WO2016121589A1 - Organic semiconductor material - Google Patents

Organic semiconductor material Download PDF

Info

Publication number
WO2016121589A1
WO2016121589A1 PCT/JP2016/051525 JP2016051525W WO2016121589A1 WO 2016121589 A1 WO2016121589 A1 WO 2016121589A1 JP 2016051525 W JP2016051525 W JP 2016051525W WO 2016121589 A1 WO2016121589 A1 WO 2016121589A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
hydrocarbon group
organosilyl
Prior art date
Application number
PCT/JP2016/051525
Other languages
French (fr)
Japanese (ja)
Inventor
淳志 若宮
一剛 萩谷
光 田中
良樹 今西
崇 倉田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016571967A priority Critical patent/JP6688453B2/en
Publication of WO2016121589A1 publication Critical patent/WO2016121589A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a compound having a specific benzobisthiazole skeleton and a production method thereof.
  • Organic semiconductor materials are one of the most important materials in the field of organic electronics, and can be classified into electron-donating p-type organic semiconductor materials and electron-accepting n-type organic semiconductor materials.
  • Various elements can be manufactured by appropriately combining p-type organic semiconductor materials and n-type organic semiconductor materials. For example, such elements are excitons formed by recombination of electrons and holes. It is applied to organic electroluminescence that emits light by the action of (exciton), an organic thin film solar cell that converts light into electric power, an organic thin film transistor that controls the amount of current and voltage, and the like.
  • organic thin-film solar cells are useful for environmental conservation because they do not release carbon dioxide into the atmosphere, and demand is increasing because they are easy to manufacture with a simple structure.
  • the photoelectric conversion efficiency of the organic thin film solar cell is still not sufficient.
  • FF fill factor
  • the open circuit voltage (Voc) is proportional to the energy difference between the HOMO (highest occupied orbital) level of the p-type organic semiconductor and the LUMO (lowest unoccupied orbital) level of the n-type organic semiconductor, the open circuit voltage (Voc) ) Needs to be deepened (reduced) in the HOMO level of the p-type organic semiconductor.
  • the short circuit current density (Jsc) correlates with the amount of energy received by the organic semiconductor material.
  • the short circuit current density (Jsc) of the organic semiconductor material In order to improve the short circuit current density (Jsc) of the organic semiconductor material, from the visible region to the near infrared region. It is necessary to absorb light in a wide wavelength range. Of the light that can be absorbed by the organic semiconductor material, the wavelength of the light with the lowest energy (the longest wavelength) is the absorption edge wavelength, and the energy corresponding to this wavelength corresponds to the band gap energy. Therefore, in order to absorb light in a wider wavelength range, it is necessary to narrow the band gap (energy difference between the HOMO level and the LUMO level of the p-type organic semiconductor).
  • Patent Document 1 As one of such organic semiconductor materials, although a compound having a benzobisthiazole skeleton in a repeating unit has been proposed (Patent Document 1), performance as an organic semiconductor material such as photoelectric conversion efficiency is not specified.
  • Patent Document 1 JP 2007-238530 A
  • An object of the present invention is to provide an organic semiconductor material excellent in conversion efficiency. Another object of the present invention is to provide a raw material compound that can introduce more various skeletons and substituents because the organic semiconductor material is closely related to the chemical structure and the conversion efficiency. Furthermore, it is providing the manufacturing method of such an organic-semiconductor material and its raw material compound.
  • the present inventors have made the p-type organic semiconductor absorb light in a wide wavelength range and simultaneously perform HOMO. We found it useful to make the level moderately deep. And as a result of earnestly examining paying attention to the correlation between the conversion efficiency and the chemical structure in the p-type organic semiconductor material, by using an organic semiconductor polymer having a specific structure, the entire visible light region has a wide light absorption. At the same time, it was found that the short circuit current density (Jsc) can be improved while improving the open circuit voltage (Voc) because the HOMO level and the LUMO level can be adjusted to appropriate ranges. And when such an organic-semiconductor polymer was used, it discovered that a charge separation could be easily caused between a p-type organic semiconductor and an n-type organic semiconductor, and completed this invention.
  • the polymer compound according to the present invention includes a repeating unit having a benzobisthiazole structure represented by the following formula (1) and a repeating unit having a thiophene structure represented by the following formula (2).
  • T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • the polymer compound according to the present invention preferably includes a repeating unit represented by the following formula (3).
  • T 1 , T 2 and R 1 each represent the same group as described above, and p represents an integer of 1 to 10.
  • the high molecular compound which concerns on this invention contains the repeating unit represented by following formula (6).
  • T 1 , T 2 , T 3 , T 4 are each independently a thiophene ring, carbonized, which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • T 1 , T 2 , T 3 , and T 4 are all the same, and R 1 , R 2 , R 3 , and R 4 are not all the same. ]
  • T 1 , T 2 , T 3 and T 4 are groups represented by any of the following formulas (t1) to (t5), respectively. It is preferable.
  • R 21 to R 22 each independently represents a hydrocarbon group having 6 to 30 carbon atoms.
  • R 23 to R 24 each independently represents a hydrocarbon group having 6 to 30 carbon atoms or a group represented by **-Si (R 26 ) 3 .
  • R 25 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, ** — O—R 27 , ** — S—R 28 , ** — Si (R 26 ) 3 , a halogen atom, or **. It represents a -CF 3.
  • R 26 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the plurality of R 26 may be the same or different.
  • R 27 to R 28 each represents a hydrocarbon group having 6 to 30 carbon atoms. * Represents a bond bonded to the thiazole ring of benzobisthiazole. ** represents a bond that binds to (t3) to (t5). ]
  • the technical scope of the present invention also includes an organic semiconductor material containing the compound of the present invention and that the organic semiconductor material is a p-type semiconductor or an n-type semiconductor. Furthermore, the technical scope of the present invention also includes an organic electronic device including the organic semiconductor material, and that the organic electronic device is a photoelectric conversion element or a solar cell.
  • a dihalogenobenzobisthiazole compound represented by the following formula (4) (hereinafter sometimes referred to as “compound (4)”); [In Formula (4), T 1 and T 2 each represent the same group as described above, and X 1 and X 2 each represent a halogen atom. ]
  • a thiophene compound represented by the following formula (5) (hereinafter sometimes referred to as “compound (5)”), [In Formula (5), R 1 represents the same group as described above, and p represents the same integer as described above.
  • R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • M 1 and M 2 each independently represent a boron atom or a tin atom.
  • R 10 and R 11 may form a ring with M 1
  • R 12 and R 13 may form a ring with M 2 .
  • m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different.
  • T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above.
  • p represents the same integer as described above.
  • T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • X 1 and X 2 represent a halogen atom.
  • a benzobisthiazole compound represented by the following formula (8) (hereinafter sometimes referred to as “compound (8)”), [In formula (8), T 3 and T 4 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • M 1 and M 2 each independently represent a boron atom or a tin atom.
  • R 10 and R 11 may form a ring with M 1
  • R 12 and R 13 may form a ring with M 2 .
  • m and n each represents an integer of 1 or 2.
  • the plurality of R 10 and R 12 may be the same or different.
  • T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 each represents the same group as described above.
  • T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • X 1 and X 2 represent a halogen atom.
  • a thiophene compound represented by the following formula (5) (hereinafter sometimes referred to as “compound (5)”), [In Formula (5), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. p represents an integer of 1 to 10.
  • R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • M 1 and M 2 each independently represent a boron atom or a tin atom.
  • R 10 and R 11 may form a ring with M 1
  • R 12 and R 13 may form a ring with M 2 .
  • m and n each represents an integer of 1 or 2.
  • the plurality of R 10 and R 12 may be the same or different.
  • T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above.
  • the benzobisthiazole compound of the present invention can form a planar cruciform skeleton by intramolecular SN interaction.
  • ⁇ conjugation is extended to a planar cross-shaped skeleton, so that multiband light absorption derived from a plurality of ⁇ - ⁇ * transitions is exhibited, and the entire visible light region has wide light absorption.
  • high charge transport characteristics can be achieved. Therefore, it is useful as an organic semiconductor material, particularly a solar cell material.
  • benzobisthiazole compounds into which more various skeletons and substituents are introduced can be obtained.
  • FIG. 1 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 1.
  • FIG. 2 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 2.
  • FIG. 3 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 3.
  • FIG. 4 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 4.
  • FIG. 5 shows the UV-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 5.
  • FIG. 6 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 6.
  • FIG. 7 shows an ultraviolet-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 7.
  • FIG. 8 shows the UV-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 8.
  • FIG. 9 shows an ultraviolet-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 9.
  • FIG. 10 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 10.
  • the polymer compound of the present invention has a repeating unit having a benzothiazole structure represented by the following formula (1) and a repeating unit having a thiophene structure represented by the formula (2).
  • T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl group optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon, or an organosilyl group.
  • R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • the polymer compound of the present invention has a benzobisthiazole structural unit represented by the formula (1) and a thiazole structural unit represented by the formula (2), it has a high planar structure due to intramolecular SN interaction.
  • the ⁇ -conjugated system spreads through the cruciform skeleton and exhibits multiband light absorption characteristics derived from a plurality of ⁇ - ⁇ * transitions. As a result, the entire visible light region has a wide absorption.
  • the band gap can be narrowed while deepening the HOMO level, which is advantageous in increasing the photoelectric conversion efficiency.
  • the polymer compound of the present invention preferably contains a repeating unit having a benzobisthiazole structure represented by the following formula (3).
  • T 1 , T 2 and R 1 each represent the same group as described above, and p represents an integer of 1 to 10.
  • the polymer compound of the present invention preferably has a repeating unit having a benzobisthiazole structure represented by the following formula (6).
  • T 1 , T 2 , T 3 , T 4 are each independently a thiophene ring, carbonized, which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • T 1 , T 2 , T 3 , and T 4 are all the same, and R 1 , R 2 , R 3 , and R 4 are not all the same. ]
  • T 1 and T 2 may be the same or different from each other, but are the same from the viewpoint of easy production. Preferably there is.
  • T 1 , T 2 , T 3 , and T 4 may be the same or different from each other, but at least one of them is different. It is preferable. Further, from the viewpoint of easy production, it is preferable that T 1 and T 2 are the same and T 3 and T 4 are the same.
  • Each of 4 is preferably a group represented by the following formulas (t1) to (t5).
  • the alkoxy group of T 1 , T 2 , T 3 , and T 4 is preferably a group represented by the following formula (t1)
  • the thioalkoxy group is represented by the following formula (t2).
  • a thiophene ring optionally substituted with a hydrocarbon group or an organosilyl group is preferably a group represented by the following formula (t3), and a thiazole optionally substituted with a hydrocarbon group or an organosilyl group
  • a group represented by the following formula (t4) is preferable, and as a phenyl group optionally substituted by a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group Is preferably a group represented by the following formula (t5).
  • T 1 , T 2 , T 3 , and T 4 are groups represented by the following formulas (t1) to (t5), it is possible to absorb short-wavelength light and to have high planarity, thereby improving efficiency. Since ⁇ - ⁇ stacking is formed, the photoelectric conversion efficiency can be further increased.
  • R 21 to R 22 each independently represents a hydrocarbon group having 6 to 30 carbon atoms.
  • R 23 to R 24 each independently represents a hydrocarbon group having 6 to 30 carbon atoms or a group represented by **-Si (R 26 ) 3 .
  • R 25 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, ** — O—R 27 , ** — S—R 28 , ** — Si (R 26 ) 3 , a halogen atom, or * * Represents CF 3 .
  • R 26 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the plurality of R 26 may be the same or different.
  • R 27 to R 28 each represents a hydrocarbon group having 6 to 30 carbon atoms. * Represents a bond bonded to the thiazole ring of benzobisthiazole. ** represents a bond that binds to (t3) to (t5). ]
  • the hydrocarbon group having 6 to 30 carbon atoms of R 21 to R 25 and R 27 to R 28 is preferably a branched hydrocarbon group, more preferably It is a branched chain saturated hydrocarbon group. Since the hydrocarbon groups of R 21 to R 25 and R 27 to R 28 have a branch, the solubility in an organic solvent can be increased, and the polymer compound of the present invention can obtain appropriate crystallinity. .
  • the larger the carbon number of the hydrocarbon group of R 21 to R 25 and R 27 to R 28 the more the solubility in an organic solvent can be improved. Therefore, the synthesis of the polymer compound becomes difficult. Therefore, the carbon number of the hydrocarbon group of R 21 to R 25 and R 27 to R 28 is preferably 8 to 28, more preferably 8 to 26, and still more preferably 8 to 24.
  • Examples of the hydrocarbon group having 6 to 30 carbon atoms represented by R 21 to R 25 and R 27 to R 28 include an n-hexyl group, an n-heptyl group, an n-octyl group, and 1-n-butylbutyl.
  • R 21 to R 25 and R 27 to R 28 are the above groups, the polymer compound of the present invention has improved solubility in an organic solvent and has appropriate crystallinity.
  • the number of carbon atoms of the aliphatic hydrocarbon group of R 26 is preferably 1 to 18, more preferably 1-8.
  • the aliphatic hydrocarbon group for R 26 include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, an isobutyl group, an octyl group, and an octadecyl group.
  • the number of carbon atoms of the aromatic hydrocarbon group for R 26 is preferably 6 to 8, more preferably 6 to 7, and particularly preferably 6.
  • R 26 examples include a phenyl group.
  • R 26 is preferably an aliphatic hydrocarbon group, more preferably a branched aliphatic hydrocarbon group, and particularly preferably an isopropyl group.
  • the plurality of R 26 may be the same or different, but are preferably the same.
  • R 23 to R 25 are groups represented by **-Si (R 26 ) 3
  • the polymer compound of the present invention has improved solubility in an organic solvent.
  • the groups represented by **-Si (R 26 ) 3 in R 23 to R 25 are specifically a trimethylsilyl group, an ethyldimethylsilyl group, an isopropyldimethylsilyl group.
  • R 25 is a halogen atom
  • any of fluorine, chlorine, bromine and iodine can be used.
  • T 1 , T 2 , T 3 , and T 4 are represented by the formulas (t1) to (t5) from the viewpoint of excellent planarity as the whole structural unit represented by the formula (1), the formula (3), or the formula (6).
  • a group represented by the formula (t3) is more preferred, and groups represented by the following formulas (t3-1) to (t3-12) are particularly preferred.
  • * represents a bond bonded to the thiazole ring of benzobisthiazole.
  • the carbon number of the hydrocarbon group of R 1 , R 2 , R 3 , R 4 is preferably 1-30, more preferably 1-16, and even more preferably 1-8.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include a methyl group having 1 carbon atom; an ethyl group having 2 carbon atoms.
  • alkyl group of several tens An alkyl group of several tens; n-undecyl group, 1-n-butylheptyl group, 2-n-butylheptyl group, 1-n-propyloctyl group, 2-n-propyloctyl group, 1- An alkyl group having 11 carbon atoms such as tilnonyl group, 2-ethylnonyl group; n-dodecyl group, 1-n-pentylheptyl group, 2-n-pentylheptyl group, 1-n-butyloctyl group, 2-n-butyl 12 alkyl groups such as octyl, 1-n-propylnonyl, 2-n-propylnonyl; n-tridecyl, 1-n-pentyloctyl, 2-n-pentyloctyl, 1- Alkyl groups having 13 carbon atoms such as n-butylnonyl
  • it is an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 16 carbon atoms, still more preferably an alkyl group having 1 to 8 carbon atoms, particularly preferably a methyl group, an ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and 2-ethylhexyl group. Or a hydrogen atom is preferable.
  • R 1 , R 2 , R 3 , and R 4 are the above groups, the polymer compound of the present invention has improved solubility in an organic solvent and has appropriate solubility and crystallinity.
  • T 1 , T 2 , and R 1 in the structural unit of the polymer compound represented by the formula (3) are the same as described above.
  • p is an integer of 1 to 10, but is preferably an alkyl group of 1 to 7, more preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1 to 2.
  • the weight average molecular weight and number average molecular weight of the polymer compound of the present invention are generally 2,000 or more and 500,000 or less, more preferably 3,000 or more and 200,000 or less.
  • the weight average molecular weight and number average molecular weight of the polymer compound of the present invention can be calculated based on a calibration curve prepared using polystyrene as a standard sample using gel permeation chromatography.
  • the ionization potential of the polymer compound of the present invention is preferably 4 eV or more, more preferably 4.5 eV or more, still more preferably 5 eV or more, and particularly preferably 5.1 eV or more.
  • the upper limit of ionization potential is not specifically limited, For example, it is 7 eV or less, it is preferable that it is 6.5 eV or less, and it is preferable that it is 6 eV or less.
  • the HOMO level is appropriately deepened (lowered), so that both a high open-circuit voltage (Voc) and a short-circuit current density (Jsc) can be obtained. It becomes possible, and higher photoelectric conversion efficiency can be obtained.
  • the polymer compound represented by the formula (3) of the present invention is: [In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above. ]
  • the polymer compound represented by the formula (6) of the present invention is [In Formula (6), T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 each represents the same group as described above. ]
  • the polymer compound represented by the formula (3) of the present invention is obtained by cross-coupling a dihalogenobenzobisthiazole compound represented by the formula (7) and a thiophene compound represented by the formula (5). It can also be produced by reacting.
  • examples of the halogen atom for X 1 and X 2 include chlorine, bromine, and iodine. Any of them can be used, but bromine and iodine are particularly preferable from the viewpoint of a balance between reactivity and stability.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 , R 2 , R 3 , and R 4 is a methyl group
  • An ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and 2-ethylhexyl group are preferred.
  • a hydrogen atom is preferable.
  • the compound (7) is preferably used as an intermediate compound of the polymer compound represented by the formulas (3) and (6) of the present invention. Since this compound (7) has the above-mentioned predetermined group, it has high temporal stability and can react efficiently to form the polymer compound of the present invention.
  • the compound represented by a following formula can be illustrated, for example.
  • a compound in which bromine is substituted with iodine in formulas (7-1) to (7-6) can also be preferably exemplified as compound (7).
  • the number of carbon atoms of the aliphatic hydrocarbon group of R 10 to R 13 is preferably 1 to 5, and more preferably 1 to 4.
  • the aliphatic hydrocarbon group for R 10 to R 13 is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, more preferably a methyl group or a butyl group.
  • the number of carbon atoms of the alkoxy group of R 10 to R 13 is preferably 1 to 3, and more preferably 1 to 2.
  • R 10 to R 13 As the alkoxy group for R 10 to R 13 , a methoxy group, an ethoxy group, a propoxy group and the like are preferable, and a methoxy group and an ethoxy group are more preferable.
  • the number of carbon atoms of the aryloxy group of R 10 to R 13 is preferably 6 to 9, and more preferably 6 to 8.
  • Examples of the aryloxy group for R 10 to R 13 include a phenyloxy group, a benzyloxy group, and a phenylenebis (methyleneoxy) group.
  • R 10 to R 13 may be the same or different from each other.
  • R 10 to R 13 are preferably a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms, m, And n is preferably 1.
  • ***-M 1 (R 10 ) m R 11 , ***-M 2 (R 12 ) n R 13 when M 1 and M 2 are boron atoms are represented by, for example, the following formulae: Group. However, *** represents a bond with a thiophene ring.
  • R 10 to R 13 are preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, and m and n are preferably 2.
  • ***-M 1 (R 10 ) m R 11 , ***-M 2 (R 12 ) n R 13 in the case where M 1 and M 2 are tin atoms are represented by, for example, the following formulae: Group. However, *** represents a bond with a thiophene ring or a thiazole ring.
  • the compound (5) is an intermediate compound used for the synthesis of the polymer compound of the present invention. Since this compound (5) has the above-mentioned predetermined group, it has high temporal stability and can react efficiently to form the polymer compound of the present invention.
  • compound (5) the compound represented by a following formula can be illustrated, for example.
  • compounds represented by formulas (5-1) to (5-10) in which the methyl group on the tin atom is substituted with a butyl group are also preferred as the compound (5).
  • the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) and the thiophene compound represented by formula (5) is: Generally, it is about 1: 0.8 to 1:10, and is not particularly limited, but is preferably 1: 0.8 to 1: 8, more preferably 1: 0.9 to 1: 6 from the viewpoint of yield and reaction efficiency. More preferably, the ratio is 1: 1 to 1: 5.
  • the compound (8) is preferably used as an intermediate compound used for the synthesis of the polymer compound represented by the formula (6) of the present invention. Since this compound (8) has the above-mentioned predetermined group, it has high temporal stability and can react efficiently to form the polymer compound of the present invention.
  • the compound represented by a following formula can be illustrated, for example.
  • a compound in which the methyl group on the tin atom is substituted with a butyl group can also be preferably exemplified as the compound (8).
  • the molar ratio of the dihalogenobenzobisthiazole compound represented by the formula (7) and the benzobisthiazole compound represented by the formula (8) is generally 1: Although it is about 0.8 to 1:10 and is not particularly limited, it is preferably 1: 0.8 to 1: 8, more preferably 1: 0.9 to 1: 6, from the viewpoint of yield and reaction efficiency. 1 to 1: 5 is more preferable.
  • the dihalogenobenzobisthiazole compound represented by the formula (4) or the formula (7) is reacted with the thiophene compound represented by the formula (5).
  • the metal catalyst used include transition metal catalysts such as a palladium catalyst, a nickel catalyst, an iron catalyst, a copper catalyst, a rhodium catalyst, and a ruthenium catalyst. Among these, a palladium-based catalyst is preferable. Note that the valence of palladium is not particularly limited, and may be zero or divalent.
  • Metal catalyst used in the reaction of the dihalogenobenzobisthiazole compound represented by formula (7) and the benzobisthiazole compound represented by formula (8) in the production of the polymer compound represented by formula (6) examples thereof include transition metal catalysts such as palladium catalysts, nickel catalysts, iron catalysts, copper catalysts, rhodium catalysts, and ruthenium catalysts. Among these, a palladium-based catalyst is preferable. Note that the valence of palladium is not particularly limited, and may be zero or divalent.
  • the palladium-based catalyst examples include palladium (II) chloride, palladium (II) bromide, palladium (II) iodide, palladium (II) oxide, palladium (II) sulfide, palladium (II) telluride, palladium hydroxide ( II), palladium selenide (II), palladium cyanide (II), palladium acetate (II), palladium trifluoroacetate (II), palladium acetylacetonate (II), diacetate bis (triphenylphosphine) palladium (II) ), Tetrakis (triphenylphosphine) palladium (0), dichlorobis (triphenylphosphine) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (benzonitrile) palladium (II), dichloro [1,2 Bis (diphenyl
  • These catalysts may be used individually by 1 type, and may mix and use 2 or more types.
  • tris (dibenzylideneacetone) dipalladium (0) and tris (dibenzylideneacetone) dipalladium (0) chloroform adduct are particularly preferred.
  • the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) to the metal catalyst is generally about 1: 0.0001 to 1: 0.5 and is not particularly limited, but is preferably 1: 0.001 to 1: 0.4 from the viewpoint of yield and reaction efficiency. 005 to 1: 0.3 is more preferable, and 1: 0.01 to 1: 0.2 is more preferable.
  • the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (7) to the metal catalyst is generally although it is about 1: 0.0001 to 1: 0.5 and is not particularly limited, it is preferably 1: 0.001 to 1: 0.4 from the viewpoint of yield and reaction efficiency, and 1: 0.005 to 1: 0. .3 is more preferable, and 1: 0.01 to 1: 0.2 is more preferable.
  • a specific ligand may be coordinated to a metal catalyst such as a palladium-based catalyst.
  • the ligands include trimethylphosphine, triethylphosphine, tri (n-butyl) phosphine, tri (isopropyl) phosphine, tri (tert-butyl) phosphine, tri-tert-butylphosphonium tetrafluoroborate, bis (tert-butyl) ) Methylphosphine, tricyclohexylphosphine, diphenyl (methyl) phosphine, triphenisphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, tris (p-tolyl) phosphine, tris (2-methoxyphenyl) phosphine , Tris (3-methoxyphenyl)
  • triphenylphosphine tris (o-tolyl) phosphine, and tris (2-methoxyphenyl) phosphine are particularly preferable.
  • the molar ratio of the metal catalyst to the ligand Is generally about 1: 0.5 to 1:10 and is not particularly limited, but is preferably 1: 1 to 1: 8, more preferably 1: 1 to 1: 7, from the viewpoint of yield and reaction efficiency. 1 to 1: 5 is more preferable.
  • the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) is represented by formula (5) in the presence of a metal catalyst.
  • a base may coexist.
  • the dihalogenobenzobisthiazole compound represented by formula (7) is added to the benzobisthiazole represented by formula (8) in the presence of a metal catalyst.
  • a base may coexist.
  • M 1 and M 2 are boron atoms, it is preferable to coexist with a base, and when M 1 and M 2 are tin atoms, it is not necessary to coexist with a base.
  • Examples of the base include lithium metal hydride, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and other alkali metal salt compounds; magnesium hydroxide, calcium hydroxide, barium hydroxide, Alkaline earth metal salt compounds such as magnesium carbonate, calcium carbonate, barium carbonate; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide Potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium tert-amyl alkoxide, sodium tert-amyl alkoxide Alkoxymethyl alkali metal compounds such as potassium tert- amyl alkoxide; lithium hydride, sodium hydride, metal hydride compounds such as potassium hydride.
  • an alkoxyalkali metal compound is preferable, and lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium carbonate, potassium carbonate, and cesium carbonate are more preferable.
  • the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) to the base Is generally about 1: 1 to 1:10 and is not particularly limited, but is preferably 1: 1.5 to 1: 8, more preferably 1: 1.8 to 1: 6, from the viewpoint of yield and reaction efficiency. 1: 2 to 1: 5 is more preferable.
  • the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (7) to the base is generally 1: Although it is about 1 to 1:10 and is not particularly limited, it is preferably 1: 1.5 to 1: 8, more preferably 1: 1.8 to 1: 6, and more preferably 1: 2 to 1: 8 from the viewpoint of yield and reaction efficiency. 1: 5 is more preferable.
  • the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) is represented by formula (5) in the presence of a metal catalyst.
  • the solvent for reacting the thiophene compound is not particularly limited as long as it does not affect the reaction, ether solvent, aromatic solvent, ester solvent, hydrocarbon solvent, halogen solvent, ketone solvent, An amide solvent or the like can be used.
  • ether solvent examples include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane.
  • aromatic solvent examples include benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and tetralin.
  • ester solvent examples include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate.
  • hydrocarbon solvent examples include pentane, hexane, heptane, octane, and decalin.
  • halogen solvent examples include dichloromethane, chloroform, dichloroethane, and dichloropropane.
  • ketone solvent examples include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro- ( 1H) -pyrimidine.
  • a nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane can be used.
  • a nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane
  • tetrahydrofuran, toluene, chlorobenzene, and N, N-dimethylformamide are particularly preferable.
  • the benzobisthiazole compound represented by the formula (8) is added to the dihalogenobenzobisthiazole compound represented by the formula (7) in the presence of a metal catalyst.
  • the said solvent can be used also about the solvent made to react.
  • the amount of the solvent used in the production of the polymer compound represented by formula (3) is generally 1 mL or more with respect to 1 g of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7), although it is about 150 mL or less and it is not specifically limited, From a viewpoint of a yield or reaction efficiency, 5 mL or more and 100 mL or less are preferable, 8 mL or more and 90 mL or less are more preferable, 10 mL or more and 80 mL or less are more preferable.
  • the amount of the solvent used in the production of the polymer compound represented by formula (6) is the sum of the dihalogenobenzobisthiazole compound represented by formula (7) and the benzobisthiazole compound represented by formula (8). Although it is generally 1 mL or more and about 150 mL or less with respect to 1 g, it is preferably 5 mL or more and 100 mL or less from the viewpoint of yield or reaction efficiency, more preferably 8 mL or more and 90 mL or less, more preferably 10 mL or more and 80 mL or less. Further preferred.
  • the reaction temperature is not particularly limited, but is preferably 0 ° C. or higher and 200 ° C. or lower from the viewpoint of increasing the reaction yield, 30 ° C. As mentioned above, it is more preferable that it is 180 degrees C or less, and it is still more preferable that it is 40 degrees C or more and 150 degrees C or less.
  • the measurement method used in the examples is as follows.
  • NMR spectrum measurement Regarding the benzobisthiazole compound, an NMR spectrum measuring apparatus (manufactured by Agilent (formerly Varian), “400MR”, and Bruker, “AVANCE”) 500 ”) and NMR spectra were measured.
  • the molecular weight of the benzobisthiazole compound was measured using gel permeation chromatography (GPC).
  • GPC Gel permeation chromatography
  • the benzobisthiazole compound was dissolved in a mobile phase solvent (chloroform) so as to have a concentration of 0.5 g / L, measured under the following conditions, and based on a calibration curve prepared using polystyrene as a standard sample. By converting, the weight average molecular weight of the benzobisthiazole compound was calculated.
  • the GPC conditions in the measurement are as follows.
  • UV-visible absorption spectrum The obtained benzobisthiazole compound was dissolved in chloroform so as to have a concentration of 0.03 g / L, and an ultraviolet / visible spectroscopic device (manufactured by Shimadzu Corporation, “UV-2450”, “UV-3150”), and The UV-visible absorption spectrum was measured using a cell having an optical path length of 1 cm.
  • a benzobisthiazole compound was formed on a glass substrate so as to have a thickness of 50 nm to 100 nm.
  • the ionization potential of this membrane was measured with an ultraviolet photoelectron analyzer (“AC-3” manufactured by Riken Keiki Co., Ltd.) at room temperature and normal pressure.
  • DI-DBTH-DMOTH 2,6-bis [5- (3,7-dimethyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole DI-DBTH-DMOTH
  • 2,6-bis [5- (3,7-dimethyloctyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DMOTH, 1.4 g) 2.12 mmol) and tetrahydrofuran (27 mL) were added, and the mixture was cooled to ⁇ 40 ° C., and then lithium diisopropylamide (2M solution, 2.3 mL, 4.66 mmol) was added dropwise and stirred for 30 minutes.
  • DI-DBTH-TDTH 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-TDTH) Synthesis of In a 200 mL flask, 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-TDTH, 4.1 g, 3.97 mmol) and tetrahydrofuran (80 mL) were added and cooled to ⁇ 40 ° C., and then lithium diisopropylamide (2M solution, 4.4 mL, 8.8 mmol) was added dropwise and stirred for 30 minutes.
  • donor material P-THDT-DBTH-T obtained as described above as a donor material and PCBM (C61) (phenyl C61-butyric acid methyl ester) as an acceptor material
  • donor material: acceptor material 1: 2 (weight) (total concentration 30 mg / mL) and 1,8-diiodooctane (0.03 mL / mL) were dissolved in chlorobenzene and passed through a 0.45 ⁇ m filter to obtain a mixed solution.
  • a glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • Example 4 P-THDT-DBTH-DT To a 20 mL flask, add 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH). -HDTH, 100 mg, 0.09 mmol), 5,5′-bis (trimethylstannyl) -2,2′-bithiophene (47 mg, 0.09), dipalladium (0) -chloroform adduct (3 mg, 3.
  • a glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • a glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • donor material P-TTDT-DBTH-TT obtained as described above as a donor material and PCBM (C61) (phenyl C61-butyric acid methyl ester) as an acceptor material
  • donor material: acceptor material 1: 2 (weight) (total concentration 24 mg / mL) and 1,8-diiodooctane (0.03 mL / mL) were dissolved in chlorobenzene and passed through a 0.45 ⁇ m filter to obtain a mixed solution.
  • a glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared.
  • PEDOT-PSS [poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)
  • the polymer compound of the present invention has high photoelectric conversion efficiency, it is useful for organic electro devices such as organic electroluminescence elements and organic thin film transistor elements.

Abstract

Provided are a polymer compound for providing an organic semiconductor material having excellent conversion efficiency, or a starting material compound having a high degree of freedom in material design, and a method for manufacturing the same. A polymer compound characterized by including repeating units of a benzobisthiazole structure represented by formula (1) and repeating units of a thiophene structure represented by formula (2). (In formula (1), T1 and T2 each independently represent a thiophene ring which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group, a thiazole ring which may be substituted with a hydrocarbon group or an organosilyl group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group.) (In formula (2), R1 represents a hydrogen atom or a C1-3 hydrocarbon group.)

Description

有機半導体材料Organic semiconductor materials
 本発明は、特定のベンゾビスチアゾール骨格を有する化合物、および、その製造方法に関する。 The present invention relates to a compound having a specific benzobisthiazole skeleton and a production method thereof.
 有機半導体材料は、有機エレクトロニクス分野において最も重要な材料の1つであり、電子供与性のp型有機半導体材料や電子受容性のn型有機半導体材料に分類することができる。p型有機半導体材料やn型有機半導体材料を適切に組合せることにより様々な素子を製造することができ、このような素子は、例えば、電子と正孔が再結合して形成される励起子(エキシトン)の作用により発光する有機エレクトロルミネッセンスや、光を電力に変換する有機薄膜太陽電池、電流量や電圧量を制御する有機薄膜トランジスタなどに応用されている。 Organic semiconductor materials are one of the most important materials in the field of organic electronics, and can be classified into electron-donating p-type organic semiconductor materials and electron-accepting n-type organic semiconductor materials. Various elements can be manufactured by appropriately combining p-type organic semiconductor materials and n-type organic semiconductor materials. For example, such elements are excitons formed by recombination of electrons and holes. It is applied to organic electroluminescence that emits light by the action of (exciton), an organic thin film solar cell that converts light into electric power, an organic thin film transistor that controls the amount of current and voltage, and the like.
 これらの中でも、有機薄膜太陽電池は、大気中への二酸化炭素放出がないため環境保全に有用であり、また簡単な構造で製造も容易であることから、需要が高まっている。しかしながら、有機薄膜太陽電池の光電変換効率はいまだ十分ではない。光電変換効率ηは短絡電流密度(Jsc)と開放電圧(Voc)、曲線因子(FF)の積「η=開放電圧(Voc)×短絡電流密度(Jsc)×曲線因子(FF)」で算出される値であり、光電変換効率を高めるためには、開放電圧(Voc)の向上に加え、短絡電流密度(Jsc)や曲線因子(FF)の向上も必要となる。 Among these, organic thin-film solar cells are useful for environmental conservation because they do not release carbon dioxide into the atmosphere, and demand is increasing because they are easy to manufacture with a simple structure. However, the photoelectric conversion efficiency of the organic thin film solar cell is still not sufficient. The photoelectric conversion efficiency η is calculated by the product “η = open circuit voltage (Voc) × short circuit current density (Jsc) × curve factor (FF)” of the short circuit current density (Jsc), the open circuit voltage (Voc), and the fill factor (FF). In order to increase the photoelectric conversion efficiency, it is necessary to improve the short circuit current density (Jsc) and the fill factor (FF) in addition to the improvement of the open circuit voltage (Voc).
 開放電圧(Voc)は、p型有機半導体のHOMO(最高被占軌道)準位とn型有機半導体のLUMO(最低空軌道)準位のエネルギー差に比例するものであるため、開放電圧(Voc)を向上するためには、p型有機半導体のHOMO準位を深くする(引き下げる)必要がある。 Since the open circuit voltage (Voc) is proportional to the energy difference between the HOMO (highest occupied orbital) level of the p-type organic semiconductor and the LUMO (lowest unoccupied orbital) level of the n-type organic semiconductor, the open circuit voltage (Voc) ) Needs to be deepened (reduced) in the HOMO level of the p-type organic semiconductor.
 また、短絡電流密度(Jsc)は、有機半導体材料が受け取るエネルギーの量と相関するものであり、有機半導体材料の短絡電流密度(Jsc)を向上するためには、可視領域から近赤外領域までの広い波長範囲の光を吸収させる必要がある。有機半導体材料が吸収できる光のうち、もっとも低いエネルギーの光の波長(もっとも長い波長)が吸収端波長であり、この波長に対応したエネルギーがバンドギャップエネルギーに相当する。そのため、より広い波長範囲の光を吸収させるためにはバンドギャップ(p型有機半導体のHOMO準位とLUMO準位のエネルギー差)を狭くする必要がある。
 このような有機半導体材料の一つとして、ベンゾビスチアゾール骨格を繰り返し単位に有する化合物が提案されているものの(特許文献1)、光電変換効率など有機半導体材料としての性能が明記されていない。
Further, the short circuit current density (Jsc) correlates with the amount of energy received by the organic semiconductor material. In order to improve the short circuit current density (Jsc) of the organic semiconductor material, from the visible region to the near infrared region. It is necessary to absorb light in a wide wavelength range. Of the light that can be absorbed by the organic semiconductor material, the wavelength of the light with the lowest energy (the longest wavelength) is the absorption edge wavelength, and the energy corresponding to this wavelength corresponds to the band gap energy. Therefore, in order to absorb light in a wider wavelength range, it is necessary to narrow the band gap (energy difference between the HOMO level and the LUMO level of the p-type organic semiconductor).
As one of such organic semiconductor materials, although a compound having a benzobisthiazole skeleton in a repeating unit has been proposed (Patent Document 1), performance as an organic semiconductor material such as photoelectric conversion efficiency is not specified.
特許文献1:特開2007-238530号公報 Patent Document 1: JP 2007-238530 A
 本発明の課題は、変換効率に優れた有機半導体材料を提供することにある。また、有機半導体材料では化学構造と変換効率とが密接に関連していることから、より多様な骨格や置換基を導入できる原材料化合物を提供することをも目的とする。さらに、このような有機半導体材料やその原材料化合物の製造方法を提供することにある。 An object of the present invention is to provide an organic semiconductor material excellent in conversion efficiency. Another object of the present invention is to provide a raw material compound that can introduce more various skeletons and substituents because the organic semiconductor material is closely related to the chemical structure and the conversion efficiency. Furthermore, it is providing the manufacturing method of such an organic-semiconductor material and its raw material compound.
 本発明者らは、変換効率向上、すなわち開放電圧(Voc)を向上しながら短絡電流密度(Jsc)を向上するためには、p型有機半導体に広い波長の範囲の光を吸収させると同時にHOMO準位を適度に深くすることが有用であることを見出した。そして、p型有機半導体材料における変換効率と化学構造との相関に着目して鋭意検討を行った結果、特定の構造を有する有機半導体ポリマーを用いることによって、可視光領域全体に幅広い光吸収を有するとともに、HOMO準位やLUMO準位を適切な範囲に調整できるため、開放電圧(Voc)を向上しながら短絡電流密度(Jsc)を向上できることをつきとめた。そして、このような有機半導体ポリマーを用いると、p型有機半導体とn型有機半導体との間で容易に電荷分離を起こせることを見出して、本発明を完成した。 In order to improve the conversion efficiency, that is, to improve the short-circuit current density (Jsc) while improving the open circuit voltage (Voc), the present inventors have made the p-type organic semiconductor absorb light in a wide wavelength range and simultaneously perform HOMO. We found it useful to make the level moderately deep. And as a result of earnestly examining paying attention to the correlation between the conversion efficiency and the chemical structure in the p-type organic semiconductor material, by using an organic semiconductor polymer having a specific structure, the entire visible light region has a wide light absorption. At the same time, it was found that the short circuit current density (Jsc) can be improved while improving the open circuit voltage (Voc) because the HOMO level and the LUMO level can be adjusted to appropriate ranges. And when such an organic-semiconductor polymer was used, it discovered that a charge separation could be easily caused between a p-type organic semiconductor and an n-type organic semiconductor, and completed this invention.
 すなわち、本発明に係る高分子化合物は下記式(1)で表されるベンゾビスチアゾール構造の繰り返し単位と下記式(2)で表されるチオフェン構造の繰り返し単位とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000016

[式(1)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。]
Figure JPOXMLDOC01-appb-C000017

[式(2)中、Rは、水素原子、または、炭素数1~30の炭化水素基を表す。]
That is, the polymer compound according to the present invention includes a repeating unit having a benzobisthiazole structure represented by the following formula (1) and a repeating unit having a thiophene structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000016

[In formula (1), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group. ]
Figure JPOXMLDOC01-appb-C000017

[In Formula (2), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. ]
 本発明に係る高分子化合物は、下記式(3)で表される繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000018

[式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは1~10の整数を表す。]
The polymer compound according to the present invention preferably includes a repeating unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000018

[In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents an integer of 1 to 10. ]
 また、本発明に係る高分子化合物は、下記式(6)で表される繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000019

[式(1)中、T、T、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
 R、R、R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
 T、T、T、Tが全て同一であり、かつ、R、R、R、Rが全て同一となることはない。]
Moreover, it is preferable that the high molecular compound which concerns on this invention contains the repeating unit represented by following formula (6).
Figure JPOXMLDOC01-appb-C000019

[In Formula (1), T 1 , T 2 , T 3 , T 4 are each independently a thiophene ring, carbonized, which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. A hydrogen group or a thiazole ring which may be substituted with an organosilyl group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group; To express.
R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
T 1 , T 2 , T 3 , and T 4 are all the same, and R 1 , R 2 , R 3 , and R 4 are not all the same. ]
 また式(1)、式(3)および式(3)においてT、T、T、Tが、それぞれ、下記式(t1)~(t5)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000020

[式(t1)~(t5)中、
 R21~R22は、それぞれ独立に、炭素数6~30の炭化水素基を表す。
 R23~R24は、それぞれ独立に、炭素数6~30の炭化水素基、または、**-Si(R263で表される基を表す。
 R25は、それぞれ独立に、炭素数6~30の炭化水素基、**-O-R27、**-S-R28、**-Si(R263、ハロゲン原子または、**-CF3を表す。
 R26は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基を表し、複数のR26は、同一でも異なっていてもよい。
 R27~R28は、炭素数6~30の炭化水素基を表す。
 *はベンゾビスチアゾールのチアゾール環に結合する結合手を表す。**は(t3)~(t5)に結合する結合手を表す。]
In the formulas (1), (3) and (3), T 1 , T 2 , T 3 and T 4 are groups represented by any of the following formulas (t1) to (t5), respectively. It is preferable.
Figure JPOXMLDOC01-appb-C000020

[In the formulas (t1) to (t5),
R 21 to R 22 each independently represents a hydrocarbon group having 6 to 30 carbon atoms.
R 23 to R 24 each independently represents a hydrocarbon group having 6 to 30 carbon atoms or a group represented by **-Si (R 26 ) 3 .
R 25 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, ** — O—R 27 , ** — S—R 28 , ** — Si (R 26 ) 3 , a halogen atom, or **. It represents a -CF 3.
R 26 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the plurality of R 26 may be the same or different.
R 27 to R 28 each represents a hydrocarbon group having 6 to 30 carbon atoms.
* Represents a bond bonded to the thiazole ring of benzobisthiazole. ** represents a bond that binds to (t3) to (t5). ]
 本発明の化合物を含む有機半導体材料、およびその有機半導体材料がp型半導体またはn型半導体であることも本発明の技術的範囲に包含される。更にその有機半導体材料を含む有機電子デバイス、その有機電子デバイスが光電変換素子または太陽電池であることも本発明の技術的範囲に包含される。 The technical scope of the present invention also includes an organic semiconductor material containing the compound of the present invention and that the organic semiconductor material is a p-type semiconductor or an n-type semiconductor. Furthermore, the technical scope of the present invention also includes an organic electronic device including the organic semiconductor material, and that the organic electronic device is a photoelectric conversion element or a solar cell.
 下記式(4)で表されるジハロゲノベンゾビスチアゾール化合物(以下、「化合物(4)」と言うことがある。)と、
Figure JPOXMLDOC01-appb-C000021

[式(4)中、T、Tは、それぞれ上記と同様の基を表し、X、Xはハロゲン原子を表す。]
 下記式(5)で表されるチオフェン化合物(以下、「化合物(5)」と言うことがある。)とを、
Figure JPOXMLDOC01-appb-C000022

[式(5)中、Rは、上記と同様の基を表し、pは上記と同様の整数を表す。
 R10~R13は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または炭素数6~10のアリールオキシ基を表す。
 M、Mは、それぞれ独立にホウ素原子または錫原子を表す。R10、R11はMと共に環を形成していてもよく、R12、R13はMと環を形成していてもよい。
 m、nは、それぞれ1または2の整数を表す。また、m、nが2の時、複数のR10,R12は、それぞれ同一でも、異なっていてもよい。]
 クロスカップリング反応させる、式(3)で表される高分子化合物の製造方法。
Figure JPOXMLDOC01-appb-C000023

[式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは上記と同様の整数を表す。]
A dihalogenobenzobisthiazole compound represented by the following formula (4) (hereinafter sometimes referred to as “compound (4)”);
Figure JPOXMLDOC01-appb-C000021

[In Formula (4), T 1 and T 2 each represent the same group as described above, and X 1 and X 2 each represent a halogen atom. ]
A thiophene compound represented by the following formula (5) (hereinafter sometimes referred to as “compound (5)”),
Figure JPOXMLDOC01-appb-C000022

[In Formula (5), R 1 represents the same group as described above, and p represents the same integer as described above.
R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
M 1 and M 2 each independently represent a boron atom or a tin atom. R 10 and R 11 may form a ring with M 1 , and R 12 and R 13 may form a ring with M 2 .
m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different. ]
A method for producing a polymer compound represented by formula (3), wherein a cross-coupling reaction is performed.
Figure JPOXMLDOC01-appb-C000023

[In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above. ]
 下記式(7)で表されるジハロゲノベンゾビスチアゾール化合物(以下、「化合物(7)」と言うことがある。)と、
Figure JPOXMLDOC01-appb-C000024

[式(7)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
 R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
 X、Xはハロゲン原子を表す。]
 下記式(8)で表されるベンゾビスチアゾール化合物(以下、「化合物(8)」と言うことがある。)とを、
Figure JPOXMLDOC01-appb-C000025

[式(8)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
 R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
 R10~R13は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または炭素数6~10のアリールオキシ基を表す。
 M、Mは、それぞれ独立にホウ素原子または錫原子を表す。R10、R11はMと共に環を形成していてもよく、R12、R13はMと環を形成していてもよい。
 m、nは、それぞれ1または2の整数を表す。また、m、nが2の時、複数のR10,R12は、それぞれ同一でも、異なっていてもよい。]
 クロスカップリング反応させる、式(6)で表される高分子化合物の製造方法。
Figure JPOXMLDOC01-appb-C000026

[式(6)中、T、T、T、T、R、R、R、Rは、それぞれ上記と同様の基を表す。]
A dihalogenobenzobisthiazole compound represented by the following formula (7) (hereinafter sometimes referred to as “compound (7)”);
Figure JPOXMLDOC01-appb-C000024

[In Formula (7), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.
R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
X 1 and X 2 represent a halogen atom. ]
A benzobisthiazole compound represented by the following formula (8) (hereinafter sometimes referred to as “compound (8)”),
Figure JPOXMLDOC01-appb-C000025

[In formula (8), T 3 and T 4 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.
R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
M 1 and M 2 each independently represent a boron atom or a tin atom. R 10 and R 11 may form a ring with M 1 , and R 12 and R 13 may form a ring with M 2 .
m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different. ]
A method for producing a polymer compound represented by formula (6), wherein a cross-coupling reaction is performed.
Figure JPOXMLDOC01-appb-C000026

[In Formula (6), T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 each represents the same group as described above. ]
 下記式(7)で表されるジハロゲノベンゾビスチアゾール化合物(以下、「化合物(7)」と言うことがある。)と、
Figure JPOXMLDOC01-appb-C000027

[式(7)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
 R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
 X、Xはハロゲン原子を表す。]
 下記式(5)で表されるチオフェン化合物(以下、「化合物(5)」と言うことがある。)とを、
Figure JPOXMLDOC01-appb-C000028

[式(5)中、Rは、水素原子、または、炭素数1~30の炭化水素基を表す。pは、1~10の整数を表す。
 R10~R13は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または炭素数6~10のアリールオキシ基を表す。
 M、Mは、それぞれ独立にホウ素原子または錫原子を表す。R10、R11はMと共に環を形成していてもよく、R12、R13はMと環を形成していてもよい。
 m、nは、それぞれ1または2の整数を表す。また、m、nが2の時、複数のR10,R12は、それぞれ同一でも、異なっていてもよい。]
 クロスカップリング反応させる、式(3)で表される高分子化合物の製造方法。
Figure JPOXMLDOC01-appb-C000029

[式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは上記と同様の整数を表す。]
A dihalogenobenzobisthiazole compound represented by the following formula (7) (hereinafter sometimes referred to as “compound (7)”);
Figure JPOXMLDOC01-appb-C000027

[In Formula (7), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.
R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
X 1 and X 2 represent a halogen atom. ]
A thiophene compound represented by the following formula (5) (hereinafter sometimes referred to as “compound (5)”),
Figure JPOXMLDOC01-appb-C000028

[In Formula (5), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. p represents an integer of 1 to 10.
R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
M 1 and M 2 each independently represent a boron atom or a tin atom. R 10 and R 11 may form a ring with M 1 , and R 12 and R 13 may form a ring with M 2 .
m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different. ]
A method for producing a polymer compound represented by formula (3), wherein a cross-coupling reaction is performed.
Figure JPOXMLDOC01-appb-C000029

[In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above. ]
 本発明のベンゾビスチアゾール化合物は、分子内S-N相互作用により平面十字型骨格を形成することができる。その結果、平面十字型骨格にπ共役が拡張されるため複数のπ-π*遷移に由来したマルチバンド光吸収を示し、可視光領域全体に幅広い光吸収を有する。さらに平面十字型骨格が有する高い平面性により、高い電荷輸送特性を達成することができる。そのため、有機半導体材料、特に太陽電池材料として有用である。また、本発明の製造方法によれば、より多様な骨格や置換基を導入したベンゾビスチアゾール化合物を得ることができる。 The benzobisthiazole compound of the present invention can form a planar cruciform skeleton by intramolecular SN interaction. As a result, π conjugation is extended to a planar cross-shaped skeleton, so that multiband light absorption derived from a plurality of π-π * transitions is exhibited, and the entire visible light region has wide light absorption. Furthermore, due to the high planarity of the planar cross-shaped skeleton, high charge transport characteristics can be achieved. Therefore, it is useful as an organic semiconductor material, particularly a solar cell material. Moreover, according to the production method of the present invention, benzobisthiazole compounds into which more various skeletons and substituents are introduced can be obtained.
図1は、実施例1の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 1 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 1. 図2は、実施例2の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 2 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 2. 図3は、実施例3の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 3 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 3. 図4は、実施例4の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 4 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 4. 図5は、実施例5の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 5 shows the UV-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 5. 図6は、実施例6の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 6 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 6. 図7は、実施例7の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 7 shows an ultraviolet-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 7. 図8は、実施例8の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 8 shows the UV-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 8. 図9は、実施例9の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 9 shows an ultraviolet-visible absorption spectrum (chloroform dilute solution) of the polymer compound of Example 9. 図10は、実施例10の高分子化合物の紫外可視吸収スペクトル(クロロホルム希薄溶液)を示す。FIG. 10 shows an ultraviolet-visible absorption spectrum (diluted chloroform solution) of the polymer compound of Example 10.
 以下に、本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は本発明の実施形態の一例であり、本発明はその要旨を超えない限り、これらの内容に特定されない。 Hereinafter, embodiments of the present invention will be described in detail. The description of the constituent requirements described below is an example of the embodiment of the present invention, and the present invention is not specified by these contents unless it exceeds the gist.
1.高分子化合物
 本発明の高分子化合物は、下記式(1)で表されるベンゾチアゾール構造の繰り返し単位と式(2)で表されるチオフェン構造の繰り返し単位とを有する。
Figure JPOXMLDOC01-appb-C000030

[式(1)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素、アルコキシ基、チオアルコキシ基で置換されていてもよいフェニル基を表す。]
Figure JPOXMLDOC01-appb-C000031

[式(2)中、Rは、水素原子、または、炭素数1~30の炭化水素基を表す。]
1. Polymer Compound The polymer compound of the present invention has a repeating unit having a benzothiazole structure represented by the following formula (1) and a repeating unit having a thiophene structure represented by the formula (2).
Figure JPOXMLDOC01-appb-C000030

[In Formula (1), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl group optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon, or an organosilyl group. Represents a thiazole ring which may be substituted with or a phenyl group which may be substituted with a hydrocarbon, alkoxy group or thioalkoxy group. ]
Figure JPOXMLDOC01-appb-C000031

[In Formula (2), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. ]
 本発明の高分子化合物は、式(1)で表されるベンゾビスチアゾール構造単位と式(2)で表されるチアゾール構造単位を有するため、分子内S-N相互作用により高い平面構造を有し、十字型骨格を介してπ共役系が広がって複数のπ-π*遷移に由来したマルチバンド光吸収特性を示す結果、可視光領域全体に幅広い吸収を有する。更に、HOMO準位を深くしながらバンドギャップを狭めることができ、光電変換効率を高めるのに有利である。 Since the polymer compound of the present invention has a benzobisthiazole structural unit represented by the formula (1) and a thiazole structural unit represented by the formula (2), it has a high planar structure due to intramolecular SN interaction. However, the π-conjugated system spreads through the cruciform skeleton and exhibits multiband light absorption characteristics derived from a plurality of π-π * transitions. As a result, the entire visible light region has a wide absorption. Furthermore, the band gap can be narrowed while deepening the HOMO level, which is advantageous in increasing the photoelectric conversion efficiency.
 本発明の高分子化合物は、下記式(3)で表されるベンゾビスチアゾール構造の繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000032

[式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは1~10の整数を表す。]
The polymer compound of the present invention preferably contains a repeating unit having a benzobisthiazole structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000032

[In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents an integer of 1 to 10. ]
 本発明の高分子化合物は、下記式(6)で表されるベンゾビスチアゾール構造の繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000033

[式(1)中、T、T、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
 R、R、R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
 T、T、T、Tが全て同一であり、かつ、R、R、R、Rが全て同一となることはない。]
The polymer compound of the present invention preferably has a repeating unit having a benzobisthiazole structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000033

[In Formula (1), T 1 , T 2 , T 3 , T 4 are each independently a thiophene ring, carbonized, which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. A hydrogen group or a thiazole ring which may be substituted with an organosilyl group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group; To express.
R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
T 1 , T 2 , T 3 , and T 4 are all the same, and R 1 , R 2 , R 3 , and R 4 are not all the same. ]
 式(1)および式(3)で表されるベンゾビスチアゾール構造単位では、T、Tは互いに同一であっても異なっていてもよいが、製造が容易である観点からは、同一であることが好ましい。また、式(6)で表されるベンゾビスチアゾール構造単位では、T、T、T、Tは互いに同一であっても異なっていてもよいが、これらの中で少なくとも一つが異なることが好ましい。また、製造が容易である観点からはTとTが同一でありTとTが同一であることが好ましい。
 式(1)および式(3)で表されるベンゾビスチアゾール構造単位におけるT、T、並びに式(6)で表されるベンゾビスチアゾール構造単位におけるT、T、T、Tは、それぞれ、下記式(t1)~(t5)で表される基であることが好ましい。具体的には、T、T、T、Tのアルコキシ基としては、下記式(t1)で表される基が好ましく、チオアルコキシ基としては、下記式(t2)で表される基が好ましく、炭化水素基もしくはオルガノシリル基で置換されていてもよいチオフェン環としては下記式(t3)で表される基が好ましく、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環としては下記式(t4)で表される基が好ましく、炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子、もしくは、トリフルオロメチル基で置換されていてもよいフェニル基としては、下記式(t5)で表される基が好ましい。T、T、T、Tが下記式(t1)~(t5)で表される基であると、短波長の光を吸収することができるとともに、高い平面性を有することから効率的にπ-πスタッキングが形成されるため、より一層光電変換効率を高めることができる。
In the benzobisthiazole structural units represented by formula (1) and formula (3), T 1 and T 2 may be the same or different from each other, but are the same from the viewpoint of easy production. Preferably there is. In the benzobisthiazole structural unit represented by the formula (6), T 1 , T 2 , T 3 , and T 4 may be the same or different from each other, but at least one of them is different. It is preferable. Further, from the viewpoint of easy production, it is preferable that T 1 and T 2 are the same and T 3 and T 4 are the same.
T 1 and T 2 in the benzobisthiazole structural unit represented by formula (1) and formula (3), and T 1 , T 2 , T 3 and T in the benzobisthiazole structural unit represented by formula (6) Each of 4 is preferably a group represented by the following formulas (t1) to (t5). Specifically, the alkoxy group of T 1 , T 2 , T 3 , and T 4 is preferably a group represented by the following formula (t1), and the thioalkoxy group is represented by the following formula (t2). A thiophene ring optionally substituted with a hydrocarbon group or an organosilyl group is preferably a group represented by the following formula (t3), and a thiazole optionally substituted with a hydrocarbon group or an organosilyl group As the ring, a group represented by the following formula (t4) is preferable, and as a phenyl group optionally substituted by a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group Is preferably a group represented by the following formula (t5). When T 1 , T 2 , T 3 , and T 4 are groups represented by the following formulas (t1) to (t5), it is possible to absorb short-wavelength light and to have high planarity, thereby improving efficiency. Since π-π stacking is formed, the photoelectric conversion efficiency can be further increased.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式(t1)~(t5)中、
 R21~R22は、それぞれ独立に、炭素数6~30の炭化水素基を表す。
 R23~R24は、それぞれ独立に、炭素数6~30の炭化水素基、または、**-Si(R263で表される基を表す。
 R25は、それぞれ独立に、炭素数6~30の炭化水素基、**-O-R27、**-S-R28、**-Si(R263、ハロゲン原子、または、**-CF3を表す。
 R26は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基を表し、複数のR26は、同一でも異なっていてもよい。
 R27~R28は、炭素数6~30の炭化水素基を表す。
 *はベンゾビスチアゾールのチアゾール環に結合する結合手を表す。**は(t3)~(t5)に結合する結合手を表す。]
[In the formulas (t1) to (t5),
R 21 to R 22 each independently represents a hydrocarbon group having 6 to 30 carbon atoms.
R 23 to R 24 each independently represents a hydrocarbon group having 6 to 30 carbon atoms or a group represented by **-Si (R 26 ) 3 .
R 25 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, ** — O—R 27 , ** — S—R 28 , ** — Si (R 26 ) 3 , a halogen atom, or * * Represents CF 3 .
R 26 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the plurality of R 26 may be the same or different.
R 27 to R 28 each represents a hydrocarbon group having 6 to 30 carbon atoms.
* Represents a bond bonded to the thiazole ring of benzobisthiazole. ** represents a bond that binds to (t3) to (t5). ]
 上記式(t1)~(t5)において、R21~R25、R27~R28の炭素数6~30の炭化水素基としては、分岐を有する炭化水素基であることが好ましく、より好ましくは分岐鎖状飽和炭化水素基である。R21~R25、R27~R28の炭化水素基は、分岐を有することにより、有機溶剤への溶解度を上げることができ、本発明の高分子化合物は適度な結晶性を得ることができる。R21~R25、R27~R28の炭化水素基の炭素数は、大きいほど有機溶剤への溶解度を向上させることができるが、大きくなり過ぎると後述するカップリング反応における反応性が低下するため、高分子化合物の合成が困難となる。そのため、R21~R25、R27~R28の炭化水素基の炭素数は、好ましくは8~28であり、より好ましくは8~26であり、さらに好ましくは8~24である。 In the above formulas (t1) to (t5), the hydrocarbon group having 6 to 30 carbon atoms of R 21 to R 25 and R 27 to R 28 is preferably a branched hydrocarbon group, more preferably It is a branched chain saturated hydrocarbon group. Since the hydrocarbon groups of R 21 to R 25 and R 27 to R 28 have a branch, the solubility in an organic solvent can be increased, and the polymer compound of the present invention can obtain appropriate crystallinity. . The larger the carbon number of the hydrocarbon group of R 21 to R 25 and R 27 to R 28 , the more the solubility in an organic solvent can be improved. Therefore, the synthesis of the polymer compound becomes difficult. Therefore, the carbon number of the hydrocarbon group of R 21 to R 25 and R 27 to R 28 is preferably 8 to 28, more preferably 8 to 26, and still more preferably 8 to 24.
 R21~R25、R27~R28で表される炭素数6~30の炭化水素基としては、例えば、n-ヘキシル基、n-ヘプチル基、およびn-オクチル基、1-n-ブチルブチル基、1-n-プロピルペンチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、6-メチルヘプチル基、2,4,4-トリメチルペンチル基、2,5-ジメチルヘキシル基等の炭素数8のアルキル基;n-ノニル基、1-n-プロピルヘキシル基、2-n-プロピルヘキシル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、6-メチルオクチル基、2,3,3,4-テトラメチルペンチル基、3,5,5-トリメチルヘキシル基等の炭素数9のアルキル基;n-デシル基、1-n-ペンチルペンチル基、1-n-ブチルヘキシル基、2-n-ブチルヘキシル基、1-n-プロピルヘプチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3,7-ジメチルオクチル基等の炭素数10のアルキル基;n-ウンデシル基、1-n-ブチルヘプチル基、2-n-ブチルヘプチル基、1-n-プロピルオクチル基、2-n-プロピルオクチル基、1-エチルノニル基、2-エチルノニル基等の炭素数11のアルキル基;n-ドデシル基、1-n-ペンチルヘプチル基、2-n-ペンチルヘプチル基、1-n-ブチルオクチル基、2-n-ブチルオクチル基、1-n-プロピルノニル基、2-n-プロピルノニル基等の炭素数12のアルキル基;n-トリデシル基、1-n-ペンチルオクチル基、2-n-ペンチルオクチル基、1-n-ブチルノニル基、2-n-ブチルノニル基、1-メチルドデシル基、2-メチルドデシル基等の炭素数13のアルキル基;n-テトラデシル基、1-n-ヘプチルヘプチル基、1-n-ヘキシルオクチル基、2-n-ヘキシルオクチル基、1-n-ペンチルノニル基、2-n-ペンチルノニル基等の炭素数14のアルキル基;n-ペンタデシル基、1-n-ヘプチルオクチル基、1-n-ヘキシルノニル基、2-n-ヘキシルノニル基等の炭素数15のアルキル基;n-ヘキサデシル基、2-n-ヘキシルデシル基、1-n-オクチルオクチル基、1-n-ヘプチルノニル基、2-n-ヘプチルノニル基等の炭素数16のアルキル基;n-ヘプタデシル基、1-n-オクチルノニル基等の炭素数17のアルキル基;n-オクタデシル基、1-n-ノニルノニル基等の炭素数18のアルキル基;n-ノナデシル基等の炭素数19のアルキル基;n-エイコシル基、2-n-オクチルドデシル基等の炭素数20のアルキル基;n-ヘンエイコシル基等の炭素数21のアルキル基;n-ドコシル基等の炭素数22のアルキル基;n-トリコシル基等の炭素数23のアルキル基;n-テトラコシル基、2-n-デシルテトラデシル基等の炭素数24のアルキル基;等が挙げられる。好ましくは炭素数8~28のアルキル基であり、より好ましくは炭素数8~26のアルキル基であり、さらに好ましくは炭素数8~24の分岐鎖状アルキル基であり、特に好ましくは2-エチルヘキシル基、3,7-ジメチルオクチル基、2-n-ブチルオクチル基、2-n-ヘキシルデシル基、2-n-オクチルドデシル基、2-n-デシルテトラデシル基である。R21~R25、R27~R28が上記の基であると、本発明の高分子化合物は、有機溶剤への溶解度が向上し、適度な結晶性を有する。 Examples of the hydrocarbon group having 6 to 30 carbon atoms represented by R 21 to R 25 and R 27 to R 28 include an n-hexyl group, an n-heptyl group, an n-octyl group, and 1-n-butylbutyl. Group, 1-n-propylpentyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 1-methylheptyl group, 2-methylheptyl group, 6-methylheptyl group, 2, C8 alkyl group such as 4,4-trimethylpentyl group, 2,5-dimethylhexyl group; n-nonyl group, 1-n-propylhexyl group, 2-n-propylhexyl group, 1-ethylheptyl group 2-ethylheptyl group, 1-methyloctyl group, 2-methyloctyl group, 6-methyloctyl group, 2,3,4,4-tetramethylpentyl group, 3,5,5- An alkyl group having 9 carbon atoms such as trimethylhexyl group; n-decyl group, 1-n-pentylpentyl group, 1-n-butylhexyl group, 2-n-butylhexyl group, 1-n-propylheptyl group, 1 An alkyl group having 10 carbon atoms such as -ethyloctyl group, 2-ethyloctyl group, 1-methylnonyl group, 2-methylnonyl group, 3,7-dimethyloctyl group; n-undecyl group, 1-n-butylheptyl group, An alkyl group having 11 carbon atoms such as 2-n-butylheptyl group, 1-n-propyloctyl group, 2-n-propyloctyl group, 1-ethylnonyl group, 2-ethylnonyl group; n-dodecyl group, 1-n -Pentylheptyl group, 2-n-pentylheptyl group, 1-n-butyloctyl group, 2-n-butyloctyl group, 1-n-propylnonyl group, 2-n-propylno group An alkyl group having 12 carbon atoms such as an alkyl group; n-tridecyl group, 1-n-pentyloctyl group, 2-n-pentyloctyl group, 1-n-butylnonyl group, 2-n-butylnonyl group, 1-methyldodecyl group Group, an alkyl group having 13 carbon atoms such as 2-methyldodecyl group; n-tetradecyl group, 1-n-heptylheptyl group, 1-n-hexyloctyl group, 2-n-hexyloctyl group, 1-n-pentyl C14 alkyl groups such as nonyl group and 2-n-pentylnonyl group; carbons such as n-pentadecyl group, 1-n-heptyloctyl group, 1-n-hexylnonyl group and 2-n-hexylnonyl group A number 15 alkyl group; carbon such as n-hexadecyl group, 2-n-hexyldecyl group, 1-n-octyloctyl group, 1-n-heptylnonyl group, 2-n-heptylnonyl group, etc. Alkyl group having 16 carbon atoms such as n-heptadecyl group and 1-n-octylnonyl group; alkyl group having 18 carbon atoms such as n-octadecyl group and 1-n-nonylnonyl group; n-nonadecyl group An alkyl group having 19 carbon atoms such as n-eicosyl group and 2-n-octyldodecyl group; an alkyl group having 21 carbon atoms such as n-heneicosyl group; a carbon such as n-docosyl group; An alkyl group having 22 carbon atoms; an alkyl group having 23 carbon atoms such as an n-tricosyl group; an alkyl group having 24 carbon atoms such as an n-tetracosyl group and a 2-n-decyltetradecyl group; An alkyl group having 8 to 28 carbon atoms is preferable, an alkyl group having 8 to 26 carbon atoms is more preferable, a branched alkyl group having 8 to 24 carbon atoms is further preferable, and 2-ethylhexyl is particularly preferable. A group, 3,7-dimethyloctyl group, 2-n-butyloctyl group, 2-n-hexyldecyl group, 2-n-octyldodecyl group and 2-n-decyltetradecyl group. When R 21 to R 25 and R 27 to R 28 are the above groups, the polymer compound of the present invention has improved solubility in an organic solvent and has appropriate crystallinity.
 上記式(t1)~(t5)中、R23~R25の**-Si(R263で表される基において、R26の脂肪族炭化水素基の炭素数は、好ましくは1~18であり、より好ましくは1~8である。R26の脂肪族炭化水素基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、イソブチル基、オクチル基、オクタデシル基が挙げられる。R26の芳香族炭化水素基の炭素数は、好ましくは6~8であり、より好ましくは6~7であり、特に好ましくは6である。R26の芳香族炭化水素基としては、例えば、フェニル基が挙げられる。中でも、R26としては、脂肪族炭化水素基が好ましく、分岐を有する脂肪族炭化水素基がより好ましく、イソプロピル基が特に好ましい。複数のR26は、同一でも異なっていてもよいが、同一であることが好ましい。R23~R25が**-Si(R263で表される基であると、本発明の高分子化合物は、有機溶剤への溶解度が向上する。 In the above formulas (t1) to (t5), in the group represented by **-Si (R 26 ) 3 of R 23 to R 25 , the number of carbon atoms of the aliphatic hydrocarbon group of R 26 is preferably 1 to 18, more preferably 1-8. Examples of the aliphatic hydrocarbon group for R 26 include a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, an isobutyl group, an octyl group, and an octadecyl group. The number of carbon atoms of the aromatic hydrocarbon group for R 26 is preferably 6 to 8, more preferably 6 to 7, and particularly preferably 6. Examples of the aromatic hydrocarbon group for R 26 include a phenyl group. Among them, R 26 is preferably an aliphatic hydrocarbon group, more preferably a branched aliphatic hydrocarbon group, and particularly preferably an isopropyl group. The plurality of R 26 may be the same or different, but are preferably the same. When R 23 to R 25 are groups represented by **-Si (R 26 ) 3 , the polymer compound of the present invention has improved solubility in an organic solvent.
 上記式(t1)~(t5)中、R23~R25の**-Si(R263で表される基としては、具体的には、トリメチルシリル基、エチルジメチルシリル基、イソプロピルジメチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリエチルシリル基、トリイソブチルシリル基、トリプロピルシリル基、トリブチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基等のアルキルシリル基;トリフェニルシリル基、tert-ブチルクロロジフェニルシリル基等のアリールシリル基;等が挙げられる。中でも、アルキルシリル基が好ましく、トリメチルシリル基、トリイソプロピルシリル基が特に好ましい。 In the above formulas (t1) to (t5), the groups represented by **-Si (R 26 ) 3 in R 23 to R 25 are specifically a trimethylsilyl group, an ethyldimethylsilyl group, an isopropyldimethylsilyl group. Group, triisopropylsilyl group, tert-butyldimethylsilyl group, triethylsilyl group, triisobutylsilyl group, tripropylsilyl group, tributylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group and other alkylsilyl groups; Groups, arylsilyl groups such as tert-butylchlorodiphenylsilyl group; and the like. Among them, an alkylsilyl group is preferable, and a trimethylsilyl group and a triisopropylsilyl group are particularly preferable.
 上記式(t5)中、R25がハロゲン原子である場合、フッ素、塩素、臭素、ヨウ素のいずれも用いることができる。 In the above formula (t5), when R 25 is a halogen atom, any of fluorine, chlorine, bromine and iodine can be used.
 T、T、T、Tとしては、式(1)、式(3)または式(6)で表される構造単位全体として平面性に優れる観点から、式(t1)~(t5)で表される基がより好ましく、式(t3)で表される基がさらに好ましく、下記式(t3-1)~(t3-12)で表される基が特に好ましい。式中、*はベンゾビスチアゾールのチアゾール環に結合する結合手を表す。 T 1 , T 2 , T 3 , and T 4 are represented by the formulas (t1) to (t5) from the viewpoint of excellent planarity as the whole structural unit represented by the formula (1), the formula (3), or the formula (6). ) Is more preferred, a group represented by the formula (t3) is more preferred, and groups represented by the following formulas (t3-1) to (t3-12) are particularly preferred. In the formula, * represents a bond bonded to the thiazole ring of benzobisthiazole.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 また、上記式(1)で表されるベンゾビスチアゾール構造単位としては、下記式(1-1)~(1-6)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000036
As the benzobisthiazole structural unit represented by the above formula (1), groups represented by the following formulas (1-1) to (1-6) are particularly preferable.
Figure JPOXMLDOC01-appb-C000036
 また上記式(2)、式(3)および式(6)において、R、R、R、Rの炭素数1~30の炭化水素基の炭素数は、大きいほど有機溶剤への溶解度を向上させることができるが、大きくなり過ぎると後述するカップリング反応における反応性が低下するため、高分子化合物の合成が困難となる。そのため、R、R、R、Rの炭化水素基の炭素数は、好ましくは1~30であり、より好ましくは1~16であり、さらに好ましくは1~8である。 In the above formulas (2), (3) and (6), the larger the carbon number of the hydrocarbon group having 1 to 30 carbon atoms of R 1 , R 2 , R 3 and R 4 , The solubility can be improved, but if it becomes too large, the reactivity in the coupling reaction described later is lowered, and therefore, the synthesis of the polymer compound becomes difficult. Therefore, the carbon number of the hydrocarbon group of R 1 , R 2 , R 3 , R 4 is preferably 1-30, more preferably 1-16, and even more preferably 1-8.
 R、R、R、Rで表される炭素数1~30の炭化水素基としては、例えば、メチル基である炭素数1のアルキル基;エチル基である炭素数2のアルキル基;n-プロピル基などの炭素数3のアルキル基;n-ブチル基などの炭素数4のアルキル基;n-ペンチル基などの炭素数5のアルキル基;n-ヘキシル基等の炭素数6のアルキル基;n-ヘプチル基等の炭素数7のアルキル基;n-オクチル基、1-n-ブチルブチル基、1-n-プロピルペンチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、6-メチルヘプチル基、2,4,4-トリメチルペンチル基、2,5-ジメチルヘキシル基等の炭素数8のアルキル基;n-ノニル基、1-n-プロピルヘキシル基、2-n-プロピルヘキシル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、6-メチルオクチル基、2,3,3,4-テトラメチルペンチル基、3,5,5-トリメチルヘキシル基等の炭素数9のアルキル基;n-デシル基、1-n-ペンチルペンチル基、1-n-ブチルヘキシル基、2-n-ブチルヘキシル基、1-n-プロピルヘプチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3,7-ジメチルオクチル基等の炭素数10のアルキル基;n-ウンデシル基、1-n-ブチルヘプチル基、2-n-ブチルヘプチル基、1-n-プロピルオクチル基、2-n-プロピルオクチル基、1-エチルノニル基、2-エチルノニル基等の炭素数11のアルキル基;n-ドデシル基、1-n-ペンチルヘプチル基、2-n-ペンチルヘプチル基、1-n-ブチルオクチル基、2-n-ブチルオクチル基、1-n-プロピルノニル基、2-n-プロピルノニル基等の炭素数12のアルキル基;n-トリデシル基、1-n-ペンチルオクチル基、2-n-ペンチルオクチル基、1-n-ブチルノニル基、2-n-ブチルノニル基、1-メチルドデシル基、2-メチルドデシル基等の炭素数13のアルキル基;n-テトラデシル基、1-n-ヘプチルヘプチル基、1-n-ヘキシルオクチル基、2-n-ヘキシルオクチル基、1-n-ペンチルノニル基、2-n-ペンチルノニル基等の炭素数14のアルキル基;n-ペンタデシル基、1-n―ヘプチルオクチル基、1-n-ヘキシルノニル基、2-n-ヘキシルノニル基等の炭素数15のアルキル基;n-ヘキサデシル基、2-n-ヘキシルデシル基、1-n-オクチルオクチル基、1-n-ヘプチルノニル基、2-n-ヘプチルノニル基等の炭素数16のアルキル基;n-ヘプタデシル基、1-n-オクチルノニル基等の炭素数17のアルキル基;n-オクタデシル基、1-n-ノニルノニル基等の炭素数18のアルキル基;n-ノナデシル基等の炭素数19のアルキル基;n-エイコシル基、2-n-オクチルドデシル基等の炭素数20のアルキル基;n-ヘンエイコシル基等の炭素数21のアルキル基;n-ドコシル基等の炭素数22のアルキル基;n-トリコシル基等の炭素数23のアルキル基;n-テトラコシル基、2-n-デシルテトラデシル基等の炭素数24のアルキル基;等が挙げられる。好ましくは炭素数1~30のアルキル基であり、より好ましくは炭素数1~16のアルキル基であり、さらに好ましくは炭素数1~8のアルキル基であり、特に好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基である。または、水素原子が好ましい。R1、R、R、Rが上記の基であると、本発明の高分子化合物は、有機溶剤への溶解度が向上し、適度な溶解度と結晶性を有する。 Examples of the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include a methyl group having 1 carbon atom; an ethyl group having 2 carbon atoms. An alkyl group having 3 carbon atoms such as n-propyl group; an alkyl group having 4 carbon atoms such as n-butyl group; an alkyl group having 5 carbon atoms such as n-pentyl group; a carbon atom having 6 carbon atoms such as n-hexyl group; Alkyl group; alkyl group having 7 carbon atoms such as n-heptyl group; n-octyl group, 1-n-butylbutyl group, 1-n-propylpentyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group Alkyl groups having 8 carbon atoms such as 4-ethylhexyl group, 1-methylheptyl group, 2-methylheptyl group, 6-methylheptyl group, 2,4,4-trimethylpentyl group, 2,5-dimethylhexyl group; n -Nonyl group, 1-n-propylhexyl group, 2-n-propylhexyl group, 1-ethylheptyl group, 2-ethylheptyl group, 1-methyloctyl group, 2-methyloctyl group, 6-methyloctyl group, C9 alkyl groups such as 2,3,3,4-tetramethylpentyl group and 3,5,5-trimethylhexyl group; n-decyl group, 1-n-pentylpentyl group, 1-n-butylhexyl Group, 2-n-butylhexyl group, 1-n-propylheptyl group, 1-ethyloctyl group, 2-ethyloctyl group, 1-methylnonyl group, 2-methylnonyl group, 3,7-dimethyloctyl group, etc. An alkyl group of several tens; n-undecyl group, 1-n-butylheptyl group, 2-n-butylheptyl group, 1-n-propyloctyl group, 2-n-propyloctyl group, 1- An alkyl group having 11 carbon atoms such as tilnonyl group, 2-ethylnonyl group; n-dodecyl group, 1-n-pentylheptyl group, 2-n-pentylheptyl group, 1-n-butyloctyl group, 2-n-butyl 12 alkyl groups such as octyl, 1-n-propylnonyl, 2-n-propylnonyl; n-tridecyl, 1-n-pentyloctyl, 2-n-pentyloctyl, 1- Alkyl groups having 13 carbon atoms such as n-butylnonyl group, 2-n-butylnonyl group, 1-methyldodecyl group, 2-methyldodecyl group; n-tetradecyl group, 1-n-heptylheptyl group, 1-n-hexyl C14 alkyl group such as octyl group, 2-n-hexyloctyl group, 1-n-pentylnonyl group, 2-n-pentylnonyl group; n-pentadecyl group, 1-n- C15 alkyl groups such as a ptyloctyl group, 1-n-hexylnonyl group, 2-n-hexylnonyl group; n-hexadecyl group, 2-n-hexyldecyl group, 1-n-octyloctyl group, 1 An alkyl group having 16 carbon atoms such as n-heptylnonyl group and 2-n-heptylnonyl group; an alkyl group having 17 carbon atoms such as n-heptadecyl group and 1-n-octylnonyl group; n-octadecyl group and 1-n An alkyl group having 18 carbon atoms such as nonylnonyl group; an alkyl group having 19 carbon atoms such as n-nonadecyl group; an alkyl group having 20 carbon atoms such as n-eicosyl group and 2-n-octyldodecyl group; n-heneicosyl group An alkyl group having 21 carbon atoms such as n-docosyl group; an alkyl group having 23 carbon atoms such as n-tricosyl group; an n-tetracosyl group, 2-n -C24 alkyl group such as decyltetradecyl group; and the like. Preferably, it is an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 16 carbon atoms, still more preferably an alkyl group having 1 to 8 carbon atoms, particularly preferably a methyl group, an ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and 2-ethylhexyl group. Or a hydrogen atom is preferable. When R 1 , R 2 , R 3 , and R 4 are the above groups, the polymer compound of the present invention has improved solubility in an organic solvent and has appropriate solubility and crystallinity.
 また、上記式(2)で表されるチオフェン構造単位としては、下記式(2-1)~(2-19)で表される基が特に好ましい。 Further, as the thiophene structural unit represented by the above formula (2), groups represented by the following formulas (2-1) to (2-19) are particularly preferable.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 また、式(3)で表される高分子化合物の構造単位中のT、T、Rとしては、前述と同等である。pは1~10の整数であるが、好ましくは1~7、より好ましくは1~5のアルキル基であり、さらに好ましくは1~3であり、特に好ましくは1~2のアルキル基である。 In addition, T 1 , T 2 , and R 1 in the structural unit of the polymer compound represented by the formula (3) are the same as described above. p is an integer of 1 to 10, but is preferably an alkyl group of 1 to 7, more preferably 1 to 5, more preferably 1 to 3, and particularly preferably 1 to 2.
 また、上記式(3)で表される高分子化合物の構造単位としては、下記式(3-1)~(3-18)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040

[式中、Rは、上記と同様の基を表す。]
As the structural unit of the polymer compound represented by the above formula (3), groups represented by the following formulas (3-1) to (3-18) are particularly preferable.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040

[Wherein, R 1 represents the same group as described above. ]
 また、上記式(6)で表されるベンゾビスチアゾール構造単位としては、下記式(6-1)~(6-21)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046

[式(6)中、R、R、R、Rは、それぞれ上記と同様の基を表す。]
As the benzobisthiazole structural unit represented by the above formula (6), groups represented by the following formulas (6-1) to (6-21) are particularly preferable.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046

[In the formula (6), R 1 , R 2 , R 3 and R 4 each represent the same group as described above. ]
 本発明の高分子化合物の重量平均分子量、数平均分子量は、一般に、2,000以上、500,000以下であり、より好ましくは3,000以上、200,000以下である。本発明の高分子化合物の重量平均分子量、数平均分子量は、ゲル浸透クロマトグラフィを用い、ポリスチレンを標準試料として作成した較正曲線に基づいて算出することができる。 The weight average molecular weight and number average molecular weight of the polymer compound of the present invention are generally 2,000 or more and 500,000 or less, more preferably 3,000 or more and 200,000 or less. The weight average molecular weight and number average molecular weight of the polymer compound of the present invention can be calculated based on a calibration curve prepared using polystyrene as a standard sample using gel permeation chromatography.
 本発明の高分子化合物のイオン化ポテンシャルは、4eV以上であることが好ましく、より好ましくは4.5eV以上、さらに好ましくは5eV以上、特に好ましくは5.1eV以上である。イオン化ポテンシャルの上限は、特に限定されないが、例えば、7eV以下であり、6.5eV以下であることが好ましく、6eV以下であることが好ましい。本発明の高分子化合物のイオン化ポテンシャルが上記の範囲であると、HOMO準位が適度に深くなる(引き下げられる)ため、高い開放電圧(Voc)および短絡電流密度(Jsc)の両方を得ることが可能となり、より高い光電変換効率を得ることが可能となる。 The ionization potential of the polymer compound of the present invention is preferably 4 eV or more, more preferably 4.5 eV or more, still more preferably 5 eV or more, and particularly preferably 5.1 eV or more. Although the upper limit of ionization potential is not specifically limited, For example, it is 7 eV or less, it is preferable that it is 6.5 eV or less, and it is preferable that it is 6 eV or less. When the ionization potential of the polymer compound of the present invention is in the above range, the HOMO level is appropriately deepened (lowered), so that both a high open-circuit voltage (Voc) and a short-circuit current density (Jsc) can be obtained. It becomes possible, and higher photoelectric conversion efficiency can be obtained.
2.製造方法
 本発明の式(3)で表される高分子化合物は、
Figure JPOXMLDOC01-appb-C000047

[式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは上記と同様の整数を表す。]
 下記式(4)で表されるジハロゲノベンゾビスチアゾール化合物と、
Figure JPOXMLDOC01-appb-C000048

[式(4)中、T、T、X、Xはそれぞれ上記と同様の基を表す。]
 下記式(5)で表されるチオフェン化合物とを、クロスカップリング反応することにより製造することができる。
Figure JPOXMLDOC01-appb-C000049

[式(5)中、R、R10 ~R13、M、M、pは、それぞれ上記と同様の基を表す。]
2. Production Method The polymer compound represented by the formula (3) of the present invention is:
Figure JPOXMLDOC01-appb-C000047

[In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above. ]
A dihalogenobenzobisthiazole compound represented by the following formula (4);
Figure JPOXMLDOC01-appb-C000048

[In the formula (4), T 1 , T 2 , X 1 and X 2 each represent the same group as described above. ]
It can manufacture by carrying out a cross coupling reaction with the thiophene compound represented by following formula (5).
Figure JPOXMLDOC01-appb-C000049

[In the formula (5), R 1 , R 10 to R 13 , M 1 , M 2 and p each represent the same group as described above. ]
 また、本発明の式(6)で表される高分子化合物は、
Figure JPOXMLDOC01-appb-C000050

[式(6)中、T、T、T、T、R、R、R、Rは、それぞれ上記と同様の基を表す。]
 下記式(7)で表されるジハロゲノベンゾビスチアゾール化合物と、
Figure JPOXMLDOC01-appb-C000051

[式(7)中、T、T、R、R、X、Xはそれぞれ上記と同様の基を表す。]
 下記式(8)で表されるベンゾビスチアゾール化合物とを、クロスカップリング反応することにより製造することができる。
Figure JPOXMLDOC01-appb-C000052

[式(8)中、T、T、R、R、R13、R14、R15、R16、M、Mはそれぞれ上記と同様の基を表す。]
The polymer compound represented by the formula (6) of the present invention is
Figure JPOXMLDOC01-appb-C000050

[In Formula (6), T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 each represents the same group as described above. ]
A dihalogenobenzobisthiazole compound represented by the following formula (7);
Figure JPOXMLDOC01-appb-C000051

[In formula (7), T 1 , T 2 , R 1 , R 2 , X 1 , X 2 each represents the same group as described above. ]
It can manufacture by carrying out a cross coupling reaction with the benzobis thiazole compound represented by following formula (8).
Figure JPOXMLDOC01-appb-C000052

[In the formula (8), T 3 , T 4 , R 3 , R 4 , R 13 , R 14 , R 15 , R 16 , M 1 and M 2 each represent the same group as described above. ]
 また、本発明の式(3)で表される高分子化合物は、式(7)で表されるジハロゲノベンゾビスチアゾール化合物と、式(5)で表されるチオフェン化合物とを、クロスカップリング反応することによっても製造することができる。 Further, the polymer compound represented by the formula (3) of the present invention is obtained by cross-coupling a dihalogenobenzobisthiazole compound represented by the formula (7) and a thiophene compound represented by the formula (5). It can also be produced by reacting.
 式(4)および式(7)中、X、Xのハロゲン原子としては、塩素、臭素、ヨウ素が挙げられる。いずれを用いることもできるが、反応性と安定性のバランスの観点からは、臭素、ヨウ素が特に好ましい。 In formula (4) and formula (7), examples of the halogen atom for X 1 and X 2 include chlorine, bromine, and iodine. Any of them can be used, but bromine and iodine are particularly preferable from the viewpoint of a balance between reactivity and stability.
 例えば、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-HDTH)は既知の2,6-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DI)から下記反応式に示すように合成できる。 For example, 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-HDTH ) Can be synthesized from known 2,6-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DI) as shown in the following reaction formula.
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000053
 式(2)、式(3)、式(5)~式(8)中、R、R、R、Rで表される炭素数1~30の炭化水素基としてはメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基が好ましい。または、水素原子が好ましい。 In the formulas (2), (3), and (5) to (8), the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 , R 2 , R 3 , and R 4 is a methyl group, An ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and 2-ethylhexyl group are preferred. Or a hydrogen atom is preferable.
 上記化合物(7)は、本発明の式(3)および式(6)で表される高分子化合物の中間化合物として用いることが好ましい。この化合物(7)は、上記所定の基を有するため、経時安定性が高く、効率的に反応して本発明の高分子化合物を形成できる。化合物(7)としては、例えば、下記式で表される化合物が例示できる。また、式(7-1)~(7-6)において、臭素がよう素に置換された化合物も、化合物(7)として好ましく例示できる。
Figure JPOXMLDOC01-appb-C000054
The compound (7) is preferably used as an intermediate compound of the polymer compound represented by the formulas (3) and (6) of the present invention. Since this compound (7) has the above-mentioned predetermined group, it has high temporal stability and can react efficiently to form the polymer compound of the present invention. As compound (7), the compound represented by a following formula can be illustrated, for example. In addition, a compound in which bromine is substituted with iodine in formulas (7-1) to (7-6) can also be preferably exemplified as compound (7).
Figure JPOXMLDOC01-appb-C000054
 式(5)および式(8)中、R10~R13の脂肪族炭化水素基の炭素数は、好ましくは1~5であり、より好ましくは1~4である。R10~R13の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基が好ましく、より好ましくはメチル基、ブチル基である。R10~R13のアルコキシ基の炭素数は、好ましくは1~3であり、より好ましくは1~2である。R10~R13のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が好ましく、より好ましくはメトキシ基、エトキシ基である。R10~R13のアリールオキシ基の炭素数は、好ましくは6~9であり、より好ましくは6~8である。R10~R13のアリールオキシ基としては、フェニルオキシ基、ベンジルオキシ基、フェニレンビス(メチレンオキシ)基等が挙げられる。R10~R13は、それぞれ同一であっても、異なっていてもよい。 In formula (5) and formula (8), the number of carbon atoms of the aliphatic hydrocarbon group of R 10 to R 13 is preferably 1 to 5, and more preferably 1 to 4. The aliphatic hydrocarbon group for R 10 to R 13 is preferably a methyl group, an ethyl group, a propyl group, or a butyl group, more preferably a methyl group or a butyl group. The number of carbon atoms of the alkoxy group of R 10 to R 13 is preferably 1 to 3, and more preferably 1 to 2. As the alkoxy group for R 10 to R 13 , a methoxy group, an ethoxy group, a propoxy group and the like are preferable, and a methoxy group and an ethoxy group are more preferable. The number of carbon atoms of the aryloxy group of R 10 to R 13 is preferably 6 to 9, and more preferably 6 to 8. Examples of the aryloxy group for R 10 to R 13 include a phenyloxy group, a benzyloxy group, and a phenylenebis (methyleneoxy) group. R 10 to R 13 may be the same or different from each other.
 M、およびMがホウ素原子である場合、R10~R13は、水酸基、炭素数1~6のアルコキシ基、または、炭素数6~10のアリールオキシ基であることが好ましく、m、およびnは1であることが好ましい。M、およびMがホウ素原子である場合の***-M(R10m11、***-M(R12n13としては、例えば、下記式で表される基が挙げられる。ただし、***は、チオフェン環との結合手を表す。 When M 1 and M 2 are boron atoms, R 10 to R 13 are preferably a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms, m, And n is preferably 1. ***-M 1 (R 10 ) m R 11 , ***-M 2 (R 12 ) n R 13 when M 1 and M 2 are boron atoms are represented by, for example, the following formulae: Group. However, *** represents a bond with a thiophene ring.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 M、およびMが錫原子である場合、R10~R13は、炭素数1~6の脂肪族炭化水素基であることが好ましく、m、およびnは2であることが好ましい。M、およびMが錫原子である場合の***-M(R10m11、***-M(R12n13としては、例えば、下記式で表される基が挙げられる。ただし、***は、チオフェン環またはチアゾール環との結合手を表す。 When M 1 and M 2 are tin atoms, R 10 to R 13 are preferably an aliphatic hydrocarbon group having 1 to 6 carbon atoms, and m and n are preferably 2. ***-M 1 (R 10 ) m R 11 , ***-M 2 (R 12 ) n R 13 in the case where M 1 and M 2 are tin atoms are represented by, for example, the following formulae: Group. However, *** represents a bond with a thiophene ring or a thiazole ring.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 上記化合物(5)は、本発明の高分子化合物の合成に用いる中間化合物である。この化合物(5)は、上記所定の基を有するため、経時安定性が高く、効率的に反応して本発明の高分子化合物を形成できる。化合物(5)としては、例えば、下記式で表される化合物が例示できる。また、式(5-1)~(5-10)において、錫原子上のメチル基がブチル基に置換された化合物も、化合物(5)として好ましく例示できる。 The compound (5) is an intermediate compound used for the synthesis of the polymer compound of the present invention. Since this compound (5) has the above-mentioned predetermined group, it has high temporal stability and can react efficiently to form the polymer compound of the present invention. As compound (5), the compound represented by a following formula can be illustrated, for example. In addition, compounds represented by formulas (5-1) to (5-10) in which the methyl group on the tin atom is substituted with a butyl group are also preferred as the compound (5).
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 式(3)で表される高分子化合物の製造において、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物と式(5)で表されるチオフェン化合物のモル比は、一般に1:0.8~1:10程度であり特に限定されないが、収率や反応効率の観点から1:0.8~1:8が好ましく、1:0.9~1:6がより好ましく、1:1~1:5がさらに好ましい。 In the production of the polymer compound represented by formula (3), the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) and the thiophene compound represented by formula (5) is: Generally, it is about 1: 0.8 to 1:10, and is not particularly limited, but is preferably 1: 0.8 to 1: 8, more preferably 1: 0.9 to 1: 6 from the viewpoint of yield and reaction efficiency. More preferably, the ratio is 1: 1 to 1: 5.
 上記化合物(8)は、本発明の式(6)で表わされる高分子化合物の合成に用いる中間化合物として用いることが好ましい。この化合物(8)は、上記所定の基を有するため、経時安定性が高く、効率的に反応して本発明の高分子化合物を形成できる。化合物(8)としては、例えば、下記式で表される化合物が例示できる。また、式(8-1)~(8-6)において、錫原子上のメチル基がブチル基に置換された化合物も、化合物(8)として好ましく例示できる。 The compound (8) is preferably used as an intermediate compound used for the synthesis of the polymer compound represented by the formula (6) of the present invention. Since this compound (8) has the above-mentioned predetermined group, it has high temporal stability and can react efficiently to form the polymer compound of the present invention. As compound (8), the compound represented by a following formula can be illustrated, for example. In addition, in the formulas (8-1) to (8-6), a compound in which the methyl group on the tin atom is substituted with a butyl group can also be preferably exemplified as the compound (8).
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 例えば、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DSM)および4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DB)は、それぞれ既知の2,6-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DI)から下記反応式に示すように合成できる。 For example, 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; , 5-d '] bisthiazole (DTH-DBTH-HDTH-DSM) and 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-hexyldecyl) thiophene- 2-yl] -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-HDTH-DB) is a known 2,6-diiodobenzo [1,2-d; It can be synthesized from 5-d ′] bisthiazole (DBTH-DI) as shown in the following reaction formula.
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000059
 式(6)で表される高分子化合物の製造において、式(7)で表されるジハロゲノベンゾビスチアゾール化合物と式(8)で表されるベンゾビスチアゾール化合物のモル比は、一般に1:0.8~1:10程度であり特に限定されないが、収率や反応効率の観点から1:0.8~1:8が好ましく、1:0.9~1:6がより好ましく、1:1~1:5がさらに好ましい。 In the production of the polymer compound represented by the formula (6), the molar ratio of the dihalogenobenzobisthiazole compound represented by the formula (7) and the benzobisthiazole compound represented by the formula (8) is generally 1: Although it is about 0.8 to 1:10 and is not particularly limited, it is preferably 1: 0.8 to 1: 8, more preferably 1: 0.9 to 1: 6, from the viewpoint of yield and reaction efficiency. 1 to 1: 5 is more preferable.
 式(3)で表される高分子化合物の製造において、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物と式(5)で表されるチオフェン化合物を反応させる際に用いる金属触媒としては、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒などの遷移金属触媒が挙げられる。中でも、パラジウム系触媒が好ましい。なお、パラジウムの価数は特に限定されず、0価であっても2価であってもよい。 In the production of the polymer compound represented by the formula (3), the dihalogenobenzobisthiazole compound represented by the formula (4) or the formula (7) is reacted with the thiophene compound represented by the formula (5). Examples of the metal catalyst used include transition metal catalysts such as a palladium catalyst, a nickel catalyst, an iron catalyst, a copper catalyst, a rhodium catalyst, and a ruthenium catalyst. Among these, a palladium-based catalyst is preferable. Note that the valence of palladium is not particularly limited, and may be zero or divalent.
 式(6)で表される高分子化合物の製造において、式(7)で表されるジハロゲノベンゾビスチアゾール化合物と式(8)で表されるベンゾビスチアゾール化合物を反応させる際に用いる金属触媒としては、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒などの遷移金属触媒が挙げられる。中でも、パラジウム系触媒が好ましい。なお、パラジウムの価数は特に限定されず、0価であっても2価であってもよい。 Metal catalyst used in the reaction of the dihalogenobenzobisthiazole compound represented by formula (7) and the benzobisthiazole compound represented by formula (8) in the production of the polymer compound represented by formula (6) Examples thereof include transition metal catalysts such as palladium catalysts, nickel catalysts, iron catalysts, copper catalysts, rhodium catalysts, and ruthenium catalysts. Among these, a palladium-based catalyst is preferable. Note that the valence of palladium is not particularly limited, and may be zero or divalent.
 前記パラジウム系触媒としては、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)、酸化パラジウム(II)、硫化パラジウム(II)、テルル化パラジウム(II)、水酸化パラジウム(II)、セレン化パラジウム(II)、パラジウムシアニド(II)、パラジウムアセテート(II)、パラジウムトリフルオロアセテート(II)、パラジウムアセチルアセトナート(II)、ジアセテートビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム(II)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]パラジウム(II)、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノフェロセン)]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加体、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体、ジクロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン](3-クロロピリジル)パラジウム(II)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、ジクロロ[2,5-ノルボルナジエン]パラジウム(II)、ジクロロビス(エチレンジアミン)パラジウム(II)、ジクロロ(1,5-シクロオクタジエン)パラジウム(II)、ジクロロビス(メチルジフェニルホスフィン)パラジウム(II)が挙げられる。これらの触媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。これらの中でジクロロビス(トリフェニルホスフィン)パラジウム(II)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体が特に好ましい。 Examples of the palladium-based catalyst include palladium (II) chloride, palladium (II) bromide, palladium (II) iodide, palladium (II) oxide, palladium (II) sulfide, palladium (II) telluride, palladium hydroxide ( II), palladium selenide (II), palladium cyanide (II), palladium acetate (II), palladium trifluoroacetate (II), palladium acetylacetonate (II), diacetate bis (triphenylphosphine) palladium (II) ), Tetrakis (triphenylphosphine) palladium (0), dichlorobis (triphenylphosphine) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (benzonitrile) palladium (II), dichloro [1,2 Bis (diphenylphosphino) ethane] palladium (II), dichloro [1,3-bis (diphenylphosphino) propane] palladium (II), dichloro [1,4-bis (diphenylphosphino) butane] palladium (II) Dichloro [1,1-bis (diphenylphosphinoferrocene)] palladium (II), dichloro [1,1-bis (diphenylphosphino) ferrocene] palladium (II) dichloromethane adduct, bis (dibenzylideneacetone) palladium ( 0), tris (dibenzylideneacetone) dipalladium (0), tris (dibenzylideneacetone) dipalladium (0) chloroform adduct, dichloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene ] (3-chloropyridyl) paradi (II), bis (tri-tert-butylphosphine) palladium (0), dichloro [2,5-norbornadiene] palladium (II), dichlorobis (ethylenediamine) palladium (II), dichloro (1,5-cyclooctadiene ) Palladium (II), dichlorobis (methyldiphenylphosphine) palladium (II). These catalysts may be used individually by 1 type, and may mix and use 2 or more types. Of these, dichlorobis (triphenylphosphine) palladium (II), tris (dibenzylideneacetone) dipalladium (0), and tris (dibenzylideneacetone) dipalladium (0) chloroform adduct are particularly preferred.
 式(3)で表される高分子化合物の製造において、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物と金属触媒とのモル比(ジハロゲノベンゾビスチアゾール化合物:金属触媒)は、一般に1:0.0001~1:0.5程度であり特に限定されないが、収率や反応効率の観点から1:0.001~1:0.4が好ましく、1:0.005~1:0.3がより好ましく、1:0.01~1:0.2がさらに好ましい。 In the production of the polymer compound represented by formula (3), the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) to the metal catalyst (dihalogenobenzobisthiazole compound: metal The catalyst) is generally about 1: 0.0001 to 1: 0.5 and is not particularly limited, but is preferably 1: 0.001 to 1: 0.4 from the viewpoint of yield and reaction efficiency. 005 to 1: 0.3 is more preferable, and 1: 0.01 to 1: 0.2 is more preferable.
 式(6)で表される高分子化合物の製造において、式(7)で表されるジハロゲノベンゾビスチアゾール化合物と金属触媒とのモル比(ジハロゲノベンゾビスチアゾール化合物:金属触媒)は、一般に1:0.0001~1:0.5程度であり特に限定されないが、収率や反応効率の観点から1:0.001~1:0.4が好ましく、1:0.005~1:0.3がより好ましく、1:0.01~1:0.2がさらに好ましい。 In the production of the polymer compound represented by formula (6), the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (7) to the metal catalyst (dihalogenobenzobisthiazole compound: metal catalyst) is generally Although it is about 1: 0.0001 to 1: 0.5 and is not particularly limited, it is preferably 1: 0.001 to 1: 0.4 from the viewpoint of yield and reaction efficiency, and 1: 0.005 to 1: 0. .3 is more preferable, and 1: 0.01 to 1: 0.2 is more preferable.
 式(3)または式(6)で表される高分子化合物の製造において、パラジウム系触媒等の金属触媒に特定の配位子を配位させてもよい。配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリ(n-ブチル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリ-tert-ブチルホスホニウムテトラフルオロボラート、ビス(tert-ブチル)メチルホスフィン、トリシクロヘキシルホスフィン、ジフェニル(メチル)ホスフィン、トリフェニスホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(3-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(2-フリル)ホスフィン、2-ジシクロヘキシルホスフィノビフェニル、2-ジシクロヘキシルホスフィノ-2’-メチルビフェニル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシ-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-ジフェニルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-メチルビフェニル、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、1,3-ビス(ジシクロヘキシルホスフィノ)プロパン、1,4-ビス(ジシクロヘキシルホスフィノ)ブタン、1,2-ビスジフェニルホスフィノエチレン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、2,2’-ビピリジル、1,3-ジフェニルジヒドロイミダゾリリデン、1,3-ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3-ビス(2,4,6-トリメチルフェニル)ジヒドロイミダゾリリデン、1,3-ビス(2,6-ジイソプロピルフェニル)ジヒドロイミダゾリリデン、1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、バトフェナントロリンが挙げられる。配位子は、一種のみを用いてもよく、二種以上を用いてもよい。これらの中で、トリフェニルホスフィン、トリス(o-トリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィンが特に好ましい。 In the production of the polymer compound represented by Formula (3) or Formula (6), a specific ligand may be coordinated to a metal catalyst such as a palladium-based catalyst. The ligands include trimethylphosphine, triethylphosphine, tri (n-butyl) phosphine, tri (isopropyl) phosphine, tri (tert-butyl) phosphine, tri-tert-butylphosphonium tetrafluoroborate, bis (tert-butyl) ) Methylphosphine, tricyclohexylphosphine, diphenyl (methyl) phosphine, triphenisphosphine, tris (o-tolyl) phosphine, tris (m-tolyl) phosphine, tris (p-tolyl) phosphine, tris (2-methoxyphenyl) phosphine , Tris (3-methoxyphenyl) phosphine, tris (4-methoxyphenyl) phosphine, tris (2-furyl) phosphine, 2-dicyclohexylphosphinobiphenyl, 2-dicyclohexylphosphine No-2′-methylbiphenyl, 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl, 2-dicyclohexylphosphino-2 ′, 6′-dimethoxy-1,1 '-Biphenyl, 2-dicyclohexylphosphino-2'-(N, N'-dimethylamino) biphenyl, 2-diphenylphosphino-2 '-(N, N'-dimethylamino) biphenyl, 2- (di-tert -Butyl) phosphino-2 '-(N, N'-dimethylamino) biphenyl, 2- (di-tert-butyl) phosphinobiphenyl, 2- (di-tert-butyl) phosphino-2'-methylbiphenyl, 1 , 2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphine) Dino) butane, 1,2-bis (dicyclohexylphosphino) ethane, 1,3-bis (dicyclohexylphosphino) propane, 1,4-bis (dicyclohexylphosphino) butane, 1,2-bisdiphenylphosphinoethylene 1,1′-bis (diphenylphosphino) ferrocene, 1,2-ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, 2,2′-bipyridyl, 1,3-diphenyldihydroimidazolylidene 1,3-dimethyldihydroimidazolidene, diethyldihydroimidazolylidene, 1,3-bis (2,4,6-trimethylphenyl) dihydroimidazolidene, 1,3-bis (2,6-diisopropylphenyl) Dihydroimidazolidene, 1,10-phenanthroline, 5,6-dimethyl- Examples include 1,10-phenanthroline and butophenanthroline. Only 1 type may be used for a ligand and 2 or more types may be used for it. Of these, triphenylphosphine, tris (o-tolyl) phosphine, and tris (2-methoxyphenyl) phosphine are particularly preferable.
 式(3)または式(6)で表される高分子化合物の製造において、金属触媒に配位子を配位させる場合、金属触媒と配位子とのモル比(金属触媒:配位子)は、一般に1:0.5~1:10程度であり特に限定されないが、収率や反応効率の観点から1:1~1:8が好ましく、1:1~1:7がより好ましく、1:1~1:5がさらに好ましい。 In the production of a polymer compound represented by formula (3) or formula (6), when a ligand is coordinated to a metal catalyst, the molar ratio of the metal catalyst to the ligand (metal catalyst: ligand) Is generally about 1: 0.5 to 1:10 and is not particularly limited, but is preferably 1: 1 to 1: 8, more preferably 1: 1 to 1: 7, from the viewpoint of yield and reaction efficiency. 1 to 1: 5 is more preferable.
 式(3)で表される高分子化合物の製造において、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物に、金属触媒の存在下、式(5)で表されるチオフェン化合物を反応させる際には、塩基を共存させてもよい。また、式(6)で表される高分子化合物の製造において、式(7)で表されるジハロゲノベンゾビスチアゾール化合物に、金属触媒の存在下、式(8)で表されるベンゾビスチアゾール化合物を反応させる際には、塩基を共存させてもよい。例えばM、Mがホウ素原子であるときは、塩基を共存させることが好ましく、M、Mが錫原子であるときは、塩基を共存させなくともよい。 In the production of the polymer compound represented by formula (3), the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) is represented by formula (5) in the presence of a metal catalyst. When reacting the thiophene compound, a base may coexist. In the production of the polymer compound represented by formula (6), the dihalogenobenzobisthiazole compound represented by formula (7) is added to the benzobisthiazole represented by formula (8) in the presence of a metal catalyst. When reacting the compound, a base may coexist. For example, when M 1 and M 2 are boron atoms, it is preferable to coexist with a base, and when M 1 and M 2 are tin atoms, it is not necessary to coexist with a base.
 塩基としては、水素化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属塩化合物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属塩化合物;リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、リチウムtert-アミルアルコキシド、ナトリウムtert-アミルアルコキシド、カリウムtert-アミルアルコキシド等のアルコキシアルカリ金属化合物;水素化リチウム、水素化ナトリウム、水素化カリウム等の水素化金属化合物等が挙げられる。中でも、塩基としては、アルコキシアルカリ金属化合物が好ましく、リチウムtert-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、炭酸ナトリウム、炭酸カリウム、炭酸セシウムがより好ましい。 Examples of the base include lithium metal hydride, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate and other alkali metal salt compounds; magnesium hydroxide, calcium hydroxide, barium hydroxide, Alkaline earth metal salt compounds such as magnesium carbonate, calcium carbonate, barium carbonate; lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide Potassium isopropoxide, lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, lithium tert-amyl alkoxide, sodium tert-amyl alkoxide Alkoxymethyl alkali metal compounds such as potassium tert- amyl alkoxide; lithium hydride, sodium hydride, metal hydride compounds such as potassium hydride. Among them, as the base, an alkoxyalkali metal compound is preferable, and lithium tert-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium carbonate, potassium carbonate, and cesium carbonate are more preferable.
 式(3)で表される高分子化合物の製造において、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物と塩基とのモル比(ジハロゲノベンゾビスチアゾール化合物:塩基)は、一般に1:1~1:10程度であり特に限定されないが、収率や反応効率の観点から1:1.5~1:8が好ましく、1:1.8~1:6がより好ましく、1:2~1:5がさらに好ましい。 In the production of the polymer compound represented by formula (3), the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) to the base (dihalogenobenzobisthiazole compound: base) Is generally about 1: 1 to 1:10 and is not particularly limited, but is preferably 1: 1.5 to 1: 8, more preferably 1: 1.8 to 1: 6, from the viewpoint of yield and reaction efficiency. 1: 2 to 1: 5 is more preferable.
 式(6)で表される高分子化合物の製造において、式(7)で表されるジハロゲノベンゾビスチアゾール化合物と塩基とのモル比(ジハロゲノベンゾビスチアゾール化合物:塩基)は、一般に1:1~1:10程度であり特に限定されないが、収率や反応効率の観点から1:1.5~1:8が好ましく、1:1.8~1:6がより好ましく、1:2~1:5がさらに好ましい。 In the production of the polymer compound represented by formula (6), the molar ratio of the dihalogenobenzobisthiazole compound represented by formula (7) to the base (dihalogenobenzobisthiazole compound: base) is generally 1: Although it is about 1 to 1:10 and is not particularly limited, it is preferably 1: 1.5 to 1: 8, more preferably 1: 1.8 to 1: 6, and more preferably 1: 2 to 1: 8 from the viewpoint of yield and reaction efficiency. 1: 5 is more preferable.
 式(3)で表される高分子化合物の製造において、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物に、金属触媒の存在下、式(5)で表されるチオフェン化合物を反応させる溶媒としては、反応に影響を及ぼさない限り特に限定されることはなく、エーテル系溶媒、芳香族系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、ケトン系溶媒、アミド系溶媒等を用いることができる。前記エーテル系溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル、ジオキサンが挙げられる。前記芳香族系溶媒としては、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、テトラリンが挙げられる。前記エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルが挙げられる。前記炭化水素系溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、デカリンが挙げられる。前記ハロゲン系溶媒としては、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパンが挙げられる。前記ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。前記アミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-(1H)-ピリミジンが挙げられる。また、アセトニトリル等のニトリル系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、スルホラン等のスルホン系溶媒を用いることができる。
 これらの中でも、テトラヒドロフラン、トルエン、クロロベンゼン、N,N-ジメチルホルムアミドが特に好ましい。
In the production of the polymer compound represented by formula (3), the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7) is represented by formula (5) in the presence of a metal catalyst. The solvent for reacting the thiophene compound is not particularly limited as long as it does not affect the reaction, ether solvent, aromatic solvent, ester solvent, hydrocarbon solvent, halogen solvent, ketone solvent, An amide solvent or the like can be used. Examples of the ether solvent include diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentyl methyl ether, t-butyl methyl ether, and dioxane. Examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and tetralin. Examples of the ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate. Examples of the hydrocarbon solvent include pentane, hexane, heptane, octane, and decalin. Examples of the halogen solvent include dichloromethane, chloroform, dichloroethane, and dichloropropane. Examples of the ketone solvent include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro- ( 1H) -pyrimidine. A nitrile solvent such as acetonitrile, a sulfoxide solvent such as dimethyl sulfoxide, and a sulfone solvent such as sulfolane can be used.
Among these, tetrahydrofuran, toluene, chlorobenzene, and N, N-dimethylformamide are particularly preferable.
 式(6)で表される高分子化合物の製造において、式(7)で表されるジハロゲノベンゾビスチアゾール化合物に、金属触媒の存在下、式(8)で表されるベンゾビスチアゾール化合物を反応させる溶媒についても、前記溶媒を用いることができる。 In the production of the polymer compound represented by the formula (6), the benzobisthiazole compound represented by the formula (8) is added to the dihalogenobenzobisthiazole compound represented by the formula (7) in the presence of a metal catalyst. The said solvent can be used also about the solvent made to react.
 式(3)で表される高分子化合物の製造における溶媒の使用量としては、式(4)または式(7)で表されるジハロゲノベンゾビスチアゾール化合物の1gに対して、一般に1mL以上、150mL以下程度であり特に限定されないが、収率や反応効率の観点から5mL以上、100mL以下が好ましく、8mL以上、90mL以下がより好ましく、10mL以上、80mL以下がさらに好ましい。 The amount of the solvent used in the production of the polymer compound represented by formula (3) is generally 1 mL or more with respect to 1 g of the dihalogenobenzobisthiazole compound represented by formula (4) or formula (7), Although it is about 150 mL or less and it is not specifically limited, From a viewpoint of a yield or reaction efficiency, 5 mL or more and 100 mL or less are preferable, 8 mL or more and 90 mL or less are more preferable, 10 mL or more and 80 mL or less are more preferable.
 式(6)で表される高分子化合物の製造における溶媒の使用量としては、式(7)で表されるジハロゲノベンゾビスチアゾール化合物と式(8)で表されるベンゾビスチアゾール化合物の合計1gに対して、一般に1mL以上、150mL以下程度であり特に限定されないが、収率や反応効率の観点から5mL以上、100mL以下が好ましく、8mL以上、90mL以下がより好ましく、10mL以上、80mL以下がさらに好ましい。 The amount of the solvent used in the production of the polymer compound represented by formula (6) is the sum of the dihalogenobenzobisthiazole compound represented by formula (7) and the benzobisthiazole compound represented by formula (8). Although it is generally 1 mL or more and about 150 mL or less with respect to 1 g, it is preferably 5 mL or more and 100 mL or less from the viewpoint of yield or reaction efficiency, more preferably 8 mL or more and 90 mL or less, more preferably 10 mL or more and 80 mL or less. Further preferred.
 式(3)または式(6)で表される高分子化合物の製造において、反応温度は特に限定されないが、反応収率を高める観点から0℃以上、200℃以下であることが好ましく、30℃以上、180℃以下であることがより好ましく、40℃以上、150℃以下であることがさらに好ましい。 In the production of the polymer compound represented by the formula (3) or the formula (6), the reaction temperature is not particularly limited, but is preferably 0 ° C. or higher and 200 ° C. or lower from the viewpoint of increasing the reaction yield, 30 ° C. As mentioned above, it is more preferable that it is 180 degrees C or less, and it is still more preferable that it is 40 degrees C or more and 150 degrees C or less.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. In the following, “part” means “part by mass” and “%” means “mass%” unless otherwise specified.
 実施例で用いた測定方法は、下記の通りである。 The measurement method used in the examples is as follows.
(NMRスペクトル測定)
 ベンゾビスチアゾール化合物について、NMRスペクトル測定装置(Agilent社(旧Varian社)製、「400MR」、および、Bruker社製、「AVANCE
 500」)を用いて、NMRスペクトル測定を行った。
(NMR spectrum measurement)
Regarding the benzobisthiazole compound, an NMR spectrum measuring apparatus (manufactured by Agilent (formerly Varian), “400MR”, and Bruker, “AVANCE”)
500 ") and NMR spectra were measured.
(ゲル浸透クロマトグラフィ(GPC))
 ベンゾビスチアゾール化合物について、ゲル浸透クロマトグラフィー(GPC)を用い、分子量測定を行った。測定に際しては、ベンゾビスチアゾール化合物を0.5g/Lの濃度となるように移動相溶媒(クロロホルム)に溶解して、下記条件で測定を行い、ポリスチレンを標準試料として作成した較正曲線に基づいて換算することによって、ベンゾビスチアゾール化合物の重量平均分子量を算出した。測定におけるGPC条件は、下記の通りである。
移動相:クロロホルム
流速:0.6ml/min
装置:HLC-8320GPC(東ソー社製)
カラム:TSKgel(登録商標) SuperHM-H´2 + TSKgel(登録商標) SuperH2000(東ソー社製)
(Gel permeation chromatography (GPC))
The molecular weight of the benzobisthiazole compound was measured using gel permeation chromatography (GPC). In the measurement, the benzobisthiazole compound was dissolved in a mobile phase solvent (chloroform) so as to have a concentration of 0.5 g / L, measured under the following conditions, and based on a calibration curve prepared using polystyrene as a standard sample. By converting, the weight average molecular weight of the benzobisthiazole compound was calculated. The GPC conditions in the measurement are as follows.
Mobile phase: Chloroform flow rate: 0.6 ml / min
Apparatus: HLC-8320GPC (manufactured by Tosoh Corporation)
Column: TSKgel (registered trademark) SuperHM-H´2 + TSKgel (registered trademark) SuperH2000 (manufactured by Tosoh Corporation)
(紫外可視吸収スペクトル)
 0.03g/Lの濃度になる様に、得られたベンゾビスチアゾール化合物をクロロホルムに溶解し、紫外・可視分光装置(島津製作所社製、「UV-2450」、「UV-3150」)、および、光路長1cmのセルを用いて紫外可視吸収スペクトル測定を行った。
(UV-visible absorption spectrum)
The obtained benzobisthiazole compound was dissolved in chloroform so as to have a concentration of 0.03 g / L, and an ultraviolet / visible spectroscopic device (manufactured by Shimadzu Corporation, “UV-2450”, “UV-3150”), and The UV-visible absorption spectrum was measured using a cell having an optical path length of 1 cm.
(イオン化ポテンシャル測定)
 ガラス基板上にベンゾビスチアゾール化合物を50nm~100nmの厚みになるように成膜した。この膜について、常温常圧下、紫外線光電子分析装置(理研計器社製、「AC-3」)によりイオン化ポテンシャルを測定した。
(Ionization potential measurement)
A benzobisthiazole compound was formed on a glass substrate so as to have a thickness of 50 nm to 100 nm. The ionization potential of this membrane was measured with an ultraviolet photoelectron analyzer (“AC-3” manufactured by Riken Keiki Co., Ltd.) at room temperature and normal pressure.
(参考例1)
2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-HDTH)の合成
Figure JPOXMLDOC01-appb-I000060

 300mLフラスコに2,6-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DI、5.2g、11.7mmol)、トリブチル[5-(2-ヘキシルデシル)チオフェン-2-イル]スタンナン(HDT-Sn、23.2g、38.6mmol)、トリス(2-フリル)ホスフィン(443mg、1.87mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(490mg、0.47mol)、およびN,N-ジメチルホルムアミド(115mL)を加えて120℃で23時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-HDTH)が5.62g、薄黄色固体として得られた(収率60%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 1)
Synthesis of 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-HDTH)
Figure JPOXMLDOC01-appb-I000060

In a 300 mL flask, 2,6-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DI, 5.2 g, 11.7 mmol), tributyl [5- (2-hexyldecyl) thiophene- 2-yl] stannane (HDT-Sn, 23.2 g, 38.6 mmol), tris (2-furyl) phosphine (443 mg, 1.87 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct ( 490 mg, 0.47 mol) and N, N-dimethylformamide (115 mL) were added and reacted at 120 ° C. for 23 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to obtain 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl. ] 5.62 g of benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-HDTH) was obtained as a light yellow solid (yield 60%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 8.39 (s, 2H), 7.53 (d, J = 3.6 Hz, 2H), 6.81 (d, J= 3.6 Hz, 2H), 2.81 (m, 4H), 1.66 (m, 2H), 1.37-1.24 (m, 48H), 0.90 (t, J = 6.4 Hz, 6H), 0.88 (t, J = 6.4 Hz, 6H). 1 H NMR (400 MHz, CDCl 3 ): δ 8.39 (s, 2H), 7.53 (d, J = 3.6 Hz, 2H), 6.81 (d, J = 3.6 Hz, 2H), 2.81 (m, 4H), 1.66 (m, 2H), 1.37-1.24 (m, 48H), 0.90 (t, J = 6.4 Hz, 6H), 0.88 (t, J = 6.4 Hz, 6H).
(参考例2)
2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-HDTH)の合成
Figure JPOXMLDOC01-appb-I000061

 100mLフラスコに2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-HDTH、4g、4.97mmol)およびテトラヒドロフラン(80mL)を加えて-40℃に冷却した後にリチウムジイソプロピルアミド(2M溶液、5.5mL、10.9mmol)を滴下して30分攪拌した。次いで、ヨウ素(3.8g、14.9mol)を加えた後に室温で2時間反応した。反応終了後、10%亜硫酸水素ナトリウムを加えクロロホルムで抽出して、得られた有機層を飽和重曹水、次いで飽和食塩水で洗浄して無水硫酸マグネシウムを用いて乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-HDTH)が2.66g、黄色固体として得られた(収率51%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 2)
2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d '] bisthiazole (DI-DBTH-HDTH) Composition
Figure JPOXMLDOC01-appb-I000061

In a 100 mL flask was 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-HDTH, 4 g, 4.97 mmol). ) And tetrahydrofuran (80 mL) were added and the mixture was cooled to −40 ° C., and then lithium diisopropylamide (2M solution, 5.5 mL, 10.9 mmol) was added dropwise and stirred for 30 minutes. Next, iodine (3.8 g, 14.9 mol) was added, followed by reaction at room temperature for 2 hours. After completion of the reaction, 10% sodium bisulfite was added and the mixture was extracted with chloroform. The obtained organic layer was washed with saturated aqueous sodium hydrogen carbonate and then with saturated brine and dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to obtain 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl. ] -4,8-diiodobenzo [1,2-d; 4,5-d '] bisthiazole (DI-DBTH-HDTH) was obtained as a yellow solid (yield 51%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 3.6 Hz, 2H), 6.81 (d, J= 3.6 Hz, 2H), 2.80 (m, 4H), 1.70 (m, 2H), 1.36-1.24 (m, 48H), 0.89 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H). 1 H NMR (400 MHz, CDCl 3 ): δ 7.53 (d, J = 3.6 Hz, 2H), 6.81 (d, J = 3.6 Hz, 2H), 2.80 (m, 4H), 1.70 (m, 2H), 1.36-1.24 (m, 48H), 0.89 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H).
(参考例3)
2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-BOTH)の合成
Figure JPOXMLDOC01-appb-I000062

 50mLフラスコに2,6-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DI、0.86g、1.93mmol)、トリブチル[5-(2-ブチルオクチル)チオフェン-2-イル]スタンナン(BOT-Sn、3.4g、6.37mmol)、トリス(2-フリル)ホスフィン(72mg、0.31mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(8mg、0.08mol)、およびN,N-ジメチルホルムアミド(20mL)を加えて120℃で24時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-BOTH)が0.68g、薄黄色固体として得られた(収率51%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 3)
Synthesis of 2,6-bis [5- (2-butyloctyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-BOTH)
Figure JPOXMLDOC01-appb-I000062

In a 50 mL flask, 2,6-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DI, 0.86 g, 1.93 mmol), tributyl [5- (2-butyloctyl) thiophene- 2-yl] stannane (BOT-Sn, 3.4 g, 6.37 mmol), tris (2-furyl) phosphine (72 mg, 0.31 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct ( 8 mg, 0.08 mol) and N, N-dimethylformamide (20 mL) were added and reacted at 120 ° C. for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to give 2,6-bis [5- (2-butyloctyl) thiophen-2-yl. ] 0.68 g of benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-BOTH) was obtained as a pale yellow solid (yield 51%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 8.42(s, 2H), 7.59 (d, J = 3.8 Hz, 2H), 6.82 (d, J= 3.8 Hz, 2H), 2.81 (m, 4H), 1.66 (m, 2H), 1.37-1.24 (m, 32H), 0.91 (t, J = 6.4 Hz,
 6H), 0.88 (t, J = 6.4 Hz, 6H).
1 H NMR (400 MHz, CDCl 3 ): δ 8.42 (s, 2H), 7.59 (d, J = 3.8 Hz, 2H), 6.82 (d, J = 3.8 Hz, 2H), 2.81 (m, 4H), 1.66 (m, 2H), 1.37-1.24 (m, 32H), 0.91 (t, J = 6.4 Hz,
6H), 0.88 (t, J = 6.4 Hz, 6H).
(参考例4)
2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-BOTH)の合成
Figure JPOXMLDOC01-appb-I000063

 100mLフラスコに2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-BOTH、1.5g、2.16mmol)およびテトラヒドロフラン(30mL)を加えて-40℃に冷却した後にリチウムジイソプロピルアミド(2M溶液、2.4mL、4.75mmol)を滴下して30分攪拌した。次いで、ヨウ素(1.7g、6.48mmol)を加えた後に室温で2時間反応した。反応終了後、10%亜硫酸水素ナトリウムを加えクロロホルムで抽出して、得られた有機層を飽和重曹水、次いで飽和食塩水で洗浄して無水硫酸マグネシウムを用いて乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-BOTH)が1.15g、黄色固体として得られた(収率56%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 4)
Of 2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-BOTH) Composition
Figure JPOXMLDOC01-appb-I000063

In a 100 mL flask, 2,6-bis [5- (2-butyloctyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-BOTH, 1.5 g, 2 .16 mmol) and tetrahydrofuran (30 mL) were added and cooled to −40 ° C., then lithium diisopropylamide (2M solution, 2.4 mL, 4.75 mmol) was added dropwise and stirred for 30 minutes. Next, iodine (1.7 g, 6.48 mmol) was added, followed by reaction at room temperature for 2 hours. After completion of the reaction, 10% sodium bisulfite was added and the mixture was extracted with chloroform. The obtained organic layer was washed with saturated aqueous sodium hydrogen carbonate and then with saturated brine and dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to give 2,6-bis [5- (2-butyloctyl) thiophen-2-yl. ] -4,8-diiodobenzo [1,2-d; 4,5-d '] bisthiazole (DI-DBTH-BOTH) was obtained as a yellow solid (yield 56%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 7.52 (d, J = 3.6 Hz, 2H), 6.80 (d, J= 3.6 Hz, 2H), 2.80 (m, 4H), 1.69 (m, 2H), 1.34-1.23 (m, 32H), 0.89 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H). 1 H NMR (400 MHz, CDCl 3 ): δ 7.52 (d, J = 3.6 Hz, 2H), 6.80 (d, J = 3.6 Hz, 2H), 2.80 (m, 4H), 1.69 (m, 2H), 1.34-1.23 (m, 32H), 0.89 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H).
(参考例5)
2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH)の合成
Figure JPOXMLDOC01-appb-I000064

 50mLフラスコに2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-HDTH、1.1g、1.04mmol)、トリブチルチオフェン-2-イル-スタンナン(830μL、2.60mmol)、トリス(2-フリル)ホスフィン(40mg、0.17mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(45mg、0.04mmol)、およびN,N-ジメチルホルムアミド(22mL)を加えて80℃で19時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1~クロロホルム)で精製することで、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH)が1.01g、黄色固体として得られた(収率100%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 5)
2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bisthiazole (DTH -DBTH-HDTH)
Figure JPOXMLDOC01-appb-I000064

In a 50 mL flask, 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH— HDTH, 1.1 g, 1.04 mmol), tributylthiophen-2-yl-stannane (830 μL, 2.60 mmol), tris (2-furyl) phosphine (40 mg, 0.17 mmol), tris (dibenzylideneacetone) dipalladium (0) -Chloroform adduct (45 mg, 0.04 mmol) and N, N-dimethylformamide (22 mL) were added and reacted at 80 ° C. for 19 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Subsequently, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, chloroform / hexane = 1/1 to chloroform) to obtain 2,6-bis [5- (2-hexyldecyl) thiophene-2. -Il] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-HDTH) was obtained as a yellow solid (1.01 g). Yield 100%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ8.00 (dd, J = 4.0, 0.8 Hz, 2H), 7.58 (dd, J = 5.2, 0.8 Hz, 2H), 7.55 (d, J = 4.0 Hz, 2H), 7.27 (dd, J = 5.2, 4.0 Hz, 2H), 6.81 (d, J=
 4.0 Hz, 2H), 2.81 (m, 4H), 1.72 (m, 2H), 1.34-1.25 (m, 48H), 0.89 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 12H).
1 H NMR (400 MHz, CDCl 3 ): δ8.00 (dd, J = 4.0, 0.8 Hz, 2H), 7.58 (dd, J = 5.2, 0.8 Hz, 2H), 7.55 (d, J = 4.0 Hz, 2H), 7.27 (dd, J = 5.2, 4.0 Hz, 2H), 6.81 (d, J =
4.0 Hz, 2H), 2.81 (m, 4H), 1.72 (m, 2H), 1.34-1.25 (m, 48H), 0.89 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 12H ).
(参考例6)
2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DSM)の合成
Figure JPOXMLDOC01-appb-I000065

 30mLフラスコに2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH、700mg、0.72mmol)およびテトラヒドロフラン(14mL)を加え-50℃に冷却してリチウムジイソプロピルアミド(2M溶液、0.79mL、1.58mmol)を滴下して30分攪拌した。その後、トリメチルすずクロリド(1M溶液、16mL、1.58mmol)を加え室温に昇温して2時間攪拌した。反応終了後、水を加えトルエンで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をGPC-HPLC(JAIGEL-1H、2H、クロロホルム)で精製することで、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DSM)が518mg、黄色固体として得られた(収率55%)。1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 6)
2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; -D '] Synthesis of bisthiazole (DTH-DBTH-HDTH-DSM)
Figure JPOXMLDOC01-appb-I000065

Add 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bis in a 30 mL flask. Add thiazole (DTH-DBTH-HDTH, 700 mg, 0.72 mmol) and tetrahydrofuran (14 mL), cool to −50 ° C., add lithium diisopropylamide (2M solution, 0.79 mL, 1.58 mmol) dropwise, and stir for 30 minutes. did. Thereafter, trimethyltin chloride (1M solution, 16 mL, 1.58 mmol) was added, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, water was added and extracted twice with toluene. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by GPC-HPLC (JAIGEL-1H, 2H, chloroform) to give 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl]- 518 mg of 4,8-bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; 4,5-d '] bisthiazole (DTH-DBTH-HDTH-DSM) as a yellow solid Obtained (yield 55%). It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ8.16 (d, J = 3.6 Hz, 2H), 7.56 (d, J = 3.6 Hz, 2H), 7.37 (d, J= 3.6 Hz, 2H), 6.82 (d, J= 3.6 Hz, 2H), 2.82 (m, 4H), 1.71 (m, 2H), 1.35-1.25 (m, 48H), 0.88 (t J= 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 6H), 0.47 (s, 18H). 1 H NMR (400 MHz, CDCl 3 ): δ8.16 (d, J = 3.6 Hz, 2H), 7.56 (d, J = 3.6 Hz, 2H), 7.37 (d, J = 3.6 Hz, 2H), 6.82 (d, J = 3.6 Hz, 2H), 2.82 (m, 4H), 1.71 (m, 2H), 1.35-1.25 (m, 48H), 0.88 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 6H), 0.47 (s, 18H).
(参考例7)4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DB)の合成
 
Figure JPOXMLDOC01-appb-I000066

 20mLフラスコに2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH、300mg、0.31mmol)、NBS(N-ブロモスクシンイミド、122mg、0.70mmol)、クロロホルム(6mL)を加え室温で43時間反応させた。反応終了後、水洗(2回)した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、トルエン)で精製することで、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DB)が273mg、黄色固体として得られた(収率79%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
Reference Example 7 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -benzo [1,2-d; Synthesis of 4,5-d ′] bisthiazole (DTH-DBTH-HDTH-DB)
Figure JPOXMLDOC01-appb-I000066

2,6-Bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bis in a 20 mL flask Thiazole (DTH-DBTH-HDTH, 300 mg, 0.31 mmol), NBS (N-bromosuccinimide, 122 mg, 0.70 mmol) and chloroform (6 mL) were added and reacted at room temperature for 43 hours. After completion of the reaction, it was washed with water (twice) and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, toluene) to give 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- ( 273 mg of 2-hexyldecyl) thiophen-2-yl] -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-HDTH-DB) was obtained as a yellow solid (yield) 79%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ7.68 (d, J = 4.0 Hz, 2H), 7.65 (d, J = 4.0 Hz, 2H), 7.20 (d, J= 4.0 Hz, 2H), 6.82 (d, J = 4.0 Hz, 2H), 2.82 (m, 4H), 1.72 (m, 2H), 1.35-1.26 (m, 48H), 0.89 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 12H). 1 H NMR (400 MHz, CDCl 3 ): δ7.68 (d, J = 4.0 Hz, 2H), 7.65 (d, J = 4.0 Hz, 2H), 7.20 (d, J = 4.0 Hz, 2H), 6.82 (d, J = 4.0 Hz, 2H), 2.82 (m, 4H), 1.72 (m, 2H), 1.35-1.26 (m, 48H), 0.89 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 12H).
(参考例8)
2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-BOTH)の合成
Figure JPOXMLDOC01-appb-I000067

 50mLフラスコに2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-BOTH、1.1g、1.16mmol)、トリブチルチオフェン-2-イル-スタンナン(930μL、2.90mmol)、トリス(2-フリル)ホスフィン(33mg、0.14mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(36mg、0.03mmol)、およびN,N-ジメチルホルムアミド(22mL)を加えて80℃で22時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1~クロロホルム)で精製することで、2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-BOTH)が0.99g、黄色固体として得られた(収率99%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 8)
2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bisthiazole (DTH -DBTH-BOTH)
Figure JPOXMLDOC01-appb-I000067

In a 50 mL flask, 2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH— BOTH, 1.1 g, 1.16 mmol), tributylthiophen-2-yl-stannane (930 μL, 2.90 mmol), tris (2-furyl) phosphine (33 mg, 0.14 mmol), tris (dibenzylideneacetone) dipalladium (0) -Chloroform adduct (36 mg, 0.03 mmol) and N, N-dimethylformamide (22 mL) were added and reacted at 80 ° C. for 22 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, chloroform / hexane = 1/1 to chloroform) to give 2,6-bis [5- (2-butyloctyl) thiophene-2. -Il] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-BOTH) was obtained as a yellow solid (DTH-DBTH-BOTH). Yield 99%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ8.00 (dd, J = 4.0, 0.8 Hz, 2H), 7.58 (dd, J = 5.2, 0.8 Hz, 2H), 7.55 (d, J = 4.0 Hz, 2H), 7.27 (dd, J = 5.2, 4.0 Hz, 2H), 6.81 (d, J=
 4.0 Hz, 2H), 2.81 (m, 4H), 1.71 (m, 2H), 1.35-1.24 (m, 32H), 0.90 (t J = 6.4 Hz, 6H), 0.88 (t, J = 6.4 Hz, 12H).
1 H NMR (400 MHz, CDCl 3 ): δ8.00 (dd, J = 4.0, 0.8 Hz, 2H), 7.58 (dd, J = 5.2, 0.8 Hz, 2H), 7.55 (d, J = 4.0 Hz, 2H), 7.27 (dd, J = 5.2, 4.0 Hz, 2H), 6.81 (d, J =
4.0 Hz, 2H), 2.81 (m, 4H), 1.71 (m, 2H), 1.35-1.24 (m, 32H), 0.90 (t J = 6.4 Hz, 6H), 0.88 (t, J = 6.4 Hz, 12H ).
(参考例9)
4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-BOTH-DB)の合成
Figure JPOXMLDOC01-appb-I000068
 20mLフラスコに2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-BOTH、200mg、0.23mmol)、NBS(N-ブロモスクシンイミド、92mg、0.51mmol)、クロロホルム(4mL)を加え室温で19時間反応させた。反応終了後、水洗(2回)した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、トルエン)で精製することで、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-BOTH-DB)が165mg、黄色固体として得られた(収率70%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 9)
4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -benzo [1,2-d; 4,5-d '] Synthesis of bisthiazole (DTH-DBTH-BOTH-DB)
Figure JPOXMLDOC01-appb-I000068
2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bis in a 20 mL flask Thiazole (DTH-DBTH-BOTH, 200 mg, 0.23 mmol), NBS (N-bromosuccinimide, 92 mg, 0.51 mmol) and chloroform (4 mL) were added and reacted at room temperature for 19 hours. After completion of the reaction, it was washed with water (twice) and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, toluene) to give 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- ( 165 mg of 2-butyloctyl) thiophen-2-yl] -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-BOTH-DB) was obtained as a yellow solid (yield) 70%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ7.68 (d, J = 4.0 Hz, 2H), 7.65 (d, J = 4.0 Hz, 2H), 7.20 (d, J= 4.0 Hz, 2H), 6.82 (d, J = 4.0 Hz, 2H), 2.83 (m, 4H), 1.74 (m, 2H), 1.35-1.26 (m, 32H), 0.90 (t J = 6.4 Hz, 6H), 0.89 (t, J = 6.4 Hz, 12H). 1 H NMR (400 MHz, CDCl 3 ): δ7.68 (d, J = 4.0 Hz, 2H), 7.65 (d, J = 4.0 Hz, 2H), 7.20 (d, J = 4.0 Hz, 2H), 6.82 (d, J = 4.0 Hz, 2H), 2.83 (m, 4H), 1.74 (m, 2H), 1.35-1.26 (m, 32H), 0.90 (t J = 6.4 Hz, 6H), 0.89 (t, J = 6.4 Hz, 12H).
(参考例10)DBTH-DMOTH
2,6-ビス[5-(3,7-ジメチルオクチル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DMOTH)の合成
Figure JPOXMLDOC01-appb-I000069

 100mLフラスコに2,6-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DI、3g、6.76mmol)、トリブチル[5-(3,7-ジメチルオクチル)チオフェン-2-イル]スタンナン(DMOT-Sn、12.1g、22.6mmol)、トリス(2-フリル)ホスフィン(188mg、0.81mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(420mg、0.41mmol)、およびN,N-ジメチルホルムアミド(60mL)を加えて120℃で21時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(3,7-ジメチルオクチル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DMOTH)が2.0g、黄色固体として得られた(収率46%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 10) DBTH-DMOTH
Synthesis of 2,6-bis [5- (3,7-dimethyloctyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DMOTH)
Figure JPOXMLDOC01-appb-I000069

In a 100 mL flask, 2,6-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DI, 3 g, 6.76 mmol), tributyl [5- (3,7-dimethyloctyl) thiophene- 2-yl] stannane (DMOT-Sn, 12.1 g, 22.6 mmol), tris (2-furyl) phosphine (188 mg, 0.81 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct ( 420 mg, 0.41 mmol) and N, N-dimethylformamide (60 mL) were added, and the mixture was reacted at 120 ° C. for 21 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Subsequently, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to obtain 2,6-bis [5- (3,7-dimethyloctyl) thiophene-2. -Il] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DMOTH) was obtained as a yellow solid (yield 46%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 8.38 (s, 2H), 7.50 (d, J = 3.8 Hz, 2H), 6.84 (d, J= 3.8 Hz, 2H), 2.89 (m, 4H), 1.76 (m, 2H), 1.54 (m, 6H), 1.33 (m, 6H), 1.15 (m, 6H), 0.92 (d, J= 5.6 Hz, 6H), 0.87 (d, J = 6.4 Hz, 12H). 1 H NMR (400 MHz, CDCl 3 ): δ 8.38 (s, 2H), 7.50 (d, J = 3.8 Hz, 2H), 6.84 (d, J = 3.8 Hz, 2H), 2.89 (m, 4H), 1.76 (m, 2H), 1.54 (m, 6H), 1.33 (m, 6H), 1.15 (m, 6H), 0.92 (d, J = 5.6 Hz, 6H), 0.87 (d, J = 6.4 Hz, 12H ).
(参考例11)DI-DBTH-DMOTH
2,6-ビス[5-(3,7-ジメチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-DMOTH)の合成
Figure JPOXMLDOC01-appb-I000070

 50mLフラスコに2,6-ビス[5-(3,7-ジメチルオクチル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DMOTH、1.4g、2.12mmol)およびテトラヒドロフラン(27mL)を加えて-40℃に冷却した後にリチウムジイソプロピルアミド(2M溶液、2.3mL、4.66mmol)を滴下して30分攪拌した。次いで、ヨウ素(1.6g、6.36mmol)を加えた後に室温で2時間反応した。反応終了後、10%亜硫酸水素ナトリウムを加えクロロホルムで抽出して、得られた有機層を飽和重曹水、次いで飽和食塩水で洗浄して無水硫酸マグネシウムを用いて乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(3,7-ジメチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-DMOTH)が1.32g、黄色固体として得られた(収率70%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 11) DI-DBTH-DMOTH
2,6-bis [5- (3,7-dimethyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-DMOTH ) Synthesis
Figure JPOXMLDOC01-appb-I000070

In a 50 mL flask, 2,6-bis [5- (3,7-dimethyloctyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-DMOTH, 1.4 g) 2.12 mmol) and tetrahydrofuran (27 mL) were added, and the mixture was cooled to −40 ° C., and then lithium diisopropylamide (2M solution, 2.3 mL, 4.66 mmol) was added dropwise and stirred for 30 minutes. Then, iodine (1.6 g, 6.36 mmol) was added and reacted at room temperature for 2 hours. After completion of the reaction, 10% sodium bisulfite was added and the mixture was extracted with chloroform. The obtained organic layer was washed with saturated aqueous sodium hydrogen carbonate and then with saturated brine and dried over anhydrous magnesium sulfate. Subsequently, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, chloroform / hexane = 1/1) to obtain 2,6-bis [5- (3,7-dimethyloctyl) thiophene-2. -Il] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-DMOTH) was obtained as a yellow solid (yield 70%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ7.51 (d, J = 3.8 Hz, 2H), 6.83 (d, J= 3.8 Hz, 2H), 2.88 (m, 4H), 1.76 (m, 2H), 1.56 (m, 6H), 1.33 (m, 6H), 1.15 (m, 6H), 0.93 (d, J =
 5.6 Hz, 6H), 0.87 (d, J = 6.4 Hz, 12H).
1 H NMR (400 MHz, CDCl 3 ): δ7.51 (d, J = 3.8 Hz, 2H), 6.83 (d, J = 3.8 Hz, 2H), 2.88 (m, 4H), 1.76 (m, 2H) , 1.56 (m, 6H), 1.33 (m, 6H), 1.15 (m, 6H), 0.93 (d, J =
5.6 Hz, 6H), 0.87 (d, J = 6.4 Hz, 12H).
(参考例12)DBTH-TDTH
2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-TDTH)の合成
Figure JPOXMLDOC01-appb-I000071

 200mLフラスコに2,6-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-DI、5.2g、11.6mmol)、トリブチル[5-(2-デシルテトラデシル)チオフェン-2-イル]スタンナン(TDT-Sn、60.8g、38.0mmol)、トリス(2-フリル)ホスフィン(448mg、2.09mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(493mg、0.46mol)、およびN,N-ジメチルホルムアミド(112mL)を加えて120℃で23時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、クロロホルム/ヘキサン=1/1)で精製することで、2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-TDTH)が6.12g、薄黄色固体として得られた(収率51%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 12) DBTH-TDTH
Synthesis of 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-TDTH)
Figure JPOXMLDOC01-appb-I000071

In a 200 mL flask, 2,6-diiodobenzo [1,2-d; 4,5-d '] bisthiazole (DBTH-DI, 5.2 g, 11.6 mmol), tributyl [5- (2-decyltetradecyl) thiophene -2-yl] stannane (TDT-Sn, 60.8 g, 38.0 mmol), tris (2-furyl) phosphine (448 mg, 2.09 mmol), tris (dibenzylideneacetone) dipalladium (0) -chloroform adduct (493 mg, 0.46 mol) and N, N-dimethylformamide (112 mL) were added and reacted at 120 ° C. for 23 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, chloroform / hexane = 1/1) to give 2,6-bis [5- (2-decyltetradecyl) thiophene-2- Yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-TDTH) was obtained as a pale yellow solid (yield 51%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 8.40 (s, 2H), 7.56 (d, J = 3.6 Hz, 2H), 6.81 (d, J= 3.6 Hz, 2H), 2.80 (m, 4H), 1.69 (m, 2H), 1.35-1.20 (m, 80H), 0.87 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H). 1 H NMR (400 MHz, CDCl 3 ): δ 8.40 (s, 2H), 7.56 (d, J = 3.6 Hz, 2H), 6.81 (d, J = 3.6 Hz, 2H), 2.80 (m, 4H), 1.69 (m, 2H), 1.35-1.20 (m, 80H), 0.87 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H).
(参考例13)DI-DBTH-TDTH
2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-TDTH)の合成
Figure JPOXMLDOC01-appb-I000072

 200mLフラスコに2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DBTH-TDTH、4.1g、3.97mmol)およびテトラヒドロフラン(80mL)を加えて-40℃に冷却した後にリチウムジイソプロピルアミド(2M溶液、4.4mL、8.8mmol)を滴下して30分攪拌した。次いで、ヨウ素(3.1g、24.0mol)を加えた後に室温で2時間反応した。反応終了後、10%亜硫酸水素ナトリウムを加えクロロホルムで抽出して、得られた有機層を飽和重曹水、次いで飽和食塩水で洗浄して無水硫酸マグネシウムを用いて乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、酢酸エチル/ヘキサン=5/95)で精製することで、2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-TDTH)が3.98g、黄色固体として得られた(収率69%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
(Reference Example 13) DI-DBTH-TDTH
2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-TDTH) Synthesis of
Figure JPOXMLDOC01-appb-I000072

In a 200 mL flask, 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] benzo [1,2-d; 4,5-d ′] bisthiazole (DBTH-TDTH, 4.1 g, 3.97 mmol) and tetrahydrofuran (80 mL) were added and cooled to −40 ° C., and then lithium diisopropylamide (2M solution, 4.4 mL, 8.8 mmol) was added dropwise and stirred for 30 minutes. Next, iodine (3.1 g, 24.0 mol) was added, and the mixture was reacted at room temperature for 2 hours. After completion of the reaction, 10% sodium bisulfite was added and the mixture was extracted with chloroform. The obtained organic layer was washed with saturated aqueous sodium hydrogen carbonate and then with saturated brine and dried over anhydrous magnesium sulfate. Subsequently, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, ethyl acetate / hexane = 5/95) to obtain 2,6-bis [5- (2-decyltetradecyl) thiophene-2. -Yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-TDTH) was obtained as a yellow solid (yield 69%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 3.6 Hz, 2H), 6.80 (d, J= 3.6 Hz, 2H), 2.80 (m, 4H), 1.70 (m, 2H), 1.38-1.20 (m, 80H), 0.89 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H). 1 H NMR (400 MHz, CDCl 3 ): δ 7.53 (d, J = 3.6 Hz, 2H), 6.80 (d, J = 3.6 Hz, 2H), 2.80 (m, 4H), 1.70 (m, 2H), 1.38-1.20 (m, 80H), 0.89 (t, J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 6H).
(参考例14)DTH-DBTH-TDTH
2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH)の合成
Figure JPOXMLDOC01-appb-I000073

 100mLフラスコに2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-TDTH、2.5g、1.95mmol)、トリブチルチオフェン-2-イル-スタンナン(1.6mL、4.88mmol)、トリス(2-フリル)ホスフィン(55mg、0.23mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(62mg、0.06mmol)、およびN,N-ジメチルホルムアミド(50mL)を加えて100℃で23時間反応した。反応終了後、室温まで冷却した後に水を加えクロロホルムで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、酢酸エチル/ヘキサン=1/9)で精製することで、2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH)が2.21g、黄色固体として得られた(収率95%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
1H NMR (400 MHz, CDCl3): δ8.00 (dd, J = 4.0, 0.8 Hz, 2H), 7.58 (dd, J = 5.2, 0.8 Hz, 2H), 7.55 (d, J = 4.0 Hz, 2H), 7.27 (dd, J = 5.2, 4.0 Hz, 2H), 6.81 (d, J=
 4.0 Hz, 2H), 2.82 (m, 4H), 1.71 (m, 2H), 1.39-1.20 (m, 80H), 0.88 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 12H).
(Reference Example 14) DTH-DBTH-TDTH
2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bisthiazole ( DTH-DBTH-TDTH)
Figure JPOXMLDOC01-appb-I000073

In a 100 mL flask, 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH -TDTH, 2.5 g, 1.95 mmol), tributylthiophen-2-yl-stannane (1.6 mL, 4.88 mmol), tris (2-furyl) phosphine (55 mg, 0.23 mmol), tris (dibenzylideneacetone) ) Dipalladium (0) -chloroform adduct (62 mg, 0.06 mmol) and N, N-dimethylformamide (50 mL) were added and reacted at 100 ° C. for 23 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was extracted twice with chloroform. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Subsequently, the crude product obtained by filtration and concentration was purified by column chromatography (silica gel, ethyl acetate / hexane = 1/9) to obtain 2,6-bis [5- (2-decyltetradecyl) thiophene-2. -Il] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-TDTH) was obtained as a yellow solid (2.21 g). Yield 95%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1 H NMR (400 MHz, CDCl 3 ): δ8.00 (dd, J = 4.0, 0.8 Hz, 2H), 7.58 (dd, J = 5.2, 0.8 Hz, 2H), 7.55 (d, J = 4.0 Hz, 2H), 7.27 (dd, J = 5.2, 4.0 Hz, 2H), 6.81 (d, J =
4.0 Hz, 2H), 2.82 (m, 4H), 1.71 (m, 2H), 1.39-1.20 (m, 80H), 0.88 (t J = 6.4 Hz, 6H), 0.87 (t, J = 6.4 Hz, 12H ).
(参考例15)DTH-DBTH-TDTH-DSM
2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DSM)
Figure JPOXMLDOC01-appb-I000074

 30mLフラスコに2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH、1.5g、1.26mmol)およびテトラヒドロフラン(50mL)を加え-30℃に冷却してリチウムジイソプロピルアミド(2M溶液、1.38mL、2.77mmol)を滴下して30分攪拌した。その後、トリメチルすずクロリド(1M溶液、3.0mL、3.02mmol)を加え室温に昇温して2時間攪拌した。反応終了後、水を加えトルエンで2回抽出して、有機層を水洗した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をGPC-HPLC(JAIGEL-1H、2H、クロロホルム)で精製することで、2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DSM)が1.28g、黄色固体として得られた(収率67%)。1H-NMR測定により、目的とする化合物が生成したことを確認した。
Reference Example 15 DTH-DBTH-TDTH-DSM
2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; 5-d ′] bisthiazole (DTH-DBTH-TDTH-DSM)
Figure JPOXMLDOC01-appb-I000074

In a 30 mL flask, 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] Bisthiazole (DTH-DBTH-TDTH, 1.5 g, 1.26 mmol) and tetrahydrofuran (50 mL) were added, cooled to −30 ° C., and lithium diisopropylamide (2M solution, 1.38 mL, 2.77 mmol) was added dropwise. Stir for 30 minutes. Thereafter, trimethyltin chloride (1M solution, 3.0 mL, 3.02 mmol) was added, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, water was added and extracted twice with toluene. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by GPC-HPLC (JAIGEL-1H, 2H, chloroform) to give 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl]. 1.28 g of -4,8-bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; 4,5-d '] bisthiazole (DTH-DBTH-TDTH-DSM), Obtained as a yellow solid (67% yield). It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ8.15 (d, J = 3.6 Hz, 2H), 7.56 (d, J = 3.6 Hz, 2H), 7.35 (d, J= 3.6 Hz, 2H), 6.84 (d, J= 3.6 Hz, 2H), 2.82 (m, 4H), 1.71 (m, 2H), 1.39-1.20 (m, 80H), 0.88 (t J= 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 12H), 0.47 (s, 18H). 1 H NMR (400 MHz, CDCl 3 ): δ8.15 (d, J = 3.6 Hz, 2H), 7.56 (d, J = 3.6 Hz, 2H), 7.35 (d, J = 3.6 Hz, 2H), 6.84 (d, J = 3.6 Hz, 2H), 2.82 (m, 4H), 1.71 (m, 2H), 1.39-1.20 (m, 80H), 0.88 (t J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 12H), 0.47 (s, 18H).
(参考例16)4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DB)の合成
Figure JPOXMLDOC01-appb-I000075
 20mLフラスコに2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ジチオフェン-2-イル-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH、300mg、0.25mmol)、NBS(N-ブロモスクシンイミド、99mg、0.55mmol)、クロロホルム(6mL)を加え室温で19時間反応させた。反応終了後、水洗(2回)した後に無水硫酸マグネシウムで乾燥した。次いでろ過・濃縮して得られた粗品をカラムクロマトグラフィー(シリカゲル、トルエン)で精製することで、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DB)が300mg、黄色固体として得られた(収率80%)。
1H-NMR測定により、目的とする化合物が生成したことを確認した。
Reference Example 16 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -benzo [1,2-d Synthesis of 4,5-d ′] bisthiazole (DTH-DBTH-TDTH-DB)
Figure JPOXMLDOC01-appb-I000075
In a 20 mL flask, 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8-dithiophen-2-yl-benzo [1,2-d; 4,5-d ′] Bisthiazole (DTH-DBTH-TDTH, 300 mg, 0.25 mmol), NBS (N-bromosuccinimide, 99 mg, 0.55 mmol) and chloroform (6 mL) were added and reacted at room temperature for 19 hours. After completion of the reaction, it was washed with water (twice) and then dried over anhydrous magnesium sulfate. Next, the crude product obtained by filtration and concentration is purified by column chromatography (silica gel, toluene) to give 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- ( 2-decyltetradecyl) thiophen-2-yl] -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-TDTH-DB) was obtained as a yellow solid (yield). 80%).
It was confirmed by 1 H-NMR measurement that the target compound was produced.
1H NMR (400 MHz, CDCl3): δ7.68 (d, J = 4.0 Hz, 2H), 7.65 (d, J = 4.0 Hz, 2H), 7.20 (d, J= 4.0 Hz, 2H), 6.82 (d, J = 4.0 Hz, 2H), 2.82 (m, 4H), 1.72 (m, 2H), 1.39-1.22 (m, 80H), 0.89 (t J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 12H). 1 H NMR (400 MHz, CDCl 3 ): δ7.68 (d, J = 4.0 Hz, 2H), 7.65 (d, J = 4.0 Hz, 2H), 7.20 (d, J = 4.0 Hz, 2H), 6.82 (d, J = 4.0 Hz, 2H), 2.82 (m, 4H), 1.72 (m, 2H), 1.39-1.22 (m, 80H), 0.89 (t J = 6.4 Hz, 6H), 0.86 (t, J = 6.4 Hz, 12H).
(実施例1)P-TDMOT-DBTH-Tの合成
Figure JPOXMLDOC01-appb-I000076
 20mLフラスコに、2,6-ビス[5-(3,7-ジメチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-DMOTH、110mg、0.12mmol)、1,1’-(2.5-チオフェンジイル)ビス[1,1,1-トリメチル]スタンナン(52mg、0.12)、ジパラジウム(0)-クロロホルム付加体(4mg、4.8μmol)、トリス(2-メチルフェニル)ホスフィン(6mg、19.2μmol)およびクロロベンゼン(6mL)を加え130℃で24時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TDMOT-DBTH-Tが53mg(60%)で黒色固体として得られた。
Example 1 Synthesis of P-TDMOT-DBTH-T
Figure JPOXMLDOC01-appb-I000076
In a 20 mL flask, 2,6-bis [5- (3,7-dimethyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI -DBTH-DMOTH, 110 mg, 0.12 mmol), 1,1 '-(2.5-thiophenediyl) bis [1,1,1-trimethyl] stannane (52 mg, 0.12), dipalladium (0)- Chloroform adduct (4 mg, 4.8 μmol), tris (2-methylphenyl) phosphine (6 mg, 19.2 μmol) and chlorobenzene (6 mL) were added and reacted at 130 ° C. for 24 hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent extraction with Soxhlet (chloroform) gave 53 mg (60%) of P-TDMOT-DBTH-T as a black solid.
イオン化ポテンシャル:5.17eV(HOMO -5.17eV)
GPC測定結果 Mw(重量平均分子量):2800、Mn(数平均分子量):1800
Ionization potential: 5.17 eV (HOMO-5.17 eV)
GPC measurement results Mw (weight average molecular weight): 2800, Mn (number average molecular weight): 1800
(実施例2)P-THDT-DBTH-Tの合成
Figure JPOXMLDOC01-appb-I000077

20mLフラスコに、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-HDTH、100mg、0.09mmol)、1,1’-(2.5-チオフェンジイル)ビス[1,1,1-トリメチル]スタンナン(39mg、0.09)、ジパラジウム(0)-クロロホルム付加体(4mg、3.8μmol)、トリス(2-メトキシフェニル)ホスフィン(5mg、15.1μmol)およびクロロベンゼン(8mL)を加え130℃で24時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-THDT-DBTH-Tが52mg(62%)で黒色固体として得られた。
Example 2 Synthesis of P-THDT-DBTH-T
Figure JPOXMLDOC01-appb-I000077

To a 20 mL flask, add 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH). -HDTH, 100 mg, 0.09 mmol), 1,1 ′-(2.5-thiophenediyl) bis [1,1,1-trimethyl] stannane (39 mg, 0.09), dipalladium (0) -chloroform addition (4 mg, 3.8 μmol), tris (2-methoxyphenyl) phosphine (5 mg, 15.1 μmol) and chlorobenzene (8 mL) were added and reacted at 130 ° C. for 24 hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent extraction with Soxhlet (chloroform) gave 52 mg (62%) of P-THDT-DBTH-T as a black solid.
イオン化ポテンシャル:5.20eV(HOMO -5.20eV)
GPC測定結果 Mw(重量平均分子量):4400、Mn(数平均分子量):3400
Ionization potential: 5.20 eV (HOMO -5.20 eV)
GPC measurement results Mw (weight average molecular weight): 4400, Mn (number average molecular weight): 3400
光電変換素子の作成・評価
 前記のように得られたP-THDT-DBTH-Tをドナー材料、PCBM(C61)(フェニルC61-酪酸メチルエステル)をアクセプター材料として用いて、ドナー材料:アクセプター材料=1:2(重量)(合計濃度30mg/mL)、および1,8-ジヨードオクタン(0.03mL/mL)をクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。
 ITOが成膜されたガラス基板をオゾンUV処理して表面処理を行った後に、PEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))水分散体をスピンコーターで塗布・アニールした。次に、上記のドナー材料・アクセプター材料の混合溶液をスピンコーターで成膜して室温で減圧乾燥した。その上に、オルトチタン酸テトライソプロピルのエタノール溶液(約0.3v%)をスピンコートして雰囲気中の水分により酸化チタンに変換した膜を作成した。その後、電極であるアルミニウムを蒸着してデバイスとした。
 得られたデバイスにソーラーシミュレーター(CEP2000、AM1.5Gフィルター、放射強度100mW/cm2、分光計器製)を用いて特性評価を行った。その結果、Jsc(短絡電流密度)= 3.27 mA/cm2、Voc(開放端電圧) = 0.75 V、FF(曲線因子) = 0.55で変換効率1.35%であることが確認された。
Production / Evaluation of Photoelectric Conversion Element Using P-THDT-DBTH-T obtained as described above as a donor material and PCBM (C61) (phenyl C61-butyric acid methyl ester) as an acceptor material, donor material: acceptor material = 1: 2 (weight) (total concentration 30 mg / mL) and 1,8-diiodooctane (0.03 mL / mL) were dissolved in chlorobenzene and passed through a 0.45 μm filter to obtain a mixed solution.
A glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared. Then, aluminum which is an electrode was vapor-deposited to make a device.
The obtained device was subjected to characteristic evaluation using a solar simulator (CEP2000, AM1.5G filter, radiation intensity 100 mW / cm 2 , manufactured by Spectrometer). As a result, it was confirmed that the conversion efficiency was 1.35% when Jsc (short-circuit current density) = 3.27 mA / cm 2 , Voc (open-circuit voltage) = 0.75 V, and FF (fill factor) = 0.55.
(実施例3)P-TBOT-DBTH-DTの合成
Figure JPOXMLDOC01-appb-I000078
 20mLフラスコに、2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-BOTH、100mg、0.11mmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(52mg、0.11mmol)、ジパラジウム(0)-クロロホルム付加体(4mg、4.2μmol)、トリス(2-メトキシフェニル)ホスフィン(5mg、16.8μmol)およびクロロベンゼン(8mL)を加え130℃で24時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TBOT-DBTH-DTが35mg(39%)で黒色固体として得られた。
Example 3 Synthesis of P-TBOT-DBTH-DT
Figure JPOXMLDOC01-appb-I000078
In a 20 mL flask, add 2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH). -BOTH, 100 mg, 0.11 mmol), 5,5′-bis (trimethylstannyl) -2,2′-bithiophene (52 mg, 0.11 mmol), dipalladium (0) -chloroform adduct (4 mg, 4. 2 μmol), tris (2-methoxyphenyl) phosphine (5 mg, 16.8 μmol) and chlorobenzene (8 mL) were added and reacted at 130 ° C. for 24 hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent Soxhlet extraction (chloroform) gave 35 mg (39%) of P-TBOT-DBTH-DT as a black solid.
イオン化ポテンシャル:5.14eV(HOMO -5.14eV) Ionization potential: 5.14 eV (HOMO-5.14 eV)
(実施例4)P-THDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000079
 20mLフラスコに、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-HDTH、100mg、0.09mmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(47mg、0.09)、ジパラジウム(0)-クロロホルム付加体(3mg、3.6μmol)、トリス(2-メチルフェニル)ホスフィン(4mg、14.4μmol)およびクロロベンゼン(4mL)を加え130℃で27時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-THDT-DBTH-DTが22mg(24%)で黒色固体として得られた。
Example 4 P-THDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000079
To a 20 mL flask, add 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH). -HDTH, 100 mg, 0.09 mmol), 5,5′-bis (trimethylstannyl) -2,2′-bithiophene (47 mg, 0.09), dipalladium (0) -chloroform adduct (3 mg, 3. 6 μmol), tris (2-methylphenyl) phosphine (4 mg, 14.4 μmol) and chlorobenzene (4 mL) were added and reacted at 130 ° C. for 27 hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent extraction with Soxhlet (chloroform) gave 22 mg (24%) of P-THDT-DBTH-DT as a black solid.
イオン化ポテンシャル:5.36eV(HOMO -5.36eV) Ionization potential: 5.36 eV (HOMO -5.36 eV)
(実施例5)P-TODDT-DBTH-DTの合成
Figure JPOXMLDOC01-appb-I000080
 20mLフラスコに、2,6-ビス[2-オクチルドデシル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-ODDTH、178mg、0.10mmol)、5,5’-ビス(トリメチルスタンニル)-2,2’-ビチオフェン(50mg、0.10)、ジパラジウム(0)-クロロホルム付加体(4mg、4.0μmol)、トリス(2-メチルフェニル)ホスフィン(5mg、16.0μmol)およびクロロベンゼン(5mL)を加え130℃で24時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TODDT-DBTH-DTが48mg(44%)で黒色固体として得られた。
Example 5 Synthesis of P-TODDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000080
In a 20 mL flask, 2,6-bis [2-octyldodecyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH-ODDTH, 178 mg, 0.10 mmol), 5,5′-bis (trimethylstannyl) -2,2′-bithiophene (50 mg, 0.10), dipalladium (0) -chloroform adduct (4 mg, 4.0 μmol), Tris (2-methylphenyl) phosphine (5 mg, 16.0 μmol) and chlorobenzene (5 mL) were added and reacted at 130 ° C. for 24 hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent Soxhlet extraction (chloroform) yielded 48 mg (44%) of P-TODDT-DBTH-DT as a black solid.
イオン化ポテンシャル:5.34eV(HOMO -5.34eV)
GPC測定結果 Mw(重量平均分子量):9600、Mn(数平均分子量):6800
Ionization potential: 5.34 eV (HOMO -5.34 eV)
GPC measurement results Mw (weight average molecular weight): 9600, Mn (number average molecular weight): 6800
光電変換素子の作成・評価
 前記のように得られたP-TODDT-DBTH-DTをドナー材料、PCBM(C61)(フェニルC61-酪酸メチルエステル)をアクセプター材料として用いて、ドナー材料:アクセプター材料=1:2(重量)(合計濃度24mg/mL)、および1,8-ジヨードオクタン(0.03mL/mL)をクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。
 ITOが成膜されたガラス基板をオゾンUV処理して表面処理を行った後に、PEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))水分散体をスピンコーターで塗布・アニールした。次に、上記のドナー材料・アクセプター材料の混合溶液をスピンコーターで成膜して室温で減圧乾燥した。その上に、オルトチタン酸テトライソプロピルのエタノール溶液(約0.3v%)をスピンコートして雰囲気中の水分により酸化チタンに変換した膜を作成した。その後、電極であるアルミニウムを蒸着してデバイスとした。
 得られたデバイスにソーラーシミュレーター(CEP2000、AM1.5Gフィルター、放射強度100mW/cm2、分光計器製)を用いて特性評価を行った。その結果、Jsc(短絡電流密度)= 5.78 mA/cm2、Voc(開放端電圧) = 0.80 V、FF(曲線因子) = 0.61で変換効率2.82%であることが確認された。
Preparation / Evaluation of Photoelectric Conversion Element Using P-TODDT-DBTH-DT obtained as described above as a donor material and PCBM (C61) (phenyl C61-butyric acid methyl ester) as an acceptor material, donor material: acceptor material = 1: 2 (weight) (total concentration 24 mg / mL) and 1,8-diiodooctane (0.03 mL / mL) were dissolved in chlorobenzene and passed through a 0.45 μm filter to obtain a mixed solution.
A glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared. Then, aluminum which is an electrode was vapor-deposited to make a device.
The obtained device was subjected to characteristic evaluation using a solar simulator (CEP2000, AM1.5G filter, radiation intensity 100 mW / cm 2 , manufactured by Spectrometer). As a result, it was confirmed that the conversion efficiency was 2.82% when Jsc (short-circuit current density) = 5.78 mA / cm 2 , Voc (open-circuit voltage) = 0.80 V, FF (fill factor) = 0.61.
(実施例6)P-TTDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000081
 20mLフラスコに、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DB、40mg、0.03mmol)、2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DSM、45mg、0.03mmol)、ジパラジウム(0)-クロロホルム付加体(1mg、1.2μmol)、トリス(2-メトキシフェニル)ホスフィン(2mg、4.8μmol)およびクロロベンゼン(2mL)を加え130℃で24時間反応した。反応終了後、メタノール(20mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TTDT-DBTH-DTが34mg(48%)で黒色固体として得られた。
(Example 6) P-TTDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000081
In a 20 mL flask, 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-TDTH-DB, 40 mg, 0.03 mmol), 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8 -Bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; 4,5-d '] bisthiazole (DTH-DBTH-TDTH-DSM, 45 mg, 0.03 mmol), dipalladium Add (0) -chloroform adduct (1 mg, 1.2 μmol), tris (2-methoxyphenyl) phosphine (2 mg, 4.8 μmol) and chlorobenzene (2 mL) at It was time reaction. After completion of the reaction, the reaction solution was added to methanol (20 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent Soxhlet extraction (chloroform) yielded 34 mg (48%) of P-TTDT-DBTH-DT as a black solid.
イオン化ポテンシャル:5.29eV(HOMO -5.29eV)
GPC測定結果 Mw(重量平均分子量):12300、Mn(数平均分子量):8800
Ionization potential: 5.29 eV (HOMO -5.29 eV)
GPC measurement results Mw (weight average molecular weight): 12300, Mn (number average molecular weight): 8800
(実施例7)P-TBOT-DBTH-HTD
Figure JPOXMLDOC01-appb-I000082
 20mLフラスコに、2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-4,8-ジヨードベンゾ[1,2-d;4,5-d’]ビスチアゾール(DI-DBTH-BOTH、100mg、0.11mmol)、3,3’-ジヘキシル-5,5’-ビストリブチルスタンニル[2,2’]ビチオフェニル(97mg、0.11mmol)、ジパラジウム(0)-クロロホルム付加体(4mg、4.2μmol)、トリス(2-メトキシフェニル)ホスフィン(5mg、16.8μmol)およびクロロベンゼン(8mL)を加え130℃で24時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TBOT-DBTH-HTDが92mg(86%)で黒色固体として得られた。
(Example 7) P-TBOT-DBTH-HTD
Figure JPOXMLDOC01-appb-I000082
In a 20 mL flask, add 2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -4,8-diiodobenzo [1,2-d; 4,5-d ′] bisthiazole (DI-DBTH). -BOTH, 100 mg, 0.11 mmol), 3,3′-dihexyl-5,5′-bistributylstannyl [2,2 ′] bithiophenyl (97 mg, 0.11 mmol), dipalladium (0) -chloroform adduct (4 mg, 4.2 μmol), tris (2-methoxyphenyl) phosphine (5 mg, 16.8 μmol) and chlorobenzene (8 mL) were added and reacted at 130 ° C. for 24 hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent Soxhlet extraction (chloroform) yielded 92 mg (86%) of P-TBOT-DBTH-HTD as a black solid.
イオン化ポテンシャル:5.25eV(HOMO -5.25eV)
GPC測定結果 Mw(重量平均分子量):9100、Mn(数平均分子量):3800
Ionization potential: 5.25 eV (HOMO -5.25 eV)
GPC measurement results Mw (weight average molecular weight): 9100, Mn (number average molecular weight): 3800
(実施例8)
P-THDBOT-DBTH-DTの合成
Figure JPOXMLDOC01-appb-I000083
 20mLフラスコに、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ブチルオクチル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-BOTH-DB、48mg、0.05mmol)、2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DSM、60mg、0.05mmol)、ジパラジウム(0)-クロロホルム付加体(2mg、1.9μmol)、トリス(2-メトキシフェニル)ホスフィン(3mg、7.5μmol)およびクロロベンゼン(7mL)を加え130℃で24時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-THDBOT-DBTH-DTが26mg(31%)で黒色固体として得られた。
(Example 8)
Synthesis of P-THDBOT-DBTH-DT
Figure JPOXMLDOC01-appb-I000083
In a 20 mL flask, 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-butyloctyl) thiophen-2-yl] -benzo [1,2-d; , 5-d ′] bisthiazole (DTH-DBTH-BOTH-DB, 48 mg, 0.05 mmol), 2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -4,8-bis (5-Trimethylstannylthiophen-2-yl) -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-HDTH-DSM, 60 mg, 0.05 mmol), dipalladium (0 ) -Chloroform adduct (2 mg, 1.9 μmol), tris (2-methoxyphenyl) phosphine (3 mg, 7.5 μmol) and chlorobenzene (7 mL) were added, and the mixture was reacted at 130 ° C. for 24 hours. It was. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent extraction with Soxhlet (chloroform) gave 26 mg (31%) of P-THDBOT-DBTH-DT as a black solid.
イオン化ポテンシャル:5.23eV(HOMO -5.23eV)
GPC測定結果 Mw(重量平均分子量):6100、Mn(数平均分子量):3800
Ionization potential: 5.23 eV (HOMO -5.23 eV)
GPC measurement results Mw (weight average molecular weight): 6100, Mn (number average molecular weight): 3800
(実施例9)P-TTDHDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000084
 20mLフラスコに、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-ヘキシルデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-HDTH-DB、45mg、0.04mmol)、2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-4,8-ビス(5-トリメチルスタンニルチオフェン-2-イル)-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DSM、60mg、0.04mmol)、ジパラジウム(0)-クロロホルム付加体(3mg、1.6μmol)、トリス(2-メトキシフェニル)ホスフィン(3mg、6.4μmol)およびクロロベンゼン(3mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TTDHDT-DBTH-DTが22mg(26%)で黒色固体として得られた。
(Example 9) P-TTDHDT-DBTH-DT
Figure JPOXMLDOC01-appb-I000084
In a 20 mL flask, 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-hexyldecyl) thiophen-2-yl] -benzo [1,2-d; , 5-d ′] bisthiazole (DTH-DBTH-HDTH-DB, 45 mg, 0.04 mmol), 2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -4,8- Bis (5-trimethylstannylthiophen-2-yl) -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-TDTH-DSM, 60 mg, 0.04 mmol), dipalladium ( 0) -chloroform adduct (3 mg, 1.6 μmol), tris (2-methoxyphenyl) phosphine (3 mg, 6.4 μmol) and chlorobenzene (3 mL) were added, and the mixture was stirred at 130 ° C. for 24 hours. I reacted. After completion of the reaction, the reaction mixture was added to methanol (30 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent Soxhlet extraction (chloroform) yielded 22 mg (26%) of P-TTDHDT-DBTH-DT as a black solid.
イオン化ポテンシャル:5.36eV(HOMO -5.36eV)
GPC測定結果 Mw(重量平均分子量):6300、Mn(数平均分子量):4900
Ionization potential: 5.36 eV (HOMO -5.36 eV)
GPC measurement results Mw (weight average molecular weight): 6300, Mn (number average molecular weight): 4900
光電変換素子の作成・評価
 前記のように得られたP-TTDHDT-DBTH-DTをドナー材料、PCBM(C61)(フェニルC61-酪酸メチルエステル)をアクセプター材料として用いて、ドナー材料:アクセプター材料=1:2(重量)(合計濃度24mg/mL)、および1,8-ジヨードオクタン(0.03mL/mL)をクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。
 ITOが成膜されたガラス基板をオゾンUV処理して表面処理を行った後に、PEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))水分散体をスピンコーターで塗布・アニールした。次に、上記のドナー材料・アクセプター材料の混合溶液をスピンコーターで成膜して室温で減圧乾燥した。その上に、オルトチタン酸テトライソプロピルのエタノール溶液(約0.3v%)をスピンコートして雰囲気中の水分により酸化チタンに変換した膜を作成した。その後、電極であるアルミニウムを蒸着してデバイスとした。
 得られたデバイスにソーラーシミュレーター(CEP2000、AM1.5Gフィルター、放射強度100mW/cm2、分光計器製)を用いて特性評価を行った。その結果、Jsc(短絡電流密度)= 4.24 mA/cm2、Voc(開放端電圧) = 0.79 V、FF(曲線因子) = 1.94で変換効率0.77%であることが確認された。
Production / Evaluation of Photoelectric Conversion Element Using P-TTDHDT-DBTH-DT obtained as described above as a donor material and PCBM (C61) (phenyl C61-butyric acid methyl ester) as an acceptor material, donor material: acceptor material = 1: 2 (weight) (total concentration 24 mg / mL) and 1,8-diiodooctane (0.03 mL / mL) were dissolved in chlorobenzene and passed through a 0.45 μm filter to obtain a mixed solution.
A glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared. Then, aluminum which is an electrode was vapor-deposited to make a device.
The obtained device was subjected to characteristic evaluation using a solar simulator (CEP2000, AM1.5G filter, radiation intensity 100 mW / cm 2 , manufactured by Spectrometer). As a result, it was confirmed that Jsc (short-circuit current density) = 4.24 mA / cm 2 , Voc (open-circuit voltage) = 0.79 V, FF (fill factor) = 1.94, and a conversion efficiency of 0.77%.
(実施例10)P-TTDT-DBTH-TT
Figure JPOXMLDOC01-appb-I000085
 20mLフラスコに、4,8-ビス(5-ブロモチオフェン-2-イル)-2,6-ビス[5-(2-デシルテトラデシル)チオフェン-2-イル]-ベンゾ[1,2-d;4,5-d’]ビスチアゾール(DTH-DBTH-TDTH-DB、100mg、0.09mmol)、1,1’-(2.5-チオフェンジイル)ビス[1,1,1-トリメチル]スタンナン(36mg、0.09mmol)、ジパラジウム(0)-クロロホルム付加体(3mg、3.6μmol)、トリス(2-メチルフェニル)ホスフィン(3mg、14.4μmol)およびクロロベンゼン(5mL)を加え130℃で27時間反応した。反応終了後、メタノール(40mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)することでP-TTDT-DBTH-TTが94mg(83%)で黒色固体として得られた。
イオン化ポテンシャル:5.21eV(HOMO -5.21eV)
GPC測定結果 Mw(重量平均分子量):27200、Mn(数平均分子量):13000
(Example 10) P-TTDT-DBTH-TT
Figure JPOXMLDOC01-appb-I000085
In a 20 mL flask, 4,8-bis (5-bromothiophen-2-yl) -2,6-bis [5- (2-decyltetradecyl) thiophen-2-yl] -benzo [1,2-d; 4,5-d ′] bisthiazole (DTH-DBTH-TDTH-DB, 100 mg, 0.09 mmol), 1,1 ′-(2.5-thiophendiyl) bis [1,1,1-trimethyl] stannane ( 36 mg, 0.09 mmol), dipalladium (0) -chloroform adduct (3 mg, 3.6 μmol), tris (2-methylphenyl) phosphine (3 mg, 14.4 μmol) and chlorobenzene (5 mL) were added, and the mixture was added at 130 ° C. Reacted for hours. After completion of the reaction, the reaction solution was added to methanol (40 mL), the precipitated solid was collected by filtration, and the obtained solid was washed with Soxhlet (methanol, acetone, hexane). Subsequent Soxhlet extraction (chloroform) gave 94 mg (83%) of P-TTDT-DBTH-TT as a black solid.
Ionization potential: 5.21 eV (HOMO -5.21 eV)
GPC measurement results Mw (weight average molecular weight): 27200, Mn (number average molecular weight): 13000
光電変換素子の作成・評価
 前記のように得られたP-TTDT-DBTH-TTをドナー材料、PCBM(C61)(フェニルC61-酪酸メチルエステル)をアクセプター材料として用いて、ドナー材料:アクセプター材料=1:2(重量)(合計濃度24mg/mL)、および1,8-ジヨードオクタン(0.03mL/mL)をクロロベンゼンに溶解させて0.45μmのフィルターに通して混合溶液とした。
 ITOが成膜されたガラス基板をオゾンUV処理して表面処理を行った後に、PEDOT-PSS([ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))水分散体をスピンコーターで塗布・アニールした。次に、上記のドナー材料・アクセプター材料の混合溶液をスピンコーターで成膜して室温で減圧乾燥した。その上に、オルトチタン酸テトライソプロピルのエタノール溶液(約0.3v%)をスピンコートして雰囲気中の水分により酸化チタンに変換した膜を作成した。その後、電極であるアルミニウムを蒸着してデバイスとした。
 得られたデバイスにソーラーシミュレーター(CEP2000、AM1.5Gフィルター、放射強度100mW/cm2、分光計器製)を用いて特性評価を行った。その結果、Jsc(短絡電流密度)= 7.25 mA/cm2、Voc(開放端電圧) = 0.68 V、FF(曲線因子) = 0.62で変換効率3.06%であることが確認された。
Production / Evaluation of Photoelectric Conversion Element Using P-TTDT-DBTH-TT obtained as described above as a donor material and PCBM (C61) (phenyl C61-butyric acid methyl ester) as an acceptor material, donor material: acceptor material = 1: 2 (weight) (total concentration 24 mg / mL) and 1,8-diiodooctane (0.03 mL / mL) were dissolved in chlorobenzene and passed through a 0.45 μm filter to obtain a mixed solution.
A glass substrate on which ITO is formed is subjected to surface treatment by ozone UV treatment, and then a PEDOT-PSS ([poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid)) aqueous dispersion is spun. It was applied and annealed with a coater. Next, the mixed solution of the above donor material and acceptor material was formed into a film with a spin coater and dried under reduced pressure at room temperature. On top of that, an ethanol solution of tetraisopropyl orthotitanate (about 0.3 v%) was spin-coated, and a film converted into titanium oxide by moisture in the atmosphere was prepared. Then, aluminum which is an electrode was vapor-deposited to make a device.
The obtained device was subjected to characteristic evaluation using a solar simulator (CEP2000, AM1.5G filter, radiation intensity 100 mW / cm 2 , manufactured by Spectrometer). As a result, Jsc (short-circuit current density) = 7.25 mA / cm 2 , Voc (open-circuit voltage) = 0.68 V, FF (curve factor) = 0.62, and a conversion efficiency of 3.06% was confirmed.
 本発明の高分子化合物は、高光電変換効率を有するため、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ素子等の有機エレクトロデバイス等に有用である。 Since the polymer compound of the present invention has high photoelectric conversion efficiency, it is useful for organic electro devices such as organic electroluminescence elements and organic thin film transistor elements.

Claims (12)

  1.  下記式(1)で表されるベンゾビスチアゾール構造の繰り返し単位と下記式(2)で表されるチオフェン構造の繰り返し単位とを含むことを特徴とする高分子化合物。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。]
    Figure JPOXMLDOC01-appb-C000002

    [式(2)中、Rは、水素原子、または、炭素数1~30の炭化水素基を表す。]
    A polymer compound comprising a repeating unit having a benzobisthiazole structure represented by the following formula (1) and a repeating unit having a thiophene structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001

    [In formula (1), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group. ]
    Figure JPOXMLDOC01-appb-C000002

    [In Formula (2), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. ]
  2.  下記式(3)で表される繰り返し単位を含むことを特徴とする、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000003

    [式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは1~10の整数を表す。]
    The polymer compound according to claim 1, comprising a repeating unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003

    [In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents an integer of 1 to 10. ]
  3.  下記式(6)で表される繰り返し単位を含むことを特徴とする、請求項1または2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000004

    [式(1)中、T、T、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
     R、R、R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
     T、T、T、Tが全て同一であり、かつ、R、R、R、Rが全て同一となることはない。]
    The polymer compound according to claim 1, comprising a repeating unit represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000004

    [In Formula (1), T 1 , T 2 , T 3 , T 4 are each independently a thiophene ring, carbonized, which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. A hydrogen group or a thiazole ring which may be substituted with an organosilyl group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group; To express.
    R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
    T 1 , T 2 , T 3 , and T 4 are all the same, and R 1 , R 2 , R 3 , and R 4 are not all the same. ]
  4.  T、Tが、それぞれ、下記式(t1)~(t5)のいずれかで表される基である請求項1または2に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000005

    [式(t1)~(t5)中、
     R21~R22は、それぞれ独立に、炭素数6~30の炭化水素基を表す。
     R23~R24は、それぞれ独立に、炭素数6~30の炭化水素基、または、**-Si(R263で表される基を表す。
     R25は、それぞれ独立に、炭素数6~30の炭化水素基、**-O-R27、**-S-R28、**-Si(R263、ハロゲン原子または、**-CF3を表す。
     R26は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基を表し、複数のR26は、同一でも異なっていてもよい。
     R27~R28は、炭素数6~30の炭化水素基を表す。
     *はベンゾビスチアゾールのチアゾール環に結合する結合手を表す。**は(t3)~(t5)に結合する結合手を表す。]
    The polymer compound according to claim 1 or 2, wherein T 1 and T 2 are each a group represented by any of the following formulas (t1) to (t5).
    Figure JPOXMLDOC01-appb-C000005

    [In the formulas (t1) to (t5),
    R 21 to R 22 each independently represents a hydrocarbon group having 6 to 30 carbon atoms.
    R 23 to R 24 each independently represents a hydrocarbon group having 6 to 30 carbon atoms or a group represented by **-Si (R 26 ) 3 .
    R 25 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, ** — O—R 27 , ** — S—R 28 , ** — Si (R 26 ) 3 , a halogen atom, or **. It represents a -CF 3.
    R 26 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the plurality of R 26 may be the same or different.
    R 27 to R 28 each represents a hydrocarbon group having 6 to 30 carbon atoms.
    * Represents a bond bonded to the thiazole ring of benzobisthiazole. ** represents a bond that binds to (t3) to (t5). ]
  5.  T、T、T、Tが、それぞれ、下記式(t1)~(t5)のいずれかで表される基である請求項3に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000006

    [式(t1)~(t5)中、
     R21~R22は、それぞれ独立に、炭素数6~30の炭化水素基を表す。
     R23~R24は、それぞれ独立に、炭素数6~30の炭化水素基、または、**-Si(R263で表される基を表す。
     R25は、それぞれ独立に、炭素数6~30の炭化水素基、**-O-R27、**-S-R28、**-Si(R263、ハロゲン原子または、**-CF3を表す。
     R26は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基を表し、複数のR26は、同一でも異なっていてもよい。
     R27~R28は、炭素数6~30の炭化水素基を表す。
     *はベンゾビスチアゾールのチアゾール環に結合する結合手を表す。**は(t3)~(t5)に結合する結合手を表す。]
    4. The polymer compound according to claim 3, wherein T 1 , T 2 , T 3 , and T 4 are each a group represented by any of the following formulas (t1) to (t5).
    Figure JPOXMLDOC01-appb-C000006

    [In the formulas (t1) to (t5),
    R 21 to R 22 each independently represents a hydrocarbon group having 6 to 30 carbon atoms.
    R 23 to R 24 each independently represents a hydrocarbon group having 6 to 30 carbon atoms or a group represented by **-Si (R 26 ) 3 .
    R 25 each independently represents a hydrocarbon group having 6 to 30 carbon atoms, ** — O—R 27 , ** — S—R 28 , ** — Si (R 26 ) 3 , a halogen atom, or **. It represents a -CF 3.
    R 26 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the plurality of R 26 may be the same or different.
    R 27 to R 28 each represents a hydrocarbon group having 6 to 30 carbon atoms.
    * Represents a bond bonded to the thiazole ring of benzobisthiazole. ** represents a bond that binds to (t3) to (t5). ]
  6.  請求項1~5のいずれか一項に記載の高分子化合物を含むことを特徴とする、有機半導体材料。 An organic semiconductor material comprising the polymer compound according to any one of claims 1 to 5.
  7.  p型半導体またはn型半導体であることを特徴とする、請求項6に記載の有機半導体材料。 The organic semiconductor material according to claim 6, wherein the organic semiconductor material is a p-type semiconductor or an n-type semiconductor.
  8.  請求項7に記載の有機半導体材料を含むことを特徴とする、有機電子デバイス。 An organic electronic device comprising the organic semiconductor material according to claim 7.
  9.  光電変換素子または太陽電池であることを特徴とする、請求項8に記載の有機電子デバイス。 The organic electronic device according to claim 8, wherein the organic electronic device is a photoelectric conversion element or a solar battery.
  10.  下記式(4)で表されるジハロゲノベンゾビスチアゾール化合物と、
    Figure JPOXMLDOC01-appb-C000007

    [式(4)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。X、Xはハロゲン原子を表す。]
     下記式(5)で表されるチオフェン化合物とを、
    Figure JPOXMLDOC01-appb-C000008

    [式(5)中、Rは、水素原子、または、炭素数1~30の炭化水素基を表す。pは、1~10の整数を表す。
     R10~R13は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または炭素数6~10のアリールオキシ基を表す。
     M、Mは、それぞれ独立にホウ素原子または錫原子を表す。R10、R11はMと共に環を形成していてもよく、R12、R13はMと環を形成していてもよい。
     m、nは、それぞれ1または2の整数を表す。また、m、nが2の時、複数のR10,R12は、それぞれ同一でも、異なっていてもよい。]
     クロスカップリング反応させる、式(3)で表される高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000009

    [式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは上記と同様の整数を表す。]
    A dihalogenobenzobisthiazole compound represented by the following formula (4);
    Figure JPOXMLDOC01-appb-C000007

    [In Formula (4), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group. X 1 and X 2 represent a halogen atom. ]
    A thiophene compound represented by the following formula (5):
    Figure JPOXMLDOC01-appb-C000008

    [In Formula (5), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. p represents an integer of 1 to 10.
    R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
    M 1 and M 2 each independently represent a boron atom or a tin atom. R 10 and R 11 may form a ring with M 1 , and R 12 and R 13 may form a ring with M 2 .
    m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different. ]
    A method for producing a polymer compound represented by formula (3), wherein a cross-coupling reaction is performed.
    Figure JPOXMLDOC01-appb-C000009

    [In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above. ]
  11.  下記式(7)で表されるジハロゲノベンゾビスチアゾール化合物と、
    Figure JPOXMLDOC01-appb-C000010

    [式(7)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
     R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
     X、Xはハロゲン原子を表す。]
     下記式(8)で表されるベンゾビスチアゾール化合物とを、
    Figure JPOXMLDOC01-appb-C000011

    [式(8)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
     R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
     R10~R13は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または炭素数6~10のアリールオキシ基を表す。
     M、Mは、それぞれ独立にホウ素原子または錫原子を表す。R10、R11はMと共に環を形成していてもよく、R12、R13はMと環を形成していてもよい。
     m、nは、それぞれ1または2の整数を表す。また、m、nが2の時、複数のR10,R12は、それぞれ同一でも、異なっていてもよい。]
     クロスカップリング反応させる、式(6)で表される高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000012

    [式(6)中、T、T、T、T、R、R、R、Rは、それぞれ上記と同様の基を表す。]
    A dihalogenobenzobisthiazole compound represented by the following formula (7);
    Figure JPOXMLDOC01-appb-C000010

    [In Formula (7), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.
    R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
    X 1 and X 2 represent a halogen atom. ]
    A benzobisthiazole compound represented by the following formula (8):
    Figure JPOXMLDOC01-appb-C000011

    [In formula (8), T 3 and T 4 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.
    R 3 and R 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
    R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
    M 1 and M 2 each independently represent a boron atom or a tin atom. R 10 and R 11 may form a ring with M 1 , and R 12 and R 13 may form a ring with M 2 .
    m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different. ]
    A method for producing a polymer compound represented by formula (6), wherein a cross-coupling reaction is performed.
    Figure JPOXMLDOC01-appb-C000012

    [In Formula (6), T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 each represents the same group as described above. ]
  12.  下記式(7)で表されるジハロゲノベンゾビスチアゾール化合物と、
    Figure JPOXMLDOC01-appb-C000013

    [式(7)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基、もしくはオルガノシリル基で置換されていてもよいチアゾール環、または炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子もしくはトリフルオロメチル基で置換されていてもよいフェニル基を表す。
     R、Rは、それぞれ独立に、水素原子、または、炭素数1~30の炭化水素基を表す。
     X、Xはハロゲン原子を表す。]
     下記式(5)で表されるチオフェン化合物とを、
    Figure JPOXMLDOC01-appb-C000014

    [式(5)中、Rは、水素原子、または、炭素数1~30の炭化水素基を表す。pは、1~10の整数を表す。
     R10~R13は、それぞれ独立に、炭素数1~6の脂肪族炭化水素基、水酸基、炭素数1~6のアルコキシ基、または炭素数6~10のアリールオキシ基を表す。
     M、Mは、それぞれ独立にホウ素原子または錫原子を表す。R10、R11はMと共に環を形成していてもよく、R12、R13はMと環を形成していてもよい。
     m、nは、それぞれ1または2の整数を表す。また、m、nが2の時、複数のR10,R12は、それぞれ同一でも、異なっていてもよい。]
     クロスカップリング反応させる、式(3)で表される高分子化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000015

    [式(3)中、T、T、Rは、それぞれ上記と同様の基を表し、pは上記と同様の整数を表す。]
    A dihalogenobenzobisthiazole compound represented by the following formula (7);
    Figure JPOXMLDOC01-appb-C000013

    [In Formula (7), T 1 and T 2 are each independently a thiophene ring, hydrocarbon group, or organosilyl optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted with a group, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom or a trifluoromethyl group.
    R 1 and R 2 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
    X 1 and X 2 represent a halogen atom. ]
    A thiophene compound represented by the following formula (5):
    Figure JPOXMLDOC01-appb-C000014

    [In Formula (5), R 1 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. p represents an integer of 1 to 10.
    R 10 to R 13 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
    M 1 and M 2 each independently represent a boron atom or a tin atom. R 10 and R 11 may form a ring with M 1 , and R 12 and R 13 may form a ring with M 2 .
    m and n each represents an integer of 1 or 2. When m and n are 2, the plurality of R 10 and R 12 may be the same or different. ]
    A method for producing a polymer compound represented by formula (3), wherein a cross-coupling reaction is performed.
    Figure JPOXMLDOC01-appb-C000015

    [In Formula (3), T 1 , T 2 and R 1 each represent the same group as described above, and p represents the same integer as described above. ]
PCT/JP2016/051525 2015-01-27 2016-01-20 Organic semiconductor material WO2016121589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571967A JP6688453B2 (en) 2015-01-27 2016-01-20 Organic semiconductor material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-013110 2015-01-27
JP2015-013111 2015-01-27
JP2015013110 2015-01-27
JP2015013111 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016121589A1 true WO2016121589A1 (en) 2016-08-04

Family

ID=56543206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051525 WO2016121589A1 (en) 2015-01-27 2016-01-20 Organic semiconductor material

Country Status (2)

Country Link
JP (1) JP6688453B2 (en)
WO (1) WO2016121589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157782A1 (en) * 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2020218189A1 (en) * 2019-04-26 2020-10-29 東洋紡株式会社 Polymer compound
WO2023068017A1 (en) * 2021-10-18 2023-04-27 東洋紡株式会社 Organic semiconductor material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340786A (en) * 1997-06-09 1998-12-22 Toyo Ink Mfg Co Ltd Organic electroluminecent element material and organic electroluminescent element using it
JP2007238530A (en) * 2006-03-10 2007-09-20 Central Glass Co Ltd ORGANIC pi ELECTRON-BASED MATERIAL HAVING BENZOBISAZOLE SKELETON AND METHOD FOR PRODUCING THE SAME
JP2009197218A (en) * 2008-01-22 2009-09-03 Ricoh Co Ltd Polymer, organic film containing it, and transistor
JP2013509474A (en) * 2009-10-28 2013-03-14 ユニヴァーシティ オブ ワシントン Copolymer semiconductor comprising thiazolothiazole or benzobisthiazole or benzobisoxazole electron acceptor subunit and electron donor subunit, and its use in transistors and solar cells
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
WO2015060183A1 (en) * 2013-10-25 2015-04-30 東洋紡株式会社 Organic semiconductor material
WO2015122321A1 (en) * 2014-02-14 2015-08-20 東洋紡株式会社 Organic semiconductor material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10340786A (en) * 1997-06-09 1998-12-22 Toyo Ink Mfg Co Ltd Organic electroluminecent element material and organic electroluminescent element using it
JP2007238530A (en) * 2006-03-10 2007-09-20 Central Glass Co Ltd ORGANIC pi ELECTRON-BASED MATERIAL HAVING BENZOBISAZOLE SKELETON AND METHOD FOR PRODUCING THE SAME
JP2009197218A (en) * 2008-01-22 2009-09-03 Ricoh Co Ltd Polymer, organic film containing it, and transistor
JP2013509474A (en) * 2009-10-28 2013-03-14 ユニヴァーシティ オブ ワシントン Copolymer semiconductor comprising thiazolothiazole or benzobisthiazole or benzobisoxazole electron acceptor subunit and electron donor subunit, and its use in transistors and solar cells
JP2013207252A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Photoelectric conversion element
WO2015060183A1 (en) * 2013-10-25 2015-04-30 東洋紡株式会社 Organic semiconductor material
WO2015122321A1 (en) * 2014-02-14 2015-08-20 東洋紡株式会社 Organic semiconductor material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAE KIM ET AL.: "Synthesis, characterization, and properties of a new thiophene- benzobisthiazole copolymer", SYNTHETIC METALS, vol. 156, no. 1, 2006, pages 38 - 41 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157782A1 (en) * 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2020218189A1 (en) * 2019-04-26 2020-10-29 東洋紡株式会社 Polymer compound
WO2023068017A1 (en) * 2021-10-18 2023-04-27 東洋紡株式会社 Organic semiconductor material
JP7359328B2 (en) 2021-10-18 2023-10-11 東洋紡株式会社 organic semiconductor materials

Also Published As

Publication number Publication date
JP6688453B2 (en) 2020-04-28
JPWO2016121589A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2015122321A1 (en) Organic semiconductor material
JP5979153B2 (en) Method for producing conjugated polymer
TWI698457B (en) High molecular compound
JP6688453B2 (en) Organic semiconductor material
JP6658727B2 (en) Photoelectric conversion element and organic thin-film solar cell
Du et al. Indeno [2, 1-c] fluorene-based blue fluorescent oligomers and polymers: Synthesis, structure, photophysical and electroluminescence properties
JP2018095692A (en) Conjugated polymer compound containing novel sulfanyl-substituted dithienylthienopyrazine derivative structure as monomer segment, method for producing the same and photoelectric conversion element using the same
JP6459971B2 (en) Organic semiconductor materials
WO2020218189A1 (en) Polymer compound
KR101739259B1 (en) New pyrrole monomer and manufacturing method thereof, polymer or compound from new pyrrole monomer and manufacturing method thereof
JP6798651B1 (en) Polymer compound
JP7468346B2 (en) Polymers
WO2023068017A1 (en) Organic semiconductor material
TWI831963B (en) polymer compounds
JP7291360B1 (en) Polymer compounds, organic semiconductor materials, and organic electronic devices
WO2023106405A1 (en) Compound, organic semiconductor material, and organic electronic device
WO2023106404A1 (en) Polymer compound, organic semiconductor material, and organic electronic device
WO2020255609A1 (en) Photoelectric conversion element
JP2013234265A (en) POLYMER HAVING π BACKBONE PLANARITY AND APPLICATION THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743193

Country of ref document: EP

Kind code of ref document: A1