WO2016121296A1 - 接合用組成物 - Google Patents
接合用組成物 Download PDFInfo
- Publication number
- WO2016121296A1 WO2016121296A1 PCT/JP2016/000016 JP2016000016W WO2016121296A1 WO 2016121296 A1 WO2016121296 A1 WO 2016121296A1 JP 2016000016 W JP2016000016 W JP 2016000016W WO 2016121296 A1 WO2016121296 A1 WO 2016121296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bonding composition
- bonding
- inorganic particles
- led
- chip
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 199
- 239000010954 inorganic particle Substances 0.000 claims abstract description 101
- 239000002245 particle Substances 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 31
- 238000010304 firing Methods 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 abstract description 18
- 230000009974 thixotropic effect Effects 0.000 abstract description 3
- 239000000306 component Substances 0.000 description 90
- 238000000034 method Methods 0.000 description 60
- 229910052751 metal Inorganic materials 0.000 description 43
- 239000002184 metal Substances 0.000 description 43
- 239000002612 dispersion medium Substances 0.000 description 34
- 239000000126 substance Substances 0.000 description 32
- 239000010410 layer Substances 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 27
- 230000004580 weight loss Effects 0.000 description 20
- 239000012298 atmosphere Substances 0.000 description 19
- 239000002270 dispersing agent Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 150000001412 amines Chemical class 0.000 description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 16
- 239000006185 dispersion Substances 0.000 description 16
- 229910052709 silver Inorganic materials 0.000 description 16
- -1 that is Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 15
- 238000005304 joining Methods 0.000 description 15
- 239000004332 silver Substances 0.000 description 15
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 14
- 239000003638 chemical reducing agent Substances 0.000 description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 12
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000005416 organic matter Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000000084 colloidal system Substances 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 8
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002923 metal particle Substances 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 239000005968 1-Decanol Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- HBNHCGDYYBMKJN-UHFFFAOYSA-N 2-(4-methylcyclohexyl)propan-2-yl acetate Chemical compound CC1CCC(C(C)(C)OC(C)=O)CC1 HBNHCGDYYBMKJN-UHFFFAOYSA-N 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 5
- 229960003656 ricinoleic acid Drugs 0.000 description 5
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001246 colloidal dispersion Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- UODXCYZDMHPIJE-UHFFFAOYSA-N menthanol Chemical compound CC1CCC(C(C)(C)O)CC1 UODXCYZDMHPIJE-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 4
- 229960004889 salicylic acid Drugs 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 150000003505 terpenes Chemical class 0.000 description 4
- 235000007586 terpenes Nutrition 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 4
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 3
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical group 0.000 description 3
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229940074391 gallic acid Drugs 0.000 description 3
- 235000004515 gallic acid Nutrition 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- NMRPBPVERJPACX-UHFFFAOYSA-N octan-3-ol Chemical compound CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 3
- 229940055577 oleyl alcohol Drugs 0.000 description 3
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229940116411 terpineol Drugs 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- OMDMTHRBGUBUCO-IUCAKERBSA-N (1s,5s)-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-ol Chemical compound CC1=CC[C@H](C(C)(C)O)C[C@@H]1O OMDMTHRBGUBUCO-IUCAKERBSA-N 0.000 description 2
- RXBQNMWIQKOSCS-UHFFFAOYSA-N (7,7-dimethyl-4-bicyclo[3.1.1]hept-3-enyl)methanol Chemical compound C1C2C(C)(C)C1CC=C2CO RXBQNMWIQKOSCS-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- BAVONGHXFVOKBV-UHFFFAOYSA-N Carveol Chemical compound CC(=C)C1CC=C(C)C(O)C1 BAVONGHXFVOKBV-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MOYAFQVGZZPNRA-UHFFFAOYSA-N Terpinolene Chemical compound CC(C)=C1CCC(C)=CC1 MOYAFQVGZZPNRA-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 description 2
- SJWFXCIHNDVPSH-UHFFFAOYSA-N octan-2-ol Chemical compound CCCCCCC(C)O SJWFXCIHNDVPSH-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- NDTYTMIUWGWIMO-UHFFFAOYSA-N perillyl alcohol Chemical compound CC(=C)C1CCC(CO)=CC1 NDTYTMIUWGWIMO-UHFFFAOYSA-N 0.000 description 2
- XOKSLPVRUOBDEW-UHFFFAOYSA-N pinane Chemical compound CC1CCC2C(C)(C)C1C2 XOKSLPVRUOBDEW-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- XNGYKPINNDWGGF-UHFFFAOYSA-L silver oxalate Chemical compound [Ag+].[Ag+].[O-]C(=O)C([O-])=O XNGYKPINNDWGGF-UHFFFAOYSA-L 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- 229930007631 (-)-perillyl alcohol Natural products 0.000 description 1
- BAVONGHXFVOKBV-ZJUUUORDSA-N (-)-trans-carveol Natural products CC(=C)[C@@H]1CC=C(C)[C@@H](O)C1 BAVONGHXFVOKBV-ZJUUUORDSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- ZVRMGCSSSYZGSM-CCEZHUSRSA-N (E)-hexadec-2-enoic acid Chemical compound CCCCCCCCCCCCC\C=C\C(O)=O ZVRMGCSSSYZGSM-CCEZHUSRSA-N 0.000 description 1
- IMWCPTKSESEZCL-SPSNFJOYSA-H (e)-but-2-enedioate;iron(3+) Chemical compound [Fe+3].[Fe+3].[O-]C(=O)\C=C\C([O-])=O.[O-]C(=O)\C=C\C([O-])=O.[O-]C(=O)\C=C\C([O-])=O IMWCPTKSESEZCL-SPSNFJOYSA-H 0.000 description 1
- GWSURTDMLUFMJH-FOCLMDBBSA-N (e)-hexadec-1-en-1-ol Chemical compound CCCCCCCCCCCCCC\C=C\O GWSURTDMLUFMJH-FOCLMDBBSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- NGCDGPPKVSZGRR-UHFFFAOYSA-J 1,4,6,9-tetraoxa-5-stannaspiro[4.4]nonane-2,3,7,8-tetrone Chemical compound [Sn+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O NGCDGPPKVSZGRR-UHFFFAOYSA-J 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 description 1
- VCLJODPNBNEBKW-UHFFFAOYSA-N 2,2,4,4,6,8,8-heptamethylnonane Chemical compound CC(C)(C)CC(C)CC(C)(C)CC(C)(C)C VCLJODPNBNEBKW-UHFFFAOYSA-N 0.000 description 1
- YVLHRYOHNHUVOA-UHFFFAOYSA-N 2,2-dimethylpropane-1,1-diamine Chemical compound CC(C)(C)C(N)N YVLHRYOHNHUVOA-UHFFFAOYSA-N 0.000 description 1
- WOFPPJOZXUTRAU-UHFFFAOYSA-N 2-Ethyl-1-hexanol Natural products CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- YNVZDODIHZTHOZ-UHFFFAOYSA-K 2-hydroxypropanoate;iron(3+) Chemical compound [Fe+3].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O YNVZDODIHZTHOZ-UHFFFAOYSA-K 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- NMRPBPVERJPACX-QMMMGPOBSA-N 3-Octanol Natural products CCCCC[C@@H](O)CC NMRPBPVERJPACX-QMMMGPOBSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- BBDKZWKEPDTENS-UHFFFAOYSA-N 4-Vinylcyclohexene Chemical compound C=CC1CCC=CC1 BBDKZWKEPDTENS-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- ZQISRDCJNBUVMM-YFKPBYRVSA-N L-histidinol Chemical compound OC[C@@H](N)CC1=CNC=N1 ZQISRDCJNBUVMM-YFKPBYRVSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- RXBQNMWIQKOSCS-RKDXNWHRSA-N Myrtenol Natural products C1[C@H]2C(C)(C)[C@@H]1CC=C2CO RXBQNMWIQKOSCS-RKDXNWHRSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- WONIGEXYPVIKFS-UHFFFAOYSA-N Verbenol Chemical compound CC1=CC(O)C2C(C)(C)C1C2 WONIGEXYPVIKFS-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XGZJLKFCSVQXNP-UHFFFAOYSA-K [Fe+2].P(=O)([O-])([O-])[O-].[Fe+2] Chemical compound [Fe+2].P(=O)([O-])([O-])[O-].[Fe+2] XGZJLKFCSVQXNP-UHFFFAOYSA-K 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 229940114077 acrylic acid Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- VVJKKWFAADXIJK-UHFFFAOYSA-N allylamine Natural products NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229930007646 carveol Natural products 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- NISGSNTVMOOSJQ-UHFFFAOYSA-N cyclopentanamine Chemical compound NC1CCCC1 NISGSNTVMOOSJQ-UHFFFAOYSA-N 0.000 description 1
- 229930007927 cymene Natural products 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000010946 fine silver Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940063559 methacrylic acid Drugs 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229930003658 monoterpene Natural products 0.000 description 1
- 150000002773 monoterpene derivatives Chemical class 0.000 description 1
- 235000002577 monoterpenes Nutrition 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 1
- CFJYNSNXFXLKNS-UHFFFAOYSA-N p-menthane Chemical compound CC(C)C1CCC(C)CC1 CFJYNSNXFXLKNS-UHFFFAOYSA-N 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229940100684 pentylamine Drugs 0.000 description 1
- 235000005693 perillyl alcohol Nutrition 0.000 description 1
- CMCWWLVWPDLCRM-UHFFFAOYSA-N phenidone Chemical compound N1C(=O)CCN1C1=CC=CC=C1 CMCWWLVWPDLCRM-UHFFFAOYSA-N 0.000 description 1
- MJRKFYKONYYOJX-UHFFFAOYSA-J phosphonato phosphate;tin(4+) Chemical compound [Sn+4].[O-]P([O-])(=O)OP([O-])([O-])=O MJRKFYKONYYOJX-UHFFFAOYSA-J 0.000 description 1
- 229930006728 pinane Natural products 0.000 description 1
- LCYXQUJDODZYIJ-UHFFFAOYSA-N pinocarveol Chemical compound C1C2C(C)(C)C1CC(O)C2=C LCYXQUJDODZYIJ-UHFFFAOYSA-N 0.000 description 1
- 229930006721 pinocarveol Natural products 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- NEYLGXVZJUUZMY-UHFFFAOYSA-K potassium;trichlorogold Chemical compound [K].Cl[Au](Cl)Cl NEYLGXVZJUUZMY-UHFFFAOYSA-K 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- SDLBJIZEEMKQKY-UHFFFAOYSA-M silver chlorate Chemical compound [Ag+].[O-]Cl(=O)=O SDLBJIZEEMKQKY-UHFFFAOYSA-M 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- KKKDGYXNGYJJRX-UHFFFAOYSA-M silver nitrite Chemical compound [Ag+].[O-]N=O KKKDGYXNGYJJRX-UHFFFAOYSA-M 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- FTNNQMMAOFBTNJ-UHFFFAOYSA-M silver;formate Chemical compound [Ag+].[O-]C=O FTNNQMMAOFBTNJ-UHFFFAOYSA-M 0.000 description 1
- 238000000235 small-angle X-ray scattering Methods 0.000 description 1
- 229960000230 sobrerol Drugs 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- DTNJZLDXJJGKCM-UHFFFAOYSA-K sodium;trichlorogold Chemical compound [Na].Cl[Au](Cl)Cl DTNJZLDXJJGKCM-UHFFFAOYSA-K 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229930006978 terpinene Natural products 0.000 description 1
- 150000003507 terpinene derivatives Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- OMDMTHRBGUBUCO-UHFFFAOYSA-N trans-sobrerol Natural products CC1=CCC(C(C)(C)O)CC1O OMDMTHRBGUBUCO-UHFFFAOYSA-N 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 125000005314 unsaturated fatty acid group Chemical group 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
Definitions
- the present invention relates to a bonding composition containing inorganic particles as a main component and an organic component as a subcomponent.
- solder a conductive adhesive, a silver paste, an anisotropic conductive film, and the like are used for mechanically and / or electrically and / or thermally joining metal parts and metal parts.
- These conductive adhesives, silver pastes, anisotropic conductive films, and the like may be used when joining not only metal parts but also ceramic parts and resin parts.
- bonding of light emitting elements such as LEDs (light emitting diodes) to a substrate, bonding of a semiconductor chip to a substrate, bonding of these substrates to a heat dissipation member, and the like can be given.
- adhesives, pastes, and films containing conductive fillers made of solder and metal are used for joining parts that require electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes, and films containing these solders and conductive fillers may be used to increase heat dissipation.
- the amount of heat generation tends to increase.
- the temperature of light emitting elements such as LEDs rises due to external heating during bonding, it is necessary to prevent damage to the elements during bonding by making the bonding temperature as low as possible. From these viewpoints, a bonding material that can secure a sufficient bonding strength at a low bonding temperature and has a sufficient heat dissipation characteristic is desired.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2008-178911
- a bonding composition comprising a precursor and a reducing agent comprising an organic substance, wherein the content of the metal particle precursor is more than 50 parts by mass and 99 parts by mass or less in the total mass part in the bonding material.
- the joining material it is shown that good metal joining is possible by setting the reduction in thermal weight of the reducing agent to 400 ° C. to 99% or more.
- the LED is required to have excellent luminous efficiency and long life, but these characteristics also depend on the bonding state to the substrate. More specifically, if a fillet is formed at the joint, the light emission of the LED is inhibited by the fillet, and it becomes difficult to maintain the light emission intensity for a long time due to the discoloration of the fillet over time. However, in the bonding material described in Patent Document 1, the formation of the fillet is not considered at all.
- the object of the present invention is to provide a high bonding strength by bonding at a relatively low temperature, and for bonding that can suppress the formation of fillets while maintaining sufficient spread to the bonded interface. It is to provide a composition.
- the present inventor has found a viscosity and thixotropy relating to the bonding composition having inorganic particles as the main component and organic component as the subcomponent. It has been found that optimizing the ratio is extremely effective in achieving the above object, and the present invention has been achieved.
- a bonding composition comprising inorganic particles and an organic component,
- the inorganic particles have an average particle size of 1 to 200 nm,
- the viscosity at about 25 ° C. is 10 to 30 Pa ⁇ s at a shear rate of 10 s ⁇ 1 ;
- a thixo ratio R defined by a value obtained by dividing a viscosity V 1 measured at a shear rate of 1 s ⁇ 1 at about 25 ° C. by a viscosity V 10 measured at a shear rate of 10 s ⁇ 1 at about 25 ° C. is 3 to 7.
- a bonding composition is provided.
- the particle size of the inorganic particles constituting the bonding composition of the present invention is suitably a nanometer size that desirably causes a melting point drop, desirably 1 to 200 nm, but if necessary, particles of a micrometer size are added. It is also possible. In this case, bonding is achieved by the nanometer sized particles dropping in melting point around the micrometer sized particles.
- the organic component is attached to at least a part of the surface of the inorganic particle (that is, at least a part of the surface of the inorganic particle is covered with an organic protective layer composed of the organic component).
- an organic protective layer is required on at least a part of the surface of the inorganic particles.
- the amine can be suitably used as an organic protective layer because the functional group is adsorbed to the surface of the inorganic particles with an appropriate strength.
- High firing layer (bonding layer) can be obtained.
- the weight loss of the bonding composition is too small, the dispersion stability in the colloidal state is impaired. Therefore, when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere.
- the weight loss is preferably 0.1 to 20.0 mass%, more preferably 0.5 to 18.0 mass%.
- the inorganic particles are metal particles composed of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, and a platinum group element. It is preferable. By using a bonding composition having such a configuration, excellent bonding strength and heat resistance can be obtained.
- the organic component contains an amine and / or a carboxylic acid.
- An amino group in one molecule of the amine has a relatively high polarity and is likely to cause an interaction due to hydrogen bonding, but a portion other than these functional groups has a relatively low polarity. Furthermore, each amino group tends to exhibit alkaline properties. Therefore, when the amine is localized (attached) to at least a part of the surface of the inorganic particle (that is, coats at least a part of the surface of the inorganic particle) in the bonding composition of the present invention, The inorganic particles can be made to have sufficient affinity, and aggregation between the inorganic particles can be prevented (dispersibility is improved).
- the functional group of the amine is adsorbed on the surface of the inorganic particles with an appropriate strength and prevents mutual contact between the inorganic particles, thereby contributing to the stability of the inorganic particles in the storage state.
- the bonding temperature promotes the fusion between the inorganic particles and the bonding between the inorganic particles and the substrate by moving and / or volatilizing from the surface of the inorganic particles at the bonding temperature.
- a carboxyl group in one molecule of carboxylic acid has a relatively high polarity and easily causes an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
- the carboxylic acid is localized (attached) to at least a part of the surface of the inorganic particles (that is, covers at least a part of the surface of the inorganic particles) in the bonding composition of the present invention, the organic component And the inorganic particles can be sufficiently made to adhere to each other, and aggregation of the inorganic particles can be prevented (dispersibility is improved).
- the carboxyl group is easily coordinated on the surface of the inorganic particles, and the aggregation suppressing effect between the inorganic particles can be enhanced. Moreover, the coexistence of the hydrophobic group and the hydrophilic group also has an effect of dramatically increasing the wettability between the bonding composition and the bonding substrate.
- the organic component acts as a dispersant, so that the dispersion state of the inorganic particles in the dispersion medium is remarkably improved. That is, according to the bonding composition of the present invention, the inorganic particles are less likely to aggregate, the dispersibility of the inorganic particles is good even in the coating film, and a uniform bonding strength is obtained by uniform fusion.
- the bonding composition of the present invention is more specifically a composition mainly composed of colloidal particles composed of inorganic particles and organic components, but further contains a dispersion medium. It may be.
- the “dispersion medium” is used to disperse the colloidal particles in a dispersion, but some of the constituent components of the colloidal particles may be dissolved in the “dispersion medium”.
- the “main component” means a component having the highest content among the constituent components.
- the fluidity of the bonding composition can be prevented from becoming too high by setting the viscosity at about 25 ° C. to 10 Pa ⁇ s or more at a shear rate of 10 s ⁇ 1 .
- the bonding composition protrudes from the bonded interface and fillets are formed.
- liquidity of the composition for joining becomes low too much by making the viscosity in about 25 degreeC into 30 Pa * s or less in shear rate 10s- 1 .
- the bonding composition has low fluidity, when the chip such as an LED is mounted, the bonding composition spreads in a circular shape, so that a fillet is formed before the bonding composition spreads over the entire chip.
- the formation of the fillet can be suppressed by setting the viscosity at about 25 ° C. to 30 Pa ⁇ s or less at a shear rate of 10 s ⁇ 1 .
- the thixo ratio (the value obtained by dividing the viscosity V 1 at about 25 ° C. measured at a shear rate of 1 s ⁇ 1 by the viscosity V 10 at about 25 ° C. measured at a shear rate of 10 s ⁇ 1 ) R
- the thixo ratio (value obtained by dividing the viscosity V 1 at about 25 ° C. measured at a shear rate of 1 s ⁇ 1 by the viscosity V 10 at about 25 ° C. measured at a shear rate of 10 s ⁇ 1 ) R is 7 or less.
- the bonding composition of the present invention is preferably used for bonding an LED (light emitting diode) chip and a substrate. As above-mentioned, since the formation of a fillet can be suppressed by using the bonding composition of the present invention, it is possible to effectively suppress a decrease in light emission efficiency of the LED package due to the formation of the fillet.
- the bonding composition of the present invention comprises: In the case where the LED (light emitting diode) chip is laminated on the substrate coated with the bonding composition, and the substrate and the LED (light emitting diode) chip are bonded by firing the bonding composition, A fired layer of the bonding composition is formed on substantially the entire interface between the substrate and the LED (light emitting diode) chip, It is preferable that the height of the fillet of the bonding composition formed on the side surface of the LED (light emitting diode) chip is less than 10 ⁇ m.
- the height of the fillet of the bonding composition formed on the side surface of the LED (light emitting diode) chip By reducing the height of the fillet of the bonding composition formed on the side surface of the LED (light emitting diode) chip to less than 10 ⁇ m, it is possible to extremely effectively suppress the decrease in the luminous efficiency of the LED package due to the fillet formation. it can.
- the height of the fillet means the length of the highest position of the bonding composition fired layer formed on the side surface of the LED (light emitting diode) chip from the substrate surface, and can be easily used with a video microscope or the like. Can be measured.
- the present invention also provides: An electronic component joined body in which an LED (light emitting diode) chip is joined to a substrate, The substrate and the LED (light emitting diode) chip are bonded using the bonding composition of the present invention, An electronic component assembly is also provided.
- filletless means that the height of the fillet of the bonding composition formed on the side surface of the LED (light emitting diode) chip is less than 10 ⁇ m.
- the LED of the electronic component assembly of the present invention has excellent luminous efficiency and long life.
- a bonding composition that can obtain a high bonding strength by bonding at a relatively low temperature and can suppress the formation of fillets while maintaining sufficient spread to the bonded interface.
- the bonding composition of the present embodiment includes inorganic particles as a main component and an organic component as a subcomponent. These components will be described below.
- the inorganic particles of the bonding composition of the present embodiment are not particularly limited, but the conductivity of the adhesive layer obtained using the bonding composition of the present embodiment is good. Therefore, it is preferable that the metal particles are composed of a (noble) metal having a smaller ionization tendency than zinc.
- the metal examples include at least one of gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum).
- the metal is preferably particles of at least one metal selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or platinum group elements, and more preferably has a tendency to ionize than copper or copper.
- Is preferably a small (noble) metal, that is, at least one of gold, platinum, silver and copper.
- These metals may be used singly or in combination of two or more. Methods for using these metals in combination include the use of alloy particles containing a plurality of metals, metals having a core-shell structure or a multilayer structure. Particles may be used.
- the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but silver is considered in consideration of migration problems. Further, by using a bonding composition made of other metals, migration can be made difficult to occur.
- the “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
- the average particle size of the inorganic particles (or inorganic colloid particles) in the bonding composition of the present embodiment has an average particle size that causes a melting point drop, and may be, for example, 1 to 200 nm. It is preferably ⁇ 100 nm. If the average particle diameter of the inorganic particles is 1 nm or more, a bonding composition capable of forming a good adhesive layer is obtained, and the production of the inorganic particles is practical without increasing the cost. Moreover, if it is 200 nm or less, the dispersibility of an inorganic particle does not change easily with time, and it is preferable.
- the nanometer-sized inorganic particles can be bonded by dropping the melting point around the micrometer-sized inorganic particles.
- the particle size of the inorganic particles in the bonding composition of the present embodiment may not be constant.
- the bonding composition includes, as an optional component, a dispersion medium, a polymer dispersant, a resin component, an organic solvent, a thickener, a surface tension adjuster, or the like, which will be described later, an inorganic colloid having an average particle size of more than 200 nm
- the particle component having an average particle diameter exceeding 200 nm may be included as long as the component does not cause aggregation and does not significantly impair the effects of the present invention.
- the particle size of the inorganic particles in the bonding composition (inorganic colloidal dispersion) of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method.
- the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate.
- RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2 ⁇ in the range of 30 to 80 ° by the diffraction method.
- the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center.
- the crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
- D K ⁇ / Bcos ⁇
- K Scherrer constant (0.9)
- ⁇ wavelength of X-ray
- B half width of diffraction line
- ⁇ Bragg angle.
- the organic component adhering to at least a part of the surface of the inorganic particles that is, the “organic component” in the inorganic colloidal particles is used as a so-called dispersant.
- the inorganic particles substantially constitute inorganic colloidal particles.
- the organic components include trace organic substances contained in the metal as impurities from the beginning, trace organic substances adhering to the metal components mixed in the manufacturing process described later, residual reducing agents that could not be removed in the cleaning process, residual dispersants, etc. As described above, it is a concept that does not include an organic substance or the like adhered to a minute amount of inorganic particles.
- the “trace amount” is specifically intended to be less than 1% by mass in the inorganic colloidal particles.
- the organic component is an organic substance that can coat inorganic particles to prevent aggregation of the inorganic particles and form inorganic colloidal particles, and the form of the coating is not particularly defined, but in this embodiment, From the viewpoint of dispersibility and electrical conductivity, it is preferable to contain an amine and a carboxylic acid.
- these organic components are chemically or physically bonded to the inorganic particles, it is considered that they are changed to anions and cations. In this embodiment, ions derived from these organic components are used. And organic complexes are also included in the organic components.
- the amine may be linear or branched, and may have a side chain.
- alkylamines such as butylamine, pentylamine, hexylamine, and hexylamine (which may have a linear alkylamine or a side chain)
- cycloalkylamines such as cyclopentylamine and cyclohexylamine, aniline, and allylamine
- Secondary amines such as primary amines, dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline. .
- the amine may be a compound containing a functional group other than an amine such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
- the bonding composition of the present embodiment may contain a carboxylic acid in addition to the above amine as long as the effects of the present invention are not impaired.
- the carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
- the organic compound is organic.
- the component and the inorganic particles can be made sufficiently compatible to prevent aggregation of the inorganic particles (improve dispersibility).
- carboxylic acid compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid.
- a part of carboxyl groups of the carboxylic acid may form a salt with a metal ion.
- 2 or more types of metal ions may be contained.
- the carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
- the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
- the said carboxylic acid may be used independently, respectively and may use 2 or more types together.
- the boiling point at normal temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
- amines and carboxylic acids form amides. Since the amide group is also adsorbed moderately on the surface of the silver particle, the organic component may contain an amide group.
- the content of the organic component in the inorganic colloid in the bonding composition of the present embodiment is preferably 0.5 to 50% by mass. If the organic component content is 0.5% by mass or more, the storage stability of the resulting bonding composition tends to be improved, and if it is 50% by mass or less, the conductivity of the bonding composition tends to be good. There is. A more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
- composition ratio (mass) when the amine and carboxylic acid are used in combination can be arbitrarily selected within the range of 1/99 to 99/1, preferably 20/80 to 98/2, The ratio is preferably 30/70 to 97/3.
- amine or carboxylic acid a plurality of types of amines or carboxylic acids may be used.
- the bonding composition of the present embodiment is provided with functions such as appropriate viscosity, adhesion, drying properties, and printability according to the intended use within a range that does not impair the effects of the present invention.
- a dispersion medium a polymer dispersant, for example, an oligomer component that serves as a binder, a resin component, an organic solvent (a part of the solid content may be dissolved or dispersed), a surfactant, a thickening agent.
- dispersion medium of the optional components various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
- hydrocarbon examples include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons, unsaturated hydrocarbons, and the like, and each may be used alone or in combination of two or more.
- aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
- cyclic hydrocarbons examples include toluene and xylene.
- Alicyclic hydrocarbons include, for example, limonene, dipentene, terpinene, nesol, sinene, orange flavor, terpinolene, ferrandlene, mentadiene, teleben, cymene, dihydrocymene, moslen, kautssin, cajepten, olimen, pinene, turpentine, menthane. , Pinane, terpene, cyclohexane and the like.
- Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin.
- Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
- unsaturated hydrocarbons having a hydroxyl group are preferred. Hydroxyl groups are easily coordinated on the surface of the inorganic particles, and aggregation of the inorganic particles can be suppressed.
- the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid.
- it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
- the unsaturated hydrocarbon is preferably ricinoleic acid.
- Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
- Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
- aliphatic alcohol examples include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C 6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
- cyclic alcohols examples include cresol and eugenol.
- alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
- cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof)
- terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
- the content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
- polymer dispersant a commercially available polymer dispersant can be used.
- examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse.
- Solsperse 11200 From the viewpoints of low-temperature sinterability and dispersion stability, it is preferable to use Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 28000, Dispersic 142 or Dispersic 2155.
- the content of the polymer dispersant is preferably 0.1 to 15% by mass. If the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, if the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
- the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
- organic solvent other than those mentioned as the above dispersion medium examples include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N Methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.
- the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
- clay minerals such as clay, bentonite or hectorite
- emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose.
- Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysacc
- a surfactant different from the above organic components may be added.
- the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying.
- the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
- heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the amine (and carboxylic acid) can be added later for fine adjustment of the amount of organic components.
- the bonding composition of the present embodiment includes inorganic colloid particles in which inorganic particles are colloided as a main component.
- an organic component is formed on a part of the surface of the inorganic particles.
- inorganic colloidal particles having inorganic particles as a core and the surface thereof being coated with an organic component are preferable.
- a person skilled in the art can appropriately prepare the inorganic colloidal particles having the above-described form using a well-known technique in this field.
- the bonding composition of this embodiment is a fluid mainly composed of colloidal particles composed of inorganic particles and organic components.
- the inorganic colloidal particles May contain an organic component, a dispersion medium, a residual reducing agent, or the like that does not constitute a component.
- the fluidity of the bonding composition can be prevented from becoming too high by setting the viscosity at approximately 25 ° C. to 10 Pa ⁇ s or more at a shear rate of 10 s ⁇ 1 . it can.
- the bonding composition can be prevented from protruding from the bonded interface and a fillet formed on the side surface of the chip such as an LED.
- liquidity of the composition for joining becomes low too much by making the viscosity in about 25 degreeC into 30 Pa * s or less in shear rate 10s- 1 .
- the bonding composition has low fluidity, the bonding composition spreads in a circular shape when a chip such as an LED is mounted. A fillet is formed.
- the formation of the fillet can be suppressed by setting the viscosity at about 25 ° C. to 30 Pa ⁇ s or less at a shear rate of 10 s ⁇ 1 .
- the bonding composition of the present invention thixotropic ratio (viscosity at substantially 25 ° C. at the time of measurement at a shear rate of 1s -1, a value obtained by dividing the viscosity at substantially 25 ° C. at the time of measurement at a shear rate of 10s -1) 3 or more
- thixotropic ratio (viscosity at substantially 25 ° C. at the time of measurement at a shear rate of 1s -1, divided by the viscosity at substantially 25 ° C. at the time of measurement at a shear rate of 10s -1) a With 7 or less, for bonding It is possible to prevent the coating shape of the composition from becoming distorted, and to suppress the formation of fillets due to uneven spreading of the bonding composition when mounting a chip such as an LED.
- the bonding composition of the present invention is preferably used for bonding an LED (light emitting diode) chip and a substrate. As above-mentioned, since the formation of a fillet can be suppressed by using the bonding composition of the present invention, it is possible to effectively suppress a decrease in light emission efficiency of the LED package due to the formation of the fillet.
- the bonding composition of the present invention comprises: In the case where the LED (light emitting diode) chip is laminated on the substrate coated with the bonding composition, and the substrate and the LED (light emitting diode) chip are bonded by firing the bonding composition, A fired layer of the bonding composition is formed on substantially the entire interface between the substrate and the LED (light emitting diode) chip, It is preferable that the height of the fillet of the bonding composition formed on the side surface of the LED (light emitting diode) chip is less than 10 ⁇ m.
- the height of the frets can be suppressed regardless of the size and shape of the chip and the thickness of the fired layer of the bonding composition.
- the size (area) of the chip can be 0.2 mm ⁇ 0.2 mm to 2.0 mm ⁇ 2.0 mm
- the thickness of the fired layer can be 1 to 50 ⁇ m.
- Examples of the method for applying the bonding composition on the substrate include dipping, screen printing, spray method, bar coating method, spin coating method, ink jet method, dispenser method, pin transfer method, application method by brush, casting Method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method and the like can be appropriately selected and employed.
- Viscosity can be adjusted by adjusting the particle size of inorganic particles, adjusting the content of organic substances, adjusting the amount of dispersion medium and other components, adjusting the blending ratio of each component, and adding a thickener. .
- the viscosity of the bonding composition can be measured, for example, with a cone plate viscometer (for example, a rheometer MCR301 manufactured by Anton Paar).
- the bonding composition of the present embodiment has optimized properties as a bonding composition by controlling weight reduction in each situation.
- the bonding composition of the present embodiment preferably has a weight loss of 0.5% by mass or less when left in an atmosphere at room temperature for 6 hours. It is preferable that the weight loss when heated in minutes is 3.0% by mass or less.
- the weight loss when the bonding composition is left in the atmosphere at room temperature for more than 0.5% by mass exceeds 0.5% by mass, the viscosity increases due to volatilization of the components, and the handling property of the bonding composition deteriorates. Become. In order to maintain the printability of the bonding composition for a long time, it is more preferable that the weight loss when left in the air at room temperature for 6 hours is 0.3% by mass or less.
- the weight loss when the bonding composition is left in the atmosphere at room temperature for 6 hours is mainly due to the volatilization of the organic substance and the organic substance used as the dispersant, etc., so the low boiling point remaining in the bonding composition Reduce the content of ingredients.
- it can be suitably controlled by performing a process such as removal with an evaporator.
- the weight loss when the bonding composition is heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min is larger than 3.0% by mass, the components are vigorously volatilized at room temperature. Since it changes, the handling property of the bonding composition is deteriorated.
- the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min in an air atmosphere is more preferably 2.0% by mass or less, and 1.0% by mass or less. More preferably.
- the weight loss when the bonding composition is heated from room temperature to 100 ° C. at a heating rate of 10 ° C./min is mainly due to the organic substance having an SP value of 10 or more and the organic substance used as a dispersant.
- the content of low-boiling components remaining in it is reduced. For example, it can be suitably controlled by performing a process such as removal with an evaporator.
- the bonding composition has a weight loss of 20.0% by mass or less when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a heating rate of 10 ° C./min.
- High firing layer (bonding layer) can be obtained.
- the weight loss of the bonding composition is too small, the dispersion stability in the colloidal state is impaired. Therefore, when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere. Is preferably 0.1% by mass or more, and more preferably 0.5 to 18.0% by mass.
- the weight loss when the bonding composition is heated from room temperature to 500 ° C. at a heating rate of 10 ° C./min is mainly due to the total organic components contained in the bonding composition. It can control suitably by controlling a kind and quantity.
- inorganic particles inorganic colloidal particles that are main components coated with an organic component that is a subcomponent are prepared.
- the adjustment method of the amount of organic components and weight reduction is not specifically limited, it is easy to adjust by performing heating and pressure reduction. Moreover, you may carry out by adjusting the quantity of the organic component added when producing an inorganic particle, and you may change the washing conditions and frequency
- the weight loss when the bonding composition was left in the air at room temperature for 6 hours was 0.5% by mass or less, and it was heated from room temperature to 100 ° C. in the air atmosphere at a heating rate of 10 ° C./min.
- the weight loss at that time is 3.0% by mass or less, the bonding composition of the present embodiment can be obtained.
- the weight loss when the bonding composition is heated from room temperature to 500 ° C. in an air atmosphere at a rate of temperature increase of 10 ° C./min is 20.0 mass% or less.
- the method for preparing the inorganic particles coated with the organic component of the present embodiment is not particularly limited, and examples thereof include a method of preparing a dispersion containing inorganic particles and then washing the dispersion. .
- a step of preparing a dispersion containing inorganic particles for example, a metal salt (or metal ion) dissolved in a solvent may be reduced as described below, and the reduction procedure is based on a chemical reduction method. A procedure may be adopted.
- the inorganic particles coated with the organic components as described above are composed of metal salts of the metal constituting the inorganic particles, organic substances as dispersants, and solvents (basically organic systems such as toluene, but water And a raw material liquid (a part of the components may be dispersed without being dissolved).
- inorganic colloidal particles in which an organic component as a dispersant is attached to at least a part of the surface of the inorganic particles can be obtained.
- These inorganic colloidal particles can be used alone as the bonding composition of the present embodiment. If necessary, the inorganic colloidal particles can be added to a dispersion medium in a process described later, thereby bonding the inorganic colloidal particles. It can also be obtained as a composition for use.
- various known metal salts or hydrates thereof can be used.
- the method for reducing these metal salts in the raw material liquid is not particularly limited, and examples thereof include a method using a reducing agent, a method of irradiating light such as ultraviolet rays, electron beams, ultrasonic waves, or thermal energy.
- a method using a reducing agent is preferable from the viewpoint of easy operation.
- Examples of the reducing agent include amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine; for example, hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas; for example, carbon monoxide.
- amine compounds such as dimethylaminoethanol, methyldiethanolamine, triethanolamine, phenidone, and hydrazine
- hydrogen compounds such as sodium borohydride, hydrogen iodide, and hydrogen gas
- carbon monoxide for example, carbon monoxide.
- Oxides such as sulfurous acid; for example, ferrous sulfate, iron oxide, iron fumarate, iron lactate, iron oxalate, iron sulfide, tin acetate, tin chloride, tin diphosphate, tin oxalate, tin oxide, sulfuric acid
- Low valent metal salts such as tin; for example, sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
- sugars such as ethylene glycol, glycerin, formaldehyde, hydroquinone, pyrogallol, tannin, tannic acid, salicylic acid, D-glucose, etc.
- light and / or heat may be added to promote the reduction reaction.
- the metal salt is used in an organic solvent (for example, toluene).
- an organic solvent for example, toluene.
- a metal salt solution is prepared by dissolution, an organic substance as a dispersant is added to the metal salt solution, and then a solution in which the reducing agent is dissolved is gradually added dropwise.
- the dispersion liquid containing inorganic particles coated with the organic component as the dispersant obtained as described above contains a metal salt counter ion, a reducing agent residue and a dispersant.
- the electrolyte concentration in the entire liquid tends to be high. Since the liquid in such a state has high electrical conductivity, the inorganic particles are likely to coagulate and precipitate. Alternatively, even if precipitation does not occur, the conductivity of the metal salt may deteriorate if the counter ion of the metal salt, the residue of the reducing agent, or an excessive amount of dispersant remaining in the amount necessary for dispersion remains. Therefore, by washing the solution containing the inorganic particles to remove excess residues, it is possible to reliably obtain the inorganic particles coated with the organic matter.
- washing method for example, a dispersion liquid containing inorganic particles coated with an organic component is allowed to stand for a certain period of time, and after removing the resulting supernatant, alcohol (methanol or the like) is added and stirred again. Furthermore, a method of repeating the process of removing the supernatant liquid generated by standing for a certain period of time, a method of performing centrifugation instead of the above standing, a method of desalting with an ultrafiltration device or an ion exchange device, etc. It is done. By removing the organic solvent by such washing, inorganic particles coated with the organic component of the present embodiment can be obtained.
- the inorganic colloid dispersion liquid is obtained by mixing the inorganic particles coated with the organic component obtained above and the dispersion medium described in the present embodiment.
- the mixing method of the inorganic particles coated with the organic component and the dispersion medium is not particularly limited, and can be performed by a conventionally known method using a stirrer or a stirrer.
- An ultrasonic homogenizer with an appropriate output may be applied by stirring with a spatula or the like. That is, the bonding composition of the present invention is prepared by washing inorganic particles (colloid), adding a dispersion medium to form a paste, and then drying under reduced pressure.
- the viscosity at approximately 25 ° C. of the bonding composition is 10-30 Pa ⁇ s at a shear rate of 10 s ⁇ 1 , depending on the type and addition amount of inorganic particles, dispersion medium, other organic matter, etc., a reduced-pressure drying step, etc.
- a thixo ratio defined by the value obtained by dividing the viscosity at about 25 ° C. measured at a shear rate of 1 s ⁇ 1 by the viscosity at about 25 ° C. measured at a shear rate of 10 s ⁇ 1 to 3 to 7, A bonding composition can be obtained.
- the production method is not particularly limited.
- the above organic substance is used.
- a dispersion containing inorganic particles and a dispersion containing other inorganic particles may be produced separately and then mixed, and a silver ion solution and other metal ion solution may be mixed. It may be mixed and then reduced.
- a bonding step in which the bonding composition applied between the bonding member and the second member to be bonded is baked and bonded at a desired temperature (for example, 300 ° C. or less, preferably 150 to 200 ° C.),
- a desired temperature for example, 300 ° C. or less, preferably 150 to 200 ° C.
- the temperature can be raised or lowered stepwise. It is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.
- the bonding composition of the present embodiment when used, a good bonded body can be obtained even when the bonding composition is applied to the surfaces to be bonded and the time until the bonding step by heating is long. it can. Therefore, the bonding composition of the present embodiment can be suitably used for mass production lines such as electronic devices.
- the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be bonded can be more reliably bonded with high bonding strength (a bonded body is obtained), and the formation of fillets is extremely effectively suppressed.
- “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape.
- the shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer.
- the bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
- the first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
- Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN).
- Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable.
- the metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the bonding composition of the present invention in which the inorganic particles are metal.
- the member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible.
- the thickness of the substrate can also be selected as appropriate.
- a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
- various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet It can be used by appropriately selecting from a formula, a dispenser type, a pin transfer method, a brush application method, a casting method, a flexo method, a gravure method, a syringe method, and the like.
- the coated film after coating as described above is baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained.
- a bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
- the binder component when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members.
- the main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
- the method for performing the firing is not particularly limited.
- the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 300 ° C. or lower. It can join by baking.
- the lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention.
- the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
- the organic substance is contained in the bonding composition of the present invention, it does not obtain the bonding strength after firing by the action of the organic substance, unlike the conventional one using thermosetting such as epoxy resin.
- thermosetting such as epoxy resin.
- sufficient bonding strength can be obtained by fusing the fused inorganic particles. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
- the bonding composition of the present embodiment it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of, for example, about 150 to 200 ° C. Members can be joined together.
- the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
- the surface of the member to be bonded may be subjected to a surface treatment.
- the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
- the electronic component assembly of the present embodiment is an electronic component assembly in which an LED (light emitting diode) chip is bonded to a substrate, and the substrate and the LED (light emitting diode) chip are the present invention.
- the bonding composition is used for bonding.
- a fired layer of the bonding composition is formed on substantially the entire interface between the substrate and the LED (light emitting diode) chip even when mass-producing electronic component assemblies.
- the height of the fillet of the bonding composition formed on the side surface of the LED (light emitting diode) chip is less than 10 ⁇ m.
- the size and shape of the chip and the thickness of the fired layer of the bonding composition are not particularly limited.
- the chip size (area) is 0.2 mm ⁇ 0.2 mm to 2.0 mm ⁇ 2.0 mm.
- the thickness of the fired layer can be 1 to 50 ⁇ m.
- the inorganic metal colloid dispersion liquid using metal particles as the inorganic particles has been described.
- metal particles for example, tin-doped indium oxide and alumina excellent in conductivity, thermal conductivity, dielectric property, ion conductivity, etc.
- Inorganic particles such as barium titanate and iron iron phosphate can also be used (mixed).
- Example 1 0.60 g of dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), 7.0 g hexylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.), and butylamine (made by Wako Pure Chemical Industries, Ltd.) The first grade of reagent) was mixed with 3.0 g, and sufficiently stirred with a magnetic stirrer. While stirring, 7.0 g of silver oxalate (special grade reagent manufactured by Toyo Chemical Co., Ltd.) was added to increase the viscosity.
- dodecylamine first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
- 7.0 g hexylamine first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
- butylamine made by Wako Pure Chemical Industries, Ltd.
- the obtained viscous substance was placed in a 110 ° C. constant temperature bath and allowed to react for about 10 minutes.
- 10 ml of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) is added to the suspension and stirred, and then silver fine particles are precipitated and separated by centrifugation.
- 10 ml of methanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was again added to the separated silver fine particles, and silver fine particles were precipitated and separated by stirring and centrifuging.
- Shear viscosity of bonding composition The viscosity of the bonding composition 1 was measured using a cone plate viscometer (Rhometer, MCR301, manufactured by Anton Paar). Measurement conditions are: measurement mode: shear mode, shear rate: 1 s ⁇ 1 or 10 s ⁇ 1 , measurement jig: cone plate (CP-50-2; diameter 50 mm, angle 2 °, gap 0.045 mm), sample amount: 5 g, measurement temperature: 25 ° C.
- Shear viscosity when the shear rate is 1 s ⁇ 1 shear viscosity when the shear rate is 10 s ⁇ 1 , and (shear viscosity when measured at a shear rate of 1 s ⁇ 1 ) / (shear when measured at a shear rate of 10 s ⁇ 1
- the thixo ratios determined by (viscosity) are shown in Table 1, respectively.
- the obtained laminate was put into a hot air circulation oven adjusted to 200 ° C., and subjected to a firing treatment by heating in an air atmosphere for 120 minutes. After the laminate was taken out of the hot air circulation oven and cooled, the fillet height was measured with a video microscope (manufactured by Keyence Corporation). The obtained values are shown in Table 1.
- Example 2 A joining composition 2 was prepared in the same manner as in Example 1 except that 0.15 g of dihydroterpinyl acetate and 0.1 g of 1-decanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) were used as the dispersion medium. In the same manner as in Example 1, various characteristics were evaluated. The obtained results are shown in Table 1.
- Example 3 A joining composition 3 was prepared in the same manner as in Example 1 except that 0.15 g of dihydroterpinyl acetate and 0.1 g of Tersolve MTPH (manufactured by Nippon Terpene Co., Ltd.) were used as the dispersion medium. Similarly, various characteristics were evaluated. The obtained results are shown in Table 1.
- Example 4 A bonding composition 4 was prepared in the same manner as in Example 1 except that 0.15 g of terpineol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of oleic acid were used as the dispersion medium. Various characteristics were evaluated in the same manner. The obtained results are shown in Table 1.
- Example 5 A bonding composition 5 was prepared in the same manner as in Example 1 except that 0.15 g of terpineol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of 1-decanol were used as the dispersion medium. Various characteristics were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
- Example 1 A comparative bonding composition 1 was prepared in the same manner as in Example 1 except that the weight of dihydroterpinyl acetate added as a dispersion medium was changed to 0.10 g, and various characteristics were evaluated in the same manner as in Example 1. did. The obtained results are shown in Table 1.
- Example 2 A comparative bonding composition 2 was prepared in the same manner as in Example 1 except that the weight of dihydroterpinyl acetate added as a dispersion medium was 0.40 g, and various characteristics were evaluated in the same manner as in Example 1. did. The obtained results are shown in Table 1.
- Comparative Example 3 A comparative bonding composition 3 was prepared in the same manner as in Example 1 except that the dispersion medium was changed to 0.15 g of 1-decanol, and various characteristics were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
- Comparative Example 4 A comparative bonding composition 4 was prepared in the same manner as in Example 1 except that the dispersion medium was changed to 0.30 g of 1-decanol, and various characteristics were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
- Comparative Example 5 A comparative bonding composition 5 was prepared in the same manner as in Example 1, except that 0.1 g of 1-nonanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the dispersion medium. Various characteristics were evaluated. The obtained results are shown in Table 1.
- Comparative Example 6 A comparative bonding composition 6 was prepared in the same manner as in Example 1, except that 0.2 g of 1-nonanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as the dispersion medium. Various characteristics were evaluated. The obtained results are shown in Table 1.
- Comparative Example 7 >> A comparative bonding composition 7 was prepared in the same manner as in Example 1 except that 0.2 g of 1-decanol and 0.1 g of dipentene T (manufactured by Nippon Terpene Chemical Co., Ltd.) were used. Various characteristics were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
- Comparative Example 8 Except that 0.2 g of 1-nonanol (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.1 g of dipentene T (manufactured by Nippon Terpene Chemical Co., Ltd.) were used as the dispersion medium, the same procedure as in Example 1 was performed. Comparative bonding composition 8 was prepared, and various characteristics were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Conductive Materials (AREA)
- Die Bonding (AREA)
- Led Device Packages (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
無機粒子及び有機成分を含む接合用組成物であって、
前記無機粒子の平均粒径が1~200nmであり、
略25℃における粘度が、せん断速度10s-1において10~30Pa・sであり、
略25℃においてせん断速度1s-1で測定した粘度V1を、略25℃においてせん断速度10s-1で測定した粘度V10で除した値で定義されるチクソ比Rが3~7であること、
を特徴とする接合用組成物を提供する。
前記接合用組成物を塗布した前記基板に前記LED(発光ダイオード)チップを積層させ、前記接合用組成物を焼成することで前記基板と前記LED(発光ダイオード)チップとを接合させる場合において、
前記基板と前記LED(発光ダイオード)チップとの略全界面に前記接合用組成物の焼成層が形成し、
前記LED(発光ダイオード)チップの側面に形成される前記接合用組成物のフィレットの高さが10μm未満となること、が好ましい。
基板にLED(発光ダイオード)チップが接合された電子部品接合体であって、
前記基板と前記LED(発光ダイオード)チップとが、本発明の接合用組成物を用いて接合されていること、
を特徴とする電子部品接合体も提供する。
本実施形態の接合用組成物は、無機粒子を主成分、有機成分を副成分とする。以下においてこれら各成分について説明する。
本実施形態の接合用組成物の無機粒子としては、特に限定されるものではないが、本実施形態の接合用組成物を用いて得られる接着層の導電性を良好にすることができるため、亜鉛よりもイオン化傾向が小さい(貴な)金属で構成される金属粒子であるのが好ましい。
D=Kλ/Bcosθ
ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
本実施形態の接合用組成物において、無機粒子の表面の少なくとも一部に付着している有機成分、即ち、無機コロイド粒子中の「有機成分」は、いわゆる分散剤として上記無機粒子とともに実質的に無機コロイド粒子を構成する。当該有機成分には、金属中に最初から不純物として含まれる微量有機物、後述する製造過程で混入して金属成分に付着した微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、無機粒子に微量付着した有機物等は含まれない概念である。なお、上記「微量」とは、具体的には、無機コロイド粒子中1質量%未満が意図される。
前記接合用組成物を塗布した前記基板に前記LED(発光ダイオード)チップを積層させ、前記接合用組成物を焼成することで前記基板と前記LED(発光ダイオード)チップとを接合させる場合において、
前記基板と前記LED(発光ダイオード)チップとの略全界面に前記接合用組成物の焼成層が形成し、
前記LED(発光ダイオード)チップの側面に形成される前記接合用組成物のフィレットの高さが10μm未満となること、が好ましい。
本実施形態の接合用組成物は、各状況における重量減少の制御によって、接合用組成物としての特性が最適化されている。
本実施形態の接合用組成物を製造するためには、副成分である有機成分で被覆された主成分である無機粒子(無機コロイド粒子)を調製する。
本実施形態の接合用組成物を用いれば、加熱を伴う部材同士の接合において比較的低い接合温度で高い接合強度を得ることができる。即ち、上記接合用組成物を第1の被接合部材(LED(発光ダイオード)チップ)と第2の被接合部材(基板)との間に塗布する接合用組成物塗布工程と、第1の被接合部材と第2の被接合部材との間に塗布した接合用組成物を、所望の温度(例えば300℃以下、好ましくは150~200℃)で焼成して接合する接合工程と、により、第1の被接合部材と第2の被接合部材とを接合することができる。この際、加圧することもできるが、特に加圧しなくとも十分な接合強度を得ることができるのも本発明の利点のひとつである。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、予め被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。
本実施形態の電子部品接合体は、基板にLED(発光ダイオード)チップが接合された電子部品接合体であって、基板とLED(発光ダイオード)チップとが、本発明の接合用組成物を用いて接合されている。
ドデシルアミン(和光純薬工業(株)製の試薬一級)0.60gと、ヘキシルアミン(和光純薬工業(株)製の試薬一級)7.0gと、ブチルアミン(和光純薬工業(株)製の試薬一級)3.0gと、を混合して、マグネティックスターラーで十分に撹拌した。ここに、撹拌を行いながらシュウ酸銀(東洋化学工業(株)製の試薬特級)7.0gを添加して増粘させた。
(1)接合組成物のせん断粘度
接合用組成物1の粘度を、コーンプレート型粘度計(アントンパール社製レオメーター,MCR301)を用いて測定した。測定条件は、測定モード:せん断モード、せん断速度:1s-1又は10s-1、測定治具:コーンプレート(CP-50-2;直径50mm,アングル2°,ギャップ0.045mm)、サンプル量:5g、測定温度:25℃とした。せん断速度が1s-1の場合のせん断粘度、せん断速度が10s-1の場合のせん断粘度、及び(せん断速度1s-1で測定時のせん断粘度)/(せん断速度10s-1で測定時のせん断粘度)で求めたチクソ比を、それぞれ表1に示した。
ダイボンダー(ハイソル社製)を用いて、表面に銀メッキを施したアルミナ板(3mm×3mm)に接合用組成物1を10μg載せ、その上に、市販の青色LEDチップ(エピスター社製ES-CADBV24H、底面積:600μm×600μm、高さ:150μm、重量:0.2mg)を積層した。
ボンドテスター(レスカ社製)を用いて、上記焼成処理後の積層体のせん断強度試験を行った。剥離時の接合強度をチップの底面積で除し、単位面積当たりの接合強度(MPa)を算出した。判断基準として、20MPa以上を○、20MPa未満を×とし、得られた結果を表1に示した。
分光測光装置(浜松ホトニクス社製)を用いて、上記焼成処理後の青色LEDチップの輝度を測定した。初期の輝度を100とし、温度85℃、湿度85%の環境下で1000時間連続点灯後の輝度を相対値で示し、得られた結果を表1に示した。なお、表1に示している比較例の発光強度(初期)は、実施例1の発光強度を100とした場合の相対強度を示している。
分散媒をジヒドロターピニルアセテート0.15g及び1-デカノール(和光純薬工業(株)製の試薬一級)0.1gにした以外は、実施例1と同様にして接合用組成物2を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒をジヒドロターピニルアセテート0.15g及びテルソルブMTPH(日本テルペン(株)製)0.1gにした以外は、実施例1と同様にして接合用組成物3を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒をテルピネオール(和光純薬工業(株)製の試薬一級)0.15g及びオレイン酸0.1gにした以外は、実施例1と同様にして接合用組成物4を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒をテルピネオール(和光純薬工業(株)製の試薬一級)0.15gと1-デカノール0.1gにした以外は、実施例1と同様にして接合用組成物5を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒として加えたジヒドロターピニルアセテートの重量を0.10gにしたこと以外は、実施例1と同様にして比較接合用組成物1を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒として加えたジヒドロターピニルアセテートの重量を0.40gにしたこと以外は、実施例1と同様にして比較接合用組成物2を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒を1-デカノール0.15gにしたこと以外は、実施例1と同様にして比較接合用組成物3を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒を1-デカノール0.30gにしたこと以外は、実施例1と同様にして比較接合用組成物4を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒を1-ノナノール(和光純薬工業(株)製の試薬一級)0.1gにしたこと以外は、実施例1と同様にして比較接合用組成物5を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒を1-ノナノール(和光純薬工業(株)製の試薬一級)0.2gにしたこと以外は、実施例1と同様にして比較接合用組成物6を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒を1-デカノール0.2gとジペンテンT(日本テルペン化学(株)社製)0.1gにしたこと以外は、実施例1と同様にして比較接合用組成物7を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
分散媒を1-ノナノール(和光純薬工業(株)製の試薬一級)0.2gとジペンテンT(日本テルペン化学(株)社製)0.1gにしたこと以外は、実施例1と同様にして比較接合用組成物8を調製し、実施例1と同様にして各種特性を評価した。得られた結果を表1に示した。
Claims (4)
- 無機粒子及び有機成分を含む接合用組成物であって、
前記無機粒子の平均粒径が1~200nmであり、
略25℃における粘度が、せん断速度10s-1において10~30Pa・sであり、
せん断速度1s-1で測定した略25℃における粘度V1を、せん断速度10s-1で測定した略25℃における粘度V10で除した値で定義されるチクソ比Rが3~7であること、
を特徴とする接合用組成物。 - LED(発光ダイオード)チップと基板との接合に用いること、
を特徴とする請求項1に記載の接合用組成物。 - 前記接合用組成物を塗布した前記基板に前記LED(発光ダイオード)チップを積層させ、前記接合用組成物を焼成することで前記基板と前記LED(発光ダイオード)チップとを接合させる場合において、
前記基板と前記LED(発光ダイオード)チップとの略全界面に前記接合用組成物の焼成層が形成し、
前記LED(発光ダイオード)チップの側面に形成される前記接合用組成物のフィレットの高さが10μm未満となること、
を特徴とする請求項1又は2に記載の接合用組成物。 - 基板にLED(発光ダイオード)チップが接合された電子部品接合体であって、
前記基板と前記LED(発光ダイオード)チップとが、請求項1~3のうちのいずれかに記載の接合用組成物を用いて接合されていること、
を特徴とする電子部品接合体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680006481.4A CN107207911B (zh) | 2015-01-29 | 2016-01-05 | 接合用组合物及电子零件接合体 |
JP2016542777A JP6085724B2 (ja) | 2015-01-29 | 2016-01-05 | 接合用組成物 |
DE112016000524.5T DE112016000524B4 (de) | 2015-01-29 | 2016-01-05 | Bindemittelzusammensetzung und damit hergestelltes Verbindungselement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015014919 | 2015-01-29 | ||
JP2015-014919 | 2015-01-29 | ||
JP2015028464 | 2015-02-17 | ||
JP2015-028464 | 2015-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121296A1 true WO2016121296A1 (ja) | 2016-08-04 |
Family
ID=56542925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000016 WO2016121296A1 (ja) | 2015-01-29 | 2016-01-05 | 接合用組成物 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6085724B2 (ja) |
CN (1) | CN107207911B (ja) |
DE (1) | DE112016000524B4 (ja) |
TW (1) | TWI682827B (ja) |
WO (1) | WO2016121296A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000136368A (ja) * | 1998-11-02 | 2000-05-16 | Matsushita Electric Ind Co Ltd | 導電性接着剤およびこれを用いた電子部品の実装方法 |
WO2011155615A1 (ja) * | 2010-06-11 | 2011-12-15 | Dowaエレクトロニクス株式会社 | 低温焼結性接合材および該接合材を用いた接合方法 |
JP2012052029A (ja) * | 2010-09-01 | 2012-03-15 | Shin-Etsu Chemical Co Ltd | ダイボンド剤及び光半導体装置 |
WO2013061527A1 (ja) * | 2011-10-24 | 2013-05-02 | バンドー化学株式会社 | 接合用組成物 |
JP2014088516A (ja) * | 2012-10-31 | 2014-05-15 | Mitsuboshi Belting Ltd | スクリーン印刷用導電性接着剤並びに無機素材の接合体及びその製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4895994B2 (ja) | 2006-12-28 | 2012-03-14 | 株式会社日立製作所 | 金属粒子を用いた接合方法及び接合材料 |
US7851930B1 (en) | 2008-06-04 | 2010-12-14 | Henkel Corporation | Conductive adhesive compositions containing an alloy filler material for better dispense and thermal properties |
HUE039175T2 (hu) | 2011-06-10 | 2018-12-28 | Dowa Electronics Materials Co Ltd | Ragasztóanyag és az annak alkalmazásával elõállított termék |
-
2016
- 2016-01-05 JP JP2016542777A patent/JP6085724B2/ja active Active
- 2016-01-05 DE DE112016000524.5T patent/DE112016000524B4/de active Active
- 2016-01-05 CN CN201680006481.4A patent/CN107207911B/zh active Active
- 2016-01-05 WO PCT/JP2016/000016 patent/WO2016121296A1/ja active Application Filing
- 2016-01-19 TW TW105101453A patent/TWI682827B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000136368A (ja) * | 1998-11-02 | 2000-05-16 | Matsushita Electric Ind Co Ltd | 導電性接着剤およびこれを用いた電子部品の実装方法 |
WO2011155615A1 (ja) * | 2010-06-11 | 2011-12-15 | Dowaエレクトロニクス株式会社 | 低温焼結性接合材および該接合材を用いた接合方法 |
JP2012052029A (ja) * | 2010-09-01 | 2012-03-15 | Shin-Etsu Chemical Co Ltd | ダイボンド剤及び光半導体装置 |
WO2013061527A1 (ja) * | 2011-10-24 | 2013-05-02 | バンドー化学株式会社 | 接合用組成物 |
JP2014088516A (ja) * | 2012-10-31 | 2014-05-15 | Mitsuboshi Belting Ltd | スクリーン印刷用導電性接着剤並びに無機素材の接合体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6085724B2 (ja) | 2017-02-22 |
DE112016000524B4 (de) | 2021-12-23 |
DE112016000524T5 (de) | 2017-10-19 |
JPWO2016121296A1 (ja) | 2017-04-27 |
TW201627096A (zh) | 2016-08-01 |
CN107207911B (zh) | 2021-01-01 |
CN107207911A (zh) | 2017-09-26 |
TWI682827B (zh) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6349310B2 (ja) | 金属接合用組成物 | |
JP6021816B2 (ja) | 接合用組成物 | |
JP6262139B2 (ja) | 接合用組成物 | |
JP6163616B1 (ja) | 接合用組成物 | |
WO2015162881A1 (ja) | 接合用組成物及びそれを用いた金属接合体 | |
JP2017155166A (ja) | 接合用組成物 | |
TWI744372B (zh) | 接合用組成物及其製造方法、接合體以及被覆銀奈米粒子 | |
JPWO2016067599A1 (ja) | 接合用組成物 | |
JP7025603B1 (ja) | 接合用組成物の製造方法 | |
WO2017006531A1 (ja) | 接合用組成物及び接合方法 | |
JP6669420B2 (ja) | 接合用組成物 | |
JP6085724B2 (ja) | 接合用組成物 | |
WO2015159480A1 (ja) | 接合用組成物及びそれを用いた金属接合体 | |
JP6267835B1 (ja) | 接合用組成物及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016542777 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16742905 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016000524 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16742905 Country of ref document: EP Kind code of ref document: A1 |