする結晶化を防止することができ、ガラス化が可能となる。 Even if the composition is difficult to vitrify, it can be vitrified by eliminating contact at the interface with the melting vessel. As such a method, a containerless floating method in which a raw material is melted and cooled in a suspended state is known. When this method is used, since the molten glass hardly comes into contact with the melting vessel, crystallization starting from the interface with the melting vessel can be prevented, and vitrification becomes possible.
 本発明によれば、従来よりも大きいファラデー効果を示すガラス材を提供することが可能となる。 According to the present invention, it is possible to provide a glass material that exhibits a Faraday effect that is greater than the conventional one.
本発明のガラス材を製造するための装置の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the apparatus for manufacturing the glass material of this invention.
 本発明のガラス材は、モル%でTbを48%以上(ただし48%は含まない)含有し、49%以上、特に50%以上含有することが好ましい。Tbの含有量が少なすぎると、ベルデ定数の絶対値が小さくなり、十分なファラデー効果が得られにくくなる。一方、Tbの含有量が多すぎると、ガラス化が困難になる傾向があるため、80%以下、75%以下、特に70%以下であることが好ましい。 The glass material of the present invention contains 48% or more (but not 48%) of Tb 2 O 3 in mol%, preferably 49% or more, particularly preferably 50% or more. When the content of Tb 2 O 3 is too small, the absolute value of the Verdet constant is reduced, a sufficient Faraday effect is difficult to obtain. On the other hand, if the content of Tb 2 O 3 is too large, vitrification tends to be difficult, and therefore it is preferably 80% or less, 75% or less, and particularly preferably 70% or less.
 なお、Tbについては3価の酸化物の含有量を規定しているが、3価以外の酸化物については、3価の酸化物に換算した場合の含有量が上記範囲内であることが好ましい。 In addition, although the content of trivalent oxide is prescribed | regulated about Tb, about the oxide other than trivalent, it is preferable that content when converted into a trivalent oxide is in the said range. .
 Tbについてベルデ定数の起源となる磁気モーメントはTb4+よりもTb3+の方が大きい。よって、ガラス材におけるTb3+の割合が大きいほど、ファラデー効果が大きくなるため好ましい。具体的には、全Tb中Tb3+の割合は、モル%で50%以上、60%以上、70%以上、80%以上、特に90%以上であることが好ましい。 The magnetic moment that causes the Verde constant for Tb is greater for Tb 3+ than for Tb 4+ . Therefore, the larger the ratio of Tb 3+ in the glass material, the greater the Faraday effect, which is preferable. Specifically, the ratio of Tb 3+ in the total Tb is preferably 50% or more, 60% or more, 70% or more, 80% or more, and particularly 90% or more in mol%.
 本発明のガラス材には、Tb以外にも、以下に示す種々の成分を含有させることができる。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 In addition to Tb 2 O 3 , the glass material of the present invention can contain various components shown below. In the following description regarding the content of each component, “%” means “mol%” unless otherwise specified.
 SiO、B及びPはガラス骨格となり、ガラス化範囲を広げる成分である。ただし、これらの成分はベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、SiO、B及びPの含有量は各々0~50%、1~45%、特に2~40%であることが好ましい。また、SiOとBの合量は0~52%、15~51%、特に20~50%であることが好ましい。BとPの合量は0~52%、15~51%、特に20~50%であることが好ましい。SiO、B及びPの合量は0~52%、15~51%、特に20~50%であることが好ましい。 SiO 2 , B 2 O 3 and P 2 O 5 are components that become a glass skeleton and widen the vitrification range. However, since these components do not contribute to the improvement of the Verde constant, if the content is too large, it is difficult to obtain a sufficient Faraday effect. Accordingly, the contents of SiO 2 , B 2 O 3 and P 2 O 5 are preferably 0 to 50%, 1 to 45%, particularly 2 to 40%, respectively. The total amount of SiO 2 and B 2 O 3 is preferably 0 to 52%, 15 to 51%, particularly 20 to 50%. The total amount of B 2 O 3 and P 2 O 5 is preferably 0 to 52%, 15 to 51%, particularly preferably 20 to 50%. The total amount of SiO 2 , B 2 O 3 and P 2 O 5 is preferably 0 to 52%, 15 to 51%, particularly preferably 20 to 50%.
 Alは中間酸化物としてガラス骨格を形成し、ガラス化範囲を広げる成分である。ただし、Alはベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、Alの含有量は0~50%、0.1~40%、1~30%、1~20%、特に1~10%であることが好ましい。 Al 2 O 3 is a component that forms a glass skeleton as an intermediate oxide and widens the vitrification range. However, since Al 2 O 3 does not contribute to the improvement of the Verde constant, if the content is too large, it becomes difficult to obtain a sufficient Faraday effect. Therefore, the content of Al 2 O 3 is preferably 0 to 50%, 0.1 to 40%, 1 to 30%, 1 to 20%, particularly 1 to 10%.
 La、Gd、Yb、Yはガラスを安定化する効果があるが、その含有量が多すぎるとかえってガラス化しにくくなる。よって、La、Gd、Yb、Yの含有量は各々10%以下、特に5%以下であることが好ましい。 La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , and Y 2 O 3 have the effect of stabilizing the glass, but if the content is too large, it becomes difficult to vitrify. Therefore, the contents of La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 and Y 2 O 3 are each preferably 10% or less, particularly preferably 5% or less.
 Dy、Eu、Ceはガラスを安定化するとともに、ベルデ定数の向上にも寄与する。ただし、その含有量が多すぎるとかえってガラス化しにくくなる。よって、Dy、Eu、Ceの含有量は各々15%以下、特に10%以下であることが好ましい。なお、Dy、Eu、Ceについては3価の酸化物の含有量を規定しているが、3価以外の酸化物(例えばCeO等)については、3価の酸化物に換算した場合の含有量が上記範囲内であることが好ましい。 Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 stabilize the glass and contribute to the improvement of the Verde constant. However, when the content is too large, it becomes difficult to vitrify. Therefore, the contents of Dy 2 O 3 , Eu 2 O 3 and Ce 2 O 3 are each preferably 15% or less, particularly preferably 10% or less. In addition, about Dy, Eu, and Ce, the content of the trivalent oxide is specified, but for oxides other than trivalent (for example, CeO 2 etc.), the content when converted to the trivalent oxide The amount is preferably within the above range.
 MgO、CaO、SrO、BaOはガラスの安定性と化学的耐久性を高める効果がある。ただし、ベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、これらの成分の含有量は各々0~10%、特に0~5%であることが好ましい。 MgO, CaO, SrO and BaO have the effect of increasing the stability and chemical durability of the glass. However, since it does not contribute to the improvement of the Verde constant, if the content is too large, it becomes difficult to obtain a sufficient Faraday effect. Accordingly, the content of these components is preferably 0 to 10%, particularly 0 to 5%.
 Gaはガラス形成能を高め、ガラス化範囲を広げる効果を有する。ただし、その含有量が多すぎると失透しやすくなる。また、Gaはベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、Gaの含有量は0~6%、特に0~5%であることが好ましい。 Ga 2 O 3 has the effect of increasing the glass forming ability and expanding the vitrification range. However, when there is too much the content, it will become easy to devitrify. Further, since the Ga 2 O 3 it does not contribute to the improvement of the Verdet constant, when the content is too large, a sufficient Faraday effect difficult to obtain. Therefore, the Ga 2 O 3 content is preferably 0 to 6%, particularly preferably 0 to 5%.
