WO2016120998A1 - Atmospheric-pressure plasma generation device - Google Patents

Atmospheric-pressure plasma generation device Download PDF

Info

Publication number
WO2016120998A1
WO2016120998A1 PCT/JP2015/052191 JP2015052191W WO2016120998A1 WO 2016120998 A1 WO2016120998 A1 WO 2016120998A1 JP 2015052191 W JP2015052191 W JP 2015052191W WO 2016120998 A1 WO2016120998 A1 WO 2016120998A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
processing gas
atmospheric pressure
pressure plasma
flow path
Prior art date
Application number
PCT/JP2015/052191
Other languages
French (fr)
Japanese (ja)
Inventor
陽大 丹羽
神藤 高広
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2015/052191 priority Critical patent/WO2016120998A1/en
Priority to JP2016571548A priority patent/JP6425742B2/en
Priority to EP15879895.9A priority patent/EP3253183B1/en
Publication of WO2016120998A1 publication Critical patent/WO2016120998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/246Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated using external electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes

Definitions

  • the present invention relates to an atmospheric pressure plasma generator that converts a processing gas supplied into a cylindrical member into plasma and generates plasma from an end of the cylindrical member.
  • the atmospheric pressure plasma generator there is an apparatus that generates plasma from the end of the cylindrical member by converting the processing gas into plasma inside the cylindrical member. Specifically, one electrode of the pair of electrodes is disposed on the outer peripheral surface of the cylindrical member, and the other electrode of the pair of electrodes is disposed on the inner peripheral surface of the cylindrical member. Yes. Then, in a state where the processing gas is supplied to the inside of the cylindrical member, a voltage is applied to the pair of electrodes, so that the processing gas is turned into plasma inside the cylindrical member, and the cylindrical shape Plasma is generated from the end of the member.
  • the following patent document describes an example of an atmospheric pressure plasma generator having such a structure.
  • the atmospheric pressure plasma generator described in the above patent document it is possible to generate plasma appropriately.
  • the electrode since the electrode is disposed inside the cylindrical member, there is a possibility that foreign matter may be mixed into the plasma irradiation object due to the deterioration of the electrode. .
  • the processing gas may not be appropriately converted into plasma in the cylindrical member.
  • This invention is made
  • an atmospheric pressure plasma generator has a cylindrical outer cylinder, an outer diameter smaller than the inner diameter of the outer cylinder, and is inserted into the outer cylinder.
  • An inner cylinder formed of one material of an anode and a cathode, and an electrode having a polarity opposite to the charged polarity of the material of the inner cylinder, disposed on the outer peripheral surface of the outer cylinder, In the state where the processing gas is flowing in at least one of the first flow path inside the inner cylinder and the second flow path between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder, the electrode The process gas flowing in at least one of the first flow path and the second flow path is turned into plasma by applying a voltage to the first flow path.
  • an inner cylinder is inserted into an outer cylinder, and the inner cylinder is formed of a material having a charging polarity of either an anode or a cathode.
  • An electrode having a polarity opposite to the charging polarity of the material of the inner cylinder is disposed on the outer peripheral surface of the outer cylinder.
  • the processing gas is turned into plasma inside the outer cylinder without disposing an electrode inside the outer cylinder. Therefore, even when the electrode is deteriorated, it is possible to prevent foreign matters from being mixed into the irradiation object during plasma irradiation. Furthermore, since a discharge is generated between the electrode and the inner cylinder, the processing gas can be appropriately converted into plasma.
  • FIG. 1 shows an atmospheric pressure plasma generator 10 according to a first embodiment of the present invention.
  • the atmospheric pressure plasma generator 10 is an apparatus that generates plasma under atmospheric pressure.
  • the atmospheric pressure plasma generator 10 includes a resin housing 20, a Teflon (registered trademark of US DUPONT) tube 22, a glass tube 24, and an electrode 26.
  • the housing 20 has a generally cylindrical shape, and the inner peripheral surface of the housing 20 includes a small-diameter portion 30 and a large-diameter portion 32 having a larger diameter than the small-diameter portion 30. Further, a through hole 34 penetrating in the radial direction is formed at the end of the large diameter portion 32 on the small diameter portion 30 side, and a gas inflow pipe 36 is connected to the through hole 34.
  • the Teflon tube 22 has a generally cylindrical shape, and its outer diameter is slightly smaller than the inner diameter of the small diameter portion 30 of the housing 20.
  • the Teflon tube 22 is inserted into the small diameter portion 30 of the housing 20, and one end portion of the Teflon tube 22 slightly extends from the end portion of the housing 20 on the large diameter portion 32 side.
  • the glass tube 24 has a generally cylindrical shape, and its outer diameter is slightly smaller than the inner diameter of the large-diameter portion 32 of the housing 20.
  • the glass tube 24 is fitted into the large-diameter portion 32 of the housing 20, and one end portion of the glass tube 24 extends from the end portion of the housing 20 on the large-diameter portion 32 side.
  • the extension amount of the glass tube 24 from the end portion of the housing 20 is larger than the extension amount of the Teflon tube 22 from the housing 20. That is, the end of the Teflon tube 22 that extends from the end of the housing 20 is located inside the glass tube 24 that extends from the housing 20.
  • the electrode 26 has a generally annular shape and is disposed on the outer peripheral surface of the glass tube 24.
  • the position where the electrode 26 is disposed is substantially the center in the axial direction of the glass tube 24, and the electrode 26 faces the end of the Teflon tube 22 across the glass tube 24.
  • the processing gas is supplied into the Teflon tube 22 by a gas supply device (not shown) and flows in the direction of the arrow 50 inside the Teflon tube 22. Further, the processing gas is supplied to the gas inflow pipe 36 by the gas supply device, and flows in the direction of the arrow 52 between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20.
  • the processing gas supplied to the inside of the Teflon tube 22 and the processing gas supplied to the gas inflow pipe 36 are the same, and the processing gas includes an inert gas such as nitrogen and oxygen in the air.
  • the active gas is mixed at an arbitrary ratio.
  • the Teflon tube 22 is made of a fluororesin, and the fluororesin is a material having a negative charge polarity.
  • the material having a negative charge polarity is a material that is easily charged to the negative electrode. For example, when static electricity is generated due to friction or the like, the negative charge material is charged to the negative electrode. For this reason, the Teflon tube 22 is charged to the cathode when the processing gas is flowing inside the Teflon tube 22 or between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20.
  • the potential on the outer peripheral surface of the glass tube 24 is -11 volts. there were. Further, when the potential is measured on the outer peripheral surface of the glass tube 24 while the processing gas is flowing between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20, the potential on the outer peripheral surface of the glass tube 24 is measured. Was -77 volts. Further, when the processing gas is flowing between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20 and inside the Teflon tube 22, the potential is measured on the outer peripheral surface of the glass tube 24. The potential at the outer peripheral surface of the glass tube 24 was ⁇ 50 volts. Note that the potential of the Teflon tube 22 when the processing gas was flowing was too low to measure.
  • the Teflon tube 22 is charged to the cathode. Therefore, when a processing gas is supplied to the Teflon tube 22 and the gas inflow pipe 36, when an anode voltage is applied to the electrode 26, a current flows between the Teflon tube 22 and the electrode 26. At this time, a discharge is generated between the Teflon tube 22 and the electrode 26, the processing gas flowing into the glass tube 24 from the inside of the Teflon tube 22, and the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. The processing gas that has flowed into the glass tube 24 from between is converted into plasma. Thereby, the atmospheric pressure plasma generator 10 generates plasma from the tip of the glass tube 24.
  • one of the pair of electrodes is disposed on the outer peripheral surface of the glass tube 24 and the other of the pair of electrodes is on the inner peripheral surface of the glass tube 24.
  • the processing gas inside the glass tube 24 is turned into plasma by applying an anode voltage to one electrode and applying a cathode voltage to the other electrode.
  • the electrode disposed on the inner peripheral surface of the glass tube 24 is deteriorated, and the deteriorated electrode may cause foreign matters to be mixed into the object of the plasma treatment.
  • the atmospheric pressure plasma generator 10 since discharge occurs between the Teflon tube 22 and the electrode 26, it is not necessary to dispose an electrode inside the glass tube 24. For this reason, by performing plasma processing with the atmospheric pressure plasma generator 10, it is possible to prevent foreign matters from being mixed into the object of plasma processing.
  • the processing gas flows between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. It is turned into plasma. As a result, a large amount of processing gas can be converted into plasma, and plasma can be generated efficiently.
  • the atmospheric pressure plasma generator 70 of the second embodiment includes the same components as those of the atmospheric plasma generator 10 of the first embodiment except for the electrodes. For this reason, about the same component as the component of the atmospheric pressure plasma generator 10, the same code
  • the atmospheric pressure plasma generator 70 includes a pair of electrodes 72 and 74.
  • Each of the pair of electrodes 72 and 74 has a generally annular shape, and the electrode 72 and the electrode 74 are disposed on the outer peripheral surface of the glass tube 24 in a slightly spaced state.
  • the electrode 72 is disposed at a substantially central portion in the axial direction of the glass tube 24, and the electrode 74 is disposed between an end portion of the glass tube 24 extending from the housing 20 and the electrode 72. Yes.
  • the electrode 72 faces the end of the Teflon tube 22 with the glass tube 24 interposed therebetween.
  • a cathode voltage is applied to the electrode 72 and an anode voltage is applied to the electrode 74 in a state where the processing gas is supplied to the Teflon tube 22 and the gas inflow tube 36. Applied. Thereby, an electric current flows between the electrode 72 and the electrode 74 and between the electrode 74 and the Teflon tube 22. At this time, a discharge is generated between the electrode 72 and the electrode 74 and between the electrode 74 and the Teflon tube 22, and the processing gas flowing into the glass tube 24 from the inside of the Teflon tube 22 and the Teflon tube 22.
  • the processing gas that has flowed into the glass tube 24 from between the outer peripheral surface and the inner peripheral surface of the housing 20 is turned into plasma.
  • plasma is generated from the tip of the glass tube 24 as in the atmospheric pressure plasma generator 10.
  • the atmospheric pressure plasma generator 70 a pair of electrodes 72 and 74 are used. However, the pair of electrodes 72 and 74 are disposed on the outer peripheral surface of the glass tube 24, and the glass Inside the tube 24, a discharge occurs between the electrode 74 and the Teflon tube 22. For this reason, in the atmospheric pressure plasma generation apparatus 70, as in the atmospheric pressure plasma generation apparatus 10, since no electrode is provided inside the glass tube 24, it is possible to prevent foreign matter from being mixed into the object of plasma processing. It becomes possible.
  • the atmospheric pressure plasma generator 10 is an example of an atmospheric pressure plasma generator. What is constituted by the housing 20 and the glass tube 24 is an example of an outer cylinder.
  • the Teflon tube 22 is an example of an inner cylinder.
  • the electrode 26 is an example of an electrode.
  • the atmospheric pressure plasma generator 70 is an example of an atmospheric pressure plasma generator.
  • the electrode 72 is an example of a second electrode.
  • the electrode 74 is an example of an electrode.
  • this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, a fluororesin is adopted as a material having a negative charge polarity, but silicon, vinyl chloride, acrylic, polyurethane, polypropylene, polyester, rubber, etc. may be adopted. Is possible. That is, instead of the Teflon tube 22, it is possible to employ a tube-shaped member formed of silicon, vinyl chloride or the like.
  • the Teflon tube 22 formed of a material having a charging polarity of a cathode is disposed inside the housing 20, but instead of the Teflon tube 22, a material having a charging polarity of an anode is used. It is possible to dispose a molded tubular member. However, when a tube-like member formed of a material having a charging polarity of an anode is disposed instead of the Teflon tube 22, it is necessary to apply a cathode voltage to the electrode 26. As a result, a discharge is generated between the electrode 26 and the tube-shaped member formed of the material whose charging polarity is the anode, and the same effect as the atmospheric pressure plasma generator 10 of the above embodiment can be obtained. It becomes. For example, glass, nylon, or the like can be used as the material whose charging polarity is the anode.
  • the processing gas supplied to the Teflon tube 22 and the processing gas supplied to the gas inflow pipe 36 are the same, but different treatments are applied to the Teflon tube 22 and the gas inflow pipe 36. It is possible to supply gas.
  • the process gas supplied to the Teflon tube 22 and the gas inflow tube 36 is a gas which mixed the inert gas and the active gas in arbitrary ratios, an inert gas or active gas Only the gas can be used as the processing gas.
  • the processing gas is supplied to both the Teflon tube 22 and the gas inflow pipe 36, but the processing gas can be supplied to one of the Teflon tube 22 and the gas inflow pipe 36. . That is, the processing gas may be converted into plasma in a state where the processing gas is supplied only to the inside of the Teflon tube 22, and the processing gas is processed only between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. The processing gas may be turned into plasma while the gas is supplied.
  • Atmospheric pressure plasma generator 20 Housing (outer cylinder) 22: Teflon tube (inner cylinder) 24: Glass tube (outer cylinder) 26: Electrode 70: Atmospheric pressure plasma generator 72: Electrode (second electrode) 74 :electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fluid Mechanics (AREA)
  • Plasma Technology (AREA)

Abstract

An atmospheric-pressure plasma generation device (10) is provided with: a cylindrical outer cylinder (20); an inner cylinder (22), which has an outer diameter that is smaller than the inner diameter of the outer cylinder (20), and is inserted into the outer cylinder (20), said inner cylinder being formed of a material having anode or cathode electrostatic charge polarity; and an electrode (26), which is disposed on the outer circumferential surface of the outer cylinder (20), and which has the polarity opposite to the electrostatic charge polarity of the material of the inner cylinder (22). In a state wherein a processing gas is flowing in a first flow channel inside of the inner cylinder (22) and/or in a second flow channel between the outer circumferential surface of the inner cylinder (22) and the inner circumferential surface of the outer cylinder (20), the atmospheric-pressure plasma generation device converts the processing gas into a plasma state by applying a voltage to the electrode (26), said processing gas flowing in the first flow channel and/or the second flow channel.

Description

大気圧プラズマ発生装置Atmospheric pressure plasma generator
 本発明は、筒状の部材の内部に供給された処理ガスをプラズマ化し、筒状の部材の端部からプラズマを発生させる大気圧プラズマ発生装置に関するものである。 The present invention relates to an atmospheric pressure plasma generator that converts a processing gas supplied into a cylindrical member into plasma and generates plasma from an end of the cylindrical member.
 大気圧プラズマ発生装置には、筒状の部材の内部において、処理ガスがプラズマ化され、筒状の部材の端部からプラズマを発生させる装置が存在する。詳しくは、筒状の部材の外周面に1対の電極のうちの一方の電極が配設され、筒状の部材の内周面に1対の電極のうちの他方の電極が配設されている。そして、筒状の部材の内部に、処理ガスが供給された状態で、1対の電極に電圧が印加されることで、筒状の部材の内部において、処理ガスがプラズマ化され、筒状の部材の端部からプラズマが発生する。下記特許文献には、そのような構造の大気圧プラズマ発生装置の一例が記載されている。 In the atmospheric pressure plasma generator, there is an apparatus that generates plasma from the end of the cylindrical member by converting the processing gas into plasma inside the cylindrical member. Specifically, one electrode of the pair of electrodes is disposed on the outer peripheral surface of the cylindrical member, and the other electrode of the pair of electrodes is disposed on the inner peripheral surface of the cylindrical member. Yes. Then, in a state where the processing gas is supplied to the inside of the cylindrical member, a voltage is applied to the pair of electrodes, so that the processing gas is turned into plasma inside the cylindrical member, and the cylindrical shape Plasma is generated from the end of the member. The following patent document describes an example of an atmospheric pressure plasma generator having such a structure.
国際公開第2007/105428号公報International Publication No. 2007/105428
 上記特許文献に記載の大気圧プラズマ発生装置によれば、適切にプラズマを発生させることが可能となる。しかしながら、上記特許文献に記載の大気圧プラズマ発生装置では、筒状の部材の内部に、電極が配設されているため、電極の劣化により、プラズマの照射対象物に異物が混入する虞がある。また、プラズマの照射対象物への異物の混入を防止するべく、筒状の部材内部に電極を配設しなければ、筒状の部材内において、適切に処理ガスをプラズマ化できない虞がある。本発明は、そのような実情に鑑みてなされたものであり、プラズマの照射対象物への異物の混入を防止するとともに、適切に処理ガスをプラズマ化することを課題とする。 According to the atmospheric pressure plasma generator described in the above patent document, it is possible to generate plasma appropriately. However, in the atmospheric pressure plasma generator described in the above-mentioned patent document, since the electrode is disposed inside the cylindrical member, there is a possibility that foreign matter may be mixed into the plasma irradiation object due to the deterioration of the electrode. . Further, if the electrode is not disposed inside the cylindrical member in order to prevent foreign matter from being mixed into the plasma irradiation object, the processing gas may not be appropriately converted into plasma in the cylindrical member. This invention is made | formed in view of such a situation, and makes it a subject to make process gas into plasma appropriately while preventing mixing of the foreign material to the irradiation target object of plasma.
 上記課題を解決するために、本発明に記載の大気圧プラズマ発生装置は、筒状の外筒と、前記外筒の内径より小さな外径を有し、前記外筒の内部に挿入されるとともに、帯電極性が陽極と陰極との一方の素材により成形された内筒と、前記外筒の外周面に配設され、前記内筒の素材の帯電極性と反対の極性の電極とを備え、前記内筒の内部の第1流路と、前記内筒の外周面と前記外筒の内周面との間の第2流路との少なくとも一方に処理ガスが流されている状態において、前記電極への電圧の印加により、前記第1流路と前記第2流路との少なくとも一方に流されている処理ガスをプラズマ化することを特徴とする。 In order to solve the above problems, an atmospheric pressure plasma generator according to the present invention has a cylindrical outer cylinder, an outer diameter smaller than the inner diameter of the outer cylinder, and is inserted into the outer cylinder. An inner cylinder formed of one material of an anode and a cathode, and an electrode having a polarity opposite to the charged polarity of the material of the inner cylinder, disposed on the outer peripheral surface of the outer cylinder, In the state where the processing gas is flowing in at least one of the first flow path inside the inner cylinder and the second flow path between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder, the electrode The process gas flowing in at least one of the first flow path and the second flow path is turned into plasma by applying a voltage to the first flow path.
 本発明に記載の大気圧プラズマ発生装置では、外筒の内部に内筒が挿入されており、その内筒は、帯電極性が陽極と陰極との一方の素材により成形されている。そして、内筒の素材の帯電極性と反対の極性の電極が、外筒の外周面に配設されている。このため、内筒に接触するように処理ガスが流されることで、内筒が帯電し、その状態において、外筒の外周面に配設された電極に電圧が印加されることで、その電極と内筒との間で電流が流れる。この際、電極と内筒との間で放電が生じ、外筒の内部において、処理ガスがプラズマ化される。このように、本発明に記載の大気圧プラズマ発生装置では、外筒の内部に電極を配設することなく、外筒の内部において、処理ガスがプラズマ化される。これにより、電極が劣化した場合であっても、プラズマ照射時における照射対象物への異物の混入を防止することが可能となる。さらに、電極と内筒との間で放電が生じるため、処理ガスを適切にプラズマ化することが可能となる。 In the atmospheric pressure plasma generator according to the present invention, an inner cylinder is inserted into an outer cylinder, and the inner cylinder is formed of a material having a charging polarity of either an anode or a cathode. An electrode having a polarity opposite to the charging polarity of the material of the inner cylinder is disposed on the outer peripheral surface of the outer cylinder. For this reason, the inner cylinder is charged by flowing the processing gas so as to contact the inner cylinder, and in that state, a voltage is applied to the electrode disposed on the outer peripheral surface of the outer cylinder, so that the electrode A current flows between the inner cylinder and the inner cylinder. At this time, discharge is generated between the electrode and the inner cylinder, and the processing gas is turned into plasma inside the outer cylinder. As described above, in the atmospheric pressure plasma generation apparatus according to the present invention, the processing gas is turned into plasma inside the outer cylinder without disposing an electrode inside the outer cylinder. Thereby, even when the electrode is deteriorated, it is possible to prevent foreign matters from being mixed into the irradiation object during plasma irradiation. Furthermore, since a discharge is generated between the electrode and the inner cylinder, the processing gas can be appropriately converted into plasma.
