WO2016119527A1 - 组合闪烁晶体、组合闪烁探测器及辐射探测设备 - Google Patents

组合闪烁晶体、组合闪烁探测器及辐射探测设备 Download PDF

Info

Publication number
WO2016119527A1
WO2016119527A1 PCT/CN2015/096813 CN2015096813W WO2016119527A1 WO 2016119527 A1 WO2016119527 A1 WO 2016119527A1 CN 2015096813 W CN2015096813 W CN 2015096813W WO 2016119527 A1 WO2016119527 A1 WO 2016119527A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillation crystal
scintillation
crystal module
crystals
combined
Prior art date
Application number
PCT/CN2015/096813
Other languages
English (en)
French (fr)
Inventor
林立
谢庆国
姜浩
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Priority to JP2017538386A priority Critical patent/JP6858125B2/ja
Priority to US15/545,355 priority patent/US10976450B2/en
Priority to EP15879725.8A priority patent/EP3236290A4/en
Publication of WO2016119527A1 publication Critical patent/WO2016119527A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Definitions

  • the present invention relates to the field of radiation detection, and more particularly to a combined scintillation crystal structure and a SiPM-based combined scintillation detector structure having the combined scintillation crystal structure and a radiation detecting apparatus having the combined scintillation detector structure.
  • the scintillation detector is a radiation detector composed of scintillation crystal and optoelectronic devices, and provides device support for nuclear physics research, radiation measurement, and nuclear medical imaging equipment research.
  • the scintillation crystal first converts the x/ ⁇ ray into a visible light, and then the photoelectric device converts the visible light into an electrical pulse signal, and the back end classifies the electrical pulse signal by the amplitude to obtain the radiation information.
  • the new photovoltaic device Silicon Photomultiplier (SiPM) has the characteristics of small size, large gain, and no need for high voltage. Fluorescent detectors are gradually replacing the traditional photomultiplier tubes (PMT) with SiPM.
  • an object of the present invention is to provide a combined scintillation crystal structure and a SiPM-based combined scintillation detector structure having the combined scintillation crystal structure and a radiation detecting apparatus having the combined scintillation detector structure, which can utilize scintillation crystal parameters
  • the difference resolution sensitivity and the linearity of the count rate contradict each other and break through the bottleneck of the SiPM dynamic range.
  • a combined scintillation crystal comprising at least one A scintillation crystal module and one B scintillation crystal module, the A scintillation crystal module and the B scintillation crystal module have different performances.
  • the A scintillation crystal module comprising at least one scintillation crystal A
  • the B scintillation crystal module comprising at least one scintillation crystal B
  • the sensitivity of the scintillation crystal A being lower than the sensitivity of the scintillation crystal B
  • the scintillation The light output of the crystal A is higher than the light output of the scintillation crystal B
  • the B scintillation crystal module is provided with a ray incident surface for receiving the ray, and at least one of the A scintillation crystal modules is arranged at the ray incident of the B scintillation crystal module. The outside of the face.
  • the B scintillation crystal module includes a first abutting surface coupled to the external silicon photomultiplying device, a second abutting surface opposite to the first abutting surface, and a plurality of sides of the first and second abutting surfaces for receiving radiation, and the plurality of sides are the radiation incident surface of the B-sparkling crystal module
  • the A-scintillation crystal module includes a plurality of the A The scintillation crystal modules are respectively arranged on the periphery of each side of the B scintillation crystal module, and a plurality of the A scintillation crystal modules as a whole completely surround the B scintillation crystal module from the side periphery around all sides.
  • the plurality of A scintillation crystal modules are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • a plurality of the A scintillation crystal modules are arranged and wrapped in a B scintillation crystal module in a manner equal to or larger than the area of the radiation incident surface.
  • the B scintillation crystal module includes a first abutting surface coupled to the external silicon photomultiplying device, a second abutting surface opposite to the first abutting surface, and a first abutting surface and a plurality of sides of the second abutting surface for receiving radiation, a plurality of the side surfaces being a ray incident surface of the B scintillation crystal module, the A scintillation crystal module comprising a plurality of the A scintillation crystal modules respectively arranged At least two side edges of the B scintillation crystal module, and a plurality of the A scintillation crystal modules as a whole do not completely enclose the B scintillation crystal module from the side periphery.
  • the plurality of A scintillation crystal modules are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • a plurality of the A scintillation crystal modules are arranged and wrapped in a B scintillation crystal module in a manner equal to or larger than the area of the radiation incident surface.
  • the B scintillation crystal module includes a first abutting surface coupled to the silicon photomultiplying device, a second abutting surface opposite to the first abutting surface position, and a first butting surface and a first connecting surface a plurality of sides of the two abutting faces for receiving radiation, a plurality of the side faces being a ray incident surface of the B scintillation crystal module, and the at least one A scintillation crystal module is arranged on the B scintillation crystal The outer side of one of the sides of the body module.
  • the area of the face that faces the ray incident after the arrangement of the at least one A scintillation crystal module is greater than or equal to the area of the ray incident surface.
  • At least one A scintillation crystal module is arranged to the outside from the vicinity of the ray incident surface of the B scintillation crystal module.
  • the present invention also provides the following technical solution: a combined scintillation crystal comprising X different kinds of scintillation crystals, X ⁇ 3, the first scintillation crystal of the X different performance scintillation crystals has high sensitivity
  • the light output of the first scintillation crystal of the X different performance scintillation crystals is lower than that of other scintillation crystals, and all the first scintillation crystals form a monolithic structure of the B scintillation crystal module.
  • the B scintillation crystal module is provided with a ray incident surface for receiving radiation, and other kinds of scintillation crystals are arranged outside the ray incident surface of the B scintillation crystal module.
  • the arrangement of the other kinds of scintillation crystals relative to the B scintillation crystal module satisfies the condition that the sensitivity gradually becomes lower along the direction away from the B scintillation crystal module, and the light output gradually becomes higher.
  • each of the other scintillation crystals has an even number of scintillation crystals, and the even number of each scintillation crystal is symmetrically arranged in a symmetry of the B scintillation crystal module to any two symmetrical B is outside the ray incident surface of the scintillation crystal module.
  • the B scintillation crystal module includes a first abutting surface coupled to the external silicon photomultiplying device, a second abutting surface opposite to the first abutting surface, and a first abutting surface and a plurality of sides of the second abutting surface for receiving radiation, a plurality of the side surfaces being the radiation incident surface of the B scintillation crystal module, and other kinds of scintillation crystals respectively arranged in the B scintillation crystal mode
  • the periphery of each side of the block, and all other types of scintillation crystals completely enclose the B scintillation crystal module from the side periphery around all sides.
  • the arrangement of the other kinds of scintillation crystals relative to the B scintillation crystal module satisfies the condition that the sensitivity gradually becomes lower along the direction away from the B scintillation crystal module, and the light output gradually becomes higher.
  • One of the above-described combined scintillation crystals preferably all other kinds of scintillation crystals are arranged symmetrically in at least one direction with respect to the B scintillation crystal module.
  • all other scintillation crystals are arranged in a manner equal to or larger than the area of the incident plane of the radiation and enclose the B scintillation crystal module.
  • the B scintillation crystal module includes a first abutting surface coupled to the external silicon photomultiplying device, a second abutting surface opposite to the first abutting surface, and a first abutting surface and a plurality of sides of the second abutting surface for receiving radiation, a plurality of the side surfaces being a ray incident surface of the B scintillation crystal module, and other kinds of scintillation crystals respectively arranged at a periphery of at least two sides of the B scintillation crystal module, and As a whole, all other kinds of scintillation crystals do not completely wrap the B scintillation crystal module from the side periphery.
  • the arrangement of the other kinds of scintillation crystals relative to the B scintillation crystal module satisfies the condition that the sensitivity gradually becomes lower along the direction away from the B scintillation crystal module, and the light output gradually becomes higher.
  • One of the above-described combined scintillation crystals preferably all other kinds of scintillation crystals are arranged symmetrically in at least one direction with respect to the B scintillation crystal module.
  • all other portions of the scintillation crystal-encapsulated B scintillation crystal module are arranged and wrapped in a manner equal to or larger than the area of the incident surface of the ray.
  • the B scintillation crystal module includes a first abutting surface coupled to the external silicon photomultiplying device, a second abutting surface opposite to the first abutting surface, and a first abutting surface and A plurality of sides of the second abutting surface for receiving radiation, a plurality of the side surfaces being the radiation incident surface of the B scintillation crystal module, and all other kinds of scintillation crystals being arranged outside one of the sides of the B scintillation crystal module.
  • the arrangement of the other kinds of scintillation crystals relative to the B scintillation crystal module satisfies the condition that the sensitivity gradually becomes lower along the direction away from the B scintillation crystal module, and the light output gradually becomes higher.
  • the area of the face which is in contact with the ray incidence after all other kinds of scintillation crystals are arranged is larger than or equal to the area of the ray incident surface.
  • the present invention also provides the following technical solution: a combined scintillation detector comprising a silicon photomultiplying device and a signal processing module, the combined scintillation detector comprising the above-described combined scintillation crystal.
  • the present invention also provides the following technical solution: a radiation detecting apparatus comprising a housing and a display, the radiation detecting apparatus comprising the combined scintillation detector described above.
  • the combined scintillation crystal of the present invention comprising at least one A scintillation crystal module and a B scintillation crystal module, wherein the A scintillation crystal module and the B scintillation crystal module are scintillation crystal modules having different properties, the A scintillation crystal
  • the module includes at least one scintillation crystal A
  • the B scintillation crystal module includes at least one scintillation crystal B, the sensitivity of the scintillation crystal A being lower than the sensitivity of the scintillation crystal B, the light output of the scintillation crystal A being higher than the a light output of the scintillation crystal B
  • the B scintillation crystal module being provided with a radiation incident surface for receiving radiation, at least one of the A scintillation crystal modes
  • the blocks are arranged outside the ray entrance face of the B scintillation crystal module.
  • the technical solution solves the contradiction between the sensitivity and the linearity of the counting rate by using the difference of the flicker crystal parameters, and the reasonable parameter selection can break the bottleneck of the dynamic range of the SiPM, specifically by selecting The scintillation crystal A with low sensitivity and high light output and the scintillation crystal B with high sensitivity and low light output make the low energy ray deposit in the scintillation crystal A with high photon efficiency, and the high energy ray is deposited in the scintillation crystal B with low photon efficiency, avoiding the generation.
  • Excessive photon amount causes saturation of SiPM, which directly and effectively solves the problem of insufficient dynamic range when SiPM is used with scintillation crystal, and effectively alleviates the contradiction between wide count rate range and high sensitivity requirement.
  • the B scintillation crystal module includes a first mating surface coupled to the external silicon photomultiplying device, a second mating surface opposite the first mating surface, and a first mating surface and a second mating surface for receiving radiation a plurality of sides, the radiant incident surface of the B scintillation crystal module, the A scintillation crystal module comprising a plurality of the A scintillation crystal modules respectively arranged on each side of the B scintillation crystal module
  • the periphery, and in general a plurality of said A scintillation crystal modules completely enclose the B scintillation crystal module from the side periphery around all sides.
  • the technical solution completely encloses the B scintillation crystal module through the scintillation crystal A, on the one hand, ensuring that the ray energy can be incident on the combined scintillation crystal from different directions, and on the other hand, the complete encapsulation further ensures the effect of ray deposition, and is convenient for obtaining an effective and convenient signal. data.
  • the plurality of A scintillation crystal modules are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • the technical solution is symmetrically arranged, and the response can be consistent in the direction of both sides of the symmetry.
  • a plurality of the A scintillation crystal modules are arranged in a manner equal to or larger than the area of the incident surface of the ray and enclose the B scintillation crystal module.
  • the B scintillation crystal module includes a first mating surface coupled to the external silicon photomultiplying device, a second mating surface opposite the first mating surface, and a first mating surface and a second mating surface for receiving radiation a plurality of sides, the radiant incident surface of the B scintillation crystal module, the A scintillation crystal module comprising a plurality of the A scintillation crystal modules respectively arranged in at least two of the B scintillation crystal modules.
  • the side periphery, and generally a plurality of said A scintillation crystal modules do not completely enclose the B scintillation crystal module from the side periphery.
  • the technical solution is to reduce the cost by not completely wrapping the B scintillation crystal module by the scintillation crystal A in some specific applications without detecting in all directions.
  • the B scintillation crystal module includes a first mating face coupled to the silicon photomultiplying device, a second mating face opposite the first mating face, and a first abutting face and a second abutting face for receiving radiation. a plurality of sides, wherein the plurality of sides are the ray entrance faces of the B scintillation crystal module, and the at least one A scintillation crystal module is arranged outside the one side of the B scintillation crystal module.
  • the technical solution is to perform detection in only one direction in some special applications, and only all A scintillation crystal modules need to be arranged outside one side of the B scintillation crystal module.
  • a combined scintillation crystal characterized in that it comprises X different kinds of scintillation crystals, X ⁇ 3, and the sensitivity of the first scintillation crystal of the X different scintillation crystals is lower than that of other scintillation crystals.
  • the light output of the first scintillation crystal of the X different performance scintillation crystals is higher than that of other scintillation crystals, and all the first scintillation crystals form a B flash of a monolithic structure.
  • the B-crystal module is provided with a ray incident surface for receiving radiation, and other kinds of scintillation crystals are arranged outside the ray incident surface of the B scintillation crystal module.
  • the technical solution solves the contradiction between linearity of sensitivity and counting rate by using the difference of scintillation crystal parameters, and can overcome the bottleneck of limited dynamic range of SiPM through reasonable parameter selection.
  • the light output setting is differentiated, so that low-energy rays are deposited in a large amount in other kinds of scintillation crystals with high photon efficiency, and high-energy rays are deposited in the scintillation crystal B with low photon efficiency, thereby avoiding the excessive photon amount and causing SiPM saturation, thereby directly effective.
  • the solution solves the problem that the dynamic range is insufficient when the SiPM is used with the scintillation crystal, and effectively alleviates the contradiction between the wide count rate range and the high sensitivity requirement.
  • the arrangement of the other kinds of scintillation crystals relative to the B scintillation crystal module satisfies the condition that the sensitivity gradually becomes lower along the direction away from the B scintillation crystal module, and the light output gradually becomes higher.
  • the technical solution refers to the requirement that only the design of the two detectors A and B exists.
  • the outermost scintillation crystal is compared with the inner side thereof.
  • the scintillation crystal has low sensitivity and high light output.
  • each adjacent two layers of scintillation crystals directly adhere to the outer layer light output higher than the inner layer,
  • the layer sensitivity is lower than the inner layer principle.
  • Each of the other types of scintillation crystals has an even number of scintillation crystals, and the even number of each scintillation crystal is symmetrically arranged on the ray incident surface of any two symmetric B scintillation crystal modules with the B scintillation crystal module symmetrically. Outside.
  • each scintillation crystal is arranged symmetrically with respect to the B scintillation crystal module.
  • a combined scintillation detector of the present invention comprising a silicon photomultiplier device, a signal processing module, and a combination scintillation crystal as described above.
  • a radiation detecting apparatus comprising a housing, a display, and the combined scintillation detector described above.
  • the radiation detecting device deposits low energy rays in a high photon efficiency crystal and high energy rays in a low photon efficiency crystal, thereby avoiding the excessive photon amount and causing SiPM saturation, thereby effectively
  • the solution solves the problem that the dynamic range is insufficient when the SiPM is used with the scintillation crystal, and effectively alleviates the contradiction between the wide count rate range and the high sensitivity requirement.
  • FIG. 1 is a schematic structural view of a combined scintillation detector including two types of scintillation crystals according to the present invention
  • FIG. 2 is a schematic structural view of a combined scintillation detector including five types of scintillation crystals according to the present invention
  • FIG. 3 is a schematic structural view of a combined scintillation detector including three types of scintillation crystals according to the present invention
  • FIG. 4 is a schematic diagram showing the light yield saturation curve of the combined scintillation detector of the present invention.
  • the invention discloses a combined scintillation crystal structure, which can utilize the difference of scintillation crystal parameters to solve the contradiction between sensitivity and the linearity of the counting rate and break through the bottleneck of the limited dynamic range of the SiPM.
  • the combined scintillation crystal disclosed by the present invention may be a scintillation crystal including two properties, or may be a scintillation crystal including three or more properties, which will be separately described below.
  • Example 1 (including two properties of scintillation crystal):
  • the combined scintillation crystal disclosed in the present invention includes at least one A scintillation crystal a module and a B scintillation crystal module, wherein the A scintillation crystal module and the B scintillation crystal module are scintillation crystal modules having different performances, the A scintillation crystal module includes at least one scintillation crystal A, and the B scintillation crystal module includes at least a scintillation crystal B having a lower sensitivity than the scintillation crystal B, the light output of the scintillation crystal A being higher than the light output of the scintillation crystal B, the B scintillation crystal module being provided At least one of the A scintillation crystal modules is arranged outside the ray incident surface of the B scintillation crystal module.
  • the technical solution solves the contradiction between the sensitivity and the linearity of the counting rate by using the difference of the flicker crystal parameters, and the reasonable parameter selection can break the bottleneck of the dynamic range of the SiPM, specifically by selecting The scintillation crystal A with low sensitivity and high light output and the scintillation crystal B with high sensitivity and low light output make the low energy ray deposit in the scintillation crystal A with high photon efficiency, and the high energy ray is deposited in the scintillation crystal B with low photon efficiency, avoiding the generation.
  • Excessive photon amount causes saturation of SiPM, which directly and effectively solves the problem of insufficient dynamic range when SiPM is used with scintillation crystal, and effectively alleviates the contradiction between wide count rate range and high sensitivity requirement.
  • the positional relationship between the B scintillation crystal module and other kinds of scintillation crystals has the following three cases.
  • the first one is that the position of the B scintillation crystal module on the ray incident surface is completely wrapped by other kinds of scintillation crystals
  • the second type The position of the B scintillation crystal module on the ray entrance surface is not completely covered by other kinds of scintillation crystals
  • the third type is that other kinds of scintillation crystals are arranged on the outer side of one of the ray incident surfaces of the B scintillation crystal module, and the detailed embodiment is explained as follows.
  • the first type the position of the B scintillation crystal module on the ray entrance surface is completely wrapped by other kinds of scintillation crystals.
  • the B scintillation crystal module includes a first mating surface coupled to the external silicon photomultiplying device, a second mating surface opposite to the first mating surface, and a first mating surface and a second mating surface Receiving a plurality of sides of the ray, a plurality of the side surfaces being a ray incident surface of the B scintillation crystal module, the A scintillation crystal module comprising a plurality of the A scintillation crystal modules respectively arranged in the B scintillation crystal module A side periphery, and a plurality of said A scintillation crystal modules as a whole completely wraps the B scintillation crystal module from the periphery around all sides.
  • the technical solution completely encloses the B scintillation crystal module through the scintillation crystal A, on the one hand, supports the incident of the ray energy from different directions to the combined scintillation crystal, and on the other hand, the complete encapsulation further ensures the effect of the ray deposition, and is convenient for obtaining effective and convenient processing signal data. .
  • Completely wrapped, in the case where the A scintillation crystal module itself, the B scintillation crystal module itself, the A scintillation crystal module, and the B scintillation crystal module are symmetrically arranged in all directions, the response obtained in each direction can be ensured. Consistent.
  • the plurality of A scintillation crystal modules are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • the technical solution is symmetrically arranged, and the response can be consistent in the direction of the two sides of the symmetry, and the symmetric setting facilitates the processing of the data.
  • a plurality of the A scintillation crystal modules are arranged in a manner equal to or larger than the area of the incident plane of the ray and enclose the B scintillation crystal module.
  • the technical solution ensures that all low-energy rays are deposited in a high photon efficiency scintillation crystal A, and all high-energy rays are deposited in the low photon efficiency scintillation crystal B, ensuring a direct and effective solution to the problem of insufficient dynamic range when using SiPM with scintillation crystals. And effectively alleviate the contradiction between wide count rate range and high sensitivity demand.
  • the B scintillation crystal module includes a first abutting face coupled to the outer silicon photomultiplying device, a second abutting face opposite the first abutting face position, and a plurality of first and second abutting faces connecting the first abutting face and the second abutting face for receiving radiation a side surface, a plurality of the side surfaces being a ray incident surface of the B scintillation crystal module,
  • the A scintillation crystal module includes a plurality of the A scintillation crystal modules respectively arranged on at least two side periphery of the B scintillation crystal module, and a plurality of the A scintillation crystal modules are incompletely surrounded from all sides from the side periphery. Wrap B flash crystal module. The technical solution is to reduce the cost by not completely wrapping the B scintillation crystal module by the scintillation crystal A in some specific applications without detecting in all directions.
  • the plurality of A scintillation crystal modules are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • the technical solution is symmetrically arranged, and the response can be consistent in the direction of both sides of the symmetry.
  • a plurality of the A scintillation crystal modules are arranged in a manner equal to or larger than the area of the incident plane of the ray and enclose the B scintillation crystal module.
  • the technical solution ensures that all low-energy rays are deposited in a high photon efficiency scintillation crystal A, and all high-energy rays are deposited in the low photon efficiency scintillation crystal B, ensuring a direct and effective solution to the problem of insufficient dynamic range when using SiPM with scintillation crystals. And effectively alleviate the contradiction between wide count rate range and high sensitivity demand.
  • the B scintillation crystal module includes a first abutting surface coupled to the silicon photomultiplying device, a second abutting surface opposite to the first abutting surface, and a plurality of receiving the first abutting surface and the second abutting surface for receiving the radiation a side surface, a plurality of the side surfaces being a radiation incident surface of the B scintillation crystal module, the at least one A scintillation crystal module being arranged outside the one side of the B scintillation crystal module.
  • the technical solution is to perform detection in only one direction in some special applications, and only all A scintillation crystal modules need to be arranged outside one side of the B scintillation crystal module.
  • the area after the arrangement of the at least one A scintillation crystal module is greater than or equal to the area of the radiation incident surface.
  • the technical solution ensures that all low-energy rays are deposited in a large amount of scintillation crystal A with high photon efficiency.
  • High-energy ray deposition in the low-photon-efficiency scintillation crystal B ensures a direct and effective solution to the problem of insufficient dynamic range when using SiPM with scintillation crystals, and effectively alleviates the contradiction between wide count rate range and high sensitivity requirements.
  • At least one A scintillation crystal module is arranged laterally from the adjacent side of the ray entrance face of the B scintillation crystal module.
  • the A scintillation crystal module and the B scintillation crystal module are arranged closely adjacent to each other to ensure the effect of radiation incidence deposition.
  • the A scintillation crystal module and the B scintillation crystal module can select a continuous scintillation crystal or an array scintillation crystal according to actual conditions.
  • Example 2 (including three or more properties of scintillation crystal):
  • the combined scintillation crystal disclosed by the invention comprises X kinds of scintillation crystals with different properties, X ⁇ 3, and the sensitivity of the first scintillation crystal in the X different kinds of scintillation crystals is lower than the sensitivity of other kinds of scintillation crystals, the X species
  • the light output of the first scintillation crystal in different performance scintillation crystals is higher than the light output of other scintillation crystals, all of the first scintillation crystals form a monolithic B scintillation crystal module, and the B scintillation crystal module is provided for receiving
  • the ray incident surface of the ray, and other kinds of scintillation crystals are arranged outside the ray incident surface of the B scintillation crystal module.
  • the positional relationship between the B scintillation crystal module and other kinds of scintillation crystals has the following three cases.
  • the first one is that the position of the B scintillation crystal module on the ray incident surface is completely wrapped by other kinds of scintillation crystals
  • the second type The position of the B scintillation crystal module on the ray entrance surface is not completely covered by other kinds of scintillation crystals
  • the third type is that other kinds of scintillation crystals are arranged on the outer side of one of the ray incident surfaces of the B scintillation crystal module, and the detailed embodiment is explained as follows.
  • the first type the position of the B scintillation crystal module on the ray entrance surface is completely wrapped by other kinds of scintillation crystals.
  • the B scintillation crystal module includes a first abutting face coupled to the outer silicon photomultiplying device, a second abutting face opposite the first abutting face position, and a plurality of first and second abutting faces connecting the first abutting face and the second abutting face for receiving radiation
  • One side, a plurality of said sides are the ray incident faces of the B scintillation crystal module, and other kinds of scintillation crystals are respectively arranged on the periphery of each side of the B scintillation crystal module, and all other kinds of scintillation crystals surround all sides from the periphery Completely wrap the B scintillation crystal module.
  • the technical solution completely encloses the B scintillation crystal module, on the one hand, ensuring that the ray energy can be incident on the combined scintillation crystal from different directions, and on the other hand, the complete encapsulation further ensures the effect of ray deposition, and is convenient for obtaining effective and convenient processing signal data.
  • All other kinds of scintillation crystals are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • the technical solution is symmetrically arranged, and the response can be consistent in the direction of both sides of the symmetry.
  • All other types of scintillation crystals are arranged in a manner equal to or larger than the area of the incident surface of the ray and encase the B scintillation crystal module.
  • the technical solution ensures that all low-energy rays are deposited in a high photon efficiency scintillation crystal A, and all high-energy rays are deposited in the low photon efficiency scintillation crystal B, ensuring a direct and effective solution to the problem of insufficient dynamic range when using SiPM with scintillation crystals. And effectively alleviate the contradiction between wide count rate range and high sensitivity demand.
  • the B scintillation crystal module includes a first mating surface coupled to the external silicon photomultiplying device, a second mating surface opposite to the first mating surface, and a first mating surface and a second mating surface Receiving a plurality of sides of the ray, a plurality of the side surfaces being a ray incident surface of the B scintillation crystal module, and other kinds of scintillation crystals respectively arranged on at least two side surfaces of the B scintillation crystal module, and all other kinds of scintillation crystals as a whole
  • the B-sparkling crystal module is not completely wrapped around the periphery from all sides. The technical solution is to reduce the cost by not completely wrapping the B scintillation crystal module in some specific applications without detecting all directions.
  • All other kinds of scintillation crystals are symmetrically arranged in at least one direction with respect to the B scintillation crystal module.
  • the technical solution is symmetrically arranged, and the response can be consistent in the direction of both sides of the symmetry.
  • All other portions of the scintillation crystal-encapsulated B scintillation crystal module are arranged and wrapped in a manner that is greater than or equal to the area of the incident surface of the ray.
  • the technical solution ensures that all low-energy rays are deposited in a high photon efficiency scintillation crystal A, and all high-energy rays are deposited in the low photon efficiency scintillation crystal B, ensuring a direct and effective solution to the problem of insufficient dynamic range when using SiPM with scintillation crystals. And effectively alleviate the contradiction between wide count rate range and high sensitivity demand.
  • the B scintillation crystal module includes a first abutting face coupled to the outer silicon photomultiplying device, a second abutting face opposite the first abutting face position, and a plurality of first and second abutting faces connecting the first abutting face and the second abutting face for receiving radiation
  • One side, a plurality of the sides are the ray entrance faces of the B scintillation crystal module, and all other kinds of scintillation crystals are arranged outside one of the sides of the B scintillation crystal module.
  • the technical solution is to perform detection in only one direction in some special applications, and only all A scintillation crystal modules need to be arranged outside one side of the B scintillation crystal module.
  • the area after all other kinds of scintillation crystals are arranged is larger than or equal to the area of the incident surface of the ray.
  • the technical solution ensures that all low-energy rays are deposited in a large amount of scintillation crystal A with high photon efficiency, all high-energy shots.
  • the line is deposited in the low photon efficiency scintillation crystal B, which ensures the direct and effective solution to the problem of insufficient dynamic range when the SiPM is used with the scintillation crystal, and effectively alleviates the contradiction between the wide counting rate range and the high sensitivity requirement.
  • All other kinds of scintillation crystals are arranged to the outside from the vicinity of the ray entrance face of the B scintillation crystal module.
  • the arrangement manner of the other kinds of scintillation crystals relative to the B scintillation crystal module satisfies the condition that the sensitivity gradually becomes lower along the direction away from the B scintillation crystal module, and the light output gradually changes. high.
  • This definition is in accordance with the requirements of the design of only two detectors A and B.
  • the outermost scintillation crystal is compared with the inner side thereof. The scintillation crystal has low sensitivity and high light output.
  • each adjacent two layers of scintillation crystals directly adhere to the outer scintillation crystal.
  • the light output of the layer of scintillation crystals is arranged in such a way that the sensitivity of the outer scintillation crystal is lower than the sensitivity of the inner layer of scintillation crystal.
  • the scintillation crystal can select a continuous scintillation crystal or an array scintillation crystal.
  • FIG. 2 is a combined scintillation detector structure including five types of scintillation crystals. This is a plan view showing only two ray incidence planes of the detector structure, and other ray incident surfaces not shown are present. Types of scintillation crystals, and so on.
  • the B scintillation crystal module with the highest sensitivity but the lowest light output is located at the innermost layer, and the C scintillation crystal and the D scintillation crystal are arranged on one side of one of the incident planes of the B scintillation crystal module, and the sensitivity of the C scintillation crystal is lower than that.
  • the E scintillation crystal and the F scintillation crystal are arranged on one side of the other ray incident surface of the B scintillation crystal module, and the E scintillation crystal is sensitive.
  • the degree is lower than the sensitivity of the B scintillation crystal module, but the light output of the E scintillation crystal is higher than the light output of the B scintillation crystal module, and the sensitivity of the F scintillation crystal is lower than that of the E scintillation crystal module, but the light output of the F scintillation crystal is higher than E Light output of the scintillation crystal module.
  • the optimal implementation is that the B scintillation crystal module is symmetrical, and the scintillation crystals on both sides of the symmetry ray incident surface of the B scintillation crystal module are symmetric and have the same sensitivity and Light output, as shown in Figure 3, in order to facilitate the processing of subsequent data, the B-sparking crystal module is used as the symmetrical base point, and the C-sparking crystals are symmetrically arranged on the outside of the B-sparkling crystal module, respectively, and then the D-scinter crystals are symmetrically arranged in C.
  • the sensitivity of the C scintillation crystal is lower than that of the B scintillation crystal module, but the light output of the C scintillation crystal is higher than the light output of the B scintillation crystal module, and the sensitivity of the D scintillation crystal is lower than the sensitivity of the C scintillation crystal module.
  • the light output of the D scintillation crystal is higher than the light output of the C scintillation crystal module.
  • the present invention is based on the combined scintillation crystal structure of the first embodiment and the second embodiment, and further discloses a combined scintillation detector structure based on SiPM having the combined scintillation crystal structure described in the first embodiment and the second embodiment, the combination flickering.
  • the detector includes a silicon photomultiplier device, a signal processing module and the above-mentioned combined scintillation crystal structure, which utilizes the difference in scintillation crystal parameters to resolve the linearity of sensitivity and count rate and break through the bottleneck of the SiPM dynamic range.
  • the invention also discloses a radiation detecting device having the above-mentioned combined scintillation detector structure, the radiation detecting device comprising a casing, a display and the combined scintillation detector structure described in the first embodiment and the second embodiment, using the difference of the scintillation crystal parameters Solve the contradiction between sensitivity and count rate linearity and break through the bottleneck of SiPM dynamic range.
  • the present invention requires that the scintillation crystal A be arranged on the outer side of the ray incident surface of the scintillator crystal B, and it is preferable to completely surround the scintillation crystal B from the periphery of the ray incident surface of the scintillator crystal B.
  • Such low energy ray A large amount is deposited in the scintillation crystal A, and the high-energy ray passes through the scintillation crystal A of the low-line attenuation coefficient into the scintillation crystal B, and as long as the photon efficiency of the scintillation crystal A is obtained, the gamma-ray energy which generates the photon amount which saturates the SiPM can be determined.
  • SiPM manufacturers will provide their photon saturation parameter (Imax), as shown in Equation 1, E is the gamma ray energy, I is the photon amount, when I ⁇ Imax, it is in the linear working range, as shown in Figure 4, 4 represents X ray energy, Y represents photon quantity, Z represents light yield, H represents saturation limit, J represents scintillation crystal A, and K represents scintillation crystal B.
  • Imax photon saturation parameter
  • the thickness d0 of the scintillation crystal A can be determined according to the line attenuation coefficient ⁇ of the scintillation crystal.
  • the peripheral high photon efficiency scintillation crystal A detects low energy gamma rays, and the high energy ray which causes the SiPM to be saturated in the scintillation crystal A penetrates the scintillation crystal A and deposits on the low photon efficiency scintillation crystal B, thereby widening the dynamic range of the entire detector.
  • the signals of the scintillation crystal A and the scintillation crystal B can be distinguished and processed by the pulse signal morphology.
  • the selection of the plurality of scintillation crystals described in the above embodiments of the present invention is selected according to the actual application, and the specific type of the selected scintillation crystal is not the protection focus of the present invention.
  • the protection of the present invention is focused on having two or more scintillation crystals.
  • the technical problem to be solved by the present invention is achieved by reasonable arrangement between different kinds of scintillation crystals, that is, by selecting a scintillation crystal having a performance difference, the sensitivity and counting are solved by using the difference of the scintillation crystal parameters.
  • the linearity is contradictory. Through reasonable parameter selection, the bottleneck of the dynamic range of SiPM can be broken.
  • the scintillation crystal with low sensitivity and high light output is arranged on the periphery of the scintillation crystal with high sensitivity and low light output.
  • Low-energy ray is deposited in a high-photon-efficiency scintillation crystal
  • high-energy ray is deposited in a low-photon-efficiency scintillation crystal, which avoids excessive photon amount and causes SiPM saturation, thereby directly and effectively solving the problem of insufficient dynamic range when using SiPM with scintillation crystal.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种组合闪烁晶体,包括若干闪烁晶体A及若干闪烁晶体B,闪烁晶体A与闪烁晶体B为性能不尽相同的闪烁晶体,若干闪烁晶体B排列成一个B闪烁晶体模块,若干闪烁晶体A从B闪烁晶体模块的射线入射面外侧包裹B闪烁晶体模块,闪烁晶体A的灵敏度低于闪烁晶体B,闪烁晶体A的光输出高于闪烁晶体B。利用不同闪烁晶体参数差异解决灵敏度和计数率线性度矛盾的问题,通过灵敏度及光输出的差异选择,使得低能射线大量沉积于高光子效率的闪烁晶体A中,高能射线沉积于低光子效率的闪烁晶体B中,避免产生过高光子量造成SiPM饱和,有效解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效缓解了宽计数率范围和高灵敏度需求的矛盾。

Description

组合闪烁晶体、组合闪烁探测器及辐射探测设备
本申请要求于2015年1月26日提交中国专利局、申请号为201510038296.0、发明名称为“组合闪烁晶体、组合闪烁探测器及辐射探测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及辐射探测领域,特别是涉及一种组合闪烁晶体结构及基于SiPM的具有该组合闪烁晶体结构的组合闪烁探测器结构及具有该组合闪烁探测器结构的辐射探测设备。
背景技术
闪烁探测器是由闪烁晶体和光电器件组成的辐射探测器,为核物理研究、辐射测量、核医学成像设备研究提供了器件支持。闪烁晶体首先将x/γ射线转换为可见光子,然后光电器件将可见光子转换为电脉冲信号,后端对电脉冲信号按幅度进行分类计数获得辐射信息。新型光电器件硅光电倍增管(Silicon Photomultiplier,简称SiPM)具有体积小、增益大、无需高压等特性,现闪烁探测器正逐渐使用SiPM替代传统光电倍增管(Photo-Multiplier Tubes,简称PMT)。
现有闪烁探测器多使用单一种类闪烁晶体组成。基于该结构探测器,可实现x/γ辐射剂量仪等核测量仪器,但是,该种单一闪烁晶体结构的闪烁探测器存在灵敏度和计数率线性范围的矛盾。高灵敏度的探测器,在强辐射场下会产生高计数率电脉冲信号,一方会引起面堆积效应引起信息丢失,一方面对于后 端信号处理模块的性能提出很高要求,极大的增加了使用难度和成本;SiPM由于雪崩恢复时间和像素个数限制,其动态范围有限,很难对宽范围光强有线性响应。
因此,针对上述技术问题,有必要提供一种新型结构的组合闪烁晶体结构及基于SiPM的具有该组合闪烁晶体结构的组合闪烁探测器结构及具有该组合闪烁探测器结构的辐射探测设备,以解决现有技术中存在的灵敏度和计数率线性度矛盾的问题。
发明内容
有鉴于此,本发明的目的在于提供一种组合闪烁晶体结构及基于SiPM的具有该组合闪烁晶体结构的组合闪烁探测器结构及具有该组合闪烁探测器结构的辐射探测设备,可利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾并突破SiPM动态范围有限的瓶颈。
为实现上述目的,本发明提供如下技术方案:一种组合闪烁晶体,其包括至少一个A闪烁晶体模块及一个B闪烁晶体模块,所述A闪烁晶体模块与B闪烁晶体模块为性能不尽相同的闪烁晶体模块,所述A闪烁晶体模块包括至少一个闪烁晶体A,所述B闪烁晶体模块包括至少一个闪烁晶体B,所述闪烁晶体A的灵敏度低于所述闪烁晶体B的灵敏度,所述闪烁晶体A的光输出高于所述闪烁晶体B的光输出,所述B闪烁晶体模块设有用以接收射线的射线入射面,至少一个所述A闪烁晶体模块排布于B闪烁晶体模块的射线入射面的外侧。
上述的一种组合闪烁晶体,优选地,所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连 接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的每一侧面外围,且整体上若干所述A闪烁晶体模块围绕所有侧面从侧面外围完全包裹住B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。
上述的一种组合闪烁晶体,优选地,若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上若干所述A闪烁晶体模块从侧面外围不完全包裹B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。
上述的一种组合闪烁晶体,优选地,若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,所述B闪烁晶体模块包括与硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述至少一个A闪烁晶体模块排布于B闪烁晶 体模块其中一个侧面的外侧。
上述的一种组合闪烁晶体,优选地,所述至少一个A闪烁晶体模块排布后与射线入射面对接的面的面积大于等于射线入射面的面积。
上述的一种组合闪烁晶体,优选地,至少一个A闪烁晶体模块自B闪烁晶体模块的射线入射面的相邻处向外侧排布。
为实现上述目的,本发明还提供如下技术方案:一种组合闪烁晶体,其包括X种不同性能的闪烁晶体,X≥3,该X种不同性能的闪烁晶体中第一种闪烁晶体的灵敏度高于其他种闪烁晶体的灵敏度,该X种不同性能的闪烁晶体中第一种闪烁晶体的光输出低于其他种闪烁晶体的光输出,所有第一种闪烁晶体形成一个整体结构的B闪烁晶体模块,所述B闪烁晶体模块设有用以接收射线的射线入射面,其他种闪烁晶体排布于B闪烁晶体模块的射线入射面的外侧。
上述的一种组合闪烁晶体,优选地,所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
上述的一种组合闪烁晶体,优选地,所述其他种闪烁晶体中每种闪烁晶体为偶数个,该偶数个每种闪烁晶体以B闪烁晶体模块为对称点对称排布于任意两个对称的B闪烁晶体模块的射线入射面的外侧。
上述的一种组合闪烁晶体,优选地,所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,其他种闪烁晶体分别排布于B闪烁晶体模 块的每一侧面外围,且整体上所有其他种闪烁晶体围绕所有侧面从侧面外围完全包裹住B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
上述的一种组合闪烁晶体,优选地,所有其他种闪烁晶体相对于B闪烁晶体模块至少在一个方向上呈对称排布。
上述的一种组合闪烁晶体,优选地,所有其他种闪烁晶体以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,其他种闪烁晶体分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上所有其他种闪烁晶体从侧面外围不完全包裹B闪烁晶体模块。
上述的一种组合闪烁晶体,优选地,所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
上述的一种组合闪烁晶体,优选地,所有其他种闪烁晶体相对于B闪烁晶体模块至少在一个方向上呈对称排布。
上述的一种组合闪烁晶体,优选地,所有其他种闪烁晶体包裹B闪烁晶体模块的部分以大于等于射线入射面面积的方式进行排布并包裹。
上述的一种组合闪烁晶体,优选地,所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所有其他种闪烁晶体排布于B闪烁晶体模块其中一个侧面的外侧。
上述的一种组合闪烁晶体,优选地,所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
上述的一种组合闪烁晶体,优选地,所有其他种闪烁晶体排布后与射线入射面对接的面的面积大于等于射线入射面的面积。
为实现上述目的,本发明还提供如下技术方案:一种组合闪烁探测器,其包括硅光电倍增器件及信号处理模块,所述组合闪烁探测器包括上述的组合闪烁晶体。
为实现上述目的,本发明还提供如下技术方案:一种辐射探测设备,其包括外壳及显示器,所述辐射探测设备包括上述的组合闪烁探测器。
以上技术方案相对于现有技术具有如下优点:
1、本发明的组合闪烁晶体,其包括至少一个A闪烁晶体模块及一个B闪烁晶体模块,所述A闪烁晶体模块与B闪烁晶体模块为性能不尽相同的闪烁晶体模块,所述A闪烁晶体模块包括至少一个闪烁晶体A,所述B闪烁晶体模块包括至少一个闪烁晶体B,所述闪烁晶体A的灵敏度低于所述闪烁晶体B的灵敏度,所述闪烁晶体A的光输出高于所述闪烁晶体B的光输出,所述B闪烁晶体模块设有用以接收射线的射线入射面,至少一个所述A闪烁晶体模 块排布于B闪烁晶体模块的射线入射面的外侧。本技术方案通过选择具有性能差异的闪烁晶体A与闪烁晶体B,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾,通过合理的参数选择,可以突破SiPM动态范围有限的瓶颈,具体是通过选择低灵敏度高光输出的闪烁晶体A与高灵敏度低光输出的闪烁晶体B,使得低能射线大量沉积于高光子效率的闪烁晶体A中,高能射线沉积于低光子效率的闪烁晶体B中,避免了产生过高光子量造成SiPM饱和,从而直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
2、所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的每一侧面外围,且整体上若干所述A闪烁晶体模块围绕所有侧面从侧面外围完全包裹住B闪烁晶体模块。本技术方案通过闪烁晶体A完全包裹B闪烁晶体模块,一方面保证射线能可以从不同方向入射到组合闪烁晶体,另一方面完全包裹进一步保证了射线沉积的效果,便于获得有效且便于处理的信号数据。完全包裹,在晶体对称排布的情况下,还能保证在各个方向上得到的响应一致。
3、该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。本技术方案通过对称设置,可以在对称两侧的方向上得到响应一致。