 フッ素はガラス形成能を高め、ガラス化範囲を広げる効果を有する。ただし、その含有量が多すぎると溶融中に揮発して組成変動したり、ガラスの安定性に影響を及ぼす恐れがある。従って、フッ素の含有量(F換算)は好ましくは0~10%、より好ましくは0~7%、さらに好ましくは0~5%である。 Fluorine has the effect of increasing the glass forming ability and expanding the vitrification range. However, if the content is too large, the composition volatilizes during melting and the composition may change, or the stability of the glass may be affected. Therefore, the fluorine content (F 2 conversion) is preferably 0 to 10%, more preferably 0 to 7%, and still more preferably 0 to 5%.
 還元剤としてSbを添加することができる。ただし、着色を避けるため、あるいは環境への負荷を考慮して、Sbの含有量は0.1%以下であることが好ましい。 Sb 2 O 3 can be added as a reducing agent. However, the content of Sb 2 O 3 is preferably 0.1% or less in order to avoid coloring or in consideration of environmental load.
 本発明のガラス材は、特にアイソレータ等の磁気光学素子として使用する場合における光透過損失がなるべく小さいことが好ましい。そのため、本発明のガラス材の光透過率は、波長633nmにおいて50%以上、60%、特に70%以上であることが好ましい。 The glass material of the present invention preferably has a light transmission loss as small as possible particularly when used as a magneto-optical element such as an isolator. Therefore, the light transmittance of the glass material of the present invention is preferably 50% or more, 60%, particularly 70% or more at a wavelength of 633 nm.
 本発明のガラス材は、例えば無容器浮遊法により作製することができる。図1は、無容器浮遊法によりガラス材を作製するための製造装置の一例を示す模式的断面図である。以下、図1を参照しながら、本発明のガラス材の製造方法について説明する。 The glass material of the present invention can be produced by, for example, a containerless floating method. FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus for producing a glass material by a containerless floating method. Hereinafter, the manufacturing method of the glass material of this invention is demonstrated, referring FIG.
 ガラス材の製造装置1は成形型10を有する。成形型10は溶融容器としての役割も果たす。成形型10は、成形面10aと、成形面10aに開口している複数のガス噴出孔10bとを有する。ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。ガスの種類は特に限定されず、例えば、空気や酸素であってもよいし、窒素ガス、アルゴンガス、ヘリウムガス、一酸化炭素ガス、二酸化炭素ガス、水素を含有した還元性ガスであってもよい。 The glass material manufacturing apparatus 1 has a mold 10. The mold 10 also serves as a melting container. The molding die 10 has a molding surface 10a and a plurality of gas ejection holes 10b opened in the molding surface 10a. The gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b. The type of gas is not particularly limited, and may be, for example, air or oxygen, or a reducing gas containing nitrogen gas, argon gas, helium gas, carbon monoxide gas, carbon dioxide gas, or hydrogen. Good.
 製造装置1を用いてガラス材を製造するに際しては、まず、ガラス原料塊12を成形面10a上に配置する。ガラス原料塊12としては、例えば、原料粉末をプレス成型等により一体化したものや、原料粉末をプレス成型等により一体化した後に焼結させた焼結体や、目標ガラス組成と同等の組成を有する結晶の集合体等が挙げられる。 When manufacturing a glass material using the manufacturing apparatus 1, the glass raw material lump 12 is first arrange | positioned on the molding surface 10a. As the glass raw material block 12, for example, a raw material powder integrated by press molding or the like, a sintered body obtained by integrating raw material powder by press molding or the like, and a composition equivalent to the target glass composition are used. For example, an aggregate of crystals.