第1実施例の大気圧プラズマ発生装置を示す断面図である。It is sectional drawing which shows the atmospheric pressure plasma generator of 1st Example. 第2実施例の大気圧プラズマ発生装置を示す断面図である。It is sectional drawing which shows the atmospheric pressure plasma generator of 2nd Example.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as modes for carrying out the present invention.
 <大気圧プラズマ発生装置の構成>
 図1に、本発明の第1実施例の大気圧プラズマ発生装置10を示す。大気圧プラズマ発生装置10は、大気圧下でプラズマを発生させる装置である。大気圧プラズマ発生装置10は、樹脂製のハウジング20と、テフロン(米国DUPONT社の登録商標)チューブ22と、ガラス管24と、電極26とを備えている。
<Configuration of atmospheric pressure plasma generator>
FIG. 1 shows an atmospheric pressure plasma generator 10 according to a first embodiment of the present invention. The atmospheric pressure plasma generator 10 is an apparatus that generates plasma under atmospheric pressure. The atmospheric pressure plasma generator 10 includes a resin housing 20, a Teflon (registered trademark of US DUPONT) tube 22, a glass tube 24, and an electrode 26.
 ハウジング20は、概して円筒状をなし、ハウジング20の内周面は、小径部30と、小径部30より径の大きな大径部32とによって構成されている。また、大径部32の小径部30側の端部に、径方向に貫通する貫通穴34が形成され、その貫通穴34にガス流入管36が連結されている。 The housing 20 has a generally cylindrical shape, and the inner peripheral surface of the housing 20 includes a small-diameter portion 30 and a large-diameter portion 32 having a larger diameter than the small-diameter portion 30. Further, a through hole 34 penetrating in the radial direction is formed at the end of the large diameter portion 32 on the small diameter portion 30 side, and a gas inflow pipe 36 is connected to the through hole 34.
 テフロンチューブ22は、概して円筒状をなし、それの外径は、ハウジング20の小径部30の内径より僅かに小さい。そして、テフロンチューブ22が、ハウジング20の小径部30に挿入されており、テフロンチューブ22の一端部が、ハウジング20の大径部32側の端部から僅かに延び出している。 The Teflon tube 22 has a generally cylindrical shape, and its outer diameter is slightly smaller than the inner diameter of the small diameter portion 30 of the housing 20. The Teflon tube 22 is inserted into the small diameter portion 30 of the housing 20, and one end portion of the Teflon tube 22 slightly extends from the end portion of the housing 20 on the large diameter portion 32 side.
 ガラス管24は、概して円筒状をなし、それの外径は、ハウジング20の大径部32の内径より僅かに小さい。そして、ガラス管24が、ハウジング20の大径部32に嵌入されており、ガラス管24の一端部が、ハウジング20の大径部32側の端部から延び出している。なお、ガラス管24のハウジング20の端部からの延び出し量は、テフロンチューブ22のハウジング20からの延び出し量より多い。つまり、テフロンチューブ22のハウジング20の端部から延び出した端部は、ハウジング20から延び出したガラス管24の内部に位置している。 The glass tube 24 has a generally cylindrical shape, and its outer diameter is slightly smaller than the inner diameter of the large-diameter portion 32 of the housing 20. The glass tube 24 is fitted into the large-diameter portion 32 of the housing 20, and one end portion of the glass tube 24 extends from the end portion of the housing 20 on the large-diameter portion 32 side. The extension amount of the glass tube 24 from the end portion of the housing 20 is larger than the extension amount of the Teflon tube 22 from the housing 20. That is, the end of the Teflon tube 22 that extends from the end of the housing 20 is located inside the glass tube 24 that extends from the housing 20.
 電極26は、概して円環状をなし、ガラス管24の外周面に配設されている。電極26の配設位置は、ガラス管24の軸方向での略中央とされており、電極26は、ガラス管24を挟んで、テフロンチューブ22の端部と向かい合っている。 The electrode 26 has a generally annular shape and is disposed on the outer peripheral surface of the glass tube 24. The position where the electrode 26 is disposed is substantially the center in the axial direction of the glass tube 24, and the electrode 26 faces the end of the Teflon tube 22 across the glass tube 24.
 <大気圧プラズマ発生装置によるプラズマの発生>
 大気圧プラズマ発生装置10では、上述した構成により、テフロンチューブ22とガス流入管36とに処理ガスが供給され、電極26に電圧が印加されることで、ガラス管24の端部からプラズマが照射される。以下に、大気圧プラズマ発生装置10によるプラズマの発生について、詳しく説明する。
<Plasma generation by atmospheric pressure plasma generator>
In the atmospheric pressure plasma generator 10, with the above-described configuration, a processing gas is supplied to the Teflon tube 22 and the gas inflow pipe 36, and a voltage is applied to the electrode 26, so that plasma is irradiated from the end of the glass tube 24. Is done. Hereinafter, generation of plasma by the atmospheric pressure plasma generator 10 will be described in detail.
 大気圧プラズマ発生装置10では、処理ガスが、ガス供給装置(図示省略)によりテフロンチューブ22の内部に供給され、テフロンチューブ22の内部において、矢印50の方向に向かって流れる。さらに、処理ガスが、ガス供給装置によりガス流入管36に供給され、テフロンチューブ22の外周面とハウジング20の内周面との間において、矢印52の方向に向かって流れる。なお、テフロンチューブ22の内部に供給される処理ガスと、ガス流入管36に供給される処理ガスとは、同じであり、その処理ガスは、窒素等の不活性ガスと、空気中の酸素等の活性ガスとを任意の割合で混合させたものである。 In the atmospheric pressure plasma generator 10, the processing gas is supplied into the Teflon tube 22 by a gas supply device (not shown) and flows in the direction of the arrow 50 inside the Teflon tube 22. Further, the processing gas is supplied to the gas inflow pipe 36 by the gas supply device, and flows in the direction of the arrow 52 between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. The processing gas supplied to the inside of the Teflon tube 22 and the processing gas supplied to the gas inflow pipe 36 are the same, and the processing gas includes an inert gas such as nitrogen and oxygen in the air. The active gas is mixed at an arbitrary ratio.
 また、テフロンチューブ22は、フッ素樹脂により成形されたものであり、フッ素樹脂は、帯電極性が陰極の素材である。帯電極性が陰極の素材とは、陰極に帯電しやすい素材であり、例えば、摩擦等により、静電気が発生した場合には、帯電極性が陰極の素材は陰極に帯電する。このため、テフロンチューブ22の内部、若しくは、テフロンチューブ22の外周面とハウジング20の内周面との間に、処理ガスが流されている際に、テフロンチューブ22は、陰極に帯電する。具体的には、例えば、処理ガスがテフロンチューブ22の内部に流されている際に、ガラス管24の外周面において電位を測定すると、ガラス管24の外周面での電位は、-11ボルトであった。また、処理ガスがテフロンチューブ22の外周面とハウジング20の内周面との間に流されている際に、ガラス管24の外周面において電位を測定すると、ガラス管24の外周面での電位は、-77ボルトであった。また、処理ガスが、テフロンチューブ22の外周面とハウジング20の内周面との間、および、テフロンチューブ22の内部に流されている際に、ガラス管24の外周面において電位を測定すると、ガラス管24の外周面での電位は、-50ボルトであった。なお、処理ガスが流されている際のテフロンチューブ22の電位は、低すぎて測定することができなかった。 The Teflon tube 22 is made of a fluororesin, and the fluororesin is a material having a negative charge polarity. The material having a negative charge polarity is a material that is easily charged to the negative electrode. For example, when static electricity is generated due to friction or the like, the negative charge material is charged to the negative electrode. For this reason, the Teflon tube 22 is charged to the cathode when the processing gas is flowing inside the Teflon tube 22 or between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. Specifically, for example, when the potential is measured on the outer peripheral surface of the glass tube 24 while the processing gas is flowing inside the Teflon tube 22, the potential on the outer peripheral surface of the glass tube 24 is -11 volts. there were. Further, when the potential is measured on the outer peripheral surface of the glass tube 24 while the processing gas is flowing between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20, the potential on the outer peripheral surface of the glass tube 24 is measured. Was -77 volts. Further, when the processing gas is flowing between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20 and inside the Teflon tube 22, the potential is measured on the outer peripheral surface of the glass tube 24. The potential at the outer peripheral surface of the glass tube 24 was −50 volts. Note that the potential of the Teflon tube 22 when the processing gas was flowing was too low to measure.
 このように、テフロンチューブ22に接触するように、処理ガスが流されると、テフロンチューブ22は、陰極に帯電する。このため、テフロンチューブ22および、ガス流入管36に処理ガスが供給されている際に、電極26に陽極の電圧が印加されると、テフロンチューブ22と電極26との間に電流が流れる。この際、テフロンチューブ22と電極26との間に放電が生じ、テフロンチューブ22の内部からガラス管24の内部に流れ込んだ処理ガス、および、テフロンチューブ22の外周面とハウジング20の内周面との間からガラス管24の内部に流れ込んだ処理ガスがプラズマ化される。これにより、大気圧プラズマ発生装置10は、ガラス管24の先端部からプラズマを発生させる。 Thus, when the processing gas is flowed so as to come into contact with the Teflon tube 22, the Teflon tube 22 is charged to the cathode. Therefore, when a processing gas is supplied to the Teflon tube 22 and the gas inflow pipe 36, when an anode voltage is applied to the electrode 26, a current flows between the Teflon tube 22 and the electrode 26. At this time, a discharge is generated between the Teflon tube 22 and the electrode 26, the processing gas flowing into the glass tube 24 from the inside of the Teflon tube 22, and the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. The processing gas that has flowed into the glass tube 24 from between is converted into plasma. Thereby, the atmospheric pressure plasma generator 10 generates plasma from the tip of the glass tube 24.
 従来の大気圧プラズマ発生装置では、一般的に、1対の電極の一方が、ガラス管24の外周面に配設されるとともに、1対の電極の他方が、ガラス管24の内周面に配設され、一方の電極に陽極の電圧が印加され、他方の電極に陰極の電圧が印加されることで、ガラス管24内部の処理ガスをプラズマ化させている。このため、従来の大気圧プラズマ発生装置では、ガラス管24の内周面に配設された電極が劣化し、劣化した電極によって、プラズマ処理の対象物に異物が混入する虞がある。一方で、大気圧プラズマ発生装置10では、テフロンチューブ22と電極26との間に放電が生じるため、ガラス管24の内部に電極を配設する必要がない。このため、大気圧プラズマ発生装置10によりプラズマ処理を行うことで、プラズマ処理の対象物への異物の混入を防止することが可能となる。 In the conventional atmospheric pressure plasma generator, generally, one of the pair of electrodes is disposed on the outer peripheral surface of the glass tube 24 and the other of the pair of electrodes is on the inner peripheral surface of the glass tube 24. The processing gas inside the glass tube 24 is turned into plasma by applying an anode voltage to one electrode and applying a cathode voltage to the other electrode. For this reason, in the conventional atmospheric pressure plasma generator, the electrode disposed on the inner peripheral surface of the glass tube 24 is deteriorated, and the deteriorated electrode may cause foreign matters to be mixed into the object of the plasma treatment. On the other hand, in the atmospheric pressure plasma generator 10, since discharge occurs between the Teflon tube 22 and the electrode 26, it is not necessary to dispose an electrode inside the glass tube 24. For this reason, by performing plasma processing with the atmospheric pressure plasma generator 10, it is possible to prevent foreign matters from being mixed into the object of plasma processing.
 また、大気圧プラズマ発生装置10では、テフロンチューブ22の内部だけでなく、テフロンチューブ22の外周面とハウジング20の内周面との間にも、処理ガスが流されており、その処理ガスがプラズマ化される。これにより、多く量の処理ガスをプラズマ化することが可能となり、効率的にプラズマを発生させることが可能となる。 In the atmospheric pressure plasma generator 10, not only the inside of the Teflon tube 22 but also the processing gas flows between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. It is turned into plasma. As a result, a large amount of processing gas can be converted into plasma, and plasma can be generated efficiently.
 <第2実施例>
 第2実施例の大気圧プラズマ発生装置70を、図2に示す。第2実施例の大気圧プラズマ発生装置70は、電極を除いて、第1実施例の大気圧プラズマ発生装置10の構成要素と同じ構成要素を備えている。このため、大気圧プラズマ発生装置10の構成要素と同じ構成要素については、大気圧プラズマ発生装置10の構成要素と同じ符号を用い、それらの説明は省略する。
<Second embodiment>
An atmospheric pressure plasma generator 70 of the second embodiment is shown in FIG. The atmospheric pressure plasma generator 70 of the second embodiment includes the same components as those of the atmospheric plasma generator 10 of the first embodiment except for the electrodes. For this reason, about the same component as the component of the atmospheric pressure plasma generator 10, the same code | symbol as the component of the atmospheric pressure plasma generator 10 is used, and those description is abbreviate | omitted.
 大気圧プラズマ発生装置70は、1対の電極72,74を備えている。それら1対の電極72,74の各々は、概して円環状をなし、電極72と電極74とは、僅かに離間した状態で、ガラス管24の外周面に配設されている。電極72は、ガラス管24の軸方向での略中央部に配設され、電極74は、ガラス管24のハウジング20から延び出した側の端部と、電極72との間に配設されている。なお、電極72は、ガラス管24を挟んで、テフロンチューブ22の端部と向かい合っている。 The atmospheric pressure plasma generator 70 includes a pair of electrodes 72 and 74. Each of the pair of electrodes 72 and 74 has a generally annular shape, and the electrode 72 and the electrode 74 are disposed on the outer peripheral surface of the glass tube 24 in a slightly spaced state. The electrode 72 is disposed at a substantially central portion in the axial direction of the glass tube 24, and the electrode 74 is disposed between an end portion of the glass tube 24 extending from the housing 20 and the electrode 72. Yes. The electrode 72 faces the end of the Teflon tube 22 with the glass tube 24 interposed therebetween.
 このような構造の大気圧プラズマ発生装置70では、テフロンチューブ22とガス流入管36とに処理ガスが供給されている状態において、電極72に陰極の電圧が印加され、電極74に陽極の電圧が印加される。これにより、電極72と電極74との間、および、電極74とテフロンチューブ22との間に電流が流れる。この際、電極72と電極74との間、および、電極74とテフロンチューブ22との間に放電が生じ、テフロンチューブ22の内部からガラス管24の内部に流れ込んだ処理ガス、および、テフロンチューブ22の外周面とハウジング20の内周面との間からガラス管24の内部に流れ込んだ処理ガスがプラズマ化される。これにより、大気圧プラズマ発生装置70においても、大気圧プラズマ発生装置10と同様に、ガラス管24の先端部からプラズマが発生する。 In the atmospheric pressure plasma generator 70 having such a structure, a cathode voltage is applied to the electrode 72 and an anode voltage is applied to the electrode 74 in a state where the processing gas is supplied to the Teflon tube 22 and the gas inflow tube 36. Applied. Thereby, an electric current flows between the electrode 72 and the electrode 74 and between the electrode 74 and the Teflon tube 22. At this time, a discharge is generated between the electrode 72 and the electrode 74 and between the electrode 74 and the Teflon tube 22, and the processing gas flowing into the glass tube 24 from the inside of the Teflon tube 22 and the Teflon tube 22. The processing gas that has flowed into the glass tube 24 from between the outer peripheral surface and the inner peripheral surface of the housing 20 is turned into plasma. Thereby, also in the atmospheric pressure plasma generator 70, plasma is generated from the tip of the glass tube 24 as in the atmospheric pressure plasma generator 10.
 このように、大気圧プラズマ発生装置70では、1対の電極72,74が用いられているが、それら1対の電極72,74は、ガラス管24の外周面に配設されており、ガラス管24の内部では、電極74とテフロンチューブ22との間において、放電が生じる。このため、大気圧プラズマ発生装置70においても、大気圧プラズマ発生装置10と同様に、ガラス管24の内部に電極が配設されないため、プラズマ処理の対象物への異物の混入を防止することが可能となる。 As described above, in the atmospheric pressure plasma generator 70, a pair of electrodes 72 and 74 are used. However, the pair of electrodes 72 and 74 are disposed on the outer peripheral surface of the glass tube 24, and the glass Inside the tube 24, a discharge occurs between the electrode 74 and the Teflon tube 22. For this reason, in the atmospheric pressure plasma generation apparatus 70, as in the atmospheric pressure plasma generation apparatus 10, since no electrode is provided inside the glass tube 24, it is possible to prevent foreign matter from being mixed into the object of plasma processing. It becomes possible.
 ちなみに、大気圧プラズマ発生装置10は、大気圧プラズマ発生装置の一例である。ハウジング20とガラス管24とで構成されるものは、外筒の一例である。テフロンチューブ22は、内筒の一例である。電極26は、電極の一例である。大気圧プラズマ発生装置70は、大気圧プラズマ発生装置の一例である。電極72は、第2の電極の一例である。電極74は、電極の一例である。 Incidentally, the atmospheric pressure plasma generator 10 is an example of an atmospheric pressure plasma generator. What is constituted by the housing 20 and the glass tube 24 is an example of an outer cylinder. The Teflon tube 22 is an example of an inner cylinder. The electrode 26 is an example of an electrode. The atmospheric pressure plasma generator 70 is an example of an atmospheric pressure plasma generator. The electrode 72 is an example of a second electrode. The electrode 74 is an example of an electrode.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、帯電極性が陰極である素材として、フッ素樹脂が採用されているが、シリコン,塩化ビニル,アクリル,ポリウレタン,ポリプロピレン,ポリエステル,ゴム等を採用することが可能である。つまり、テフロンチューブ22の代わりに、シリコン,塩化ビニル等により成形されたチューブ状の部材を採用することが可能である。 In addition, this invention is not limited to the said Example, It is possible to implement in the various aspect which gave various change and improvement based on the knowledge of those skilled in the art. Specifically, for example, in the above embodiment, a fluororesin is adopted as a material having a negative charge polarity, but silicon, vinyl chloride, acrylic, polyurethane, polypropylene, polyester, rubber, etc. may be adopted. Is possible. That is, instead of the Teflon tube 22, it is possible to employ a tube-shaped member formed of silicon, vinyl chloride or the like.
 また、上記実施例では、ハウジング20の内部に、帯電極性が陰極である素材により成形されたテフロンチューブ22が配設されているが、テフロンチューブ22の代わりに、帯電極性が陽極である素材により成形されたチューブ状の部材を配設することが可能である。ただし、テフロンチューブ22の代わりに、帯電極性が陽極である素材により成形されたチューブ状の部材が配設された場合には、電極26には、陰極の電圧を印加する必要がある。これにより、帯電極性が陽極である素材により成形されたチューブ状の部材と、電極26との間において、放電が生じ、上記実施例の大気圧プラズマ発生装置10と同様の効果を奏することが可能となる。なお、帯電極性が陽極である素材として、例えば、ガラス,ナイロン等を採用することが可能である。 In the above-described embodiment, the Teflon tube 22 formed of a material having a charging polarity of a cathode is disposed inside the housing 20, but instead of the Teflon tube 22, a material having a charging polarity of an anode is used. It is possible to dispose a molded tubular member. However, when a tube-like member formed of a material having a charging polarity of an anode is disposed instead of the Teflon tube 22, it is necessary to apply a cathode voltage to the electrode 26. As a result, a discharge is generated between the electrode 26 and the tube-shaped member formed of the material whose charging polarity is the anode, and the same effect as the atmospheric pressure plasma generator 10 of the above embodiment can be obtained. It becomes. For example, glass, nylon, or the like can be used as the material whose charging polarity is the anode.
 また、上記実施例では、テフロンチューブ22に供給される処理ガスと、ガス流入管36に供給される処理ガスとは、同じであるが、テフロンチューブ22とガス流入管36とに、互いに異なる処理ガスを供給することが可能である。また、上記実施例では、テフロンチューブ22および、ガス流入管36に供給される処理ガスは、不活性ガスと活性ガスとを任意の割合で混合させたガスであるが、不活性ガス若しくは、活性ガスのみを処理ガスとすることが可能である。 In the above embodiment, the processing gas supplied to the Teflon tube 22 and the processing gas supplied to the gas inflow pipe 36 are the same, but different treatments are applied to the Teflon tube 22 and the gas inflow pipe 36. It is possible to supply gas. Moreover, in the said Example, although the process gas supplied to the Teflon tube 22 and the gas inflow tube 36 is a gas which mixed the inert gas and the active gas in arbitrary ratios, an inert gas or active gas Only the gas can be used as the processing gas.
 また、上記実施例では、テフロンチューブ22とガス流入管36との両方に処理ガスが供給されているが、テフロンチューブ22とガス流入管36との一方に処理ガスを供給することが可能である。つまり、テフロンチューブ22の内部にのみ、処理ガスが供給された状態で、その処理ガスがプラズマ化されてもよく、テフロンチューブ22の外周面とハウジング20の内周面との間にのみ、処理ガスが供給された状態で、その処理ガスがプラズマ化されてもよい。 In the above embodiment, the processing gas is supplied to both the Teflon tube 22 and the gas inflow pipe 36, but the processing gas can be supplied to one of the Teflon tube 22 and the gas inflow pipe 36. . That is, the processing gas may be converted into plasma in a state where the processing gas is supplied only to the inside of the Teflon tube 22, and the processing gas is processed only between the outer peripheral surface of the Teflon tube 22 and the inner peripheral surface of the housing 20. The processing gas may be turned into plasma while the gas is supplied.
 10:大気圧プラズマ発生装置  20:ハウジング(外筒)  22:テフロンチューブ(内筒)  24:ガラス管(外筒)  26:電極  70:大気圧プラズマ発生装置  72:電極(第2の電極)  74:電極 10: Atmospheric pressure plasma generator 20: Housing (outer cylinder) 22: Teflon tube (inner cylinder) 24: Glass tube (outer cylinder) 26: Electrode 70: Atmospheric pressure plasma generator 72: Electrode (second electrode) 74 :electrode

Claims (4)

  1.  筒状の外筒と、
     前記外筒の内径より小さな外径を有し、前記外筒の内部に挿入されるとともに、帯電極性が陽極と陰極との一方の素材により成形された内筒と、
     前記外筒の外周面に配設され、前記内筒の素材の帯電極性と反対の極性の電極と
     を備え、
     前記内筒の内部の第1流路と、前記内筒の外周面と前記外筒の内周面との間の第2流路との少なくとも一方に処理ガスが流されている状態において、前記電極への電圧の印加により、前記第1流路と前記第2流路との少なくとも一方に流されている処理ガスをプラズマ化する大気圧プラズマ発生装置。
    A cylindrical outer tube,
    An outer cylinder having an outer diameter smaller than the inner diameter of the outer cylinder, inserted into the outer cylinder, and an inner cylinder whose charging polarity is formed of one material of an anode and a cathode;
    An electrode having a polarity opposite to the charged polarity of the material of the inner cylinder, disposed on the outer peripheral surface of the outer cylinder,
    In a state where the processing gas is flowing in at least one of the first flow path inside the inner cylinder and the second flow path between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the outer cylinder, An atmospheric pressure plasma generator that converts a processing gas flowing in at least one of the first flow path and the second flow path into plasma by applying a voltage to an electrode.
  2.  前記内筒が、帯電極性が陰極の素材により成形され、
     前記電極が、陽極であることを特徴とする請求項1に記載の大気圧プラズマ発生装置。
    The inner cylinder is formed of a material having a negative polarity for charging,
    The atmospheric pressure plasma generator according to claim 1, wherein the electrode is an anode.
  3.  前記大気圧プラズマ発生装置が、
     前記第1流路と前記第2流路との両方に処理ガスが流されている状態において、前記電極への電圧の印加により、前記第1流路と前記第2流路とに流されている処理ガスをプラズマ化することを特徴とする請求項1または請求項2に記載の大気圧プラズマ発生装置。
    The atmospheric pressure plasma generator comprises:
    In a state where a processing gas is flowing in both the first flow path and the second flow path, by applying a voltage to the electrode, the flow is caused to flow in the first flow path and the second flow path. The atmospheric pressure plasma generator according to claim 1 or 2, wherein the processing gas is converted into plasma.
  4.  前記大気圧プラズマ発生装置が、
     前記外筒の外周面に配設され、前記内筒の素材の帯電極性と同じ極性の第2の電極を備え、
     前記第1流路と前記第2流路との少なくとも一方に処理ガスが流されている状態において、前記電極および前記第2の電極への電圧の印加により、前記第1流路と前記第2流路との少なくとも一方に流されている処理ガスをプラズマ化することを特徴とする請求項1ないし請求項3のいずれか1つに記載の大気圧プラズマ発生装置。
    The atmospheric pressure plasma generator comprises:
    Provided on the outer peripheral surface of the outer cylinder, comprising a second electrode having the same polarity as the charging polarity of the material of the inner cylinder;
    In a state where a processing gas is flowing in at least one of the first flow path and the second flow path, the first flow path and the second flow path are applied by applying a voltage to the electrode and the second electrode. The atmospheric pressure plasma generator according to any one of claims 1 to 3, wherein the processing gas flowing in at least one of the flow paths is turned into plasma.
PCT/JP2015/052191 2015-01-27 2015-01-27 Atmospheric-pressure plasma generation device WO2016120998A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/052191 WO2016120998A1 (en) 2015-01-27 2015-01-27 Atmospheric-pressure plasma generation device
JP2016571548A JP6425742B2 (en) 2015-01-27 2015-01-27 Atmospheric pressure plasma generator
EP15879895.9A EP3253183B1 (en) 2015-01-27 2015-01-27 Atmospheric-pressure plasma generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052191 WO2016120998A1 (en) 2015-01-27 2015-01-27 Atmospheric-pressure plasma generation device

Publications (1)

Publication Number Publication Date
WO2016120998A1 true WO2016120998A1 (en) 2016-08-04

Family

ID=56542655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052191 WO2016120998A1 (en) 2015-01-27 2015-01-27 Atmospheric-pressure plasma generation device

Country Status (3)

Country Link
EP (1) EP3253183B1 (en)
JP (1) JP6425742B2 (en)
WO (1) WO2016120998A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830968A (en) * 1993-07-20 1996-02-02 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JP2010218997A (en) * 2009-03-19 2010-09-30 Shibaura Mechatronics Corp Plasma generator, and plasma processing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953255B2 (en) * 2006-02-13 2012-06-13 国立大学法人群馬大学 Nozzle for plasma generator, plasma generator, plasma surface treatment apparatus, plasma generation method and plasma surface treatment method
ITPD20130310A1 (en) * 2013-11-14 2015-05-15 Nadir S R L METHOD FOR THE GENERATION OF AN ATMOSPHERIC PLASMA JET OR JET AND ATMOSPHERIC PLASMA MINITORCIA DEVICE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830968A (en) * 1993-07-20 1996-02-02 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JP2010218997A (en) * 2009-03-19 2010-09-30 Shibaura Mechatronics Corp Plasma generator, and plasma processing device

Also Published As

Publication number Publication date
JP6425742B2 (en) 2018-11-21
EP3253183A4 (en) 2018-09-26
EP3253183B1 (en) 2023-11-08
EP3253183A1 (en) 2017-12-06
JPWO2016120998A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP5201338B2 (en) Ionizer
JP6511440B2 (en) Plasma irradiation method and plasma irradiation apparatus
JP2018040718A5 (en)
ATE529890T1 (en) POWER SUPPLY APPARATUS AND APPLICATION METHOD USING THE POWER SUPPLY APPARATUS
JP2005294178A (en) Corona discharge type ionizer
JP2018040722A5 (en)
JP2020509539A5 (en)
WO2016120998A1 (en) Atmospheric-pressure plasma generation device
JP2007250769A (en) Apparatus and method for treating substrate
US10767802B2 (en) Fluid apparatus
JP2011129513A (en) Ion forming device
KR101463977B1 (en) Plasma reactor and gas scrubber having the same
JP2009193793A (en) Static eliminator
JP2007035310A (en) Atmospheric pressure corona discharge generating device
JP2018041575A (en) Ozone wind generation device
US20130153689A1 (en) Electrostatic atomizing apparatus
JP2009081015A (en) Negative ion generating apparatus
JP2009193792A (en) Static eliminator and static elimination method
JP6170006B2 (en) Atmospheric pressure plasma processing apparatus and processing method thereof
JP6952302B2 (en) Cleaning equipment and cleaning method
WO2010067306A3 (en) Device and method for generating a plasma flow
JP2009205815A (en) Static eliminator
WO2009104511A1 (en) Static eliminator
JP2022127424A (en) Electrode chip
Ohkawa et al. Research and development of carbon nanotube cathodes for electric propulsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571548

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015879895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE