WO2016121068A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016121068A1
WO2016121068A1 PCT/JP2015/052577 JP2015052577W WO2016121068A1 WO 2016121068 A1 WO2016121068 A1 WO 2016121068A1 JP 2015052577 W JP2015052577 W JP 2015052577W WO 2016121068 A1 WO2016121068 A1 WO 2016121068A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
valve
defrosting operation
refrigeration cycle
Prior art date
Application number
PCT/JP2015/052577
Other languages
English (en)
French (fr)
Inventor
昂仁 彦根
拓也 伊藤
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016571610A priority Critical patent/JP6257809B2/ja
Priority to EP15879965.0A priority patent/EP3252397B1/en
Priority to CN201590001296.7U priority patent/CN207035539U/zh
Priority to PCT/JP2015/052577 priority patent/WO2016121068A1/ja
Publication of WO2016121068A1 publication Critical patent/WO2016121068A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a refrigeration cycle apparatus such as an air-cooled heat pump chiller that cools and heats water to generate cold water and hot water
  • frost may be generated in an air heat exchanger on the heat source side that functions as an evaporator when hot water is generated under a low outside air temperature.
  • frost is generated in the air heat exchanger, heat exchange between the outside air and the refrigerant is hindered, and the heating capacity of the refrigeration cycle apparatus is reduced. Therefore, it is known to perform a defrosting operation for melting the frost of the air heat exchanger.
  • Patent Document 1 proposes a refrigeration cycle apparatus that performs a defrosting operation.
  • the defrosting operation condition when the defrosting operation condition is satisfied, the refrigerant flow path is reversed, and the air heat exchanger is caused to function as a condenser, thereby melting the frost of the air heat exchanger.
  • a bypass circuit having an electromagnetic valve is connected in parallel to a throttle mechanism (expansion valve) provided between the air heat exchanger and the water heat exchanger. .
  • a conventional refrigeration cycle apparatus including a high-pressure receiver for accumulating excess refrigerant
  • the liquid refrigerant accumulated in the high-pressure receiver Liquid back may occur through the water heat exchanger and into the compressor.
  • the accumulator has a large capacity and requires a large installation space in the machine room, resulting in an increase in size and cost of the apparatus.
  • This invention was made in order to solve the above problems, and it aims at providing the refrigerating-cycle apparatus which suppresses the liquid back
  • a refrigeration cycle apparatus includes a refrigerant circuit including a compressor, a flow path switching device, a heat source side heat exchanger, a first expansion device, and a use side heat exchanger, and a liquid connected in parallel to the first expansion device.
  • the liquid back suppression circuit includes a second throttling device, an on-off valve, and a high-pressure receiver connected between the second throttling device and the on-off valve.
  • the refrigeration cycle apparatus can suppress liquid back to the compressor at the start or end of the defrosting operation.
  • FIG. FIG. 1 is a diagram showing a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 of the present embodiment is used as an air-cooled heat pump chiller that cools and heats water to generate cold water and hot water.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit including a compressor 11, a flow switching device 12, a heat source side heat exchanger 13, a fan 14, a first expansion device 15, and a use side heat exchanger 17. Prepare.
  • the refrigeration cycle apparatus 100 includes a liquid back suppression circuit 40 including a second expansion device 18, a high-pressure receiver 16, and an on-off valve 19 that are connected in parallel with the first expansion device 15. Furthermore, the refrigeration cycle apparatus 100 includes a control unit 20 (FIG. 2) that controls the refrigerant circuit and the liquid back suppression circuit 40.
  • the compressor 11 is a positive displacement compressor driven by a motor (not shown) controlled by an inverter, for example.
  • the flow path switching device 12 switches the flow direction of the refrigerant, and is composed of, for example, a four-way valve.
  • the flow path switching device 12 switches the flow path of the refrigerant as shown by the solid line in FIG. 1 during the cooling operation, and switches the flow path of the refrigerant as shown by the broken line in FIG. 1 during the heating operation.
  • the heat source side heat exchanger 13 is an air heat exchanger that exchanges heat with outdoor air.
  • the heat source side heat exchanger 13 includes a cross-fin type fin-and-tube heat exchanger including a heat transfer tube and a large number of fins.
  • the heat source side heat exchanger 13 functions as a refrigerant condenser during the cooling operation, and functions as a refrigerant evaporator during the heating operation.
  • the fan 14 is a blower that supplies air to the heat source side heat exchanger 13, and includes, for example, a propeller fan driven by a fan motor (not shown).
  • the fan 14 has a function of sucking outdoor air and discharging the air heat-exchanged with the refrigerant by the heat source side heat exchanger 13 to the outside.
  • the first throttling device 15 has a function of decompressing and expanding the refrigerant, and is composed of, for example, an electronic expansion valve.
  • the first expansion device 15 is connected in series between the heat source side heat exchanger 13 and the use side heat exchanger 17.
  • the use-side heat exchanger 17 is a water heat exchanger that exchanges heat with the use-side water, and includes, for example, a plate-type heat exchanger.
  • the use side heat exchanger 17 functions as a refrigerant evaporator during the cooling operation, and functions as a refrigerant condenser during the heating operation.
  • the high-pressure receiver 16 has a function of accumulating excess refrigerant, and is connected in series between the second expansion device 18 and the on-off valve 19.
  • the second expansion device 18 has a function of decompressing and expanding the refrigerant, and is configured by, for example, an electronic expansion valve.
  • the second expansion device 18 is connected in series between the heat source side heat exchanger 13 and the high-pressure receiver 16.
  • the on-off valve 19 is composed of, for example, an electromagnetic valve, and is connected in series between the high-pressure receiver 16 and the use side heat exchanger 17.
  • the second expansion device 18, the high-pressure receiver 16 and the on-off valve 19 are connected in series to form a liquid back suppression circuit 40, and are connected in parallel to the first expansion device 15.
  • the refrigerant that can be used in the refrigeration cycle apparatus 100 includes a single refrigerant, a pseudo-azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant, and the like.
  • the pseudo azeotropic refrigerant mixture include R410A and R404A which are HFC refrigerants.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
  • Non-azeotropic refrigerant mixture includes R407C, which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • the refrigeration cycle apparatus 100 is provided with various sensors.
  • the heat source side heat exchanger 13 is provided with a heat exchange temperature sensor 31 that detects the temperature of the heat source side heat exchanger 13.
  • the heat exchanger temperature sensor 31 detects the temperature of frost attached to the heat source side heat exchanger 13, and is provided, for example, in a heat transfer tube in the heat source side heat exchanger 13.
  • an inlet temperature sensor 32 and an outlet temperature sensor 33 that detect the temperature of the refrigerant are respectively provided at the inlet and outlet of the use side heat exchanger 17. Based on the refrigerant temperature detected by the inlet temperature sensor 32 and the outlet temperature sensor 33, the first expansion device 15 and the second expansion device 18 are controlled by the control unit 20.
  • an outside air temperature sensor 34 for detecting the outside air temperature is provided in a portion arranged outside the refrigeration cycle apparatus 100.
  • the refrigeration cycle apparatus 100 detects a refrigerant suction pressure, a refrigerant discharge temperature sensor, and a refrigerant temperature at the inlet / outlet of the heat source side heat exchanger 13.
  • a sensor or the like may be provided.
  • FIG. 2 is a diagram showing a control configuration of the refrigeration cycle apparatus 100.
  • the control unit 20 controls each unit of the refrigeration cycle apparatus 100, and includes a microcomputer or a DSP (Digital Signal Processor).
  • the control unit 20 switches the rotation frequency of the compressor 11 and the flow path switching device 12 based on the detection results of various sensors including the heat exchange temperature sensor 31, the inlet temperature sensor 32, the outlet temperature sensor 33, and the outside air temperature sensor 34.
  • the air flow rate of the fan 14, the opening degree of the first throttling device 15 and the second throttling device 18, and the opening and closing of the on-off valve 19 are controlled.
  • the operation of the refrigeration cycle apparatus 100 will be described. First, the operation
  • the flow path of the refrigerant is switched by the flow path switching device 12 as shown by the solid line in FIG.
  • the opening / closing valve 19 is fixed in an opened state, and the opening degree of the first expansion device 15 and the second expansion device 18 is controlled by the control unit 20 based on the degree of superheat.
  • the control unit 20 sets the superheat degree (the intake superheat degree of the compressor 11) obtained from the temperatures detected by the inlet temperature sensor 32 and the outlet temperature sensor 33 to a target value (eg, 3 ° C. to 5 ° C.).
  • the opening degree of the first expansion device 15 and the second expansion device 18 is determined.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 11 flows into the heat source side heat exchanger 13 through the flow path switching device 12.
  • the high-temperature and high-pressure refrigerant that has flowed into the heat source side heat exchanger 13 dissipates heat to the outdoor air or the like, and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 13 flows into the first expansion device 15 and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flowing out from the first expansion device 15 flows into the use side heat exchanger 17.
  • surplus refrigerant passes through the second expansion device 18 and is stored in the high-pressure receiver 16.
  • the gas-liquid two-phase refrigerant that has flowed into the use-side heat exchanger 17 evaporates by exchanging heat with water and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant flowing out from the use side heat exchanger 17 is sucked into the compressor 11 and compressed again.
  • the opening / closing valve 19 is fixed in an opened state, and the opening degree of the first expansion device 15 and the second expansion device 18 is controlled by the control unit 20 based on the degree of supercooling. Specifically, the control unit 20 sets the degree of supercooling at the outlet of the use side heat exchanger 17 obtained from the temperatures detected by the inlet temperature sensor 32 and the outlet temperature sensor 33 to a target value (for example, 3 ° C. to 5 ° C.). Thus, the opening degree of the first expansion device 15 and the second expansion device 18 is determined.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 11 flows into the use side heat exchanger 17 through the flow path switching device 12.
  • the high-temperature and high-pressure refrigerant that has flowed into the use-side heat exchanger 17 dissipates heat to water and is condensed to become a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 17 flows into the first expansion device 15, is expanded and depressurized, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the first expansion device 15 flows into the heat source side heat exchanger 13.
  • surplus refrigerant is stored in the high-pressure receiver 16.
  • the gas-liquid two-phase refrigerant that has flowed into the heat source side heat exchanger 13 evaporates by exchanging heat with outdoor air and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the heat source side heat exchanger 13 is sucked into the compressor 11 and compressed again.
  • the refrigeration cycle apparatus 100 performs a defrosting operation for melting the frost of the heat source side heat exchanger 13 when frost is generated in the heat source side heat exchanger 13 during the heating operation. Specifically, when determining that the defrosting operation start condition of the heat source side heat exchanger 13 is satisfied during the heating operation, the control unit 20 switches the flow path switching device 12 to cause the heat source side heat exchanger 13 to function as a condenser. Perform cooling operation. At this time, the control unit 20 controls the second expansion device 18 and the on-off valve 19 so that the liquid refrigerant accumulated in the high-pressure receiver 16 flows to the compressor 11 through the use side heat exchanger 17, Suppresses the occurrence of back.
  • FIG. 3 is a flowchart showing the flow of the defrosting operation in the present embodiment.
  • the controller 20 determines whether or not a defrosting operation start condition is satisfied during the heating operation (S1).
  • a defrosting operation start condition for example, 0 ° C.
  • frost is generated in the heat source side heat exchanger 13 and the defrosting operation start condition is satisfied.
  • S1: YES the defrosting operation start condition is satisfied
  • the second expansion device 18 is fully closed (S2), and the on-off valve 19 is also closed (S3).
  • the pressure in the high-pressure receiver 16 is maintained at a high pressure, and the liquid refrigerant is stored in the high-pressure receiver 16.
  • the flow path switching device 12 is switched and the defrosting operation is started (S4).
  • the flow path switching device 12 switches the flow path of the refrigerant as shown by the solid line in FIG. 1, and the heat source side heat exchanger 13 functions as a condenser as in the cooling operation. Then, the opening degree of the first expansion device 15 is controlled based on the suction superheat degree (S5). Next, it is determined whether or not the suction superheat degree of the compressor 11 is larger than the threshold value B (S6).
  • the suction superheat degree of the compressor 11 is determined by the outlet refrigerant temperature of the usage side heat exchanger 17 detected by the outlet temperature sensor 33 and the inlet side refrigerant temperature of the usage side heat exchanger 17 detected by the inlet temperature sensor 32. It is calculated as the difference.
  • the threshold value B is a value for determining that the suction superheat degree of the compressor 11 is sufficient, and is set to 5 ° C., for example.
  • the second expansion device 18 is opened (S7), and the on-off valve 19 is also opened (S8). Thereafter, the opening degrees of the first expansion device 15 and the second expansion device 18 are controlled based on the suction superheat degree (S9), and the defrosting operation is continued. Then, it is determined whether the defrosting operation end condition is satisfied (S10). If the defrosting operation end condition is not satisfied (S10: NO), the defrosting operation is continued.
  • the temperature detected by the heat exchanger temperature sensor 31 provided in the heat source side heat exchanger 13 or the temperature detected by the outside air temperature sensor 34 by the control unit 20 is higher than a predetermined temperature (for example, 10 ° C.).
  • a predetermined temperature for example, 10 ° C.
  • the second expansion device 18 and the on-off valve 19 are closed. And the liquid back to the compressor 11 of the liquid refrigerant collected in the high-pressure receiver 16 can be suppressed.
  • the suction superheat degree of the compressor 11 is equal to or greater than the threshold value (that is, when the liquid back does not occur)
  • the second throttle device 18 and the on-off valve 19 are opened to perform normal control. The defrosting operation can be performed.
  • FIG. 5 is a diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 200 in the conventional example.
  • the conventional refrigeration cycle apparatus 200 includes a compressor 1, a four-way valve 2, an air heat exchanger 3, a fan 4, an expansion valve 5, a high-pressure receiver 6, and a water heat exchanger 7.
  • the expansion valve 5 is connected in series between the air heat exchanger 3 and the water heat exchanger 7, and performs pressure reduction and flow rate control of the refrigerant flowing through the refrigerant circuit.
  • the high pressure receiver 6 is installed between the expansion valve 5 and the water heat exchanger 7, and accumulates excess refrigerant.
  • FIG. 1 is a diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 200 in the conventional example.
  • the conventional refrigeration cycle apparatus 200 includes a compressor 1, a four-way valve 2, an air heat exchanger 3, a fan 4, an expansion valve 5, a high-pressure receiver 6, and a water heat exchanger 7.
  • the expansion valve 5 is connected in series between the air heat exchanger 3 and the water heat exchange
  • the liquid refrigerant accumulated in the high-pressure receiver 6 is transferred to the water heat exchanger 7 at the start of the defrosting operation. And flows to the compressor 1 to generate a liquid back.
  • the liquid back suppression circuit 40 is provided as described above, and the liquid back can be suppressed by controlling the second expansion device 18 and the on-off valve 19 by the control unit 20.
  • Embodiment 2 a second embodiment of the present invention will be described.
  • the second expansion device 18 and the on-off valve 19 are controlled in order to suppress the occurrence of liquid back at the start of the defrosting operation.
  • the liquid refrigerant accumulated in the heat source side heat exchanger 13 may return to the compressor 1 to generate a liquid back. Therefore, the second embodiment is different from the first embodiment in that the second throttle device 18 and the on-off valve 19 are controlled at the end of the defrosting operation to suppress the occurrence of liquid back.
  • the refrigerant circuit configuration and the control configuration of the refrigeration cycle apparatus 100 of the present embodiment are the same as the refrigerant circuit configuration and the control configuration of the first embodiment shown in FIGS. 1 and 2.
  • FIG. 4 is a flowchart showing a flow at the end of the defrosting operation in the present embodiment.
  • the defrosting operation end condition is satisfied (S21).
  • S21: NO the defrosting operation end condition is satisfied
  • S21: YES the on-off valve 19 is closed (S22), and the second expansion device 18 is fully opened (S23).
  • S24 the pressure in the high-pressure receiver 16 is set to a high pressure state. And in this state, it waits until predetermined time passes (S24).
  • the liquid refrigerant of the heat source side heat exchanger 13 is stored in the high-pressure receiver 16 by maintaining the rotational frequency of the compressor 11. And when predetermined time passes (S24: YES), the flow-path switching apparatus 12 is switched, and a defrost operation is complete
  • the second expansion device 18 and the on-off valve 19 are set before the end of the defrosting operation (S25).
  • the liquid refrigerant that has accumulated in the heat source side heat exchanger 13 is accumulated in the high-pressure receiver 16. Thereby, at the end of the defrosting operation, the liquid refrigerant that has accumulated in the heat source side heat exchanger 13 is suppressed from returning to the compressor 11.
  • the refrigeration cycle apparatus 100 will be described with respect to a case where it includes one compressor 11, a heat source side heat exchanger 13 and a use side heat exchanger 17.
  • the number of units For example, two or more compressors 11, the heat source side heat exchanger 13, and the use side heat exchanger 17 may be provided.
  • the refrigeration cycle apparatus 100 is an air-cooled heat pump chiller that cools and heats water to generate cold water and hot water has been described as an example.
  • the present invention may be applied to an air conditioner used for cooling and heating.
  • the intake superheat degree control and the supercool degree control are performed based on the refrigerant temperatures detected by the inlet temperature sensor 32 and the outlet temperature sensor 33.
  • suction superheat degree control and supercooling degree control may be performed based on other temperature sensors or pressure sensors.
  • other controls such as discharge superheat degree control may be performed.
  • the defrosting operation start condition and the defrosting operation end condition are not limited to those described in the above embodiment, and other conditions may be used.
  • control for suppressing the liquid back in the first embodiment and the second embodiment may be performed only at one of them, or at both the start of the defrosting operation and the end of the defrosting operation. May be.
  • liquid refrigerant is accumulated in the heat source side heat exchanger 13 such as at the end of the heating (heating) operation at a low outside temperature other than during the defrosting operation. In this state, liquid back that can occur at the next start-up can be suppressed.
  • the liquid that has accumulated in the heat source side heat exchanger 13 similarly to the end of the defrosting operation in the second embodiment, the liquid that has accumulated in the heat source side heat exchanger 13 by opening the second expansion device 18 and the on-off valve 19 before the end of the heating operation.
  • the refrigerant is stored in the high-pressure receiver 16. As a result, the liquid refrigerant that has accumulated in the heat source side heat exchanger 13 at the next start-up is suppressed from returning to the compressor 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 冷凍サイクル装置において、圧縮機、流路切替装置、熱源側熱交換器、第1絞り装置および利用側熱交換器を含む冷媒回路と、第1絞り装置に並列に接続される液バック抑制回路と、を備え、液バック抑制回路は、第2絞り装置、開閉弁および第2絞り装置と開閉弁との間に接続される高圧レシーバを含む構成とした。

Description

冷凍サイクル装置
 本発明は、冷凍サイクル装置に関するものである。
 従来、水を冷却および加熱して冷水および温水を生成する空冷式ヒートポンプチラーなどの冷凍サイクル装置が知られている。従来の冷凍サイクル装置において、低外気温下での温水生成時に、蒸発器として機能する熱源側の空気熱交換器に霜が発生することがある。空気熱交換器に霜が発生すると、外気と冷媒との熱交換が阻害され、冷凍サイクル装置の加熱能力が低下してしまう。そこで、空気熱交換器の霜を融解させるための除霜運転を行うことが知られている。
 特許文献1には、除霜運転を行う冷凍サイクル装置が提案されている。特許文献1の冷凍サイクル装置では、除霜運転条件が成立した場合に、冷媒流路を反転させ、空気熱交換器を凝縮器として機能させることで、空気熱交換器の霜を融解させる。また、特許文献1の冷凍サイクル装置では、空気熱交換器と水熱交換器との間に設けられた絞り機構(膨張弁)に対して、電磁弁を有するバイパス回路が並列に接続されている。そして、除霜運転開始時に電磁弁を開け、冷媒を水熱交換器側に流すことで、冷媒の供給不足による低圧圧力の低下を抑制する構成となっている。
特開2012-7800号公報
 ここで、余剰冷媒を溜めるための高圧レシーバを備える従来の冷凍サイクル装置において、冷媒流路を反転させて除霜運転を行う場合、除霜運転の開始時には、高圧レシーバに溜まっている液冷媒が水熱交換器を通って圧縮機に流れ、液バックが発生することがある。このような圧縮機への液バックを抑制するために、圧縮機の吸入側にアキュムレータを設置し、アキュムレータに液冷媒を溜めることが考えられる。しかしながら、アキュムレータは容量が大きく、機械室内において大きな設置スペースが必要となるため、装置の大型化およびコストアップを招いてしまう。
 本発明は、上記のような課題を解決するためになされたものであり、除霜運転時などの圧縮機への液バックを抑制する冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、流路切替装置、熱源側熱交換器、第1絞り装置および利用側熱交換器を含む冷媒回路と、第1絞り装置に並列に接続される液バック抑制回路と、を備え、液バック抑制回路は、第2絞り装置、開閉弁および第2絞り装置と開閉弁との間に接続される高圧レシーバを含むものである。
 本発明に係る冷凍サイクル装置によると、除霜運転開始時または終了時などに圧縮機への液バックを抑制することができる。
本発明の実施の形態1における冷凍サイクル装置の冷媒回路構成を示す図である。 本発明の実施の形態1における冷凍サイクル装置の制御構成を示す図である。 本発明の実施の形態1における除霜運転の流れを示すフローチャートである。 本発明の実施の形態2における除霜運転終了時の流れを示すフローチャートである。 従来例における冷凍サイクル装置の冷媒回路構成を示す図である。
 以下に、本発明における冷凍サイクル装置の実施の形態を図面に基づいて詳細に説明する。
 実施の形態1.
 図1は、本発明の実施の形態1における冷凍サイクル装置100の冷媒回路構成を示す図である。本実施の形態の冷凍サイクル装置100は、水を冷却および加熱して冷水および温水を生成する空冷式ヒートポンプチラーとして利用される。図1に示すように、冷凍サイクル装置100は、圧縮機11、流路切替装置12、熱源側熱交換器13、ファン14、第1絞り装置15および利用側熱交換器17を含む冷媒回路を備える。また、冷凍サイクル装置100は、第1絞り装置15と並列に接続される、第2絞り装置18、高圧レシーバ16および開閉弁19を含む液バック抑制回路40を備える。さらに、冷凍サイクル装置100は、冷媒回路および液バック抑制回路40を制御する制御部20(図2)を備える。
 圧縮機11は、例えば、インバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機である。流路切替装置12は、冷媒の流れる方向を切り替えるものであり、例えば四方弁で構成される。流路切替装置12は、冷却運転時には、図1の実線で示すように冷媒の流路を切り替え、加熱運転時には、図1に破線で示すように冷媒の流路を切り替える。
 熱源側熱交換器13は、室外の空気と熱交換する空気熱交換器であり、例えば、伝熱管と多数のフィンとからなるクロスフィン式のフィン・アンド・チューブ型の熱交換器で構成される。熱源側熱交換器13は、冷却運転時には冷媒の凝縮器として機能し、加熱運転時には冷媒の蒸発器として機能する。ファン14は、熱源側熱交換器13に空気を供給する送風機であり、例えばファンモータ(図示せず)によって駆動されるプロペラファンからなる。ファン14は、室外空気を吸入し、熱源側熱交換器13によって冷媒との間で熱交換された空気を室外に排出する機能を有する。
 第1絞り装置15は、冷媒を減圧して膨張させる機能を有し、例えば電子膨張弁で構成される。第1絞り装置15は、熱源側熱交換器13と利用側熱交換器17との間に直列に接続される。利用側熱交換器17は、利用側の水と熱交換する水熱交換器であり、例えば、プレート式の熱交換器で構成される。利用側熱交換器17は、冷却運転時には冷媒の蒸発器として機能し、加熱運転時には冷媒の凝縮器として機能する。
 高圧レシーバ16は、余剰冷媒を溜める機能を有し、第2絞り装置18と開閉弁19との間に直列に接続される。第2絞り装置18は、冷媒を減圧して膨張させる機能を有し、例えば電子膨張弁で構成される。第2絞り装置18は、熱源側熱交換器13と高圧レシーバ16との間に直列に接続される。開閉弁19は、例えば電磁弁で構成され、高圧レシーバ16と利用側熱交換器17との間に直列に接続される。第2絞り装置18、高圧レシーバ16および開閉弁19は、直列に接続されて液バック抑制回路40を構成し、第1絞り装置15に並列に接続される。
 なお、冷凍サイクル装置100に使用できる冷媒には、単一冷媒、擬似共沸混合冷媒、非共沸混合冷媒等がある。擬似共沸混合冷媒には、HFC冷媒であるR410A、R404A等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。
 また、冷凍サイクル装置100には、各種センサが設けられている。詳しくは、熱源側熱交換器13には、熱源側熱交換器13の温度を検出する熱交温度センサ31が設けられている。熱交温度センサ31は、熱源側熱交換器13に付着した霜の温度を検出するものであり、例えば熱源側熱交換器13内の伝熱管に設けられる。また、利用側熱交換器17の出入口には、冷媒の温度を検出する入口温度センサ32および出口温度センサ33がそれぞれ設けられている。入口温度センサ32および出口温度センサ33によって検出された冷媒温度に基づいて、制御部20による第1絞り装置15および第2絞り装置18が制御される。さらに、冷凍サイクル装置100の室外に配置される部分には、外気温度を検出するための外気温度センサ34が設けられている。なお、図1には図示していないが、冷凍サイクル装置100は、冷媒の吸入圧力を検出するセンサ、冷媒の吐出温度を検出するセンサ、熱源側熱交換器13の出入口における冷媒の温度を検出するセンサ等を備えていてもよい。
 図2は、冷凍サイクル装置100の制御構成を示す図である。制御部20は、冷凍サイクル装置100の各部を制御するものであり、マイクロコンピュータまたはDSP(Digital Signal Processor)などで構成される。制御部20は、熱交温度センサ31、入口温度センサ32、出口温度センサ33および外気温度センサ34を含む各種センサの検出結果に基づいて、圧縮機11の回転周波数、流路切替装置12の切り替え、ファン14の送風量、第1絞り装置15および第2絞り装置18の開度、ならびに開閉弁19の開閉などを制御する。
 次に、冷凍サイクル装置100の動作について説明する。まず、冷凍サイクル装置100における冷却運転時の動作について説明する。冷却運転時には、流路切替装置12によって図1の実線で示すように冷媒の流路が切り替えられる。また、開閉弁19は開けられた状態で固定され、第1絞り装置15および第2絞り装置18は制御部20によって過熱度に基づいて開度が制御される。具体的には、制御部20は、入口温度センサ32および出口温度センサ33で検出される温度から求められる過熱度(圧縮機11の吸入過熱度)が目標値(例えば3℃~5℃)になるように、第1絞り装置15および第2絞り装置18の開度を決定する。
 圧縮機11によって圧縮および吐出された高温高圧のガス冷媒は、流路切替装置12を通って熱源側熱交換器13へ流入する。熱源側熱交換器13へ流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。熱源側熱交換器13を流出した高圧の液冷媒は、第1絞り装置15へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。第1絞り装置15から流出した気液二相冷媒は、利用側熱交換器17へ流入する。また、このとき、余剰冷媒が第2絞り装置18を通って高圧レシーバ16に溜められる。利用側熱交換器17へ流入した気液二相冷媒は、水と熱交換して蒸発し、低温低圧のガス冷媒となる。利用側熱交換器17から流出したガス冷媒は、圧縮機11へ吸入され、再び圧縮される。
 次に、加熱運転時の動作について説明する。加熱運転時には、流路切替装置12によって図1の破線で示すように冷媒の流路が切り換えられる。また、開閉弁19は開けられた状態で固定され、第1絞り装置15および第2絞り装置18は制御部20によって過冷却度に基づいて開度が制御される。具体的には、制御部20は、入口温度センサ32および出口温度センサ33で検出される温度から求められる利用側熱交換器17出口の過冷却度が目標値(例えば3℃~5℃)になるように、第1絞り装置15および第2絞り装置18の開度を決定する。
 圧縮機11によって圧縮、吐出された高温高圧のガス冷媒は、流路切替装置12を通って利用側熱交換器17へ流入する。利用側熱交換器17へ流入した高温高圧の冷媒は、水に対して放熱し、凝縮されて高圧の液冷媒となる。利用側熱交換器17を流出した高圧の液冷媒は、第1絞り装置15へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。第1絞り装置15から流出した気液二相冷媒は、熱源側熱交換器13へ流入する。また、このとき、余剰冷媒が高圧レシーバ16に溜められる。熱源側熱交換器13へ流入した気液二相冷媒は、室外空気と熱交換して蒸発し、低温低圧のガス冷媒となる。熱源側熱交換器13から流出したガス冷媒は、圧縮機11へ吸入され、再び圧縮される。
 また、冷凍サイクル装置100は、上記加熱運転時に、熱源側熱交換器13に霜が発生した場合に、熱源側熱交換器13の霜を融解させるための除霜運転を行う。詳しくは、制御部20は、加熱運転時に熱源側熱交換器13の除霜運転開始条件が成立したと判断すると、流路切替装置12を切り替え、熱源側熱交換器13を凝縮器として機能させる冷却運転を行う。また、このとき、制御部20は、第2絞り装置18および開閉弁19を制御して、高圧レシーバ16に溜まっている液冷媒が利用側熱交換器17を通って圧縮機11に流れ、液バックが発生することを抑制する。
 図3は、本実施の形態における除霜運転の流れを示すフローチャートである。図3に示すように、まず、制御部20によって加熱運転時に除霜運転開始条件が成立したか否かが判断される(S1)。ここでは、熱源側熱交換器13に設けられた熱交温度センサ31によって検出された熱交温度、または外気温度センサ34によって検出された外気温度が所定の温度(例えば0℃)よりも低い場合に、熱源側熱交換器13に霜が発生し、除霜運転開始条件が成立したと判断される。そして、除霜運転開始条件が成立した場合(S1:YES)、第2絞り装置18が全閉とされ(S2)、開閉弁19も閉じられる(S3)。これにより、高圧レシーバ16内の圧力が高圧の状態で保持され、液冷媒が高圧レシーバ16内に溜められる。そして、この状態で、流路切替装置12が切り替えられ、除霜運転が開始される(S4)。
 除霜運転が開始されると、流路切替装置12によって図1の実線で示すように冷媒の流路が切り替えられ、冷却運転時と同様に熱源側熱交換器13が凝縮器として機能する。そして、吸入過熱度に基づいて、第1絞り装置15の開度が制御される(S5)。次に、圧縮機11の吸入過熱度が閾値Bよりも大きいか否かが判断される(S6)。ここで、圧縮機11の吸入過熱度は、出口温度センサ33で検出される利用側熱交換器17の出口冷媒温度と、入口温度センサ32で検出される利用側熱交換器17入口冷媒温度との差として求められる。また、閾値Bは、圧縮機11の吸入過熱度が十分についたことを判断するための値であり、例えば5℃に設定される。
 そして、圧縮機11の吸入過熱度が閾値Bよりも大きい場合(S6:YES)、第2絞り装置18が開けられ(S7)、開閉弁19も開けられる(S8)。その後、吸入過熱度に基づいて、第1絞り装置15および第2絞り装置18の開度が制御され(S9)、除霜運転が継続される。そして、除霜運転終了条件が成立したか否かが判断され(S10)、除霜運転終了条件が成立していない場合は(S10:NO)、除霜運転が継続される。ここでは、制御部20によって、熱源側熱交換器13に設けられている熱交温度センサ31によって検出された温度または外気温度センサ34によって検出された温度が所定の温度(例えば10℃)よりも高い場合に、熱源側熱交換器13の霜が融解したとして除霜運転終了条件が成立したと判断する。一方、除霜運転終了条件が成立した場合は(S10:YES)、流路切替装置12が切り替えられる(S11)。これにより、除霜運転が終了し、加熱運転が再開される。
 以上のように、本実施の形態では、除霜運転開始条件成立後(S1:YES)であって、除霜運転開始(S4)前に、第2絞り装置18および開閉弁19を閉じることで、高圧レシーバ16に溜まっている液冷媒の圧縮機11への液バックを抑制することができる。また、圧縮機11の吸入過熱度が閾値以上となった場合(すなわち液バックが発生しない状態になった場合)には、第2絞り装置18および開閉弁19を開けて通常制御を行うことで、除霜運転を行うことができる。
 図5は、従来例における冷凍サイクル装置200の冷媒回路構成を示す図である。図5に示すように、従来の冷凍サイクル装置200は、圧縮機1、四方弁2、空気熱交換器3、ファン4、膨張弁5、高圧レシーバ6および水熱交換器7から構成される。膨張弁5は、空気熱交換器3と水熱交換器7との間に直列に接続されており、冷媒回路を流れる冷媒の減圧および流量制御を行う。また、高圧レシーバ6は膨張弁5と水熱交換器7との間に設置され、余剰冷媒を溜める。図5に示す従来例の冷凍サイクル装置200の場合、冷媒流路を反転させて除霜運転を行うと、除霜運転の開始時には、高圧レシーバ6に溜まっている液冷媒が水熱交換器7を通って圧縮機1に流れ、液バックが発生する。これに対し、本実施の形態では、上記のように液バック抑制回路40を備え、制御部20によって第2絞り装置18および開閉弁19を制御することで、液バックを抑制することができる。
 実施の形態2.
 続いて、本発明の実施の形態2について説明する。上記実施の形態1では、除霜運転開始時における液バックの発生を抑制するために、第2絞り装置18および開閉弁19を制御する構成となっている。ここで、除霜運転開始時だけでなく、除霜運転終了時にも、熱源側熱交換器13に溜まった液冷媒が、圧縮機1へ戻って液バックが発生することがある。そこで、実施の形態2では、除霜運転終了時において、第2絞り装置18および開閉弁19を制御し、液バックの発生を抑制する点において、実施の形態1と相違する。本実施の形態の冷凍サイクル装置100の冷媒回路構成および制御構成については、図1および図2に示す実施の形態1の冷媒回路構成および制御構成と同様である。
 図4は、本実施の形態における除霜運転終了時の流れを示すフローチャートである。図4に示すように、除霜運転終了条件が成立したか否かが判断され(S21)、除霜運転終了条件が成立していない場合には(S21:NO)、成立するまで除霜運転が継続される。一方、除霜運転終了条件が成立した場合(S21:YES)、開閉弁19が閉じられ(S22)、第2絞り装置18が全開とされる(S23)。これにより、高圧レシーバ16内の圧力が高圧の状態とされる。そして、この状態にて、所定の時間が経過するまで待機する(S24)。このとき、圧縮機11の回転周波数が保持されることで、高圧レシーバ16内に熱源側熱交換器13の液冷媒が溜められる。そして、所定の時間が経過した場合(S24:YES)、流路切替装置12が切り替えられ、除霜運転が終了する(S25)。その後、開閉弁19が開けられ(S26)、加熱運転が再開される。
 以上のように、本実施の形態では、除霜運転を終了する条件が成立した場合(S21:YES)であって、除霜運転終了(S25)前に、第2絞り装置18と開閉弁19とを開けることで、熱源側熱交換器13に溜まっていた液冷媒を、高圧レシーバ16に溜める構成となっている。これにより、除霜運転終了時に、熱源側熱交換器13に溜まっていた液冷媒が圧縮機11に液バックすることが抑制される。
 以上が本発明の実施の形態の説明であるが、本発明は、上記実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形または組み合わせが可能である。例えば、上記実施の形態では、図1に示すように、冷凍サイクル装置100は、1台の圧縮機11、熱源側熱交換器13および利用側熱交換器17を備える場合について説明するが、これらの台数を特に限定するものではない。例えば、2台以上の圧縮機11、熱源側熱交換器13および利用側熱交換器17を備えてもよい。また、上記実施の形態では、冷凍サイクル装置100が水を冷却および加熱して冷水および温水を生成する空冷式ヒートポンプチラーである場合を例に挙げて説明したが、これに限定されず、屋内の冷房および暖房に使用される空気調和装置に本発明を適用してもよい。
 また、上記実施の形態では、入口温度センサ32および出口温度センサ33によって検出された冷媒温度に基づいて、吸入過熱度制御および過冷却度制御が行われる構成としたが、これに限定されるものではなく、その他の温度センサまたは圧力センサに基づいて吸入過熱度制御および過冷却度制御を行ってもよい。また、吸入過熱度制御および過冷却度制御だけでなく、吐出過熱度制御など、その他の制御を行ってもよい。また、除霜運転開始条件および除霜運転終了条件についても、上記実施の形態に記載されるものに限定されるものではなく、その他の条件を用いてもよい。
 また、上記実施の形態1および実施の形態2における液バック抑制のための制御は、いずれか一方のみを実施しても良く、また除霜運転開始時および除霜運転終了時の両方に実施しても良い。さらに、本発明の液バック抑制回路40を備えることで、除霜運転時以外にも低外気温下での加熱(暖房)運転終了時など、熱源側熱交換器13に液冷媒が溜まっている状態で、次回起動時において発生し得る液バックを抑制することができる。この場合は、実施の形態2における除霜運転終了時と同様に、加熱運転の終了前に、第2絞り装置18と開閉弁19とを開けて、熱源側熱交換器13に溜まっていた液冷媒を、高圧レシーバ16に溜める。これにより、次回起動時に、熱源側熱交換器13に溜まっていた液冷媒が圧縮機11に液バックすることが抑制される。
 1、11 圧縮機、2 四方弁、3 空気熱交換器、4、14 ファン、5 膨張弁、6、16 高圧レシーバ、7 水熱交換器、12 流路切替装置、13 熱源側熱交換器、14 ファン、15 第1絞り装置、17 利用側熱交換器、18 第2絞り装置、19 開閉弁、20 制御部、31 熱交温度センサ、32 入口温度センサ、33 出口温度センサ、34 外気温度センサ、40 液バック抑制回路、100、200 冷凍サイクル装置。

Claims (5)

  1.  圧縮機、流路切替装置、熱源側熱交換器、第1絞り装置および利用側熱交換器を含む冷媒回路と、
     前記第1絞り装置に並列に接続される液バック抑制回路と、を備え、
     前記液バック抑制回路は、第2絞り装置、開閉弁および前記第2絞り装置と前記開閉弁との間に接続される高圧レシーバを含むものである冷凍サイクル装置。
  2.  前記第2絞り装置および前記開閉弁を制御する制御部をさらに備え、
     前記制御部は、除霜運転開始時または除霜運転終了時に、前記第2絞り装置および前記開閉弁を制御するものである請求項1に記載の冷凍サイクル装置。
  3.  前記制御部は、除霜運転開始条件が成立した場合、前記第2絞り装置および前記開閉弁を閉じ、その後、前記流路切替装置を切り替えて除霜運転を開始するものである請求項2に記載の冷凍サイクル装置。
  4.  前記制御部は、前記除霜運転を開始した後に、前記圧縮機の吸入過熱度が予め定められた値より大きくなった場合に、前記第2絞り装置および前記開閉弁を開けるものである請求項3に記載の冷凍サイクル装置。
  5.  前記制御部は、除霜運転終了条件が成立した場合に、前記第2絞り装置および前記開閉弁を開け、その後、前記流路切替装置を切り替えて除霜運転を終了するものである請求項2~4のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2015/052577 2015-01-29 2015-01-29 冷凍サイクル装置 WO2016121068A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016571610A JP6257809B2 (ja) 2015-01-29 2015-01-29 冷凍サイクル装置
EP15879965.0A EP3252397B1 (en) 2015-01-29 2015-01-29 Refrigeration cycle device
CN201590001296.7U CN207035539U (zh) 2015-01-29 2015-01-29 制冷循环装置
PCT/JP2015/052577 WO2016121068A1 (ja) 2015-01-29 2015-01-29 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052577 WO2016121068A1 (ja) 2015-01-29 2015-01-29 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016121068A1 true WO2016121068A1 (ja) 2016-08-04

Family

ID=56542719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052577 WO2016121068A1 (ja) 2015-01-29 2015-01-29 冷凍サイクル装置

Country Status (4)

Country Link
EP (1) EP3252397B1 (ja)
JP (1) JP6257809B2 (ja)
CN (1) CN207035539U (ja)
WO (1) WO2016121068A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403347A (zh) * 2016-11-22 2017-02-15 广东美的暖通设备有限公司 低温空调系统和空调
CN107869864A (zh) * 2017-06-09 2018-04-03 南京平日制冷科技有限公司 一种降压除霜系统
JPWO2017068642A1 (ja) * 2015-10-20 2018-05-10 三菱電機株式会社 冷凍サイクル装置
WO2022149187A1 (ja) 2021-01-05 2022-07-14 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111219818B (zh) * 2020-01-17 2021-09-03 珠海格力电器股份有限公司 空调系统、空调器和空调器的控制方法
CN113983710B (zh) * 2021-10-12 2022-12-06 西安交通大学 冷媒循环流量自适应调节系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332644A (ja) * 1992-05-29 1993-12-14 Daikin Ind Ltd 冷凍装置の運転制御装置
US20060107671A1 (en) * 2004-11-24 2006-05-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
WO2011010473A1 (ja) * 2009-07-22 2011-01-27 三菱電機株式会社 ヒートポンプ装置
JP2012007800A (ja) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式給湯・空調装置
JP2014119145A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機
JP2014119152A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890004867B1 (ko) * 1985-03-25 1989-11-30 마쯔시다덴기산교 가부시기가이샤 열펌프장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332644A (ja) * 1992-05-29 1993-12-14 Daikin Ind Ltd 冷凍装置の運転制御装置
US20060107671A1 (en) * 2004-11-24 2006-05-25 Hoshizaki Denki Kabushiki Kaisha Cooling device
WO2011010473A1 (ja) * 2009-07-22 2011-01-27 三菱電機株式会社 ヒートポンプ装置
JP2012007800A (ja) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式給湯・空調装置
JP2014119145A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機
JP2014119152A (ja) * 2012-12-14 2014-06-30 Sharp Corp 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252397A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017068642A1 (ja) * 2015-10-20 2018-05-10 三菱電機株式会社 冷凍サイクル装置
CN106403347A (zh) * 2016-11-22 2017-02-15 广东美的暖通设备有限公司 低温空调系统和空调
CN107869864A (zh) * 2017-06-09 2018-04-03 南京平日制冷科技有限公司 一种降压除霜系统
WO2022149187A1 (ja) 2021-01-05 2022-07-14 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
EP3252397A4 (en) 2018-10-10
EP3252397A1 (en) 2017-12-06
CN207035539U (zh) 2018-02-23
JPWO2016121068A1 (ja) 2017-07-27
EP3252397B1 (en) 2022-01-05
JP6257809B2 (ja) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6257809B2 (ja) 冷凍サイクル装置
JP6847299B2 (ja) 冷凍サイクル装置
JP5409715B2 (ja) 空気調和装置
JP5759017B2 (ja) 空気調和装置
WO2019073870A1 (ja) 冷凍装置
EP2653805B1 (en) Combined air-conditioning and hot water supply system
WO2015104815A1 (ja) 空調給湯複合システム
JP2008175476A (ja) 冷凍空調装置
JP5893151B2 (ja) 空調給湯複合システム
JP2004361036A (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
JP6289734B2 (ja) 空調給湯複合システム
WO2011089652A1 (ja) 空調給湯複合システム
JP6289668B2 (ja) 空調給湯複合システム
US11920841B2 (en) Air-conditioning apparatus
JP6080939B2 (ja) 空気調和装置
JP6758506B2 (ja) 空気調和装置
WO2010100707A1 (ja) 空気調和装置
WO2015140950A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571610

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015879965

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE