WO2016119727A1 - 天线、天线系统和通信设备 - Google Patents

天线、天线系统和通信设备 Download PDF

Info

Publication number
WO2016119727A1
WO2016119727A1 PCT/CN2016/072677 CN2016072677W WO2016119727A1 WO 2016119727 A1 WO2016119727 A1 WO 2016119727A1 CN 2016072677 W CN2016072677 W CN 2016072677W WO 2016119727 A1 WO2016119727 A1 WO 2016119727A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna
sheet
radiation
power feeding
Prior art date
Application number
PCT/CN2016/072677
Other languages
English (en)
French (fr)
Inventor
刘若鹏
梁智荣
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510052404.XA external-priority patent/CN105990664A/zh
Priority claimed from CN201510052421.3A external-priority patent/CN105990643A/zh
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2016119727A1 publication Critical patent/WO2016119727A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an antenna, and an antenna system and a communication device using the same.
  • An antenna is an electronic device for transmitting or receiving electromagnetic waves.
  • Antennas are used in systems such as radio and television, point-to-point radio communications, radar and space exploration.
  • systems such as radio and television, point-to-point radio communications, radar and space exploration.
  • the field of antenna technology is becoming more and more extensive.
  • the requirements for antenna performance are also increasing.
  • modern communications as the integration of communication systems increases, the required antennas are characterized by high gain, wide band or multi-band, circular polarization, miniaturization, and wide coverage.
  • the technical problem to be solved by the present invention is to provide an antenna and an antenna system and a communication device using the same.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide an antenna including a first substrate, a second substrate, a first radiating sheet and a second radiating sheet, wherein the first radiating sheet is disposed in the First substrate
  • the second substrate is disposed on the first radiation sheet
  • the second radiation sheet is disposed on the second substrate
  • the first radiation sheet has a second symmetry respectively located in the first radiation sheet a first feeding portion and a second feeding portion on the shaft and the first symmetry axis
  • the second radiating sheet having a third feed respectively located on the second symmetry axis and the first symmetry axis of the second radiation piece
  • the electric portion and the fourth feeding portion, wherein the first substrate, the second substrate, the first radiating sheet and the second radiating sheet are all curved surfaces.
  • the projections of the first radiation piece and the second radiation piece on a horizontal plane are both rectangular.
  • the first power feeding unit, the second power feeding unit, the third power feeding unit, and the fourth power feeding unit are coaxial power feeding units.
  • each of the feeding portions is electrically insulated.
  • the size of the second radiating piece is smaller than the size of the second substrate, and the size of the first radiating piece is smaller than the size of the first substrate.
  • the size of the first radiation piece is larger than the size of the second radiation piece.
  • a projection of a center point of the second radiation sheet on the first radiation sheet coincides with a center point of the first radiation sheet.
  • the projections of the first symmetry axis and the second symmetry axis of the second radiation piece on a horizontal plane are respectively at the horizontal plane with the first symmetry axis and the second symmetry axis of the first radiation piece The projections on the top coincide.
  • the curvatures of the first substrate, the second substrate, the first radiation sheet and the second radiation sheet are all the same.
  • an artificial microstructure is placed in an inner horizontal direction or a vertical direction of the first substrate.
  • an artificial microstructure is placed in an inner horizontal direction or a vertical direction of the second substrate.
  • the first radiation piece and the second radiation piece are respectively a metal patch adhered to the first substrate and the second substrate or plated on the first substrate and the A metal plating layer of the second substrate is described.
  • the projections of the first substrate and the second substrate on a horizontal plane are both rectangular.
  • the thickness of the first substrate is smaller than the thickness of the second substrate.
  • the technical solution adopted by the present invention to solve the above technical problem further provides an antenna including a first substrate, a second substrate, a first radiating sheet and a second radiating sheet, and the first radiating sheet is disposed.
  • the second substrate is disposed on the first radiation sheet
  • the second radiation sheet is disposed on the second substrate
  • the first radiation sheet is rectangular and has a separate location a second symmetry axis of the first radiation piece and a first power feeding portion and a second power feeding portion on the first symmetry axis, wherein the second radiation piece is rectangular
  • the first radiation piece and the second radiation piece are both rectangular.
  • the first power feeding unit, the second power feeding unit, the third power feeding unit, and the fourth power feeding unit are coaxial power feeding units.
  • each of the feeding portions is electrically insulated.
  • the size of the second radiation piece is smaller than the size of the second substrate, and the size of the first radiation piece is smaller than the size of the first substrate.
  • the size of the first radiation piece is larger than the size of the second radiation piece.
  • a projection of a center point of the second radiation piece on a plane of the first radiation piece coincides with a center point of the first radiation piece.
  • an artificial microstructure is placed in an inner horizontal direction or a vertical direction of the first substrate.
  • an artificial microstructure is placed in an inner horizontal direction or a vertical direction of the second substrate.
  • the first radiation piece and the second radiation piece are respectively a metal patch adhered to the first substrate and the second substrate or plated on the first substrate and the A metal plating layer of the second substrate is described.
  • the thickness of the first substrate is smaller than the thickness of the second substrate.
  • the first substrate and the second substrate are both rectangular.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • the antenna of the present invention separately designs two different feeding portions on the first symmetry axis and the second symmetry axis of each of the radiation sheets, and then connects the two feeds through two power splitters and a 90° phase shifter respectively.
  • the electric part can make each radiation piece realize circular polarization alone.
  • the single antenna of the present invention can realize the circular polarization technical solution, and has the advantages of low cost and simple structural design compared to the prior art, where multiple antennas are required to cooperate together to realize circular polarization. , does not require complex structural design of multiple antennas.
  • the invention combines various technical means such as a phase shifter and a power splitter, which can make The antenna can achieve multi-band, circular polarization, miniaturization, wide coverage, and the like.
  • FIG. 1 is a perspective view showing the structure of an antenna according to an embodiment of the present invention.
  • FIG. 2 shows a plan view of an antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a power feeding portion of an antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an antenna system according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a voltage standing wave ratio of an antenna according to an embodiment of the present invention.
  • FIG. 6 shows a gain graph of an antenna according to an embodiment of the present invention
  • FIG. 7 is a graph showing an axial ratio of an antenna according to an embodiment of the present invention.
  • FIG. 8 is a schematic perspective structural view of an antenna according to still another embodiment of the present invention.
  • FIG. 9 is a schematic plan view showing an antenna according to still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a power feeding portion of an antenna according to still another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an antenna system according to still another embodiment of the present invention.
  • FIG. 12 is a graph showing a voltage standing wave ratio of an antenna according to still another embodiment of the present invention. [0044] FIG.
  • FIG. 13 shows a gain graph of an antenna according to still another embodiment of the present invention.
  • FIG. 14 is a graph showing an axial ratio of an antenna according to still another embodiment of the present invention.
  • the antenna 10 of the present embodiment may include a first substrate 11, a second substrate 12, a first radiating sheet 13, and a second radiating sheet 14.
  • the first radiation sheet 13 is disposed on the first substrate 1 1 on.
  • the second radiating sheet 14 is disposed on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are made of a dielectric substrate.
  • the first radiating sheet 13 and the second radiating sheet 14 are made of a conductive material such as metal.
  • the radiation sheet may be in the form of a patch or a photolithographically etched coating.
  • This combined unit of each of the radiating sheets and their corresponding substrates constitutes a receiving and transmitting path.
  • the two combined units are further combined into an antenna in a stacked manner. That is, the second substrate 12 is disposed on the first radiation sheet 13.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • Fig. 3 is a view showing a power feeding portion of an antenna according to an embodiment of the present invention.
  • the first radiating sheet 13 has a first feeding portion 15 and a second feeding portion 16
  • the second radiating sheet 14 has a third feeding portion 17 and a fourth feeding portion 18.
  • the first power feeder 15 and the second power feeder 16 can input a signal to be transmitted or output a received signal.
  • the third power feeder 17 and the fourth power feeder 18 can input a signal to be transmitted or output a received signal.
  • the first power feeding portion 15 and the second power feeding portion 16 are required to be respectively located on the second symmetry axis Y1 and the first symmetry axis XI of the first radiation sheet 13.
  • the third power feeding portion 17 and the fourth power feeding portion 18 are required to be respectively located on the second symmetry axis Y2 of the second radiation piece 14 and the first symmetry axis X2.
  • the first symmetry axes XI, X2 are on the same line
  • the second symmetry axes Y1, Y2 are on the same line. In other words, the projection of the center point of the second radiation sheet 14 on the first radiation sheet 13 coincides with the center point of the first radiation sheet 13.
  • the projections of the first axis of symmetry ⁇ 2 and the second axis of symmetry 2 of the second radiating sheet 14 on the horizontal plane are respectively opposite to the first axis of symmetry XI and the second axis of symmetry Y1 of the first radiating sheet 13
  • the projections on the horizontal plane coincide.
  • the first feeding portion 15 is located on the second symmetry axis Y1 of the first radiation piece 13
  • the second feeding portion 16 is located on the first symmetry axis XI of the first radiation piece 13.
  • the third feeding portion 17 is located on the second symmetry axis ⁇ 2 of the second radiation piece 14, and the fourth feeding portion 18 is located on the first symmetry axis ⁇ 2 of the second radiation piece 14.
  • the embodiment of the present invention does not limit the relative relationship of the first power feeding portion 15, the second power feeding portion 16, the third power feeding portion 17, and the fourth power feeding portion 18 on the horizontal plane (the paper surface in Fig. 3). Position, as long as the first power feeding portion 15, the second power feeding portion 16, the third power feeding portion 17, and the fourth power feeding portion 18 can be drawn out of the transmission line (not shown).
  • the projection of the first substrate 11 and the second substrate 12 on the horizontal surface is preferably rectangular, of course , can also be other shapes.
  • the projection of the first radiating sheet 13 and the second radiating sheet 14 on the horizontal plane is preferably rectangular. It will of course be understood that the first radiating sheet 14 and the second radiating sheet 14 may also have other shapes. However, the first radiating sheet 13 and the second radiating sheet 14 are preferably the same shape.
  • the size of the first radiating sheet 13 is smaller than the size of the first substrate 11, and the size of the second radiating sheet 14 is smaller than the size of the second substrate 12.
  • the size of the first radiating sheet 13 is preferably larger than the size of the second radiating sheet 14, and FIG. 1 shows an example in which the size of the first radiating sheet 13 is larger than the size of the second radiating sheet 14, so as to ensure that the first radiating sheet 13 radiates The signal is not obscured by the second radiating sheet 14 located thereon.
  • the first substrate 11 and the second substrate 12 may have an artificial microstructure, such as a conductive microstructure.
  • the artificial microstructure in the substrate may be a planar or a three-dimensional structure having a certain geometry, and may be placed horizontally (in the XY plane direction in FIG. 1) and/or vertically (in the Z-axis direction in FIG. 1) in the substrate, also Known as metamaterial microstructure.
  • the dielectric constant of the substrate can be changed, thereby being suitable for providing substrates having different dielectric constants.
  • the shape of the artificial microstructure may include a chevron, a cross, a snowflake, or a broken chevron.
  • the thickness of the first substrate 11 may be smaller than the thickness of the second substrate 12.
  • the antenna of the present embodiment is designed to have dual frequency transmission and reception capabilities.
  • the first power feeding unit 15, the second power feeding unit 16, the third power feeding unit 17, and the fourth power feeding unit 18 are electrically insulated to respectively input the frequency band signals to be transmitted into the respective combination units. Or output the received signals from their respective combination units
  • the first power feeding portion 15, the second power feeding portion 16, the third power feeding portion 17, and the fourth power feeding portion 18 are preferably coaxial power feeding portions.
  • the coaxial feed mode reduces the interference of the feed structure.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each have a curved surface, such as a convex shape or a concave shape.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have the same curvature, so that the structural layers 11-14 are attached due to their similar three-dimensional shapes.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have a conformal concave shape or a convex shape, so that the antenna design can be made more compact.
  • the conformal design of the curved surface can also increase the radiation area of the antenna, concentrate the radiation energy, and thereby increase the gain of the antenna and widen the coverage.
  • FIG. 5 is a graph showing a voltage standing wave ratio of the antenna of FIG. 1.
  • Figure 6 shows the gain curve of the antenna of Figure 1.
  • Fig. 7 is a graph showing the axial ratio of the antenna of Fig. 1. Referring to Fig. 7, the antenna of the embodiment of the present invention can achieve an axial ratio of 6 or less within a range of ⁇ 50°. 5 to 7, it can be seen that the antenna of the present invention can generate two circularly polarized frequency bands, and two circularly polarized frequency bands can be realized by precise control of the chamfer angle.
  • a single radiation sheet can achieve a circular polarization effect, and also has a dual frequency band, high gain, and good axial ratio performance. advantage.
  • the antenna system of this embodiment includes the antenna 10, the combiner 20, the first power splitter 22, the second power splitter 24, and the feed port 30 of the embodiment shown in FIG. 1.
  • the first end of the combiner 20 is connected to the feed port 30, the second end of the combiner 20 is connected to the first end of the first splitter 22, and the third end of the combiner 20 is connected to the second splitter 24.
  • the second end of the first power divider 22 is connected to the first power feeding portion 15, and the third end of the first power divider 22 is connected to the second power feeding portion 16 through the 90° phase shifter 26.
  • the second end of the second power splitter 24 is connected to the third power feeding portion 17, and the third end of the second power splitter 24 is connected to the fourth power feeding portion 18 through a 90° phase shifter.
  • the combiner 20 is a signal that divides the input excitation signal into multiple frequency bands and outputs them to the corresponding power splitters 22, 24, respectively.
  • the combiner can also be referred to as a splitter, and accordingly, the antenna system is in a state of transmitting a signal.
  • the combiner 20, on the other hand, combines the received signals of the multi-band to a feed port, which is in the state of receiving the signal.
  • the combiner 20 is responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power splitter 22, and outputting the second frequency band of the excitation signal to the second power splitter. 24.
  • the combiner 20 is on the other hand responsible for combining the signals from the respective splitter 22 and 24 bands and outputting them to the feed port 30.
  • the frequency of the second frequency band can be higher than the first frequency band to form a combination of high frequency and low frequency.
  • the first power divider 22 is responsible for splitting the signal of one frequency band into two paths, one through the transmission line to the first power feeding portion 15 of the antenna 10, and the other through the 90 phase phase shifter 26 to the second antenna 10 Feeder unit 16.
  • the second power splitter 24 is responsible for splitting the signal of the other frequency band into two paths, one way outputting through the transmission line to
  • the third feed portion 17 of the antenna 10 is output to the fourth feed portion 18 of the antenna 10 via the 90 phase shifter 28.
  • the excitation signal enters the first end of the combiner 20 from a feeding port 30 (this is the input end), and after the combiner 20, is divided into two signals, one of which is combined
  • the second end of the router 20 (which is the output) is supplied to the first splitter 22, and the other signal is supplied to the second split through the third end of the combiner 20 (which is the output). 24.
  • two channels of the same frequency received signal are separately transmitted from the first power feeding portion 15 and the second power feeding portion 16 to the second end of the first power splitter 22 (here, the input terminal) and the third
  • the terminal here, the input terminal
  • the terminal is output from the first end of the first splitter 22 (here, it is the output), and then passes through the second end of the combiner 20 (this is the input) Combine a first frequency band signal.
  • the other two channels of the same frequency are transmitted from the third power feeding unit 17 and the fourth power feeding unit 18 to the second end of the second power splitter 24 (here, the input end) and the third end (here Is the input terminal), and is output from the first end of the second splitter 24 (this is the output end), and then combined into a second end through the third end of the combiner 20 (this is the input end) Band signal signal.
  • the signals of the two different frequency bands are then output from the first end of the combiner 20 (this is the output) to the feed port 30, which is processed by the subsequent receiving circuit.
  • the 90° phase shifter can be implemented by adjusting the length of the transmission line. Specifically, two transmission lines of different lengths are provided so that the phase delay caused by the difference in length is exactly 90°.
  • the present invention requires only one feed port output, and can use only one set of signal processing devices, which greatly simplifies the structure of the antenna and reduces the cost.
  • the circularly polarized antenna and antenna system of the above-described embodiments of the present invention can be incorporated in a communication device.
  • the circularly polarized antenna of the embodiment of the present invention has a wider application range and can be applied to fields such as mobile communication and satellite navigation.
  • the main advantages of circularly polarized antennas in practical applications are:
  • Any polarized electromagnetic wave can be decomposed into two circularly polarized waves with opposite directions of rotation, for example, for linearly polarized waves, it can be decomposed into two circularly polarized waves of opposite equal amplitude. Therefore, the arbitrarily polarized electromagnetic wave can be received by the circularly polarized antenna, and the electromagnetic wave emitted by the circularly polarized antenna can be received by the arbitrarily polarized antenna, so the circularly polarized antenna is generally used in electronic reconnaissance and interference;
  • a circularly polarized wave is incident on a symmetrical target (such as a plane, a spherical surface, etc.), and the rotation is reversed, so the circularly polarized antenna Inhibition of rain and fog interference and multipath reflection in areas such as mobile communications and satellite navigation.
  • a symmetrical target such as a plane, a spherical surface, etc.
  • FIG. 8 is a schematic perspective structural view of an antenna according to still another embodiment of the present invention.
  • Fig. 9 is a plan view showing an antenna of still another embodiment of the present invention.
  • the antenna 10 of the present embodiment may include a first substrate 11, a second substrate 12, a first radiating sheet 13, and a second radiating sheet 14.
  • the first radiation sheet 13 is disposed on the first substrate 11.
  • the second radiating sheet 14 is disposed on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are made of a dielectric substrate.
  • the first radiating sheet 13 and the second radiating sheet 14 are made of a conductive material such as metal.
  • the radiation sheet may be in the form of a patch or a photolithographically etched coating.
  • This combined unit of each of the radiating sheets and their corresponding substrates constitutes a receiving and transmitting path.
  • the two combined units are further combined into an antenna in a stacked manner. That is, the second substrate 12 is disposed on the first radiation sheet 13.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • Fig. 10 is a view showing a power feeding portion of an antenna according to still another embodiment of the present invention.
  • the first radiation sheet 13 has a first power feeding portion 15 and a second power feeding portion 16
  • the second radiation sheet 14 has a third power feeding portion 17 and a fourth power feeding portion 18.
  • the first power feeder 15 and the second power feeder 16 can input a signal to be transmitted or output a received signal.
  • the third power feeder 17 and the fourth power feeder 18 can input a signal to be transmitted or output a received signal.
  • the first power feeding portion 15 and the second power feeding portion 16 need to be respectively located on the second symmetry axis Y1 of the first radiation sheet 13 and the first symmetry axis XI.
  • the third power feeding portion 17 and the fourth power feeding portion 18 are required to be respectively located on the second symmetry axis Y2 of the second radiation sheet 14 and the first symmetry axis X2.
  • the first symmetry axes XI, X2 are on the same straight line
  • the second symmetry axes Y1, Y2 are on the same straight line. In other words, the projection of the center point of the second radiation sheet 14 on the plane of the first radiation sheet 13 coincides with the center point of the first radiation sheet 13.
  • the first feeding portion 15 is located on the second symmetry axis Y1 of the first radiation sheet 13, and the second feeding portion 16 is located at the first pair of the first radiation sheet 13. Called on the axis XI.
  • the third feeding portion 17 is located on the second symmetry axis Y2 of the second radiation sheet 14, and the fourth feeding portion 18 is located on the first symmetry axis ⁇ 2 of the second radiation sheet 14.
  • the embodiment of the present invention does not limit the relative orientation of the first power feeding portion 15, the second power feeding portion 16, the third power feeding portion 17, and the fourth power feeding portion 18 on the horizontal plane (the paper surface in FIG. 10). Position, as long as the first power feeding portion 15, the second power feeding portion 16, the third power feeding portion 17, and the fourth power feeding portion 18 can be drawn out of the transmission line (not shown).
  • the first substrate 11 and the second substrate 12 are preferably rectangular, and of course, other shapes are also possible.
  • the first radiating sheet 13 and the second radiating sheet 14 are preferably rectangular. It will of course be understood that the first radiating sheet 14 and the second radiating sheet 14 may also have other shapes. However, the first radiating sheet 13 and the second radiating sheet 14 are preferably of the same shape.
  • the size of the first radiating sheet 13 is smaller than the size of the first substrate 11, and the size of the second radiating sheet 14 is smaller than the size of the second substrate 12.
  • the size of the first radiating sheet 13 is preferably larger than the size of the second radiating sheet 14, and FIG. 8 shows an example in which the size of the first radiating sheet 13 is larger than the size of the second radiating sheet 14, thereby ensuring radiation of the first radiating sheet 13.
  • the outgoing signal is not obscured by the second radiating sheet 14 located thereon.
  • the first substrate 11 and the second substrate 12 may have artificial microstructures, such as conductive microstructures.
  • the artificial microstructure in the substrate may be a planar or a three-dimensional structure having a certain geometry, and may be placed in the substrate horizontally (in the plane of FIG. 8) and/or vertically (in the direction of the ⁇ axis in FIG. 8), also Known as metamaterial microstructure.
  • the dielectric constant of the substrate can be changed, thereby being suitable for providing substrates having different dielectric constants.
  • the shape of the artificial microstructure may include a chevron, a cross, a snowflake, or a broken chevron.
  • the thickness of the first substrate 11 may be smaller than the thickness of the second substrate 12.
  • the antenna of the present embodiment is designed to have dual frequency transmission and reception capabilities.
  • the first power feeding unit 15, the second power feeding unit 16, the third power feeding unit 17, and the fourth power feeding unit 18 are electrically insulated to respectively input the frequency band signals to be transmitted into the respective combination units. Or output the received signals from their respective combination units
  • the first power feeding portion 15, the second power feeding portion 16, the third power feeding portion 17, and the fourth power feeding portion 18 are preferably coaxial power feeding portions.
  • the coaxial feed mode reduces the interference of the feed structure.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a flat surface. These structural layers 11-14 are bonded together due to their similar three-dimensional shape.
  • FIG. 12 is a graph showing a voltage standing wave ratio of the antenna of FIG. 8.
  • Figure 13 shows the gain of the antenna of Figure 8.
  • Fig. 14 is a graph showing the axial ratio of the antenna of Fig. 8.
  • the antenna of still another embodiment of the present invention can achieve an axial ratio of 6 or less within a range of ⁇ 50°. 12 to 14, it can be seen that the antenna of the present invention can generate two circularly polarized frequency bands, and two circularly polarized frequency bands can be realized by precise control of the chamfer angle.
  • a single radiation sheet can achieve a circular polarization effect, and also has a dual frequency band, a high gain, and a good axial ratio performance. advantage.
  • the antenna system of the present embodiment includes the antenna 10, the combiner 20, the first splitter 22, the second splitter 24, and the feed port 30 of the embodiment shown in Fig. 8.
  • the first end of the combiner 20 is connected to the feed port 30, the second end of the combiner 20 is connected to the first end of the first splitter 22, and the third end of the combiner 20 is connected to the second splitter 24.
  • the second end of the first power splitter 22 is connected to the first power feeding portion 15, and the third end of the first power splitter 22 is connected to the second power feeding portion 16 through the 90 phase shifter 26.
  • the second end of the second power splitter 24 is connected to the third power feeding portion 17, and the third end of the second power divider 24 is connected to the fourth power feeding portion 18 through a 90° phase shifter.
  • the combiner 20 is a signal that divides the input excitation signal into multiple frequency bands and outputs them to the corresponding power splitters 22, 24, respectively.
  • the combiner can also be referred to as a splitter, and accordingly, the antenna system is in a state of transmitting a signal.
  • the combiner 20, on the other hand, combines the received signals of the multi-band to a feed port, which is in the state of receiving the signal.
  • the combiner 20 is responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power splitter 22, and outputting the second frequency band of the excitation signal to the second power splitter. 24.
  • the combiner 20 is on the other hand responsible for combining the signals from the respective splitter 22 and 24 bands and outputting them to the feed port 30.
  • the frequency of the second frequency band can be higher than the first frequency band to form a combination of high frequency and low frequency.
  • the first power divider 22 is responsible for splitting the signal of one frequency band into two paths, one through the transmission line to the first power feeding portion 15 of the antenna 10, and the other through the 90° phase shifter 26 to the second antenna 10 Feeder unit 16.
  • the second power splitter 24 is responsible for splitting the signal of the other frequency band into two paths, one way outputting through the transmission line to
  • the third feed portion 17 of the antenna 10 is output to the fourth feed portion 18 of the antenna 10 via the 90 phase shifter 28.
  • the excitation signal enters the first end of the combiner 20 from a feeding port 30 (this is the input end), and after the combiner 20, is divided into two signals, one of which is combined
  • the second end of the router 20 (which is the output) is supplied to the first splitter 22, and the other signal is supplied to the second split through the third end of the combiner 20 (which is the output). 24.
  • two channels of the same frequency received signal are separately transmitted from the first power feeding portion 15 and the second power feeding portion 16 to the second end of the first power splitter 22 (here, the input terminal) and the third
  • the terminal here, the input terminal
  • the terminal is output from the first end of the first splitter 22 (here, it is the output), and then passes through the second end of the combiner 20 (this is the input) Combine a first frequency band signal.
  • the other two channels of the same frequency are transmitted from the third power feeding unit 17 and the fourth power feeding unit 18 to the second end of the second power splitter 24 (here, the input end) and the third end (here Is the input terminal), and is output from the first end of the second splitter 24 (this is the output end), and then combined into a second end through the third end of the combiner 20 (this is the input end) Band signal signal.
  • the signals of the two different frequency bands are then output from the first end of the combiner 20 (this is the output) to the feed port 30, which is processed by the subsequent receiving circuit.
  • the 90° phase shifter can be implemented by adjusting the length of the transmission line. Specifically, two transmission lines of different lengths are provided so that the phase delay caused by the difference in length is exactly 90°.
  • the present invention requires only one feed port output, and can use only one set of signal processing devices, which greatly simplifies the structure of the antenna and reduces the cost.
  • the circularly polarized antenna and antenna system of the above embodiments of the present invention may be incorporated in a communication device.
  • the circularly polarized antenna according to another embodiment of the present invention has a wider application range and can be applied to fields such as mobile communication and satellite navigation.
  • the main advantages of circularly polarized antennas in practical applications are:
  • Any polarized electromagnetic wave can be decomposed into two circularly polarized waves with opposite directions of rotation, for example, for linearly polarized waves, it can be decomposed into two circularly polarized waves of opposite equal amplitude. Therefore, the arbitrarily polarized electromagnetic wave can be received by the circularly polarized antenna, and the electromagnetic wave emitted by the circularly polarized antenna can be received by the arbitrarily polarized antenna, so the circularly polarized antenna is generally used in electronic reconnaissance and interference;
  • a circularly polarized wave is incident on a symmetrical target (such as a plane, a spherical surface, etc.), and the rotation is reversed, so the circularly polarized antenna Inhibition of rain and fog interference and multipath reflection in areas such as mobile communications and satellite navigation.
  • a symmetrical target such as a plane, a spherical surface, etc.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明涉及一种天线以及使用天线的天线系统和通信设备。所述天线包括第一基板、第二基板、第一辐射片和第二辐射片,所述第一辐射片设置在所述第一基板上,所述第二基板设置在所述第一辐射片上,所述第二辐射片设置在所述第二基板上,所述第一辐射片具有分别位于所述第一辐射片的第一对称轴和第二对称轴上的第一馈电部和第二馈电部,所述第二辐射片具有分别位于所述第二辐射片的第一对称轴和第二对称轴上的第三馈电部和第四馈电部,其中所述第一基板、第二基板、第一辐射片和第二辐射片均为弧面。

Description

发明名称:天线、 天线系统和通信设备
技术领域
[0001] 本发明涉及无线通信领域, 尤其是涉及一种天线, 以及使用该天线的天线系统 和通信设备。
背景技术
[0002] 天线是一种用来发射或接收电磁波的电子器件。 天线应用于广播和电视、 点对 点无线电通信、 雷达和太空探索等系统。 随着无线通信技术的飞速发展, 天线 技术所涉及的领域越来越广泛。 在许多特殊应用中, 对于天线性能的要求也越 来越高。 在现代通信中, 随着通信系统集成度的提高, 要求使用的天线具有高 增益、 宽频带或多频段、 圆极化、 小型化、 宽覆盖等特点。
技术问题
[0003] 但是, 目前的现有技术中, 当需要多频段 (例如, 双频段) 天线或者多频段圆 极化天线吋, 通常是通过多个馈电端口和多个天线来分别实现不同的频段, 在 这种情况下, 通常一个馈电端口的输出需要后续一整套信号处理装置来进行处 理, 还需要多个天线来响应不同频段的天线信号, 这样一来, 现有技术中如果 要实现多频段、 高增益以及圆极化就势必增加天线的数量, 但是如果增加天线 的数量就会导致多个天线之间的相互干扰增强进而影响圆极化的性能, 同吋还 会导致多个天线之间的结构设计复杂化, 进而导致最终的天线尺寸变大, 因此 , 如何实现使天线具有多频段、 圆极化、 小型化、 宽覆盖等优点一直是业界亟 需解决的问题。
问题的解决方案
技术解决方案
[0004] 本发明所要解决的技术问题是提供一种天线以及使用该天线的天线系统和通信 设备。
[0005] 本发明为解决上述技术问题而采用的技术方案是提出一种天线, 包括第一基板 、 第二基板、 第一辐射片和第二辐射片, 所述第一辐射片设置在所述第一基板 上, 所述第二基板设置在所述第一辐射片上, 所述第二辐射片设置在所述第二 基板上, 所述第一辐射片具有分别位于所述第一辐射片的第二对称轴和第一对 称轴上的第一馈电部和第二馈电部, 所述第二辐射片具有分别位于所述第二辐 射片的第二对称轴和第一对称轴上的第三馈电部和第四馈电部, 其中所述第一 基板、 第二基板、 第一辐射片和第二辐射片均为弧面。
[0006] 可选地, 所述第一辐射片和所述第二辐射片在水平面上的投影均为矩形。
[0007] 可选地, 所述第一馈电部、 所述第二馈电部、 所述第三馈电部以及所述第四馈 电部为同轴馈电部。
[0008] 可选地, 所述各馈电部电性绝缘。
[0009] 可选地, 所述第二辐射片的尺寸小于所述第二基板的尺寸, 且所述第一辐射片 的尺寸小于所述第一基板的尺寸。
[0010] 可选地, 所述第一辐射片的尺寸大于所述第二辐射片的尺寸。
[0011] 可选地, 所述第二辐射片的中心点在所述第一辐射片上的投影与所述第一辐射 片的中心点重合。
[0012] 可选地, 所述第二辐射片的第一对称轴和第二对称轴在一水平面上的投影分别 与所述第一辐射片的第一对称轴和第二对称轴在该水平面上的投影重合。
[0013] 可选地, 所述第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同。
[0014] 可选地, 在所述第一基板的内部水平方向或者竖直方向放置有人造微结构。
[0015] 可选地, 在所述第二基板的内部水平方向或者竖直方向放置有人造微结构。
[0016] 可选地, 所述第一辐射片和所述第二辐射片分别为黏附于所述第一基板和所述 第二基板的金属贴片或镀敷于所述第一基板和所述第二基板的金属镀层。
[0017] 可选地, 所述第一基板和所述第二基板在水平面上的投影均为矩形。
[0018] 可选地, 所述第一基板的厚度小于所述第二基板的厚度。
[0019] 另外, 本发明为解决上述技术问题而采用的技术方案还提出了一种天线, 包括 第一基板、 第二基板、 第一辐射片和第二辐射片, 所述第一辐射片设置在所述 第一基板上, 所述第二基板设置在所述第一辐射片上, 所述第二辐射片设置在 所述第二基板上, 所述第一辐射片为矩形且具有分别位于所述第一辐射片的第 二对称轴和第一对称轴上的第一馈电部和第二馈电部, 所述第二辐射片为矩形 且具有分别位于所述第二辐射片的第二对称轴和第一对称轴上的第三馈电部和 第四馈电部, 其中所述第一基板、 第二基板、 第一辐射片和第二辐射片均为平 面。
[0020] 可选地, 所述第一辐射片和所述第二辐射片均为矩形。
[0021] 可选地, 所述第一馈电部、 所述第二馈电部、 所述第三馈电部以及所述第四馈 电部为同轴馈电部。 可选地, 所述各馈电部电性绝缘。
[0022] 可选地, 所述第二辐射片的尺寸小于所述第二基板的尺寸, 且所述第一辐射片 的尺寸小于所述第一基板的尺寸。
[0023] 可选地, 所述第一辐射片的尺寸大于所述第二辐射片的尺寸。
[0024] 可选地, 所述第二辐射片的中心点在所述第一辐射片所在平面上的投影与所述 第一辐射片的中心点重合。
[0025] 可选地, 所述第二辐射片的第一对称轴和第二对称轴在所述第一辐射片所在平 面上的投影分别与所述第一辐射片的第一对称轴和第二对称轴重合。
[0026] 可选地, 在所述第一基板的内部水平方向或者竖直方向放置有人造微结构。
[0027] 可选地, 在所述第二基板的内部水平方向或者竖直方向放置有人造微结构。
[0028] 可选地, 所述第一辐射片和所述第二辐射片分别为黏附于所述第一基板和所述 第二基板的金属贴片或镀敷于所述第一基板和所述第二基板的金属镀层。
[0029] 可选地, 所述第一基板的厚度小于所述第二基板的厚度。
[0030] 可选地, 所述第一基板和所述第二基板均为矩形。
发明的有益效果
有益效果
[0031] 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺 寸。 本发明的天线通过在每一个辐射片的第一对称轴和第二对称轴上分别设计 不同的两个馈电部, 然后通过两个功分器以及 90°移相器分别连接这两个馈电部 , 可以使得每一个辐射片能单独实现圆极化。 本发明的这种单个天线就能实现 圆极化的技术方案, 相比于现有技术中需要多个天线共同配合来实现圆极化来 说, 很明显具有低成本的优势, 而且结构设计简单, 不需要多个天线的复杂结 构设计。 同吋, 本发明借助移相器、 功分器等多种技术手段相结合, 可以使得 该天线能实现多频段、 圆极化、 小型化、 宽覆盖等。
对附图的简要说明
附图说明
[0032] 面将结合附图及实施例对本发明作进一步说明, 附图中:
[0033] 图 1示出本发明一实施例的天线的立体结构示意图;
[0034] 图 2示出本发明一实施例的天线的平面示意图;
[0035] 图 3示出本发明一实施例的天线的馈电部示意图;
[0036] 图 4示出本发明一实施例的天线系统的结构示意图;
[0037] 图 5示出本发明一实施例的天线的电压驻波比曲线图;
[0038] 图 6示出本发明一实施例的天线的增益曲线图;
[0039] 图 7示出本发明一实施例的天线的轴比曲线图;
[0040] 图 8示出本发明又一实施例的天线的立体结构示意图;
[0041] 图 9示出本发明又一实施例的天线的平面示意图;
[0042] 图 10示出本发明又一实施例的天线的馈电部示意图;
[0043] 图 11示出本发明又一实施例的天线系统的结构示意图;
[0044] 图 12示出本发明又一实施例的天线的电压驻波比曲线图;
[0045] 图 13示出本发明又一实施例的天线的增益曲线图;
[0046] 图 14示出本发明又一实施例的天线的轴比曲线图。
本发明的实施方式
[0047] 下面结合具体实施例和附图对本发明作进一步说明, 在以下的描述中阐述了更 多的细节以便于充分理解本发明, 但是本发明显然能够以多种不同于此描述的 其它方式来实施, 本领域技术人员可以在不违背本发明内涵的情况下根据实际 应用情况作类似推广、 演绎, 因此不应以此具体实施例的内容限制本发明的保 护范围。
[0048] 图 1示出本发明一实施例的天线的立体结构示意图。 图 2示出本发明一实施例的 天线的平面示意图。 参考图 1和图 2所示, 本实施例的天线 10可包括第一基板 11 、 第二基板 12、 第一辐射片 13和第二辐射片 14。 第一辐射片 13设置在第一基板 1 1上。 第二辐射片 14设置在第二基板 12上。 第一基板 11和第二基板 12由电介质基 材制成。 第一辐射片 13和第二辐射片 14由导电材料, 例如金属制成。 辐射片可 以是贴片形式, 也可以是经光刻刻蚀的镀层。 每个辐射片及其对应的基板的这 种组合单元构成一个接收和发送路径。 在本实施例中, 两个组合单元进一步以 叠合的方式组合成天线。 也就是说, 第二基板 12设置在第一辐射片 13上。 本发 明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺寸。
[0049] 在本实施方式中, 为了实现天线的圆极化, 采用双馈法来实施, 双馈法通过输 出两个幅度相等, 相位相差 90°的两支路对辐射片馈电, 激发两个正交工作模式 , 达到圆极化工作条件。 图 3示出本发明一实施例的天线的馈电部示意图。 参考 图 3所示, 第一辐射片 13具有第一馈电部 15和第二馈电部 16, 第二辐射片 14具有 第三馈电部 17和第四馈电部 18。 第一馈电部 15和第二馈电部 16可输入待发送的 信号, 或者输出已接收的信号。 同样地, 第三馈电部 17和第四馈电部 18可输入 待发送的信号, 或者输出已接收的信号。 在本实施方式中, 通过设置在两个辐 射片上的四个馈电部, 还能够优化天线的大角度轴比以及提高方向图不圆度。
[0050] 第一馈电部 15和第二馈电部 16需要分别位于第一辐射片 13的第二对称轴 Y1和第 一对称轴 XI上。 第三馈电部 17和第四馈电部 18需要分别位于第二辐射片 14的第 二对称轴 Y2和第一对称轴 X2上。 参考图 3所示, 作为特定实例, 第一对称轴 XI, X2位于同一直线上, 且第二对称轴 Y1,Y2位于同一直线上。 换言之, 第二辐射片 14的中心点在第一辐射片 13上的投影与第一辐射片 13的中心点重合。 第二辐射 片 14的第一对称轴 Χ2和第二对称轴 Υ2在水平面 (图 1中的 ΧΥ平面) 上的投影分 别与第一辐射片 13的第一对称轴 XI和第二对称轴 Y1在水平面上的投影重合。 第 一馈电部 15位于第一辐射片 13的第二对称轴 Y1上, 第二馈电部 16位于第一辐射 片 13的第一对称轴 XI上。 第三馈电部 17位于第二辐射片 14的第二对称轴 Υ2上, 第四馈电部 18位于第二辐射片 14的第一对称轴 Χ2上。 另外, 本发明的实施例并 不限定第一馈电部 15、 第二馈电部 16、 第三馈电部 17和第四馈电部 18在水平面( 图 3中的纸面)上的相对位置, 只要在工程上第一馈电部 15、 第二馈电部 16、 第三 馈电部 17和第四馈电部 18能够各自引出传输线 (图中未示出)。
[0051] 在形状设计上, 第一基板 11和第二基板 12在水平面上的投影优选为矩形, 当然 , 也可以是其它形状。 第一辐射片 13和第二辐射片 14在水平面上的投影优选为 矩形。 当然可以理解, 第一辐射片 14和第二辐射片 14还可以是其他形状。 不过 , 第一辐射片 13和第二辐射片 14优选为形状相同。 较佳地, 第一辐射片 13的尺 寸小于第一基板 11的尺寸, 第二辐射片 14的尺寸小于第二基板 12的尺寸。 第一 辐射片 13的尺寸最好大于第二辐射片 14的尺寸, 图 1示出第一辐射片 13的尺寸大 于第二辐射片 14的尺寸的实例, 从而以确保第一辐射片 13辐射出的信号不被位 于其上的第二辐射片 14所遮挡。
[0052] 进一步, 第一基板 11和第二基板 12内可具有人造微结构, 例如导电微结构。 基 板内的人造微结构可以是具有一定几何图形的平面或立体结构, 且可以水平 ( 图 1中 XY平面方向) 和 /或竖直 (图 1中 Z轴方向) 地放置在基材内, 也称为超材 料微结构。 通过在基板内设置人造微结构, 可以改变基板的介电常数, 从而适 合提供具有不同介电常数的基板。 作为特定实例, 人造微结构的形状可包括工 字形、 十字形、 雪花形、 或者断幵的口字型。 在尺寸上, 第一基板 11的厚度可 小于第二基板 12的厚度。
[0053] 本实施例的天线被设计为具有双频发送和接收能力。 为此, 第一馈电部 15、 第 二馈电部 16、 第三馈电部 17和第四馈电部 18电性绝缘, 以分别将待发送的频段 信号输入到各自的组合单元中, 或者将已接收的信号从各自的组合单元中输出
[0054] 优选地, 第一馈电部 15、 第二馈电部 16、 第三馈电部 17和第四馈电部 18优选为 同轴馈电部。 采用同轴馈电的方式, 降低了馈电结构的干扰。
[0055] 在本实施例中, 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可均 为弧面, 例如凸面形状或凹面形状。 第一基板 11、 第二基板 12、 第一辐射片 13 和第二辐射片 14可具有相同的曲率, 从而这些结构层 11-14之间因其相似的三维 形状而贴合。 在该实施例中, 通过第一基板 11、 第二基板 12、 第一辐射片 13和 第二辐射片 14可以是共形的凹面形状或凸面形状, 这样一来, 可以使得该天线 设计更加紧凑, 减小平面尺寸, 通过这种曲面的共形设计还能增加天线的辐射 面积, 辐射能量集中, 进而提高天线的增益以及扩宽覆盖范围。
[0056] 图 5示出了图 1中的天线的电压驻波比曲线图。 图 6示出了图 1中的天线的增益曲 线图。 图 7示出了图 1中的天线的轴比曲线图, 参考图 7, 本发明实施例的天线可 以在 ±50°范围内, 实现轴比小于等于 6。 结合图 5至图 7, 可知本发明中的天线可 以产生两个圆极化的频段, 并可通过对切角的精确控制, 来实现两个圆极化的 频段。
[0057] 由于现有技术中, 需要使用两个天线或者甚至更多个天线来构成双频段或者多 频段圆极化天线, 因此, 在后端信号处理吋, 通常需要两套或者甚至更多套信 号处理装置来分别进行信号的处理, 这样很明显就增加了设备的体积、 重量和 成本。
[0058] 但是, 通过本发明的天线设计, 以及图 5至图 7的实际效果图来看, 单个辐射片 就能实现圆极化效果, 而且也具备双频段、 高增益以及轴比性能好的优点。
[0059] 图 4示出本发明一实施例的天线系统的结构示意图。 参考图 4所示, 本实施例的 天线系统包括图 1所示实施例的天线 10、 合路器 20、 第一功分器 22、 第二功分器 24以及馈电端口 30。 合路器 20的第一端连接馈电端口 30, 合路器 20的第二端连 接第一功分器 22的第一端, 合路器 20的第三端连接第二功分器 24的第一端。 第 一功分器 22的第二端连接第一馈电部 15, 第一功分器 22的第三端通过 90°移相器 2 6连接第二馈电部 16。 第二功分器 24的第二端连接第三馈电部 17, 第二功分器 24 的第三端通过 90°移相器连接第四馈电部 18。
[0060] 合路器 20—方面是将输入激励信号分成多频段的信号, 分别输出到对应的功分 器 22、 24。 此吋合路器亦可称为分路器, 相应地, 天线系统处于发射信号的状 态。 合路器 20另一方面是将多频段的接收信号合路到一个馈电端口, 此吋天线 系统处于接收信号的状态。 举例来说, 本实施例中合路器 20—方面负责将馈电 端口 30提供的激励信号的第一频段输出到第一功分器 22, 将激励信号的第二频 段输出到第二功分器 24。 合路器 20另一方面负责将分别来自各个功分器 22、 24 频段信号组合到在一起后输出给馈电端口 30。 举例来说, 第二频段的频率可以 高于第一频段, 形成高频和低频的配合。
[0061] 第一功分器 22负责将一个频段的信号分成两路, 一路通过传输线输出到天线 10 的第一馈电部 15, 另一路经过 90°移相器 26输出到天线 10的第二馈电部 16。 类似 地, 第二功分器 24负责将另一个频段的信号分成两路, 一路通过传输线输出到 天线 10的第三馈电部 17, 另一路经过 90°移相器 28输出到天线 10的第四馈电部 18
[0062] 发射工作吋, 激励信号从一个馈电端口 30进入合路器 20的第一端 (此吋其为输 入端) , 经合路器 20后, 分成两路信号, 其中一路信号经过合路器 20的第二端 (此吋其为输出端) 提供给第一功分器 22, 另一路信号经过合路器 20的第三端 (此吋其为输出端) 提供给第二功分器 24。 接收工作吋, 两路同频接收信号分 另 IJ从第一馈电部 15和第二馈电部 16传输到第一功分器 22的第二端 (此吋其为输入 端)和第三端 (此吋其为输入端), 并从第一功分器 22的第一端 (此吋其为输出端)输 出, 然后经合路器 20的第二端 (此吋其为输入端) 组合成一个第一频段信号。 另两路同频接收信号分别从第三馈电部 17和第四馈电部 18传输到第二功分器 24 的第二端 (此吋其为输入端)和第三端 (此吋其为输入端), 并从第二功分器 24的第 一端 (此吋其为输出端)输出, 然后经合路器 20的第三端 (此吋其为输入端) 组合 成一个第二频段信号信号。 两路不同频段的信号再从合路器 20的第一端 (此吋 其为输出端) 输出给馈电端口 30, 由后续的接收电路处理。
[0063] 在一实施例中, 90°移相器可通过调节传输线长度实现。 具体地说, 设置两个 不同长度的传输线, 使该长度之差造成的相位延迟刚好是 90°。
[0064] 因而, 本发明只需要一个馈电端口输出, 可以仅用一套信号处理装置, 大大简 化了天线的结构, 降低了成本。
[0065] 本发明上述实施例的圆极化天线及天线系统可结合于通信设备中。
[0066] 本发明实施例的圆极化天线应用范围更加广泛, 可以应用于移动通信、 卫星导 航等领域。 圆极化天线在实际应用方面的主要优势有:
[0067] 1)任意的极化电磁波均可分解为两个旋向相反的圆极化波, 如对于线极化波来 说, 可以分解为两个反向等幅的圆极化波。 因此, 任意极化的电磁波均可被圆 极化天线接收, 而圆极化天线发射的电磁波则可被任意极化的天线接收到, 故 电子侦察和干扰中普遍采用圆极化天线;
[0068] 2)在通信、 雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋 向正交性;
[0069] 3) 圆极化波入射到对称目标 (如平面、 球面等) 吋旋向逆转, 所以圆极化天线 在移动通信、 卫星导航等领域抑制雨雾干扰和抗多径反射。
[0070] 另外, 图 8示出本发明又一实施例的天线的立体结构示意图。 图 9示出本发明又 一实施例的天线的平面示意图。 参考图 8和图 9所示, 本实施例的天线 10可包括 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14。 第一辐射片 13设置 在第一基板 11上。 第二辐射片 14设置在第二基板 12上。 第一基板 11和第二基板 1 2由电介质基材制成。 第一辐射片 13和第二辐射片 14由导电材料, 例如金属制成 。 辐射片可以是贴片形式, 也可以是经光刻刻蚀的镀层。 每个辐射片及其对应 的基板的这种组合单元构成一个接收和发送路径。 在本实施例中, 两个组合单 元进一步以叠合的方式组合成天线。 也就是说, 第二基板 12设置在第一辐射片 1 3上。 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积 和尺寸。
[0071] 在本实施方式中, 为了实现天线的圆极化, 采用双馈法来实施, 双馈法通过输 出两个幅度相等, 相位相差 90°的两支路对辐射片馈电, 激发两个正交工作模式 , 达到圆极化工作条件。 图 10示出本发明又一实施例的天线的馈电部示意图。 参考图 10所示, 第一辐射片 13具有第一馈电部 15和第二馈电部 16, 第二辐射片 1 4具有第三馈电部 17和第四馈电部 18。 第一馈电部 15和第二馈电部 16可输入待发 送的信号, 或者输出已接收的信号。 同样地, 第三馈电部 17和第四馈电部 18可 输入待发送的信号, 或者输出已接收的信号。 在本实施方式中, 通过设置在两 个辐射体上的四个馈电部, 还能够优化天线的大角度轴比以及提高方向图不圆 度。
[0072] 第一馈电部 15和第二馈电部 16需要分别位于第一辐射片 13的第二对称轴 Y1和第 一对称轴 XI上。 第三馈电部 17和第四馈电部 18需要分别位于第二辐射片 14的第 二对称轴 Y2和第一对称轴 X2上。 参考图 10所示, 作为特定实例, 第一对称轴 XI, X2位于同一直线上, 且第二对称轴 Y1,Y2位于同一直线上。 换言之, 第二辐射片 14的中心点在第一辐射片 13所在平面上的投影与第一辐射片 13的中心点重合。 第二辐射片 14的第一对称轴 Χ2和第二对称轴 Υ2在第一辐射片 13所在平面上的投 影分别与第一辐射片 13的第一对称轴 XI和第二对称轴 Y1重合。 第一馈电部 15位 于第一辐射片 13的第二对称轴 Y1上, 第二馈电部 16位于第一辐射片 13的第一对 称轴 XI上。 第三馈电部 17位于第二辐射片 14的第二对称轴 Y2上, 第四馈电部 18 位于第二辐射片 14的第一对称轴 Χ2上。 另外, 本发明的实施例并不限定第一馈 电部 15、 第二馈电部 16、 第三馈电部 17和第四馈电部 18在水平面 (图 10中的纸面) 上的相对位置, 只要在工程上第一馈电部 15、 第二馈电部 16、 第三馈电部 17和 第四馈电部 18能够各自引出传输线 (图中未示出)。
[0073] 在形状设计上, 第一基板 11和第二基板 12优选为矩形, 当然, 也可以是其它形 状。 第一辐射片 13和第二辐射片 14优选为矩形。 当然可以理解, 第一辐射片 14 和第二辐射片 14还可以是其他形状。 不过, 第一辐射片 13和第二辐射片 14优选 为形状相同。 较佳地, 第一辐射片 13的尺寸小于第一基板 11的尺寸, 第二辐射 片 14的尺寸小于第二基板 12的尺寸。 第一辐射片 13的尺寸最好大于第二辐射片 1 4的尺寸, 图 8示出第一辐射片 13的尺寸大于第二辐射片 14的尺寸的实例, 从而 以确保第一辐射片 13辐射出的信号不被位于其上的第二辐射片 14所遮挡。
[0074] 进一步, 第一基板 11和第二基板 12内可具有人造微结构, 例如导电微结构。 基 板内的人造微结构可以是具有一定几何图形的平面或立体结构, 且可以水平 ( 图 8中 ΧΥ平面方向) 和 /或竖直 (图 8中 Ζ轴方向) 地放置在基材内, 也称为超材 料微结构。 通过在基板内设置人造微结构, 可以改变基板的介电常数, 从而适 合提供具有不同介电常数的基板。 作为特定实例, 人造微结构的形状可包括工 字形、 十字形、 雪花形、 或者断幵的口字型。 在尺寸上, 第一基板 11的厚度可 小于第二基板 12的厚度。
[0075] 本实施例的天线被设计为具有双频发送和接收能力。 为此, 第一馈电部 15、 第 二馈电部 16、 第三馈电部 17和第四馈电部 18电性绝缘, 以分别将待发送的频段 信号输入到各自的组合单元中, 或者将已接收的信号从各自的组合单元中输出
[0076] 优选地, 第一馈电部 15、 第二馈电部 16、 第三馈电部 17和第四馈电部 18优选为 同轴馈电部。 采用同轴馈电的方式, 降低了馈电结构的干扰。
[0077] 在本实施例中, 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可均 为平面。 这些结构层 11-14之间因其相似的三维形状而贴合。
[0078] 图 12示出了图 8中的天线的电压驻波比曲线图。 图 13示出了图 8中的天线的增益 曲线图。 图 14示出了图 8中的天线的轴比曲线图, 参考图 14, 本发明又一实施例 的天线可以在 ±50°范围内, 实现轴比小于等于 6。 结合图 12至图 14, 可知本发明 中的天线可以产生两个圆极化的频段, 并可通过对切角的精确控制, 来实现两 个圆极化的频段。
[0079] 由于现有技术中, 需要使用两个天线或者甚至更多个天线来构成双频段或者多 频段圆极化天线, 因此, 在后端信号处理吋, 通常需要两套或者甚至更多套信 号处理装置来分别进行信号的处理, 这样很明显就增加了设备的体积、 重量和 成本。
[0080] 但是, 通过本发明的天线设计, 以及图 12至图 14的实际效果图来看, 单个辐射 片就能实现圆极化效果, 而且也具备双频段、 高增益以及轴比性能好的优点。
[0081] 图 11示出本发明又一实施例的天线系统的结构示意图。 参考图 11所示, 本实施 例的天线系统包括图 8所示实施例的天线 10、 合路器 20、 第一功分器 22、 第二功 分器 24以及馈电端口 30。 合路器 20的第一端连接馈电端口 30, 合路器 20的第二 端连接第一功分器 22的第一端, 合路器 20的第三端连接第二功分器 24的第一端 。 第一功分器 22的第二端连接第一馈电部 15, 第一功分器 22的第三端通过 90°移 相器 26连接第二馈电部 16。 第二功分器 24的第二端连接第三馈电部 17, 第二功 分器 24的第三端通过 90°移相器连接第四馈电部 18。
[0082] 合路器 20—方面是将输入激励信号分成多频段的信号, 分别输出到对应的功分 器 22、 24。 此吋合路器亦可称为分路器, 相应地, 天线系统处于发射信号的状 态。 合路器 20另一方面是将多频段的接收信号合路到一个馈电端口, 此吋天线 系统处于接收信号的状态。 举例来说, 本实施例中合路器 20—方面负责将馈电 端口 30提供的激励信号的第一频段输出到第一功分器 22, 将激励信号的第二频 段输出到第二功分器 24。 合路器 20另一方面负责将分别来自各个功分器 22、 24 频段信号组合到在一起后输出给馈电端口 30。 举例来说, 第二频段的频率可以 高于第一频段, 形成高频和低频的配合。
[0083] 第一功分器 22负责将一个频段的信号分成两路, 一路通过传输线输出到天线 10 的第一馈电部 15, 另一路经过 90°移相器 26输出到天线 10的第二馈电部 16。 类似 地, 第二功分器 24负责将另一个频段的信号分成两路, 一路通过传输线输出到 天线 10的第三馈电部 17, 另一路经过 90°移相器 28输出到天线 10的第四馈电部 18
[0084] 发射工作吋, 激励信号从一个馈电端口 30进入合路器 20的第一端 (此吋其为输 入端) , 经合路器 20后, 分成两路信号, 其中一路信号经过合路器 20的第二端 (此吋其为输出端) 提供给第一功分器 22, 另一路信号经过合路器 20的第三端 (此吋其为输出端) 提供给第二功分器 24。 接收工作吋, 两路同频接收信号分 另 IJ从第一馈电部 15和第二馈电部 16传输到第一功分器 22的第二端 (此吋其为输入 端)和第三端 (此吋其为输入端), 并从第一功分器 22的第一端 (此吋其为输出端)输 出, 然后经合路器 20的第二端 (此吋其为输入端) 组合成一个第一频段信号。 另两路同频接收信号分别从第三馈电部 17和第四馈电部 18传输到第二功分器 24 的第二端 (此吋其为输入端)和第三端 (此吋其为输入端), 并从第二功分器 24的第 一端 (此吋其为输出端)输出, 然后经合路器 20的第三端 (此吋其为输入端) 组合 成一个第二频段信号信号。 两路不同频段的信号再从合路器 20的第一端 (此吋 其为输出端) 输出给馈电端口 30, 由后续的接收电路处理。
[0085] 在又一实施例中, 90°移相器可通过调节传输线长度实现。 具体地说, 设置两 个不同长度的传输线, 使该长度之差造成的相位延迟刚好是 90°。
[0086] 因而, 本发明只需要一个馈电端口输出, 可以仅用一套信号处理装置, 大大简 化了天线的结构, 降低了成本。
[0087] 本发明上述实施例的圆极化天线及天线系统可结合于通信设备中。
[0088] 本发明又一实施例的圆极化天线应用范围更加广泛, 可以应用于移动通信、 卫 星导航等领域。 圆极化天线在实际应用方面的主要优势有:
[0089] 1)任意的极化电磁波均可分解为两个旋向相反的圆极化波, 如对于线极化波来 说, 可以分解为两个反向等幅的圆极化波。 因此, 任意极化的电磁波均可被圆 极化天线接收, 而圆极化天线发射的电磁波则可被任意极化的天线接收到, 故 电子侦察和干扰中普遍采用圆极化天线;
[0090] 2)在通信、 雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋 向正交性;
[0091] 3) 圆极化波入射到对称目标 (如平面、 球面等) 吋旋向逆转, 所以圆极化天线 在移动通信、 卫星导航等领域抑制雨雾干扰和抗多径反射。
虽然本发明已参照当前的具体实施例来描述, 但是本技术领域中的普通技术人 员应当认识到, 以上的实施例仅是用来说明本发明, 在没有脱离本发明精神的 情况下还可作出各种等效的变化或替换, 因此, 只要在本发明的实质精神范围 内对上述实施例的变化、 变型都将落在本申请的权利要求书的范围内。

Claims

权利要求书
一种天线, 包括第一基板、 第二基板、 第一辐射片和第二辐射片, 所 述第一辐射片设置在所述第一基板上, 所述第二基板设置在所述第一 辐射片上, 所述第二辐射片设置在所述第二基板上, 所述第一辐射片 具有分别位于所述第一辐射片的第二对称轴和第一对称轴上的第一馈 电部和第二馈电部, 所述第二辐射片具有分别位于所述第二辐射片的 第二对称轴和第一对称轴上的第三馈电部和第四馈电部。
如权利要求 1所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片均为弧面。
如权利要求 1所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片均为平面。
如权利要求 1所述的天线, 其特征在于, 所述第一辐射片和所述第二 辐射片在水平面上的投影均为矩形。
如权利要求 1所述的天线, 其特征在于, 所述第一馈电部、 所述第二 馈电部、 所述第三馈电部以及所述第四馈电部为同轴馈电部。
如权利要求 1所述的天线, 其特征在于, 所述各馈电部电性绝缘。 如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的尺寸小于 所述第二基板的尺寸, 且所述第一辐射片的尺寸小于所述第一基板的 尺寸。
如权利要求 1所述的天线, 其特征在于, 所述第一辐射片的尺寸大于 所述第二辐射片的尺寸。
如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的中心点在 所述第一辐射片上的投影与所述第一辐射片的中心点重合。
如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的第一对称 轴和第二对称轴在一水平面上的投影分别与所述第一辐射片的第一对 称轴和第二对称轴在该水平面上的投影重合。
如权利要求 2所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同。 [权利要求 12] 如权利要求 1所述的天线, 其特征在于, 在所述第一基板的内部水平 方向或者竖直方向放置有人造微结构。
[权利要求 13] 如权利要求 1所述的天线, 其特征在于, 在所述第二基板的内部水平 方向或者竖直方向放置有人造微结构。
[权利要求 14] 如权利要求 1所述的天线, 其特征在于, 所述第一辐射片和所述第二 辐射片分别为黏附于所述第一基板和所述第二基板的金属贴片或镀敷 于所述第一基板和所述第二基板的金属镀层。
[权利要求 15] 如权利要求 1所述的天线, 其特征在于, 所述第一基板和所述第二基 板在水平面上的投影均为矩形。
[权利要求 16] —种天线系统, 包括馈电端口、 天线、 合路器、 以及第一功分器和第 二功分器, 所述天线是权利要求 1至 15中任一项所述的天线, 所述合 路器的第一端连接所述馈电端口, 所述合路器的第二端连接所述第一 功分器的第一端, 所述合路器的第三端连接所述第二功分器的第一端 , 所述第一功分器的第二端连接所述第一馈电部, 所述第一功分器的 第三端通过 90°移相器连接所述第二馈电部, 以及所述第二功分器的 第二端连接所述第三馈电部, 所述第二功分器的第三端通过 90°移相 器连接所述第四馈电部。
[权利要求 17] 如权利要求 16所述的天线系统, 其特征在于, 所述 90°移相器通过调 节传输线的长度来实现 90°移相。
[权利要求 18] —种通信设备, 包括权利要求 16至 17中任一项所述的天线系统。
PCT/CN2016/072677 2015-01-30 2016-01-29 天线、天线系统和通信设备 WO2016119727A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510052404.X 2015-01-30
CN201510052404.XA CN105990664A (zh) 2015-01-30 2015-01-30 天线、天线系统和通信设备
CN201510052421.3 2015-01-30
CN201510052421.3A CN105990643A (zh) 2015-01-30 2015-01-30 天线、天线系统和通信设备

Publications (1)

Publication Number Publication Date
WO2016119727A1 true WO2016119727A1 (zh) 2016-08-04

Family

ID=56542454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072677 WO2016119727A1 (zh) 2015-01-30 2016-01-29 天线、天线系统和通信设备

Country Status (1)

Country Link
WO (1) WO2016119727A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN103474766A (zh) * 2013-09-23 2013-12-25 深圳市华信天线技术有限公司 一种天线装置及接收系统
US20140071016A1 (en) * 2012-09-07 2014-03-13 Yu-Sheng Chen Dual-band and dual-polarization antenna
CN204407484U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407504U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线系统和通信设备
CN204407505U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407497U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407494U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407500U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204538229U (zh) * 2015-01-30 2015-08-05 深圳光启高等理工研究院 通信天线、天线系统和通信设备
CN204538230U (zh) * 2015-01-30 2015-08-05 深圳光启高等理工研究院 通信天线、天线系统和通信设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140071016A1 (en) * 2012-09-07 2014-03-13 Yu-Sheng Chen Dual-band and dual-polarization antenna
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN103474766A (zh) * 2013-09-23 2013-12-25 深圳市华信天线技术有限公司 一种天线装置及接收系统
CN204407484U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407504U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线系统和通信设备
CN204407505U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407497U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407494U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407500U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204538229U (zh) * 2015-01-30 2015-08-05 深圳光启高等理工研究院 通信天线、天线系统和通信设备
CN204538230U (zh) * 2015-01-30 2015-08-05 深圳光启高等理工研究院 通信天线、天线系统和通信设备

Similar Documents

Publication Publication Date Title
US9391375B1 (en) Wideband planar reconfigurable polarization antenna array
TW201937870A (zh) 雙頻帶毫米波天線系統
JP6247407B2 (ja) 超広帯域小型化交差円偏波アンテナ
WO2016004001A1 (en) Systems and methods for polarization control
WO2014190652A1 (zh) 一种卫星定位天线装置
JPH03166803A (ja) 二周波分離給電円偏波用マイクロストリップアンテナ
CN109037971A (zh) 宽轴比带宽双频双圆极化微带阵列天线
CN204407502U (zh) 微带天线、天线系统和通信设备
JP6602165B2 (ja) 2周波共用円偏波平面アンテナおよびその軸比調整方法
CN204407491U (zh) 天线、天线系统和通信设备
CN204407499U (zh) 天线、天线系统和通信设备
CN111628286B (zh) 双频双圆极化天线
CN104993245A (zh) S波段动中通双频圆极化微带天线及其阵列
CN204407496U (zh) 微带天线、天线系统和通信设备
CN204407500U (zh) 天线、天线系统和通信设备
CN204407484U (zh) 天线、天线系统和通信设备
CN204407480U (zh) 天线、天线系统和通信设备
JP2014093767A (ja) 直交偏波共用・偏波面可変アンテナ
WO2015129089A1 (ja) アレーアンテナ装置
CN105305051A (zh) 一种椭圆形圆极化微带天线
CN204407497U (zh) 天线、天线系统和通信设备
WO2016119727A1 (zh) 天线、天线系统和通信设备
CN204407505U (zh) 天线、天线系统和通信设备
US11329375B1 (en) Differential quadrature radiating elements and feeds
CN204407494U (zh) 天线、天线系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742789

Country of ref document: EP

Kind code of ref document: A1