4、若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。本技术方案确保了所有低能射线大量沉积于高光子 效率的闪烁晶体A中,所有高能射线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
5、所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上若干所述A闪烁晶体模块从侧面外围不完全包裹B闪烁晶体模块。本技术方案是为了在一些具体的应用场合,并不需要对所有方向上进行探测,那么通过闪烁晶体A不完全包裹B闪烁晶体模块,可以缩减成本。
6、所述B闪烁晶体模块包括与硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述至少一个A闪烁晶体模块排布于B闪烁晶体模块其中一个侧面的外侧。本技术方案是为了在一些特殊的应用场合,只需要在一个方向上进行探测,那么仅仅需要将所有A闪烁晶体模块排布于B闪烁晶体模块其中一个侧面的外侧。
7、一种组合闪烁晶体,其特征在于:其包括X种不同性能的闪烁晶体,X≥3,该X种不同性能的闪烁晶体中第一种闪烁晶体的灵敏度低于其他种闪烁晶体的灵敏度,该X种不同性能的闪烁晶体中第一种闪烁晶体的光输出高于其他种闪烁晶体的光输出,所有第一种闪烁晶体形成一个整体结构的B闪 烁晶体模块,所述B闪烁晶体模块设有用以接收射线的射线入射面,其他种闪烁晶体排布于B闪烁晶体模块的射线入射面的外侧。本技术方案通过选择具有性能差异的三种或三种以上的闪烁晶体,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾,通过合理的参数选择,可以突破SiPM动态范围有限的瓶颈,通过灵敏度及光输出设置区分,使得低能射线大量沉积于高光子效率的其他种类的闪烁晶体中,高能射线沉积于低光子效率的闪烁晶体B中,避免了产生过高光子量造成SiPM饱和,从而直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
8、所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。本技术方案参考只存在A、B两种探测器的设计的要求,当存在大于两种探测器时,为了能够更好的达成本发明的目的,秉承最外侧的闪烁晶体相较于其内侧的闪烁晶体具有低灵敏度和高光输出,当存在多种闪烁晶体相对于B闪烁晶体模块某个射线入射面叠加排布时,每相邻两层闪烁晶体直接坚持外层光输出高于内层,外层灵敏度低于内层这个原则进行排布。
9、所述其他种闪烁晶体中每种闪烁晶体为偶数个,该偶数个每种闪烁晶体以B闪烁晶体模块为对称点对称排布于任意两个对称的B闪烁晶体模块的射线入射面的外侧。本技术方案当多种闪烁晶体本身呈偶数个,为了方便后期数据的分析处理,每种闪烁晶体采用相对B闪烁晶体模块对称的设置来排布。
10、本发明的组合闪烁探测器,其包括硅光电倍增器件、信号处理模块以及上述的组合闪烁晶体。通过该探测器使用组合闪烁晶体结构,使低能射线沉 积于高光子效率晶体而高能射线沉积于低光子效率晶体,避免了产生过高光子量造成SiPM饱和,从而有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
11、本发明的辐射探测设备,其包括外壳、显示器以及上述的组合闪烁探测器。通过该辐射探测设备使用具有组合闪烁晶体结构的组合闪烁探测器结构,使低能射线沉积于高光子效率晶体而高能射线沉积于低光子效率晶体,避免了产生过高光子量造成SiPM饱和,从而有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
附图说明
图1为本发明包括两种类型闪烁晶体的组合闪烁探测器的结构示意图;
图2为本发明包括五种类型闪烁晶体的组合闪烁探测器的结构示意图;
图3为本发明包括三种类型闪烁晶体的组合闪烁探测器的结构示意图;
图4为本发明组合闪烁探测器光产额饱和曲线示意图。
具体实施方式
本发明公开了一种组合闪烁晶体结构,可利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾并突破SiPM动态范围有限的瓶颈。
本发明公开的组合闪烁晶体可以是包括两种性能的闪烁晶体,也可以是包括三种或三种以上性能的闪烁晶体,下面将对这两种实施例进行分开描述。
实施例一(包括两种性能的闪烁晶体):
如图1所示,本发明公开的组合闪烁晶体,其包括至少一个A闪烁晶体 模块及一个B闪烁晶体模块,所述A闪烁晶体模块与B闪烁晶体模块为性能不尽相同的闪烁晶体模块,所述A闪烁晶体模块包括至少一个闪烁晶体A,所述B闪烁晶体模块包括至少一个闪烁晶体B,所述闪烁晶体A的灵敏度低于所述闪烁晶体B的灵敏度,所述闪烁晶体A的光输出高于所述闪烁晶体B的光输出,所述B闪烁晶体模块设有用以接收射线的射线入射面,至少一个所述A闪烁晶体模块排布于B闪烁晶体模块的射线入射面的外侧。本技术方案通过选择具有性能差异的闪烁晶体A与闪烁晶体B,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾,通过合理的参数选择,可以突破SiPM动态范围有限的瓶颈,具体是通过选择低灵敏度高光输出的闪烁晶体A与高灵敏度低光输出的闪烁晶体B,使得低能射线大量沉积于高光子效率的闪烁晶体A中,高能射线沉积于低光子效率的闪烁晶体B中,避免了产生过高光子量造成SiPM饱和,从而直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
关于实施例一中,B闪烁晶体模块与其他种闪烁晶体的位置关系存在下述三种情况,第一种是B闪烁晶体模块在射线入射面的位置完全被其他种闪烁晶体包裹,第二种是B闪烁晶体模块在射线入射面的位置不完全被其他种闪烁晶体包裹,第三种是其他种闪烁晶体排布于B闪烁晶体模块的其中一个射线入射面的外侧,详细实施例阐述如下。
第一种:B闪烁晶体模块在射线入射面的位置完全被其他种闪烁晶体包裹。
所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以 接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的每一侧面外围,且整体上若干所述A闪烁晶体模块围绕所有侧面从外围完全包裹住B闪烁晶体模块。本技术方案通过闪烁晶体A完全包裹B闪烁晶体模块,一方面支持射线能从不同方向入射到组合闪烁晶体,另一方面完全包裹进一步保证了射线沉积的效果,便于获得有效且便于处理的信号数据。完全包裹,在A闪烁晶体模块自身、B闪烁晶体模块自身、A闪烁晶体模块与B闪烁晶体模块彼此之间在各个方向上对称排布一致的情况下,还能保证在各个方向上得到的响应一致。
该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。本技术方案通过对称设置,可以在对称两侧的方向上得到响应一致,且对称设置便于数据的处理。
若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。本技术方案确保了所有低能射线大量沉积于高光子效率的闪烁晶体A中,所有高能射线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
第二种:B闪烁晶体模块在射线入射面的位置不完全被其他种闪烁晶体包裹。
所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面, 所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上若干所述A闪烁晶体模块围绕所有侧面从侧面外围不完全包裹B闪烁晶体模块。本技术方案是为了在一些具体的应用场合,并不需要对所有方向上进行探测,那么通过闪烁晶体A不完全包裹B闪烁晶体模块,可以缩减成本。
该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。本技术方案通过对称设置,可以在对称两侧的方向上得到响应一致。
若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。本技术方案确保了所有低能射线大量沉积于高光子效率的闪烁晶体A中,所有高能射线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
第三种:其他种闪烁晶体排布于B闪烁晶体模块的其中一个射线入射面的外侧。
所述B闪烁晶体模块包括与硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述至少一个A闪烁晶体模块排布于B闪烁晶体模块其中一个侧面的外侧。本技术方案是为了在一些特殊的应用场合,只需要在一个方向上进行探测,那么仅仅需要将所有A闪烁晶体模块排布于B闪烁晶体模块其中一个侧面的外侧。
所述至少一个A闪烁晶体模块排布后的面积大于等于射线入射面的面积。本技术方案确保了所有低能射线大量沉积于高光子效率的闪烁晶体A中,所 有高能射线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
至少一个A闪烁晶体模块自B闪烁晶体模块的射线入射面的相邻处向外侧排布。通过A闪烁晶体模块和B闪烁晶体模块相邻紧密排布,保证射线入射沉积的效果。
本实施例一中,A闪烁晶体模块和B闪烁晶体模块可以根据实际情况选择连续闪烁晶体或者阵列闪烁晶体。
实施例二(包括三种或三种以上性能的闪烁晶体):
本发明公开的组合闪烁晶体,其包括X种不同性能的闪烁晶体,X≥3,该X种不同性能的闪烁晶体中第一种闪烁晶体的灵敏度低于其他种闪烁晶体的灵敏度,该X种不同性能的闪烁晶体中第一种闪烁晶体的光输出高于其他种闪烁晶体的光输出,所有第一种闪烁晶体形成一个整体结构的B闪烁晶体模块,所述B闪烁晶体模块设有用以接收射线的射线入射面,其他种闪烁晶体排布于B闪烁晶体模块的射线入射面的外侧。本技术方案通过选择具有性能差异的闪烁晶体A与闪烁晶体B,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾,通过合理的参数选择,可以突破SiPM动态范围有限的瓶颈。
关于实施例二中,B闪烁晶体模块与其他种闪烁晶体的位置关系存在下述三种情况,第一种是B闪烁晶体模块在射线入射面的位置完全被其他种闪烁晶体包裹,第二种是B闪烁晶体模块在射线入射面的位置不完全被其他种闪烁晶体包裹,第三种是其他种闪烁晶体排布于B闪烁晶体模块的其中一个射线入射面的外侧,详细实施例阐述如下。
第一种:B闪烁晶体模块在射线入射面的位置完全被其他种闪烁晶体包裹。
所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,其他种闪烁晶体分别排布于B闪烁晶体模块的每一侧面外围,且整体上所有其他种闪烁晶体围绕所有侧面从外围完全包裹住B闪烁晶体模块。本技术方案通过完全包裹B闪烁晶体模块,一方面保证射线能可以从不同方向入射到组合闪烁晶体,另一方面完全包裹进一步保证了射线沉积的效果,便于获得有效且便于处理的信号数据。完全包裹,在晶体对称排布的情况下,还能保证在各个方向上得到的响应一致。
所有其他种闪烁晶体相对于B闪烁晶体模块至少在一个方向上呈对称排布。本技术方案通过对称设置,可以在对称两侧的方向上得到响应一致。
所有其他种闪烁晶体以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。本技术方案确保了所有低能射线大量沉积于高光子效率的闪烁晶体A中,所有高能射线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
第二种:B闪烁晶体模块在射线入射面的位置不完全被其他种闪烁晶体包裹。
所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以 接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,其他种闪烁晶体分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上所有其他种闪烁晶体围绕所有侧面从外围不完全包裹B闪烁晶体模块。本技术方案是为了在一些具体的应用场合,并不需要对所有方向上进行探测,那么通过不完全包裹B闪烁晶体模块,可以缩减成本。
所有其他种闪烁晶体相对于B闪烁晶体模块至少在一个方向上呈对称排布。本技术方案通过对称设置,可以在对称两侧的方向上得到响应一致。
所有其他种闪烁晶体包裹B闪烁晶体模块的部分以大于等于射线入射面面积的方式进行排布并包裹。本技术方案确保了所有低能射线大量沉积于高光子效率的闪烁晶体A中,所有高能射线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
第三种:其他种闪烁晶体排布于B闪烁晶体模块的其中一个射线入射面的外侧。
所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所有其他种闪烁晶体排布于B闪烁晶体模块其中一个侧面的外侧。本技术方案是为了在一些特殊的应用场合,只需要在一个方向上进行探测,那么仅仅需要将所有A闪烁晶体模块排布于B闪烁晶体模块其中一个侧面的外侧。
所有其他种闪烁晶体排布后的面积大于等于射线入射面的面积。本技术方案确保了所有低能射线大量沉积于高光子效率的闪烁晶体A中,所有高能射 线沉积于低光子效率的闪烁晶体B中,确保直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。
所有其他种闪烁晶体自B闪烁晶体模块的射线入射面的相邻处向外侧排布。
在本实施例二的所有上述技术方案中,所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。本界定是遵循只存在A、B两种探测器的设计的要求,当存在大于两种探测器时,为了能够更好的达成本发明的目的,秉承最外侧的闪烁晶体相较于其内侧的闪烁晶体具有低灵敏度和高光输出,当存在多种闪烁晶体相对于B闪烁晶体模块某个射线入射面叠加排布时,每相邻两层闪烁晶体直接坚持外层闪烁晶体的光输出高于内层闪烁晶体的光输出,外层闪烁晶体的灵敏度低于内层闪烁晶体的灵敏度这个原则进行排布。
本实施例二中,闪烁晶体可以选择连续闪烁晶体或者阵列闪烁晶体。
如图2所示,图2为包括五种类型闪烁晶体的组合闪烁探测器结构,此为平面图,只显示了探测器结构的两个射线入射面,其他未显示的射线入射面若存在多种类型闪烁晶体,依次类推排布。图2中,灵敏度最高但光输出最低的B闪烁晶体模块位于最内层,C闪烁晶体和D闪烁晶体排布于B闪烁晶体模块其中一个射线入射面的一侧,C闪烁晶体的灵敏度低于B闪烁晶体模块,但是C闪烁晶体的光输出高于B闪烁晶体模块,D闪烁晶体灵敏度低于C闪烁晶体模块,但是D闪烁晶体的光输出高于C闪烁晶体模块。E闪烁晶体和F闪烁晶体排布于B闪烁晶体模块另一个射线入射面的一侧,E闪烁晶体的灵敏 度低于B闪烁晶体模块的灵敏度,但是E闪烁晶体的光输出高于B闪烁晶体模块的光输出,F闪烁晶体的灵敏度低于E闪烁晶体模块的灵敏度,但是F闪烁晶体的光输出高于E闪烁晶体模块的光输出。
对于相互对称的射线入射面均有射线入射时,最优的实施方式是以B闪烁晶体模块为对称点,B闪烁晶体模块对称射线入射面的两侧的闪烁晶体对称,且具有相同的灵敏度与光输出,如图3所示,为了便于后续数据的处理,以B闪烁晶体模块为对称基点,C闪烁晶体分别对称排布于B闪烁晶体模块的外侧,然后D闪烁晶体分别对称排布于C闪烁晶体模块的外侧,C闪烁晶体的灵敏度低于B闪烁晶体模块的灵敏度,但是C闪烁晶体的光输出高于B闪烁晶体模块的光输出,D闪烁晶体的灵敏度低于C闪烁晶体模块的灵敏度,但是D闪烁晶体的光输出高于C闪烁晶体模块的光输出。
本发明基于上述实施例一及实施例二的组合闪烁晶体结构,还公开了一种基于SiPM的具有上述实施例一及实施例二描述的组合闪烁晶体结构的组合闪烁探测器结构,该组合闪烁探测器包括硅光电倍增器件、信号处理模块及上述的组合闪烁晶体结构,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾并突破SiPM动态范围有限的瓶颈。
本发明还公开了一种具有上述组合闪烁探测器结构的辐射探测设备,该辐射探测设备包括外壳、显示器及上述的实施例一及实施例二描述的组合闪烁探测器结构,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾并突破SiPM动态范围有限的瓶颈。
本发明之所以要求闪烁晶体A排布于闪烁晶体B的射线入射面的外侧,最好是完全从闪烁晶体B的射线入射面的外围包裹闪烁晶体B。这样低能射线 将大量沉积于闪烁晶体A中,高能射线将穿过低线衰减系数的闪烁晶体A进入闪烁晶体B,只要获得闪烁晶体A的光子效率就可以确定其产生使SiPM饱和的光子量的γ射线能量值,SiPM厂商会提供其光子饱和参数(Imax),如式1所示,E为γ射线能量,I为光子量,当I<Imax时,其处于线性工作区间,如图4所示,图4中X代表Γ射线能量,Y代表光子量,Z代表光产额,H代表饱和限,J代表闪烁晶体A,K代表闪烁晶体B。
I=λE   (式1)
只要确定了闪烁晶体A饱和时的γ射线能量,就可以根据闪烁晶体的线衰减系数μ确定闪烁晶体A的厚度d0。
N=N0e-μd   (式2)
此时就确定了组合闪烁探测器结构和参数。外围高光子效率闪烁晶体A探测低能γ射线,而能在闪烁晶体A中沉积致使SiPM饱和的高能射线则穿透闪烁晶体A沉积于低光子效率闪烁晶体B,从而拓宽整个探测器的动态范围。
由于不同闪烁晶体其光衰减时间常数不同,可以通过脉冲信号形态区分闪烁晶体A和闪烁晶体B的信号并进行处理。
本发明上述实施例中描述的多种闪烁晶体的选择根据实际应用选取,选取的闪烁晶体的具体种类并不是本发明的保护重点,本发明的保护重点在于当具有两种或者两种以上闪烁晶体时,如何基于闪烁晶体已有性能,通过不同种类闪烁晶体之间合理的排布,达成本发明要解决的技术问题,即通过选择具有性能差异的闪烁晶体,利用闪烁晶体参数差异解决灵敏度和计数率线性度矛盾,通过合理的参数选择,可以突破SiPM动态范围有限的瓶颈,具体是通过将低灵敏度高光输出的闪烁晶体排布于高灵敏度低光输出的闪烁晶体的外围,使得 低能射线大量沉积于高光子效率的闪烁晶体中,高能射线沉积于低光子效率的闪烁晶体中,避免了产生过高光子量造成SiPM饱和,从而直接有效的解决SiPM配合闪烁晶体使用时动态范围不足的问题,并有效的缓解了宽计数率范围和高灵敏度需求的矛盾。

Claims (28)

  1. 一种组合闪烁晶体,其特征在于:其包括至少一个A闪烁晶体模块及一个B闪烁晶体模块,所述A闪烁晶体模块与B闪烁晶体模块为性能不尽相同的闪烁晶体模块,所述A闪烁晶体模块包括至少一个闪烁晶体A,所述B闪烁晶体模块包括至少一个闪烁晶体B,所述闪烁晶体A的灵敏度低于所述闪烁晶体B的灵敏度,所述闪烁晶体A的光输出高于所述闪烁晶体B的光输出,所述B闪烁晶体模块设有用以接收射线的射线入射面,至少一个所述A闪烁晶体模块排布于B闪烁晶体模块的射线入射面的外侧。
  2. 根据权利要求1所述的组合闪烁晶体,其特征在于:所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为B闪烁晶体模块的所述射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的每一侧面外围,且整体上若干所述A闪烁晶体模块围绕所有侧面从侧面外围完全包裹住B闪烁晶体模块。
  3. 根据权利要求2所述的组合闪烁晶体,其特征在于:该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。
  4. 根据权利要求2所述的组合闪烁晶体,其特征在于:若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。
  5. 根据权利要求1所述的组合闪烁晶体,其特征在于:所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面, 若干所述侧面为所述B闪烁晶体模块的射线入射面,所述A闪烁晶体模块包括若干个,若干所述A闪烁晶体模块分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上若干所述A闪烁晶体模块从侧面外围不完全包裹B闪烁晶体模块。
  6. 根据权利要求5所述的组合闪烁晶体,其特征在于:该若干个A闪烁晶体模块相对于B闪烁晶体模块至少在一个方向上呈对称排布。
  7. 根据权利要求5所述的组合闪烁晶体,其特征在于:若干所述A闪烁晶体模块以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。
  8. 根据权利要求1所述的组合闪烁晶体,其特征在于:所述B闪烁晶体模块包括与硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所述至少一个A闪烁晶体模块排布于B闪烁晶体模块其中一个侧面的外侧。
  9. 根据权利要求8所述的组合闪烁晶体,其特征在于:所述至少一个A闪烁晶体模块排布后与射线入射面对接的面的面积大于等于射线入射面的面积。
  10. 根据权利要求1所述的组合闪烁晶体,其特征在于:至少一个A闪烁晶体模块自B闪烁晶体模块的射线入射面的相邻处向远离B闪烁晶体模块的外侧排布。
  11. 一种组合闪烁探测器,其包括硅光电倍增器件及信号处理模块,其特征在于:所述组合闪烁探测器包括权利要求1至10任一所述的组合闪烁晶体。
  12. 一种辐射探测设备,其包括外壳及显示器,其特征在于:所述辐射探测设备包括权利要求11所述的组合闪烁探测器。
  13. 一种组合闪烁晶体,其特征在于:其包括X种不同性能的闪烁晶体,X≥3,该X种不同性能的闪烁晶体中第一种闪烁晶体的灵敏度高于其他种闪烁晶体的灵敏度,该X种不同性能的闪烁晶体中第一种闪烁晶体的光输出低于其他种闪烁晶体的光输出,所有第一种闪烁晶体形成一个整体结构的B闪烁晶体模块,所述B闪烁晶体模块设有用以接收射线的射线入射面,其他种闪烁晶体排布于B闪烁晶体模块的射线入射面的外侧。
  14. 根据权利要求13所述的组合闪烁晶体,其特征在于:所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
  15. 根据权利要求13所述的组合闪烁晶体,其特征在于:所述其他种闪烁晶体中每种闪烁晶体为偶数个,该偶数个每种闪烁晶体以B闪烁晶体模块为对称点对称排布于任意两个对称的B闪烁晶体模块的射线入射面的外侧。
  16. 根据权利要求13所述的组合闪烁晶体,其特征在于:所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,其他种闪烁晶体分别排布于B闪烁晶体模块的每一侧面外围,且整体上所有其他种闪烁晶体围绕所有侧面从外围完全包裹住B闪烁晶体模块。
  17. 根据权利要求16所述的组合闪烁晶体,其特征在于:所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
  18. 根据权利要求16所述的组合闪烁晶体,其特征在于:所有其他种闪烁晶体相对于B闪烁晶体模块至少在一个方向上呈对称排布。
  19. 根据权利要求16所述的组合闪烁晶体,其特征在于:所有其他种闪烁晶体以大于等于射线入射面面积的方式进行排布并包裹B闪烁晶体模块。
  20. 根据权利要求13所述的组合闪烁晶体,其特征在于:所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,其他种闪烁晶体分别排布于B闪烁晶体模块的至少两个侧面外围,且整体上所有其他种闪烁晶体从侧面外围不完全包裹B闪烁晶体模块。
  21. 根据权利要求20所述的组合闪烁晶体,其特征在于:所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
  22. 根据权利要求20所述的组合闪烁晶体,其特征在于:所有其他种闪烁晶体相对于B闪烁晶体模块至少在一个方向上呈对称排布。
  23. 根据权利要求20所述的组合闪烁晶体,其特征在于:所有其他种闪烁晶体包裹B闪烁晶体模块的部分以大于等于射线入射面面积的方式进行排布并包裹。
  24. 根据权利要求13所述的组合闪烁晶体,其特征在于:所述B闪烁晶体模块包括与外部硅光电倍增器件耦合的第一对接面、与第一对接面位置相对的第二对接面以及连接第一对接面及第二对接面的用以接收射线的若干个侧面,若干所述侧面为所述B闪烁晶体模块的射线入射面,所有其他种闪烁晶体排布于B闪烁晶体模块其中一个侧面的外侧。
  25. 根据权利要求24所述的组合闪烁晶体,其特征在于:所述其他种闪烁晶体相对B闪烁晶体模块的排布方式满足条件:沿着远离B闪烁晶体模块的方向,灵敏度逐渐变低,而光输出逐渐变高。
  26. 根据权利要求24所述的组合闪烁晶体,其特征在于:所有其他种闪烁晶体排布后与射线入射面对接的面的面积大于等于射线入射面的面积。
  27. 一种组合闪烁探测器,其包括硅光电倍增器件及信号处理模块,其特征在于:所述组合闪烁探测器包括权利要求13至26任一所述的组合闪烁晶体。
  28. 一种辐射探测设备,其包括外壳及显示器,其特征在于:所述辐射探测设备包括权利要求27所述的组合闪烁探测器。
PCT/CN2015/096813 2015-01-26 2015-12-09 组合闪烁晶体、组合闪烁探测器及辐射探测设备 WO2016119527A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017538386A JP6858125B2 (ja) 2015-01-26 2015-12-09 複合シンチレーション結晶、複合シンチレーション検出器及び放射線検出装置
US15/545,355 US10976450B2 (en) 2015-01-26 2015-12-09 Combined scintillation crystal, combined scintillation detector and radiation detection device
EP15879725.8A EP3236290A4 (en) 2015-01-26 2015-12-09 Combined scintillation crystal, combined scintillation detector and radiation detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510038296.0 2015-01-26
CN201510038296.0A CN104614754B (zh) 2015-01-26 2015-01-26 组合闪烁晶体、组合闪烁探测器及辐射探测设备

Publications (1)

Publication Number Publication Date
WO2016119527A1 true WO2016119527A1 (zh) 2016-08-04

Family

ID=53149287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096813 WO2016119527A1 (zh) 2015-01-26 2015-12-09 组合闪烁晶体、组合闪烁探测器及辐射探测设备

Country Status (5)

Country Link
US (1) US10976450B2 (zh)
EP (1) EP3236290A4 (zh)
JP (1) JP6858125B2 (zh)
CN (1) CN104614754B (zh)
WO (1) WO2016119527A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614754B (zh) * 2015-01-26 2017-08-25 苏州瑞派宁科技有限公司 组合闪烁晶体、组合闪烁探测器及辐射探测设备
CN107080551B (zh) * 2017-05-25 2023-08-22 苏州瑞派宁科技有限公司 一种三维异质pet系统
CN107255828B (zh) * 2017-07-18 2019-05-28 中国科学院福建物质结构研究所 闪烁晶体单元片、阵列模块及探测器
CN109407139B (zh) * 2018-12-21 2024-03-22 苏州瑞派宁科技有限公司 组合闪烁晶体及包括组合闪烁晶体的辐射探测装置和系统
CN111522053A (zh) * 2020-06-15 2020-08-11 阿镭法科技(苏州)有限公司 一种基于SiPM的扩散式闪烁法氡探测器
CN114280660A (zh) * 2022-01-06 2022-04-05 吉林大学 一种特殊形状双晶体反符合叠层探测器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870667A (en) * 1985-08-29 1989-09-26 Picker International, Inc. Radiation detector
US5753917A (en) * 1995-06-06 1998-05-19 Engdahl; John C. Dual crystal scintillation camera
CN101166997A (zh) * 2005-04-26 2008-04-23 皇家飞利浦电子股份有限公司 光谱ct的检测器阵列
CN201555955U (zh) * 2009-06-30 2010-08-18 同方威视技术股份有限公司 双能x射线探测器及双能x射线探测器阵列装置
CN102426381A (zh) * 2011-10-31 2012-04-25 清华大学 一种CsI:Tl和LaBr3:Ce3+叠层闪烁体
CN103698801A (zh) * 2013-11-29 2014-04-02 西北核技术研究所 高能质子和中子能谱测量的多层闪烁探测器及测量方法
CN104614754A (zh) * 2015-01-26 2015-05-13 苏州瑞派宁科技有限公司 组合闪烁晶体、组合闪烁探测器及辐射探测设备

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332200B2 (ja) 1995-11-29 2002-10-07 日立金属株式会社 X線ct用放射線検出器
US6563121B1 (en) * 1999-03-12 2003-05-13 Saint Gobain Industrial Ceramics, Inc. Thick scintillation plate with internal light collimation
JP4096300B2 (ja) 2002-09-30 2008-06-04 豊田合成株式会社 自動車用サイドモール
JP4338177B2 (ja) * 2003-03-12 2009-10-07 独立行政法人放射線医学総合研究所 3次元放射線位置検出器
GB0311881D0 (en) * 2003-05-22 2003-06-25 Univ Aberdeen A detector module for detecting ionizing radiation
US8436315B1 (en) * 2003-06-05 2013-05-07 Thermo Scientific Portable Analytical Instruments Inc. Compact thermal neutron monitor
US20050023479A1 (en) * 2003-06-05 2005-02-03 Niton Llc Neutron and gamma ray monitor
US7968853B2 (en) * 2005-04-26 2011-06-28 Koninklijke Philips Electronics N.V. Double decker detector for spectral CT
US7358506B2 (en) 2005-12-15 2008-04-15 Palo Alto Research Center Incorporated Structured X-ray conversion screen fabricated with molded layers
CN101501526A (zh) * 2006-08-09 2009-08-05 皇家飞利浦电子股份有限公司 用于谱计算机断层摄影的装置和方法
US7999236B2 (en) * 2007-02-09 2011-08-16 Mropho Detection, Inc. Dual modality detection system of nuclear materials concealed in containers
EP2115490A1 (en) * 2007-02-09 2009-11-11 University Of Wollongong Dual radiation detector
US8101919B2 (en) * 2007-04-10 2012-01-24 Lawrence Livermore National Security, Llc Isotopic response with small scintillator based gamma-ray spectrometers
JP5139881B2 (ja) * 2008-05-08 2013-02-06 浜松ホトニクス株式会社 シンチレータの製造方法および放射線位置検出器
US8963094B2 (en) * 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
GB0810638D0 (en) * 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
US20100316184A1 (en) * 2008-10-17 2010-12-16 Jan Iwanczyk Silicon photomultiplier detector for computed tomography
WO2010144227A2 (en) * 2009-06-12 2010-12-16 Saint-Gobain Ceramics & Plastics, Inc. High aspect ratio scintillator detector for neutron detection
CA2771904A1 (en) * 2009-07-27 2011-02-03 Flir Radiation Gmbh Apparatus and method for neutron detection with neutron-absorbing calorimetric gamma detectors
RU2502088C2 (ru) * 2009-07-27 2013-12-20 Флир Радиацион Гмбх Устройство и способ для детектирования нейтронов посредством калориметрии на основе гамма-захвата
BR112013014570A2 (pt) * 2010-12-13 2017-07-04 Koninl Philips Electronics Nv detector de radiação para detecção de radiação de alta energia e aparelho de exame
US8884213B2 (en) * 2011-07-06 2014-11-11 Siemens Medical Solutions Usa, Inc. Energy correction for one-to-one coupled radiation detectors having non-linear sensors
US8901503B2 (en) * 2012-04-19 2014-12-02 Canberra Industries, Inc. Radiation detector system and method
US9018586B2 (en) * 2012-06-27 2015-04-28 Batelle Energy Alliance, Llc Apparatuses for large area radiation detection and related method
JP2014122820A (ja) * 2012-12-20 2014-07-03 Canon Inc シンチレータ、放射線検出装置および放射線検出システム
US20140197321A1 (en) * 2013-01-11 2014-07-17 Joseph Bendahan Composite gamma-neutron detection system
KR102026737B1 (ko) 2013-01-25 2019-09-30 삼성전자주식회사 영상 생성 장치 및 방법
TW201543061A (zh) * 2014-05-13 2015-11-16 Architek Material Co Ltd 閃光體面板、輻射顯像裝置及其製作方法
CN204374430U (zh) * 2015-01-26 2015-06-03 苏州瑞派宁科技有限公司 组合闪烁晶体、组合闪烁探测器及辐射探测设备
US9606245B1 (en) * 2015-03-24 2017-03-28 The Research Foundation For The State University Of New York Autonomous gamma, X-ray, and particle detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870667A (en) * 1985-08-29 1989-09-26 Picker International, Inc. Radiation detector
US5753917A (en) * 1995-06-06 1998-05-19 Engdahl; John C. Dual crystal scintillation camera
CN101166997A (zh) * 2005-04-26 2008-04-23 皇家飞利浦电子股份有限公司 光谱ct的检测器阵列
CN201555955U (zh) * 2009-06-30 2010-08-18 同方威视技术股份有限公司 双能x射线探测器及双能x射线探测器阵列装置
CN102426381A (zh) * 2011-10-31 2012-04-25 清华大学 一种CsI:Tl和LaBr3:Ce3+叠层闪烁体
CN103698801A (zh) * 2013-11-29 2014-04-02 西北核技术研究所 高能质子和中子能谱测量的多层闪烁探测器及测量方法
CN104614754A (zh) * 2015-01-26 2015-05-13 苏州瑞派宁科技有限公司 组合闪烁晶体、组合闪烁探测器及辐射探测设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3236290A4 *

Also Published As

Publication number Publication date
CN104614754B (zh) 2017-08-25
CN104614754A (zh) 2015-05-13
EP3236290A4 (en) 2018-08-15
US10976450B2 (en) 2021-04-13
JP2018508763A (ja) 2018-03-29
US20180011205A1 (en) 2018-01-11
JP6858125B2 (ja) 2021-04-14
EP3236290A1 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
WO2016119527A1 (zh) 组合闪烁晶体、组合闪烁探测器及辐射探测设备
CN101539630B (zh) 一种复合式高能射线探测和定位的方法
RU2567400C2 (ru) Пикселированное детекторное устройство
US9268045B2 (en) Neutron detector
JP2002071816A (ja) 2次元放射線および中性子イメージ検出器
CN211043685U (zh) 基于gagg闪烁体的阵列式核辐射探测器
US6710349B2 (en) Edge resolved dual scintillator gamma ray detection system and method
US9360565B2 (en) Radiation detector and fabrication process
JP5427655B2 (ja) 放射線計測装置,核医学診断装置
US20160259063A1 (en) Integrated solid state scintillator dosimeter
WO2020125123A1 (zh) 组合闪烁晶体及包括组合闪烁晶体的辐射探测装置和系统
Ruch et al. Comparison between silicon photomultipliers and photomultiplier tubes for pulse shape discrimination with stilbene
CN109946733A (zh) 基于mppc的个人剂量计前端探测器
JP2017538916A (ja) 直接変換放射線検出器
CN204374430U (zh) 组合闪烁晶体、组合闪烁探测器及辐射探测设备
US10234571B1 (en) Radiation detector
CN108345024A (zh) 检测装置以及检测方法
CN110473650B (zh) 层叠式防串扰x射线荧光屏
JP6823526B2 (ja) 放射線検出器および放射線の測定方法
KR20190048461A (ko) 양자점 방식의 방사선 계측기
CN110824536A (zh) 一种具有特殊出光面掺铊碘化钠闪烁晶体的辐射探测器
Orito et al. Performance of a large area Si PIN photodiode array
JP4742391B2 (ja) 2次元放射線および中性子イメージ検出器
KR20210089439A (ko) 에너지 분리에 기반한 방사선 검출기기용 방사선(감마선) 반응 깊이 측정 방법 및 방사선(감마선) 반응 깊이 측정 장치
JP4691731B2 (ja) 2次元放射線および中性子イメージ検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879725

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015879725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017538386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545355

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE