WO2016121229A1 - プラズマトーチ用絶縁ガイド、及び交換部品ユニット - Google Patents

プラズマトーチ用絶縁ガイド、及び交換部品ユニット Download PDF

Info

Publication number
WO2016121229A1
WO2016121229A1 PCT/JP2015/084165 JP2015084165W WO2016121229A1 WO 2016121229 A1 WO2016121229 A1 WO 2016121229A1 JP 2015084165 W JP2015084165 W JP 2015084165W WO 2016121229 A1 WO2016121229 A1 WO 2016121229A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
outer peripheral
guide
nozzle
electrode
Prior art date
Application number
PCT/JP2015/084165
Other languages
English (en)
French (fr)
Inventor
山口 義博
圭太 近藤
茂夫 森本
齋尾 克男
Original Assignee
株式会社小松製作所
コマツ産機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所, コマツ産機株式会社 filed Critical 株式会社小松製作所
Priority to DE112015003776.4T priority Critical patent/DE112015003776T5/de
Priority to KR1020187028839A priority patent/KR102281286B1/ko
Priority to KR1020167036907A priority patent/KR101957866B1/ko
Priority to CN201580035371.6A priority patent/CN106660158B/zh
Priority to US15/325,269 priority patent/US10625364B2/en
Publication of WO2016121229A1 publication Critical patent/WO2016121229A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3457Nozzle protection devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3442Cathodes with inserted tip

Definitions

  • the present invention relates to an insulation guide used for a plasma torch for oxygen plasma cutting, and a replacement part unit.
  • the plasma torch has an electrode that is an arc generation point and a nozzle that is disposed so as to cover the electrode.
  • the electrode is attached to the electrode base of the torch body.
  • the nozzle is attached to the electrode via an insulating guide.
  • the insulating guide positions the nozzle so that the nozzle is concentric with the electrode.
  • the plasma torch generates a plasma arc between the electrode and the workpiece through the nozzle orifice.
  • the insulation guide is formed of an insulator in order to ensure insulation between the electrode and the nozzle.
  • the insulating guide is a component that positions the electrode and the nozzle.
  • a gas passage is formed in the insulating guide.
  • the concentricity between the electrode and the nozzle and the plasma gas flow through the gas passage affect the quality of the plasma cutting.
  • the insulation guide is a high-precision component that requires high-precision machining. Therefore, it is preferable to use a resin material such as a fine ceramic that can be cut or a heat-resistant engineering plastic as the material of the insulating guide.
  • Ceramics have excellent heat resistance but are expensive. For this reason, in order to reduce the cost, it is desirable to use a resin material as the material of the insulating guide.
  • a resin insulating guide is used in a plasma torch for oxygen plasma cutting, a problem that the insulating guide is suddenly damaged frequently occurs. For this reason, there has been a problem in that a resin insulating guide cannot be used in a plasma torch for oxygen plasma cutting.
  • An object of the present invention is to provide an insulating guide and a replacement part unit capable of suppressing sudden damage of a resin insulating guide in an oxygen plasma cutting plasma torch.
  • the insulation guide according to the first aspect of the present invention is used in a plasma torch for plasma cutting having an electrode and a nozzle.
  • the electrode is inserted into the nozzle.
  • the insulating guide is made of resin and connects the electrode and the nozzle.
  • the insulating guide includes a first inner peripheral surface, a second inner peripheral surface, a communication path, and a heat resistant coating.
  • the first inner peripheral surface is formed inside the insulating guide.
  • the second inner peripheral surface is formed inside the insulating guide and has an inner diameter smaller than that of the first inner peripheral surface.
  • the communication path connects the space inside the first inner peripheral surface and the outside, and extends in a direction inclined with respect to the axial direction of the insulating guide.
  • the heat resistant coating is formed on the first inner peripheral surface.
  • the inventors of the present invention investigated the cause of the damage of the resin insulating guide in the oxygen plasma as follows.
  • a heat-resistant insert made of hafnium is provided on an electrode.
  • Hafnium has a high melting point when it becomes an oxide. Since tungsten, which is a general heat-resistant insert for electrodes, becomes an oxide, its melting point is greatly reduced, so it cannot be used for oxygen plasma cutting. Therefore, hafnium is used in a plasma torch for oxygen plasma cutting.
  • the hafnium of the electrode during plasma arc generation is an ultra-high temperature liquid metal state exceeding 3000 ° C. Therefore, a phenomenon occurs in which high-temperature liquid hafnium is scattered from the electrode during ignition of the plasma arc, cutting, or digestion.
  • the scattered high-temperature hafnium droplets are given a swirling force by a swirling airflow of plasma gas.
  • Hafnium droplets collide with the inner peripheral surface of the nozzle by centrifugal force and bounce off. As a result, some of the hafnium droplets pop out to the insulating guide located upstream in the plasma gas flow. Since the periphery of the insulating guide is in a high oxygen atmosphere, if high-temperature hafnium droplets adhere to the surface of the insulating guide, even a resin having high heat resistance is easily ignited and damaged.
  • the insulating guide according to this aspect is made of resin, the cost can be reduced.
  • a heat resistant coating is formed on the first inner peripheral surface. For this reason, even if the insulating guide is formed of resin, durability against burning of the insulating guide can be improved.
  • the communication path extends in a direction inclined with respect to the axial direction. Therefore, the velocity component in the axial direction can be increased in the swirling flow of the plasma gas injected from the communication path. For this reason, scattering of hafnium droplets onto the insulating guide is suppressed by the swirling flow of the plasma gas. Thereby, in the plasma torch for oxygen plasma cutting, sudden damage of the insulating guide made of resin can be suppressed.
  • the heat-resistant coating may be made of a ceramic material.
  • the heat-resistant coating may be made of boron nitride.
  • the communication path may be inclined with respect to the circumferential direction and the radial direction of the insulating guide.
  • the inclination angle of the communication path with respect to the axial direction may be not less than 30 degrees and not more than 60 degrees.
  • the insulation guide may be made of a resin having a continuous use temperature of 100 ° C. or higher.
  • the insulation guide may further include an inner step.
  • the inner step is disposed between the first inner peripheral surface and the second inner peripheral surface.
  • the communication path may be connected to the inner step.
  • the second inner peripheral surface may have an uneven shape that is locked to the outer peripheral surface of the electrode.
  • the axis of the communication path may be a predetermined distance away from a straight line that is parallel to the axis of the communication path and passes through the center of the insulation guide.
  • the communication path may be connected to the outside of the insulating guide at a position closer to the base end side than the center in the axial direction of the insulating guide.
  • the inner diameter of the first inner peripheral surface may be larger than the inner diameter of the nozzle.
  • the inner diameter of the first inner peripheral surface may be substantially the same as the inner diameter of the nozzle.
  • the insulation guide may include a plurality of communication paths.
  • the plurality of communication paths may be arranged at equal intervals in the circumferential direction of the insulating guide.
  • the insulating guide may further include a first outer peripheral surface, a second outer peripheral surface, and a third outer peripheral surface.
  • the first outer peripheral surface may be joined to the inner peripheral surface of the nozzle.
  • the second outer peripheral surface may be located on the proximal end side of the first outer peripheral surface.
  • the third outer peripheral surface may be located on the proximal end side of the second outer peripheral surface.
  • the outer diameter of the first outer peripheral surface may be larger than the outer diameter of the second outer peripheral surface.
  • the first outer peripheral surface may have an uneven shape that is locked to the inner peripheral surface of the nozzle.
  • the outer diameter of the third outer peripheral surface may be smaller than the outer diameter of the second outer peripheral surface.
  • the insulating guide may further include an outer step portion disposed between the second outer peripheral surface and the third outer peripheral surface.
  • the communication path may be connected to the outer step portion.
  • the third outer peripheral surface may be disposed in the gas passage of the plasma torch.
  • the second outer peripheral surface may have a seal surface that comes into contact with the O-ring.
  • the portion of the second outer peripheral surface on the tip side of the sealing surface may be disposed in the cooling water passage of the plasma torch.
  • the first outer peripheral surface may be shorter than the second outer peripheral surface.
  • the second outer peripheral surface may be longer than the third outer peripheral surface.
  • the insulating guide according to the second aspect of the present invention is used in a plasma torch for plasma cutting having an electrode and a nozzle.
  • the electrode is inserted into the nozzle.
  • the insulating guide has a tubular shape, and is formed of an insulator that connects the electrode and the nozzle.
  • the first inner peripheral surface extends to the tip of the insulating guide.
  • the second inner peripheral surface is located on the proximal end side of the first inner peripheral surface, is joined to the outer peripheral surface of the electrode, and has an inner diameter smaller than that of the first inner peripheral surface.
  • the inner step is disposed between the first inner peripheral surface and the second inner peripheral surface.
  • the first outer peripheral surface is joined to the inner peripheral surface of the nozzle.
  • the second outer peripheral surface is located on the proximal end side of the first outer peripheral surface and has an outer diameter smaller than that of the first outer peripheral surface.
  • the third outer peripheral surface is located on the proximal end side of the second outer peripheral surface and has an outer diameter smaller than that of the second outer peripheral surface.
  • the outer stepped portion is disposed between the second outer peripheral surface and the third outer peripheral surface.
  • the communication path communicates the inner step portion and the outer step portion and extends in a direction inclined with respect to the circumferential direction, the radial direction, and the axial direction.
  • the first inner peripheral surface and the inner stepped portion may be covered with a heat resistant coating.
  • the heat-resistant coating may be made of a ceramic material.
  • the heat-resistant coating may be made of boron nitride.
  • the replacement part unit according to the third aspect of the present invention is used for a plasma torch for oxygen plasma cutting.
  • the replacement part unit includes an electrode, the above-described insulation guide, and a nozzle.
  • the electrode has an electrode material made of hafnium.
  • the nozzle has a hole into which the insulating guide is inserted, and is joined to the insulating guide by press-fitting or bonding.
  • a plasma torch for cutting oxygen plasma it is possible to provide an insulating guide and a replacement part unit capable of suppressing sudden damage of a resin insulating guide.
  • FIG. 22 is a sectional view taken along line AA in FIG. 21. It is a perspective view of a center pipe. It is a perspective view of a center pipe. It is sectional drawing of a center pipe. It is a perspective view of a pipe body. It is a perspective view of a contact. It is the figure which looked at the contactor from the axial direction.
  • FIG. 22 is a sectional view taken along line AA in FIG. 21.
  • FIG. 2 is an enlarged view of a replacement part unit in FIG. 1 and its surrounding configuration. It is sectional drawing different from FIG. 1 along the center axis line of the plasma torch.
  • FIG. 31 is an enlarged view of the replacement part unit in FIG. 30 and the surrounding configuration. It is sectional drawing along the center axis line of the plasma torch concerning a 2nd embodiment. It is sectional drawing of the replacement component unit which concerns on 2nd Embodiment. It is a perspective view of the replacement part unit which concerns on 2nd Embodiment. It is a perspective view of the replacement part unit which concerns on 2nd Embodiment. It is a perspective view of the replacement part unit which concerns on 2nd Embodiment. It is a perspective view of the nozzle which concerns on 2nd Embodiment. It is a perspective view of the nozzle which concerns on 2nd Embodiment. It is sectional drawing along the center axis line of the plasma torch concerning other embodiments.
  • FIG. 1 is a cross-sectional view taken along the central axis of the plasma torch 1a according to the first embodiment.
  • FIG. 2 is an exploded view of the plasma torch 1a.
  • the plasma torch 1a is a plasma torch 1a for oxygen plasma cutting.
  • the plasma torch 1a includes a replacement part unit 2a, a torch body 3, a first retainer cap 4, and a second retainer cap 5.
  • the replacement part unit 2 a, the first retainer cap 4, and the second retainer cap 5 are disposed concentrically with the central axis of the torch body 3.
  • the replacement part unit 2 a is attached to the torch body 3.
  • the replacement part unit 2 a includes an electrode 6, an insulation guide 7, a nozzle 8, an insulation ring 9, and a shield cap 10.
  • the replacement part unit 2a will be described in detail later.
  • the torch body 3 is attached to the connection pipe 32 via a fixing ring 31.
  • the torch body 3 includes a base portion 33, an electrode pedestal 34, a center pipe 20, a nozzle pedestal 36, an insulating sleeve 37, and a holder 38.
  • the base portion 33, the electrode base 34, the center pipe 20, the nozzle base 36, the insulating sleeve 37, and the holder 38 are disposed concentrically with the central axis of the torch body 3.
  • the base portion 33 has a cylindrical shape.
  • the base part 33 is formed of a conductor.
  • the center pipe 20, the electrode pedestal 34, and the insulating sleeve 37 are inserted into the holes of the base portion 33.
  • the electrode base 34 has a circular tubular shape.
  • the electrode pedestal 34 is formed of a conductor.
  • the base portion 33 is electrically connected to a cable from a power source (not shown).
  • the center pipe 20 is inserted into the hole of the electrode base 34.
  • the center pipe 20 has a tubular shape.
  • the center pipe 20 is made of a conductor.
  • the tip of the center pipe 20 protrudes from the tip of the nozzle base 36.
  • the center pipe 20 will be described in detail later.
  • the insulating sleeve 37 has a tubular shape.
  • the insulating sleeve 37 is formed of an insulator. A part of the insulating sleeve 37 is disposed in the hole of the base portion 33.
  • the insulating sleeve 37 is located between the electrode base 34 and the nozzle base 36.
  • the nozzle pedestal 36 has a circular tubular shape.
  • the tip of the nozzle pedestal 36 has a tapered shape.
  • the nozzle base 36 is formed of an insulator.
  • a contact (not shown) that makes electrical contact with the nozzle is attached to the nozzle base 36. The contact is electrically connected to a cable from the power source.
  • the base portion 33 is inserted into the hole of the nozzle pedestal 36.
  • the insulating sleeve 37 is inserted into the hole of the nozzle base 36. The distal end portion of the insulating sleeve 37 protrudes from the base portion 33 and is disposed in the hole of the nozzle base 36.
  • the holder 38 has a circular tubular shape.
  • the holder 38 is attached to the connection pipe 32 by means such as adhesion.
  • the nozzle base 36 is inserted into the hole of the holder 38.
  • the tip of the nozzle base 36 protrudes from the holder 38.
  • the first retainer cap 4 has a cylindrical shape with a tapered tip.
  • the first retainer cap 4 is attached to the torch body 3 so as to cover the nozzle base 36.
  • the tip of the first retainer cap 4 has an opening 41 into which the shield cap 10 is inserted.
  • the holder 38 and the nozzle pedestal 36 are disposed in the first retainer cap 4.
  • a male screw portion 311 is provided on the outer peripheral surface of the holder 38.
  • a female screw portion 42 is provided on the inner peripheral surface of the base end portion of the first retainer cap 4.
  • the first retainer cap 4 is attached to the torch body 3 by the male screw portion 311 of the holder 38 being screwed into the female screw portion 42 of the first retainer cap 4.
  • the second retainer cap 5 has a cylindrical shape with a tapered tip.
  • the tip of the second retainer cap 5 has an opening 51 into which the shield cap 10 is inserted.
  • the second retainer cap 5 is attached to the first retainer cap 4 so as to cover the first retainer cap 4.
  • the first retainer cap 4 is disposed in the second retainer cap 5.
  • the first retainer cap 4 and the second retainer cap 5 hold and replace the replacement part unit 2a.
  • An O-ring R ⁇ b> 1 is disposed on the outer peripheral surface of the first retainer cap 4.
  • a male screw 401 is provided on the outer peripheral surface of the first retainer cap 4, and a female screw 501 is provided on the inner peripheral surface of the second retainer cap 5.
  • the second retainer cap 5 is attached to the first retainer cap 4 by the male screw 401 of the first retainer cap 4 and the female screw 501 of the second retainer cap 5 being screwed together.
  • FIG. 3 is a side view of the replacement part unit 2a.
  • FIG. 4 is a cross-sectional view taken along the central axis of the replacement part unit 2a.
  • the replacement part unit 2a is obtained by integrating the electrode 6, the insulating guide 7, the nozzle 8, the insulating ring 9, and the shield cap 10 by press-fitting.
  • the electrode 6, the insulating guide 7, the nozzle 8, the insulating ring 9, and the shield cap 10 are arranged concentrically with each other. Since the replacement part unit 2a is disposed concentrically with the central axis of the torch body 3, the axes of the electrode 6, the insulating guide 7, the nozzle 8, the insulating ring 9, and the shield cap 10 are different from those of the torch body 3. Match the central axis.
  • FIGS. 5 and 6 are perspective views of the electrode 6.
  • FIG. 7 is a cross-sectional view of the electrode 6.
  • the electrode 6 has a cylindrical shape.
  • the electrode 6 is made of a conductor.
  • the electrode 6 includes an electrode main body portion 61, a joint portion 62, and a flange portion 63.
  • the electrode body 61 includes the tip of the electrode 6.
  • a heat resistant insert 64 is embedded in the center of the tip surface 602 of the electrode 6.
  • the heat resistant insert 64 is made of hafnium.
  • a part of the electrode main body 61 is disposed in the hole of the insulating guide 7.
  • the tip of the electrode main body 61 projects from the insulating guide 7.
  • the tip of the electrode main body 61 has a tapered shape.
  • the joint portion 62 is located on the proximal end side of the electrode main body portion 61.
  • the joint portion 62 is located between the electrode main body portion 61 and the flange portion 63 in the axial direction of the electrode 6.
  • the joining portion 62 is joined to the insulating guide 7 by press-fitting. Therefore, the joining portion 62 is joined to the insulating guide 7 so as to seal the fluid without an O-ring.
  • the outer peripheral surface of the joining portion 62 has an uneven shape that is locked to the inner peripheral surface of the insulating guide 7.
  • the joint portion 62 has a convex portion 621.
  • the convex part 621 protrudes from the outer peripheral surface of the joint part 62.
  • the convex part 621 extends in the circumferential direction of the joint part 62.
  • the flange part 63 is located on the proximal end side of the joint part 62.
  • the flange portion 63 includes the proximal end of the electrode 6.
  • the flange part 63 has a larger outer diameter than the joint part 62.
  • the flange portion 63 is longer than the joint portion 62 in the axial direction of the electrode 6.
  • the outer peripheral surface of the flange portion 63 extends in the axial direction of the electrode 6.
  • the outer peripheral surface of the flange part 63 has a flat shape without unevenness in a sectional view.
  • the proximal end portion of the outer peripheral surface of the flange portion 63 is chamfered.
  • a step portion 66 is provided between the flange portion 63 and the joint portion 62.
  • the step portion 66 is a surface perpendicular to the axial direction of the electrode 6.
  • the electrode 6 has an internal passage 65.
  • the center pipe 20 shown in FIG. 1 is inserted into the internal passage 65.
  • the proximal end surface 601 of the electrode 6 is provided with an inlet for the internal passage 65.
  • the internal passage 65 extends along the axial direction of the electrode 6 from the base end surface 601 of the electrode 6 toward the tip.
  • a convex portion 67 is provided on the end of the electrode 6 on the internal passage 65 side.
  • the heat-resistant insert 64 described above is disposed in the convex portion 67. In a state where the replacement part unit 2 a is attached to the torch body 3, a part of the convex portion 67 is disposed in the cooling water channel of the center pipe 20.
  • the inner peripheral surface of the internal passage 65 has a straight portion 651 and a tapered portion 652.
  • the straight line portion 651 extends parallel to the axial direction of the electrode 6.
  • the tapered portion 652 expands in the radial direction toward the inlet of the internal passage 65.
  • FIG. 10 is a cross-sectional view of the insulating guide 7.
  • the insulating guide 7 electrically insulates the electrode 6 and the nozzle 8 and connects the electrode 6 and the nozzle 8.
  • the insulating guide 7 positions the electrode 6 and the nozzle 8 with respect to each other in the axial direction and the radial direction.
  • the insulating guide 7 has a tubular shape.
  • the insulation guide 7 is formed of an insulator.
  • the insulating guide 7 has a hole 706 into which the electrode 6 is inserted.
  • the hole 706 of the insulating guide 7 passes through the insulating guide 7 in the axial direction of the insulating guide 7.
  • the insulating guide 7 is formed of a material having an elastic modulus smaller than that of ceramic.
  • the insulation guide 7 is made of resin such as engineer plastic.
  • the insulating guide 7 is made of a resin having a continuous use temperature of 100 ° C. or higher. Further, the continuous use temperature is preferably 300 ° C. or less.
  • the inner peripheral surface of the insulating guide 7 has a first inner peripheral surface 71, an inner stepped portion 72, and a second inner peripheral surface 73.
  • the first inner peripheral surface 71 extends in the axial direction of the insulating guide 7 and reaches the distal end surface 701 of the insulating guide 7.
  • the first inner peripheral surface 71 has a larger inner diameter than the second inner peripheral surface 73.
  • the first inner peripheral surface 71 faces the outer peripheral surface of the electrode main body 61 with a gap.
  • the first inner peripheral surface 71 forms a gas passage between the outer peripheral surface of the electrode main body 61.
  • the inner diameter of the first inner peripheral surface 71 is substantially the same as the inner diameter of the nozzle 8. Therefore, the inner diameter of the gas passage between the first inner peripheral surface 71 and the electrode 6 is substantially the same as the inner diameter of the nozzle 8.
  • the inner stepped portion 72 is located on the proximal end side of the first inner peripheral surface 71.
  • the inner stepped portion 72 is located between the first inner peripheral surface 71 and the second inner peripheral surface 73 in the axial direction of the insulating guide 7.
  • the inner stepped portion 72 is inclined with respect to the axial direction of the insulating guide 7 so as to expand radially toward the distal end side.
  • a heat resistant coating 707 is formed on the first inner peripheral surface 71 and the inner stepped portion 72.
  • the heat resistant coating 707 is formed of a ceramic material.
  • the heat resistant coating 707 is formed of, for example, boron nitride.
  • the heat resistant coating 707 may be formed of a ceramic material other than boron nitride.
  • the heat resistant coating 707 may be formed of a heat resistant material other than a ceramic material.
  • the second inner peripheral surface 73 is located on the proximal end side of the inner stepped portion 72.
  • the second inner peripheral surface 73 extends in the axial direction of the insulating guide 7 and reaches the proximal end surface 702 of the insulating guide 7.
  • the second inner peripheral surface 73 has a first joint portion 74.
  • the first joint 74 is joined to the joint 62 of the electrode 6 by press fitting. Accordingly, the first joint 74 of the insulating guide 7 is joined to the electrode 6 so as to seal the fluid without an O-ring.
  • the first joint 74 of the insulating guide 7 is joined to the joint 62 of the electrode 6, whereby the electrode 6 and the insulating guide 7 are positioned relative to each other in the radial direction. Further, the base end surface 702 of the insulating guide 7 contacts the stepped portion 66 of the flange portion 63 of the electrode 6, whereby the electrode 6 and the insulating guide 7 are positioned with respect to each other in the axial direction.
  • the first joint portion 74 has an uneven shape that is locked to the outer peripheral surface of the electrode 6. Specifically, the first joint 74 has a convex portion 741. The convex portion 741 protrudes from the second inner peripheral surface 73. The convex portion 741 extends in the circumferential direction of the second inner peripheral surface 73. The convex portion 741 of the first joint portion 74 of the insulating guide 7 is engaged with the convex portion 621 of the joint portion 62 of the electrode 6. Thereby, the insulation guide 7 is firmly prevented from coming off from the electrode 6.
  • the outer peripheral surface of the insulating guide 7 has a first outer peripheral surface 75, a second outer peripheral surface 76, and a third outer peripheral surface 77.
  • the first outer peripheral surface 75 extends in the axial direction of the insulating guide 7 and reaches the distal end surface 701 of the insulating guide 7.
  • the first outer peripheral surface 75 is disposed in the first hole 811 of the nozzle 8.
  • the first outer peripheral surface 75 has a second joint portion 78.
  • the second joining portion 78 is joined to the inner peripheral surface of the nozzle 8 by press fitting. Accordingly, the second joint 78 of the insulating guide 7 is joined to the nozzle 8 so as to seal the fluid without an O-ring.
  • the second joint portion 78 of the insulating guide 7 has a concavo-convex shape that engages with the inner peripheral surface of the nozzle 8. Specifically, the second joint portion 78 of the insulating guide 7 has a convex portion 781.
  • the convex part 781 protrudes from the first outer peripheral surface 75.
  • the convex part 781 extends in the circumferential direction of the first outer peripheral surface 75.
  • the second outer peripheral surface 76 is located on the proximal end side of the first outer peripheral surface 75.
  • the second outer peripheral surface 76 extends in the axial direction of the insulating guide 7.
  • the second outer peripheral surface 76 has a flat shape with no irregularities in a cross-sectional view.
  • the second outer peripheral surface 76 is disposed between the first outer peripheral surface 75 and the third outer peripheral surface 77 in the axial direction of the insulating guide 7.
  • the second outer peripheral surface 76 is disposed outside the nozzle 8.
  • the second outer peripheral surface 76 has a smaller outer diameter than the first outer peripheral surface 75. In other words, the outer diameter of the first outer peripheral surface 75 is larger than the outer diameter of the second outer peripheral surface 76.
  • the first outer peripheral surface 75 is shorter than the second outer peripheral surface 76 in the axial direction of the insulating guide 7.
  • the third outer peripheral surface 77 is located on the proximal end side of the second outer peripheral surface 76.
  • the third outer peripheral surface 77 has a smaller outer diameter than the second outer peripheral surface 76.
  • the third outer peripheral surface 77 extends in the axial direction of the insulating guide 7 and reaches the proximal end surface 702 of the insulating guide 7.
  • the second outer peripheral surface 76 is longer than the third outer peripheral surface 77.
  • the third outer peripheral surface 77 is shorter than the second outer peripheral surface 76 in the axial direction of the insulating guide 7.
  • the third outer peripheral surface 77 is shorter than the first outer peripheral surface 75.
  • the outer peripheral surface of the insulating guide 7 has an outer stepped portion 79.
  • the outer stepped portion 79 is disposed between the second outer peripheral surface 76 and the third outer peripheral surface 77.
  • the outer stepped portion 79 is a surface perpendicular to the axial direction of the insulating guide 7.
  • FIG. 11 is a view of the insulating guide 7 as seen from the base end side.
  • the insulating guide 7 has a plurality of communication paths 703.
  • the insulating guide 7 has six communication paths 703.
  • the number of communication paths 703 is not limited to six, and may be less than six or more than six.
  • FIG. 12 shows a cross section of the insulating guide 7 including the axis of one communication path 703.
  • the communication path 703 communicates the outside of the insulating guide 7 with the inside of the hole 706 of the insulating guide 7.
  • the communication passage 703 communicates the outside of the insulation guide 7 and the gas passage in the insulation guide 7.
  • the communication path 703 extends in a direction inclined with respect to the axial direction.
  • the communication path 703 is inclined so as to approach the axis of the insulating guide 7 toward the tip of the insulating guide 7.
  • the inclination angle of the communication path 703 with respect to the axial direction of the insulating guide 7 is preferably 30 degrees or more and 60 degrees or less.
  • the inclination angle of the communication path 703 with respect to the axial direction of the insulating guide 7 is 45 degrees.
  • One end of the communication path 703 is connected to the inner stepped portion 72.
  • the other end of the communication path 703 is connected to the outer stepped portion 79.
  • the communication path 703 is connected to the outer peripheral surface of the insulation guide 7 at a position closer to the base end side than the center of the insulation guide 7 in the axial direction. Have.
  • the first communication path 704 has a larger flow path cross section than the second communication path 705.
  • the first communication path 704 is connected to the outer stepped portion 79.
  • the first communication path 704 communicates with the outside of the insulating guide 7.
  • the second communication path 705 is connected to the inner stepped portion 72.
  • the second communication passage 705 communicates with the gas passage in the insulating guide 7.
  • FIG. 12 only one communication path 703 is shown, but the other communication paths 703 have the same structure as the communication path 703 in FIG.
  • the plurality of communication paths 703 are inclined with respect to the circumferential direction and the radial direction. All the communication paths 703 are inclined in the same direction with respect to the circumferential direction. All the communication paths 703 are inclined in the same direction with respect to the radial direction. Thereby, the gas blown out from the communication path 703 becomes a swirling flow.
  • the plurality of communication paths 703 are arranged at equal intervals in the circumferential direction of the insulating guide 7. When viewed from the axial direction of the insulating guide 7, the axis of the communication path 703 is parallel to the axis of the communication path 703 and is separated from the straight line passing through the center of the insulating guide 7 by a predetermined distance.
  • FIG. 15 is a cross-sectional view of the nozzle 8.
  • the nozzle 8 has a cylindrical shape having a tapered tip portion.
  • the nozzle 8 has a hole 811 into which the insulating guide 7 is inserted, and is joined to the insulating guide 7 by press-fitting.
  • the nozzle 8 includes a first nozzle portion 81, a second nozzle portion 82, and a third nozzle portion 83.
  • the first nozzle portion 81 includes the base end of the nozzle 8.
  • the first nozzle portion 81 has a first hole 811.
  • the second nozzle part 82 is located on the tip side of the first nozzle part 81.
  • the second nozzle part 82 is located between the first nozzle part 81 and the third nozzle part 83 in the axial direction of the nozzle 8. In the axial direction of the nozzle 8, the second nozzle portion 82 is longer than the first nozzle portion 81.
  • the second nozzle part 82 has a second hole 821 communicating with the first hole 811.
  • the second hole 821 has a smaller inner diameter than the first hole 811. Therefore, an inner step 84 is provided between the inner peripheral surface 812 of the first nozzle portion 81 and the inner peripheral surface 822 of the second nozzle portion 82.
  • the inner stepped portion 84 is a surface perpendicular to the axial direction of the nozzle 8.
  • the outer diameter of the second nozzle part 82 is the same as the outer diameter of the first nozzle part 81. Therefore, the outer peripheral surface 823 of the second nozzle portion 82 is flush with the outer peripheral surface 813 of the first nozzle portion 81.
  • the base end of the outer peripheral surface 813 of the first nozzle portion 81 is chamfered.
  • the second nozzle portion 82 has a larger radial thickness than the first nozzle portion 81.
  • the third nozzle portion 83 includes the tip of the nozzle 8.
  • the third nozzle portion 83 is located on the tip side of the second nozzle portion 82.
  • the third nozzle portion 83 has an injection hole 831.
  • the injection hole 831 has an inner diameter smaller than that of the second hole 821.
  • the injection hole 831 extends in the axial direction of the nozzle 8 and reaches the tip end surface 801 of the nozzle 8. In the axial direction of the nozzle 8, the first hole 811 described above is shorter than the injection hole 831.
  • the injection hole 831 communicates with the second hole 821 through the tapered hole 832.
  • the tapered hole 832 is located between the injection hole 831 and the second hole 821 in the axial direction of the nozzle 8, and connects the injection hole 831 and the second hole 821.
  • the tapered hole 832 decreases in the radial direction toward the tip of the nozzle 8.
  • the outer peripheral surface of the nozzle 8 has a first outer peripheral surface 85, a second outer peripheral surface 86, and a third outer peripheral surface 87.
  • the first outer peripheral surface 85 reaches the base end surface 802 of the nozzle 8.
  • the first outer peripheral surface 85 includes an outer peripheral surface 813 of the first nozzle portion 81 and an outer peripheral surface 823 of the second nozzle portion 82.
  • the first outer peripheral surface 85 has a linear shape extending in the axial direction of the nozzle 8 in a sectional view. In other words, the first outer peripheral surface 85 has a flat shape without unevenness in a cross-sectional view.
  • the second outer peripheral surface 86 is located on the front end side of the first outer peripheral surface 85.
  • the second outer peripheral surface 86 is located between the first outer peripheral surface 85 and the third outer peripheral surface 87 in the axial direction of the nozzle 8.
  • the second outer peripheral surface 86 has a smaller outer diameter than the first outer peripheral surface 85. Therefore, an outer step 88 is provided between the first outer peripheral surface 85 and the second outer peripheral surface 86.
  • the outer stepped portion 88 is a surface perpendicular to the axial direction of the nozzle 8.
  • the third outer peripheral surface 87 is located on the distal end side of the second outer peripheral surface 86.
  • the third outer peripheral surface 87 reaches the tip surface 801 of the nozzle 8.
  • the third outer peripheral surface 87 is inclined so as to decrease in the radial direction toward the tip.
  • the insulating guide 7 is inserted into the first hole 811 of the first nozzle portion 81.
  • the electrode 6 is inserted into the second hole 821 of the second nozzle portion 82.
  • the inner peripheral surface 822 of the second nozzle portion 82 faces the electrode main body portion 61 with a gap therebetween.
  • the tip of the electrode 6 faces the tapered hole 832 of the third nozzle portion 83.
  • the first nozzle portion 81 is joined to the insulating guide 7. Specifically, the second joint portion 78 of the insulating guide 7 is inserted into the first hole 811, and the first nozzle portion 81 is joined to the second joint portion 78 of the insulating guide 7 by press-fitting. Thereby, the inner peripheral surface 812 of the first nozzle portion 81 is joined to the insulating guide 7 so as to seal the fluid without an O-ring.
  • the nozzle 8 and the insulating guide 7 are positioned relative to each other in the radial direction. Further, the tip surface 701 of the insulating guide 7 contacts the inner stepped portion 84 of the nozzle 8, whereby the nozzle 8 and the insulating guide 7 are positioned with respect to each other in the axial direction.
  • the inner peripheral surface 812 of the first nozzle portion 81 has an uneven shape that is locked to the outer peripheral surface of the insulating guide 7. Specifically, the inner peripheral surface 812 of the first nozzle portion 81 has a convex portion 814. The convex portion 814 of the first nozzle portion 81 is engaged with the convex portion 781 of the second joint portion 78 of the insulating guide 7. Thereby, the nozzle 8 is prevented from coming off from the insulating guide 7.
  • the second outer peripheral surface 86 has an uneven shape that is locked to the inner peripheral surface of the insulating ring 9. Specifically, the second outer peripheral surface 86 has a convex portion 861.
  • FIGS. 16 and 17 are perspective views of the insulating ring 9.
  • FIG. 18 is a cross-sectional view of the insulating ring 9. As shown in FIGS. 16 to 18, the insulating ring 9 has a hole 903 into which the nozzle 8 is inserted.
  • the inner peripheral surface 91 of the insulating ring 9 has a convex portion 911.
  • the outer peripheral surface 92 of the insulating ring 9 has a convex portion 921.
  • the insulating ring 9 has a flange portion 93.
  • the flange portion 93 protrudes from the outer peripheral surface 92 of the insulating ring 9. Therefore, a step portion 94 is provided between the outer peripheral surface 92 of the insulating ring 9 and the flange portion 93.
  • the step portion 94 is a surface perpendicular to the axial direction of the insulating ring 9.
  • the insulating ring 9 is joined to the nozzle 8 by press-fitting. Specifically, the inner peripheral surface 91 of the insulating ring 9 is joined to the second outer peripheral surface 86 of the nozzle 8 by press-fitting. When the inner peripheral surface 91 of the insulating ring 9 is joined to the second outer peripheral surface 86 of the nozzle 8, the insulating ring 9 and the nozzle 8 are positioned relative to each other in the radial direction.
  • the insulating ring 9 and the nozzle 8 are positioned relative to each other in the axial direction.
  • the convex portion 911 of the inner peripheral surface 91 of the insulating ring 9 is engaged with the convex portion 861 of the second outer peripheral surface 86 of the nozzle 8. Thereby, the insulating ring 9 is firmly prevented from coming off from the nozzle 8.
  • FIGS. 19 and 20 are perspective views of the shield cap 10.
  • FIG. 21 is a cross-sectional view of the shield cap 10. As shown in FIGS. 19 to 21, the shield cap 10 has a hole 103. The nozzle 8 is inserted into the hole 103 of the shield cap 10. The shield cap 10 has an injection hole 104. The injection hole 104 communicates with the hole 103 and penetrates the distal end surface 101 of the shield cap 10 in the axial direction.
  • the shield cap 10 has a first inner peripheral surface 11 and a second inner peripheral surface 12.
  • the first inner peripheral surface 11 extends in the axial direction of the shield cap 10 and reaches the proximal end surface 102 of the shield cap 10.
  • the first inner peripheral surface 11 has a convex portion 111.
  • the second inner peripheral surface 12 is located on the tip side of the first inner peripheral surface 11.
  • the second inner peripheral surface 12 is inclined so as to decrease in the radial direction toward the tip.
  • the shield cap 10 has a first outer peripheral surface 13, a flange portion 14, a second outer peripheral surface 15, and a third outer peripheral surface 16.
  • the first outer peripheral surface 13 extends in the axial direction of the shield cap 10 and reaches the proximal end surface 102 of the shield cap 10.
  • the flange portion 14 is located on the distal end side of the first outer peripheral surface 13.
  • the flange portion 14 is located between the first outer peripheral surface 13 and the second outer peripheral surface 15 in the axial direction of the shield cap 10.
  • the flange portion 14 protrudes from the first outer peripheral surface 13.
  • the flange portion 14 protrudes from the second outer peripheral surface 15.
  • An outer stepped portion 17 is provided between the flange portion 14 and the second outer peripheral surface 15.
  • the outer stepped portion 17 is a surface perpendicular to the axial direction of the shield cap 10.
  • the outer diameter of the flange portion 14 is larger than the diameter of the opening 41 of the first retainer cap 4.
  • the outer diameter of the flange portion 14 is larger than the diameter of the opening 51 of the second retainer cap 5.
  • the second outer peripheral surface 15 is located on the front end side of the flange portion 14.
  • the second outer peripheral surface 15 has a smaller outer diameter than the first outer peripheral surface 13.
  • the second outer peripheral surface 15 extends in the axial direction of the shield cap 10.
  • the third outer peripheral surface 16 is located on the distal end side of the second outer peripheral surface 15.
  • the third outer peripheral surface 16 reaches the front end surface 101 of the shield cap 10.
  • the third outer peripheral surface 16 is inclined with respect to the axial direction of the shield cap 10 so as to decrease in the radial direction toward the tip.
  • FIG. 22 is a cross-sectional view taken along the line AA in FIG.
  • the shield cap 10 has a plurality of communication paths 105.
  • the communication path 105 communicates the outside of the shield cap 10 and the inside of the hole 103 of the shield cap 10.
  • One end of the communication path 105 reaches the first outer peripheral surface 13.
  • the other end of the communication path 105 reaches the first inner peripheral surface 11.
  • the communication path 105 is arranged at equal intervals in the circumferential direction of the shield cap 10.
  • the axis of the communication path 105 is parallel to the axis of the communication path 105 and is separated from a straight line passing through the center of the insulating guide 7 by a predetermined distance.
  • All the communication paths 105 are inclined in the same direction with respect to the circumferential direction.
  • All the communication paths 105 are inclined in the same direction with respect to the radial direction. Thereby, the gas blown out from the communication path 105 becomes a swirling flow.
  • the shield cap 10 is joined to the insulating ring 9 by press-fitting. Specifically, the first inner peripheral surface 11 of the shield cap 10 is joined to the outer peripheral surface 92 of the insulating ring 9 by press-fitting. The convex portion 111 of the first inner peripheral surface 11 of the shield cap 10 is engaged with the convex portion 921 of the outer peripheral surface 92 of the insulating ring 9. As a result, the shield cap 10 is firmly retained from the insulating ring 9.
  • the shield cap 10 and the insulating ring 9 are positioned relative to each other in the radial direction. Thereby, the injection hole 104 of the shield cap 10 and the injection hole 831 of the nozzle 8 are arrange
  • the shield cap 10 and the insulating ring 9 are positioned relative to each other in the axial direction.
  • the shield cap 10 is disposed with a gap with respect to the nozzle 8.
  • the second inner peripheral surface 12 of the shield cap 10 is disposed with a gap from the third outer peripheral surface 87 of the nozzle 8.
  • a gas passage which will be described later is formed between the shield cap 10 and the nozzle 8.
  • the communication path 105 of the shield cap 10 is located on the tip side of the tip of the insulating ring 9.
  • the communication path 105 of the shield cap 10 communicates with a gas path between the shield cap 10 and the nozzle 8.
  • FIG. 23 and 24 are perspective views of the center pipe 20.
  • FIG. 25 is a sectional view of the center pipe 20.
  • the center pipe 20 is inserted into the internal passage 65 of the electrode 6 and supplies cooling water into the electrode 6.
  • the center pipe 20 is made of a conductor.
  • the center pipe 20 has a pipe body 21 and a contact 22.
  • FIG. 26 is a perspective view of the pipe body 21.
  • FIG. 27 is a perspective view of the contact 22.
  • the pipe body 21 has a tubular shape.
  • the pipe body 21 is formed of a conductor.
  • the outer peripheral surface of the pipe body 21 includes a flange portion 23, a first outer peripheral surface 24, a second outer peripheral surface 25, and a third outer peripheral surface 26.
  • the flange portion 23 includes the proximal end of the pipe body 21.
  • the flange portion 23 protrudes from the first outer peripheral surface 24. Therefore, a step portion 27 is provided between the flange portion 23 and the first outer peripheral surface 24.
  • the step portion 27 is a surface perpendicular to the axial direction of the pipe body 21.
  • 1st outer peripheral surface 24 is located in the front end side of the flange part 23.
  • FIG. The first outer peripheral surface 24 is located between the flange portion 23 and the second outer peripheral surface 25 in the axial direction of the pipe body 21.
  • the first outer peripheral surface 24 extends in the axial direction of the pipe body 21.
  • the second outer peripheral surface 25 is located on the front end side of the first outer peripheral surface 24.
  • the second outer peripheral surface 25 is located between the first outer peripheral surface 24 and the third outer peripheral surface 26 in the axial direction of the pipe body 21.
  • the second outer peripheral surface 25 extends in the axial direction of the pipe body 21. In the axial direction of the pipe body 21, the second outer peripheral surface 25 is shorter than the first outer peripheral surface 24.
  • the second outer peripheral surface 25 has a smaller outer diameter than the first outer peripheral surface 24.
  • the third outer peripheral surface 26 is located on the front end side of the second outer peripheral surface 25.
  • the third outer peripheral surface 26 includes the tip of the pipe body 21.
  • the third outer peripheral surface 26 extends in the axial direction of the pipe body 21.
  • the third outer peripheral surface 26 is longer than the first outer peripheral surface 24 in the axial direction of the pipe body 21.
  • the third outer peripheral surface 26 has a smaller outer diameter than the second outer peripheral surface 25.
  • a concave portion 261 is provided at an intermediate portion of the third outer peripheral surface 26 in the axial direction.
  • the contact 22 is attached to the recess 261.
  • the pipe body 21 has a cooling water passage inside.
  • the cooling water passage passes through the pipe body 21 in the axial direction.
  • the cooling water passage includes a first passage 211, a second passage 212, and a third passage 231.
  • the first passage 211 reaches the proximal end surface 201 of the pipe body 21.
  • path 211 inclines with respect to the axial direction of the pipe main body 21 so that it may become small to radial direction toward a front-end
  • the second passage 212 is located on the tip side of the first passage 211.
  • the second passage 212 is located between the first passage 211 and the third passage 231 in the axial direction of the pipe body 21.
  • the second passage 212 is longer than the third passage 231 in the axial direction of the pipe body 21.
  • the second passage 212 extends in the axial direction of the pipe body 21.
  • the third passage 231 is located on the front end side of the second passage 212.
  • the third passage 231 reaches the distal end surface 202 of the pipe body 21.
  • the third passage 231 has a larger inner diameter than the second passage 212.
  • the convex portion 67 of the electrode 6 described above is arranged in the third passage 231.
  • the contact 22 is a separate body from the pipe body 21.
  • the contact 22 is made of a conductor.
  • the contact 22 is detachably attached to the pipe body 21.
  • the contact 22 is attached to the outer peripheral surface of the pipe body 21. Specifically, the contact 22 is attached to the pipe body 21 by being fitted into the recess 261 of the third outer peripheral surface 26 of the pipe body 21.
  • the contact 22 has an attachment portion 28 and a contact portion 29.
  • the attachment portion 28 is attached to the outer peripheral surface of the pipe body 21.
  • the attachment portion 28 has a first ring portion 281 and a second ring portion 282.
  • the second ring portion 282 is disposed away from the first ring portion 281 in the axial direction of the contact 22.
  • the first ring part 281 and the second ring part 282 are fitted into the recesses 261 of the pipe body 21, respectively.
  • the contact portion 29 contacts the inner peripheral surface of the electrode 6.
  • the contact portion 29 has elasticity so as to generate a reaction force when pressed in the radial direction of the contact 22.
  • the contact portion 29 has a plurality of curved portions 291.
  • the bending portion 291 connects the first ring portion 281 and the second ring portion 282.
  • the curved portion 291 has a plate shape that bulges outward in the radial direction of the contact 22.
  • the contact part 29 has a plurality of slits 292.
  • the slit 292 is provided between the plurality of curved portions 291 and extends in the axial direction of the contact 22. In the drawing, only a part of the slit 292 is denoted by reference numeral 292 and the other slits 292 are omitted.
  • FIG. 28 is a view of the contact 22 as viewed from the axial direction.
  • the plurality of bending portions 291 are arranged at equal intervals in the circumferential direction of the contact 22.
  • the plurality of slits 292 are arranged at equal intervals in the circumferential direction of the contact 22.
  • the contact 22 has eight curved portions 291 and eight slits 292.
  • the number of contacts 22 is not limited to eight, and may be less than eight or more than eight.
  • the number of slits 292 is not limited to eight, and may be less than eight or more than eight.
  • the flange portion 23 of the center pipe 20 is disposed between the base end surface 341 of the electrode base 34 and the bottom surface 331 of the hole of the base portion 33.
  • the flange portion 23 is in contact with the proximal end surface 341 of the electrode base 34.
  • the center pipe 20 and the electrode base 34 are electrically connected.
  • the center pipe 20 is positioned in the radial direction and the axial direction.
  • FIG. 29 is an enlarged view of the replacement part unit 2a in FIG. 1 and the surrounding configuration.
  • the contact 22 of the center pipe 20 is in contact with the inner peripheral surface of the electrode 6.
  • the contact 22 is elastically deformed radially inward by being inserted into the internal passage 65 of the electrode 6.
  • the contact 22 is pressed against the inner peripheral surface of the electrode 6 by a reaction force of elastic deformation.
  • the center pipe 20 is electrically connected to the electrode base 34. Accordingly, the contact 22 energizes the electrode 6 by contacting the inner peripheral surface of the electrode 6.
  • the electrode 6 has a first energizing surface 603 and a second energizing surface 601.
  • the first energization surface 603 is a portion in contact with the contact 22 on the inner peripheral surface of the internal passage 65.
  • the electrode 6 is electrically connected to the electrode pedestal 34 via the center pipe 20 and the first energization surface 603.
  • the first current-carrying surface 603 is disposed adjacent to the tapered portion 652 on the distal end side of the tapered portion 652.
  • the 1st electricity supply surface 603 is located in the cooling water channel
  • the second energizing surface 601 is the base end surface 601 of the electrode 6.
  • the second energizing surface 601 is in contact with the tip surface 342 of the electrode pedestal 34.
  • the electrode 6 is electrically connected to the electrode pedestal 34 via the second energization surface 601.
  • the 2nd electricity supply surface 601 is adjacent to the cooling water channel
  • FIG. 1 Solid arrows indicate the flow of cooling water.
  • a cooling water supply pipe 45 is connected to the base portion 33.
  • the cooling water supply pipe 45 is connected to the second cooling water passage W ⁇ b> 2 in the nozzle pedestal 36 via the first cooling water passage W ⁇ b> 1 in the base portion 33.
  • the first cooling water passage W ⁇ b> 1 extends from the base end surface of the base portion 33 toward the outer peripheral surface of the base portion 33.
  • the second cooling water passage W ⁇ b> 2 extends from the inner peripheral surface of the nozzle pedestal 36 toward the tip of the nozzle pedestal 36.
  • the second cooling water passage W2 is connected to the third cooling water passage W3.
  • the third cooling water passage W3 is an annular passage surrounded by the nozzle base 36, the first retainer cap 4, and the replacement part unit 2a.
  • a gap is provided between the distal end surface 371 of the insulating sleeve 37 and the proximal end surface 802 of the nozzle 8, and this gap constitutes a part of the third cooling water passage W3. Yes. Accordingly, the base end surface 802 of the nozzle 8 is disposed in the third cooling water passage W3. Further, the gap between the distal end surface 371 of the insulating sleeve 37 and the proximal end surface 802 of the nozzle 8 reaches the second outer peripheral surface 76 of the insulating guide 7. Accordingly, a part of the second outer peripheral surface 76 of the insulating guide 7 is disposed in the third cooling water passage W3.
  • the third cooling water passage W3 includes a fourth cooling water passage W4 in the nozzle pedestal 36, a fifth cooling water passage W5 between the nozzle pedestal 36 and the insulating sleeve 37, and the insulating sleeve 37.
  • the sixth cooling water passage W6 and the seventh cooling water passage W7 in the electrode base 34 are connected to the eighth cooling water passage W8.
  • the fourth cooling water passage W4 extends from the tip of the nozzle base 36 toward the inner peripheral surface of the nozzle base 36.
  • the fifth cooling water passage W5 is an annular passage provided between the nozzle base 36 and the insulating sleeve 37.
  • the sixth cooling water passage W ⁇ b> 6 is a plurality of passages extending in the radial direction from the outer peripheral surface of the insulating sleeve 37 toward the inner peripheral surface of the insulating sleeve 37.
  • the seventh cooling water passage W ⁇ b> 7 is a plurality of passages extending in the radial direction from the outer peripheral surface of the electrode base 34 toward the inner peripheral surface of the electrode base 34.
  • the eighth cooling water passage W8 is a passage between the electrode pedestal 34 and the center pipe 20.
  • the eighth cooling water passage W8 is connected to a ninth cooling water passage W9 between the electrode 6 and the center pipe 20.
  • the ninth cooling water passage W9 communicates with the tenth cooling water passage W10 in the center pipe 20 at the tip of the center pipe 20.
  • the tenth cooling water passage W ⁇ b> 10 is connected to the cooling water discharge pipe 46 via the eleventh cooling water passage W ⁇ b> 11 in the base portion 33.
  • the cooling water is supplied from the cooling water supply source through the cooling water supply pipe 45, the first cooling water passage W1 in the base portion 33, the second cooling water passage W2 in the nozzle base 36, and the third cooling water passage W3. To be supplied.
  • the cooling water flows from the third cooling water passage W3 to the fourth cooling water passage W4 in the nozzle pedestal 36, the fifth cooling water passage W5 between the nozzle pedestal 36 and the insulating sleeve 37, and the sixth cooling water in the insulating sleeve 37.
  • Through the passage W6 and the seventh cooling water passage W7 in the electrode pedestal 34 it is supplied to the eighth cooling water passage W8 between the electrode pedestal 34 and the center pipe 20.
  • the cooling water flows from the eighth cooling water passage W8 to the ninth cooling water passage W9 between the electrode 6 and the center pipe 20, the tenth cooling water passage W10 in the center pipe 20, and the eleventh cooling water in the base portion 33. It is discharged to the outside of the plasma torch 1a through the passage W11 and the cooling water discharge pipe 46.
  • the plasma gas path of the plasma torch 1a will be described.
  • the plasma gas is oxygen gas.
  • 30 is a cross-sectional view different from FIG. 1 along the central axis of the plasma torch 1a.
  • broken arrows indicate the flow of plasma gas.
  • the broken line arrows in FIG. 30 indicate the flow of the main gas.
  • broken arrows indicate the flow of assist gas.
  • a main gas supply pipe 47 is connected to the base portion 33.
  • the main gas supply pipe 47 is connected to the second main gas passage MG ⁇ b> 2 between the base portion 33 and the insulating sleeve 37 via the first main gas passage MG ⁇ b> 1 in the base portion 33.
  • the first main gas passage MG1 extends in the axial direction from the base end surface of the base portion 33 toward the step portion 332 on the inner peripheral surface of the base portion 33.
  • the second main gas passage MG ⁇ b> 2 is an annular passage formed between the step portion 332 on the inner peripheral surface of the base portion 33 and the step portion 372 on the outer peripheral surface of the insulating sleeve 37.
  • the second main gas passage MG2 is connected to the fourth main gas passage MG4 via the third main gas passage MG3 in the insulating sleeve 37.
  • the third main gas passage MG ⁇ b> 3 extends in the axial direction from a step 372 on the outer peripheral surface of the insulating sleeve 37.
  • the fourth main gas passage MG4 is an annular passage between the insulating sleeve 37 and the replacement part unit 2a.
  • FIG. 31 is an enlarged view of the replacement part unit 2a in FIG. 30 and the surrounding configuration.
  • the fourth main gas passage MG ⁇ b> 4 is configured by the inner peripheral surface of the insulating sleeve 37, the outer peripheral surface of the insulating guide 7, and the outer peripheral surface of the electrode 6.
  • a step portion 373 is provided on the inner peripheral surface of the insulating sleeve 37.
  • the step portion 373 is a surface perpendicular to the axial direction of the insulating sleeve 37.
  • the outer stepped portion 79 of the insulating guide 7 is disposed with a gap from the stepped portion 373 on the inner peripheral surface of the insulating sleeve 37.
  • the fourth main gas passage MG ⁇ b> 4 passes through a gap between the outer stepped portion 79 of the insulating guide 7 and the stepped portion 373 on the inner peripheral surface of the insulating sleeve 37.
  • the fourth main gas passage MG4 is sealed by the O-ring R2 with respect to the above-described third cooling water passage W3.
  • the O-ring R ⁇ b> 2 is fitted into a recess 374 provided on the inner peripheral surface of the insulating sleeve 37.
  • the O-ring R ⁇ b> 2 is in contact with a part of the second outer peripheral surface 76 of the insulating guide 7. That is, the second outer peripheral surface 76 of the insulating guide 7 has a seal surface 761 that comes into contact with the O-ring.
  • a portion of the second outer peripheral surface 76 on the tip side of the seal surface 761 is disposed in the third cooling water passage W3.
  • a portion of the second outer peripheral surface 76 that is proximal to the seal surface 761 is disposed in the fourth main gas passage MG4. Similarly to the second outer peripheral surface 76, the third outer peripheral surface 77 is also disposed in the fourth main gas passage MG4.
  • the fourth main gas passage MG4 is sealed by the O-ring R3 with respect to the sixth cooling water passage W6 and the seventh cooling water passage W7 described above.
  • the O-ring R3 is fitted in a recess 375 provided on the inner peripheral surface of the insulating sleeve 37.
  • the O-ring R3 is in contact with a part of the outer peripheral surface of the flange portion 63 of the electrode 6. That is, the outer peripheral surface of the flange portion 63 has a seal surface 631 that comes into contact with the O-ring R3.
  • a portion of the outer peripheral surface of the flange portion 63 on the tip side of the seal surface 631 is disposed in the fourth main gas passage MG4.
  • the fourth main gas passage MG4 is connected to the fifth main gas passage MG5 between the insulating guide 7 and the electrode 6 through the plurality of communication passages 703 of the insulating guide 7.
  • the fifth main gas passage MG5 is an annular passage between the inner peripheral surface of the insulating guide 7 and the outer peripheral surface of the electrode 6.
  • the fifth main gas passage MG5 is connected to a sixth main gas passage MG6 between the nozzle 8 and the electrode 6.
  • the inner diameter of the fifth main gas passage MG5 is the same as the inner diameter of the sixth main gas passage MG6.
  • the sixth main gas passage MG6 communicates with the injection hole 831 of the nozzle 8.
  • the main gas is supplied from the main gas supply source, the first main gas passage MG1 in the base portion 33, the second main gas passage MG2 between the base portion 33 and the insulating sleeve 37, and the third main gas in the insulating sleeve 37. It flows through the passage MG3 to the fourth main gas passage MG4 between the insulating sleeve 37 and the replacement part unit 2a.
  • the main gas passes through the communication passage 703 from the fourth main gas passage MG4 to become a swirling flow, and is ejected to the fifth main gas passage MG5.
  • the main gas that has become a swirling flow passes through the sixth main gas passage MG6 and is ejected from the injection hole 831 of the nozzle 8.
  • an assist gas supply pipe 48 is connected to the base portion 33.
  • the assist gas supply pipe 48 is connected to the second assist gas passage AG2 in the nozzle base 36 via the first assist gas passage AG1 in the base portion 33.
  • the first assist gas passage AG ⁇ b> 1 extends from the base end surface of the base portion 33 toward the outer peripheral surface of the base portion 33.
  • the second assist gas passage AG ⁇ b> 2 extends from the inner peripheral surface of the nozzle base 36 toward the outer peripheral surface of the nozzle base 36.
  • the second assist gas passage AG2 is connected to a fourth assist gas passage AG4 between the holder 38 and the second retainer cap 5 via a third assist gas passage AG3 in the holder 38.
  • the third assist gas passage AG3 extends from the inner peripheral surface of the holder 38 toward the outer peripheral surface.
  • the fourth assist gas passage AG ⁇ b> 4 is an annular passage between the outer peripheral surface of the holder 38 and the inner peripheral surface of the second retainer cap 5.
  • the fourth assist gas passage AG4 is connected to the sixth assist gas passage AG6 between the first retainer cap 4 and the second retainer cap 5 via the fifth assist gas passage AG5 in the second retainer cap 5.
  • the fifth assist gas passage AG5 is a plurality of passages extending from the inner peripheral surface of the second retainer cap 5 toward the outer peripheral surface.
  • the sixth assist gas passage AG6 is an annular passage between the inner peripheral surface of the first retainer cap 4 and the outer peripheral surface of the second retainer cap 5.
  • the sixth assist gas passage AG6 is connected to the seventh assist gas passage AG7 between the nozzle 8 and the shield cap 10 through the plurality of communication passages 105 of the shield cap 10. As shown in FIG.
  • the seventh assist gas passage AG7 communicates with the injection hole 831 of the nozzle 8 and the injection hole 104 of the shield cap 10.
  • the sixth assist gas passage AG6 is sealed by the O-ring R4 with respect to the above-described third cooling water passage W3.
  • the O-ring R4 is fitted into a recess 44 provided at the tip of the inner peripheral surface of the first retainer cap 4.
  • the O-ring R4 is in contact with the first outer peripheral surface 13 of the shield cap 10. That is, the first outer peripheral surface 13 of the shield cap 10 has the seal surface 131 that comes into contact with the O-ring R4.
  • the insulating ring 9 is joined to the nozzle 8 by press-fitting.
  • the insulating ring 9 is joined to the shield cap 10 by press fitting.
  • the seventh assist gas passage AG7 is sealed by the insulating ring 9 with respect to the third cooling water passage W3 described above.
  • the assist gas is supplied from the assist gas supply source by the first assist gas passage AG1 in the base portion 33, the second assist gas passage AG2 in the nozzle base 36, the third assist gas passage AG3 in the holder 38, the holder 38 and the first gas.
  • 6th assist between the 1st retainer cap 4 and the 2nd retainer cap 5 through 4th assist gas passage AG4 between 2 retainer caps 5 and 5th assist gas passage AG5 in 2nd retainer caps 5 It flows into the gas passage AG6.
  • the assist gas becomes a swirl flow by passing through the communication path 105 from the sixth assist gas path AG6 and is ejected to the seventh assist gas path AG7.
  • the assist gas that has become a swirling flow passes through the seventh assist gas passage AG7 and is ejected from the injection hole 104 of the shield cap 10 together with the main gas.
  • the replacement part unit 2a is a consumable item. For this reason, the replacement part unit 2a is detachably attached to the torch main body 3, and is replaced with a new one when the wear has progressed to the extent that replacement is necessary.
  • the stepped portion 17 of the shield cap 10 is pressed in the axial direction by the edge portion of the opening 51 of the second retainer cap 5.
  • the flange portion 14 of the shield cap 10 is sandwiched between the edge portion of the opening 41 of the first retainer cap 4 and the edge portion of the opening 51 of the second retainer cap 5. Thereby, the replacement part unit 2a is fixed. Therefore, when replacing the replacement part unit 2a, first, the second retainer cap 5 is removed.
  • the replacement part unit 2a In the state where the second retainer cap 5 is removed, the replacement part unit 2a is held by the elastic force of the O-rings R2, R3, and R4. Accordingly, by pulling out the replacement part unit 2a from the opening 41 of the first retainer cap 4 to the tip side, the insulating guide 7 and the electrode 6 of the replacement part unit 2a are pulled out from the insulating sleeve 37. At that time, the contact 22 of the center pipe 20 slides along the inner peripheral surface of the electrode 6, and the electrode 6 is extracted from the center pipe 20.
  • first retainer cap 4 may be loosened before the replacement part unit 2a is pulled out from the opening 41 of the first retainer cap 4 to the tip side. Accordingly, the flange portion 14 of the shield cap 10 is caught by the edge portion of the opening 41 of the first retainer cap 4 and pushed out. Thereby, the replacement part unit 2a can be easily removed.
  • the replacement part unit 2a can be easily and integrally removed from the torch body 3.
  • the replacement part unit 2a When attaching a new replacement part unit 2a, the replacement part unit 2a is inserted from the opening 41 of the first retainer cap 4 toward the proximal end side. As a result, the electrode 6 and the insulation guide 7 of the replacement part unit 2 a are inserted into the insulation sleeve 37. At that time, the center pipe 20 is inserted into the electrode 6, and the contact 22 of the center pipe 20 slides along the inner peripheral surface of the electrode 6.
  • the edge of the opening 51 of the second retainer cap 5 presses the stepped portion 17 of the shield cap 10 toward the proximal end side.
  • the replacement part unit 2a is pushed toward the base end side until the base end surface 601 of the electrode 6 contacts the front end surface 342 of the electrode base 34.
  • the flange part 14 of the shield cap 10 is sandwiched and held by the edge part of the opening 41 of the first retainer cap 4 and the edge part of the opening 51 of the second retainer cap 5, whereby the replacement part unit 2 a is Fixed.
  • the heat resistant coating 707 is formed on the first inner peripheral surface 71 and the inner stepped portion 72. For this reason, even if the insulating guide 7 is made of resin, durability against burning of the insulating guide 7 can be improved.
  • the communication passage 703 extends in a direction inclined not only in the circumferential direction and the radial direction of the fifth main gas passage MG5 but also in the axial direction. Therefore, in the swirling flow of the plasma gas injected from the communication path 703, the velocity component in the swirling direction can be reduced and the velocity component in the axial direction can be increased.
  • the swirling flow of the plasma gas does not directly hit the heat resistant coating.
  • the damage of peeling of the heat-resistant film due to a high-speed air current can be reduced.
  • the heat-resistant coating film 707 is hardly separated, and the durability can be further improved.
  • the first outer peripheral surface 75 of the insulating guide 7 is shorter than the second outer peripheral surface 76 in the axial direction of the insulating guide 7.
  • the second outer peripheral surface 76 of the insulating guide 7 is longer than the first outer peripheral surface 75 in the axial direction of the insulating guide 7.
  • the second outer peripheral surface 76 of the insulating guide 7 is longer than the third outer peripheral surface 77.
  • the insulating guide 7 can be effectively cooled by arranging a part of the second outer peripheral surface 76 of the insulating guide 7 in the third cooling water passage W3.
  • the first outer peripheral surface 75 of the insulating guide 7 is shorter than the second outer peripheral surface 76 in the axial direction of the insulating guide 7.
  • the tip of the insulating guide 7 can be arranged far away from the vicinity of the tip of the electrode 6 that becomes high temperature. Thereby, the thermal influence on the insulation guide 7 can be reduced.
  • the electrode 6, the insulation guide 7, and the nozzle 8 are integrated, and are joined together so that they cannot be separated by a general user. For this reason, the electrode 6, the insulation guide 7, and the nozzle 8 can be easily replaced by replacing the replacement part unit 2a. Moreover, since the electrode 6, the insulation guide 7, and the nozzle 8 are joined by press-fitting, the electrode 6, the insulation guide 7, and the nozzle 8 can be joined without a gap without using an O-ring. Thereby, the concentricity of the electrode 6 and the nozzle 8 can be improved.
  • the insulating guide 7 is formed of a material that is easily deformed. That is, the insulating guide 7 is made of resin and has an elastic modulus smaller than that of ceramic. For this reason, joining by press-fitting is easier than ceramic, and sealability can be improved. Further, the cost can be reduced as compared with the case where the insulating guide 7 is made of ceramic. Therefore, even if the electrode 6, the insulating guide 7, and the nozzle 8 are replaced together, an increase in cost can be suppressed.
  • Resin insulation guide 7 has a small elastic modulus and is easily deformed as compared with a general ceramic as an insulation guide. Therefore, in order to seal between the insulating guide 7 and the electrode 6 and between the insulating guide 7 and the nozzle 8, it is not necessary to use an O-ring as in the case of a ceramic guide, and the resin-made insulating guide 7 itself is deformed. This enables fluid sealing. Therefore, not only can the insulating guide 7 be made of an inexpensive resin compared to ceramic, but the O-ring can be omitted, so the torch structure is simplified.
  • FIG. 32 is a cross-sectional view taken along the central axis of the plasma torch 1b according to the second embodiment.
  • FIG. 33 is a cross-sectional view of the replacement part unit 2b according to the second embodiment.
  • 34 and 35 are perspective views of the replacement part unit 2b.
  • 36 and 37 are perspective views of the nozzle 8 according to the second embodiment.
  • the first outer peripheral surface 85 of the nozzle 8 has a recess 851.
  • the recess 851 is provided in the second nozzle portion 82.
  • the recess 851 is recessed inward in the radial direction of the nozzle 8 and extends in the circumferential direction of the nozzle 8. In the axial direction of the nozzle 8, the recess 851 is disposed at substantially the same position as the tip of the electrode 6.
  • the outer diameter of the bottom of the recess 851 is smaller than the inner diameter of the inner peripheral surface 812 of the nozzle 8.
  • the recess 851 has a first wall surface 852 on the proximal end side and a second wall surface 853 on the distal end side.
  • the first wall surface 852 is inclined with respect to the radial direction of the nozzle 8.
  • the second wall surface 853 extends in the radial direction of the nozzle 8. As shown in FIG. 32, the first wall surface 852 extends in parallel with the inclined inner peripheral surface of the first retainer cap 4.
  • the recess 851 is disposed in the third cooling water passage W3.
  • the first retainer cap 4 is provided with a plurality of holes 43 communicating with the third cooling water passage W3.
  • the hole 43 of the first retainer cap 4 communicates with an annular cooling water passage W12 between the first retainer cap 4 and the second retainer cap 5.
  • the recess 851 is disposed at substantially the same position as the hole 43 of the first retainer cap 4.
  • the concave portion 851 is provided in the nozzle 8, the surface area of the nozzle 8 that comes into contact with the cooling water can be increased. Therefore, the cooling performance of the nozzle 8 can be improved. Moreover, since the recessed part 851 is arrange
  • the cooling water passage W12 can also cool the second retainer cap 5 with water. For this reason, the replacement part unit 2b according to the present embodiment is suitable for plasma cutting using a large current.
  • the structure of the replacement part units 2a and 2b may be changed.
  • the structures of the torch body 3, the first retainer cap 4, and the second retainer cap 5 may be changed.
  • the electrode 6, the insulating guide 7, and the nozzle 8 may be detachably joined to each other.
  • the electrode 6 and the insulating guide 7 may be joined not by press fitting but by adhesion.
  • the insulating guide 7 and the nozzle 8 may be joined not by press fitting but by adhesion.
  • the nozzle 8 and the insulating ring 9 may be joined not by press fitting but by adhesion.
  • the insulating ring 9 and the shield cap 10 may be joined not by press fitting but by adhesion.
  • the insulating ring 9 and the shield cap 10 may not be included in the replacement part units 2a and 2b. That is, a replacement part unit may be configured by the electrode 6, the insulation guide 7, and the nozzle 8. The insulating ring 9 and the shield cap 10 may be easily attached to and detached from the replacement part unit.
  • the inner diameter of the gas passage in the insulating guide 7 may be larger than the inner diameter of the nozzle 8. That is, as shown in FIG. 38, the inner diameter of the fifth main gas passage MG5 in the insulating guide 7 may be larger than the inner diameter of the sixth main gas passage MG6 in the nozzle 8.
  • a plasma torch for cutting oxygen plasma it is possible to provide an insulating guide and a replacement part unit capable of suppressing sudden damage of a resin insulating guide.
  • Electrode 7 Insulation guide 8 Nozzle MG5 Fifth main gas passage 703 Communication passage 72 Inner step 75 First outer peripheral surface 76 Second outer peripheral surface 77 Third outer peripheral surface 79 Outer step 761 Seal surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma Technology (AREA)
  • Arc Welding In General (AREA)
  • Spark Plugs (AREA)

Abstract

 絶縁ガイドは、電極とノズルとを有するプラズマ切断用のプラズマトーチに用いられる。電極はノズルに挿入される。絶縁ガイドは、樹脂製であり、 電極とノズルとを連結する。絶縁ガイドは、第1内周面(71)と、第2内周面(73)と、連通路(703)と、耐熱被膜(707)と、を備える。第1内周面は、絶縁ガイドの内部に形成される。第2内周面は、絶縁ガイドの内部に形成され、第1内周面よりも小さな内径を有する。連通路は、第1内周面の内部の空間と外部とを連結し、絶縁ガイドの軸線方向に対して傾斜した方向に延びる。耐熱被膜は、第1内周面に形成される。

Description

プラズマトーチ用絶縁ガイド、及び交換部品ユニット
 本発明は、酸素プラズマ切断用のプラズマトーチに用いられる絶縁ガイド、及び交換部品ユニットに関する。
 例えば特許文献1に示されているように、プラズマトーチは、アークの発生点となる電極と、電極を被うように配置されるノズルとを有している。電極は、トーチ本体の電極台座に取り付けられる。ノズルは、絶縁ガイドを介して電極に取り付けられる。絶縁ガイドは、ノズルが電極と同心に配置されるようにノズルを位置決めする。プラズマトーチは、ノズルのオリフィスを通じて電極とワークとの間でプラズマアークを発生させる。
特開2001-47247号公報
 絶縁ガイドは、電極とノズルとの間の絶縁性を確保するために、絶縁体で形成される。絶縁ガイドは、電極とノズルとを位置決めする部品である。また、絶縁ガイドにはガス通路が形成される。電極とノズルとの同心度や、ガス通路を通るプラズマガス流は、プラズマ切断の品質に影響を与える。このため、絶縁ガイドは、高精度の機械加工が要求される高精度部品である。従って、絶縁ガイドの材料としては、切削可能なファインセラミックス、或いは耐熱性を有するエンジニアリングプラスティック等の樹脂材料が用いられることが好ましい。
 セラミックスは、耐熱性に優れるが、高価である。このため、コスト低減のためには、絶縁ガイドの材料として樹脂材料が用いられることが望ましい。しかし、酸素プラズマ切断用のプラズマトーチにおいて樹脂製の絶縁ガイドが用いられると、絶縁ガイドが突発的に損傷するという不具合が頻発してしまう。そのため、実用上、酸素プラズマ切断用のプラズマトーチには、樹脂製の絶縁ガイドを用いることができないという問題があった。
 本発明の課題は、酸素プラズマ切断用のプラズマトーチにおいて、樹脂製の絶縁ガイドの突発的な損傷を抑えることができる絶縁ガイド、及び交換部品ユニットを提供することにある。
 本発明の第1の態様に係る絶縁ガイドは、電極とノズルとを有するプラズマ切断用のプラズマトーチに用いられる。電極はノズルに挿入される。絶縁ガイドは、樹脂製であり、電極とノズルとを連結する。絶縁ガイドは、第1内周面と、第2内周面と、連通路と、耐熱被膜と、を備える。第1内周面は、絶縁ガイドの内部に形成される。第2内周面は、絶縁ガイドの内部に形成され、第1内周面よりも小さな内径を有する。連通路は、第1内周面の内部の空間と外部とを連結し、絶縁ガイドの軸線方向に対して傾斜した方向に延びる。耐熱被膜は、第1内周面に形成される。
 本発明の発明者らは、酸素プラズマにおける樹脂製の絶縁ガイドの損傷の原因を以下のように究明した。一般的に、酸素プラズマ切断では、電極にハフニウム製の耐熱インサートが設けられる。ハフニウムは、酸化物になると融点が高くなる。電極の耐熱インサートとして一般的なタングステンは酸化物になると融点が大幅に低下するため、酸素プラズマ切断では使用できない。従って、ハフニウムが、酸素プラズマ切断用のプラズマトーチに用いられる。
 プラズマアーク発生中の電極のハフニウムは、3000℃を超える超高温の液体金属状態である。そのため、プラズマアークの点火中、切断中、或いは消化の際に、電極から高温の液体ハフニウムが飛散する現象が起きる。この飛散した高温のハフニウム液滴は、プラズマガスの旋回気流により旋回力を与えられる。ハフニウム液滴は、遠心力によってノズルの内周面に衝突して跳ね返る。これにより、ハフニウム液滴の一部が、プラズマガス流における上流側に位置する絶縁ガイドに飛び出してくる。絶縁ガイドの周囲は、高酸素雰囲気であるため、高温のハフニウム液滴が絶縁ガイドの表面に付着すると、高耐熱性を有する樹脂であっても、容易に発火し損傷してしまう。
 本態様に係る絶縁ガイドは、樹脂製であるため、コストを低減することができる。また、第1内周面には耐熱被膜が形成される。このため、絶縁ガイドを樹脂で形成しても絶縁ガイドの焼損に対する耐久性を向上させることができる。また、連通路が、軸線方向に対して傾斜した方向に延びる。従って、連通路から噴射するプラズマガスの旋回流において、軸線方向の速度成分を増大させることができる。このため、ハフニウム液滴の絶縁ガイドへの飛散が、プラズマガスの旋回流によって抑えられる。これにより、酸素プラズマ切断用のプラズマトーチにおいて、樹脂製の絶縁ガイドの突発的な損傷を抑えることができる。さらに、連通路が、軸線方向に対して垂直に設けられる場合と比べて、プラズマガスの旋回流が耐熱被膜に衝突することによって与えるダメージを軽減することができる。これにより、耐熱被膜が離れ難くなり、耐久性をさらに向上させることができる。
 耐熱被膜は、セラミック系材料からなってもよい。
 耐熱被膜は、窒化ホウ素(ボロンナイトライド)からなってもよい。
 連通路は、絶縁ガイドの周方向と径方向とに対して傾斜していてもよい。
 軸線方向に対する連通路の傾斜角度は、30度以上、60度以下であってもよい。
 絶縁ガイドは、連続使用温度が100℃以上の樹脂製であってもよい。
 絶縁ガイドは、内側段部をさらに備えてもよい。内側段部は、第1内周面と第2内周面との間に配置される。連通路は、内側段部に接続されてもよい。
 第2内周面は、電極の外周面に係止する凹凸形状を有してもよい。
 絶縁ガイドの軸線方向から見て、連通路の軸線は、連通路の軸線と平行であり且つ絶縁ガイドの中心を通る直線から所定距離、離れていてもよい。
 連通路は、絶縁ガイドの軸線方向における中心よりも基端側の位置において絶縁ガイドの外部に接続されてもよい。
 第1内周面の内径は、ノズルの内径よりも大きくてもよい。
 第1内周面の内径は、ノズルの内径と略同じであってもよい。
 絶縁ガイドは、複数の連通路を備えてもよい。複数の連通路は、絶縁ガイドの周方向において等間隔に配置されてもよい。
 絶縁ガイドは、第1外周面と第2外周面と第3外周面とをさらに備えてもよい。第1外周面は、ノズルの内周面に接合されてもよい。第2外周面は、第1外周面の基端側に位置してもよい。第3外周面は、第2外周面の基端側に位置してもよい。
 第1外周面の外径は、第2外周面の外径よりも大きくてもよい。
 第1外周面は、ノズルの内周面に係止する凹凸形状を有してもよい。
 第3外周面の外径は、第2外周面の外径よりも小さくてもよい。
 絶縁ガイドは、第2外周面と第3外周面との間に配置される外側段部をさらに備えてもよい。連通路は、外側段部に接続されてもよい。
 第3外周面は、プラズマトーチのガス通路内に配置されてもよい。
 第2外周面は、Oリングと接触するシール面を有してもよい。
 第2外周面においてシール面よりも先端側の部分は、プラズマトーチの冷却水通路内に配置されてもよい。
 絶縁ガイドの軸線方向において、第1外周面は、第2外周面より短くてもよい。
 絶縁ガイドの軸線方向において、第2外周面は、第3外周面より長くてもよい。
 本発明の第2の態様に係る絶縁ガイドは、電極とノズルとを有するプラズマ切断用のプラズマトーチに用いられる。電極はノズルに挿入される。絶縁ガイドは、円管状であり、電極とノズルとを連結し、絶縁体で形成される。第1内周面は、絶縁ガイドの先端まで延びる。第2内周面は、第1内周面の基端側に位置し、電極の外周面に接合され、第1内周面より小さな内径を有する。内側段部は、第1内周面と第2内周面との間に配置される。第1外周面は、ノズルの内周面に接合される。第2外周面は、第1外周面の基端側に位置し、第1外周面より小さい外径を有する。第3外周面は、第2外周面の基端側に位置し、第2外周面より小さい外径を有する。外側段部は、第2外周面と第3外周面との間に配置される。連通路は、内側段部と外側段部とを連通し、周方向と径方向と軸線方向とに対して傾斜した方向に延びる。
 第1内周面と内側段部とは、耐熱被膜で覆われてもよい。
 耐熱被膜は、セラミック系材料からなってもよい。
 耐熱被膜は、窒化ホウ素(ボロンナイトライド)からなってもよい。
 本発明の第3の態様に係る交換部品ユニットは、酸素プラズマ切断用のプラズマトーチに用いられる。交換部品ユニットは、電極と、上述の絶縁ガイドと、ノズルとを備える。電極は、ハフニウム製の電極材料を有する。ノズルは、絶縁ガイドが挿入される孔を有し、絶縁ガイドと圧入又は接着により接合される。
 本発明によれば、酸素プラズマ切断用のプラズマトーチにおいて、樹脂製の絶縁ガイドの突発的な損傷を抑えることができる絶縁ガイド、及び交換部品ユニットを提供することができる。
第1実施形態に係るプラズマトーチの中心軸線に沿った断面図である。 プラズマトーチの分解図である。 交換部品ユニットの側面図である。 交換部品ユニットの中心軸線に沿った断面図である。 電極の斜視図である。 電極の斜視図である。 電極の断面図である。 絶縁ガイドの斜視図である。 絶縁ガイドの斜視図である。 絶縁ガイドの断面図である。 絶縁ガイドを基端側から見た図である。 連通路の軸線を含む絶縁ガイドの断面図である。 ノズルの斜視図である。 ノズルの斜視図である。 ノズルの断面図である。 絶縁リングの斜視図である。 絶縁リングの斜視図である。 絶縁リングの断面図である。 シールドキャップの斜視図である。 シールドキャップの斜視図である。 シールドキャップの断面図である。 図21のA-A断面図である。 センタパイプの斜視図である。 センタパイプの斜視図である。 センタパイプの断面図である。 パイプ本体の斜視図である。 接触子の斜視図である。 接触子を軸線方向から見た図である。 図1における交換部品ユニット及びその周囲の構成の拡大図である。 プラズマトーチの中心軸線に沿った図1と異なる断面図である。 図30における交換部品ユニットとその周囲の構成の拡大図である。 第2実施形態に係るプラズマトーチの中心軸線に沿った断面図である。 第2実施形態に係る交換部品ユニットの断面図である。 第2実施形態に係る交換部品ユニットの斜視図である。 第2実施形態に係る交換部品ユニットの斜視図である。 第2実施形態に係るノズルの斜視図である。 第2実施形態に係るノズルの斜視図である。 他の実施形態に係るプラズマトーチの中心軸線に沿った断面図である。
1. 第1実施形態
1.1 プラズマトーチの構成
 以下、図面を参照して実施形態に係るプラズマトーチについて説明する。図1は、第1実施形態に係るプラズマトーチ1aの中心軸線に沿った断面図である。図2は、プラズマトーチ1aの分解図である。本実施形態においてプラズマトーチ1aは、酸素プラズマ切断用のプラズマトーチ1aである。
 図2に示すように、プラズマトーチ1aは、交換部品ユニット2aと、トーチ本体3と、第1リテーナキャップ4と、第2リテーナキャップ5とを有する。交換部品ユニット2aと、第1リテーナキャップ4と、第2リテーナキャップ5とは、トーチ本体3の中心軸線と同心に配置される。
 図1に示すように、交換部品ユニット2aは、トーチ本体3に取り付けられる。交換部品ユニット2aは、電極6と、絶縁ガイド7と、ノズル8と、絶縁リング9と、シールドキャップ10とを有する。交換部品ユニット2aについては後に詳細に説明する。
 トーチ本体3は、固定リング31を介して接続管32に取り付けられている。トーチ本体3は、ベース部33と、電極台座34と、センタパイプ20と、ノズル台座36と、絶縁スリーブ37と、ホルダ38とを有する。ベース部33と、電極台座34と、センタパイプ20と、ノズル台座36と、絶縁スリーブ37と、ホルダ38とは、トーチ本体3の中心軸線と同心に配置される。
 ベース部33は、円筒状の形状を有する。ベース部33は、導電体で形成されている。センタパイプ20と電極台座34と絶縁スリーブ37とは、ベース部33の孔に挿入されている。電極台座34は、円管状の形状を有する。電極台座34は、導電体で形成されている。ベース部33は、図示しない電源からのケーブルと電気的に接続されている。
 センタパイプ20は、電極台座34の孔に挿入されている。センタパイプ20は、管状の形状を有する。センタパイプ20は、導電体で形成されている。センタパイプ20の先端は、ノズル台座36の先端から突出している。センタパイプ20については後に詳細に説明する。
 絶縁スリーブ37は、円管状の形状を有する。絶縁スリーブ37は、絶縁体で形成されている。絶縁スリーブ37の一部は、ベース部33の孔内に配置されている。絶縁スリーブ37は、電極台座34とノズル台座36との間に位置している。
 ノズル台座36は、円管状の形状を有する。ノズル台座36の先端部は、先細り形状を有する。ノズル台座36は、絶縁体で形成されている。ノズル台座36には、ノズルに電気的に接触する接触子(図示せず)が取り付けられている。接触子は、電源からのケーブルと電気的に接続されている。ベース部33は、ノズル台座36の孔に挿入されている。絶縁スリーブ37は、ノズル台座36の孔に挿入されている。絶縁スリーブ37の先端部は、ベース部33から突出しており、ノズル台座36の孔内に配置されている。
 ホルダ38は、円管状の形状を有する。ホルダ38は、接着等の手段により接続管32に取り付けられている。ノズル台座36は、ホルダ38の孔に挿入されている。ノズル台座36の先端部は、ホルダ38から突出している。
 第1リテーナキャップ4は、先端部が先細りした円筒状の形状を有する。第1リテーナキャップ4は、ノズル台座36を覆うように、トーチ本体3に取り付けられる。第1リテーナキャップ4の先端部は、シールドキャップ10が挿入される開口41を有する。ホルダ38とノズル台座36とは、第1リテーナキャップ4内に配置される。ホルダ38の外周面には、雄ネジ部311が設けられている。第1リテーナキャップ4の基端部の内周面には、雌ネジ部42が設けられている。ホルダ38の雄ネジ部311が第1リテーナキャップ4の雌ネジ部42に螺合することで、第1リテーナキャップ4がトーチ本体3に取り付けられる。
 第2リテーナキャップ5は、先端部が先細りした円筒状の形状を有する。第2リテーナキャップ5の先端部は、シールドキャップ10が挿入される開口51を有する。第2リテーナキャップ5は、第1リテーナキャップ4を覆うように、第1リテーナキャップ4に取り付けられる。第1リテーナキャップ4は、第2リテーナキャップ5内に配置される。第1リテーナキャップ4と第2リテーナキャップ5とは、交換部品ユニット2aを保持すると共に挟み込む。第1リテーナキャップ4の外周面にはOリングR1が配置されている。第1リテーナキャップ4の外周面には雄ネジ401が設けられており、第2リテーナキャップ5の内周面には、雌ネジ501が設けられている。第1リテーナキャップ4の雄ネジ401と第2リテーナキャップ5の雌ネジ501とが螺合することで、第2リテーナキャップ5が第1リテーナキャップ4に取り付けられる。
1.2 交換部品ユニットの構成
 次に交換部品ユニット2aについて説明する。図3は、交換部品ユニット2aの側面図である。図4は、交換部品ユニット2aの中心軸線に沿った断面図である。
 図3及び図4に示すように、交換部品ユニット2aは、電極6と絶縁ガイド7とノズル8と絶縁リング9とシールドキャップ10とが圧入により一体化されたものである。電極6と絶縁ガイド7とノズル8と絶縁リング9とシールドキャップ10とは、互いに同心に配置される。なお、交換部品ユニット2aはトーチ本体3の中心軸線と同心に配置されるため、電極6と絶縁ガイド7とノズル8と絶縁リング9とシールドキャップ10とのそれぞれの軸線とは、トーチ本体3の中心軸線と一致する。
 図5及び図6は、電極6の斜視図である。図7は電極6の断面図である。図5から図6に示すように、電極6は円筒状の形状を有している。電極6は、導電体で形成されている。電極6は、電極本体部61と、接合部62と、フランジ部63とを有している。
 電極本体部61は、電極6の先端を含む。電極6の先端面602の中央には、耐熱インサート64が埋め込まれている。本実施形態において、耐熱インサート64は、ハフニウム製である。図4に示すように、電極本体部61の一部は、絶縁ガイド7の孔内に配置されている。電極本体部61の先端部は、絶縁ガイド7から突出している。電極本体部61の先端部は先細りの形状を有する。
 接合部62は、電極本体部61の基端側に位置している。接合部62は、電極6の軸線方向において電極本体部61とフランジ部63との間に位置する。接合部62は、圧入によって絶縁ガイド7と接合される。従って、接合部62は、Oリング無しで流体をシールするように絶縁ガイド7と接合される。
 接合部62の外周面は、絶縁ガイド7の内周面に係止する凹凸形状を有している。詳細には、接合部62は、凸部621を有する。凸部621は、接合部62の外周面から突出している。凸部621は、接合部62の周方向に延びている。
 フランジ部63は、接合部62の基端側に位置している。フランジ部63は、電極6の基端を含む。フランジ部63は、接合部62よりも大きな外径を有する。フランジ部63は、電極6の軸線方向において、接合部62よりも長い。フランジ部63の外周面は、電極6の軸線方向に延びている。フランジ部63の外周面は、断面視において凹凸の無い平坦な形状を有する。フランジ部63の外周面の基端部には面取りが施されている。フランジ部63と接合部62との間には、段部66が設けられている。段部66は、電極6の軸線方向に垂直な面である。
 電極6は、内部通路65を有する。内部通路65には、図1に示すセンタパイプ20が挿入される。電極6の基端面601には、内部通路65の入口が設けられている。内部通路65は、電極6の基端面601から先端へ向かって電極6の軸線方向に沿って延びている。電極6の先端の内部通路65側には、凸部67が設けられている。上述した耐熱インサート64は、凸部67内に配置される。交換部品ユニット2aがトーチ本体3に取り付けられた状態で、凸部67の一部は、センタパイプ20の冷却水路内に配置される。
 内部通路65の内周面は、直線部651とテーパ部652とを有する。直線部651は、電極6の軸線方向に平行に延びている。テーパ部652は、内部通路65の入口に向かって径方向に拡大している。
 次に絶縁ガイド7について説明する。図8及び図9は、絶縁ガイド7の斜視図である。図10は、絶縁ガイド7の断面図である。絶縁ガイド7は、電極6とノズル8とを電気的に絶縁すると共に、電極6とノズル8とを連結する。絶縁ガイド7は、電極6とノズル8とを、軸線方向及び径方向に、互いに位置決めする。
 絶縁ガイド7は、管状の形状を有する。絶縁ガイド7は、絶縁体で形成されている。絶縁ガイド7は、電極6が挿入される孔706を有する。絶縁ガイド7の孔706は、絶縁ガイド7の軸線方向に絶縁ガイド7を貫通している。
 絶縁ガイド7は、セラミックの弾性率よりも小さな弾性率を有する材料で形成される。本実施形態において、絶縁ガイド7は、エンジニアプラスティック等の樹脂製である。詳細には、絶縁ガイド7は、連続使用温度が100℃以上の樹脂製である。さらに連続使用温度が300℃以下が好ましい。
 図10に示すように、絶縁ガイド7の内周面は、第1内周面71と内側段部72と第2内周面73とを有する。第1内周面71は、絶縁ガイド7の軸線方向に延びており、絶縁ガイド7の先端面701に到達している。第1内周面71は、第2内周面73よりも大きな内径を有する。第1内周面71は、電極本体部61の外周面に対して隙間を隔てて対向する。後述するように、第1内周面71は、電極本体部61の外周面との間にガス通路を構成する。第1内周面71の内径は、ノズル8の内径と略同じである。従って、第1内周面71と電極6との間のガス通路の内径は、ノズル8の内径と略同じである。
 内側段部72は、第1内周面71の基端側に位置する。内側段部72は、絶縁ガイド7の軸線方向において第1内周面71と第2内周面73との間に位置する。内側段部72は、先端側へ向かって径方向に拡大するように、絶縁ガイド7の軸線方向に対して傾斜している。
 第1内周面71と内側段部72とには、耐熱被膜707が形成されている。耐熱被膜707は、セラミック系材料で形成されている。耐熱被膜707は、例えば、窒化ホウ素で形成される。ただし、耐熱被膜707は、窒化ホウ素以外のセラミック系材料で形成されてもよい。或いは、耐熱被膜707は、セラミック系材料以外の耐熱性材料で形成されてもよい。
 第2内周面73は、内側段部72の基端側に位置する。第2内周面73は、絶縁ガイド7の軸線方向に延びており、絶縁ガイド7の基端面702に到達している。第2内周面73は、第1接合部74を有する。第1接合部74は、電極6の接合部62に圧入により接合される。従って、絶縁ガイド7の第1接合部74は、Oリング無しで流体をシールするように電極6と接合される。
 図4に示すように、絶縁ガイド7の第1接合部74が電極6の接合部62に接合されることにより、電極6と絶縁ガイド7とが径方向に互いに位置決めされる。また、絶縁ガイド7の基端面702が、電極6のフランジ部63の段部66に接触することで、電極6と絶縁ガイド7とが軸線方向に互いに位置決めされる。
 第1接合部74は、電極6の外周面に係止する凹凸形状を有する。詳細には、第1接合部74は、凸部741を有する。凸部741は、第2内周面73から突出している。凸部741は、第2内周面73の周方向に延びている。絶縁ガイド7の第1接合部74の凸部741は、電極6の接合部62の凸部621に係止する。これにより、絶縁ガイド7が電極6に対して強固に抜け止めされる。
 絶縁ガイド7の外周面は、第1外周面75と、第2外周面76と、第3外周面77とを有する。第1外周面75は、絶縁ガイド7の軸線方向に延びており、絶縁ガイド7の先端面701に到達している。第1外周面75は、ノズル8の第1孔811内に配置される。第1外周面75は、第2接合部78を有する。第2接合部78は、ノズル8の内周面に圧入により接合される。従って、絶縁ガイド7の第2接合部78は、Oリング無しで流体をシールするようにノズル8と接合される。
 絶縁ガイド7の第2接合部78は、ノズル8の内周面に係止する凹凸形状を有する。詳細には、絶縁ガイド7の第2接合部78は、凸部781を有する。凸部781は、第1外周面75から突出している。凸部781は、第1外周面75の周方向に延びている。
 第2外周面76は、第1外周面75の基端側に位置する。第2外周面76は、絶縁ガイド7の軸線方向に延びている。第2外周面76は、断面視において、凹凸の無い平坦な形状を有する。第2外周面76は、絶縁ガイド7の軸線方向において第1外周面75と第3外周面77との間に配置される。第2外周面76は、ノズル8の外部に配置される。第2外周面76は、第1外周面75よりも小さな外径を有する。言い換えれば、第1外周面75の外径は、第2外周面76の外径よりも大きい。絶縁ガイド7の軸線方向において、第1外周面75は、第2外周面76よりも短い。
 第3外周面77は、第2外周面76の基端側に位置する。第3外周面77は、第2外周面76よりも小さな外径を有する。第3外周面77は、絶縁ガイド7の軸線方向に延びており、絶縁ガイド7の基端面702に到達している。絶縁ガイド7の軸線方向において、第2外周面76は、第3外周面77より長い。言い換えれば、絶縁ガイド7の軸線方向において、第3外周面77は、第2外周面76より短い。絶縁ガイド7の軸線方向において、第3外周面77は、第1外周面75より短い。
 絶縁ガイド7の外周面は、外側段部79を有する。外側段部79は、第2外周面76と第3外周面77との間に配置される。外側段部79は、絶縁ガイド7の軸線方向に垂直な面である。
 図11は、絶縁ガイド7を基端側から見た図である。図9及び図11に示すように、絶縁ガイド7は、複数の連通路703を有する。本実施形態では、絶縁ガイド7は6つの連通路703を有する。ただし、連通路703の数は、6つに限らず、6つより少ない、或いは6つより多くてもよい。
 図12は、1つの連通路703の軸線を含む絶縁ガイド7の断面を示している。図12に示すように、連通路703は、絶縁ガイド7の外部と絶縁ガイド7の孔706内とを連通している。言い換えると、連通路703は、絶縁ガイド7の外部と絶縁ガイド7内のガス通路とを連通している。連通路703は、軸線方向に対して傾斜した方向に延びている。連通路703は、絶縁ガイド7の先端へ向かって絶縁ガイド7の軸線に近づくように傾斜している。絶縁ガイド7の軸線方向に対する連通路703の傾斜角度は、30度以上、60度以下であることが好ましい。例えば、絶縁ガイド7の軸線方向に対する連通路703の傾斜角度は45度である。
 連通路703の一端は、内側段部72に接続される。連通路703の他端は、外側段部79に接続される。連通路703は、絶縁ガイド7の軸線方向における中心よりも基端側の位置において絶縁ガイド7の外周面に接続される、連通路703は、第1連通路704と第2連通路705とを有する。
 第1連通路704は、第2連通路705よりも大きな流路断面を有する。第1連通路704は、外側段部79に接続される。第1連通路704は、絶縁ガイド7の外部に連通する。第2連通路705は、内側段部72に接続される。第2連通路705は、絶縁ガイド7内のガス通路に連通する。なお、図12では1つの連通路703のみが図示されているが、他の連通路703も図12の連通路703と同様の構造である。
 図11に示すように、複数の連通路703は、周方向及び径方向に対して傾斜している。全ての連通路703は、周方向に対して同方向に傾斜している。全ての連通路703は、径方向に対して同方向に傾斜している。これにより、連通路703から吹き出されたガスは旋回流となる。複数の連通路703は、絶縁ガイド7の周方向において等間隔に配置される。絶縁ガイド7の軸線方向から見て、連通路703の軸線は、連通路703の軸線と平行であり且つ絶縁ガイド7の中心を通る直線から所定距離、離れている。
 次にノズル8について説明する。図13及び図14は、ノズル8の斜視図である。図15は、ノズル8の断面図である。ノズル8は、先端部が先細り形状を有する円筒状の形状を有する。ノズル8は、絶縁ガイド7が挿入される孔811を有し、絶縁ガイド7と圧入により接合される。詳細には、ノズル8は、第1ノズル部81と第2ノズル部82と第3ノズル部83とを有する。
 第1ノズル部81は、ノズル8の基端を含む。第1ノズル部81は、第1孔811を有する。第2ノズル部82は、第1ノズル部81の先端側に位置する。第2ノズル部82は、ノズル8の軸線方向において第1ノズル部81と第3ノズル部83との間に位置する。ノズル8の軸線方向において、第2ノズル部82は、第1ノズル部81よりも長い。
 第2ノズル部82は、第1孔811に連通する第2孔821を有する。第2孔821は、第1孔811よりも小さな内径を有する。従って、第1ノズル部81の内周面812と第2ノズル部82の内周面822との間には内側段部84が設けられている。内側段部84は、ノズル8の軸線方向に垂直な面である。
 第2ノズル部82の外径は、第1ノズル部81の外径と同じである。従って、第2ノズル部82の外周面823は、第1ノズル部81の外周面813と面一である。第1ノズル部81の外周面813の基端には面取りが施されている。第2ノズル部82は、第1ノズル部81よりも大きな径方向の厚さを有している。
 第3ノズル部83は、ノズル8の先端を含む。第3ノズル部83は、第2ノズル部82の先端側に位置する。第3ノズル部83は、噴射孔831を有する。噴射孔831は、第2孔821よりも小さな内径を有する。噴射孔831は、ノズル8の軸線方向に延びており、ノズル8の先端面801に到達している。ノズル8の軸線方向において、上述した第1孔811は、噴射孔831よりも短い。
 噴射孔831は、テーパ孔832を介して第2孔821に連通している。テーパ孔832は、ノズル8の軸線方向において噴射孔831と第2孔821との間に位置しており、噴射孔831と第2孔821とを接続している。テーパ孔832は、ノズル8の先端に向かって径方向に小さくなっている。
 ノズル8の外周面は、第1外周面85と第2外周面86と第3外周面87とを有する。第1外周面85は、ノズル8の基端面802に達している。第1外周面85は、第1ノズル部81の外周面813と第2ノズル部82の外周面823とによって構成される。第1外周面85は、断面視において、ノズル8の軸線方向に延びる直線状の形状を有する。言い換えれば、第1外周面85は、断面視において、凹凸の無い平坦な形状を有する。
 第2外周面86は、第1外周面85の先端側に位置する。第2外周面86は、ノズル8の軸線方向において、第1外周面85と第3外周面87との間に位置する。第2外周面86は、第1外周面85よりも小さな外径を有する。従って、第1外周面85と第2外周面86との間には外側段部88が設けられている。外側段部88は、ノズル8の軸線方向に垂直な面である。
 第3外周面87は、第2外周面86の先端側に位置する。第3外周面87は、ノズル8の先端面801に到達している。第3外周面87は、先端に向かって径方向に小さくなるように傾斜している。
 第1ノズル部81の第1孔811には、絶縁ガイド7が挿入される。第2ノズル部82の第2孔821には、電極6が挿入される。図4に示すように、第2ノズル部82の内周面822は、隙間を隔てて電極本体部61と対向する。電極6の先端は、第3ノズル部83のテーパ孔832と対向している。
 第1ノズル部81は、絶縁ガイド7と接合される。詳細には、第1孔811に絶縁ガイド7の第2接合部78が挿入され、第1ノズル部81は、絶縁ガイド7の第2接合部78と圧入により接合される。これにより、第1ノズル部81の内周面812は、Oリング無しで流体をシールするように絶縁ガイド7と接合される。
 第1ノズル部81の内周面812が絶縁ガイド7の第2接合部78と接合することにより、ノズル8と絶縁ガイド7とが径方向に互いに位置決めされる。また、絶縁ガイド7の先端面701がノズル8の内側段部84に接触することにより、ノズル8と絶縁ガイド7とが軸線方向に互いに位置決めされる。
 第1ノズル部81の内周面812は、絶縁ガイド7の外周面に係止する凹凸形状を有する。詳細には、第1ノズル部81の内周面812は、凸部814を有する。第1ノズル部81の凸部814は、絶縁ガイド7の第2接合部78の凸部781に係止する。これにより、ノズル8が絶縁ガイド7に対して抜け止めされる。
 第2外周面86は、絶縁リング9の内周面に係止する凹凸形状を有する。詳細には、第2外周面86は、凸部861を有する。
 図16及び図17は、絶縁リング9の斜視図である。図18は、絶縁リング9の断面図である。図16から図18に示すように、絶縁リング9は、ノズル8が挿入される孔903を有する。絶縁リング9の内周面91は凸部911を有する。絶縁リング9の外周面92は凸部921を有する。
 絶縁リング9は、フランジ部93を有する。フランジ部93は、絶縁リング9の外周面92から突出している。従って、絶縁リング9の外周面92とフランジ部93との間には段部94が設けられている。段部94は、絶縁リング9の軸線方向に垂直な面である。
 図4に示すように、絶縁リング9は、ノズル8と圧入により接合される。詳細には、絶縁リング9の内周面91は、ノズル8の第2外周面86と圧入により接合される。絶縁リング9の内周面91がノズル8の第2外周面86と接合されることにより、絶縁リング9とノズル8とが径方向に互いに位置決めされる。
 また、絶縁リング9の基端面901がノズル8の外側端部88に接触することにより、絶縁リング9とノズル8とが軸線方向に互いに位置決めされる。絶縁リング9の内周面91の凸部911は、ノズル8の第2外周面86の凸部861に係止する。これにより、絶縁リング9がノズル8に対して強固に抜け止めされる。
 図19及び図20は、シールドキャップ10の斜視図である。図21は、シールドキャップ10の断面図である。図19から図21に示すように、シールドキャップ10は孔103を有する。シールドキャップ10の孔103には、ノズル8が挿入される。シールドキャップ10は噴射孔104を有する。噴射孔104は、孔103と連通しており、シールドキャップ10の先端面101を軸線方向に貫通している。
 シールドキャップ10は、第1内周面11と第2内周面12とを有する。第1内周面11は、シールドキャップ10の軸線方向に延びており、シールドキャップ10の基端面102に到達している。第1内周面11は凸部111を有する。第2内周面12は、第1内周面11の先端側に位置する。第2内周面12は、先端に向かって径方向に小さくなるように傾斜している。
 シールドキャップ10は、第1外周面13と、フランジ部14と、第2外周面15と、第3外周面16とを有する。第1外周面13は、シールドキャップ10の軸線方向に延びており、シールドキャップ10の基端面102に到達している。フランジ部14は、第1外周面13の先端側に位置する。フランジ部14は、シールドキャップ10の軸線方向において、第1外周面13と第2外周面15との間に位置する。フランジ部14は、第1外周面13から突出している。フランジ部14は、第2外周面15から突出している。フランジ部14と第2外周面15との間には、外側段部17が設けられている。外側段部17は、シールドキャップ10の軸線方向に垂直な面である。フランジ部14の外径は、第1リテーナキャップ4の開口41の直径よりも大きい。フランジ部14の外径は、第2リテーナキャップ5の開口51の直径よりも大きい。
 第2外周面15は、フランジ部14の先端側に位置する。第2外周面15は、第1外周面13よりも小さな外径を有する。第2外周面15は、シールドキャップ10の軸線方向に延びている。第3外周面16は、第2外周面15の先端側に位置する。第3外周面16は、シールドキャップ10の先端面101に到達している。第3外周面16は、先端に向かって径方向に小さくなるように、シールドキャップ10の軸線方向に対して傾斜している。
 図22は、図21のA-A断面図である。図21及び図22に示すように、シールドキャップ10は、複数の連通路105を有する。連通路105は、シールドキャップ10の外部とシールドキャップ10の孔103内とを連通している。連通路105の一端は第1外周面13に到達している。連通路105の他端は、第1内周面11に到達している。
 連通路105は、シールドキャップ10の周方向に等間隔に配置されている。シールドキャップ10の軸線方向から見て、連通路105の軸線は、連通路105の軸線と平行であり且つ絶縁ガイド7の中心を通る直線から所定距離、離れている。全ての連通路105は、周方向に対して同方向に傾斜している。全ての連通路105は、径方向に対して同方向に傾斜している。これにより、連通路105から吹き出されたガスは旋回流となる。
 図4に示すように、シールドキャップ10は、絶縁リング9と圧入により接合される。詳細には、シールドキャップ10の第1内周面11が、絶縁リング9の外周面92と圧入により接合される。シールドキャップ10の第1内周面11の凸部111は、絶縁リング9の外周面92の凸部921と係合する。これにより、シールドキャップ10が絶縁リング9に対して強固に抜け止めされる。
 シールドキャップ10の第1内周面11が絶縁リング9の外周面92と接合されることにより、シールドキャップ10と絶縁リング9とが、径方向に互いに位置決めされる。これにより、シールドキャップ10の噴射孔104とノズル8の噴射孔831とが同心に配置される。
 シールドキャップ10の基端面102が絶縁リング9の段部94に接触することにより、シールドキャップ10と絶縁リング9とが、軸線方向に互いに位置決めされる。これにより、シールドキャップ10がノズル8に対して隙間を隔てて配置される。詳細には、シールドキャップ10の第2内周面12が、ノズル8の第3外周面87に対して隙間を隔てて配置される。これにより、シールドキャップ10とノズル8との間には後述するガス通路が構成される。シールドキャップ10の連通路105は、絶縁リング9の先端よりも先端側に位置している。シールドキャップ10の連通路105は、シールドキャップ10とノズル8との間のガス通路に連通している。
 次にセンタパイプ20について説明する。図23及び図24は、センタパイプ20の斜視図である。図25は、センタパイプ20の断面図である。センタパイプ20は、電極6の内部通路65に挿入され、電極6内に冷却水を供給する。センタパイプ20は、導電体で形成されている。センタパイプ20は、パイプ本体21と接触子22とを有する。図26は、パイプ本体21の斜視図である。図27は、接触子22の斜視図である。
 パイプ本体21は、管状の形状を有する。パイプ本体21は、導電体で形成される。詳細には、パイプ本体21の外周面は、フランジ部23と、第1外周面24と、第2外周面25と、第3外周面26とを有する。フランジ部23は、パイプ本体21の基端を含む。フランジ部23は、第1外周面24から突出している。従って、フランジ部23と第1外周面24との間には段部27が設けられている。段部27は、パイプ本体21の軸線方向に垂直な面である。
 第1外周面24は、フランジ部23の先端側に位置する。第1外周面24は、パイプ本体21の軸線方向においてフランジ部23と第2外周面25との間に位置する。第1外周面24は、パイプ本体21の軸線方向に延びている。
 第2外周面25は、第1外周面24の先端側に位置する。第2外周面25は、パイプ本体21の軸線方向において第1外周面24と第3外周面26との間に位置する。第2外周面25は、パイプ本体21の軸線方向に延びている。パイプ本体21の軸線方向において、第2外周面25は、第1外周面24よりも短い。第2外周面25は、第1外周面24よりも小さな外径を有する。
 第3外周面26は、第2外周面25の先端側に位置する。第3外周面26は、パイプ本体21の先端を含む。第3外周面26は、パイプ本体21の軸線方向に延びている。パイプ本体21の軸線方向において第3外周面26は、第1外周面24よりも長い。第3外周面26は、第2外周面25よりも小さな外径を有する。第3外周面26の軸線方向における中間部には、凹部261が設けられている。凹部261には、接触子22が取り付けられる。
 パイプ本体21は、冷却水通路を内部に有する。冷却水通路は、パイプ本体21を軸線方向に貫通している。冷却水通路は、第1通路211と第2通路212と第3通路231とを有する。第1通路211は、パイプ本体21の基端面201に到達している。第1通路211は、先端に向かって径方向に小さくなるように、パイプ本体21の軸線方向に対して傾斜している。
 第2通路212は、第1通路211の先端側に位置する。第2通路212は、パイプ本体21の軸線方向において、第1通路211と第3通路231との間に位置する。パイプ本体21の軸線方向において、第2通路212は、第3通路231よりも長い。第2通路212は、パイプ本体21の軸線方向に延びている。
 第3通路231は、第2通路212の先端側に位置する。第3通路231は、パイプ本体21の先端面202に到達している。第3通路231は、第2通路212よりも大きな内径を有する。第3通路231内には、上述した電極6の凸部67が配置される。
 接触子22は、パイプ本体21と別体である。接触子22は導電体で形成される。接触子22は、パイプ本体21に対して着脱可能に取り付けられる。接触子22は、パイプ本体21の外周面に取り付けられる。詳細には、接触子22は、パイプ本体21の第3外周面26の凹部261に嵌め込まれることで、パイプ本体21に取り付けられる。
 接触子22は、取付部28と接触部29とを有する。取付部28は、パイプ本体21の外周面に取り付けられる。取付部28は、第1環部281と第2環部282とを有する。第2環部282は、接触子22の軸線方向に第1環部281から離れて配置される。第1環部281と第2環部282とは、それぞれパイプ本体21の凹部261に嵌め込まれる。
 接触部29は、電極6の内周面に接触する。接触部29は、接触子22の径方向に押圧されることで反力を生じるように弾性を有する。具体的には、接触部29は、複数の湾曲部291を有する。湾曲部291は、第1環部281と第2環部282とを連結している。湾曲部291は、接触子22の径方向外方に向かって膨出した板状の形状を有する。接触部29は、複数のスリット292を有する。スリット292は、複数の湾曲部291の間に設けられ、接触子22の軸線方向に延びている。なお、図面においてはスリット292の一部のみに符号292を付して他のスリット292の符号を省略している。
 図28は、接触子22を軸線方向から見た図である。図28に示すように、複数の湾曲部291は、接触子22の周方向に等間隔に配置されている。複数のスリット292も同様に、接触子22の周方向に等間隔に配置されている。本実施形態では、接触子22は、8つの湾曲部291と8つのスリット292とを有している。しかし、接触子22の数は、8つに限らず、8つより少ない、或いは8つより多くてもよい。同様に、スリット292の数は、8つに限らず、8つより少ない、或いは8つより多くてもよい。
 図1に示すように、センタパイプ20のフランジ部23は、電極台座34の基端面341と、ベース部33の孔の底面331との間に配置される。フランジ部23は、電極台座34の基端面341に接触している。これにより、センタパイプ20と電極台座34とが電気的に接続されている。また、センタパイプ20が径方向及び軸線方向に位置決めされる。
 図29は、図1における交換部品ユニット2a及びその周囲の構成の拡大図である。図29に示すように、センタパイプ20の接触子22は、電極6の内周面に接触している。接触子22は、電極6の内部通路65に挿入されることで、径方向内方へ向かって弾性変形している。接触子22は、弾性変形の反力によって電極6の内周面に押し付けられている。センタパイプ20は、電極台座34と電気的に接続されている。従って、接触子22は、電極6の内周面に接触することで電極6に通電する。
 電極6は、第1通電面603と第2通電面601とを有する。第1通電面603は、内部通路65の内周面において接触子22と接触している部分である。電極6は、センタパイプ20と第1通電面603とを介して電極台座34と電気的に接続される。第1通電面603は、テーパ部652の先端側においてテーパ部652に隣接して配置される。第1通電面603は、後述する冷却水通路内に位置している。
 第2通電面601は、電極6の基端面601である。第2通電面601は、電極台座34の先端面342に接触している。電極6は、第2通電面601を介して電極台座34と電気的に接続される。第2通電面601は、後述する冷却水通路に隣接している。
1.3 冷却水通路
 次に、プラズマトーチ1aの冷却水通路について説明する。図1において、実線の矢印は、冷却水の流れを示している。図1に示すように、ベース部33には、冷却水供給管45が接続されている。冷却水供給管45は、ベース部33内の第1冷却水通路W1を介して、ノズル台座36内の第2冷却水通路W2に接続されている。第1冷却水通路W1は、ベース部33の基端面からベース部33の外周面に向かって延びている。第2冷却水通路W2は、ノズル台座36の内周面からノズル台座36の先端部へ向かって延びている。第2冷却水通路W2は、第3冷却水通路W3に接続されている。第3冷却水通路W3は、ノズル台座36と第1リテーナキャップ4と交換部品ユニット2aとに囲まれた環状の通路である。
 図29に示すように、絶縁スリーブ37の先端面371とノズル8の基端面802との間には隙間が設けられており、この隙間は、第3冷却水通路W3の一部を構成している。従って、ノズル8の基端面802は、第3冷却水通路W3内に配置される。また、絶縁スリーブ37の先端面371とノズル8の基端面802との隙間は、絶縁ガイド7の第2外周面76まで到達している。従って、絶縁ガイド7の第2外周面76の一部は、第3冷却水通路W3内に配置されている。
 図1に示すように、第3冷却水通路W3は、ノズル台座36内の第4冷却水通路W4、ノズル台座36と絶縁スリーブ37との間の第5冷却水通路W5、絶縁スリーブ37内の第6冷却水通路W6、及び電極台座34内の第7冷却水通路W7を介して、第8冷却水通路W8に接続されている。
 第4冷却水通路W4は、ノズル台座36の先端からノズル台座36の内周面に向かって延びている。第5冷却水通路W5は、ノズル台座36と絶縁スリーブ37との間に設けられた環状の通路である。第6冷却水通路W6は、絶縁スリーブ37の外周面から絶縁スリーブ37の内周面に向かって径方向に延びる複数の通路である。第7冷却水通路W7は、電極台座34の外周面から電極台座34の内周面に向かって径方向に延びる複数の通路である。第8冷却水通路W8は、電極台座34とセンタパイプ20との間の通路である。
 第8冷却水通路W8は、電極6とセンタパイプ20との間の第9冷却水通路W9に接続されている。第9冷却水通路W9は、センタパイプ20の先端部において、センタパイプ20内の第10冷却水通路W10に連通している。第10冷却水通路W10は、ベース部33内の第11冷却水通路W11を介して、冷却水排出管46に接続されている。
 冷却水は、冷却水の供給源から、冷却水供給管45、ベース部33内の第1冷却水通路W1、ノズル台座36内の第2冷却水通路W2を通って、第3冷却水通路W3に供給される。冷却水は、第3冷却水通路W3からノズル台座36内の第4冷却水通路W4、ノズル台座36と絶縁スリーブ37との間の第5冷却水通路W5、絶縁スリーブ37内の第6冷却水通路W6、及び電極台座34内の第7冷却水通路W7を通って、電極台座34とセンタパイプ20との間の第8冷却水通路W8に供給される。冷却水は、第8冷却水通路W8から、電極6とセンタパイプ20との間の第9冷却水通路W9、センタパイプ20内の第10冷却水通路W10、ベース部33内の第11冷却水通路W11、冷却水排出管46を通って、プラズマトーチ1aの外部に排出される。
1.4 ガス通路
 次に、プラズマトーチ1aのプラズマガス通路について説明する。本実施形態においてプラズマガスは、酸素ガスである。図30は、プラズマトーチ1aの中心軸線に沿った図1と異なる断面図である。図1及び図30において、破線の矢印は、プラズマガスの流れを示している。詳細には、図30において破線の矢印は、メインガスの流れを示している。図1において破線の矢印は、アシストガスの流れを示している。
 図30に示すように、ベース部33にはメインガス供給管47が接続されている。メインガス供給管47は、ベース部33内の第1メインガス通路MG1を介して、ベース部33と絶縁スリーブ37との間の第2メインガス通路MG2に接続されている。第1メインガス通路MG1は、ベース部33の基端面からベース部33の内周面の段部332に向かって、軸線方向に延びている。第2メインガス通路MG2は、ベース部33の内周面の段部332と絶縁スリーブ37の外周面の段部372との間に形成された環状の通路である。
 第2メインガス通路MG2は、絶縁スリーブ37内の第3メインガス通路MG3を介して第4メインガス通路MG4に接続されている。第3メインガス通路MG3は、絶縁スリーブ37の外周面の段部372から軸線方向に延びている。第4メインガス通路MG4は、絶縁スリーブ37と、交換部品ユニット2aとの間の環状の通路である。
 図31は、図30における交換部品ユニット2aとその周囲の構成の拡大図である。図31に示すように、第4メインガス通路MG4は、絶縁スリーブ37の内周面と絶縁ガイド7の外周面と電極6の外周面とによって構成される。
 詳細には、絶縁スリーブ37の内周面には、段部373が設けられている。段部373は、絶縁スリーブ37の軸線方向に垂直な面である。交換部品ユニット2aがトーチ本体3に取り付けられた状態で、絶縁ガイド7の外側段部79は、絶縁スリーブ37の内周面の段部373に対して隙間を隔てて配置される。第4メインガス通路MG4は、この絶縁ガイド7の外側段部79と、絶縁スリーブ37の内周面の段部373との間の隙間を通っている。
 第4メインガス通路MG4は、上述した第3冷却水通路W3に対してOリングR2によってシールされている。OリングR2は、絶縁スリーブ37の内周面に設けられた凹部374に嵌め込まれている。OリングR2は、絶縁ガイド7の第2外周面76の一部と接触している。すなわち、絶縁ガイド7の第2外周面76は、Oリングと接触するシール面761を有している。第2外周面76においてシール面761よりも先端側の部分は、第3冷却水通路W3内に配置されている。第2外周面76においてシール面761よりも基端側の部分は、第4メインガス通路MG4内に配置されている。第3外周面77も、第2外周面76と同様に、第4メインガス通路MG4内に配置される。
 図29に示すように、第4メインガス通路MG4は、上述した第6冷却水通路W6及び第7冷却水通路W7に対してOリングR3によってシールされている。OリングR3は、絶縁スリーブ37の内周面に設けられた凹部375に嵌め込まれている。OリングR3は、電極6のフランジ部63の外周面の一部と接触している。すなわち、フランジ部63の外周面は、OリングR3と接触するシール面631を有する。フランジ部63の外周面においてシール面631よりも先端側の部分は、第4メインガス通路MG4内に配置されている。
 図31に示すように、第4メインガス通路MG4は、絶縁ガイド7の複数の連通路703を介して、絶縁ガイド7と電極6との間の第5メインガス通路MG5に接続されている。第5メインガス通路MG5は、絶縁ガイド7の内周面と電極6の外周面との間の環状の通路である。第5メインガス通路MG5は、ノズル8と電極6との間の第6メインガス通路MG6に接続されている。第5メインガス通路MG5の内径は、第6メインガス通路MG6の内径と同じである。第6メインガス通路MG6は、ノズル8の噴射孔831に連通している。
 メインガスは、メインガスの供給源から、ベース部33内の第1メインガス通路MG1、ベース部33と絶縁スリーブ37との間の第2メインガス通路MG2、絶縁スリーブ37内の第3メインガス通路MG3を通って、絶縁スリーブ37と交換部品ユニット2aとの間の第4メインガス通路MG4に流れる。メインガスは、第4メインガス通路MG4から連通路703を通ることで旋回流となって、第5メインガス通路MG5に噴出される。旋回流となったメインガスは、第6メインガス通路MG6を通って、ノズル8の噴射孔831から噴出される。
 図1に示すように、ベース部33にはアシストガス供給管48が接続されている。アシストガス供給管48は、ベース部33内の第1アシストガス通路AG1を介して、ノズル台座36内の第2アシストガス通路AG2に接続されている。第1アシストガス通路AG1は、ベース部33の基端面からベース部33の外周面に向かって延びている。第2アシストガス通路AG2は、ノズル台座36の内周面からノズル台座36の外周面に向かって延びている。
 第2アシストガス通路AG2は、ホルダ38内の第3アシストガス通路AG3を介して、ホルダ38と第2リテーナキャップ5との間の第4アシストガス通路AG4に接続されている。第3アシストガス通路AG3は、ホルダ38の内周面から外周面に向かって延びている。第4アシストガス通路AG4は、ホルダ38の外周面と第2リテーナキャップ5の内周面との間の環状の通路である。
 第4アシストガス通路AG4は、第2リテーナキャップ5内の第5アシストガス通路AG5を介して、第1リテーナキャップ4と第2リテーナキャップ5との間の第6アシストガス通路AG6に接続される。第5アシストガス通路AG5は、第2リテーナキャップ5の内周面から外周面に向かって延びる複数の通路である。第6アシストガス通路AG6は、第1リテーナキャップ4の内周面と第2リテーナキャップ5の外周面との間の環状の通路である。
 図29に示すように、第6アシストガス通路AG6は、シールドキャップ10の複数の連通路105を介して、ノズル8とシールドキャップ10との間の第7アシストガス通路AG7に接続されている。第7アシストガス通路AG7は、ノズル8の噴射孔831及びシールドキャップ10の噴射孔104と連通している。
 第6アシストガス通路AG6は、上述した第3冷却水通路W3に対して、OリングR4によってシールされている。OリングR4は、第1リテーナキャップ4の内周面の先端部に設けられた凹部44に嵌め込まれている。OリングR4は、シールドキャップ10の第1外周面13に接触している。すなわち、シールドキャップ10の第1外周面13は、OリングR4と接触するシール面131を有している。
 上述したように絶縁リング9は、圧入によってノズル8に接合されている。また、絶縁リング9は、圧入によってシールドキャップ10に接合されている。このため、第7アシストガス通路AG7は、上述した第3冷却水通路W3に対して、絶縁リング9によってシールされている。
 アシストガスは、アシストガスの供給源から、ベース部33内の第1アシストガス通路AG1、ノズル台座36内の第2アシストガス通路AG2、ホルダ38内の第3アシストガス通路AG3、ホルダ38と第2リテーナキャップ5との間の第4アシストガス通路AG4、第2リテーナキャップ5内の第5アシストガス通路AG5を通って、第1リテーナキャップ4と第2リテーナキャップ5との間の第6アシストガス通路AG6に流れる。アシストガスは、第6アシストガス通路AG6から連通路105を通ることで旋回流となって、第7アシストガス通路AG7に噴出される。旋回流となったアシストガスは、第7アシストガス通路AG7を通って、メインガスと共に、シールドキャップ10の噴射孔104から噴出される。
1.5 交換部品ユニットの交換方法
 次に、交換部品ユニット2aの交換方法について説明する。交換部品ユニット2aは消耗品である。そのため、交換部品ユニット2aは着脱可能にトーチ本体3に取り付けられており、交換が必要な程度に消耗が進むと、新しいものに交換される。図29に示すように、プラズマトーチ1aでは、第2リテーナキャップ5の開口51の縁部によってシールドキャップ10の段部17が軸線方向に押圧されている。また、シールドキャップ10のフランジ部14が、第1リテーナキャップ4の開口41の縁部と第2リテーナキャップ5の開口51の縁部とによって挟み込まれている。これにより、交換部品ユニット2aが固定されている。このため、交換部品ユニット2aの交換時には、まず、第2リテーナキャップ5が取り外される。
 第2リテーナキャップ5が取り外された状態では、交換部品ユニット2aは、OリングR2,R3,R4の弾性力によって保持される。従って、交換部品ユニット2aを第1リテーナキャップ4の開口41から先端側へ引き出すことによって、交換部品ユニット2aの絶縁ガイド7と電極6とが、絶縁スリーブ37から引き出される。その際、センタパイプ20の接触子22は、電極6の内周面に沿って摺動し、電極6がセンタパイプ20から抜き出される。
 なお、交換部品ユニット2aを第1リテーナキャップ4の開口41から先端側へ引き出す前に、第1リテーナキャップ4を緩めるとよい。これにより、シールドキャップ10のフランジ部14が第1リテーナキャップ4の開口41の縁部に引っ掛かって押し出される。これにより、交換部品ユニット2aを容易に取り外すことができる。
 以上のようにして、交換部品ユニット2aをトーチ本体3から一体的に容易に取り外すことができる。
 新たな交換部品ユニット2aを取り付ける際には、交換部品ユニット2aを第1リテーナキャップ4の開口41から基端側へ向けて挿入する。これにより、交換部品ユニット2aの電極6と絶縁ガイド7とが、絶縁スリーブ37内に挿入される。その際、センタパイプ20が電極6内に挿入され、センタパイプ20の接触子22は、電極6の内周面に沿って摺動する。
 そして、第2リテーナキャップ5が第1リテーナキャップ4に取り付けられると、第2リテーナキャップ5の開口51の縁部が、シールドキャップ10の段部17を基端側へ向けて押圧する。これにより、電極6の基端面601が電極台座34の先端面342に接触するまで、交換部品ユニット2aが基端側へ向けて押し込まれる。そして、第1リテーナキャップ4の開口41の縁部と、第2リテーナキャップ5の開口51の縁部とによってシールドキャップ10のフランジ部14が挟み込まれて保持されることにより、交換部品ユニット2aが、固定される。
 以上説明した本実施形態に係る絶縁ガイド7では、第1内周面71と内側段部72とには耐熱被膜707が形成される。このため、絶縁ガイド7を樹脂で形成しても絶縁ガイド7の焼損に対する耐久性を向上させることができる。また、連通路703は、第5メインガス通路MG5の周方向と径方向だけではなく、軸線方向に対しても傾斜した方向に延びる。従って、連通路703から噴射するプラズマガスの旋回流において、旋回方向の速度成分を減少し、軸線方向の速度成分を増大させることができる。このため、ハフニウム液滴が飛散しても、プラズマガスの旋回流の軸方向流により、遠心力でトーチ軸線と直角方向よりもトーチ軸線方向の下流側に飛散することになる。それにより、ハフニウム液滴の絶縁ガイド7への飛散が抑えられる。これにより、酸素プラズマ切断用のプラズマトーチ1aにおいて、樹脂製の絶縁ガイド7の突発的な損傷を抑えることができる。
 連通路703が軸線方向に対して垂直に設けられる場合と比べて、プラズマガスの旋回流が直接、耐熱被膜に当たることがない。それにより、高速の気流による耐熱被膜の剥離のダメージを軽減することができる。これにより、耐熱被膜707が離れ難くなり、耐久性をさらに向上させることができる。
 絶縁ガイド7の軸線方向において、絶縁ガイド7の第1外周面75は第2外周面76よりも短い。言い換えれば、絶縁ガイド7の軸線方向において、絶縁ガイド7の第2外周面76は第1外周面75よりも長い。また、絶縁ガイド7の第2外周面76は第3外周面77よりも長い。このように絶縁ガイド7の第2外周面76を軸線方向に大きくすることで、絶縁ガイド7の第2外周面76をOリングR2と接触するシール面761として利用することができる。
 また、絶縁ガイド7の第2外周面76をシール面761として利用することで、第2外周面76においてシール面761よりも先端側の部分を第3冷却水通路W3内に配置することができる。このように、絶縁ガイド7の第2外周面76の一部が第3冷却水通路W3内に配置されることで、絶縁ガイド7を効果的に冷却することができる。
 絶縁ガイド7の軸線方向において、絶縁ガイド7の第1外周面75は第2外周面76よりも短い。このように、絶縁ガイド7の第1外周面75を短くすることで、絶縁ガイド7の先端を高温となる電極6の先端近傍から大きく離して配置することができる。これにより、絶縁ガイド7への熱影響を低減することができる。
 交換部品ユニット2aでは、電極6と絶縁ガイド7とノズル8とが一体化されており、一般的なユーザーでは分離できないように互いに接合されている。このため、交換部品ユニット2aを交換することで、電極6と絶縁ガイド7とノズル8とを容易に交換することができる。また、電極6と絶縁ガイド7とノズル8とは、圧入により接合されるので、Oリングを用いずに隙間無く、電極6と絶縁ガイド7とノズル8とを接合することができる。これにより、電極6とノズル8との同心度を向上させることができる。
 絶縁ガイド7は、変形しやすい材料で形成される。すなわち、絶縁ガイド7は、樹脂で形成されており、セラミックの弾性率よりも小さな弾性率を有する。このため、圧入による接合がセラミックよりも容易であると共に、シール性を向上させることができる。また、絶縁ガイド7がセラミック製である場合と比べて、コストを低減することができる。従って、電極6と絶縁ガイド7とノズル8とが一体的に交換されても、コストの増大を抑えることができる。
 樹脂製の絶縁ガイド7は、絶縁ガイドとして一般的なセラミックに比較して弾性率が小さく変形しやすい。そのため、絶縁ガイド7と電極6、および絶縁ガイド7とノズル8との間をシールするために、セラミックス製ガイドの場合のようにOリングを用いる必要は無く、樹脂製の絶縁ガイド7自身の変形により流体シールが可能となる。従って、セラミックと比較して安価な樹脂で絶縁ガイド7が製作出来るだけでなく、Oリングが省けるのでトーチ構造が簡単となる。
2. 第2実施形態
 次に、第2実施形態に係るプラズマトーチ1bについて説明する。図32は、第2実施形態に係るプラズマトーチ1bの中心軸線に沿った断面図である。図33は、第2実施形態に係る交換部品ユニット2bの断面図である。図34及び図35は、交換部品ユニット2bの斜視図である。図36及び図37は、第2実施形態に係るノズル8の斜視図である。
 図33に示すように、ノズル8の第1外周面85は凹部851を有する。凹部851は、第2ノズル部82に設けられている。凹部851は、ノズル8の径方向内方に向かって凹んでおり、ノズル8の周方向に延びている。ノズル8の軸線方向において、凹部851は、電極6の先端と略同じ位置に配置される。凹部851の底部の外径は、ノズル8の内周面812の内径よりも小さい。
 凹部851は、基端側の第1壁面852と、先端側の第2壁面853とを有する。第1壁面852は、ノズル8の径方向に対して傾斜している。第2壁面853は、ノズル8の径方向に延びている。図32に示すように、第1壁面852は、第1リテーナキャップ4の傾斜した内周面と平行に延びている。凹部851は、第3冷却水通路W3内に配置されている。
 本実施形態では、第1リテーナキャップ4には、第3冷却水通路W3に連通する複数の孔43が設けられている。第1リテーナキャップ4の孔43は、第1リテーナキャップ4と第2リテーナキャップ5との間の環状の冷却水通路W12に連通している。ノズル8の軸線方向において、凹部851は、第1リテーナキャップ4の孔43と略同じ位置に配置される。
 交換部品ユニット2b及びプラズマトーチ1bの他の構成については第1実施形態の交換部品ユニット2a及びプラズマトーチ1aと同様である。
 以上説明した第2実施形態では、ノズル8に凹部851が設けられているので、ノズル8において冷却水と接触する表面積を拡大することができる。そのため、ノズル8の冷却性を向上させることができる。また、凹部851が第1リテーナキャップ4の孔43と略同じ位置に配置されるので、ノズル8の冷却性をさらに向上させることができる。また、冷却水通路W12は第2リテーナキャップ5も水冷できる。このため、本実施形態に係る交換部品ユニット2bは、大電流を用いるプラズマ切断に好適である。
3. 他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 交換部品ユニット2a,2bの構造が変更されてもよい。トーチ本体3、第1リテーナキャップ4、及び第2リテーナキャップ5の構造が変更されてもよい。
 電極6と絶縁ガイド7とノズル8とは互いに着脱可能に接合されてもよい。
 電極6と絶縁ガイド7とは、圧入ではなく接着によって接合されてもよい。絶縁ガイド7とノズル8とは、圧入ではなく接着によって接合されてもよい。ノズル8と絶縁リング9とは、圧入ではなく接着によって接合されてもよい。絶縁リング9とシールドキャップ10とは、圧入ではなく接着によって接合されてもよい。
 絶縁リング9とシールドキャップ10とは、交換部品ユニット2a,2bに含まれなくてもよい。すなわち、電極6と絶縁ガイド7とノズル8とによって交換部品ユニットが構成されてもよい。また、絶縁リング9とシールドキャップ10とは、この交換部品ユニットに対して着脱容易に取り付けられてもよい。
 絶縁ガイド7内のガス通路の内径は、ノズル8の内径よりも大きくてもよい。すなわち、図38に示すように、絶縁ガイド7内の第5メインガス通路MG5の内径は、ノズル8内の第6メインガス通路MG6の内径よりも大きくてもよい。
 本発明によれば、酸素プラズマ切断用のプラズマトーチにおいて、樹脂製の絶縁ガイドの突発的な損傷を抑えることができる絶縁ガイド、及び交換部品ユニットを提供することができる。
6   電極
7   絶縁ガイド
8   ノズル
MG5 第5メインガス通路
703 連通路
72  内側段部
75  第1外周面
76  第2外周面
77  第3外周面
79  外側段部
761 シール面
 

Claims (28)

  1.  電極と、前記電極が挿入されるノズルと、を有するプラズマ切断用のプラズマトーチに用いられ、前記電極と前記ノズルとを連結するための樹脂製の絶縁ガイドであって、
     前記絶縁ガイドの内部に形成された第1内周面と、
     前記絶縁ガイドの内部に形成され、前記第1内周面よりも小さな内径を有する第2内周面と、
     前記第1内周面の内部の空間と外部とを連結し、前記絶縁ガイドの軸線方向に対して傾斜した方向に延びる連通路と、
     前記第1内周面に形成された耐熱被膜と、
    を備えるプラズマトーチ用絶縁ガイド。
  2.  前記耐熱被膜は、セラミック系材料からなる、
    請求項1に記載のプラズマトーチ用絶縁ガイド。
  3.  前記耐熱被膜は、窒化ホウ素(ボロンナイトライド)からなる、
    請求項1に記載のプラズマトーチ用絶縁ガイド。
  4.  前記連通路は、前記絶縁ガイドの周方向と径方向とに対して傾斜している、
    請求項1から3のいずれかに記載のプラズマトーチ用絶縁ガイド。
  5.  前記絶縁ガイドの前記軸線方向に対する前記連通路の傾斜角度は、30度以上、60度以下である、
    請求項1から4のいずれかに記載のプラズマトーチ用絶縁ガイド。
  6.  前記絶縁ガイドは、連続使用温度が100℃以上の樹脂製である、
    請求項1から5のいずれかに記載のプラズマトーチ用絶縁ガイド。
  7.  前記第1内周面と前記第2内周面との間に配置される内側段部をさらに備え、
     前記連通路は、前記内側段部に接続される、
    請求項1から6のいずれかに記載のプラズマトーチ用絶縁ガイド。
  8.  前記第2内周面は、前記電極の外周面に係止する凹凸形状を有する、
    請求項1から7のいずれかに記載のプラズマトーチ用絶縁ガイド。
  9.  前記絶縁ガイドの軸線方向から見て、前記連通路の軸線は、前記連通路の軸線と平行であり且つ前記絶縁ガイドの中心を通る直線から所定距離、離れている、
    請求項1から8のいずれかに記載のプラズマトーチ用絶縁ガイド。
  10.  前記連通路は、前記絶縁ガイドの軸線方向における中心よりも基端側の位置において前記絶縁ガイドの外部に接続される、
    請求項1から9のいずれかに記載のプラズマトーチ用絶縁ガイド。
  11.  前記第1内周面の内径は、前記ノズルの内径よりも大きい、
    請求項1から10のいずれかに記載のプラズマトーチ用絶縁ガイド。
  12.  前記第1内周面の内径は、前記ノズルの内径と略同じである、
    請求項1から10のいずれかに記載のプラズマトーチ用絶縁ガイド。
  13.  複数の前記連通路を備え、
     複数の前記連通路は、前記絶縁ガイドの周方向において等間隔に配置される、
    請求項1から12のいずれかに記載のプラズマトーチ用絶縁ガイド。
  14.  前記ノズルの内周面に接合される第1外周面と、
     前記第1外周面の基端側に位置する第2外周面と、
     前記第2外周面の基端側に位置する第3外周面と、
    をさらに備える、
    請求項1から13のいずれかに記載のプラズマトーチ用絶縁ガイド。
  15.  前記第1外周面の外径は、前記第2外周面の外径よりも大きい、
    請求項14に記載のプラズマトーチ用絶縁ガイド。
  16.  前記第1外周面は、前記ノズルの前記内周面に係止する凹凸形状を有する、
    請求項14又は15に記載のプラズマトーチ用絶縁ガイド。
  17.  前記第3外周面の外径は、前記第2外周面の外径よりも小さい、
    請求項14から16のいずれかに記載のプラズマトーチ用絶縁ガイド。
  18.  前記第2外周面と前記第3外周面との間に配置される外側段部をさらに備え、
     前記連通路は、前記外側段部に接続される、
    請求項17に記載のプラズマトーチ用絶縁ガイド。
  19.  前記第3外周面は、前記プラズマトーチのガス通路内に配置される、
    請求項18に記載のプラズマトーチ用絶縁ガイド。
  20.  前記第2外周面は、Oリングと接触するシール面を有する、
    請求項14から19のいずれかに記載のプラズマトーチ用絶縁ガイド。
  21.  前記第2外周面において前記シール面よりも先端側の部分は、前記プラズマトーチの冷却水通路内に配置される、
    請求項20に記載のプラズマトーチ用絶縁ガイド。
  22.  前記絶縁ガイドの軸線方向において、前記第1外周面は、前記第2外周面より短い、
    請求項14から21のいずれかに記載のプラズマトーチ用絶縁ガイド。
  23.  前記絶縁ガイドの軸線方向において、前記第2外周面は、前記第3外周面より長い、
    請求項14から22のいずれかに記載のプラズマトーチ用絶縁ガイド。
  24.  電極と、前記電極が挿入されるノズルと、を有するプラズマ切断用のプラズマトーチに用いられ、前記電極と前記ノズルとを連結し、絶縁体で形成された円管状の絶縁ガイドであって、
     前記絶縁ガイドの先端まで延びる第1内周面と、
     前記第1内周面の基端側に位置し、前記電極の外周面に接合され、前記第1内周面より小さな内径を有する第2内周面と、
     前記第1内周面と前記第2内周面との間に配置される内側段部と、
     前記ノズルの内周面に接合される第1外周面と、
     前記第1外周面の基端側に位置し、前記第1外周面より小さい外径を有する第2外周面と、
     前記第2外周面の基端側に位置し、前記第2外周面より小さい外径を有する第3外周面と、
     前記第2外周面と前記第3外周面との間に配置される外側段部と、
     前記内側段部と前記外側段部とを連通し、周方向と径方向と軸線方向とに対して傾斜した方向に延びる連通路と、
    を備えるプラズマトーチ用絶縁ガイド。
  25.  前記第1内周面と前記内側段部とは、耐熱被膜で覆われている、
    請求項24に記載のプラズマトーチ用絶縁ガイド。
  26.  前記耐熱被膜は、セラミック系材料からなる、
    請求項25に記載のプラズマトーチ用絶縁ガイド。
  27.  前記耐熱被膜は、窒化ホウ素(ボロンナイトライド)からなる、
    請求項25に記載のプラズマトーチ用絶縁ガイド。
  28.  酸素プラズマ切断用のプラズマトーチに用いられる交換部品ユニットであって、
     ハフニウム製の電極材料を有する電極と、
     請求項1から27のいずれかに記載の絶縁ガイドと、
     前記絶縁ガイドが挿入される孔を有し、前記絶縁ガイドと圧入又は接着により接合されるノズルと、
    を備えるプラズマトーチ用交換部品ユニット。
     
PCT/JP2015/084165 2015-01-30 2015-12-04 プラズマトーチ用絶縁ガイド、及び交換部品ユニット WO2016121229A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112015003776.4T DE112015003776T5 (de) 2015-01-30 2015-12-04 Isolierende Führung für einen Plasmabrenner und Ersatzteileinheit
KR1020187028839A KR102281286B1 (ko) 2015-01-30 2015-12-04 플라즈마 토치용 절연 가이드, 및 교환 부품 유닛
KR1020167036907A KR101957866B1 (ko) 2015-01-30 2015-12-04 플라즈마 토치용 절연 가이드, 및 교환 부품 유닛
CN201580035371.6A CN106660158B (zh) 2015-01-30 2015-12-04 等离子体火炬用绝缘导件及交换部件单元
US15/325,269 US10625364B2 (en) 2015-01-30 2015-12-04 Insulation guide for plasma torch, and replacement part unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015017538A JP6522968B2 (ja) 2015-01-30 2015-01-30 プラズマトーチ用絶縁ガイド、及び交換部品ユニット
JP2015-017538 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121229A1 true WO2016121229A1 (ja) 2016-08-04

Family

ID=56542864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084165 WO2016121229A1 (ja) 2015-01-30 2015-12-04 プラズマトーチ用絶縁ガイド、及び交換部品ユニット

Country Status (6)

Country Link
US (1) US10625364B2 (ja)
JP (1) JP6522968B2 (ja)
KR (2) KR102281286B1 (ja)
CN (1) CN106660158B (ja)
DE (1) DE112015003776T5 (ja)
WO (1) WO2016121229A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109483029A (zh) * 2017-09-13 2019-03-19 林肯环球股份有限公司 用于等离子切割炬的高温隔离插入物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017112821A1 (de) * 2017-06-12 2018-12-13 Kjellberg-Stiftung Elektroden für gas- und flüssigkeitsgekühlte Plasmabrenner, Anordnung aus einer Elektrode und einem Kühlrohr, Gasführung, Plasmabrenner, Verfahren zur Gasführung in einem Plasmabrenner und Verfahren zum Betreiben eines Plasmabrenners

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135174U (ja) * 1988-03-03 1989-09-14
JPH0963790A (ja) * 1995-08-24 1997-03-07 Koike Sanso Kogyo Co Ltd プラズマトーチのノズル
JPH0985450A (ja) * 1995-09-19 1997-03-31 Mitsubishi Materials Corp プラズマ肉盛用溶接トーチ
JPH09285868A (ja) * 1996-04-25 1997-11-04 Koike Sanso Kogyo Co Ltd プラズマトーチ
JPH11285834A (ja) * 1998-03-31 1999-10-19 Komatsu Ltd プラズマ溶接トーチ及びその部品
JP2001047247A (ja) * 1999-08-11 2001-02-20 Komatsu Ltd プラズマ加工機、プラズマトーチ及びその部品の着脱方法
JP2002086274A (ja) * 2000-09-12 2002-03-26 Koike Sanso Kogyo Co Ltd プラズマトーチ用のノズル

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632951A (en) * 1969-06-09 1972-01-04 Air Prod & Chem Plasma arc welding torch
US4421970A (en) * 1981-01-30 1983-12-20 Hypertherm, Incorporated Height sensing system for a plasma arc cutting tool
US5132512A (en) * 1988-06-07 1992-07-21 Hypertherm, Inc. Arc torch nozzle shield for plasma
DE3840485A1 (de) * 1988-12-01 1990-06-07 Mannesmann Ag Fluessigkeitsgekuehlter plasmabrenner mit uebertragenem lichtbogen
DE4022112C2 (de) * 1990-07-11 1996-03-14 Mannesmann Ag Plasmabrenner für übertragenen Lichtbogen
JP2591371Y2 (ja) 1993-02-24 1999-03-03 株式会社小松製作所 プラズマアークトーチ
US5726415A (en) * 1996-04-16 1998-03-10 The Lincoln Electric Company Gas cooled plasma torch
US6215090B1 (en) * 1998-03-06 2001-04-10 The Esab Group, Inc. Plasma arc torch
US6156995A (en) * 1998-12-02 2000-12-05 The Esab Group, Inc. Water-injection nozzle assembly with insulated front end
US6320156B1 (en) * 1999-05-10 2001-11-20 Komatsu Ltd. Plasma processing device, plasma torch and method for replacing components of same
US6498316B1 (en) * 1999-10-25 2002-12-24 Thermal Dynamics Corporation Plasma torch and method for underwater cutting
US6329627B1 (en) * 2000-10-26 2001-12-11 American Torch Tip Company Electrode for plasma arc torch and method of making the same
US6774336B2 (en) * 2001-02-27 2004-08-10 Thermal Dynamics Corporation Tip gas distributor
US6777638B2 (en) * 2002-11-14 2004-08-17 The Esab Group, Inc. Plasma arc torch and method of operation for reduced erosion of electrode and nozzle
JP2005324205A (ja) 2004-05-12 2005-11-24 Honma:Kk プラズマトーチとガイド
US7375303B2 (en) * 2004-11-16 2008-05-20 Hypertherm, Inc. Plasma arc torch having an electrode with internal passages
US7750265B2 (en) * 2004-11-24 2010-07-06 Vladimir Belashchenko Multi-electrode plasma system and method for thermal spraying
US7737383B2 (en) * 2006-08-25 2010-06-15 Thermal Dynamics Corporation Contoured shield orifice for a plasma arc torch
US8866038B2 (en) * 2007-01-23 2014-10-21 Hypertherm, Inc. Consumable component parts for a plasma torch
KR101167958B1 (ko) * 2007-07-12 2012-07-23 고마쓰 산기 가부시끼가이샤 플라즈마 토치, 플라즈마 토치의 노즐 및 플라즈마 가공기
US8389887B2 (en) * 2008-03-12 2013-03-05 Hypertherm, Inc. Apparatus and method for a liquid cooled shield for improved piercing performance
EP2236211B1 (en) * 2009-03-31 2015-09-09 Ford-Werke GmbH Plasma transfer wire arc thermal spray system
US8258423B2 (en) * 2009-08-10 2012-09-04 The Esab Group, Inc. Retract start plasma torch with reversible coolant flow
US20110210101A1 (en) * 2010-03-01 2011-09-01 The Esab Group, Inc. Processes for using a plasma arc torch to operate upon an insulation-coated workpiece
US8362387B2 (en) * 2010-12-03 2013-01-29 Kaliburn, Inc. Electrode for plasma arc torch and related plasma arc torch
WO2012162562A1 (en) * 2011-05-24 2012-11-29 Thermal Dynamics Corporation Plasma arc torch with secondary starting circuit and electrode
FR3000866A1 (fr) 2013-01-09 2014-07-11 Air Liquide Welding France Torche a plasma d'arc avec regulation selective du debit de gaz plasmagene
EP2804450B1 (de) 2013-05-16 2022-05-04 Kjellberg-Stiftung Mehrteiliges Isolierteil für einen Lichtbogenplasmabrenner, Brenner und zugehörige Anordnungen mit demselben und zugehörigen Verfahren
WO2015141768A1 (ja) * 2014-03-19 2015-09-24 大陽日酸株式会社 非移行型のプラズマアークシステム、変換用アダプタキット、非移行型のプラズマアーク用トーチ
CN203875469U (zh) 2014-06-04 2014-10-15 常州市金球焊割设备有限公司 低频等离子切割枪
JP6522967B2 (ja) * 2015-01-30 2019-05-29 株式会社小松製作所 プラズマトーチ用センタパイプ、接触子、電極、及びプラズマトーチ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135174U (ja) * 1988-03-03 1989-09-14
JPH0963790A (ja) * 1995-08-24 1997-03-07 Koike Sanso Kogyo Co Ltd プラズマトーチのノズル
JPH0985450A (ja) * 1995-09-19 1997-03-31 Mitsubishi Materials Corp プラズマ肉盛用溶接トーチ
JPH09285868A (ja) * 1996-04-25 1997-11-04 Koike Sanso Kogyo Co Ltd プラズマトーチ
JPH11285834A (ja) * 1998-03-31 1999-10-19 Komatsu Ltd プラズマ溶接トーチ及びその部品
JP2001047247A (ja) * 1999-08-11 2001-02-20 Komatsu Ltd プラズマ加工機、プラズマトーチ及びその部品の着脱方法
JP2002086274A (ja) * 2000-09-12 2002-03-26 Koike Sanso Kogyo Co Ltd プラズマトーチ用のノズル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109483029A (zh) * 2017-09-13 2019-03-19 林肯环球股份有限公司 用于等离子切割炬的高温隔离插入物

Also Published As

Publication number Publication date
JP2016140873A (ja) 2016-08-08
KR102281286B1 (ko) 2021-07-22
US20170182584A1 (en) 2017-06-29
KR101957866B1 (ko) 2019-03-13
CN106660158B (zh) 2020-02-21
US10625364B2 (en) 2020-04-21
KR20180112880A (ko) 2018-10-12
CN106660158A (zh) 2017-05-10
JP6522968B2 (ja) 2019-05-29
KR20170012473A (ko) 2017-02-02
DE112015003776T5 (de) 2017-04-27

Similar Documents

Publication Publication Date Title
KR101940595B1 (ko) 플라즈마 토치용 센터 파이프, 접촉자, 전극, 및 플라즈마 토치
WO2016121228A1 (ja) プラズマトーチ用交換部品ユニット、電極、絶縁ガイド、及びノズル
RU176854U1 (ru) Система для плазменно-дуговой резки, включающая трубки для охладителя и другие расходные компоненты
US20140319103A1 (en) Welding assembly for gas shielded arc welding
WO2016121229A1 (ja) プラズマトーチ用絶縁ガイド、及び交換部品ユニット
JP6902587B2 (ja) プラズマトーチ用交換部品ユニット
JP2007128677A (ja) プラズマトーチ
JP3635986B2 (ja) プラズマトーチ及びそのノズル
JP6998208B2 (ja) プラズマトーチ用ノズル、及び交換部品ユニット
JP6910116B2 (ja) プラズマトーチ用絶縁ガイドの製造方法
JP2000334569A (ja) プラズマトーチ及びそのリテーナキャップ
US20220124902A1 (en) Plasma torch and center pipe for plasma torch
JP3802710B2 (ja) プラズマトーチ及びその部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020167036907

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 15325269

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003776

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880121

Country of ref document: EP

Kind code of ref document: A1