WO2018066239A1 - Glass material and method for manufacturing same - Google Patents

Glass material and method for manufacturing same Download PDF

Info

Publication number
WO2018066239A1
WO2018066239A1 PCT/JP2017/029676 JP2017029676W WO2018066239A1 WO 2018066239 A1 WO2018066239 A1 WO 2018066239A1 JP 2017029676 W JP2017029676 W JP 2017029676W WO 2018066239 A1 WO2018066239 A1 WO 2018066239A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass material
present
content
light transmittance
Prior art date
Application number
PCT/JP2017/029676
Other languages
French (fr)
Japanese (ja)
Inventor
太志 鈴木
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017080501A external-priority patent/JP2018062457A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201780057494.9A priority Critical patent/CN109715575B/en
Priority to US16/331,563 priority patent/US10829406B2/en
Publication of WO2018066239A1 publication Critical patent/WO2018066239A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes

Definitions

  • the present invention relates to a glass material suitable for a material of a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, a magnetic sensor, a magnetic glass lens used for a digital camera, a glass sheet used for a band-pass filter, and the like. It relates to the manufacturing method.
  • a glass material containing terbium oxide which is a paramagnetic compound, exhibits a Faraday effect which is one of magneto-optical effects.
  • the Faraday effect is an effect of rotating the polarization plane of linearly polarized light passing through a material placed in a magnetic field. Such effects are used in optical isolators, magnetic field sensors, and the like.
  • the optical rotation (rotation angle of the polarization plane) ⁇ by the Faraday effect is expressed by the following equation, where H is the strength of the magnetic field and L is the length of the substance through which the polarized light passes.
  • V is a constant depending on the type of substance, and is called Verde's constant.
  • the Verde constant is a positive value for a diamagnetic material and a negative value for a paramagnetic material. The greater the absolute value of the Verde constant, the greater the absolute value of the optical rotation, resulting in a large Faraday effect.
  • the above glass material shows high transmittance in the visible range to infrared range (for example, 420 to 1500 nm), but shows light absorption by the terbium element itself in the short wavelength range (for example, 420 nm or less). Therefore, there is a problem that the light transmittance is reduced in a short wavelength region and the light extraction efficiency of the magneto-optical device is inferior.
  • an object of the present invention is to provide a glass material capable of achieving both a high Faraday effect and a high light transmittance in a short wavelength region.
  • the glass material of the present invention is characterized by containing Pr 2 O 3 30 to 50% and B 2 O 3 + P 2 O 5 0.1 to 70% in mol%.
  • B 2 O 3 + P 2 O 5 means the total content of B 2 O 3 and P 2 O 5 .
  • Pr 2 O 3 basically exhibits no light absorption in a wavelength region of 420 nm or less (for example, 250 to 420 nm), and thus exhibits high transmittance in the wavelength region.
  • the ultraviolet absorption edge of the glass is in the vicinity of 400 nm, the glass itself absorbs ultraviolet light even if there is no Pr 2 O 3 absorption, leading to a decrease in transmittance at 420 nm or less. Since it has been found that the ultraviolet absorption edge of the glass shifts to the short wavelength side by including at least one of B 2 O 3 and P 2 O 5 as an essential component, the present invention has been proposed. Furthermore, since B 2 O 3 and P 2 O 5 are glass skeleton components, they have a feature that they are easily vitrified even if they contain a large amount of Pr 2 O 3 . Thereby, even if the diameter of the glass material is increased, it becomes difficult to crystallize, so that productivity can be improved.
  • the glass material of the present invention preferably further contains Al 2 O 3 0 to 50% in mol%. In this way, vitrification becomes easier.
  • the glass material of the present invention preferably has a thickness of 1 mm and a shortest wavelength at which the light transmittance is 60% is 350 nm or less. In this way, it is possible to improve the light extraction efficiency of the magneto-optical device in the short wavelength region.
  • the glass material of the present invention can be used as a magneto-optical element.
  • the glass material of the present invention can be used as a Faraday rotation element which is a kind of magneto-optical element. By using it for the above application, the effects of the present invention can be enjoyed.
  • the method for producing a glass material of the present invention is a method for producing the above glass material, and in a state where the glass raw material lump is suspended and held in the air, the glass raw material lump is heated and melted to obtain a molten glass. And a step of cooling the molten glass.
  • a glass material is produced by melting a raw material in a melting container such as a crucible and cooling (melting method).
  • a melting container such as a crucible and cooling (melting method).
  • the glass material of the present invention has a composition containing a large amount of Pr 2 O 3 that basically does not constitute a glass skeleton as described above, and is a material that is difficult to vitrify. Therefore, in a normal melting method, There is a possibility that crystallization proceeds from the contact interface with the melting vessel.
  • composition Even if the composition is difficult to vitrify, it can be vitrified by eliminating contact at the interface with the melting vessel.
  • a containerless floating method in which a raw material is melted and cooled in a suspended state is known. When this method is used, since the molten glass hardly comes into contact with the melting vessel, crystallization starting from the interface with the melting vessel can be prevented, and vitrification becomes possible.
  • the glass material of the present invention can achieve both a high Faraday effect and a high light transmittance in a short wavelength region, and is particularly suitable as a Faraday rotating element of a magneto-optical device in a short wavelength region.
  • the glass material of the present invention contains Pr 2 O 3 30 to 50% and B 2 O 3 + P 2 O 5 0.1 to 70% in mol%. The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified.
  • Pr 2 O 3 is a component that increases the Faraday effect by increasing the absolute value of the Verde constant.
  • the content of Pr 2 O 3 is 30 to 50%, preferably 30 to 49%, 31 to 48%, particularly preferably 32 to 47%.
  • the absolute value of the Verdet constant is reduced, a sufficient Faraday effect is difficult to obtain.
  • the content of Pr 2 O 3 is too large, the ultraviolet absorption edge of the glass tends to shift to the long wavelength side. Also, vitrification tends to be difficult.
  • the content of Pr 2 O 3 in the present invention is a representation in terms of Pr present in the glass to the oxide of any trivalent.
  • the magnetic moment that is the origin of the Verde constant is larger in Pr 3+ than in Pr 4+ . Therefore, the larger the ratio of Pr 3+ in the glass material, the greater the Faraday effect, which is preferable.
  • the ratio of Pr 3+ in the total Pr is preferably 50% or more, 60% or more, 70% or more, 80% or more, particularly 90% or more in mol%.
  • B 2 O 3 and P 2 O 5 are components for forming a glass skeleton and expanding the vitrification range. Further, by containing these components, the ultraviolet absorption edge can be shifted to the short wavelength side. However, since these components do not contribute to the improvement of the Verde constant, if the content is too large, it is difficult to obtain a sufficient Faraday effect. Therefore, the total content of B 2 O 3 and P 2 O 5 is 0.1 to 70%, 0.5 to 69%, 1 to 68%, 2 to 67%, 3 to 66%, It is particularly preferably 4 to 65%.
  • a preferable content of each component of B 2 O 3 and P 2 O 5 is as follows.
  • the content of B 2 O 3 is 0 to 70% (excluding 70%), 0.1 to 69%, 1 to 68%, 2 to 67%, 3 to 66%, particularly 4 to 65%. It is preferable.
  • the content of P 2 O 5 is preferably 0 to 70%, 0.1 to 60%, 1 to 55%, 2 to 50%, 3 to 48%, 4 to 47%, particularly preferably 5 to 46%. .
  • the glass material of the present invention can contain various components shown below.
  • Al 2 O 3 is a component that forms a glass skeleton as an intermediate oxide and widens the vitrification range.
  • the content of Al 2 O 3 is preferably 0 to 50%, 0.1 to 40%, 1 to 30%, 1 to 20%, particularly 1 to 10%.
  • SiO 2 is a component that contributes to glass formation and widens the vitrification range. However, when the amount of SiO 2 increases, the ultraviolet absorption edge of the glass tends to shift to the long wavelength side. Therefore, the content of SiO 2 is preferably 0 to 40%, 0 to 35%, 0 to 30%, 0.1 to 25%, particularly 1 to 20%.
  • La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , and Y 2 O 3 have the effect of improving the stability of vitrification. However, if the content is too large, it becomes difficult to vitrify. Further, it causes a decrease in light transmittance. Therefore, the contents of La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 and Y 2 O 3 are each preferably 10% or less, particularly preferably 5% or less.
  • Tb 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 contribute to the improvement of the Verde constant, but cause a decrease in light transmittance. Therefore, the contents of Tb 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 are each preferably 10% or less, 5% or less, and particularly preferably 1% or less.
  • the contents of Tb 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 are expressed by converting Tb, Dy, Eu, and Ce present in the glass into trivalent oxides. It is a thing.
  • the content of these components is preferably 0 to 10%, particularly 0 to 5%.
  • Ga 2 O 3 has the effect of increasing the glass forming ability and expanding the vitrification range. However, when there is too much the content, it will become easy to devitrify. Further, since the Ga 2 O 3 it does not contribute to the improvement of the Verdet constant, when the content is too large, a sufficient Faraday effect difficult to obtain. Therefore, the Ga 2 O 3 content is preferably 0 to 6%, particularly preferably 0 to 5%.
  • Fluorine has the effect of increasing the glass forming ability and expanding the vitrification range. However, if its content is too large, it may volatilize during melting and cause composition fluctuations, or it may adversely affect the stability of vitrification. Accordingly, the fluorine content (F 2 conversion) is preferably 0 to 10%, 0 to 7%, particularly preferably 0 to 5%.
  • Sb 2 O 3 can be added as a reducing agent.
  • the content of Sb 2 O 3 is preferably 0.1% or less in order to avoid coloring or in consideration of environmental load.
  • the ultraviolet absorption edge has a short wavelength. Therefore, it is preferable that the shortest wavelength at which the light transmittance is 60% at a thickness of 1 mm is 350 nm or less, 345 nm or less, 340 nm or less, 330 nm or less, 320 nm or less, particularly 300 nm or less.
  • This light transmittance is an external transmittance including reflection.
  • FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus for producing a glass material by a containerless floating method.
  • FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus for producing a glass material by a containerless floating method.
  • the manufacturing method of the glass material of this invention is demonstrated, referring FIG.
  • the glass material manufacturing apparatus 1 has a mold 10.
  • the mold 10 also serves as a melting container.
  • the molding die 10 has a molding surface 10a and a plurality of gas ejection holes 10b opened in the molding surface 10a.
  • the gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b.
  • the type of gas is not particularly limited, and may be, for example, air or oxygen, or a reducing gas containing nitrogen gas, argon gas, helium gas, carbon monoxide gas, carbon dioxide gas, or hydrogen. Good.
  • the glass raw material lump 12 is first arrange
  • the glass raw material block 12 for example, a raw material powder integrated by press molding or the like, a sintered body obtained by integrating raw material powder by press molding or the like, and a composition equivalent to the target glass composition are used. For example, an aggregate of crystals.
  • the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in a state where it is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser light irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass.
  • the glass material of the present invention since the glass material of the present invention has a high magnetic susceptibility, the glass material of the present invention is used for autofocus lenses such as digital cameras and camera-equipped mobile phones by molding into a lens shape by mold press molding or the like. Can do.
  • These cameras are provided with a driving device for changing the focal length of the camera, that is, for moving the autofocus lens to a predetermined position.
  • the driving device Conventionally, the driving device has a lens for fixing the lens.
  • a spring for moving the holder and the lens holder is provided.
  • a driving device including a lens holder and a spring a digital camera, a camera-equipped mobile phone type, or the like cannot be downsized.
  • a lens is made of the glass material of the present invention having a high magnetic susceptibility, the lens itself can be moved by a magnet, so that a lens holder and a spring are not required, and the camera and the like can be miniaturized.
  • the glass material of the present invention has a light transmittance in the wavelength region of 250 to 420 nm higher than that in the wavelength region of 420 to 500 nm, and a light transmittance of 550 to 620 nm in the wavelength region of 500 to 550 nm.
  • the light transmittance in the wavelength range of 620 to 950 nm is higher than the light transmittance in the wavelength range of 950 to 1200 nm.
  • it since it has the property of absorbing light in a specific wavelength region, it can be used as a band-pass filter by forming the glass material of the present invention into a sheet shape by polishing or the like.
  • Table 1 shows examples and comparative examples of the present invention.
  • Each sample was prepared as follows. First, raw materials prepared so as to have the glass composition shown in the table were press-molded, and sintered at 800 to 1400 ° C. for 6 hours to prepare glass raw material blocks.
  • the glass raw material lump was coarsely pulverized in a mortar to obtain small pieces of 0.05 to 1.5 g.
  • a glass material (diameter: about 1 to 10 mm) was produced by a containerless floating method using an apparatus according to FIG. A 100 W CO 2 laser oscillator was used as the heat source. Further, nitrogen gas was used as a gas for suspending the raw material lump in the air and was supplied at a flow rate of 1 to 30 L / min.
  • the Verde constant of the obtained glass material was measured using a Kerr effect measuring device (manufactured by JASCO Corporation, product number: K-250). Specifically, the obtained glass material was polished to a thickness of about 1 mm, the Faraday rotation angle at a wavelength of 400 to 850 nm was measured in a magnetic field of 15 kOe, and the Verde constant at a wavelength of 400 nm was calculated. The wavelength sweep rate was 6 nm / min. The results are shown in Table 1.
  • the shortest wavelength at which the light transmittance was 60% was measured using a spectrophotometer (Shimadzu UV-3100) after polishing the obtained glass material to a thickness of 1 mm.
  • the light transmittance is an external transmittance including reflection.
  • the glass materials of Examples 1 to 5 had a Verde constant of ⁇ 0.74 to ⁇ 1.87 at a wavelength of 400 nm, and had a large absolute value. Further, the shortest wavelength at which the light transmittance reached 60% was as small as 298 to 338 nm, and the light transmittance in the short wavelength region was excellent. On the other hand, the glass material of Comparative Example 1 had a Verde constant of ⁇ 0.48 at a wavelength of 400 nm and a small absolute value. The glass material of Comparative Example 2 had a Verde constant of ⁇ 0.62 at a wavelength of 400 nm and a small absolute value. Further, the shortest wavelength at which the light transmittance reached 60% was as large as 358 nm, which was inferior to the light transmittance in the short wavelength region.
  • the glass material of the present invention is suitable as a material for a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, and a magnetic sensor, a magnetic glass lens used for a digital camera, a glass sheet used for a band-pass filter, and the like. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Provided is a glass material that is capable of exhibiting both a high Faraday effect and high light transmittance in a short wavelength range. This glass material is characterized by comprising, in mol%, 30 to 50% of Pr2O3 and 0.1 to 70% of B2O3+P2O5.

Description

ガラス材及びその製造方法Glass material and manufacturing method thereof
 本発明は、光アイソレータ、光サーキュレータ、磁気センサ等の磁気デバイスを構成する磁気光学素子、デジタルカメラ等に用いられる磁性ガラスレンズ、バンドパスフィルターに用いられるガラスシートの材料等に好適なガラス材及びその製造方法に関する。 The present invention relates to a glass material suitable for a material of a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, a magnetic sensor, a magnetic glass lens used for a digital camera, a glass sheet used for a band-pass filter, and the like. It relates to the manufacturing method.
 常磁性化合物である酸化テルビウムを含むガラス材は、磁気光学効果の一つであるファラデー効果を示すことが知られている。ファラデー効果とは、磁場中におかれた材料を通過する直線偏光の偏光面を回転させる効果である。このような効果は光アイソレータや磁界センサなどに利用されている。 It is known that a glass material containing terbium oxide, which is a paramagnetic compound, exhibits a Faraday effect which is one of magneto-optical effects. The Faraday effect is an effect of rotating the polarization plane of linearly polarized light passing through a material placed in a magnetic field. Such effects are used in optical isolators, magnetic field sensors, and the like.
 ファラデー効果による旋光度(偏光面の回転角)θは、磁場の強さをH、偏光が通過する物質の長さをLとして、以下の式により表される。式中において、Vは物質の種類に依存する定数であり、ベルデ定数と呼ばれる。ベルデ定数は反磁性体の場合は正の値、常磁性体の場合は負の値となる。ベルデ定数の絶対値が大きいほど、旋光度の絶対値も大きくなり、結果として大きなファラデー効果を示す。 The optical rotation (rotation angle of the polarization plane) θ by the Faraday effect is expressed by the following equation, where H is the strength of the magnetic field and L is the length of the substance through which the polarized light passes. In the formula, V is a constant depending on the type of substance, and is called Verde's constant. The Verde constant is a positive value for a diamagnetic material and a negative value for a paramagnetic material. The greater the absolute value of the Verde constant, the greater the absolute value of the optical rotation, resulting in a large Faraday effect.
 θ=VHL Θ = VHL
 従来、ファラデー効果を示すガラス材として、SiO-B-Al-Tb系のガラス材(特許文献1参照)、P-B-Tb系のガラス材(特許文献2参照)、あるいはP-TbF-RF(Rはアルカリ土類金属)系のガラス材(特許文献3参照)等が知られている。 Conventionally, as a glass material exhibiting the Faraday effect, SiO 2 —B 2 O 3 —Al 2 O 3 —Tb 2 O 3 glass material (see Patent Document 1), P 2 O 5 —B 2 O 3 —Tb 2 An O 3 glass material (see Patent Document 2), a P 2 O 5 —TbF 3 —RF 2 (R is an alkaline earth metal) glass material (see Patent Document 3), or the like is known.
特公昭51-46524号公報Japanese Patent Publication No. 51-46524 特公昭52-32881号公報Japanese Patent Publication No.52-32881 特公昭55-42942号公報Japanese Patent Publication No. 55-42942
 上記のガラス材は可視域~赤外域(例えば420~1500nm)の範囲で高い透過率を示すものの、短波長域(例えば420nm以下)ではテルビウム元素自体による光吸収を示す。そのため、短波長域では光透過率が低下し、磁気光学デバイスの光取出し効率に劣るという問題がある。 The above glass material shows high transmittance in the visible range to infrared range (for example, 420 to 1500 nm), but shows light absorption by the terbium element itself in the short wavelength range (for example, 420 nm or less). Therefore, there is a problem that the light transmittance is reduced in a short wavelength region and the light extraction efficiency of the magneto-optical device is inferior.
 以上に鑑み、本発明は、高いファラデー効果と、短波長域における高い光透過率を両立させることが可能なガラス材を提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass material capable of achieving both a high Faraday effect and a high light transmittance in a short wavelength region.
 本発明者が鋭意検討を行った結果、特定の組成を有するガラス材により前記課題を解決できることを見出した。 As a result of intensive studies by the inventors, it has been found that the above-mentioned problems can be solved by a glass material having a specific composition.
 即ち、本発明のガラス材は、モル%で、Pr 30~50%、B+P 0.1~70%を含有することを特徴とする。ここで、「B+P」は、B及びPの含有量の合量を意味する。 That is, the glass material of the present invention is characterized by containing Pr 2 O 3 30 to 50% and B 2 O 3 + P 2 O 5 0.1 to 70% in mol%. Here, “B 2 O 3 + P 2 O 5 ” means the total content of B 2 O 3 and P 2 O 5 .
 本発明のガラス材は、Prを上記の通り多量に含有することにより、ベルデ定数の絶対値が大きくなり、大きいファラデー効果を示す。また、Prは基本的に420nm以下(例えば250~420nm)の波長域に光吸収を示さないため、当該波長域において高い透過率を示す。 When the glass material of the present invention contains a large amount of Pr 2 O 3 as described above, the absolute value of the Verde constant increases, and a large Faraday effect is exhibited. In addition, Pr 2 O 3 basically exhibits no light absorption in a wavelength region of 420 nm or less (for example, 250 to 420 nm), and thus exhibits high transmittance in the wavelength region.
 また、ガラスの紫外吸収端が400nm付近にあると、Prの吸収が無くとも、ガラス自体の紫外吸収が起こり、420nm以下での透過率の低下を招く。B及びPの少なくとも一種を必須成分として含むことで、ガラスの紫外吸収端が短波長側にシフトすることを見出したため、本発明を提案するに至った。さらに、B及びPはガラス骨格成分であるため、Prを多量に含んでもガラス化しやすいという特徴を有する。それにより、ガラス材が大径化しても結晶化しにくくなるため、生産性を向上させることが可能となる。 Further, if the ultraviolet absorption edge of the glass is in the vicinity of 400 nm, the glass itself absorbs ultraviolet light even if there is no Pr 2 O 3 absorption, leading to a decrease in transmittance at 420 nm or less. Since it has been found that the ultraviolet absorption edge of the glass shifts to the short wavelength side by including at least one of B 2 O 3 and P 2 O 5 as an essential component, the present invention has been proposed. Furthermore, since B 2 O 3 and P 2 O 5 are glass skeleton components, they have a feature that they are easily vitrified even if they contain a large amount of Pr 2 O 3 . Thereby, even if the diameter of the glass material is increased, it becomes difficult to crystallize, so that productivity can be improved.
 本発明のガラス材は、さらに、モル%で、Al 0~50%を含有することが好ましい。このようにすれば、ガラス化がより容易になる。 The glass material of the present invention preferably further contains Al 2 O 3 0 to 50% in mol%. In this way, vitrification becomes easier.
 本発明のガラス材は、厚さ1mmにて、光透過率が60%になる最短波長が350nm以下であることが好ましい。このようにすれば、短波長域での磁気光学デバイスの光取出し効率を向上させることができる。 The glass material of the present invention preferably has a thickness of 1 mm and a shortest wavelength at which the light transmittance is 60% is 350 nm or less. In this way, it is possible to improve the light extraction efficiency of the magneto-optical device in the short wavelength region.
 本発明のガラス材は、磁気光学素子として用いることができる。例えば、本発明のガラス材は、磁気光学素子の一種であるファラデー回転素子として用いることができる。上記の用途に用いることにより、本発明の効果を享受することができる。 The glass material of the present invention can be used as a magneto-optical element. For example, the glass material of the present invention can be used as a Faraday rotation element which is a kind of magneto-optical element. By using it for the above application, the effects of the present invention can be enjoyed.
 本発明のガラス材の製造方法は、上記のガラス材を製造するための方法であって、ガラス原料塊を空中に浮遊させて保持した状態で、ガラス原料塊を加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却する工程を備えることを特徴とする。 The method for producing a glass material of the present invention is a method for producing the above glass material, and in a state where the glass raw material lump is suspended and held in the air, the glass raw material lump is heated and melted to obtain a molten glass. And a step of cooling the molten glass.
 一般に、ガラス材は原料を坩堝等の溶融容器内で溶融し、冷却することにより作製される(溶融法)。しかしながら、本発明のガラス材は、基本的にガラス骨格を構成しないPrを上記の通り多量に含有する組成を有しており、ガラス化しにくい材料であるため、通常の溶融法では、溶融容器との接触界面を起点として結晶化が進行してしまう可能性がある。 Generally, a glass material is produced by melting a raw material in a melting container such as a crucible and cooling (melting method). However, the glass material of the present invention has a composition containing a large amount of Pr 2 O 3 that basically does not constitute a glass skeleton as described above, and is a material that is difficult to vitrify. Therefore, in a normal melting method, There is a possibility that crystallization proceeds from the contact interface with the melting vessel.
 ガラス化しにくい組成であっても、溶融容器との界面での接触をなくすことによりガラス化が可能となる。このような方法として、原料を浮遊させた状態で溶融、冷却する無容器浮遊法が知られている。当該方法を用いると、溶融ガラスが溶融容器にほとんど接触することがないため、溶融容器との界面を起点とする結晶化を防止することができ、ガラス化が可能となる。 Even if the composition is difficult to vitrify, it can be vitrified by eliminating contact at the interface with the melting vessel. As such a method, a containerless floating method in which a raw material is melted and cooled in a suspended state is known. When this method is used, since the molten glass hardly comes into contact with the melting vessel, crystallization starting from the interface with the melting vessel can be prevented, and vitrification becomes possible.
 本発明のガラス材は、高いファラデー効果と、短波長域における高い光透過率を両立させることが可能であり、特に短波長域での磁気光学デバイスのファラデー回転素子として好適である。 The glass material of the present invention can achieve both a high Faraday effect and a high light transmittance in a short wavelength region, and is particularly suitable as a Faraday rotating element of a magneto-optical device in a short wavelength region.
本発明のガラス材を製造するための装置の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the apparatus for manufacturing the glass material of this invention.
 本発明のガラス材は、モル%で、Pr 30~50%、B+P 0.1~70%を含有する。ガラス組成範囲をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「モル%」を意味する。 The glass material of the present invention contains Pr 2 O 3 30 to 50% and B 2 O 3 + P 2 O 5 0.1 to 70% in mol%. The reason for limiting the glass composition range in this way will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified.
 Prはベルデ定数の絶対値を大きくしてファラデー効果を高める成分である。Prの含有量は30~50%であり、30~49%、31~48%、特に32~47%であることが好ましい。Prの含有量が少なすぎると、ベルデ定数の絶対値が小さくなり、十分なファラデー効果が得られにくくなる。一方、Prの含有量が多すぎると、ガラスの紫外吸収端が長波長側にシフトしやすい。また、ガラス化も困難となる傾向がある。 Pr 2 O 3 is a component that increases the Faraday effect by increasing the absolute value of the Verde constant. The content of Pr 2 O 3 is 30 to 50%, preferably 30 to 49%, 31 to 48%, particularly preferably 32 to 47%. When the content of Pr 2 O 3 is too small, the absolute value of the Verdet constant is reduced, a sufficient Faraday effect is difficult to obtain. On the other hand, if the content of Pr 2 O 3 is too large, the ultraviolet absorption edge of the glass tends to shift to the long wavelength side. Also, vitrification tends to be difficult.
 なお、本発明におけるPrの含有量は、ガラス中に存在するPrを全て3価の酸化物に換算して表したものである。 The content of Pr 2 O 3 in the present invention is a representation in terms of Pr present in the glass to the oxide of any trivalent.
 ベルデ定数の起源となる磁気モーメントはPr4+よりもPr3+の方が大きい。よって、ガラス材におけるPr3+の割合が大きいほど、ファラデー効果が大きくなるため好ましい。具体的には、全Pr中のPr3+の割合は、モル%で50%以上、60%以上、70%以上、80%以上、特に90%以上であることが好ましい。 The magnetic moment that is the origin of the Verde constant is larger in Pr 3+ than in Pr 4+ . Therefore, the larger the ratio of Pr 3+ in the glass material, the greater the Faraday effect, which is preferable. Specifically, the ratio of Pr 3+ in the total Pr is preferably 50% or more, 60% or more, 70% or more, 80% or more, particularly 90% or more in mol%.
 B及びPはガラス骨格となり、ガラス化範囲を広げるための成分である。また、これらの成分を含有させることにより、紫外吸収端を短波長側にシフトすることができる。ただし、これらの成分はベルデ定数の向上には寄与しないため、含有量が多くなりすぎると十分なファラデー効果が得られにくくなる。従って、B及びPの含有量は、合量で0.1~70%であり、0.5~69%、1~68%、2~67%、3~66%、特に4~65%であることが好ましい。 B 2 O 3 and P 2 O 5 are components for forming a glass skeleton and expanding the vitrification range. Further, by containing these components, the ultraviolet absorption edge can be shifted to the short wavelength side. However, since these components do not contribute to the improvement of the Verde constant, if the content is too large, it is difficult to obtain a sufficient Faraday effect. Therefore, the total content of B 2 O 3 and P 2 O 5 is 0.1 to 70%, 0.5 to 69%, 1 to 68%, 2 to 67%, 3 to 66%, It is particularly preferably 4 to 65%.
 なお、B及びPの各成分の好ましい含有量は以下の通りである。 A preferable content of each component of B 2 O 3 and P 2 O 5 is as follows.
 Bの含有量は0~70%(ただし70%は含まない)、0.1~69%、1~68%、2~67%、3~66%、特に4~65%であることが好ましい。 The content of B 2 O 3 is 0 to 70% (excluding 70%), 0.1 to 69%, 1 to 68%, 2 to 67%, 3 to 66%, particularly 4 to 65%. It is preferable.
 Pの含有量は0~70%、0.1~60%、1~55%、2~50%、3~48%、4~47%、特に5~46%であることが好ましい。 The content of P 2 O 5 is preferably 0 to 70%, 0.1 to 60%, 1 to 55%, 2 to 50%, 3 to 48%, 4 to 47%, particularly preferably 5 to 46%. .
 本発明のガラス材には、上記成分以外にも、以下に示す種々の成分を含有させることができる。 In addition to the above components, the glass material of the present invention can contain various components shown below.
 Alは中間酸化物としてガラス骨格を形成し、ガラス化範囲を広げる成分である。ただし、Alはベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、Alの含有量は0~50%、0.1~40%、1~30%、1~20%、特に1~10%であることが好ましい。 Al 2 O 3 is a component that forms a glass skeleton as an intermediate oxide and widens the vitrification range. However, since Al 2 O 3 does not contribute to the improvement of the Verde constant, if the content is too large, it becomes difficult to obtain a sufficient Faraday effect. Therefore, the content of Al 2 O 3 is preferably 0 to 50%, 0.1 to 40%, 1 to 30%, 1 to 20%, particularly 1 to 10%.
 SiOはガラス形成に寄与し、ガラス化範囲を広げる成分である。ただし、SiOが多くなると、ガラスの紫外吸収端が長波長側にシフトしやすい。そのため、SiOの含有量は0~40%、0~35%、0~30%、0.1~25%、特に1~20%であることが好ましい。 SiO 2 is a component that contributes to glass formation and widens the vitrification range. However, when the amount of SiO 2 increases, the ultraviolet absorption edge of the glass tends to shift to the long wavelength side. Therefore, the content of SiO 2 is preferably 0 to 40%, 0 to 35%, 0 to 30%, 0.1 to 25%, particularly 1 to 20%.
 La、Gd、Yb、Yはガラス化の安定性を向上させる効果があるが、その含有量が多すぎるとかえってガラス化しにくくなる。また、光透過率低下の原因となる。よって、La、Gd、Yb、Yの含有量は各々10%以下、特に5%以下であることが好ましい。 La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , and Y 2 O 3 have the effect of improving the stability of vitrification. However, if the content is too large, it becomes difficult to vitrify. Further, it causes a decrease in light transmittance. Therefore, the contents of La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 and Y 2 O 3 are each preferably 10% or less, particularly preferably 5% or less.
 Tb、Dy、Eu、Ceはベルデ定数の向上に寄与するが、光透過率低下の原因となる。よって、Tb、Dy、Eu、Ceの含有量は各々、10%以下、5%以下、特に1%以下であることが好ましい。なお、Tb、Dy、Eu、Ceの含有量は、ガラス中に存在するTb、Dy、Eu、Ceを全て3価の酸化物に換算して表したものである。 Tb 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 contribute to the improvement of the Verde constant, but cause a decrease in light transmittance. Therefore, the contents of Tb 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 are each preferably 10% or less, 5% or less, and particularly preferably 1% or less. The contents of Tb 2 O 3 , Dy 2 O 3 , Eu 2 O 3 , and Ce 2 O 3 are expressed by converting Tb, Dy, Eu, and Ce present in the glass into trivalent oxides. It is a thing.
 MgO、CaO、SrO、BaOはガラス化の安定性と化学的耐久性を高める効果がある。ただし、ベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、これらの成分の含有量は各々0~10%、特に0~5%であることが好ましい。 MgO, CaO, SrO, and BaO have the effect of improving the stability and chemical durability of vitrification. However, since it does not contribute to the improvement of the Verde constant, if the content is too large, it becomes difficult to obtain a sufficient Faraday effect. Accordingly, the content of these components is preferably 0 to 10%, particularly 0 to 5%.
 Gaはガラス形成能を高め、ガラス化範囲を広げる効果を有する。ただし、その含有量が多すぎると失透しやすくなる。また、Gaはベルデ定数の向上に寄与しないため、その含有量が多すぎると十分なファラデー効果が得られにくくなる。従って、Gaの含有量は0~6%、特に0~5%であることが好ましい。 Ga 2 O 3 has the effect of increasing the glass forming ability and expanding the vitrification range. However, when there is too much the content, it will become easy to devitrify. Further, since the Ga 2 O 3 it does not contribute to the improvement of the Verdet constant, when the content is too large, a sufficient Faraday effect difficult to obtain. Therefore, the Ga 2 O 3 content is preferably 0 to 6%, particularly preferably 0 to 5%.
 フッ素はガラス形成能を高め、ガラス化範囲を広げる効果を有する。ただし、その含有量が多すぎると溶融中に揮発して組成変動を引き起こしたり、ガラス化の安定性に悪影響を及ぼす恐れがある。従って、フッ素の含有量(F換算)は0~10%、0~7%、特に0~5%であることが好ましい。 Fluorine has the effect of increasing the glass forming ability and expanding the vitrification range. However, if its content is too large, it may volatilize during melting and cause composition fluctuations, or it may adversely affect the stability of vitrification. Accordingly, the fluorine content (F 2 conversion) is preferably 0 to 10%, 0 to 7%, particularly preferably 0 to 5%.
 還元剤としてSbを添加することができる。ただし、着色を避けるため、あるいは環境への負荷を考慮して、Sbの含有量は0.1%以下であることが好ましい。 Sb 2 O 3 can be added as a reducing agent. However, the content of Sb 2 O 3 is preferably 0.1% or less in order to avoid coloring or in consideration of environmental load.
 本発明のガラス材は、特に光アイソレータ、光サーキュレータ、磁気センサ等の磁気光学素子として使用する場合に、紫外吸収端が短波長であることが好ましい。そのため、厚さ1mmにて、光透過率が60%になる最短波長が350nm以下、345nm以下、340nm以下、330nm以下、320nm以下、特に300nm以下であることが好ましい。なお、この光透過率は反射も含んだ外部透過率である。 When the glass material of the present invention is used as a magneto-optical element such as an optical isolator, an optical circulator, or a magnetic sensor, it is preferable that the ultraviolet absorption edge has a short wavelength. Therefore, it is preferable that the shortest wavelength at which the light transmittance is 60% at a thickness of 1 mm is 350 nm or less, 345 nm or less, 340 nm or less, 330 nm or less, 320 nm or less, particularly 300 nm or less. This light transmittance is an external transmittance including reflection.
 本発明のガラス材は、例えば無容器浮遊法により作製することができる。図1は、無容器浮遊法によりガラス材を作製するための製造装置の一例を示す模式的断面図である。以下、図1を参照しながら、本発明のガラス材の製造方法について説明する。 The glass material of the present invention can be produced by, for example, a containerless floating method. FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus for producing a glass material by a containerless floating method. Hereinafter, the manufacturing method of the glass material of this invention is demonstrated, referring FIG.
 ガラス材の製造装置1は成形型10を有する。成形型10は溶融容器としての役割も果たす。成形型10は、成形面10aと、成形面10aに開口している複数のガス噴出孔10bとを有する。ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。ガスの種類は特に限定されず、例えば、空気や酸素であってもよいし、窒素ガス、アルゴンガス、ヘリウムガス、一酸化炭素ガス、二酸化炭素ガス、水素を含有した還元性ガスであってもよい。 The glass material manufacturing apparatus 1 has a mold 10. The mold 10 also serves as a melting container. The molding die 10 has a molding surface 10a and a plurality of gas ejection holes 10b opened in the molding surface 10a. The gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b. The type of gas is not particularly limited, and may be, for example, air or oxygen, or a reducing gas containing nitrogen gas, argon gas, helium gas, carbon monoxide gas, carbon dioxide gas, or hydrogen. Good.
 製造装置1を用いてガラス材を製造するに際しては、まず、ガラス原料塊12を成形面10a上に配置する。ガラス原料塊12としては、例えば、原料粉末をプレス成型等により一体化したものや、原料粉末をプレス成型等により一体化した後に焼結させた焼結体や、目標ガラス組成と同等の組成を有する結晶の集合体等が挙げられる。 When manufacturing a glass material using the manufacturing apparatus 1, the glass raw material lump 12 is first arrange | positioned on the molding surface 10a. As the glass raw material block 12, for example, a raw material powder integrated by press molding or the like, a sintered body obtained by integrating raw material powder by press molding or the like, and a composition equivalent to the target glass composition are used. For example, an aggregate of crystals.
 次に、ガス噴出孔10bからガスを噴出させることにより、ガラス原料塊12を成形面10a上で浮遊させる。すなわち、ガラス原料塊12を、成形面10aに接触していない状態で保持する。その状態で、レーザー光照射装置13からレーザー光をガラス原料塊12に照射する。これによりガラス原料塊12を加熱溶融してガラス化させ、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。ガラス原料塊12を加熱溶融する工程と、溶融ガラス、さらにはガラス材の温度が少なくとも軟化点以下となるまで冷却する工程においては、少なくともガスの噴出を継続し、ガラス原料塊12、溶融ガラス、さらにはガラス材と成形面10aとの接触を抑制することが好ましい。なお、磁場を印加することにより発生する磁力を利用してガラス原料塊12を成形面10a上に浮遊させてもよい。また、加熱溶融する方法としては、レーザー光を照射する方法以外にも、輻射加熱であってもよい。 Next, the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in a state where it is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser light irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass. In the step of heating and melting the glass raw material lump 12 and the step of cooling until the temperature of the molten glass and further the glass material is at least the softening point or less, at least gas ejection is continued, and the glass raw material lump 12, molten glass, Furthermore, it is preferable to suppress contact between the glass material and the molding surface 10a. In addition, you may float the glass raw material lump 12 on the molding surface 10a using the magnetic force which generate | occur | produces by applying a magnetic field. In addition to the method of irradiating laser light, the method of heating and melting may be radiant heating.
 なお、本発明のガラス材は磁化率が高いため、本発明のガラス材をモールドプレス成型等によりレンズ形状に成型することによって、デジタルカメラやカメラ付携帯電話等のオートフォーカス用レンズ等に用いることができる。これらのカメラには、カメラの焦点距離を変える、つまり、オートフォーカス用レンズを所定の位置に移動させるための駆動装置が設けられており、従来、駆動装置には、レンズを固定するためのレンズホルダー、レンズホルダーを移動させるためのばねが備えられている。しかしながら、レンズホルダーやばねを備えた駆動装置では、デジタルカメラやカメラ付携帯電話型等を小型化することができない。しかしながら、磁化率の高い本発明のガラス材でレンズを作製すれば、磁石によってレンズ自体を移動させることができるため、レンズホルダーやばねが不要となりカメラ等を小型化することが可能になる。 In addition, since the glass material of the present invention has a high magnetic susceptibility, the glass material of the present invention is used for autofocus lenses such as digital cameras and camera-equipped mobile phones by molding into a lens shape by mold press molding or the like. Can do. These cameras are provided with a driving device for changing the focal length of the camera, that is, for moving the autofocus lens to a predetermined position. Conventionally, the driving device has a lens for fixing the lens. A spring for moving the holder and the lens holder is provided. However, in a driving device including a lens holder and a spring, a digital camera, a camera-equipped mobile phone type, or the like cannot be downsized. However, if a lens is made of the glass material of the present invention having a high magnetic susceptibility, the lens itself can be moved by a magnet, so that a lens holder and a spring are not required, and the camera and the like can be miniaturized.
 また、本発明のガラス材は、250~420nmの波長域の光透過率が420~500nmの波長域の光透過率より高く、500~550nmの波長域の光透過率が550~620nmの光透過率より高く、620~950nmの波長域の光透過率が950~1200nmの波長域の光透過率よりも高い。このように、特定の波長域の光を吸収する性質を有するため、本発明のガラス材を研磨等によりシート形状にすることにより、バンドパスフィルターとして使用することが可能である。 Further, the glass material of the present invention has a light transmittance in the wavelength region of 250 to 420 nm higher than that in the wavelength region of 420 to 500 nm, and a light transmittance of 550 to 620 nm in the wavelength region of 500 to 550 nm. The light transmittance in the wavelength range of 620 to 950 nm is higher than the light transmittance in the wavelength range of 950 to 1200 nm. Thus, since it has the property of absorbing light in a specific wavelength region, it can be used as a band-pass filter by forming the glass material of the present invention into a sheet shape by polishing or the like.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1は本発明の実施例及び比較例を示している。 Table 1 shows examples and comparative examples of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各試料は次のようにして作製した。まず表に示すガラス組成になるように調合した原料をプレス成型し、800~1400℃で6時間焼結することによりガラス原料塊を作製した。 Each sample was prepared as follows. First, raw materials prepared so as to have the glass composition shown in the table were press-molded, and sintered at 800 to 1400 ° C. for 6 hours to prepare glass raw material blocks.
 次に、乳鉢中でガラス原料塊を粗粉砕し、0.05~1.5gの小片とした。得られたガラス原料塊の小片を用いて、図1に準じた装置を用いた無容器浮遊法によってガラス材(直径約1~10mm)を作製した。なお、熱源としては100WのCOレーザー発振器を用いた。また、原料塊を空中に浮遊させるためのガスとして窒素ガスを用い、流量1~30L/分で供給した。 Next, the glass raw material lump was coarsely pulverized in a mortar to obtain small pieces of 0.05 to 1.5 g. Using the obtained piece of glass raw material lump, a glass material (diameter: about 1 to 10 mm) was produced by a containerless floating method using an apparatus according to FIG. A 100 W CO 2 laser oscillator was used as the heat source. Further, nitrogen gas was used as a gas for suspending the raw material lump in the air and was supplied at a flow rate of 1 to 30 L / min.
 得られたガラス材について、カー(Kerr)効果測定装置(日本分光(株)製、品番:K-250)を用いてベルデ定数を測定した。具体的には、得られたガラス材を1mm程度の厚さとなるよう研磨加工し、15kOeの磁場中で波長400~850nmでのファラデー回転角を測定し、波長400nmにおけるベルデ定数を算出した。なお、波長の掃引速度は6nm/分とした。結果を表1に示す。 The Verde constant of the obtained glass material was measured using a Kerr effect measuring device (manufactured by JASCO Corporation, product number: K-250). Specifically, the obtained glass material was polished to a thickness of about 1 mm, the Faraday rotation angle at a wavelength of 400 to 850 nm was measured in a magnetic field of 15 kOe, and the Verde constant at a wavelength of 400 nm was calculated. The wavelength sweep rate was 6 nm / min. The results are shown in Table 1.
 光透過率が60%になる最短波長は、得られたガラス材を1mmの厚さとなるよう研磨加工し、分光光度計(島津製作所製UV-3100)を用いて測定した。なお、光透過率は反射も含んだ外部透過率である。 The shortest wavelength at which the light transmittance was 60% was measured using a spectrophotometer (Shimadzu UV-3100) after polishing the obtained glass material to a thickness of 1 mm. The light transmittance is an external transmittance including reflection.
 表1から明らかなように実施例1~5のガラス材は、波長400nmにおけるベルデ定数が-0.74~-1.87であり、絶対値が大きかった。また、光透過率が60%になる最短波長は298~338nmと小さく、短波長域における光透過率に優れていた。一方、比較例1のガラス材は、波長400nmにおけるベルデ定数が-0.48であり、絶対値が小さかった。比較例2のガラス材は、波長400nmにおけるベルデ定数が-0.62であり、絶対値が小さかった。また、光透過率が60%になる最短波長は358nmと大きく、短波長域における光透過率に劣っていた。 As is clear from Table 1, the glass materials of Examples 1 to 5 had a Verde constant of −0.74 to −1.87 at a wavelength of 400 nm, and had a large absolute value. Further, the shortest wavelength at which the light transmittance reached 60% was as small as 298 to 338 nm, and the light transmittance in the short wavelength region was excellent. On the other hand, the glass material of Comparative Example 1 had a Verde constant of −0.48 at a wavelength of 400 nm and a small absolute value. The glass material of Comparative Example 2 had a Verde constant of −0.62 at a wavelength of 400 nm and a small absolute value. Further, the shortest wavelength at which the light transmittance reached 60% was as large as 358 nm, which was inferior to the light transmittance in the short wavelength region.
 本発明のガラス材は、光アイソレータ、光サーキュレータ、磁気センサ等の磁気デバイスを構成する磁気光学素子、デジタルカメラ等に用いられる磁性ガラスレンズ、バンドパスフィルターに用いられるガラスシートの材料等として好適である。 The glass material of the present invention is suitable as a material for a magneto-optical element constituting a magnetic device such as an optical isolator, an optical circulator, and a magnetic sensor, a magnetic glass lens used for a digital camera, a glass sheet used for a band-pass filter, and the like. is there.
  1:ガラス材の製造装置
  10:成形型
  10a:成形面
  10b:ガス噴出孔
  11:ガス供給機構
  12:ガラス原料塊
  13:レーザー光照射装置
1: Glass material manufacturing apparatus 10: Mold 10a: Molding surface 10b: Gas ejection hole 11: Gas supply mechanism 12: Glass raw material block 13: Laser beam irradiation apparatus

Claims (6)

  1.  モル%で、Pr 30~50%、B+P 0.1~70%を含有することを特徴とするガラス材。 A glass material comprising Pr 2 O 3 30 to 50% and B 2 O 3 + P 2 O 5 0.1 to 70% by mol%.
  2.  さらに、モル%で、Al 0~50%を含有することを特徴とする請求項1に記載のガラス材。 The glass material according to claim 1, further comprising 0 to 50% of Al 2 O 3 in mol%.
  3.  厚さ1mmにて、光透過率が60%になる最短波長が350nm以下であることを特徴とする請求項1~2に記載のガラス材。 3. The glass material according to claim 1, wherein the shortest wavelength at which the light transmittance is 60% at a thickness of 1 mm is 350 nm or less.
  4.  磁気光学素子として用いられることを特徴とする請求項1~3のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 3, wherein the glass material is used as a magneto-optical element.
  5.  ファラデー回転素子として用いられることを特徴とする請求項4に記載のガラス材。 The glass material according to claim 4, wherein the glass material is used as a Faraday rotation element.
  6.  請求項1~5のいずれか一項に記載のガラス材を製造するための方法であって、ガラス原料塊を空中に浮遊させて保持した状態で、前記ガラス原料塊を加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却する工程を備えることを特徴とする、ガラス材の製造方法。 A method for producing the glass material according to any one of claims 1 to 5, wherein the glass raw material mass is heated and melted in a state where the glass raw material mass is suspended and held in the air. The manufacturing method of the glass material characterized by including the process of cooling the said molten glass after obtaining.
PCT/JP2017/029676 2016-10-07 2017-08-18 Glass material and method for manufacturing same WO2018066239A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780057494.9A CN109715575B (en) 2016-10-07 2017-08-18 Glass material and method for producing same
US16/331,563 US10829406B2 (en) 2016-10-07 2017-08-18 Glass material and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016198993 2016-10-07
JP2016-198993 2016-10-07
JP2017-080501 2017-04-14
JP2017080501A JP2018062457A (en) 2016-10-07 2017-04-14 Glass material and method for producing the same

Publications (1)

Publication Number Publication Date
WO2018066239A1 true WO2018066239A1 (en) 2018-04-12

Family

ID=61830839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029676 WO2018066239A1 (en) 2016-10-07 2017-08-18 Glass material and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP7109746B2 (en)
CN (1) CN109715575B (en)
WO (1) WO2018066239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193627A1 (en) * 2020-03-27 2021-09-30 日本電気硝子株式会社 Glass material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170338A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Magnetic glass
US6482758B1 (en) * 1999-10-14 2002-11-19 Containerless Research, Inc. Single phase rare earth oxide-aluminum oxide glasses
JP2008150276A (en) * 2006-11-21 2008-07-03 Canon Inc Glass composition for ultraviolet light and optical device using the same
JP2016121264A (en) * 2014-12-25 2016-07-07 国立大学法人長岡技術科学大学 Phosphor and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153918A (en) * 1982-03-10 1983-09-13 Yokogawa Hokushin Electric Corp Manufacture of element having magnetooptic effect
KR100618322B1 (en) 2004-12-24 2006-08-31 주식회사 파이컴 Partial type backlight apparatus
JP6385662B2 (en) * 2012-12-28 2018-09-05 日本電気硝子株式会社 Manufacturing method of glass material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04170338A (en) * 1990-11-01 1992-06-18 Matsushita Electric Ind Co Ltd Magnetic glass
US6482758B1 (en) * 1999-10-14 2002-11-19 Containerless Research, Inc. Single phase rare earth oxide-aluminum oxide glasses
JP2008150276A (en) * 2006-11-21 2008-07-03 Canon Inc Glass composition for ultraviolet light and optical device using the same
JP2016121264A (en) * 2014-12-25 2016-07-07 国立大学法人長岡技術科学大学 Phosphor and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TERASHIMA, K ET AL.: "Structure and Nonlinear Optical Properties of Lanthanide Borate Glasses", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 80, no. 11, November 1997 (1997-11-01), pages 2903 - 2909, XP055603912 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193627A1 (en) * 2020-03-27 2021-09-30 日本電気硝子株式会社 Glass material

Also Published As

Publication number Publication date
JP2021193066A (en) 2021-12-23
JP7109746B2 (en) 2022-08-01
CN109715575B (en) 2022-03-01
CN109715575A (en) 2019-05-03

Similar Documents

Publication Publication Date Title
JP6694154B2 (en) Glass material and manufacturing method thereof
JP6728644B2 (en) Glass material and manufacturing method thereof
WO2017051685A1 (en) Glass material and method for manufacturing same
WO2016121655A1 (en) Glass material and method for manufacturing same
JP7109746B2 (en) Glass material and its manufacturing method
WO2018163759A1 (en) Glass material and method for manufacturing same
JP6897113B2 (en) Glass material and its manufacturing method
JP6878894B2 (en) Glass material and its manufacturing method
JP6686386B2 (en) Glass material and manufacturing method thereof
JP2018020934A (en) Optical glass and method for producing the same
JP6897114B2 (en) Glass material and its manufacturing method
JP6897112B2 (en) Glass material and its manufacturing method
JP2018062457A (en) Glass material and method for producing the same
JP6993612B2 (en) Glass material and its manufacturing method
JP6926436B2 (en) Glass material and its manufacturing method
JP6861953B2 (en) Glass material and its manufacturing method
JP7101936B2 (en) Glass material and its manufacturing method
JP6830612B2 (en) Glass material and its manufacturing method
WO2018079090A1 (en) Magneto-optic element and method for producing same
JP6607385B2 (en) Glass material and manufacturing method thereof
JP6617446B2 (en) Glass material
WO2021193627A1 (en) Glass material
JP2018072419A (en) Magnetic glass lens
JP2018058728A (en) Glass material and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858079

Country of ref document: EP

Kind code of ref document: A1