 次に、ガス噴出孔10bからガスを噴出させることにより、ガラス原料塊12を成形面10a上で浮遊させる。すなわち、ガラス原料塊12を、成形面10aに接触していない状態で保持する。その状態で、レーザー光照射装置13からレーザー光をガラス原料塊12に照射する。これによりガラス原料塊12を加熱溶融してガラス化させ、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。ガラス原料塊12を加熱溶融する工程と、溶融ガラス、さらにはガラス材の温度が少なくとも軟化点以下となるまで冷却する工程においては、少なくともガスの噴出を継続し、ガラス原料塊12、溶融ガラス、さらにはガラス材と成形面10aとの接触を抑制することが好ましい。なお、磁場を印加することにより発生する磁力を利用してガラス原料塊12を成形面10a上に浮遊させてもよい。また、加熱溶融する方法としては、レーザー光を照射する方法以外にも、輻射加熱であってもよい。 Next, the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in a state where it is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser light irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass. In the step of heating and melting the glass raw material lump 12 and the step of cooling until the temperature of the molten glass and further the glass material is at least the softening point or less, at least gas ejection is continued, and the glass raw material lump 12, molten glass, Furthermore, it is preferable to suppress contact between the glass material and the molding surface 10a. In addition, you may float the glass raw material lump 12 on the molding surface 10a using the magnetic force which generate | occur | produces by applying a magnetic field. In addition to the method of irradiating laser light, the method of heating and melting may be radiant heating.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1は本発明の実施例及び比較例を示している。 Table 1 shows examples and comparative examples of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各試料は次のようにして作製した。まず表に示すガラス組成になるように調合した原料をプレス成型し、1100~1400℃で12時間焼結することによりガラス原料塊を作製した。 Each sample was prepared as follows. First, raw materials prepared so as to have the glass composition shown in the table were press-molded, and sintered at 1100 to 1400 ° C. for 12 hours to produce a glass raw material lump.
 次に、乳鉢中でガラス原料塊を粗粉砕し、0.05~0.5gの小片とした。得られたガラス原料塊の小片を用いて、図1に準じた装置を用いた無容器浮遊法によってガラス材(直径約1~8mm)を作製した。なお、熱源としては100W COレーザー発振器を用いた。また、原料塊を浮遊させるためのガスとして窒素ガスを用い、流量1~30L/分で供給した。 Next, the glass raw material lump was roughly pulverized in a mortar to obtain small pieces of 0.05 to 0.5 g. A glass material (about 1 to 8 mm in diameter) was produced by the containerless floating method using the apparatus according to FIG. A 100 W CO 2 laser oscillator was used as the heat source. In addition, nitrogen gas was used as a gas for floating the raw material lump, and was supplied at a flow rate of 1 to 30 L / min.
 得られたガラス材について、カー(Kerr)効果測定装置(日本分光(株)製、品番:K-250)を用いてベルデ定数を測定した。具体的には、得られたガラス材を1mm程度の厚さとなるよう研磨加工し、15kOeの磁場中で波長400~850nmでのファラデー回転角を測定し、波長633nm及び850nmにおけるベルデ定数を算出した。なお、波長の掃引速度は6nm/分とした。結果を表1に示す。 The Verde constant of the obtained glass material was measured using a Kerr effect measuring device (manufactured by JASCO Corporation, product number: K-250). Specifically, the obtained glass material was polished to a thickness of about 1 mm, the Faraday rotation angle at a wavelength of 400 to 850 nm was measured in a magnetic field of 15 kOe, and the Verde constant at wavelengths of 633 nm and 850 nm was calculated. . The wavelength sweep rate was 6 nm / min. The results are shown in Table 1.
 表1から明らかなように実施例1~7のガラス材は、波長633nmにおいて-0.69~-1.04、波長850nmにおいて-0.34~-0.52のベルデ定数を示した。一方、比較例1のガラス材のベルデ定数は、波長633nmにおいて-0.37、波長850nmにおいて-0.18であり、絶対値が小さかった。 As is apparent from Table 1, the glass materials of Examples 1 to 7 exhibited Verde constants of −0.69 to −1.04 at a wavelength of 633 nm and −0.34 to −0.52 at a wavelength of 850 nm. On the other hand, the Verde constant of the glass material of Comparative Example 1 was −0.37 at a wavelength of 633 nm and −0.18 at a wavelength of 850 nm, and the absolute value was small.
 本発明のガラス材は、光アイソレータ、光サーキュレータ、磁気センサ等の磁気デバイスを構成する磁気光学素子として好適である。 The glass material of the present invention is suitable as a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, or a magnetic sensor.
1:ガラス材の製造装置
10:成形型
10a:成形面
10b:ガス噴出孔
11:ガス供給機構
12:ガラス原料塊
13:レーザー光照射装置
1: Glass material manufacturing apparatus 10: Mold 10a: Molding surface 10b: Gas ejection hole 11: Gas supply mechanism 12: Glass raw material block 13: Laser beam irradiation apparatus

Claims (6)

  1.  モル%で、Tbを48%以上(ただし48%は含まない)含有することを特徴とするガラス材。 A glass material characterized by containing, in mol%, 48% or more (but not including 48%) of Tb 2 O 3 .
  2.  モル%で、Tbの含有量が80%以下であることを特徴とする請求項1に記載のガラス材。 The glass material according to claim 1, wherein the content of Tb 2 O 3 is 80% or less in terms of mol%.
  3.  さらに、モル%で、SiO 0~50%、B 0~50%、Al 0~50%、P 0~50%を含有することを特徴とする請求項1または2に記載のガラス材。 Furthermore, it contains SiO 2 0 to 50%, B 2 O 3 0 to 50%, Al 2 O 3 0 to 50%, and P 2 O 5 0 to 50% in mol%. Or the glass material of 2.
  4.  磁気光学素子として用いられることを特徴とする請求項1~3のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 3, wherein the glass material is used as a magneto-optical element.
  5.  ファラデー回転素子として用いられることを特徴とする請求項4に記載のガラス材。 The glass material according to claim 4, wherein the glass material is used as a Faraday rotation element.
  6.  請求項1~5のいずれか一項に記載のガラス材を製造するための方法であって、ガラス原料塊を浮遊させて保持した状態で、前記ガラス原料塊を加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却する工程を備えることを特徴とする、ガラス材の製造方法。 A method for producing the glass material according to any one of claims 1 to 5, wherein the glass raw material lump is heated and melted in a state where the glass raw material lump is suspended and held to obtain a molten glass. After that, the manufacturing method of the glass material characterized by including the process of cooling the said molten glass.
PCT/JP2016/051902 2015-01-28 2016-01-22 Glass material and method for manufacturing same WO2016121655A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680007774.4A CN107207321A (en) 2015-01-28 2016-01-22 Glass material and its manufacture method
US15/503,012 US10227254B2 (en) 2015-01-28 2016-01-22 Glass material and method for manufacturing same
US15/704,126 US10093574B2 (en) 2015-01-28 2017-09-14 Glass material and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015013950 2015-01-28
JP2015-013950 2015-01-28
JP2015-224404 2015-11-17
JP2015224404A JP6694154B2 (en) 2015-01-28 2015-11-17 Glass material and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/503,012 A-371-Of-International US10227254B2 (en) 2015-01-28 2016-01-22 Glass material and method for manufacturing same
US15/704,126 Continuation US10093574B2 (en) 2015-01-28 2017-09-14 Glass material and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016121655A1 true WO2016121655A1 (en) 2016-08-04

Family

ID=56543268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051902 WO2016121655A1 (en) 2015-01-28 2016-01-22 Glass material and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016121655A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051685A1 (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Glass material and method for manufacturing same
JP2018058728A (en) * 2016-10-06 2018-04-12 日本電気硝子株式会社 Glass material and method for producing the same
WO2018079090A1 (en) * 2016-10-24 2018-05-03 日本電気硝子株式会社 Magneto-optic element and method for producing same
JP2018080066A (en) * 2016-11-14 2018-05-24 日本電気硝子株式会社 Faraday rotator for magnetic field sensors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170338A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Magnetic glass
JPH08259242A (en) * 1995-03-24 1996-10-08 Hooya Precision Kk Flotation softening method for glass material, manufacture of optical device and optical device
JPH10297933A (en) * 1997-04-25 1998-11-10 Sumita Kogaku Glass:Kk Glass for faraday rotator
US6482758B1 (en) * 1999-10-14 2002-11-19 Containerless Research, Inc. Single phase rare earth oxide-aluminum oxide glasses
WO2009004710A1 (en) * 2007-07-02 2009-01-08 Ohara Inc. Glass composition
WO2014103662A1 (en) * 2012-12-28 2014-07-03 日本電気硝子株式会社 Method for manufacturing glass material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170338A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Magnetic glass
JPH08259242A (en) * 1995-03-24 1996-10-08 Hooya Precision Kk Flotation softening method for glass material, manufacture of optical device and optical device
JPH10297933A (en) * 1997-04-25 1998-11-10 Sumita Kogaku Glass:Kk Glass for faraday rotator
US6482758B1 (en) * 1999-10-14 2002-11-19 Containerless Research, Inc. Single phase rare earth oxide-aluminum oxide glasses
WO2009004710A1 (en) * 2007-07-02 2009-01-08 Ohara Inc. Glass composition
WO2014103662A1 (en) * 2012-12-28 2014-07-03 日本電気硝子株式会社 Method for manufacturing glass material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. P. SMITH: "Some Light on glass", GLASS TECHNOLOGY, vol. 20, 1979, pages 149 - 157 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051685A1 (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Glass material and method for manufacturing same
JP2017061389A (en) * 2015-09-24 2017-03-30 日本電気硝子株式会社 Glass material and method of producing the same
US10737969B2 (en) 2015-09-24 2020-08-11 Nippon Electric Glass Co., Ltd. Glass material and method for manufacturing same
JP2018058728A (en) * 2016-10-06 2018-04-12 日本電気硝子株式会社 Glass material and method for producing the same
WO2018079090A1 (en) * 2016-10-24 2018-05-03 日本電気硝子株式会社 Magneto-optic element and method for producing same
JP2018072384A (en) * 2016-10-24 2018-05-10 日本電気硝子株式会社 Magneto-optical element and manufacturing method for the same
US11686958B2 (en) 2016-10-24 2023-06-27 Nippon Electric Glass Co., Ltd. Magneto-optic element and method for producing same
JP2018080066A (en) * 2016-11-14 2018-05-24 日本電気硝子株式会社 Faraday rotator for magnetic field sensors

Similar Documents

Publication Publication Date Title
JP6694154B2 (en) Glass material and manufacturing method thereof
JP6728644B2 (en) Glass material and manufacturing method thereof
WO2017051685A1 (en) Glass material and method for manufacturing same
WO2016121655A1 (en) Glass material and method for manufacturing same
WO2018163759A1 (en) Glass material and method for manufacturing same
JP6897113B2 (en) Glass material and its manufacturing method
JP6686386B2 (en) Glass material and manufacturing method thereof
JP6897114B2 (en) Glass material and its manufacturing method
JP6897112B2 (en) Glass material and its manufacturing method
JP6617446B2 (en) Glass material
JP6861953B2 (en) Glass material and its manufacturing method
JP6607385B2 (en) Glass material and manufacturing method thereof
JP6823801B2 (en) Manufacturing method of glass material
JP6926436B2 (en) Glass material and its manufacturing method
WO2018079090A1 (en) Magneto-optic element and method for producing same
JP6878815B2 (en) Glass material and its manufacturing method
WO2018066239A1 (en) Glass material and method for manufacturing same
JP6830612B2 (en) Glass material and its manufacturing method
CN110234611B (en) Glass material and method for producing same
WO2022131248A1 (en) Glass material
US10829406B2 (en) Glass material and method for manufacturing same
JP2018062456A (en) Glass material and method for producing the same
JP2020007179A (en) Production method of glass material, and glass material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743258

Country of ref document: EP

Kind code of ref document: A1