WO2016121202A1 - 予測装置、予測方法、及び、プログラム - Google Patents

予測装置、予測方法、及び、プログラム Download PDF

Info

Publication number
WO2016121202A1
WO2016121202A1 PCT/JP2015/082353 JP2015082353W WO2016121202A1 WO 2016121202 A1 WO2016121202 A1 WO 2016121202A1 JP 2015082353 W JP2015082353 W JP 2015082353W WO 2016121202 A1 WO2016121202 A1 WO 2016121202A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
value
target time
amount
target
Prior art date
Application number
PCT/JP2015/082353
Other languages
English (en)
French (fr)
Inventor
鈴木 勝也
康将 本間
耕治 工藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016571785A priority Critical patent/JPWO2016121202A1/ja
Priority to US15/543,435 priority patent/US20170371073A1/en
Publication of WO2016121202A1 publication Critical patent/WO2016121202A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a prediction device, a prediction method, and a program, and more specifically, to a prediction device, a prediction method, and a program for predicting a natural energy power generation amount, a solar radiation amount, and / or a wind speed.
  • Patent Documents 1 to 3 and Non-Patent Document 1 disclose a technique for predicting the amount of solar power generation and the amount of solar radiation from weather data using a statistical method based on machine learning.
  • Feature quantity extraction means for extracting feature quantities that are time-series fluctuations from meteorological data from m hours before the target time (m is 2 or more) to the target time;
  • a prediction device having estimation means for estimating a natural energy power generation amount, solar radiation amount or wind speed at the target time based on the feature amounts for a plurality of days.
  • Computer Feature quantity extracting means for extracting feature quantities that are time-series fluctuations from meteorological data from m hours before the target time (m is 2 or more) to the target time; Estimating means for estimating a natural energy power generation amount, solar radiation amount or wind speed at the target time based on the feature amount for a plurality of days, A program for functioning as a server is provided.
  • Feature quantity extraction means for extracting feature quantities that are time-series fluctuations from meteorological data from m hours before the target time (m is 2 or more) to the target time;
  • a prediction device having estimation means for estimating a natural energy power generation amount, solar radiation amount or wind speed at the target time based on the feature amount.
  • a feature quantity extracted from meteorological data from m hours before the target time (m is 2 or more) to the target time is used as an explanatory variable, and a natural energy power generation amount, solar radiation amount or wind speed at the target time is used as an objective variable
  • Prediction formula acquisition means for acquiring a prediction formula for predicting natural energy power generation amount, solar radiation amount or wind speed at the target time generated by machine learning based on daily teacher data
  • Weather data acquisition means for acquiring weather data up to the target time on the prediction target day
  • Feature quantity extraction means for extracting the feature quantity from meteorological data from m hours before the target time of the prediction target date to the target time
  • a natural energy power generation amount, a solar radiation amount, or a wind speed at the target time on the prediction target day is estimated.
  • First estimating means Is provided.
  • the present invention it is possible to improve the accuracy of prediction in a technique for predicting the amount of solar power generation and the amount of solar radiation using a statistical method based on machine learning.
  • Each unit included in the apparatus of the present embodiment is stored in a CPU (Central Processing Unit), a memory, a program loaded into the memory, a storage unit such as a hard disk storing the program (from the stage of shipping the apparatus in advance). It can also store programs downloaded from CDs (Compact Discs) and other servers and servers on the Internet), and any combination of hardware and software, centering on the network connection interface Realized.
  • CPU Central Processing Unit
  • CDs Compact Discs
  • FIG. 1 is a diagram conceptually illustrating an example of a hardware configuration of an apparatus according to the present embodiment.
  • the apparatus according to the present embodiment includes, for example, a CPU 1A, a RAM (Random Access Memory) 2A, a ROM (Read Only Memory) 3A, a display control unit 4A, a display 5A, and operation reception that are connected to each other via a bus 10A.
  • other elements such as an input / output interface connected to an external device by wire, a microphone, and a speaker may be provided.
  • the CPU 1A controls the entire computer of the apparatus together with each element.
  • the ROM 3A includes an area for storing programs for operating the computer, various application programs, various setting data used when these programs operate.
  • the RAM 2A includes an area for temporarily storing data, such as a work area for operating a program.
  • the auxiliary storage device 9A is, for example, an HDD (Hard Disc Drive), and can store a large amount of data.
  • the display 5A is, for example, a display device (LED (Light Emitting Diode) display, liquid crystal display, organic EL (Electro Luminescence) display, etc.).
  • the display 5A may be a touch panel display integrated with a touch pad.
  • the display control unit 4A reads data stored in a VRAM (Video RAM), performs predetermined processing on the read data, and then sends the data to the display 5A to display various screens.
  • the operation reception unit 6A receives various operations via the operation unit 7A.
  • the operation unit 7A includes operation keys, operation buttons, switches, a jog dial, a touch panel display, a keyboard, and the like.
  • the communication unit 8A is wired and / or wirelessly connected to a network such as the Internet or a LAN (Local Area Network) and communicates with other electronic devices.
  • the prediction device 10 of the present embodiment uses, as explanatory variables, feature quantities extracted from meteorological data from m hours before the target time (m is 2 or more) to the target time, and the natural energy power generation amount and solar radiation at the target time. Predict the natural energy generation amount, solar radiation amount or wind speed at the target time on the target date of prediction using the prediction formula generated by machine learning based on teacher data for multiple days, using the amount or wind speed as the objective variable .
  • Natural energy power generation means the amount of power generated by using natural energy.
  • power generation using sunlight, power generation using wind power, or the like can be considered.
  • this embodiment will be described in detail.
  • FIG. 12 shows an example of a functional block diagram of the prediction device 10 of the present embodiment.
  • the prediction device 10 includes a feature amount extraction unit 13 and a first estimation unit 14.
  • the feature quantity extraction unit 13 extracts feature quantities that are time-series fluctuations from meteorological data from m hours before the target time (m is 2 or more) to the target time.
  • the 1st estimation part 14 estimates the natural energy electric power generation amount in the object time, the solar radiation amount, or the wind speed based on the feature-value for several days.
  • the first estimation unit 14 performs estimation using a prediction formula that predicts feature quantities extracted from meteorological data up to the target time as explanatory variables, natural energy power generation, solar radiation, or wind speed at the target time as objective variables. You may go.
  • the 1st estimation part 14 may perform estimation using the prediction formula based on the teacher data for several days which consist of the combination of an explanatory variable and an objective variable.
  • FIG. 2 shows another example of a functional block diagram of the prediction device 10 of the present embodiment.
  • the prediction device 10 includes a prediction formula acquisition unit 11, a weather data acquisition unit 12, a feature amount extraction unit 13, and a first estimation unit 14.
  • a prediction formula acquisition unit 11 a weather data acquisition unit 12
  • a feature amount extraction unit 13 a feature amount extraction unit 14
  • the prediction formula acquisition unit 11 acquires a prediction formula for predicting the natural energy generation amount, solar radiation amount or wind speed at the target time.
  • the prediction formula uses feature quantities extracted from meteorological data from m hours before the target time to the target time as explanatory variables, and uses natural energy power generation, solar radiation, or wind speed at the target time as objective variables, Generated by machine learning based on minute teacher data.
  • the prediction formula acquisition unit 11 may generate such a prediction formula, or may acquire the prediction formula from another external device that can communicate with the prediction device 10 by wired and / or wireless communication. .
  • FIG. 3 shows an example of a functional block diagram of the prediction formula acquisition unit 11 in the embodiment for generating the prediction formula.
  • the prediction formula acquisition unit 11 illustrated includes a past data storage unit 21 and a prediction formula generation unit 22.
  • the prediction formula acquisition unit 11 acquires a prediction formula from an external device
  • the external device includes the past data storage unit 21 and the prediction formula generation unit 22.
  • the past data storage unit 21 records the actual value or predicted value of weather data (predicted value announced at a predetermined timing before each time) for each past date and time (at a predetermined time on a predetermined day), It stores past data in which natural energy power generation amount, solar radiation amount and / or wind speed actual values are associated with attribute values indicating these attributes.
  • the past data storage unit 21 stores past data for a plurality of days (eg, 30 days, 60 days, 1 year, 3 years, etc.).
  • FIG. 4 schematically shows an example of past data stored in the past data storage unit 21.
  • date, time, amount of solar power generation, amount of solar radiation, weather data, and attribute data are associated with each other.
  • the actual value of the wind speed and / or the actual value of the power generation amount of wind power generation may be associated with each other.
  • the past data includes a plurality of data accumulated at predetermined time intervals.
  • the time interval of the data is various, and can be arbitrarily selected every 5 minutes, every 15 minutes, every 30 minutes, every hour, or the like.
  • the past data may be further accumulated for each observation site. That is, past data may be accumulated at predetermined time intervals for each observation site.
  • the actual value of the integrated amount within a predetermined time specified on the basis of the associated date and time is described. For example, an integrated amount for M minutes centered on the associated date and time (M is 5, 15, 30, 60, etc.), an integrated amount from the associated date and time to M minutes later, etc. However, it is not limited to these.
  • the solar power generation amount and solar radiation amount columns indicate the actual value of the solar radiation amount at each observation site and the solar power generation equipment installed at each observation site. The actual value of the amount of generated photovoltaic power is recorded.
  • the actual value of the integrated amount within a predetermined time specified on the basis of the associated date and time is described.
  • the actual value at the associated date and time, or the statistical value (average value, maximum value, mode) of the actual value within a predetermined time specified on the basis of the associated date and time is described.
  • the statistical value average value, maximum value, mode of the actual value within a predetermined time specified on the basis of the associated date and time. Value, median, minimum, etc.).
  • the actual values at the associated date and time are entered. If there is no weather data measured at the exact date and time of the past data because the time interval of the past data and the sampling interval of the weather data are different, the weather data measured at the timing closest to the date and time It may be adopted.
  • statistical values of actual values within a predetermined time specified with reference to the associated date and time (average value, maximum value, mode value, median value, minimum value, etc.) May be described.
  • a predicted value announced at a predetermined timing before the associated time may be described instead of the actual value.
  • the forecast value corresponds to a weather forecast value announced on the previous day or the like.
  • Meteorological data includes at least one item of data that affects the amount of renewable energy generation, solar radiation, and wind speed.
  • weather data may include items such as temperature, humidity, wind direction, wind speed, precipitation, weather, upper cloud cover, middle cloud cover, lower cloud cover, total cloud cover, ground pressure, sea level pressure, solar radiation, etc. It is not limited.
  • the actual data is accumulated for each observation site, the actual value or predicted value of each observation site is described in the meteorological data column.
  • the attribute data column a value indicating the attribute of each data is described.
  • the attribute data includes at least one item of data that affects natural energy power generation, solar radiation, and wind speed.
  • the attribute data may be an observation place, an observation day season, and the like, but is not limited thereto.
  • the observation location may be indicated by the name of a municipality, may be indicated by latitude and longitude, or may be other.
  • the prediction formula generation unit 22 generates a prediction formula for predicting the natural energy power generation amount, the solar radiation amount, or the wind speed at the target time based on the past data stored in the past data storage unit 21. Specifically, the prediction formula generation unit 22 uses, as explanatory variables, feature quantities extracted from meteorological data from m hours before the target time (m is 2 or more) to the target time, and the natural energy power generation at the target time. The prediction formula is generated by machine learning based on teacher data for a plurality of days, with the amount, the amount of solar radiation, or the wind speed as an objective variable.
  • the above feature amount represents a feature of time-series fluctuation of meteorological data within a time period from m hours before the target time to the target time.
  • a one-dimensional array or multi-dimensional array in which values of one or more predetermined items (weather data) within the time are arranged in time series may be used as the feature amount.
  • plot the data on a graph that takes the value of a predetermined item (weather data) on one axis and takes time on the other axis, and from the shape of the obtained waveform any feature that represents the above fluctuation May be extracted.
  • a feature amount may be extracted from a plurality of items (weather data) by the method (waveform shape) and arranged in a predetermined item order as the feature amount.
  • Any method such as multiple regression, neural network, support vector machine, etc. can be used as the machine learning method.
  • the lower limit of the value of m is 2, preferably 5, and more preferably 9. As will be shown in the following examples, by doing so, it is possible to sufficiently increase the accuracy of the prediction of the natural energy power generation amount, the solar radiation amount or the wind speed.
  • the upper limit of the value of m is 20, for example, preferably 13. As shown in the following examples, when the value of m is equal to or less than a predetermined value, the accuracy of prediction increases as the value of m increases. However, when the value of m exceeds a predetermined value, the accuracy of prediction is almost flat and a large change cannot be obtained. By determining the upper limit of m in this way, the processing load on the computer can be reduced by reducing the amount of data to be processed while achieving sufficient prediction accuracy.
  • the prediction formula generation unit 22 can generate a plurality of prediction formulas corresponding to a plurality of different target times.
  • the meteorological data acquisition unit 12 acquires meteorological data (time series data) up to the target time on the prediction target date.
  • the meteorological data acquisition unit 12 acquires at least meteorological data from m hours before the target time on the prediction target date to the target time.
  • the weather data acquisition unit 12 can acquire the weather data by communicating with an external device by wired and / or wireless communication.
  • the meteorological data acquisition unit 12 may acquire the meteorological data for each observation site.
  • the meteorological data acquired by the meteorological data acquiring unit 12 may be actual values, predicted values, or a mixture of these.
  • the meteorological data acquisition unit 12 acquires meteorological data from m hours before the target time on the prediction target date to the target time, some or all of the actual values may not yet be disclosed.
  • the weather data acquisition unit 12 acquires a predicted value as weather data from m hours before the target time on the prediction target date to the target time.
  • the weather data acquisition unit 12 acquires the announced actual value and the time period when the actual value is not disclosed.
  • a predicted value may be acquired.
  • the weather data acquisition part 12 may acquire a predicted value in all the time zones.
  • the feature amount extraction unit 13 performs predetermined processing based on the weather data acquired by the weather data acquisition unit 12. Specifically, the feature amount extraction unit 13 extracts feature amounts from weather data from m hours before the target time on the prediction target date to the target time.
  • the feature quantity extracted by the feature quantity extraction unit 13 is the same type of feature quantity as the feature quantity used as the explanatory variable in the generation of the prediction formula acquired by the prediction formula acquisition unit 11.
  • the first estimation unit 14 Based on the prediction formula acquired by the prediction formula acquisition unit 11 and the feature amount extracted by the feature amount extraction unit 13, the first estimation unit 14 generates the amount of natural energy generated at the target time on the prediction target day, the amount of solar radiation, or Estimate the wind speed. That is, the first estimation unit 14 inputs the feature quantity extracted by the feature quantity extraction unit 13 into the prediction formula acquired by the prediction formula acquisition unit 11, thereby generating the natural energy power generation amount and solar radiation at the target time on the prediction target day. Get an estimate (output) of quantity or wind speed. Note that when the estimated value of the solar radiation amount is obtained, the first estimating unit 14 may then calculate the solar power generation amount by multiplying the estimated value of the solar radiation amount by a conversion coefficient.
  • the 1st estimation part 14 may input into a predetermined type
  • the concept of processing by the prediction device 10 will be described using a specific example shown in FIG. For example, it is assumed that the prediction target date is January 1, 2015, the target time is 18:00, and the value of m is 12. In this case, m hours before the target time is 6 o'clock.
  • FIG. 5 shows temperature data as an example of weather data.
  • a prediction formula is generated using data for a plurality of days (in the case of the figure, p days) before January 1, 2015 (date of prediction) as teacher data. Specifically, feature amounts extracted from meteorological data from 6 am to 6 pm each day are explanatory variables. Then, the natural energy power generation amount, solar radiation amount or wind speed (in the case of the figure, natural energy power generation amount) at 18:00 on each day is the objective variable.
  • the prediction formula acquisition unit 11 acquires a prediction formula obtained by machine learning based on teacher data for a plurality of days consisting of such combinations of explanatory variables and objective variables.
  • the said prediction formula is a formula which predicts the natural energy electric power generation amount, solar radiation amount, or wind speed at 18:00 on arbitrary days.
  • the weather data acquisition unit 12 acquires at least weather data from 6:00 to 18:00 on January 1, 2015 (predicted date).
  • the meteorological data may be a predicted value, or a result value and a predicted value may be mixed.
  • mixing for example, it can be considered that the actual value is from 6 o'clock to 12 o'clock and the predicted value is thereafter.
  • the feature quantity extraction unit 13 extracts a predetermined feature quantity from the weather data from 6:00 to 18:00 on January 1, 2015 (predicted date) acquired by the weather data acquisition unit 12.
  • the feature amount represents time-series fluctuations of meteorological data within a time period from 6:00 to 18:00 on January 1, 2015 (prediction target date).
  • the first estimation unit 14 (January 1, 2015) Natural energy generation amount, solar radiation amount or wind speed at 18:00
  • the prediction device 10 estimates the amount of natural energy generation, the amount of solar radiation, or the wind speed at the target time based on the characteristics of changes in weather data from a predetermined time (m hours) before the target time to the target time. .
  • m hours a predetermined time
  • the prediction apparatus 10 of the present embodiment can generate a prediction formula by machine learning based on teacher data for a plurality of days. For this reason, a highly accurate prediction formula can be generated.
  • the first formula is generated by machine learning that selectively uses past data that is more than a predetermined level similar to the prediction target in which at least one of the measurement target date and the prediction target point is specified. Different from the embodiment. Details will be described below.
  • the prediction device 10 of the present embodiment includes a prediction formula acquisition unit 11, a weather data acquisition unit 12, a feature amount extraction unit 13, and a first estimation unit 14.
  • a prediction formula acquisition unit 11 a weather data acquisition unit 12
  • a feature amount extraction unit 13 a feature amount extraction unit 14
  • first estimation unit 14 a first estimation unit 14
  • the prediction formula acquisition unit 11 acquires a prediction formula generated based on teacher data in which at least one of a prediction target date and a prediction target point is specified, and a predetermined attribute similar to a predetermined level or more.
  • a prediction formula generated based on teacher data in which at least one of a prediction target date and a prediction target point is specified, and a predetermined attribute similar to a predetermined level or more.
  • the prediction formula generation unit 22 acquires an attribute value to be predicted.
  • at least one of the prediction target date and the prediction target point is specified as the prediction target.
  • a prediction target attribute value for example, a prediction target month, a season of the prediction target day, a predicted value of weather data of the prediction target day, a prediction target point, and the like can be acquired.
  • the prediction formula generation unit 22 extracts data whose predetermined attribute is similar to the prediction target by a predetermined level or more from the past data stored in the past data storage unit 21. For example, data in which the prediction target points (observation sites) match or the difference (distance) is a predetermined value or less may be extracted. In addition, data that matches the season and month may be extracted. In addition, data of a predetermined item (meteorological data) at a predetermined time may be the same, or data whose difference is equal to or less than a predetermined value may be extracted (comparison between a predicted value of a prediction target and an actual value of past data) ). In addition, data satisfying a condition obtained by combining these conditions with a predetermined logical expression may be extracted. In addition, the degree of similarity may be calculated using any method for calculating the degree of similarity, and data having a degree of similarity equal to or higher than a predetermined level may be extracted.
  • the prediction formula generation unit 22 generates a prediction formula by machine learning using the extracted data as teacher data.
  • the weather data acquisition unit 12 acquires weather data up to the target time to be predicted.
  • the feature amount extraction unit 13 extracts feature amounts from the weather data.
  • the first estimation unit 14 estimates the natural energy generation amount, the solar radiation amount, or the wind speed at the target time to be predicted based on the feature amount and the prediction formula acquired by the prediction formula acquisition unit 11.
  • the prediction device 10 selects past data whose predetermined attribute is similar to the prediction target by a predetermined level or more in the estimation of the natural energy generation amount, the solar radiation amount or the wind speed at the target time of the prediction target.
  • the prediction formula generated using the teacher data can be used.
  • the prediction device 10 uses the past data of the first observation site as an estimation formula that is selectively used as teacher data. Based on this, the amount of natural energy generated, the amount of solar radiation, or the wind speed can be estimated.
  • the prediction device 10 when estimating the natural energy power generation amount, the solar radiation amount, or the wind speed on an arbitrary day in October, the prediction device 10 is based on an estimation formula generated by selectively using past data of October as teacher data. Natural energy generation amount, solar radiation amount or wind speed can be estimated.
  • the prediction apparatus 10 estimates the amount of natural energy power generation, the amount of solar radiation, or the wind speed on the day (prediction target day) when the predicted temperature (maximum temperature, minimum temperature, etc.) is M ° C.
  • the accuracy of estimating the amount of natural energy generated, the amount of solar radiation, or the wind speed is improved.
  • the prediction apparatus 10 of the present embodiment is different from the first and second embodiments in that the value of m is variable. Details will be described below.
  • FIG. 6 shows an example of a functional block diagram of the prediction device 10 of the present embodiment.
  • the prediction device 10 includes a prediction formula acquisition unit 11, a weather data acquisition unit 12, a feature amount extraction unit 13, a first estimation unit 14, and an m value setting unit 15.
  • the m value setting unit 15 sets the value of m. For example, the m value setting unit 15 may determine an optimal value of m by analysis using past data and set the determined value. For example, the m value setting unit 15 may calculate the accuracy of estimation for each value of m by the above analysis. Then, the m value setting unit 15 may set the value of m with the highest accuracy. In addition, the m value setting unit 15 may accept an input designating a value of m from the user. Then, the m value setting unit 15 may set the accepted value. For example, the m value setting unit 15 includes means for outputting the result of the above analysis (estimation accuracy for each value of m) to the user, and means for receiving an input designating the value of m from the user. Good.
  • the prediction formula acquisition unit 11 acquires a prediction formula generated based on the value of m set by the m value setting unit 15.
  • the feature amount extraction unit 13 extracts a feature amount based on the value of m set by the m value setting unit 15.
  • the m-value setting unit 15 selects data (hereinafter referred to as target data) used for generating a prediction formula by the prediction formula generation unit 22 from the past data stored in the past data storage unit 21. Extract.
  • the target data is, for example, data that has a predetermined attribute that is similar to the prediction target by a predetermined level or more (eg, data that matches the observation location, data that matches the season, data that matches the month of the prediction target date, and weather of a predetermined item)
  • the data may be data similar to a predetermined level or more), or may be data from a day before the prediction target date to the day before the prediction target date.
  • the m value setting unit 15 calculates a prediction formula (a prediction formula for performing prediction at the first target time) corresponding to each of a plurality of m values (eg, 1 to 15) based on the target data. Generate.
  • the m-value setting unit 15 adds the feature value of any sample date in the target data (m hours before the first target time to the first formula for each prediction formula generated for each m value.
  • the feature amount extracted from the meteorological data up to the target time) is input, and the predicted value of the natural energy generation amount, solar radiation amount or wind speed at the first target time on the sample date is obtained.
  • the m value setting unit 15 records the actual value at the first target time on the sample date, and the predicted value at the first target time on the sample date calculated in (3) above. Calculate the difference.
  • the m value setting unit 15 may use a plurality of difference statistical values (for example, an average value, a maximum value, a minimum value, a mode value, a median value, etc.) as a representative value of each m value difference.
  • the m value setting unit 15 may set a value of m with the smallest difference.
  • the m value setting unit 15 may perform the above process for each target time and set an optimal m value.
  • the present inventors show that the optimum value of m may be different for improving the prediction accuracy when the attributes (observation point, season, month, weather, etc.) of the prediction target are different. I found.
  • a phenomenon may occur in which the prediction accuracy is highest when the value of m is 10 at a certain observation point, but the prediction accuracy is highest when the value of m is 12 at another observation point.
  • the optimum value of m can be changed according to the season, month, weather, and the like.
  • the m-value setting unit 15 can select appropriate target data according to the estimation target, and can set an optimum value of m for each observation location (for each region). That is, an estimation formula optimized for each observation location can be used.
  • the m value setting unit 15 can set an optimum value of m based on the attributes (season, month, weather, etc.) of the prediction target day. That is, an estimation formula optimized for each prediction target day can be used. According to this embodiment, the accuracy of estimating the amount of natural energy generated, the amount of solar radiation, or the wind speed is improved.
  • the user can specify the value of m, for example, the user selects the value of m suitable for his / her application while considering the accuracy of estimation of each m value provided by the prediction device 10. can do. For example, when importance is placed on estimation accuracy, the user can select an optimum value of m (a value that can increase the accuracy of estimation) even when the processing speed is slow. Further, when the processing speed is important, any value of m that can obtain a certain degree of estimation accuracy can be selected. Thus, according to the prediction device 10 of the present embodiment, a user-friendly device can be realized.
  • the prediction device 10 of this embodiment is different from the first to third embodiments in that it includes means (information output unit) that provides predetermined information to the user. 7 to 9 show examples of information output by the information output means of this embodiment.
  • an area for displaying the set parameters (parameter setting area) and a main area for displaying predetermined main information (in the case of FIG. 7, a graph showing the change over time of the input variable Xn is displayed.
  • Displayed area and an area (screen switching area) for displaying the selection contents of information to be displayed in the main area are displayed.
  • Various parameters that have been set are displayed in the parameter setting area.
  • the target point observation place
  • the target date prediction target day
  • the target time the set value of the retroactive time
  • the type of input variable explanatory variable
  • the number of learning days the number of learning days (amount of teacher data used for generating the prediction formula).
  • the screen switching area the selection of information to be displayed in the main area is displayed.
  • this area there are input variables, predicted values, actual values, and graph display parameters, which are associated with On or Off, respectively.
  • the main area takes the input variable set for one axis and the other axis.
  • a graph showing the time is displayed. Then, on the graph, from the meteorological data (the meteorological data of items set as input variables) from the target time (t) m hours before the target time (t) to the target time (t).
  • the extracted feature values (input variables) are displayed.
  • graphs as shown in the figure may be displayed side by side.
  • the information skeleton in the example shown in FIG. 8 is the same as that in FIG.
  • the input variable and the actual value are On, and the predicted value and the graph display are Off.
  • a list of teacher data values used for generating a prediction formula is displayed in the main area. From the figure, teacher data for p days is displayed, and explanatory variables (X1 (t)%) And objective variables (actual values (natural energy generation amount, solar radiation amount or wind speed) at the target time (t)) are displayed. You can see that it is displayed.
  • the skeleton of the information shown in FIG. 9 is the same as that shown in FIGS.
  • the main area displays a graph in which the natural energy power generation amount (actual value and predicted value) is taken on one axis and the time is taken on the other axis. And the value of the natural energy power generation amount (actual value and prediction value) until the target time (t) on the prediction target day is displayed on the graph.
  • the predicted values estimated by the first estimation unit 14 may be displayed at all times on the graph.
  • the actual value may be plotted at the time when the actual value of the amount of generated natural energy is obtained by the time of the graph display.
  • the predicted value estimated by the 1st estimation part 14 may be displayed in the time when a performance value is not acquired.
  • the m-value setting unit 15 designates the means for outputting the result of the above analysis (the accuracy of estimation in each value of m) to the user, and the value of m from the user. Means for accepting input.
  • the m value setting unit 15 may display the result of the analysis on a screen (for example, a main area) as shown in FIGS. Then, the m value setting unit 15 displays a GUI (graphical user interface) component that accepts an input for designating the value of m on a screen (for example, a parameter setting area) as shown in FIG. 7 to FIG. May be accepted.
  • GUI graphical user interface
  • the m value setting unit 15 sets the value of m. For example, the m value setting unit 15 may determine an optimal value of m by analysis using past data and set the determined value. For example, the m value setting unit 15 may calculate the accuracy of estimation for each value of m by the above analysis. Then, the m value setting unit 15 may set the value of m with the highest accuracy. In addition, the m value setting unit 15 may accept an input designating a value of m from the user. Then, the m value setting unit 15 may set the accepted value. For example, the m value setting unit 15 includes means for outputting the result of the above analysis (estimation accuracy for each value of m) to the user, and means for receiving an input designating the value of m from the user. Good.
  • the details of the input variables used for estimation, the details of the teacher data used in the estimation formula, and the estimation results can be output to the user in a predetermined display format.
  • the user can determine the validity of the estimation result by confirming not only the estimation result but also the details of the input variables and the teacher data.
  • the prediction device 30 includes actual data (natural energy power generation amount, n hours before the target time of the prediction target day (n is greater than 0) to a predetermined time (a time smaller than n) before the target time.
  • the natural energy power generation amount, the solar radiation amount or the wind speed at the target time on the prediction target day is estimated by machine learning based on the solar radiation amount or the wind speed).
  • the value of n is variable. Details will be described below.
  • FIG. 10 shows an example of a functional block diagram of the prediction device 30 of the present embodiment.
  • the prediction device 30 includes a performance data acquisition unit 31, a second estimation unit 32, and an n value setting unit 33.
  • the actual data acquisition unit 31 acquires actual data on the amount of natural energy generated, the amount of solar radiation, or the wind speed up to a predetermined time before the target time on the prediction target date.
  • the actual result data acquisition unit 31 at least generates natural energy and solar radiation from the target time of the prediction target date n hours before (n is greater than 0) to a predetermined time (time less than n) before the target time. Acquire actual volume or wind speed data.
  • the second estimation unit 32 records actual data (natural energy generation amount, solar radiation amount or wind speed) from n hours before the target time (n is greater than 0) to a predetermined time (time smaller than n) before the target time. Based on the above, the natural energy power generation amount, solar radiation amount or wind speed at the target time is estimated. For the estimation, for example, a time series analysis model can be used.
  • the n value setting unit 33 sets the value of n.
  • the n value setting unit 33 may calculate the accuracy of estimation (estimation by the second estimation unit 32) for each value of n by analysis using past data stored in the past data storage unit 21.
  • the n value setting part 33 may determine the value of n based on a calculation result, and may set the determined value.
  • the n value setting unit 33 may set the value of n with the highest accuracy.
  • the n value setting unit 33 may accept an input specifying the value of n from the user. Then, the n value setting unit 33 may set the accepted value.
  • the n value setting unit 33 includes means for outputting the result of the above analysis (estimation accuracy for each value of n) to the user, and means for receiving an input designating the value of n from the user. Good.
  • the n-value setting unit 33 extracts predetermined data from the past data stored in the past data storage unit 21.
  • the prediction device 30 may include the past data storage unit 21.
  • an external device that can communicate with the prediction device 30 may have the past data storage unit 21.
  • the n-value setting unit 33 is, for example, data having a predetermined attribute similar to a prediction target in which at least one of the prediction target date and the observation place is specified (eg, data having the same observation place, data having the same season). , Data with the same month for the prediction target date, data with meteorological data of a predetermined item more than a predetermined level, etc.), or the prediction target date from a day before the prediction target day Data up to the previous day may be extracted.
  • the n value setting unit 33 uses the extracted data to start a predetermined time (from n) from the first target time from n hours before the first target time (n is greater than 0).
  • the natural energy power generation amount, the solar radiation amount, or the wind speed at the first target time is predicted based on the past data (natural energy power generation amount, solar radiation amount, or wind speed). For the prediction here, the same algorithm as that used by the second estimation unit 32 is used.
  • the n-value setting unit 33 calculates the difference between the calculated predicted value of the first target time and the actual value at the first target time. Note that the above difference may be calculated for each day based on data for a plurality of days. Then, a representative value of a difference between these statistical values (eg, average value, maximum value, minimum value, mode value, median value, etc.) may be calculated.
  • the n value setting unit 33 performs the processes (2) ′ and (3) ′ for each of a plurality of n values, and calculates the difference for each n value. Based on the difference, the accuracy of estimation of each n value can be evaluated. The smaller the difference, the higher the accuracy of prediction. For example, the n value setting unit 33 may set a value of n having the smallest difference.
  • the second estimation unit 32 estimates the natural energy power generation amount, the solar radiation amount, or the wind speed based on the value of n set by the n value setting unit 33.
  • the prediction device 30 is the actual data from n hours before the target time of the prediction target date (n is greater than 0) to a predetermined time (time less than n) before the target time.
  • machine learning based on (natural energy power generation amount, solar radiation amount or wind speed)
  • the natural energy power generation amount, solar radiation amount or wind speed at the target time on the prediction target day is estimated.
  • n is variable.
  • an optimal value of n is determined for each observation place, or a predetermined attribute is selected.
  • An optimal value of n can be determined for each (season, month, weather, etc.). According to this embodiment, the accuracy of estimating the amount of natural energy generated, the amount of solar radiation, or the wind speed is improved.
  • Figure 11 shows the verification results in Sapporo and Tokyo.
  • the value of m with the highest accuracy improvement rate in Sapporo is 12, and the value of m with the highest accuracy improvement rate in Tokyo is 10. That is, it can be seen that the optimum value of m differs from observation site to observation site.
  • a feature quantity extracted from meteorological data from m hours before the target time (m is 2 or more) to the target time is used as an explanatory variable, and a natural energy power generation amount, solar radiation amount or wind speed at the target time is used as an objective variable
  • Prediction formula acquisition means for acquiring a prediction formula for predicting natural energy power generation amount, solar radiation amount or wind speed at the target time generated by machine learning based on daily teacher data
  • Weather data acquisition means for acquiring weather data up to the target time on the prediction target day
  • Feature quantity extraction means for extracting the feature quantity from meteorological data from m hours before the target time of the prediction target date to the target time; Based on the prediction formula acquired by the prediction formula acquisition unit and the feature amount extracted by the feature amount extraction unit, a natural energy power generation amount, a solar radiation amount, or a wind speed at the target time on the prediction target day is estimated.
  • First estimating means A prediction device. 2.
  • the prediction device further includes m value setting means for setting the value of m, wherein the value of m is variable. 3.
  • the first estimating means estimates a natural energy power generation amount, solar radiation amount or wind speed in a plurality of regions,
  • the m value setting means is a prediction device that sets the value of m for each region. 4).
  • the m value setting means is a prediction device that sets the value of m based on the attribute of the prediction target day. 5.
  • the prediction formula acquisition unit acquires the prediction formula generated based on the teacher data in which a predetermined attribute is similar to a prediction target in which at least one of the prediction target date and the prediction target point is specified, and a predetermined attribute is equal to or higher than a predetermined level. apparatus. 6).
  • the said feature-value is a prediction apparatus showing the characteristic of the fluctuation
  • a feature quantity extracted from meteorological data from m hours before the target time (m is 2 or more) to the target time is used as an explanatory variable, and a natural energy power generation amount, solar radiation amount or wind speed at the target time is used as an objective variable
  • a prediction formula acquisition step for acquiring a prediction formula for predicting the natural energy generation amount, solar radiation amount or wind speed at the target time generated by machine learning based on teacher data for a day
  • a weather data acquisition step for acquiring weather data up to the target time on the prediction target day
  • a first estimation step; Prediction method to perform. 8 Computer A feature quantity extracted from meteorological data from m hours before the target time (m is 2 or more) to the target time is used as an explanatory variable, and a natural energy power generation amount, solar radiation amount or wind speed at the target time is used as an objective variable, Prediction formula acquisition means for acquiring a prediction formula for predicting the natural energy generation amount, solar radiation amount or wind speed at the target time generated by machine learning based on teacher data for a day; Weather data acquisition means for acquiring weather data up to the target time on the prediction target day; Feature quantity extraction means for extracting the feature quantity from meteorological data from m hours before the target time on the prediction target date to the target time; and Based on the prediction formula acquired by the prediction formula acquisition unit and the feature amount extracted by the feature amount extraction unit, a natural energy power generation amount, a solar radiation amount, or a wind speed at the target time on the prediction target day is estimated.
  • First estimating means Program to function as. 9. Achievement data acquisition means for acquiring the actual energy generation amount, the amount of solar radiation or the wind speed from the target time of the prediction target day to a predetermined time before, Based on the actual data from n hours before the target time (n is greater than 0) to the predetermined time before the target time, a natural energy power generation amount, solar radiation amount or wind speed at the target time is estimated. Two estimation means; The value of n is variable, and n value setting means for setting the value of n; A prediction device. 10.
  • Computer Actual data acquisition means for acquiring natural energy power generation amount, solar radiation amount or wind speed actual data up to a predetermined time before the target time of the prediction target day, Based on the actual data from n hours before the target time (n is greater than 0) to the predetermined time before the target time, a natural energy power generation amount, solar radiation amount or wind speed at the target time is estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 本発明は、機械学習による統計的手法を用いて自然エネルギー発電量、日射量又は風速を予測する技術において、予測の精度を高めることを課題とする。当該課題を解決するため、対象時刻よりもm時間前(mは2以上)から対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出部(13)と、複数日分の特徴量に基づいて対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定部(第1の推定部(14))と、を有する予測装置(10)を提供する。

Description

予測装置、予測方法、及び、プログラム
 本発明は、予測装置、予測方法、及び、プログラムに関し、より具体的には、自然エネルギー発電量、日射量及び/又は風速を予測する予測装置、予測方法、及び、プログラムに関する。
 特許文献1乃至3、及び、非特許文献1に、機械学習による統計的手法を用いて、気象データから太陽光発電の発電量や日射量を予測する技術が開示されている。
特開平9-215192号 特許第3984604号 特許第5339317号
Joao Gari da Silva Fonseca Junior, Takashi Oozeki, Takumi Takashima, and Kazuhiko Ogimoto, Analysis of the Use of Support Vector Regression and Neural Networks to Forecast Insolation for 25 Locations in Japan, Solar World Congress 2011 Proceedings, Germany, International Solar Energy Society, 2011, pp.4128-4135.
 特許文献1乃至3、及び、非特許文献1に開示の技術の場合、予測の精度が十分でなかった。本発明は、機械学習による統計的手法を用いて自然エネルギー発電量、日射量及び/又は風速を予測する技術において、予測の精度を高めることを課題とする。
 本発明によれば、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出手段と、
 複数日分の前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定手段と、を有する予測装置が提供される。
 また、本発明によれば、
 コンピュータが、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出工程と、
 複数日分の前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定工程と、
を実行する予測方法が提供される。
 また、本発明によれば、
 コンピュータを、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出手段、
 複数日分の前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出手段と、
 前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定手段と、を有する予測装置が提供される。
 また、本発明によれば、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから抽出した特徴量を説明変数とし、前記対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成された前記対象時刻の自然エネルギー発電量、日射量又は風速を予測する予測式を取得する予測式取得手段と、
 予測対象日の前記対象時刻までの気象データを取得する気象データ取得手段と、
 前記予測対象日の前記対象時刻よりもm時間前から前記対象時刻までの気象データから前記特徴量を抽出する特徴量抽出手段と、
 前記予測式取得手段が取得した前記予測式と、前記特徴量抽出手段が抽出した前記特徴量とに基づいて、前記予測対象日の前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第1の推定手段と、
を有する予測装置が提供される。
 本発明によれば、機械学習による統計的手法を用いて太陽光発電の発電量や日射量を予測する技術において、予測の精度を高めることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の装置のハードウエア構成の一例を概念的に示す図である。 本実施形態の予測装置の機能ブロック図の一例である。 本実施形態の予測式取得部の機能ブロック図の一例である。 本実施形態の予測装置が利用する過去データの一例を模式的に示す図である。 本実施形態の概要を説明するための図である。 本実施形態の予測装置の機能ブロック図の一例である。 本実施形態の予測装置が表示する情報の一例を示す図である。 本実施形態の予測装置が表示する情報の一例を示す図である。 本実施形態の予測装置が表示する情報の一例を示す図である。 本実施形態の予測装置の機能ブロック図の一例である。 本実施形態の予測装置の検証結果を示す図である。 本実施形態の予測装置の機能ブロック図の一例である。
 まず、本実施形態の装置のハードウエア構成の一例について説明する。本実施形態の装置が備える各部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされるプログラム、そのプログラムを格納するハードディスク等の記憶ユニット(あらかじめ装置を出荷する段階から格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムをも格納できる)、ネットワーク接続用インタフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図1は、本実施形態の装置のハードウエア構成の一例を概念的に示す図である。図示するように、本実施形態の装置は、例えば、バス10Aで相互に接続されるCPU1A、RAM(Random Access Memory)2A、ROM(Read Only Memory)3A、表示制御部4A、ディスプレイ5A、操作受付部6A、操作部7A、通信部8A、補助記憶装置9A等を有する。なお、図示しないが、その他、外部機器と有線で接続される入出力インタフェイス、マイク、スピーカ等の他の要素を備えてもよい。
 CPU1Aは各要素とともに装置のコンピュータ全体を制御する。ROM3Aは、コンピュータを動作させるためのプログラムや各種アプリケーションプログラム、それらのプログラムが動作する際に使用する各種設定データなどを記憶する領域を含む。RAM2Aは、プログラムが動作するための作業領域など一時的にデータを記憶する領域を含む。補助記憶装置9Aは、例えばHDD(Hard Disc Drive)であり、大容量のデータを記憶可能である。
 ディスプレイ5Aは、例えば、表示装置(LED(Light Emitting Diode)表示器、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等)である。ディスプレイ5Aは、タッチパッドと一体になったタッチパネルディスプレイであってもよい。表示制御部4Aは、VRAM(Video RAM)に記憶されたデータを読み出し、読み出したデータに対して所定の処理を施した後、ディスプレイ5Aに送って各種画面表示を行う。操作受付部6Aは、操作部7Aを介して各種操作を受付ける。操作部7Aは、操作キー、操作ボタン、スイッチ、ジョグダイヤル、タッチパネルディスプレイ、キーボードなどを含む。通信部8Aは、有線及び/または無線で、インターネット、LAN(Local Area Network)等のネットワークに接続し、他の電子機器と通信する。
 以下、本実施の形態について説明する。なお、以下の実施形態の説明において利用する機能ブロック図は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。なお、同一の構成要素には同一の符号を付し、適宜説明を省略する。
<第1の実施形態>
 本実施形態の予測装置10は、対象時刻よりもm時間前(mは2以上)から当該対象時刻までの気象データから抽出した特徴量を説明変数とし、当該対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成された予測式を利用して、予測対象日の当該対象時刻の自然エネルギー発電量、日射量又は風速を予測する。
 自然エネルギー発電量とは、自然エネルギーを利用した発電の発電量を意味する。このような発電方式としては、太陽光を利用した発電、風力を利用した発電等が考えられる。以下、本実施形態を詳細に説明する。
 図12に、本実施形態の予測装置10の機能ブロック図の一例を示す。図示するように、予測装置10は、特徴量抽出部13と、第1の推定部14とを有する。特徴量抽出部13は、対象時刻よりもm時間前(mは2以上)から当該対象時刻までの気象データから時系列の変動である特徴量を抽出する。第1の推定部14は、複数日分の特徴量に基づいて対象時刻における自然エネルギー発電量、日射量又は風速を推定する。なお、第1の推定部14は、対象時刻までの気象データから抽出した特徴量を説明変数、対象時刻の自然エネルギー発電量、日射量又は風速を目的変数として予測する予測式を用いて推定を行ってもよい。また、第1の推定部14は、説明変数および目的変数の組み合わせからなる複数日分の教師データに基づいた予測式を用いて推定を行ってもよい。
 図2に、本実施形態の予測装置10の機能ブロック図の他の一例を示す。図示するように、予測装置10は、予測式取得部11と、気象データ取得部12と、特徴量抽出部13と、第1の推定部14とを有する。以下、各部について説明する。
 予測式取得部11は、対象時刻の自然エネルギー発電量、日射量又は風速を予測する予測式を取得する。当該予測式は、対象時刻よりもm時間前から当該対象時刻までの気象データから抽出した特徴量を説明変数とし、当該対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成される。予測式取得部11は、このような予測式を生成してもよいし、予測装置10と通信可能になっている他の外部装置から、有線及び/又は無線での通信により取得してもよい。
 予測式を生成する実施形態における予測式取得部11の機能ブロック図の一例を、図3に示す。図示する予測式取得部11は、過去データ記憶部21と予測式生成部22とを有する。なお、予測式取得部11が外部装置から予測式を取得する場合、当該外部装置が過去データ記憶部21及び予測式生成部22を備えることとなる。
 過去データ記憶部21は、過去の日時毎に(所定の日の所定の時刻毎に)、気象データの実績値又は予測値(各時刻より前の所定のタイミングで発表された予測値)と、自然エネルギー発電量、日射量及び/又は風速の実績値と、これらの属性を示す属性値と、を対応付けた過去データを記憶している。過去データ記憶部21は、複数日分(例:30日分、60日分、1年分、3年分等)の過去データを記憶する。
 図4に、過去データ記憶部21が記憶する過去データの一例を模式的に示す。図示する過去データは、日付と、時刻と、太陽光発電量と、日射量と、気象データと、属性データとが互いに対応付けられている。図示しないが、さらに、風速の実績値及び/又は風力発電の発電量の実績値が対応付けられていてもよい。
 過去データは、所定の時間間隔で蓄積された複数のデータを含む。データの時間間隔は様々であり、5分毎、15分毎、30分毎、1時間毎等、任意に選択できる。なお、過去データは、さらに観測地毎に蓄積されてもよい。すなわち、過去データは、観測地毎に、所定の時間間隔で蓄積されていてもよい。
 太陽光発電量及び日射量の欄には、対応付けられている日時を基準にして特定される所定の時間内における積算量の実績値が記載される。例えば、対応付けられている日時を中心としたM分間の積算量(Mは、例えば5、15、30、60等)や、対応付けられている日時からM分後までの積算量等が考えられるが、これらに限定されない。実績データが観測地毎に蓄積されている場合、太陽光発電量及び日射量の欄には、各観測地における日射量の実績値、及び、各観測地に設置された太陽光発電装置で発電された太陽光発電量の実績値が記載される。
 図示しないが、風力発電の欄を有する場合、同様に、対応付けられている日時を基準にして特定される所定の時間内における積算量の実績値が記載される。風速の欄には、対応付けられている日時における実績値、又は、対応付けられている日時を基準にして特定される所定の時間内における実績値の統計値(平均値、最大値、最頻値、中央値、最小値等)が記載される。
 気象データの欄には、対応付けられている日時における実績値が記載される。なお、過去データの時間間隔と気象データのサンプリング間隔とが相違する等の理由により、過去データの日時ちょうどに測定された気象データがない場合、当該日時に最も近いタイミングで測定された気象データを採用してもよい。その他、気象データの欄には、対応付けられている日時を基準にして特定される所定の時間内における実績値の統計値(平均値、最大値、最頻値、中央値、最小値等)が記載されてもよい。また、気象データの欄には、実績値に代えて、対応付けられている時刻よりも前の所定のタイミングで発表された予測値が記載されてもよい。当該予測値は、前日等に発表される気象予報の値等が該当する。
 気象データは、自然エネルギー発電量や日射量や風速に影響する項目のデータを少なくとも1つ含む。例えば、気象データは、気温、湿度、風向き、風速、降水量、天気、上層雲量、中層雲量、下層雲量、全雲量、地上気圧、海面気圧、日射量等の項目が考えられるが、これらに限定されない。実績データが観測地毎に蓄積されている場合、気象データの欄には、各観測地の実績値又は予測値が記載される。
 属性データの欄には、各データの属性を示す値が記載される。属性データは、自然エネルギー発電量や日射量や風速に影響する項目のデータを少なくとも1つ含む。例えば、属性データは、観測地や、観測日の季節等が考えられるが、これらに限定されない。観測地は、市町村名で示されてもよいし、緯度・経度で示されてもよいし、その他であってもよい。
 図3に戻り、予測式生成部22は、過去データ記憶部21が記憶する過去データに基づいて、対象時刻における自然エネルギー発電量、日射量又は風速を予測する予測式を生成する。具体的には、予測式生成部22は、対象時刻よりもm時間前(mは2以上)から当該対象時刻までの気象データから抽出した特徴量を説明変数とし、当該対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で、予測式を生成する。
 上記特徴量は、対象時刻よりもm時間前から対象時刻までの時間内における気象データの時系列な変動の特徴を表す。特徴量を抽出するアルゴリズムは様々である。例えば、当該時間内における所定の1つ又は複数の項目(気象データ)の値そのものを時系列に並べた1次元配列又は多次元配列を、特徴量としてもよい。又は、一方の軸に所定の項目(気象データ)の値をとり、他方の軸に時間をとったグラフ上にデータをプロットし、得られた波形の形状から、上記変動を表す任意の特徴量を抽出してもよい。また、複数の項目(気象データ)から当該手法(波形の形状)で特徴量を抽出し、これらを所定の項目順に並べた配列を特徴量としてもよい。
 機械学習の手法には、重回帰、ニューラルネットワーク、サポートベクターマシン等のあらゆる手法を採用できる。
 mの値の下限は2であり、好ましくは5、さらに好ましくは9である。以下の実施例で示すが、このようにすることで、自然エネルギー発電量、日射量又は風速の予測の精度を十分に高めることができる。mの値の上限は、例えば20、好ましくは13である。以下の実施例で示すように、mの値が所定値以下の場合、mの値が大きくなるほど予測の精度は高くなる。しかし、mの値が所定値を超えると、予測の精度はほぼ横ばいとなり、大きな変化は得られなくなる。mの上限をこのように定めることで、十分な予測の精度を実現しつつ、処理対象のデータ量を減らすことでコンピュータの処理負担を軽減できる。
 予測式生成部22は、互いに異なる複数の対象時刻各々に対応した複数の予測式を生成することができる。
 気象データ取得部12は、予測対象日の対象時刻までの気象データ(時系列データ)を取得する。気象データ取得部12は、少なくとも、予測対象日の対象時刻よりもm時間前から当該対象時刻までの気象データを取得する。例えば、気象データ取得部12は、有線及び/又は無線での通信により外部装置と通信し、当該気象データを取得することができる。気象データ取得部12は、観測地毎に、当該気象データを取得してもよい。
 気象データ取得部12が取得する気象データは、実績値であってもよいし、予測値であってもよいし、これらが混在していてもよい。気象データ取得部12が予測対象日の対象時刻よりもm時間前から当該対象時刻までの気象データを取得する時点で、その一部又は全部の実績値がいまだに公表されていない場合があり得る。全部の実績値が公表されていない場合、気象データ取得部12は、予測対象日の対象時刻よりもm時間前から当該対象時刻までの気象データとして、予測値を取得する。一方、一部の実績値が公表され、一部の実績値が公表されていない場合、気象データ取得部12は、公表されている実績値を取得するとともに、実績値が公表されていない時間帯においては予測値を取得してもよい。その他、一部の実績値が公表され、一部の実績値が公表されていない場合、気象データ取得部12は、すべての時間帯において予測値を取得してもよい。
 特徴量抽出部13は、気象データ取得部12が取得した気象データに基づいて、所定の処理を行う。具体的には、特徴量抽出部13は、予測対象日の対象時刻よりもm時間前から対象時刻までの気象データから特徴量を抽出する。特徴量抽出部13が抽出する特徴量は、予測式取得部11が取得する予測式の生成において説明変数として用いられた特徴量と同種の特徴量である。
 第1の推定部14は、予測式取得部11が取得した予測式と、特徴量抽出部13が抽出した特徴量とに基づいて、予測対象日の対象時刻における自然エネルギー発電量、日射量又は風速を推定する。すなわち第1の推定部14は、予測式取得部11が取得した予測式に、特徴量抽出部13が抽出した特徴量を入力することで、予測対象日の対象時刻における自然エネルギー発電量、日射量又は風速の推定値(出力)を得る。なお、第1の推定部14は、日射量の推定値を得た場合、その後、日射量の推定値に変換係数を乗算するなどにより、太陽光発電量を算出してもよい。また、第1の推定部14は、風速の推定値を得た場合、所定の式に入力し、風力発電量を算出してもよい。風力発電量は、ローター面積(予めユーザが指定)や、風速(推定値)の3乗に比例することが知られている。
 ここで、図5に示す具体例を用いて、予測装置10による処理の概念を説明する。例えば、予測対象日が2015年1月1日であり、対象時刻が18時であり、mの値は12であるとする。この場合、対象時刻よりもm時間前は6時となる。
 図5には、気象データの一例として気温のデータを示している。当該例の場合、2015年1月1日(予測対象日)より前の任意の複数日(図の場合、p日)分のデータを教師データとして、予測式が生成されている。具体的には、各日の6時から18時までの気象データから抽出された特徴量が、説明変数となる。そして、各日の18時における自然エネルギー発電量、日射量又は風速(図の場合、自然エネルギー発電量)が目的変数となる。予測式取得部11は、このような説明変数及び目的変数の組み合わせからなる複数日分の教師データに基づいた機械学習により得られた予測式を取得する。当該予測式は、任意の日の18時における自然エネルギー発電量、日射量又は風速を予測する式である。
 そして、気象データ取得部12は、少なくとも、2015年1月1日(予測対象日)の6時から18時までの気象データを取得する。当該気象データは予測値であってもよいし、実績値と予測値とが混在していてもよい。混在の例としては、例えば、6時から12時までは実績値であり、それ以降は予測値である等が考えられる。
 特徴量抽出部13は、気象データ取得部12により取得された2015年1月1日(予測対象日)の6時から18時までの気象データから、所定の特徴量を抽出する。当該特徴量は、2015年1月1日(予測対象日)の6時から18時までの時間内における気象データの時系列な変動を表す。
 第1の推定部14は、上述の通り予測式取得部11が取得した予測式と、上述の通り特徴量抽出部13が抽出した特徴量とに基づいて、2015年1月1日(予測対象日)の18時における自然エネルギー発電量、日射量又は風速を予測する。
 対象時刻を変化させて上記処理を繰り返すことで、2015年1月1日(予測対象日)の終日の自然エネルギー発電量、日射量又は風速の予測が得られる。
 次に、本実施形態の作用効果について説明する。本実施形態の予測装置10は、対象時刻よりも所定時間(m時間)前から対象時刻までの気象データの変動の特徴に基づいて、対象時刻における自然エネルギー発電量、日射量又は風速を推定する。以下の実施例に示すように、このような本実施形態によれば、自然エネルギー発電量、日射量又は風速の推定の精度を高めることができる。また、本実施形態の予測装置10は、複数日分の教師データに基づいた機械学習で、予測式を生成することができる。このため、精度の高い予測式を生成することができる。
<第2の実施形態>
 本実施形態は、測対象日及び予測対象地点の少なくとも一方が特定された予測対象と所定レベル以上類似する過去データを選択的に用いた機械学習により、推定式を生成する点で、第1の実施形態と異なる。以下、詳細に説明する。
 本実施形態の機能ブロック図の一例は、第1の実施形態と同様、図2で示される。図示するように、本実施形態の予測装置10は、予測式取得部11と、気象データ取得部12と、特徴量抽出部13と、第1の推定部14とを有する。以下、第1の実施形態と異なる点を説明する。
 予測式取得部11は、予測対象日及び予測対象地点の少なくとも一方が特定された予測対象と、所定の属性が所定レベル以上類似する教師データに基づき生成された予測式を取得する。以下、このような予測式を生成する処理について説明する。
 まず、予測式生成部22は、予測対象の属性値を取得する。上述の通り、予測対象は、予測対象日及び予測対象地点の少なくとも一方が特定されている。このような予測対象の属性値として、例えば、予測対象月、予測対象日の季節、予測対象日の気象データの予測値、予測対象地点等が取得できる。
 その後、予測式生成部22は、過去データ記憶部21が記憶する過去データの中から、所定の属性が予測対象と所定レベル以上類似するデータを抽出する。例えば、予測対象地点(観測地)が一致する、又は、その差(距離)が所定値以下であるデータを抽出してもよい。その他、季節や月が一致するデータを抽出してもよい。その他、所定の時刻の所定の項目(気象データ)の値が一致、又は、その差が所定値以下のデータを抽出してもよい(予測対象の予測値と、過去データの実績値との比較)。その他、これらの条件を所定の論理式で組み合わせた条件を満たすデータを抽出してもよい。その他、類似度を算出する任意の手法を利用して類似度を算出し、類似度が所定レベル以上であるデータを抽出してもよい。
 その後、予測式生成部22は、抽出したデータを教師データとした機械学習により、予測式を生成する。
 気象データ取得部12は、予測対象の対象時刻までの気象データを取得する。特徴量抽出部13は、当該気象データから特徴量を抽出する。第1の推定部14は、当該特徴量と、予測式取得部11が取得した予測式とに基づいて、予測対象の対象時刻における自然エネルギー発電量、日射量又は風速を推定する。
 このような本実施形態によれば、予測装置10は、予測対象の対象時刻における自然エネルギー発電量、日射量又は風速を推定において、所定の属性が予測対象に所定レベル以上類似した過去データを選択的に教師データとして用いて生成された予測式を利用することができる。
 例えば、予測装置10は、第1の観測地における自然エネルギー発電量、日射量又は風速を推定する場合、第1の観測地の過去データを選択的に教師データとして用いて生成された推定式に基づいて、自然エネルギー発電量、日射量又は風速を推定することができる。
 また、予測装置10は、10月の任意の日における自然エネルギー発電量、日射量又は風速を推定する場合、10月の過去データを選択的に教師データとして用いて生成された推定式に基づいて、自然エネルギー発電量、日射量又は風速を推定することができる。
 また、予測装置10は、予測気温(最高気温、最低気温等)がM℃となっている日(予測対象日)における自然エネルギー発電量、日射量又は風速を推定する場合、気温(最高気温、最低気温等の実績値)が上記予測気温と所定レベル以上類似する過去データを選択的に教師データとして用いて生成された推定式に基づいて、自然エネルギー発電量、日射量又は風速を推定することができる。
 このような本実施形態の予測装置10によれば、自然エネルギー発電量、日射量又は風速の推定の精度が向上する。
<第3の実施形態>
 本実施形態の予測装置10は、mの値が可変である点で、第1及び第2の実施形態と異なる。以下、詳細に説明する。
 図6に、本実施形態の予測装置10の機能ブロック図の一例を示す。図示するように、予測装置10は、予測式取得部11と、気象データ取得部12と、特徴量抽出部13と、第1の推定部14と、m値設定部15とを有する。以下、第1及び第2の実施形態と異なる点を説明する。
 m値設定部15は、mの値を設定する。例えば、m値設定部15は、過去データを用いた分析により、最適なmの値を決定し、決定した値を設定してもよい。例えば、m値設定部15は、上記分析により、mの値各々における推定の精度を算出してもよい。そして、m値設定部15は、精度が最も高いmの値を設定してもよい。その他、m値設定部15は、ユーザからmの値を指定する入力を受付けてもよい。そして、m値設定部15は、受付けた値を設定してもよい。例えば、m値設定部15は、上記分析の結果(mの値各々における推定の精度)をユーザに向けて出力する手段と、ユーザからmの値を指定する入力を受付ける手段とを備えてもよい。
 予測式取得部11は、m値設定部15により設定されたmの値に基づいて生成された予測式を取得する。特徴量抽出部13は、m値設定部15により設定されたmの値に基づいて特徴量を抽出する。
 ここで、m値設定部15が、過去データを用いた分析により、mの値各々における推定の精度を算出する処理の一例について説明する。ここでは、第1の対象時刻の推定に適したmの値を決定する処理を説明する。
(1)まず、m値設定部15は、過去データ記憶部21に記憶されている過去データの中から、予測式生成部22による予測式の生成に利用されるデータ(以下、対象データ)を抽出する。
 対象データは、例えば、予測対象と所定の属性が所定レベル以上類似するデータ(例:観測地が一致するデータ、季節が一致するデータ、予測対象日の月が一致するデータ、所定の項目の気象データが所定レベル以上類似するデータ等)であってもよいし、又は、予測対象日よりも所定日数前の日から予測対象日の前日までのデータであってもよい。
(2)次に、m値設定部15は、対象データに基づいて、複数のm値(例:1乃至15)各々に対応した予測式(第1の対象時刻における予測を行う予測式)を生成する。
(3)その後、m値設定部15は、m値毎に生成した予測式各々に、対象データの中の任意のサンプル日の特徴量(第1の対象時刻よりもm時間前から第1の対象時刻までの気象データから抽出した特徴量)を入力し、サンプル日の第1の対象時刻における自然エネルギー発電量、日射量又は風速の予測値を得る。
(4)その後、m値設定部15は、m値毎に、サンプル日の第1の対象時刻における実績値と、上記(3)で算出した当該サンプル日の第1の対象時刻における予測値との差を算出する。
 なお、任意のサンプル日を複数設定し、(3)及び(4)の処理をサンプル日ごとに行ってもよい。このようにすれば、mの値毎に複数の上記差が得られる。この場合、m値設定部15は、複数の差の統計値(例:平均値、最大値、最小値、最頻値、中央値等)を、各m値の差の代表値としてもよい。
 このようにして得られた差に基づいて、第1の対象時刻の推定における各m値の推定の精度を評価できる。当該差が小さい程、予測の精度は高いことを意味する。例えば、m値設定部15は、当該差が最も小さいmの値を設定してもよい。なお、m値設定部15は、対象時刻ごとに上記処理を行い、最適なm値を設定してもよい。
 また、以下の実施例で示すが、本発明者らは、予測対象の属性(観測地点、季節、月、気象等)が異なると、予測精度を高める上で最適なmの値が異なり得ることを見出した。
 例えば、ある観測地点ではmの値が10の時に予測精度が最も高くなるが、他の観測地点ではmの値が12の時に予測精度が最も高くなる、という現象が起こり得る。同様に、季節、月、気象等に応じて、最適なmの値が変わり得る。
 本実施形態によれば、m値設定部15は、推定対象に応じた適切な対象データを選択し、観測地毎に(地域毎に)最適なmの値を設定することができる。すなわち、観測地毎に最適化した推定式を利用することができる。また、m値設定部15は、予測対象日の属性(季節、月、気象等)に基づいて、予測対象日に最適なmの値を設定することができる。すなわち、予測対象日毎に最適化した推定式を利用することができる。このような本実施形態によれば、自然エネルギー発電量、日射量又は風速の推定の精度が向上する。
 また、推定した自然エネルギー発電量、日射量又は風速の用途によっては、ある程度の推定精度でよく、それよりも推定の処理速度を向上させることを希望する場合がある。ユーザがmの値を指定できる本実施形態によれば、ユーザは、例えば、予測装置10により提供された各m値の推定の精度を考慮しながら、自己の用途に合ったmの値を選択することができる。例えば、推定精度を重視する場合、ユーザは、処理速度が遅くなっても最適なmの値(推定の精度を高めることができる値)を選択することができる。また、処理速度を重視する場合には、ある程度の推定の精度を得られる任意のmの値を選択することができる。このように、本実施形態の予測装置10によれば、ユーザフレンドリーな装置を実現できる。
<第4の実施形態>
 本実施形態の予測装置10は、所定の情報をユーザに提供する手段(情報出力部)を備える点で、第1乃至第3の実施形態と異なる。図7乃至図9に、本実施形態の情報出力手段が出力する情報の一例を示す。
 図7に示す例では、設定されているパラメータを表示するエリア(パラメータ設定エリア)と、所定のメイン情報が表示されるメインエリア(図7の場合、入力変数Xnの時間変化を示すグラフが表示されているエリア)と、メインエリアに表示する情報の選択内容を表示するエリア(画面切替エリア)と、が表示されている。
 パラメータ設定エリアには、設定されている各種パラメータが表示されている。図の例の場合、対象地点(観測地)、対象日(予測対象日)、対象時刻、遡る時間の設定値(mの設定値)、入力変数(説明変数)の種類(気象データの1つ又は複数の項目)、学習日数(予測式の生成に利用した教師データの量)が示されている。
 画面切替エリアには、メインエリアに表示する情報の選択内容が表示されている。当該エリアには、入力変数、予測値、実績値及びグラフ表示のパラメータが存在し、各々、On又はOffが対応付けられている。
 入力変数及びグラフ表示がOnになり、予測値及び実績値がOffになっている図7の例の場合、メインエリアには、一方の軸に設定されている入力変数をとり、他方の軸に時刻を取ったグラフが表示されている。そして、当該グラフ上に、予測対象日の対象時刻(t)よりもm時間前(t-m)から対象時刻(t)までの気象データ(入力変数として設定されている項目の気象データ)から抽出した特徴量(入力変数)が表示されている。なお、設定されている入力変数の種類(気象データの項目)が複数ある場合、図示するようなグラフを並べて一覧表示してもよい。
 図8に示す例の情報の骨格は、図7と同様である。図8に示す例の場合、画面切替エリアを観察すると、入力変数及び実績値がOnになり、予測値及びグラフ表示がOffになっている。当該例の場合、メインエリアには、予測式の生成に利用される教師データの値が一覧表示されている。図より、p日分の教師データが表示され、説明変数(X1(t)・・・)と、目的変数(対象時刻(t)における実績値(自然エネルギー発電量、日射量又は風速))が表示されていることが分かる。
 図9に示す例の情報の骨格は、図7及び図8と同様である。図9に示す例の場合、画面切替エリアを観察すると、予測値及びグラフ表示がOnになり、入力変数及び実績値がOffになっている。当該例の場合、メインエリアには、一方の軸に自然エネルギー発電量(実績値及び予測値)をとり、他方の軸に時刻を取ったグラフが表示されている。そして、当該グラフ上に、予測対象日の対象時刻(t)までの自然エネルギー発電量(実績値及び予測値)の値が表示されている。例えば、グラフ上におけるすべての時刻において、第1の推定部14により推定された予測値が表示されてもよい。その他、グラフ表示の時点までに自然エネルギー発電量の実績値が得られている時刻においては、実績値がプロットされてもよい。そして、実績値が得られていない時刻においては第1の推定部14により推定された予測値が表示されてもよい。
 第3の実施形態で説明したように、m値設定部15は、上記分析の結果(mの値各々における推定の精度)をユーザに向けて出力する手段と、ユーザからmの値を指定する入力を受付ける手段とを備えることができる。例えば、m値設定部15は、図7乃至図9に示すような画面(例えばメインエリア)において、上記分析の結果を表示してもよい。そして、m値設定部15は、図7乃至図9に示すような画面(例えばパラメータ設定エリア)に、mの値を指定する入力を受付けるGUI(graphical user interface)部品を表示し、mの値の入力を受付けてもよい。
 m値設定部15は、mの値を設定する。例えば、m値設定部15は、過去データを用いた分析により、最適なmの値を決定し、決定した値を設定してもよい。例えば、m値設定部15は、上記分析により、mの値各々における推定の精度を算出してもよい。そして、m値設定部15は、精度が最も高いmの値を設定してもよい。その他、m値設定部15は、ユーザからmの値を指定する入力を受付けてもよい。そして、m値設定部15は、受付けた値を設定してもよい。例えば、m値設定部15は、上記分析の結果(mの値各々における推定の精度)をユーザに向けて出力する手段と、ユーザからmの値を指定する入力を受付ける手段とを備えてもよい。
 以上説明した本実施形態によれば、推定に用いる入力変数の詳細、推定式に利用された教師データの詳細、及び、推定結果を、所定の表示形式でユーザに向けて出力することができる。このような本実施形態によれば、ユーザは、推定結果のみならず、入力変数や教師データの詳細を確認することで、推定結果の妥当性を判断することができる。
<第5の実施形態>
 本実施形態の予測装置30は、予測対象日の対象時刻よりもn時間前(nは0より大)から対象時刻より所定時間(nより小さい時間)前までの実績データ(自然エネルギー発電量、日射量又は風速)に基づいた機械学習により、予測対象日の対象時刻における自然エネルギー発電量、日射量又は風速を推定する。nの値は可変である。以下、詳細に説明する。
 図10に、本実施形態の予測装置30の機能ブロック図の一例を示す。図示するように、予測装置30は、実績データ取得部31と、第2の推定部32と、n値設定部33とを有する。
 実績データ取得部31は、予測対象日の対象時刻より所定時間前までの自然エネルギー発電量、日射量又は風速の実績データを取得する。実績データ取得部31は、少なくとも、予測対象日の対象時刻よりもn時間前(nは0より大)から、対象時刻よりも所定時間(nより小さい時間)前までの自然エネルギー発電量、日射量又は風速の実績データを取得する。
 第2の推定部32は、対象時刻よりもn時間前(nは0より大)から対象時刻より所定時間(nより小さい時間)前までの実績データ(自然エネルギー発電量、日射量又は風速)に基づいて、対象時刻における自然エネルギー発電量、日射量又は風速を推定する。推定には、例えば時系列分析のモデルを利用することができる。
 n値設定部33は、nの値を設定する。例えば、n値設定部33は、過去データ記憶部21が記憶する過去データを用いた分析により、nの値各々における推定(第2の推定部32による推定)の精度を算出してもよい。そして、n値設定部33は、算出結果に基づいてnの値を決定し、決定した値を設定してもよい。例えば、n値設定部33は、精度が最も高いnの値を設定してもよい。その他、n値設定部33は、ユーザからnの値を指定する入力を受付けてもよい。そして、n値設定部33は、受付けた値を設定してもよい。例えば、n値設定部33は、上記分析の結果(nの値各々における推定の精度)をユーザに向けて出力する手段と、ユーザからnの値を指定する入力を受付ける手段とを備えてもよい。
 ここで、n値設定部33が行う過去データを用いた分析の例を説明する。ここでは、第1の対象時刻の推定に適したnの値を決定する処理を説明する。
(1)´まず、n値設定部33は、過去データ記憶部21に記憶されている過去データの中から、所定のデータを抽出する。例えば、予測装置30は、過去データ記憶部21を有してもよい。または、予測装置30と通信可能である外部装置が過去データ記憶部21を有していてもよい。
 n値設定部33は、例えば、予測対象日及び観測地の少なくとも一方が特定された予測対象と所定の属性が所定レベル以上類似するデータ(例:観測地が一致するデータ、季節が一致するデータ、予測対象日の月が一致するデータ、所定の項目の気象データが所定レベル以上類似するデータ等)を抽出してもよいし、又は、予測対象日よりも所定日数前の日から予測対象日の前日までのデータを抽出してもよい。
(2)´その後、n値設定部33は、抽出したデータを利用して、第1の対象時刻よりもn時間前(nは0より大)から第1の対象時刻より所定時間(nより小さい時間)前までの実績データ(自然エネルギー発電量、日射量又は風速)に基づき、第1の対象時刻の自然エネルギー発電量、日射量又は風速の予測を行う。ここでの予測には、第2の推定部32が利用するアルゴリズムと同じものを利用する。
(3)´その後、n値設定部33は、算出した第1の対象時刻の予測値と、当該第1の対象時刻における実績値との差を算出する。なお、複数の日のデータ各々に基づき、各日の上記差を算出してもよい。そして、それらの統計値(例:平均値、最大値、最小値、最頻値、中央値等)を、の差の代表値を算出してもよい。
 n値設定部33は、複数のnの値各々に対して、上記(2)´及び(3)´の処理を行い、nの値毎に上記差を算出する。当該差に基づいて、各n値の推定の精度を評価できる。当該差が小さい程、予測の精度は高いことを意味する。例えば、n値設定部33は、上記差が最も小さいnの値を設定してもよい。
 第2の推定部32は、n値設定部33が設定したnの値に基づいて、自然エネルギー発電量、日射量又は風速を推定する。
 以上説明したように、本実施形態の予測装置30は、予測対象日の対象時刻よりもn時間前(nは0より大)から対象時刻より所定時間(nより小さい時間)前までの実績データ(自然エネルギー発電量、日射量又は風速)に基づいた機械学習により、予測対象日の対象時刻における自然エネルギー発電量、日射量又は風速を推定する。
 そして、nの値は、可変である。このような本実施形態の予測装置30によれば、上記(1)´の処理で最適なデータを選択することで、例えば、観測地毎に最適なnの値を決定したり、所定の属性(季節、月、気象等)毎に最適なnの値を決定したりできる。このような本実施形態によれば、自然エネルギー発電量、日射量又は風速の推定の精度が向上する。
<実施例>
 以下の条件で、第1乃至第4の実施形態の予測装置10の検証を行った。
観測地:札幌、東京
予測対象日:2008年6月から8月の各日
対象時刻:8時、9時、10時、11時、12時、13時、14時、15時、16時及び17時
mの値:0から12各々
教師データ:予測対象日の直前60日分のデータ
説明変数:対象時刻よりm時間前から対象時刻までの上層雲量、中層雲量、下層雲量、気温、湿度各々の1時間毎の値、および、対象時刻とその1時間前の大気外日射量の1時間毎の値
目的変数:対象時刻の日射量
推定式に入力する値:予測対象日の前日の15時において発表されていた予測対象日の対象時刻よりm時間前から対象時刻までの気象データ(上記説明変数の項目)の1時間毎の予測値
予測実行時刻:予測対象日の前日の18時に翌日の予測を行う
機械学習手法:サポートベクターマシン
「mの値に応じた精度改善率」
 まず、MAPE(Mean Absolute Percentage Error)を用いて、各mの値の予測誤差を算出した。xiは、各対象時刻の日射量の実績値である。yiは、上記条件で推定した各対象時刻の日射量の推定値である。nは、mの値各々に対応するサンプル数である。
Figure JPOXMLDOC01-appb-M000001
 そして、m=0の時のMAPEの値を基準値とし、基準値からm値各々のMAPEの値を引いた差分を、m値各々の精度改善率とした。精度改善率が正の値の場合、m=0の場合に比べて精度が改善している。そして、その値が大きい程、精度が改善している。一方、精度改善率が負の値の場合、m=0の場合に比べて精度が悪化している。そして、その値が小さい程、精度が悪化している。
 図11に、札幌及び東京各々での検証結果を示す。図に示す基準値は、m=0の時のMAPEの値を示す。図より、札幌及び東京いずれにおいても、mの値が1の場合より、mの値が2以上の場合の方が、精度改善率が高いことが分かる。また、札幌及び東京いずれにおいても、mの値が所定値以下の場合、mの値が大きくなるほど、精度改善率が大きくなる傾向が読み取れる。
 また、mの値が所定値を超えると精度改善率が飽和し、それ以上mの値が大きくなってもあまり変化しないことが分かる。そして、精度改善率が飽和するmの値は、観測地毎に異なることが分かる。
 また、札幌で最も精度改善率が大きいmの値は12であり、東京で最も精度改善率が大きいmの値は10であることが分かる。すなわち、最適なmの値は、観測地毎に異なることが分かる。
 以下、参考形態の例を付記する。
1. 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから抽出した特徴量を説明変数とし、前記対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成された前記対象時刻の自然エネルギー発電量、日射量又は風速を予測する予測式を取得する予測式取得手段と、
 予測対象日の前記対象時刻までの気象データを取得する気象データ取得手段と、
 前記予測対象日の前記対象時刻よりもm時間前から前記対象時刻までの気象データから前記特徴量を抽出する特徴量抽出手段と、
 前記予測式取得手段が取得した前記予測式と、前記特徴量抽出手段が抽出した前記特徴量とに基づいて、前記予測対象日の前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第1の推定手段と、
を有する予測装置。
2. 1に記載の予測装置において、
 前記mの値は可変であり、前記mの値を設定するm値設定手段をさらに有する予測装置。
3. 2に記載の予測装置において、
 前記第1の推定手段は、複数の地域の自然エネルギー発電量、日射量又は風速を推定し、
 前記m値設定手段は、地域毎に前記mの値を設定する予測装置。
4. 2又は3に記載の予測装置において、
 前記m値設定手段は、前記予測対象日の属性に基づいて、前記mの値を設定する予測装置。
5. 1から4のいずれかに記載の予測装置において、
 前記予測式取得手段は、前記予測対象日及び予測対象地点の少なくとも一方が特定された予測対象と、所定の属性が所定レベル以上類似する前記教師データに基づき生成された前記予測式を取得する予測装置。
6. 1から5のいずれかに記載の予測装置において、
 前記特徴量は、前記対象時刻よりもm時間前から前記対象時刻までの時間内における気象データの変動の特徴を表す予測装置。
7. コンピュータが、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから抽出した特徴量を説明変数とし、前記対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成された前記対象時刻の自然エネルギー発電量、日射量又は風速を予測する予測式を取得する予測式取得工程と、
 予測対象日の前記対象時刻までの気象データを取得する気象データ取得工程と、
 前記予測対象日の前記対象時刻よりもm時間前から前記対象時刻までの気象データから前記特徴量を抽出する特徴量抽出工程と、
 前記予測式取得工程で取得した前記予測式と、前記特徴量抽出工程で抽出した前記特徴量とに基づいて、前記予測対象日の前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第1の推定工程と、
を実行する予測方法。
8. コンピュータを、
 対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから抽出した特徴量を説明変数とし、前記対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成された前記対象時刻の自然エネルギー発電量、日射量又は風速を予測する予測式を取得する予測式取得手段、
 予測対象日の前記対象時刻までの気象データを取得する気象データ取得手段、
 前記予測対象日の前記対象時刻よりもm時間前から前記対象時刻までの気象データから前記特徴量を抽出する特徴量抽出手段、及び、
 前記予測式取得手段が取得した前記予測式と、前記特徴量抽出手段が抽出した前記特徴量とに基づいて、前記予測対象日の前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第1の推定手段、
として機能させるためのプログラム。
9. 予測対象日の対象時刻より所定時間前までの自然エネルギー発電量、日射量又は風速の実績データを取得する実績データ取得手段と、
 前記対象時刻よりもn時間前(nは0より大)から前記対象時刻より前記所定時間前までの前記実績データに基づいて、前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第2の推定手段と、
 前記nの値は可変であり、前記nの値を設定するn値設定手段と、
を有する予測装置。
10. コンピュータが、
 予測対象日の対象時刻より所定時間前までの自然エネルギー発電量、日射量又は風速の実績データを取得する実績データ取得工程と、
 前記対象時刻よりもn時間前(nは0より大)から前記対象時刻より前記所定時間前までの前記実績データに基づいて、前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第2の推定工程と、
 前記nの値は可変であり、前記nの値を設定するn値設定工程と、
を実行する予測方法。
11. コンピュータを、
 予測対象日の対象時刻より所定時間前までの自然エネルギー発電量、日射量又は風速の実績データを取得する実績データ取得手段、
 前記対象時刻よりもn時間前(nは0より大)から前記対象時刻より前記所定時間前までの前記実績データに基づいて、前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第2の推定手段、及び、
 前記nの値は可変であり、前記nの値を設定するn値設定手段、
として機能させるためのプログラム。
 この出願は、2015年1月30日に出願された日本出願特願2015-017107号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出手段と、
     複数日分の前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定手段と、を有する予測装置。
  2.  前記推定手段は、
     前記対象時刻までの気象データから抽出した特徴量を説明変数、前記対象時刻の自然エネルギー発電量、日射量又は風速を目的変数として予測する予測式を用いて推定を行う請求項1に記載の予測装置。
  3.  前記推定手段は、前記説明変数および前記目的変数の組み合わせからなる複数日分の教師データに基づいた予測式を用いて推定を行う請求項2に記載の予測装置。
  4.  前記推定手段は、予測対象日と所定の属性が類似する複数日分の前記特徴量に基づいて推定を行う請求項1から3のいずれか1項に記載の予測装置。
  5.  前記mの値は可変であり、前記mの値を設定するm値設定手段をさらに有する請求項1から4のいずれか1項に記載の予測装置。
  6.  前記推定手段は、複数の地域の自然エネルギー発電量、日射量又は風速を推定し、
     前記m値設定手段は、地域毎に前記mの値を設定する請求項5に記載の予測装置。
  7.  前記m値設定手段は、予測対象日の属性に基づいて、前記mの値を設定する請求項5又は6に記載の予測装置。
  8.  前記m値設定手段は、mの値各々における推定の精度を出力する手段を備える請求項5から7のいずれか1項に記載の予測装置。
  9.  前記推定手段は、予測対象日及び予測対象地点の少なくとも一方が特定された予測対象と、所定の属性が所定レベル以上類似する教師データに基づき生成された前記予測式を用いて推定を行う請求項1から8のいずれか1項に記載の予測装置。
  10.  対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出手段と、
     前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定手段と、を有する予測装置。
  11.  対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから抽出した特徴量を説明変数とし、前記対象時刻の自然エネルギー発電量、日射量又は風速を目的変数とし、複数日分の教師データに基づいた機械学習で生成された前記対象時刻の自然エネルギー発電量、日射量又は風速を予測する予測式を取得する予測式取得手段と、
     予測対象日の前記対象時刻までの気象データを取得する気象データ取得手段と、
     前記予測対象日の前記対象時刻よりもm時間前から前記対象時刻までの気象データから前記特徴量を抽出する特徴量抽出手段と、
     前記予測式取得手段が取得した前記予測式と、前記特徴量抽出手段が抽出した前記特徴量とに基づいて、前記予測対象日の前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する第1の推定手段と、
    を有する予測装置。
  12.  コンピュータが、
     対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出工程と、
     複数日分の前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定工程と、
    を実行する予測方法。
  13.  コンピュータを、
     対象時刻よりもm時間前(mは2以上)から前記対象時刻までの気象データから時系列の変動である特徴量を抽出する特徴量抽出手段、
     複数日分の前記特徴量に基づいて前記対象時刻における自然エネルギー発電量、日射量又は風速を推定する推定手段、
    として機能させるためのプログラム。
PCT/JP2015/082353 2015-01-30 2015-11-18 予測装置、予測方法、及び、プログラム WO2016121202A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016571785A JPWO2016121202A1 (ja) 2015-01-30 2015-11-18 予測装置、予測方法、及び、プログラム
US15/543,435 US20170371073A1 (en) 2015-01-30 2015-11-18 Prediction apparatus, prediction method, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017107 2015-01-30
JP2015017107 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121202A1 true WO2016121202A1 (ja) 2016-08-04

Family

ID=56542840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082353 WO2016121202A1 (ja) 2015-01-30 2015-11-18 予測装置、予測方法、及び、プログラム

Country Status (3)

Country Link
US (1) US20170371073A1 (ja)
JP (1) JPWO2016121202A1 (ja)
WO (1) WO2016121202A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021856A (ja) * 2016-08-05 2018-02-08 三菱電機株式会社 気象情報予測装置および電力需要予測装置
JP2018036196A (ja) * 2016-09-01 2018-03-08 富士電機株式会社 風速予測装置、風速予測システム、風速予測方法及びプログラム
CN109034478A (zh) * 2018-07-27 2018-12-18 中南大学 一种高速铁路沿线大风迭代竞争高精度预测方法
KR20190071168A (ko) * 2017-12-14 2019-06-24 한국전기연구원 단조성을 반영한 일사량 예측 모델 생성 방법
JP2019157841A (ja) * 2018-03-16 2019-09-19 株式会社Lixil 制御装置、及び制御方法
JP2021025939A (ja) * 2019-08-07 2021-02-22 三菱重工サーマルシステムズ株式会社 気象観測所選択装置、予測システム、空調システム、気象観測所選択方法およびプログラム
WO2022024960A1 (ja) * 2020-07-31 2022-02-03 三井化学株式会社 日射量補正方法、日射量補正装置、コンピュータプログラム、モデル、モデル生成方法及びモデル提供方法
JP2022550619A (ja) * 2019-11-14 2022-12-02 エンヴィジョン デジタル インターナショナル ピーティーイー.エルティーディー. 日射量予測を処理するための方法、スタック型一般化モデルをトレーニングするための方法、およびそれらの装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955584B2 (en) * 2018-04-25 2021-03-23 Microsoft Technology Licensing, Llc Predicting microclimate
CN109886464B (zh) * 2019-01-20 2022-03-18 东北电力大学 基于优化奇异值分解生成特征集的低信息损失短期风速预测方法
JP2020166622A (ja) * 2019-03-29 2020-10-08 三菱重工業株式会社 発電量予測装置、発電量予測方法、およびプログラム
JP7409080B2 (ja) * 2019-12-27 2024-01-09 富士通株式会社 学習データ生成方法、学習データ生成プログラムおよび情報処理装置
EP4128464A1 (en) * 2020-03-27 2023-02-08 Winji AG Device, method and computer program for evaluating the operation of a power plant
CN111582551B (zh) * 2020-04-15 2023-12-08 中南大学 风电场短期风速预测方法、系统及电子设备
CN115829140B (zh) * 2022-12-14 2023-07-25 广西电网有限责任公司 一种基于机器学习的风力发电场发电量预测方法及系统
CN117494573A (zh) * 2023-11-16 2024-02-02 中山大学 一种风速预测方法、系统及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003108909A (ja) * 2001-09-28 2003-04-11 Tohoku Electric Power Co Inc 短期予測システム
JP2006033908A (ja) * 2004-07-12 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システムの発電量予測方法、装置、およびプログラム
JP2007056686A (ja) * 2005-08-22 2007-03-08 Univ Of Ryukyus 風速予測に基づく風力発電機の数時間先発電電力予測装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606114B2 (ja) * 2010-03-19 2014-10-15 株式会社東芝 発電量予測装置、予測方法及び予測プログラム
US20140278163A1 (en) * 2013-03-15 2014-09-18 Gigawatt, Inc. Distributed solar power generation and monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003108909A (ja) * 2001-09-28 2003-04-11 Tohoku Electric Power Co Inc 短期予測システム
JP2006033908A (ja) * 2004-07-12 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システムの発電量予測方法、装置、およびプログラム
JP2007056686A (ja) * 2005-08-22 2007-03-08 Univ Of Ryukyus 風速予測に基づく風力発電機の数時間先発電電力予測装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021856A (ja) * 2016-08-05 2018-02-08 三菱電機株式会社 気象情報予測装置および電力需要予測装置
JP2018036196A (ja) * 2016-09-01 2018-03-08 富士電機株式会社 風速予測装置、風速予測システム、風速予測方法及びプログラム
KR20190071168A (ko) * 2017-12-14 2019-06-24 한국전기연구원 단조성을 반영한 일사량 예측 모델 생성 방법
KR102407597B1 (ko) 2017-12-14 2022-06-13 한국전기연구원 단조성을 반영한 일사량 예측 모델 생성 방법
JP2019157841A (ja) * 2018-03-16 2019-09-19 株式会社Lixil 制御装置、及び制御方法
CN109034478A (zh) * 2018-07-27 2018-12-18 中南大学 一种高速铁路沿线大风迭代竞争高精度预测方法
JP2021025939A (ja) * 2019-08-07 2021-02-22 三菱重工サーマルシステムズ株式会社 気象観測所選択装置、予測システム、空調システム、気象観測所選択方法およびプログラム
JP7355548B2 (ja) 2019-08-07 2023-10-03 三菱重工サーマルシステムズ株式会社 気象観測所選択装置、予測システム、空調システム、気象観測所選択方法およびプログラム
JP2022550619A (ja) * 2019-11-14 2022-12-02 エンヴィジョン デジタル インターナショナル ピーティーイー.エルティーディー. 日射量予測を処理するための方法、スタック型一般化モデルをトレーニングするための方法、およびそれらの装置
JP7369868B2 (ja) 2019-11-14 2023-10-26 エンヴィジョン デジタル インターナショナル ピーティーイー.エルティーディー. 日射量予測を処理するための方法、スタック型一般化モデルをトレーニングするための方法、およびそれらの装置
WO2022024960A1 (ja) * 2020-07-31 2022-02-03 三井化学株式会社 日射量補正方法、日射量補正装置、コンピュータプログラム、モデル、モデル生成方法及びモデル提供方法
JP7451715B2 (ja) 2020-07-31 2024-03-18 三井化学株式会社 日射量補正方法、日射量補正装置、コンピュータプログラム、モデル、モデル生成方法及びモデル提供方法

Also Published As

Publication number Publication date
JPWO2016121202A1 (ja) 2017-11-09
US20170371073A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2016121202A1 (ja) 予測装置、予測方法、及び、プログラム
Ziel Forecasting electricity spot prices using lasso: On capturing the autoregressive intraday structure
Emanuel et al. On the predictability and error sources of tropical cyclone intensity forecasts
Landman et al. Seasonal rainfall prediction skill over South Africa: one-versus two-tiered forecasting systems
Solomon et al. Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction
Jury et al. Evaluation of CMIP5 models in the context of dynamical downscaling over Europe
Pi et al. A grey prediction approach to forecasting energy demand in China
Giuliani et al. Detecting the state of the climate system via artificial intelligence to improve seasonal forecasts and inform reservoir operations
EP1381888A2 (en) Improvements in or relating to forecasting
JP5661594B2 (ja) 予測モデル構築装置、方法、及びプログラム、並びに発電量予測装置、及び方法
Wang et al. An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting
Wehner et al. Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations
Potter et al. Visualization of uncertainty and ensemble data: Exploration of climate modeling and weather forecast data with integrated ViSUS-CDAT systems
Jia et al. Diagnosis of multiyear predictability on continental scales
Houtekamer et al. Using the hybrid gain algorithm to sample data assimilation uncertainty
JP2017010111A (ja) ノイズデータ除去支援装置、方法、および、プログラム
Brentan et al. Water demand time series generation for distribution network modeling and water demand forecasting
Monjo et al. Estimation of future extreme rainfall in Barcelona (Spain) under monofractal hypothesis
Slivinski Historical reanalysis: what, how, and why?
Plant A new modelling framework for statistical cumulus dynamics
Sun et al. Precipitation patterns and associated hydrological extremes in the Yangtze River basin, China, using TRMM/PR data and EOF analysis
Branstator et al. Is AMOC more predictable than North Atlantic heat content?
JP2016099738A (ja) 予測システム、予測方法、および予測プログラム
Sambakhe et al. Prediction bias induced by plot size in forest growth models
JP2017142178A (ja) 日変化予測プログラム、日変化予測装置および日変化予測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543435

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880094

Country of ref document: EP

Kind code of ref document: A1