WO2016119132A1 - 一种确定资源块的方法、装置及系统 - Google Patents

一种确定资源块的方法、装置及系统 Download PDF

Info

Publication number
WO2016119132A1
WO2016119132A1 PCT/CN2015/071675 CN2015071675W WO2016119132A1 WO 2016119132 A1 WO2016119132 A1 WO 2016119132A1 CN 2015071675 W CN2015071675 W CN 2015071675W WO 2016119132 A1 WO2016119132 A1 WO 2016119132A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
location information
base station
carrier
frequency domain
Prior art date
Application number
PCT/CN2015/071675
Other languages
English (en)
French (fr)
Inventor
孙静原
薛丽霞
马瑞泽大卫
贺宁
余政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/071675 priority Critical patent/WO2016119132A1/zh
Priority to CN201580004985.8A priority patent/CN106031230B/zh
Publication of WO2016119132A1 publication Critical patent/WO2016119132A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for determining a resource block.
  • the standard bandwidth is defined in some standards of network architecture.
  • the standard bandwidth of the Long Term Evolution (LTE) system defined in 3GPP (3rd Generation Partnership Project) includes: 1.4MHz. 3MHz, 5MHz, 10MHz, 15MHz and 20MHz.
  • non-standard bandwidths such as 6.2MHz, 6.5MHz, 12MHz or 13MHz, will be generated.
  • the base station may allocate a carrier to the UE according to the carrier processing capability or service requirement of the UE (User Equipment), for example, when the terminal UE has access and processes the 5 MHz standard bandwidth.
  • the base station can allocate a 5 MHz carrier to the UE in the non-standard bandwidth, so that the UE can access the system and can communicate with the base station in the allocated carrier.
  • the UE can only determine the location of the resource block according to the carrier, so that the location of the resource block cannot be flexibly adjusted, and the resource usage mode is limited.
  • the embodiment of the invention provides a method for determining a resource block, which can flexibly determine the location of the resource block and increase the flexibility of using the frequency domain resource.
  • a first aspect of the present invention provides a method of determining a resource block, the method comprising:
  • User equipment UE acquires carrier information
  • first location information Determining, by the UE, first location information according to the carrier information, where the first location information indicates a start location of a first resource block outside a guard band on a carrier, or the first location information indicates a carrier a termination location of the second resource block outside the guard band, wherein the first resource block is a first resource block outside the guard band, and the second resource block is outside the guard band a last resource block, where the carrier is a carrier corresponding to the carrier information;
  • the UE acquires second location information, where the second location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, and the n frequency domain elements form a resource block.
  • N is a positive integer greater than 0, and N is not equal to an integer multiple of n;
  • the UE communicates with the base station according to the third resource block.
  • the acquiring, by the UE, the second location information includes:
  • the UE receives the second location information sent by the base station.
  • the acquiring, by the UE, the second location information includes:
  • the UE Determining, by the UE, the second location information according to a relative relationship between the carrier and a first system frequency band, where the first system frequency band is a system frequency band known by the UE; or
  • the UE determines the second location information according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band accessed by the UE.
  • the determining, by the UE, the second location information according to the relative relationship between the carrier and the first system band includes:
  • the UE determines the second location information according to an RS sequence of the carrier and a relative position of an RS sequence of the first system band.
  • determining, by the UE, the second location information according to the relative relationship between the carrier and the access frequency band includes:
  • the UE determines the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes: offsetting an offset of the N frequency domain elements and/or an offset direction.
  • the second location information includes: a starting location and/or a termination of the first resource block The location, and/or the starting and/or ending position of the last resource block.
  • the determining, by the UE, the third resource block according to the first location information and the second location information includes:
  • the UE performs offset according to the offset and the offset direction on a starting position of the first resource block or a termination position of the second resource block, and determines the third resource block.
  • the N frequency domain elements include four frequency domain elements, 6 frequency domain elements and 8 frequency domain elements.
  • the determining, by the UE, the third resource block according to the first location information and the second location information includes:
  • the UE determines a first resource block according to a starting location of the first resource block and a preset first resource block width, and The first resource block is determined to be a third resource block;
  • the UE determines a last resource block according to a termination location of the last resource block and a preset last resource block width, and The last resource block is determined to be the third resource block.
  • the UE according to the third resource block, :
  • the UE communicates with the base station according to all the resource blocks.
  • the preset first resource block width and/or the preset last resource block width and location Base The quasi-resource block width is different.
  • the resource The block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is a PRB except for the middle two sub- One of the carrier, the lowest frequency subcarrier, and one of the subcarriers other than the highest frequency subcarrier.
  • a second aspect of the present invention provides a method of determining a resource block, the method comprising:
  • the base station acquires carrier information of the UE
  • the base station Determining, by the base station, second location information corresponding to the UE according to the carrier information, where the second location information indicates a starting location of a first resource block outside a guard band on a carrier of the UE, or The second location information indicates a termination location of the second resource block outside the guard band on the carrier, where the first resource block is the first resource block except the guard band, and the second resource block is The last resource block except the protection frequency bandwidth, where the carrier is a carrier corresponding to the carrier information;
  • the base station acquires second location information, where the second resource block location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, and the n frequency domain elements constitute a resource.
  • a block N is a positive integer greater than 0, and N is not equal to an integer multiple of n;
  • the base station communicates with the UE according to the third resource block.
  • the method includes:
  • the base station sends the second location information to the UE.
  • the acquiring, by the base station, the second location information includes:
  • the base station determines the second location information according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band in which the UE accesses the base station.
  • the determining, by the base station, the second location information according to the relative relationship between the carrier and the first system band includes:
  • the base station determines the second location information according to an RS sequence of the carrier and a relative position of an RS sequence of the first system band.
  • determining, by the base station, the second location information according to the relative relationship between the carrier and the access frequency band includes:
  • the base station determines the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes:
  • the second location information includes:
  • the starting position of the first resource block and/or the ending position of the last resource block are defined by the starting position of the first resource block and/or the ending position of the last resource block.
  • the determining, by the base station, the third resource block according to the first location information and the second location information includes:
  • the base station performs offset according to the offset and the offset direction at a starting position of the first resource block or a termination position of the second resource block, and determines the third resource block.
  • the N frequency domain elements include four frequency domain elements, Any of 6 frequency domain elements and 8 frequency domain elements, wherein the frequency domain elements constitute the resource block.
  • the determining, by the base station, the third resource block according to the first location information and the second location information includes:
  • the base station determines a first resource block according to a starting location of the first resource block and a preset first resource block width, and The first resource block is determined to be a third resource block;
  • the base station determines a last resource block according to a termination location of the last resource block and a preset last resource block width, and The last resource block is determined to be the third resource block.
  • the base station, according to the third resource block, and the UE Communication includes:
  • the base station communicates with the base station according to the all resource blocks.
  • the preset first resource block width and/or the preset last resource block width and location The reference resource block width is different.
  • the resource The block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is a PRB except for the middle two sub- One of the carrier, the lowest frequency subcarrier, and one of the subcarriers other than the highest frequency carrier.
  • a third aspect of the present invention provides a method of determining a frequency band, the method comprising:
  • the UE Receiving, by the UE, location information sent by the base station, where the location information indicates a location of the first frequency band, where the location information includes one or more of a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity, or with the UE
  • the width of the carrier corresponds to a multiple of the frequency domain granularity
  • the UE communicates according to the first frequency band.
  • the determining, by the UE, the first frequency band according to the location information includes:
  • the UE acquires a specified location of the first frequency band relative to the second frequency band according to the first frequency domain granularity multiple and the preset first frequency domain granularity. Specifying an offset of the location, the second frequency band being a frequency band known by the UE;
  • the UE When the location information includes the first frequency domain granular multiple and the second frequency domain granular multiple, the UE is configured according to the first frequency domain granularity multiple, the second frequency domain granular multiple, and a preset first The frequency domain granularity and the second frequency domain granularity acquire an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band;
  • the UE acquires the width of the carrier of the UE, and according to the corresponding relationship between the width of the preset carrier and the frequency domain granularity, Obtaining a frequency domain granularity corresponding to a width of a carrier of the UE;
  • the UE determines the first frequency band according to the offset.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • a fourth aspect of the present invention provides a method of determining a frequency band, the method comprising:
  • the base station acquires an offset of a specified location of the first frequency band with respect to a specified location of the second frequency band, where the first frequency band is a frequency band configured by the base station to the UE, and the second frequency band is the UE a known frequency band;
  • the base station acquires location information according to the offset, where the location information includes at least one of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or a width corresponding to a carrier of a UE. a multiple of the frequency domain granularity;
  • the base station sends the location information to the UE, so that the UE determines the first frequency band according to the location information.
  • the acquiring, by the base station, the location information according to the offset includes:
  • the base station When the base station presets the first frequency domain granularity, the base station acquires a multiple of the first frequency domain granularity according to the offset and the first frequency domain granularity;
  • the base station When the base station presets the first frequency domain granularity and the second frequency domain granularity, the base station acquires the first according to the offset, the first frequency domain granularity, and the second frequency domain granularity. a multiple of the frequency domain granularity and a multiple of the second frequency domain granularity;
  • the base station When the base station presets a correspondence between a carrier width and a frequency domain granularity, the base station acquires a width of a carrier of the UE;
  • a multiple of the frequency domain granularity corresponding to the width of the carrier of the UE is used as the location information.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • a fifth aspect of the present invention provides a method for determining a resource block, the method comprising:
  • the UE acquires location information for describing a location of a DC subcarrier of the UE, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside the resource block;
  • the UE When the location information includes the information that the DC subcarrier is inside the resource block, the UE confirms the DC subcarrier as a subcarrier that constitutes a resource block, and determines a resource block according to the carrier of the UE;
  • the UE When the location information includes information that the DC subcarrier is outside the resource block, the UE confirms the DC subcarrier as a subcarrier that is not a resource block, and determines a resource block according to the carrier of the UE;
  • the UE communicates with the base station according to the determined resource block.
  • the acquiring, by the UE, the location information used to describe the location of the DC subcarrier of the UE includes:
  • the location information acquired by the UE includes information that the DC subcarrier is inside the resource block;
  • the location information acquired by the UE includes information that the DC subcarrier is outside the resource block.
  • a sixth aspect of the present invention provides a method of determining a resource block, the method comprising:
  • the base station acquires location information for describing a location of a DC subcarrier of the UE, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside the resource block;
  • the base station When the location information includes information that the DC subcarrier is inside the resource block, the base station confirms the DC subcarrier as a subcarrier that constitutes a resource block corresponding to the UE, and determines according to the carrier of the UE.
  • Resource block
  • the base station When the location information includes information that the DC subcarrier is outside the resource block, the base station will Determining, by the DC subcarrier, a subcarrier that is not a resource block corresponding to the UE, and determining a resource block according to the carrier of the UE;
  • the base station communicates with the UE according to the determined resource block.
  • the acquiring, by the base station, the location information used to describe the location of the DC subcarrier of the UE includes:
  • the location information acquired by the base station includes information that the DC subcarrier is inside the resource block;
  • the location information acquired by the base station includes information that the DC subcarrier is outside the resource block;
  • the base station After the base station acquires location information for describing a location of the DC subcarrier of the UE, the base station includes:
  • the base station sends the location information to the UE.
  • a seventh aspect of the present invention provides an apparatus, the apparatus comprising:
  • a first acquiring unit configured to acquire carrier information
  • a first determining unit configured to determine first location information according to the carrier information, where the first location information indicates a starting location of a first resource block outside a guard band on a carrier, or the first The location information indicates a termination location of a second resource block outside the guard band on the carrier, wherein the first resource block is the first resource block outside the guard band, and the second resource block is the protection a last resource block outside the frequency band, where the carrier is a carrier corresponding to the carrier information;
  • a second acquiring unit configured to acquire second location information, where the second location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, where n frequency domain elements are composed a resource block, N is a positive integer greater than 0, and N is not equal to an integer multiple of n;
  • a second determining unit configured to determine a third resource block according to the first location information and the second location information
  • a communication unit configured to, by the device, communicate with the base station according to the third resource block.
  • the second acquiring unit is specifically configured to receive the second location information sent by the base station.
  • the second acquiring unit includes:
  • a first determining subunit configured by the device according to the carrier and the first system frequency band Determining the second location information, wherein the first system frequency band is a system frequency band known by the device;
  • a second determining subunit configured to determine the second location information according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band accessed by the device.
  • the first determining subunit includes:
  • a third determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the first system band;
  • a fourth determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the first system band;
  • a fifth determining subunit configured to determine the second location information according to an RS sequence of the carrier and a relative position of an RS sequence of the first system band.
  • the second determining subunit includes:
  • a sixth determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the access band;
  • a seventh determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes: offsetting an offset of the N frequency domain elements and/or an offset direction.
  • the second location information includes: a starting location and/or a termination of the first resource block The starting or/or ending position of the location or last resource block.
  • the second determining unit is specifically configured to: in the first resource block according to the offset and the offset direction The offset is determined at a starting position or a termination position of the second resource block, and the third resource block is determined.
  • the N frequency domain elements include four frequency domain elements, 6 frequency domain elements and 8 frequency domain elements.
  • the second determining unit includes:
  • An eighth determining subunit configured to determine, according to a starting position of the first resource block and a preset first resource block width, when the second location information includes a starting location of the first resource block a resource block, the first resource block is determined as a third resource block;
  • a ninth determining subunit configured to: when the second location information includes a termination location of the last resource block, determine a last resource according to a termination location of the last resource block and a preset last resource block width a block and determining the last resource block as a third resource block.
  • the communications unit includes:
  • a tenth determining subunit configured to determine, according to the third resource block and a reference resource block width, all resource blocks of the device, where boundary positions of adjacent resource blocks are coincident;
  • a communication subunit configured to communicate with the base station according to the all resource blocks.
  • the preset first resource block width and/or the preset last resource block width and location The reference resource block width is different.
  • the resource The block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is a PRB except for the middle two sub- One of the carrier, the lowest frequency subcarrier, and one of the subcarriers other than the highest frequency subcarrier.
  • An eighth aspect of the present invention provides a base station, where the base station includes:
  • a first acquiring unit configured to acquire carrier information of the UE
  • a first determining unit configured to determine second location information corresponding to the UE according to the carrier information, where the second location information indicates a starting location of a first resource block outside a guard band on a carrier of the UE, or And the second location information indicates a termination location of the second resource block except the guard band on the carrier, where the first resource block is the first resource block except the guard band, where the The second resource block is the last resource block except the guard frequency bandwidth, and the carrier is the carrier corresponding to the carrier information;
  • a second acquiring unit configured to acquire second location information, where the second resource block location information indicates a location of the N frequency domain elements offset from the start location or the termination location, n frequency domain elements To form a resource block, N is a positive integer greater than 0, and N is not equal to an integer multiple of n;
  • a second determining unit configured to determine a third resource block according to the second location information and the second location information
  • a communication unit configured to communicate with the UE according to the third resource block.
  • the base station includes:
  • a sending unit configured to send the second location information to the UE.
  • the second obtaining unit includes:
  • a first determining subunit configured to determine second location information according to a relative relationship between the carrier and a first system frequency band, where the first system frequency band is a system frequency band of the UE;
  • a second determining subunit configured to determine the second location information according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band in which the UE accesses the base station.
  • the first determining subunit includes:
  • a third determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the first system band;
  • a fourth determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the first system band;
  • a fifth determining subunit configured to determine the second location information according to an RS sequence of the carrier and a relative position of an RS sequence of the first system band.
  • the second determining subunit includes:
  • a sixth determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the access band;
  • a seventh determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes:
  • the second location information includes:
  • the starting position of the first resource block and/or the ending position of the last resource block are defined by the starting position of the first resource block and/or the ending position of the last resource block.
  • the second determining unit is specifically configured to: in the foregoing, the base station according to the offset and the offset direction
  • the third resource block is determined by performing an offset on a start position of a resource block or a termination position of the second resource block.
  • the N frequency domain elements include four frequency domain elements, Any of 6 frequency domain elements and 8 frequency domain elements, wherein the frequency domain elements constitute the resource block.
  • the second determining unit includes:
  • An eighth determining subunit configured to determine, according to a starting position of the first resource block and a preset first resource block width, when the second location information includes a starting location of the first resource block a resource block, the first resource block is determined as a third resource block;
  • a ninth determining subunit configured to: when the second location information includes a termination location of the last resource block, determine a last resource according to a termination location of the last resource block and a preset last resource block width a block and determining the last resource block as a third resource block.
  • the communication unit includes:
  • a tenth determining subunit configured to determine, according to the third resource block and a reference resource block width, all resource blocks of the UE, where boundary positions of adjacent resource blocks are coincident;
  • a communication subunit configured to communicate with the base station according to the all resource blocks.
  • the preset first resource block width and/or the preset last resource block width and location The reference resource block width is different.
  • the resource The block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is a PRB except for the middle two sub- One of the carrier, the lowest frequency subcarrier, and one of the subcarriers other than the highest frequency carrier.
  • a ninth aspect of the present invention provides an apparatus, the apparatus comprising:
  • a receiving unit configured to receive location information sent by the base station, where the location information indicates a location of the first frequency band, where the location information includes one or more of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity , or a multiple of the frequency domain granularity corresponding to the width of the carrier of the device;
  • a determining unit configured to determine the first frequency band according to the location information
  • a communication unit configured to communicate with the base station according to the first frequency band.
  • the determining unit includes:
  • a first acquiring subunit configured to: when the location information includes the first frequency domain granular multiple, obtain a specified location of the first frequency band according to the first frequency domain granular multiple and the preset first frequency domain granularity An offset from a specified location of the second frequency band, the second frequency band being a frequency band known to the device;
  • a first determining subunit configured to determine the first frequency band according to the offset
  • a second determining subunit configured to: when the location information includes the first frequency domain granular multiple and the second And obtaining, according to the first frequency domain granularity multiple, the second frequency domain granular multiple, and the preset first frequency domain granularity and the second frequency domain granularity, the designated position of the first frequency band is relative to the second The offset of the specified position of the frequency band;
  • a third determining subunit configured to determine the first frequency band according to the offset
  • a second acquiring sub-unit configured to acquire a width of a carrier of the device when the location information includes a multiple of a frequency domain granularity corresponding to a width of a carrier of the device, and according to a preset carrier width and a frequency domain Corresponding relationship of granularity, obtaining a frequency domain granularity corresponding to a width of a carrier of the device;
  • a third acquiring sub-unit acquiring an offset of a specified position of the first frequency band from a specified position of the second frequency band according to a multiple of the frequency domain granularity and a frequency domain granularity corresponding to a width of the carrier of the device;
  • a fourth determining subunit configured to determine the first frequency band according to the offset.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • a tenth aspect of the present invention provides a base station, where the base station includes:
  • a first acquiring unit configured to acquire an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band, where the first frequency band is a frequency band configured by the base station to the UE, and the second frequency band a frequency band known to the UE;
  • a second acquiring unit configured to acquire location information according to the offset, where the location information includes at least one of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or a carrier with a UE
  • the width corresponds to a multiple of the frequency domain granularity
  • a sending unit configured to send the location information to the UE, so that the UE determines the first frequency band according to the location information.
  • the second acquiring unit includes:
  • a first acquiring subunit configured to acquire, when the base station presets a first frequency domain granularity, a multiple of the first frequency domain granularity according to the offset and the first frequency domain granularity, and a multiple of the first frequency domain granularity is used as the location information;
  • a second acquiring subunit configured to: when the base station presets the first frequency domain granularity and the second frequency domain granularity, according to the offset, the first frequency domain granularity, and the second frequency domain granularity Obtaining a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity, and using the multiple of the first frequency domain granularity and the multiple of the second frequency domain granularity as the location information; or
  • a third acquiring subunit configured to acquire a carrier width of the UE when the base station presets a correspondence between a carrier width and a frequency domain granularity
  • a fourth obtaining sub-unit configured to acquire a frequency domain granularity corresponding to a width of a carrier of the UE according to a correspondence between a width of the carrier and a frequency domain granularity
  • a fifth obtaining subunit configured to acquire, according to the offset and the frequency domain granularity corresponding to the width of the carrier of the UE, a multiple of a frequency domain granularity corresponding to a width of a carrier of the UE, and use the carrier of the UE
  • the width corresponds to a multiple of the frequency domain granularity as the location information.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • An eleventh aspect of the present invention provides an apparatus, the apparatus comprising:
  • An acquiring unit configured to acquire location information indicating a location of a DC subcarrier of the device, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside a resource block;
  • a first confirming unit configured to: when the location information includes information that the DC subcarrier is inside a resource block, identify the DC subcarrier as a subcarrier that constitutes a resource block, and determine a resource according to a carrier of the device. Piece;
  • a second confirming unit configured to: when the location information includes information that the DC subcarrier is outside the resource block, confirm the DC subcarrier as a subcarrier that is not a resource block, and determine according to the carrier of the device Resource block
  • a communication unit configured to communicate with the base station according to the resource block.
  • the acquiring unit includes:
  • a receiving subunit configured to receive the location information sent by the base station
  • a determining subunit configured to determine whether the DC subcarrier is located in another transmission frequency band in the base station, where the transmission frequency band is used to transmit a signal
  • the location information acquired by the acquiring unit includes information that the DC subcarrier is inside the resource block;
  • the location information acquired by the acquiring unit includes information that the DC subcarrier is outside the resource block.
  • a twelfth aspect of the present invention provides a base station, where the base station includes:
  • An acquiring unit configured to acquire location information indicating a location of a DC subcarrier of the UE, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside a resource block;
  • a first confirming unit configured to: when the location information includes information that the DC subcarrier is inside a resource block, confirm the DC subcarrier as a subcarrier that constitutes a resource block corresponding to the UE, and according to the The carrier of the UE determines a resource block;
  • a second confirming unit configured to: when the location information includes information that the DC subcarrier is outside the resource block, confirm the DC subcarrier as a subcarrier that is not a resource block corresponding to the UE, and according to the Determining a resource block of the UE;
  • a communication unit configured to communicate with the UE according to the resource block.
  • the acquiring unit includes:
  • a determining subunit configured to determine whether the DC subcarrier is located in another transmission frequency band in the base station, where the transmission frequency band is used to transmit a signal
  • the location information acquired by the acquiring unit includes information that the DC subcarrier is inside the resource block;
  • the location information acquired by the acquiring unit includes information that the DC subcarrier is outside the resource block;
  • the base station further includes:
  • a sending unit configured to send the location information to the UE.
  • a thirteenth aspect of the present invention provides a computer storage medium
  • the computer storage medium can store a program that, when executed, includes some or all of the steps of a method of determining a resource block provided by the first aspect.
  • a fourteenth aspect of the present invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of determining a resource block provided by the second aspect.
  • a fifteenth aspect of the present invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of determining a frequency band provided by the third aspect.
  • a sixteenth aspect of the present invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of determining a frequency band provided by the fourth aspect.
  • a seventeenth aspect of the present invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of determining a resource block provided by the fifth aspect.
  • An eighteenth aspect of the present invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of determining a resource block provided by the sixth aspect.
  • a nineteenth aspect of the present invention provides a system for determining a resource block, the system comprising the apparatus provided by the seventh aspect, and the base station provided by the eighth aspect.
  • a twentieth aspect of the present invention provides a system for determining a frequency band, the system comprising the apparatus provided by the ninth aspect, and the base station provided by the tenth aspect.
  • a twenty-first aspect of the present invention provides a system for determining a resource block, the system comprising the apparatus provided in the eleventh aspect, and the base station provided in the twelfth aspect.
  • a twenty-second aspect of the present invention provides, comprising: an input device, an output device, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory to perform the following operations :
  • first location information Determining, according to the carrier information, first location information, where the first location information indicates a start location of a first resource block outside a guard band on a carrier, or the first location information indicates protection on a carrier a termination location of the second resource block outside the frequency band, wherein the first resource block is a first resource block outside the guard band, and the second resource block is a last resource outside the guard band Block, the carrier is a carrier corresponding to the carrier information;
  • Obtaining second location information where the second location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, where n frequency domain elements form a resource block, and N is greater than a positive integer of 0, and N is not equal to an integer multiple of n;
  • the acquiring, by the processor, the second location information is specifically used to:
  • the acquiring, by the processor, the second location information includes:
  • the determining, by the processor, the second location information according to the relative relationship between the carrier and the first system band includes:
  • the second location information is determined according to a relative position of an RS sequence of the carrier and an RS sequence of the first system band.
  • the processor determines the second location information packet according to a relative relationship between the carrier and an access frequency band.
  • the second location information is determined according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes: offset and/or offset of offset N frequency domain elements Move direction.
  • the second location information includes: The starting position and/or ending position of the first resource block or the starting position and/or ending position of the last resource block.
  • the processor determines, according to the first location information and the second location information, a third resource block to:
  • the N frequency domain elements include four Any one of a frequency domain element, six frequency domain elements, and eight frequency domain elements.
  • the determining, by the processor, the third resource block according to the first location information and the second location information includes:
  • the second location information includes a starting location of the first resource block, determining a first resource block according to a starting location of the first resource block and a preset first resource block width, the first resource block The resource blocks are determined as the third resource block;
  • the second location information includes a termination location of the last resource block, determining a last resource according to a termination location of the last resource block and a preset last resource block width. a block and determining the last resource block as a third resource block.
  • the processor is configured according to the third resource
  • the block communicates with the base station including:
  • the preset first resource block width and/or the preset last resource block width Different from the reference resource block width.
  • the resource block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is in a PRB One of the subcarriers other than the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier.
  • a twenty-third aspect of the present invention provides a base station, comprising: an input device, an output device, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory, where Do the following:
  • the second location information indicates a starting location of a first resource block outside a guard band on a carrier of the UE, or the second location information And indicating a termination location of the second resource block except the guard band on the carrier, where the first resource block is the first resource block except the guard band, and the second resource block is the a last resource block except the frequency band, the carrier being a carrier corresponding to the carrier information;
  • the second resource block location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, where n frequency domain elements form a resource block, N Is a positive integer greater than 0, and N is not equal to an integer multiple of n;
  • the processor after acquiring the second location information, the processor further performs:
  • the acquiring, by the processor, the second location information includes:
  • the second location information is determined according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band in which the UE accesses the base station.
  • the determining, by the processor, the second location information according to the relative relationship between the carrier and the first system band includes:
  • the second location information is determined according to a relative position of an RS sequence of the carrier and an RS sequence of the first system band.
  • the determining, by the processor, the second location information according to the relative relationship between the carrier and the access frequency band includes:
  • the second location information is determined according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes:
  • the second location information includes:
  • the starting position of the first resource block and/or the ending position of the last resource block are defined by the starting position of the first resource block and/or the ending position of the last resource block.
  • the determining, by the processor, the third resource block according to the first location information and the second location information to:
  • the N frequency domain elements include four Any one of a frequency domain element, six frequency domain elements, and eight frequency domain elements, wherein the frequency domain elements make up the resource block.
  • the determining, by the processor, the third resource block according to the first location information and the second location information includes:
  • the second location information includes a starting location of the first resource block, determining a first resource block according to a starting location of the first resource block and a preset first resource block width, the first resource block The resource blocks are determined as the third resource block;
  • the second location information includes a termination location of the last resource block, determining a last resource block according to a termination location of the last resource block and a preset last resource block width, and the last one The resource block is determined to be the third resource block.
  • the processor is configured according to the third resource
  • the communicating with the UE includes:
  • the preset first resource block width and/or the preset last resource block width Different from the reference resource block width.
  • the resource block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is in a PRB One of the subcarrier types except the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier.
  • a twenty-fourth aspect of the present invention provides an apparatus comprising: an input device, an output device, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory for Do the following:
  • the location information indicates a location of the first frequency band, the location information including one or more of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or with a device a multiple of the frequency domain granularity corresponding to the width of the carrier;
  • the determining, by the processor, the first frequency band according to the location information includes:
  • the location information includes the first frequency domain granularity multiple, according to the first frequency domain granularity multiple And a preset first frequency domain granularity acquires an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band, the second frequency band being a frequency band known by the device;
  • the location information includes the first frequency domain granular multiple and the second frequency domain granular multiple, according to the first frequency domain granular multiple, the second frequency domain granular multiple, and a preset first frequency domain granularity. And acquiring, by the second frequency domain granularity, an offset of the specified position of the first frequency band with respect to a specified position of the second frequency band;
  • the first frequency band is determined based on the offset.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • a twenty-fifth aspect of the present invention provides a base station, comprising: an input device, an output device, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory, where Do the following:
  • the first frequency band is a frequency band configured by the base station to the UE, and the second frequency band is known to the UE One frequency band;
  • the location information includes at least one of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or a frequency domain granularity corresponding to a width of a carrier of the UE Multiple of
  • the acquiring, by the processor, the location information according to the offset includes:
  • the base station When the base station is preset with the first frequency domain granularity, obtaining a multiple of the first frequency domain granularity according to the offset and the first frequency domain granularity, and multiplying the first frequency domain granularity As the location information; or,
  • the base station is preset with a first frequency domain granularity and a second frequency domain granularity. a multiple of the multiple and the second frequency domain granularity, and taking the multiple of the first frequency domain granularity and the multiple of the second frequency domain granularity as the location information; or
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • a twenty-sixth aspect of the present invention provides an apparatus comprising: an input device, an output device, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory for Do the following:
  • location information indicating a location of a DC subcarrier of the device, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside a resource block;
  • the location information includes the information that the DC subcarrier is inside the resource block
  • the DC subcarrier is confirmed as a subcarrier that constitutes a resource block, and the resource block is determined according to the carrier of the device;
  • the location information includes information that the DC subcarrier is outside the resource block
  • the DC subcarrier is confirmed as a subcarrier that is not a resource block, and the resource block is determined according to the carrier of the device;
  • the acquiring, by the processor, the location information used to describe the location of the DC subcarrier of the device includes:
  • the acquired location information includes information that the DC subcarrier is inside the resource block
  • the acquired location information includes information that the DC subcarrier is outside the resource block.
  • a twenty-seventh aspect of the present invention provides a base station, comprising: an input device, an output device, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the program code stored in the memory, where Do the following:
  • the location information includes the information that the DC subcarrier is inside the resource block
  • the DC subcarrier is confirmed as a subcarrier that constitutes a resource block corresponding to the UE, and the resource block is determined according to the carrier of the UE;
  • the location information includes information that the DC subcarrier is outside the resource block
  • the DC subcarrier is confirmed as a subcarrier that does not constitute a resource block corresponding to the UE, and the resource block is determined according to the carrier of the UE.
  • the acquiring, by the processor, the location information used to describe the location of the DC subcarrier of the UE includes:
  • the acquired location information includes information that the DC subcarrier is inside the resource block
  • the acquired location information includes information that the DC subcarrier is outside the resource block
  • the method includes:
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the base station is configured according to the third resource.
  • the block communicates with the base station, which enables the UE to flexibly determine the resource block location and increases the flexibility of frequency domain resource usage.
  • FIG. 1 is a flow chart of an embodiment of a method for determining a resource block according to the present invention
  • FIG. 2 is a schematic diagram of a resource allocated by a base station according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of resource block distribution of a base station and a UE according to an embodiment of the present invention
  • FIG. 4 is a flow chart of another embodiment of a method for determining a resource block according to the present invention.
  • FIG. 5 is a flowchart of still another embodiment of a method for determining a resource block according to the present invention.
  • FIG. 6 is a flow chart of an embodiment of a method for determining a resource block according to the present invention.
  • FIG. 7 is a flow chart of another embodiment of a method for determining a resource block according to the present invention.
  • FIG. 8 is a flowchart of still another embodiment of a method for determining a resource block according to the present invention.
  • FIG. 9 is a flow chart of an embodiment of a method for determining a frequency band according to the present invention.
  • FIG. 10 is a flow chart of an embodiment of a method for determining a frequency band according to the present invention.
  • FIG. 11 is a flow chart of an embodiment of a method for determining a resource block according to the present invention.
  • FIG. 12 is a flow chart of an embodiment of a method for determining a resource block according to the present invention.
  • Figure 13 is a structural view of an apparatus of the present invention.
  • Figure 14 is a structural diagram of a base station according to the present invention.
  • 15 is a structural diagram of a system for determining a resource block according to the present invention.
  • Figure 16 is a structural view of an apparatus of the present invention.
  • FIG. 17 is a structural diagram of a base station according to the present invention.
  • Figure 18 is a structural diagram of a system for determining a frequency band according to the present invention.
  • Figure 19 is a structural view of an apparatus of the present invention.
  • 20 is a structural diagram of a base station according to the present invention.
  • 21 is a structural diagram of a system for determining a resource block according to the present invention.
  • Figure 22 is a structural view of an apparatus of the present invention.
  • FIG. 23 is a structural diagram of a base station according to the present invention.
  • Figure 24 is a structural view of an apparatus of the present invention.
  • 25 is a structural diagram of a base station according to the present invention.
  • Figure 26 is a structural view of an apparatus of the present invention.
  • Figure 27 is a structural diagram of a base station according to the present invention.
  • the UE described in this embodiment may include a mobile phone, a tablet computer, a palmtop computer, or a mobile Internet device (MID).
  • MID mobile Internet device
  • FIG. 1 is a schematic flowchart diagram of an embodiment of a method for determining a resource block according to the present invention. As shown in FIG. 1, a method for determining a resource block according to an embodiment of the present invention includes the following steps:
  • the user equipment UE acquires carrier information.
  • the UE may access a non-standard bandwidth LTE system or a standard bandwidth LTE system.
  • the bandwidth of the standard bandwidth LTE system may include any one of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz or other standard bandwidth.
  • the bandwidth of a non-standard bandwidth LTE system may include non-standard bandwidths of different widths such as 6.2 MHz, 6.5 MHz, 12 MHz, and 13 MHz.
  • the base station may allocate a corresponding carrier according to the bandwidth access capability or processing capability or service requirement of the UE, for example, when the UE has access to the 5M standard broadband.
  • the base station can allocate 5 MHz standard bandwidth to the UE in its system frequency band as the carrier of the UE, so that the data interaction between the UE and the base station is transmitted in the allocated carrier, wherein the frequency band of the base station can be 10 MHz. Or a standard bandwidth such as 20 MHz, or a frequency band of a base station may be a non-standard bandwidth such as 7 MHz or 12 MHz.
  • the UE may acquire carrier information to determine the carrier to which the base station is assigned.
  • the carrier information may include the size of the carrier and the center frequency of the carrier, or the size of the carrier and the DC subcarrier of the carrier, or may be included in the size of the carrier and the starting position of the carrier, or may include the size of the carrier and the termination of the carrier. Location and so on. It should be noted that the UE standard bandwidth allocation decision may be made by the base station or other nodes on the network side.
  • the UE may obtain the DC subcarrier of the carrier by using the frequency sweep, and obtain the size of the carrier by blindly detecting from the PBCH, thereby determining the corresponding carrier.
  • the UE receives the message sent by the base station, where the message includes the size of the carrier configured by the base station, and one or more of a DC subcarrier of the carrier configured by the base station or a center frequency of the carrier or a start position or an end position of the carrier. Corresponding carrier.
  • the UE determines first location information according to the carrier information.
  • the subcarrier spacing is 15 kHz
  • the data interaction between the base station and the UE is performed by using a resource block, where the resource block may be a physical resource block PRB, or may be a resource block set RBG, the RBG includes multiple PRBs, and the PRB may include A plurality of subcarriers, that is, the RBG may be composed of a frequency domain element PRB, and the PRB may be composed of frequency domain element subcarriers.
  • the resource block may be a PRB.
  • the carrier may include a guard band located on both sides of the carrier and a transmission band for signal transmission between the guard bands, or the carrier may include a guard band located between two sides of the carrier and the guard band.
  • the transmission band is used for data transmission, and the guard band is not used for data transmission.
  • the size of each guard band may be 5% of the carrier bandwidth size.
  • the UE determines the first location information according to the carrier information, where the first location information is used to indicate the location of all the resource blocks except the guard band on the carrier.
  • the location of all resource blocks may be included, where the location of each resource block includes a start location and a termination location for each resource block.
  • the first location information indicates a starting location of the first resource block outside the guard band on the carrier, or the first location information indicates a guard frequency on the carrier.
  • the determining, by the signal transmission UE, the first location information according to the carrier information may be: the starting position of the frequency band other than the intra-carrier protection band corresponding to the carrier information is the starting position of the first resource block, and the reference resource block width is one by one. The starting position and the ending position of each resource block are determined, that is, the UE obtains the first location information.
  • the UE may use the first subcarrier of the frequency band other than the guard band of the carrier as the starting position of the first resource block, that is, the first subcarrier of the frequency band other than the guard band of the carrier is the first subcarrier of the first resource block.
  • the carrier determines the PRBs in all the frequency bands in such a manner that the reference resource block width is 12 subcarriers and the boundaries of the adjacent PRBs coincide, that is, the 13th subcarrier of the frequency band is the starting position of the second resource block, and the frequency band is used.
  • the 25th subcarrier is the starting position of the third resource block, and the starting position and the ending position of each resource block of the UE are sequentially acquired according to the manner of obtaining the second location, that is, the UE obtains the first location information.
  • the termination position of the last resource block determined according to the first location information is the last subcarrier except the guard band of the carrier, according to which all resource blocks of the carrier can be determined.
  • the determining, by the UE, the first location information according to the carrier information may be: when there are N RBGs in the frequency band other than the carrier protection band, the number of PRBs included in the first N-1 RBGs may be the total number of PRBs in the frequency band other than the guard band divided by The quotient obtained by N is rounded up, and the number of PRBs included in the last RBG may be a value of the difference between the total number of PRBs in the frequency band other than the above guard band minus the total number of PRBs included in the previous N-1 RBGs.
  • the first PRB of the UE is the first PRB of the first RBG of the UE, so that the UE can obtain the starting position and the ending position of each RBG, that is, the UE can obtain the first location information.
  • the UE may also perform an allocation number on the confirmed resource block. For example, the UE may assign a number to the PRB. For example, when the transmission band maps 25 PRBs, the UE may assign the number of the resource blocks to which it is mapped from 0 to 24. Similarly, the UE can also number the RBGs. Further, the obtaining the first location information by the UE may further be that the UE determines the resource block in the carrier according to the LTE standard pre-defined resource block location in the carrier to obtain the first location information.
  • the UE acquires second location information.
  • the second location information indicates a starting location or a second resource from the first resource block.
  • the end position of the source block is offset by the position of the N frequency domain elements, the n frequency domain elements are composed of one resource block, N is a positive integer greater than 0, and N is not equal to an integer multiple of n.
  • the resource block re-determined by the UE ends with the frequency domain element of the Nth component resource block other than the intra-carrier protection band of the UE or the frequency domain element of the Nth component resource block other than the intra-carrier protection band of the UE ends; and the UE
  • the resource block indicated by the first location information is a frequency domain element location of the first or the M+1th component resource block other than the intra-carrier guard frequency bandwidth of the UE, or is outside the carrier protection frequency bandwidth of the UE.
  • the boundaries of two adjacent resource blocks coincide.
  • the frequency domain element constituting the PRB is a subcarrier
  • the frequency domain element constituting the RBG is a PRB.
  • the second location information may be used to re-determine the start location and/or the termination location of the first resource block on the carrier, and/or the start location and/or the termination location of the last resource block. Or specifying the starting position and/or ending position of the resource block, or the starting position and/or ending position of any one resource block, or the starting position and/or ending position of each resource block, on the re-determined carrier
  • the first resource block or the last resource block or the specified resource block is different from the location of the first resource block or the last resource block or the specified resource block indicated by the first location information.
  • the second location information may include: a start location and/or a termination location of the first resource block on the carrier, and/or a start location and/or a termination location of the last resource block, or a start of the specified resource block.
  • the second location information may include a start location of the first resource block or a termination location of the last resource block, where the first resource block, the last resource block, or the designated resource block may be the third resource block.
  • the offset may be N not equal to an integer multiple of n, but may be a sum of integer multiples of n and m, where m is 1 to A positive integer between (n-1).
  • the second location information may further include a start location and/or a termination location of the first resource block after re-confirmation, or a start location and/or a termination location of the last resource block, or a start of the specified resource block.
  • the location and/or termination location, or the start location and/or termination location of each of the total resource blocks relative to the start and/or termination location of the first resource block indicated by the first location information, or the last resource The starting position and/or the ending position of the block, or the starting position and/or the ending position of the specified resource block, or the offset of the starting position and/or the ending position of each of all resource blocks by N frequency domain elements Offset and / or offset direction.
  • the second location information includes a starting location of the first resource block.
  • the offset of the offset N frequency domain elements may include any one of an offset of four frequency domain elements, an offset of six frequency domain elements, and an offset of eight frequency domain elements.
  • the second location information may include one of an offset and an offset direction, and the other information may be predefined or obtained by other information, such as acquired in advance.
  • the offset can be any frequency domain unit.
  • the frequency domain unit may be a frequency domain element unit constituting a resource block, such as a subcarrier, and the size of the offset may be smaller than the size of the resource block.
  • the offset direction may be a forward direction or a backward direction
  • the forward direction may be a direction toward a higher frequency
  • the backward direction may be a direction toward a lower frequency.
  • the first resource block, the last resource block, or the specified resource block may be the third resource block.
  • all frequency domain elements constituting the resource block are frequency domain elements that can be used for transmitting signals, and do not include DC subcarriers.
  • the second location information may further include a start position of the first resource block and a width of the first resource block, or a termination position of the last resource block and a width of the last resource block.
  • the first resource block, the last resource block, or the specified resource block may be the third resource block.
  • the base station may allocate a part of the frequency band resources to the UE1 in the frequency band, and allocate another part of the frequency band resources. Assigned to UE2, in order to use the band resources for maximum efficiency, the base station may perform band resource allocation according to the principle of maximizing the mismatch of the band resources of UE1 and the band resources of UE2. Referring to FIG.
  • the base station uses the frequency domain resource for maximum efficiency, and the base station allocates a carrier to UE1 and UE2, and the carrier of UE1 at this time
  • the carrier of UE2 has an overlap of about 3.6 MHz, and since UE1 and UE2 are swept by a 100 kHz grid and the subcarrier spacing is 15 kHz, the distance between the carrier center frequency of UE1 and the carrier center frequency of UE2 is an integer of 300 kHz. Times, where 300 is the least common multiple of 15 and 100, and the carrier center frequency of UE1 is lower than the carrier center frequency of UE2.
  • the resource block position indicated by the first location information obtained by the UE1 may coincide with the mapped reference resource block location in the base station, but the resource indicated by the first location information obtained by the UE2
  • the location of the block may not coincide with the location of the mapped reference resource block in the base station, where the resource block mapped by the base station when communicating with the first accessed UE may be the reference resource block.
  • the PRB corresponding to the carrier of UE1 may be the PRB distribution of UE1 in FIG. 3, and the UE2 carries The PRB corresponding to the wave may be the PRB distribution of the UE2 of FIG.
  • the starting position and the ending position are the first subcarrier and the twelfth subcarrier on the system band of the base station, and the starting position and the ending position of the second PRB of the UE1 are the thirteenth subcarrier and the first in the system band of the base station. 24 subcarriers; when the base station obtains only the first position and the end position of the first PRB indicated by the first location information of the UE2 is the 81st subcarrier and the 92nd subcarrier on the system band of the base station, and the second of the UE2
  • the starting position and the ending position of the PRB are the 93rd subcarrier and the 104th subcarrier on the system band of the base station.
  • the PRB of the UE1 does not coincide with the PRB of the UE2.
  • the base station invokes the first PRB of the UE2 to communicate with the UE2, the base station cannot invoke the seventh PRB of the UE1 or the eighth PRB of the UE1 to communicate with the UE1, because the seventh PRB of the UE1 or the eighth of the UE1 A part of the subcarriers of the PRB has been occupied by the first PRB of the UE2, and cannot be called, so that the base station cannot continuously use resources.
  • the UE may re-determine the location of the resource block, so that the position of the re-determined resource block coincides with the location of the base resource block of the base station. , thereby effectively improving resource utilization.
  • the UE when the UE needs to re-determine the location of the resource block, the UE acquires the second location information.
  • the UE determines a third resource block according to the first location information and the second location information.
  • the UE when the second location information includes an offset and/or an offset direction offset by N frequency domain elements, the UE is in accordance with the acquired offset and offset direction.
  • the offset is determined based on the start position of the first resource block indicated by the location information or the termination position of the second resource block, thereby determining the third resource block. For example, when the first location information indicates the start position of the first resource block, the offset direction is the backward direction, and the offset is 4 subcarriers, then the UE is based on the start position of the first resource block.
  • Deviating 4 subcarriers in the backward direction determining a starting position of the third resource block, and further determining a third resource block according to the reference resource block width; when the first location information indicates a starting position of the first resource block, the offset When the direction is backward, when the offset is 8 subcarriers, then the UE is Determining a starting position of the third resource block in the backward direction based on the starting position of the first resource block, determining a starting position of the third resource block, and determining a third resource block according to the reference resource block width; when the first location information indicates The starting position of the first resource block, the offset direction is the backward direction, and when the offset is 6 subcarriers, the UE offsets 6 subcarriers in the backward direction based on the starting position of the first resource block, and determines a starting position of the third resource block, and further determining a third resource block according to the reference resource block width; when the first location information indicates a termination position of the second resource block, the offset direction is a forward direction
  • the confirmed third resource block occupies the guard band, and when the UE is in the second resource block.
  • the confirmed third resource block occupies the guard band.
  • the UE may first terminate the location of the third resource block when the offset direction of the offset is the forward direction based on the starting position of the first resource block.
  • the number of resource blocks acknowledged by the UE after the offset is one less than the number of resource blocks mapped before the UE offset. Therefore, after the UE performs the forward direction offset, the UE may also confirm the frequency domain resource between the last resource block and the high frequency guard band as a non-standard resource block, where the size of the non-standard resource block is Less than the reference resource block width. Further, after the UE performs the backward direction offset, the UE may also confirm the frequency domain resource between the first resource block and the low frequency guard band as a non-standard resource block, where the non-standard resource block is The size is less than the base resource block width.
  • the frequency band of the base station is 6.4 MHz
  • the base station allocates a carrier of 5 MHz to the UE1
  • the base station allocates a carrier of 5 MHz to the UE2, wherein the carriers of the UE1 and the UE2 have an overlap of 3.6 MHz.
  • the carrier of UE1 may be the lowest frequency of 5 MHz in 6.4 MHz.
  • the center frequency of the carrier of the UE2 and the center frequency of the frequency band of the base station or the center frequency of the carrier of the UE1 are 1200 kHz
  • the location of the PRB indicated by the first location information of the UE2 may be as shown in FIG.
  • the position of the PRB indicated by the first location information of the UE2 is offset by 4 subcarriers in the forward direction or 8 subcarriers in the backward direction with respect to the position of the reference resource block mapped by the base station. Specifically, according to the frequency The subcarriers are sequentially sorted from low to high, starting from the first subcarrier, and the fifth subcarrier is used as the starting position of the first PRB of UE2, that is, the 5th to 16th subcarriers are one PRB, and the 17th to the 17th.
  • the 28 subcarriers are the second PRB, and the positions of the other PRBs are deduced by analogy, and the location of the PRB obtained by the UE2 according to the first location information is the first PRB starting from the first subcarrier, and thus, the UE2 is according to the first location.
  • the position of the PRB obtained by the information is shifted by 4 subcarriers in the forward direction or 8 subcarriers in the backward direction with respect to the position of the reference resource block mapped by the base station.
  • the second location information obtained by the UE2 may include an offset of 4 subcarriers and an offset direction of a backward direction, or an offset of 8 subcarriers and a partial offset.
  • the direction of movement is the forward direction.
  • the UE2 may offset the start position of the first resource block or the end position of the second resource block indicated by the first location information of the UE2 according to the second location information to obtain a third resource block.
  • the UE is caused to re-determine all resource blocks according to the third resource block, and all the resource blocks overlap with the base resource blocks mapped by the base station.
  • the UE shifts from the center of the frequency band of the base station (N PRB+6 subcarriers) as the left or right boundary of the third resource block, so that the offset is a multiple of 6 subcarriers, and the offset direction may be Forward or backward.
  • the second location information when the second location information includes a start location and/or a termination location of the first resource block on the carrier, and/or a start location and/or a termination location of the last resource block, or a specified resource.
  • the start position and/or the end position of the block, or the start position and/or the end position of any one of the resource blocks, or the start position and/or the end position of each resource block the UE may determine according to the second location information The third resource block.
  • the UE may re-determine the first resource block according to the starting location of the first resource block, and determine the first resource block as the third resource block.
  • the starting position of the first resource block may not coincide with the starting position of the carrier frequency band of the UE, where the guard band of the carrier may be a frequency domain range of 5% of the carrier bandwidth on both sides of the carrier;
  • the UE may re-determine the last resource block according to the termination position of the last resource block, and determine the last resource block as the third resource block.
  • the termination position of the last resource block may not coincide with the termination position outside the guard band of the carrier of the UE, where the guard band of the carrier may be a frequency domain range of 5% of the carrier bandwidth on both sides of the carrier.
  • the UE when the UE is at the beginning of the first resource block When the offset direction of the offset is the forward direction, the UE may use the end position of the offset third resource block as the start position of the first resource block, and use the confirmed first resource block as the third resource. Block; when the offset direction of the offset by the UE on the basis of the termination position of the second resource block is the backward direction, the UE may use the start position of the offset third resource block as the termination of the last resource block. Location and the last resource block as the third resource block.
  • the lowest frequency boundary of the first resource block (third resource block) of the UE is not the guard band frequency boundary and/or the highest frequency boundary of the last resource block is not the frequency boundary of the guard band, thus the first complete resource block and Some of the frequency domain resources between the low frequency guard bands do not belong to any complete resource block and/or some of the frequency domain resources do not belong to any complete resource block between the last complete resource block and the high frequency guard band.
  • the portion of the frequency domain resources may include available resources available for signal transmission and/or unavailable resources not available for signal transmission.
  • the second location information when the second location information includes the start location of the first resource block, the second location information may further include the first resource block width or the first resource block. End position, or the first resource block width of the UE.
  • the UE may determine the termination location of the first resource block according to the width of the first resource block.
  • the start position and the end position of the first resource block may be the location of a part of the frequency domain resource between the first complete resource block and the low frequency guard band that does not belong to any complete resource block, where the first complete resource block A portion of the frequency domain resources between the low frequency guard band and the low frequency guard band that are not part of any complete resource block may be available resources between the first full resource block and the low frequency guard band for signal transmission.
  • the starting position and the ending position of the first resource block are the starting position and the ending position of the part of the frequency resource, and the UE may determine the part of the frequency domain resource as the first according to the starting position and the ending position of the first resource block.
  • a resource block, the first resource block is set as a third resource block.
  • the width of the first resource block (the third resource block) is smaller than the reference resource block width, that is, the size of the first resource block (the third resource block) is smaller than the reference resource block size.
  • the starting position and the ending position of the first resource block determined by the UE may also be part of the frequency domain resource between the first complete resource block and the low frequency guard band that does not belong to any complete resource block, and the first complete The location of the resource block, wherein a portion of the frequency resource between the first complete resource block and the low frequency guard band that does not belong to any complete resource block may be used for signal transmission between the first complete resource block and the low frequency guard band
  • the available resources, the start position and the end position of the first resource block included in the start position and the end position of the first resource block are the start positions of the part of the frequency domain resource and the adjacent first complete resource block.
  • the UE may determine, according to the starting location and the ending location of the first resource block, the part of the frequency domain resource and the first complete resource block as the first resource block.
  • the first resource block is set as the third resource block.
  • the width of the first resource block (the third resource block) is greater than the reference resource block width, that is, the size of the first resource block (the third resource block) is greater than the reference resource block size.
  • the width of the first resource block is the reference resource block width; when the first complete resource block and the low frequency guard band are When the frequency domain resource is not used for signal transmission, the width of the first resource block is smaller than the reference resource block width.
  • the width of the last resource block is the reference resource block width; when the frequency between the last complete resource block and the low frequency guard band When the domain resource is not used for signal transmission, the width of the last resource block is smaller than the reference resource block width.
  • the reference resource block width can be a standard predefined resource block width.
  • a resource block whose width is equal to the width of the reference resource block is called a complete resource block or a standard resource block, and a resource block whose width is smaller than the width of the reference resource block is called a non-complete resource block or a non-standard resource block.
  • the second location information when the second location information includes the termination location of the last resource block, the second location information may further include the width of the last resource block or the start location of the last resource block, or the first resource of the UE. Block width.
  • the UE may determine the starting location of the last resource block according to the width of the last resource block.
  • the start position and the end position of the last resource block may be the position of the part of the frequency domain resource that does not belong to any complete resource block between the first complete resource block and the high frequency guard frequency bandwidth, wherein the last number is A portion of the frequency domain resources between the complete resource block and the high frequency guard band that do not belong to any complete resource block may be the available resources available for signal transmission between the first full resource block and the high frequency guard band.
  • the start position and the end position of the last resource block included in the start position and the end position of the last resource block are the start position and the end position of the part of the frequency domain resource, and the UE may be based on the last resource block.
  • the start position and the end position determine that the part of the frequency domain resource is the last resource block, and the resource block is set as the third resource block.
  • the width of the last resource block (the third resource block) is smaller than the reference resource block width, that is, the size of the last resource block (the third resource block) is smaller than the reference resource block size.
  • the start position and the end position of the last resource block determined by the UE may also be any one between the last full resource block and the high frequency guard band.
  • the UE may determine, according to the start position and the end position of the last resource block, the part of the frequency domain resource and the first complete resource block of the last to be the last resource block, and set the last resource block to the third resource block.
  • the width of the last resource block (the third resource block) is greater than the reference resource block width, that is, the size of the last resource block (the third resource block) is greater than the reference resource block size.
  • the width of the first resource block is the reference resource block width; when the first complete resource block and the low frequency guard band are When the frequency domain resource is not used for signal transmission, the width of the first resource block is smaller than the reference resource block width.
  • the width of the last resource block is the reference resource block width; when the frequency between the last complete resource block and the low frequency guard band When the domain resource is not used for signal transmission, the width of the last resource block is smaller than the reference resource block width.
  • the reference resource block width can be a standard predefined resource block width.
  • the size of the complete resource block is a resource block size determined according to a predefined manner according to the carrier, for example, the size of the complete PRB is 12 subcarriers, and the size of the complete RBG is the RBG of the carrier other than the last RBG. size.
  • the UE communicates with the base station according to the third resource block.
  • the UE determines all the resource blocks of the UE according to the third resource block and the reference resource block width, where the boundary positions of the adjacent resource blocks coincide. Further, when the resource block determined by the UE in the foregoing embodiment includes the third resource block and the non-standard resource block, the UE determines all the resource blocks of the UE according to the third resource block, the non-standard resource block, and the reference resource block width, where The boundary positions of adjacent resource blocks coincide.
  • the size of at least one resource block in the re-confirmed resource block of the UE is the same as the size of at least one resource block in the resource block determined by the UE according to the first location information. That is, the UE may include at least one resource block in all resource blocks determined according to the third resource block.
  • the number of frequency domain elements is the same as the number of frequency domain elements included in at least one of the resource blocks determined by the UE according to the first location information.
  • the UE can overlap the resource block positions of the UEs with multiple carriers overlapping according to the needs of multiple carrier overlaps, and overlap with the reference resource block locations of the base station, so that the base station can Continuous use of resources to improve the efficiency of resource use.
  • the UE may obtain the number of all the determined resource blocks, where the UE may obtain the number of the PRB or the number of the RBG.
  • the relationship between the number of the PRB obtained by the UE and the subcarrier may be: among them, For the number of elements in each complete resource block, k is an integer greater than or equal to 0, k0 is 0 or 1 or 2 or -1 or -2, and n PRB is the number of the PRB. K0 is the value of the offset of the first position after re-confirmation with respect to the second position divided by 4, wherein the starting number of the PRB may be 0.
  • the first location is relative or the relationship between the number of the UE acquiring the PRB and the subcarrier may be: among them,
  • k is an integer greater than or equal to 0
  • k0 is 0 or 1 or -1
  • n P RB is the number of the PRB.
  • K0 is the value of the offset of the first position after re-confirmation with respect to the second position divided by 6, wherein the starting number of the PRB may be zero.
  • the number of the RBG that the UE acquires may be: when the number of RBGs corresponding to the UE carrier is N RBG , the RBG may be obtained by using the total number of RBGs RBG and the RBG size P of the carrier, where the relationship between the RBG and the PRB is : among them The number of PRBs corresponding to the carrier. in case Then there is an RBG size of Where i is the distance or offset of the first PRB of the UE to the first RBG, in units of PRBs, where the first i PRBs outside the guard band in the carrier are incomplete RBGs.
  • the DC subcarrier of the carrier of the UE is one of the subcarriers of the PRB except the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier.
  • the DC subcarrier of the carrier of the UE is still a carrier center of the UE or a subcarrier adjacent to the carrier center of the UE.
  • the UE may communicate with the base station according to the determined resource block.
  • the signal may include at least one or more of a reference signal, control information, feedback information, a synchronization signal, a random access signal, and a broadcast signal.
  • the public signal such as the PBCH/PSS/SSS
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the UE is configured according to the third resource.
  • the block communicates with the base station, which enables the UE to flexibly determine the resource block location and increases the flexibility of frequency domain resource usage.
  • the UE can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • FIG. 4 is a schematic flowchart diagram of another embodiment of a method for determining a resource block according to the present invention. As shown in FIG. 4, a method for determining a resource block according to an embodiment of the present invention includes the following steps:
  • the user equipment UE acquires carrier information.
  • the UE determines first location information according to the carrier information.
  • the UE determines the second location information according to a relative relationship between the carrier and a first system frequency band, where the first system frequency band is a system frequency band known by the UE; or, the UE according to the The second location information is determined by a relative relationship between the carrier and the access frequency band, where the access frequency band is a frequency band accessed by the UE.
  • the first system frequency band is one of the at least one system frequency band in which the UE is configured in the access base station, and the system frequency band is known by the UE.
  • the UE may determine the second location information according to the relative relationship between the first system frequency band and the carrier. Specifically, the UE may determine the second location information according to a relative position of a center frequency of the carrier and a center frequency of the first system band. It can be known from the above embodiment that since the UE is swept by a 100 kHz grid and the subcarrier spacing is 15 kHz, the center frequency of the carrier of the UE is separated from the center frequency of the first system band by an integer multiple of 300 kHz. Where 300 is the least common multiple of 15 and 100.
  • the UE may be based on the distance between the center frequency of the carrier and the center frequency of the first system band. Determining an offset of the center frequency of the carrier of the UE with respect to a center frequency of the first system band, thereby determining an offset and an offset direction, and obtaining second location information.
  • the UE determines that the offset may be that the UE divides the obtained center frequency of the carrier of the UE with respect to the center frequency offset of the first system band by the reference resource block width, and the obtained remainder is an offset, and the UE determines
  • the offset direction may be that when the center frequency of the transmission band of the UE is positive with respect to the center frequency offset of the system band, the offset direction is a backward direction when the center frequency of the transmission band of the UE is relative to the system band When the center frequency offset is negative, the offset direction is the forward direction.
  • the UE may further determine the second location information according to the relative relationship between the DC subcarrier of the carrier and the DC subcarrier of the first system band. Specifically, the UE may determine, according to the distance between the DC subcarrier of the carrier and the DC subcarrier of the first system band, a DC subcarrier offset of the DC subcarrier of the carrier relative to the first system band, thereby determining a partial offset.
  • the second position information is obtained by shifting and shifting directions. The UE determines that the offset may be that the UE divides the obtained DC subcarrier of the carrier of the UE with respect to the DC subcarrier offset of the first system band by the reference resource block width, and obtains the remainder as the offset.
  • the UE determines that the offset direction may be that when the DC subcarrier of the DC subcarrier of the UE is positive with respect to the DC subcarrier offset of the first system band, the offset direction is a backward direction, when the carrier of the UE When the DC subcarrier offset of the DC subcarrier relative to the first system band is negative, the offset direction is the forward direction.
  • the UE may further determine the second location information according to the relative position of the RS (Reference Signal) sequence of the transmission band and the RS sequence of the first system band. Specifically, the UE may determine the offset and the offset direction according to the RS sequence of the carrier with respect to the RS sequence offset of the first system band, to obtain the second location information. The UE determines that the offset may be that the UE uses the RS sequence of the acquired carrier with respect to the RS sequence offset of the first system band as an offset, and the UE determines that the offset direction may be opposite to the RS sequence of the carrier.
  • the RS sequences of a system band are the same.
  • the RS may be various RSs such as a CRS (Cell-specific RS, cell-specific reference signal), a CSI-RS (Channel State Information-RS), and a UE-specific RS (UE-specific reference signal).
  • CRS Cell-specific RS
  • CSI-RS Channel State Information-RS
  • UE-specific RS UE-specific reference signal
  • the access frequency band is a frequency band that the base station randomly accesses when the UE allocates a carrier or a pre-band when the UE accesses the base station.
  • the UE may determine the second location information according to the relative relationship between the carrier and the access frequency band. Specifically, the UE may be based on the center frequency of the carrier.
  • the second location information is determined by the relative position of the rate to the center frequency of the access band. Specifically, the UE may determine the offset of the center frequency of the carrier relative to the center frequency of the access band according to the distance between the center frequency of the carrier and the center frequency of the access band, thereby determining the offset and the offset direction. , obtain the second location information.
  • the UE determines that the offset may be that the UE divides the obtained center frequency of the carrier of the UE with respect to the center frequency offset of the access band by the reference resource block width, and the obtained remainder is an offset, and the UE determines the offset.
  • the direction of the shift may be that when the center frequency of the carrier of the UE is positive with respect to the center frequency of the access band, the offset direction is a backward direction when the center frequency of the carrier of the UE is relative to the access band. When the center frequency offset is negative, the offset direction is the forward direction.
  • the UE may further determine the second location information according to the relative relationship between the DC subcarrier of the carrier and the DC subcarrier of the access band. Specifically, the UE may determine, according to the distance between the DC subcarrier of the carrier and the DC subcarrier of the access band, a DC subcarrier offset of the DC subcarrier of the carrier relative to the access band, thereby determining an offset. And the offset direction to obtain the second position information.
  • the UE determines that the offset may be that the UE divides the obtained DC subcarrier of the carrier of the UE with respect to the DC subcarrier offset of the access band by the reference resource block width, and obtains a remainder as an offset
  • the UE Determining the offset direction may be: when the DC subcarrier offset of the carrier of the UE is positive with respect to the DC subcarrier offset of the access band, the offset direction is a backward direction, when the DC subcarrier of the carrier of the UE is relatively When the DC subcarrier offset of the access band is negative, the offset direction is the forward direction.
  • the UE determines a third resource block according to the first location information and the second location information.
  • the UE communicates with the base station according to the third resource block.
  • step S100, step S201, step S203, and step S204 can be referred to the specific implementation manners of step S100, step S101, step S103, and step S104 in the foregoing embodiment, and are not performed here. Narration.
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the UE is configured according to the third resource.
  • the block communicates with the base station, which enables the UE to flexibly determine the resource block location and increases the flexibility of frequency domain resource usage.
  • the UE can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • FIG. 5 is a schematic flowchart diagram of still another embodiment of a method for determining a resource block according to the present invention. As shown in FIG. 5, a method for determining a resource block according to an embodiment of the present invention includes the following steps:
  • the user equipment UE acquires carrier information.
  • the UE determines first location information according to the carrier information.
  • the UE receives the second location information sent by a base station base station.
  • the UE may receive the second location information sent by the base station base station, so as to obtain the second location information.
  • the base station may notify by 1 bit or 2 bits when the second location information includes the offset of the resource block, where the two states corresponding to the 1 bit or the 2 bit are used to indicate that the offset is equal to 4 or equal to 8 or the like.
  • the UE determines a third resource block according to the first location information and the second location information.
  • the UE communicates with the base station according to the third resource block.
  • step S300, step S301, step S303, and step S304 can be referred to the specific implementation manners of step S100, step S101, step S103, and step S104 in the foregoing embodiment, and are not performed here. Narration.
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the UE is configured according to the third resource.
  • the block communicates with the base station, which enables the UE to flexibly determine the resource block location and increases the flexibility of frequency domain resource usage.
  • the UE can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • FIG. 6 is a flowchart of an embodiment of a method for determining a resource block according to the present invention. A method of determining a resource block is explained below from the base station side. As shown in FIG. 6, a method for determining a resource block according to this embodiment may include:
  • the base station acquires carrier information of the UE.
  • the UE may access a non-standard bandwidth LTE system or a standard bandwidth LTE system.
  • the bandwidth of the standard bandwidth LTE system may include any one of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz or other standard bandwidth.
  • the bandwidth of a non-standard bandwidth LTE system may include non-standard bandwidths of different widths such as 6.2 MHz, 6.5 MHz, 12 MHz, and 13 MHz.
  • the base station can allocate a 5 MHz standard bandwidth to the UE in the system band to serve as the carrier of the UE.
  • the data interaction between the UE and the base station is performed in the allocated carrier.
  • the frequency band of the base station may be a standard bandwidth such as 10 MHz or 20 MHz, or the frequency band of the base station may be a non-standard bandwidth such as 7 MHz or 12 MHz.
  • the base station may acquire carrier information of the UE.
  • the carrier information may include the size of the carrier and the center frequency of the carrier, or the size of the carrier and the DC subcarrier of the carrier, or may be included in the size of the carrier and the starting position of the carrier, or may include the size of the carrier and the termination of the carrier. Location and so on.
  • the base station determines, according to the carrier information, first location information corresponding to the UE.
  • the subcarrier spacing is 15 kHz
  • the data interaction between the base station and the UE is performed by using a resource block, where the resource block may be a physical resource block PRB, or may be a resource block set RBG, the RBG includes multiple PRBs, and the PRB may include A plurality of subcarriers, that is, the RBG may be composed of a frequency domain element PRB, and the PRB may be composed of frequency domain element subcarriers.
  • the resource block may be a PRB.
  • the carrier may include a guard band located on both sides of the carrier and a transmission band for signal transmission between the guard bands, or the carrier may include a guard band located between two sides of the carrier and the guard band.
  • the transmission band is used for data transmission, and the guard band is not used for data transmission.
  • the size of each guard band may be 5% of the carrier bandwidth size.
  • the base station determines the first location information according to the carrier information, where the first location information is used to indicate the location of all resource blocks except the guard band on the carrier.
  • the location of all resource blocks may be included, where the location of each resource block includes a start location and a termination location for each resource block.
  • the first location information indicates a start location of the first resource block outside the guard band on the carrier, or the first location information indicates a termination location of the second resource block outside the guard band on the carrier, where
  • the first resource block is the first resource block except the guard band of the carrier
  • the second resource block is the last resource block except the guard band of the carrier, which may include the start position of the first resource block and the second resource block.
  • the end position may be: the starting position of the frequency band other than the intra-carrier guard band corresponding to the carrier information is the starting position of the first resource block, and each of the base resource blocks is determined by the reference resource block width.
  • the base station obtains the first location information.
  • the base station may be the first sub-carrier of the frequency band other than the guard band of the carrier as the starting position of the first resource block, that is, the first sub-carrier of the frequency band other than the guard band of the carrier is the first sub-block of the first resource block
  • the carrier determines the PRBs in all the frequency bands in such a manner that the reference resource block width is 12 subcarriers and the boundaries of the adjacent PRBs coincide, that is, the 13th subcarrier of the frequency band is the starting position of the second resource block, and the frequency band is used.
  • the 25th subcarrier is the starting position of the third resource block, and the starting position and the ending position of each resource block of the UE are sequentially acquired according to the manner of obtaining the second location, that is, the base station can obtain the first location information.
  • the termination position of the last resource block determined according to the first location information is the last subcarrier except the guard band of the carrier, according to which all resource blocks of the carrier can be determined.
  • the base station can obtain the corresponding 25 PRBs, so that the data interaction between the UE and the base station can select at least one PRB among the 25 PRBs to perform interaction data.
  • the determining, by the base station, the first location information according to the carrier information may be: when there are N RBGs in the frequency band other than the carrier protection band, the number of PRBs included in the first N-1 RBGs may be the total number of PRBs in the frequency band other than the guard band divided by The quotient obtained by N is rounded up, and the number of PRBs included in the last RBG may be a value of the difference between the total number of PRBs in the frequency band other than the above guard band minus the total number of PRBs included in the previous N-1 RBGs.
  • the first PRB of the UE is the first PRB of the first RBG of the UE, so that the base station can obtain the starting position and the ending position of each RBG, that is, the UE can obtain the first location information.
  • the base station may further allocate the number of the confirmed resource block. For example, the base station may assign an allocation number to the PRB. For example, when the transmission band maps 25 PRBs, the UE may allocate the number of the resource blocks to which it is mapped from 0 to 24. Similarly, the base station can also number the RBGs. Further, the obtaining, by the base station, the first location information may also be that the UE determines the resource block in the carrier according to the LTE standard pre-defined resource block location in the carrier to obtain the first location information.
  • the base station acquires second location information.
  • the second location information indicates that the location of the N frequency domain elements is offset from the start location of the first resource block or the termination location of the second resource block, where the n frequency domain elements form a resource block.
  • N is a positive integer greater than 0, and N is not equal to an integer multiple of n. That is, the resource block re-determined by the base station is the frequency domain element of the Nth component resource block other than the intra-carrier protection band of the UE, or the frequency domain element of the Nth component resource block other than the intra-carrier protection band of the UE ends; and the base station
  • the resource block indicated by the first location information is the first or M+1th component other than the intra-carrier protection frequency bandwidth of the UE.
  • the frequency domain element constituting the PRB is a subcarrier
  • the frequency domain element constituting the RBG is a PRB.
  • the second location information may be used to re-determine the start location and/or the termination location of the first resource block on the carrier, and/or the start location and/or the termination location of the last resource block. Or specifying the starting position and/or ending position of the resource block, or the starting position and/or ending position of any one resource block, or the starting position and/or ending position of each resource block, on the re-determined carrier
  • the first resource block or the last resource block or the specified resource block is different from the location of the first resource block or the last resource block or the specified resource block indicated by the first location information.
  • the second location information may include: a start location and/or a termination location of the first resource block on the carrier, and/or a start location and/or a termination location of the last resource block, or a start of the specified resource block.
  • the second location information may include a start location of the first resource block or a termination location of the last resource block, where the first resource block, the last resource block, or the designated resource block may be the third resource block.
  • the offset may be N not equal to an integer multiple of n, but may be a sum of integer multiples of n and m, where m is 1 to A positive integer between (n-1).
  • the second location information may further include a start location and/or a termination location of the first resource block after re-confirmation, or a start location and/or a termination location of the last resource block, or a start of the specified resource block.
  • the location and/or termination location, or the start location and/or termination location of each of the total resource blocks relative to the start and/or termination location of the first resource block indicated by the first location information, or the last resource The starting position and/or the ending position of the block, or the starting position and/or the ending position of the specified resource block, or the offset of the starting position and/or the ending position of each of all resource blocks by N frequency domain elements Offset and / or offset direction.
  • the second location information includes an offset of the start position of the first resource block relative to a start position of the first resource block and/or an offset direction, and/or a start position of the last resource block relative to The offset and/or offset direction of the end position of the second resource block.
  • the offset of the offset N frequency domain elements may include any one of an offset of four frequency domain elements, an offset of six frequency domain elements, and an offset of eight frequency domain elements.
  • the second location information may include one of an offset and an offset direction, and the other information may be predefined or obtained by other information. For example, obtained in advance.
  • the offset can be any frequency domain unit.
  • the frequency domain unit may be a frequency domain element unit constituting a resource block, such as a subcarrier, and the size of the offset may be smaller than the size of the resource block.
  • the offset direction may be a forward direction or a backward direction, the forward direction may be a direction toward a higher frequency, and the backward direction may be a direction toward a lower frequency.
  • the first resource block, the last resource block, or the specified resource block may be the third resource block.
  • all frequency domain elements constituting the resource block are frequency domain elements that can be used for transmitting signals, and do not include DC subcarriers.
  • the second location information may further include a start position of the first resource block and a width of the first resource block, or a termination position of the last resource block and a width of the last resource block.
  • the first resource block, the last resource block, or the specified resource block may be the third resource block.
  • the base station may allocate a part of the frequency band resources to the UE1 in the frequency band, and allocate another part of the frequency band resources. Assigned to UE2, in order to use the band resources for maximum efficiency, the base station may perform band resource allocation according to the principle of maximizing the mismatch of the band resources of UE1 and the band resources of UE2. Referring to FIG.
  • the base station uses the frequency domain resource for maximum efficiency, and the base station allocates a carrier to UE1 and UE2, and the carrier of UE1 at this time
  • the carrier of UE2 has an overlap of about 3.6 MHz, and since UE1 and UE2 are swept by a 100 kHz grid and the subcarrier spacing is 15 kHz, the distance between the carrier center frequency of UE1 and the carrier center frequency of UE2 is an integer of 300 kHz. Times, where 300 is the least common multiple of 15 and 100, and the carrier center frequency of UE1 is lower than the carrier center frequency of UE2.
  • the base station may correspond to the mapped reference resource block position in the base station according to the location of the resource block indicated by the first location information corresponding to the carrier of the UE1, but the base station obtains the carrier correspondence of the UE2.
  • the location of the resource block indicated by the first location information may not coincide with the location of the mapped reference resource block in the base station, where the resource block mapped by the base station when communicating with the first accessed UE may be the reference resource.
  • the base station obtains the PRB corresponding to the carrier of the UE1, and the PRB distribution of the UE1 in FIG.
  • the base station obtains the PRB corresponding to the carrier of the UE2 and the PRB distribution of the UE2 of FIG. 3, and we can know that the base station obtains the first location information of the UE2.
  • the location of the indicated resource block does not coincide with the mapped reference resource block location in the base station, so that the base station needs to allocate resources for UE1 and UE2 to communicate at least at the same time, the base station cannot use resources continuously and waste resources, wherein: 3, when the first PRB indicated by the first location information of the UE1 obtained by the base station The start position and the end position are the first subcarrier and the twelfth subcarrier on the system band of the base station, and the base station obtains the start position and the end position of the second PRB of the UE1 as the thirteenth subcarrier on the system band of the base station and The 24th subcarrier; when the base station obtains the start position and the end position of the first PRB indicated by the first location information of the UE2 is the 81st subcarrier
  • the PRB of the UE1 obtained by the base station does not coincide with the PRB of the UE2 obtained by the base station.
  • the base station invokes the first PRB of the UE2 to communicate with the UE2, the base station cannot invoke the seventh PRB of the UE1 or the eighth PRB of the UE1 to communicate with the UE1, because the seventh PRB of the UE1 or the eighth of the UE1 A part of the subcarriers of the PRB has been occupied by the first PRB of the UE2, and cannot be called, so that the base station cannot continuously use resources.
  • the base station in order to enable the base station to continuously use resources, when the base station cannot continuously use resources, the base station may re-determine the location of the resource block, so that the position of the re-determined resource block coincides with the location of the base resource block of the base station. , thereby effectively improving resource utilization.
  • the base station when the base station needs to re-determine the location of the resource block, the base station acquires the second location information.
  • the base station when the base station acquires the second location information, the base station may send the second location information to the UE.
  • the base station determines a third resource block according to the second location information and the second location information.
  • the base station when the second location information includes an offset and/or an offset direction offset from the N frequency domain elements, the base station is in the first location according to the acquired offset and the offset direction.
  • the offset is determined based on the start position of the first resource block indicated by the information or the end position of the second resource block, thereby determining the third resource block.
  • the first location information indicates the start position of the first resource block
  • the offset direction is the backward direction
  • the offset is 4 subcarriers
  • the base station is based on the start position of the first resource block.
  • Deviating 4 subcarriers in the backward direction determining a starting position of the third resource block, and further determining a third resource block according to the reference resource block width; when the first location information indicates a starting position of the first resource block, the offset When the direction is backward, when the offset is 8 subcarriers, the base station offsets 8 subcarriers in the backward direction based on the starting position of the first resource block, and determines the starting position of the third resource block, and then according to The reference resource block width determines the third resource block; when the first location information indicates the start position of the first resource block, the offset direction is the backward direction, and the offset is 6 subcarriers, then The base station offsets 6 subcarriers in the backward direction based on the starting position of the first resource block, determines a starting position of the third resource block, and further determines a third resource block according to the reference resource block width; when the first location information indicates The termination position of the second resource block, the offset direction is the forward direction, and when the offset is 6 subcarrier
  • the confirmed third resource block occupies the guard band, and when the base station is in the second resource block.
  • the confirmed third resource block occupies the guard band.
  • the base station may first terminate the end position of the third resource block.
  • the base station may The starting position of the third resource block is taken as the ending position of the last resource block, and the last resource block confirmed is taken as the third resource block.
  • the number of resource blocks acknowledged by the base station after the offset is one less than the number of resource blocks mapped before the base station offset. Therefore, after the base station performs the offset in the forward direction, the base station may also confirm the frequency domain resource between the last resource block and the high frequency guard band as a non-standard resource block, where the size of the non-standard resource block is Less than the reference resource block width. Further, after the base station performs the backward direction offset, the base station may further confirm the frequency domain resource between the first resource block and the low frequency guard band as a non-standard resource block, where the non-standard resource block The size is less than the base resource block width.
  • the frequency band of the base station is 6.4 MHz
  • the base station allocates a carrier of 5 MHz to the UE1
  • the base station allocates a carrier of 5 MHz to the UE2, wherein the carriers of the UE1 and the UE2 have an overlap of 3.6 MHz.
  • the carrier of UE1 may be the lowest frequency of 5 MHz in 6.4 MHz.
  • the center frequency of the carrier of the UE2 and the center frequency of the frequency band of the UE1 are 1200 kHz
  • the location of the PRB indicated by the first location information corresponding to the carrier of the UE2 obtained by the base station may be As shown in FIG.
  • the location of the PRB indicated by the first location information corresponding to the carrier of the UE2 obtained by the base station is offset from the position of the reference resource block mapped by the base station by 4 subcarriers in the forward direction or offset by 8 in the backward direction.
  • Subcarriers are sequentially sorted according to the frequency from low to high, starting from the first subcarrier, and the fifth subcarrier is used as the starting position of the first PRB of the UE2, that is, the fifth to the 16th subcarriers are one.
  • the 17th to 28th subcarriers are the second PRB, others
  • the location of the PRB and so on, and the location of the PRB obtained by the base station according to the first location information corresponding to the carrier of the UE2 is the first PRB starting from the first subcarrier, and thus, the base station according to the first location corresponding to the carrier of the UE2
  • the position of the PRB obtained by the information is shifted by 4 subcarriers in the forward direction or 8 subcarriers in the backward direction with respect to the position of the reference resource block mapped by the base station.
  • the second location information corresponding to the carrier of the UE2 obtained by the base station may include an offset of 4 subcarriers and an offset direction of a backward direction, or an offset.
  • the amount is 8 subcarriers and the offset direction is the forward direction.
  • the base station may offset the start position of the first resource block or the end position of the second resource block indicated by the UE2 first location information obtained by the base station according to the second location information corresponding to the UE2, to obtain the third resource block.
  • the base station is caused to re-determine all resource blocks according to the third resource block, and all the resource blocks overlap with the base resource blocks mapped by the base station.
  • the base station offsets from the center of the frequency band (N PRB+6 subcarriers) as the left or right boundary of a third resource block, so that the offset is a multiple of 6 subcarriers, and the offset direction may be forward.
  • the base station offsets from the center of the frequency band (N PRB+6 subcarriers) as the left or right boundary of a third resource block, so that the offset is a multiple of 6 subcarriers, and the offset direction may be forward.
  • Direction or backward direction when the frequency band of the base station that the UE accesses is 3 MHz, 5 MHz, or 15 MHz, if the UE can only use the frequency band corresponding to the six PRB
  • the base station may determine the start position and/or the end position of the block, or the start position and/or the end position of any one resource block, or the start position and/or the end position of each resource block, the base station may determine according to the second location information The third resource block.
  • the base station may re-determine the first resource block according to the starting location of the first resource block, and determine the first resource block as the third resource block.
  • the starting position of the first resource block may not coincide with the starting position of the carrier frequency band of the UE, where the guard band of the carrier may be a frequency domain range of 5% of the carrier bandwidth on both sides of the carrier;
  • the base station may re-determine the last resource block according to the termination position of the last resource block, and determine the last resource block as the third resource block.
  • the termination position of the last resource block may not coincide with the termination position outside the guard band of the carrier of the UE, where the guard band of the carrier may be a frequency domain range of 5% of the carrier bandwidth on both sides of the carrier.
  • the base station when the base station performs the offset in the forward direction based on the starting position of the first resource block, the base station can terminate the offset third resource block. Bit Set as the starting position of the first resource block, and use the first resource block to be confirmed as the third resource block; when the base station shifts the offset direction based on the end position of the second resource block to the backward direction
  • the base station may use the starting position of the offset third resource block as the ending position of the last resource block, and use the last resource block as the third resource block.
  • the lowest frequency boundary of the first resource block (third resource block) of the UE obtained by the base station is not the guard band frequency boundary and/or the highest frequency boundary of the last resource block is not the frequency boundary of the guard band, thereby being the first complete
  • Some of the frequency domain resources between the resource block and the low frequency guard band do not belong to any complete resource block and/or some frequency domain resources do not belong to any complete resource block between the last complete resource block and the high frequency guard band.
  • the portion of the frequency domain resources may include available resources available for signal transmission and/or unavailable resources not available for signal transmission.
  • the second location information when the second location information includes the start location of the first resource block, the second location information may further include the first resource block width or the first resource block. The termination location, or the base station's first resource block width.
  • the base station may determine the termination location of the first resource block according to the width of the first resource block.
  • the start position and the end position of the first resource block may be the location of a part of the frequency domain resource between the first complete resource block and the low frequency guard band that does not belong to any complete resource block, where the first complete resource block A portion of the frequency domain resources between the low frequency guard band and the low frequency guard band that are not part of any complete resource block may be available resources between the first full resource block and the low frequency guard band for signal transmission.
  • the starting position and the ending position of the first resource block are the starting position and the ending position of the part of the frequency domain resource
  • the base station may determine the part of the frequency domain resource as the first according to the starting position and the ending position of the first resource block.
  • a resource block, the first resource block is set as a third resource block.
  • the width of the first resource block (the third resource block) is smaller than the reference resource block width, that is, the size of the first resource block (the third resource block) is smaller than the reference resource block size.
  • the starting position and the ending position of the first resource block determined by the base station may also be part of the frequency domain resource between the first complete resource block and the low frequency guard band that does not belong to any complete resource block, and the first complete The location of the resource block, wherein a portion of the frequency resource between the first complete resource block and the low frequency guard band that does not belong to any complete resource block may be used for signal transmission between the first complete resource block and the low frequency guard band
  • the available resources, the start position and the end position of the first resource block included in the start position and the end position of the first resource block are the start positions of the part of the frequency domain resource and the adjacent first complete resource block.
  • the base station may determine, according to the start position and the end position of the first resource block, the part of the frequency domain resource and the first complete resource block as the first resource block, and set the first resource block as the third resource block.
  • the width of the first resource block (the third resource block) The degree is greater than the reference resource block width, that is, the size of the first resource block (the third resource block) is larger than the reference resource block size.
  • the width of the first resource block is the reference resource block width; when the first complete resource block and the low frequency guard band are When the frequency domain resource is not used for signal transmission, the width of the first resource block is smaller than the reference resource block width.
  • the width of the last resource block is the reference resource block width; when the frequency between the last complete resource block and the low frequency guard band When the domain resource is not used for signal transmission, the width of the last resource block is smaller than the reference resource block width.
  • the reference resource block width can be a standard predefined resource block width.
  • a resource block whose width is equal to the width of the reference resource block is called a complete resource block or a standard resource block, and a resource block whose width is smaller than the width of the reference resource block is called a non-complete resource block or a non-standard resource block.
  • the second location information when the second location information includes the termination location of the last resource block, the second location information may further include the width of the last resource block or the start position of the last resource block, or the first resource of the base station. Block width.
  • the base station may determine the starting location of the last resource block according to the width of the last resource block.
  • the start position and the end position of the last resource block may be the position of the part of the frequency domain resource that does not belong to any complete resource block between the first complete resource block and the high frequency guard frequency bandwidth, wherein the last number is A portion of the frequency domain resources between the complete resource block and the high frequency guard band that do not belong to any complete resource block may be the available resources available for signal transmission between the first full resource block and the high frequency guard band.
  • the start position and the end position of the last resource block included in the start position and the end position of the last resource block are the start position and the end position of the part of the frequency domain resource, and the base station may be based on the last resource block.
  • the start position and the end position determine that the part of the frequency domain resource is the last resource block, and the resource block is set as the third resource block.
  • the width of the last resource block (the third resource block) is smaller than the reference resource block width, that is, the size of the last resource block (the third resource block) is smaller than the reference resource block size.
  • the starting position and the ending position of the last resource block determined by the base station may also be any between the last full resource block and the high frequency guard band.
  • the base station may determine, according to the start position and the end position of the last resource block, the part of the frequency domain resource and the first complete resource block of the last to be the last resource block, and set the last resource block to the third resource block.
  • the width of the last resource block (the third resource block) is greater than the reference resource block width, that is, the size of the last resource block (the third resource block) is greater than the reference resource block size.
  • the width of the first resource block is the reference resource block width; when the first complete resource block and the low frequency guard band are When the frequency domain resource is not used for signal transmission, the width of the first resource block is smaller than the reference resource block width.
  • the width of the last resource block is the reference resource block width; when the frequency between the last complete resource block and the low frequency guard band When the domain resource is not used for signal transmission, the width of the last resource block is smaller than the reference resource block width.
  • the reference resource block width can be a standard predefined resource block width.
  • the size of the complete resource block is a resource block size determined according to a predefined manner according to the carrier, for example, the size of the complete PRB is 12 subcarriers, and the size of the complete RBG is the RBG of the carrier other than the last RBG. size.
  • the base station communicates with the UE according to the third resource block.
  • the base station determines all the resource blocks corresponding to the UE according to the third resource block and the reference resource block width, where the boundary positions of the adjacent resource blocks coincide. Further, when the resource block determined by the base station in the foregoing embodiment includes the third resource block and the non-standard resource block, the base station determines, according to the third resource block, the non-standard resource block, and the reference resource block width, all the resource blocks corresponding to the UE, The boundary positions of adjacent resource blocks coincide.
  • the size of at least one resource block in the re-confirmed resource block of the base station is the same as the size of at least one resource block in the resource block determined by the base station according to the first location information. That is, the base station may include at least one resource block in all resource blocks determined according to the third resource block.
  • the number of frequency domain elements is the same as the number of frequency domain elements included in at least one of the resource blocks determined by the base station according to the first location information.
  • the base station can overlap the resource block positions of the UEs with multiple carriers overlapping according to the needs of overlapping multiple carriers, and coincide with the location of the reference resource block of the base station, so that the base station can Continuous use of resources to improve the efficiency of resource use.
  • the base station may obtain the number of all the determined resource blocks, where the base station may obtain the number of the PRB or the number of the RBG.
  • the relationship between the number of the PRB obtained by the UE and the subcarrier may be: among them, For the number of elements in each complete resource block, k is an integer greater than or equal to 0, k0 is 0 or 1 or 2 or -1 or -2, and n PRB is the number of the PRB. K0 is the value of the offset of the first position after re-confirmation with respect to the second position divided by 4, wherein the starting number of the PRB may be 0.
  • the first location is relative or the relationship between the number of the base station acquiring the PRB and the subcarrier may be: among them,
  • k is an integer greater than or equal to 0
  • k0 is 0 or 1 or -1
  • nPRB is the number of the PRB.
  • K0 is the value of the offset of the first position after re-confirmation with respect to the second position divided by 6, wherein the starting number of the PRB may be zero.
  • the RBG number of the RBG may be: when the number of RBGs corresponding to the UE carrier is N RBG , the RBG may be obtained by using the total number of RBGs RBG and the RBG size P of the carrier, where the relationship between the RBG and the PRB is : among them The number of PRBs corresponding to the carrier. in case Then there is an RBG size of Where i is the distance or offset of the first PRB of the UE to the first RBG, in units of PRBs, where the first i PRBs outside the guard band in the carrier are incomplete RBGs.
  • the DC subcarrier of the carrier of the UE is one of the subcarriers of the PRB except the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier.
  • the DC subcarrier of the carrier of the UE is still a carrier center of the UE or a subcarrier adjacent to the carrier center of the UE.
  • the base station may communicate with the UE according to the determined resource block.
  • the signal may include at least one or more of a reference signal, control information, feedback information, a synchronization signal, a random access signal, and a broadcast signal.
  • the base station determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the base station is configured according to the third resource.
  • the block communicates with the base station, which enables the base station to flexibly determine the location of the resource block and increases the flexibility of use of the frequency domain resource.
  • the base station can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • FIG. 7 is a flowchart of another embodiment of a method for determining a resource block according to the present invention. A method of determining a resource block is explained below from the base station side. As shown in FIG. 7, a method for determining a resource block according to this embodiment may include:
  • the base station acquires carrier information of the UE.
  • the base station determines, according to the carrier information, first location information corresponding to the UE.
  • the base station determines second location information according to a relative relationship between a carrier of the UE and a first system frequency band.
  • the first system frequency band is one of the at least one system frequency band in which the UE is configured in the access base station, and the system frequency band is known by the UE.
  • the base station may determine the second location information according to the relative relationship between the first system frequency band and the carrier of the UE. Specifically, the base station may determine the second location information according to a relative position of a center frequency of the carrier of the UE and a center frequency of the first system band. It can be known from the above embodiment that since the UE is swept by a 100 kHz grid and the subcarrier spacing is 15 kHz, the center frequency of the carrier of the UE is separated from the center frequency of the first system band by an integer multiple of 300 kHz.
  • the base station may determine, according to a distance between a center frequency of the carrier of the UE and a center frequency of the first system band, a center frequency offset of the center frequency of the carrier of the UE with respect to the first system band, thereby determining an offset and In the offset direction, the second position information is obtained.
  • the determining, by the base station, the offset may be that the base station will obtain the center frequency of the carrier of the UE relative to the first system frequency.
  • the center frequency offset of the band is divided by the reference resource block width, and the remainder obtained is the offset of the first position relative to the second position.
  • the base station determines that the offset direction may be that when the center frequency of the carrier of the UE is positive with respect to the center frequency offset of the system band, the offset direction is a backward direction when the center frequency of the carrier of the UE is relative to the system band. When the center frequency offset is negative, the offset direction is the forward direction.
  • the base station may further determine the second location information according to the relative relationship between the DC subcarrier of the carrier of the UE and the DC subcarrier of the first system band. Specifically, the base station may determine, according to the distance between the DC subcarrier of the carrier and the DC subcarrier of the first system band, a DC subcarrier offset of the DC subcarrier of the carrier relative to the first system band, thereby determining a partial offset.
  • the second position information is obtained by shifting and shifting directions.
  • the determining, by the base station, the offset may be that the base station divides the obtained DC subcarrier of the carrier of the UE with respect to the DC subcarrier offset of the first system band by the reference resource block width, and obtains a remainder as an offset.
  • the base station determines that the offset direction may be that when the DC subcarrier of the DC subcarrier of the UE is positive with respect to the DC subcarrier offset of the first system band, the determined offset direction is a backward direction, when the UE When the DC subcarrier of the carrier is negative relative to the DC subcarrier offset of the first system band, the determined offset direction is the forward direction.
  • the base station may further determine the second location information according to the relative position of the RS sequence of the carrier of the UE and the RS sequence of the first system band. Specifically, the base station may determine the offset and the offset direction according to the RS sequence offset of the RS sequence of the carrier relative to the first system band, to obtain the second location information.
  • the base station determines that the offset may be that the base station uses the RS sequence of the acquired carrier with respect to the RS sequence offset of the first system band as an offset, and the base station determines that the offset direction may be opposite to the RS sequence of the carrier.
  • the RS sequences of a system band are the same.
  • the RS may be various RSs such as CRS, CSI-RS, and UE-specific RS.
  • the base station determines a third resource block according to the second location information and the second location information.
  • the base station communicates with the UE according to the third resource block.
  • step S500, step S501, step S503, and step S504 can be referred to the specific implementation manners of step S400, step S401, step S403, and step S404 in the foregoing embodiment, and are not performed here. Narration.
  • the base station determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information
  • the base station communicates with the base station according to the third resource block, which enables the base station to flexibly determine the resource block location and increases the flexibility of the frequency domain resource usage.
  • the base station can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • FIG. 8 is a flowchart of still another embodiment of a method for determining a resource block according to the present invention.
  • a method for determining a resource block according to this embodiment may include:
  • the base station acquires carrier information of the UE.
  • the base station determines, according to the carrier information, first location information corresponding to the UE.
  • the base station determines the second location information according to a relative relationship between a carrier of the UE and an access frequency band.
  • the access frequency band is a frequency band that the base station randomly accesses when the UE allocates a carrier or a pre-band when the UE accesses the base station.
  • the base station may determine the second location information according to the relative relationship between the carrier and the access frequency band. Specifically, the base station may determine the second location information according to the relative position of the center frequency of the carrier and the center frequency of the access band. Specifically, the base station may determine the offset of the center frequency of the carrier relative to the center frequency of the access band according to the distance between the center frequency of the carrier and the center frequency of the access band, thereby determining the offset and the offset direction. , obtain the second location information.
  • the base station determines that the offset may be that the base station divides the center frequency of the acquired carrier's carrier frequency with respect to the center frequency offset of the access frequency band by the reference resource block width, and the obtained remainder is an offset, and the base station determines the offset.
  • the direction of the shift may be that when the center frequency of the carrier of the UE is positive with respect to the center frequency of the access band, the determined offset direction is a backward direction when the center frequency of the carrier of the UE is relative to the access. When the center frequency offset of the frequency band is negative, the determined offset direction is the forward direction.
  • the base station may further determine the second location information according to the relative relationship between the DC subcarrier of the carrier and the DC subcarrier of the access band. Specifically, the base station may determine, according to the distance between the DC subcarrier of the carrier and the DC subcarrier of the access band, a DC subcarrier offset of the DC subcarrier of the carrier relative to the access band, thereby determining an offset. And the offset direction to obtain the second position information.
  • the determining, by the base station, the offset may be that the base station divides the obtained DC subcarrier of the carrier of the UE with respect to the DC subcarrier offset of the access band by the reference resource block width, and obtains a remainder as an offset
  • the base station Determining the offset direction may be that when the DC subcarrier of the carrier of the UE is positive with respect to the DC subcarrier offset of the access band, the offset direction is backward. Towards, when the DC subcarrier offset of the UE's carrier is negative relative to the DC subcarrier offset of the access band, the determined offset direction is the forward direction.
  • the base station determines a third resource block according to the second location information and the second location information.
  • the base station communicates with the UE according to the third resource block.
  • step S600, step S601, step S603, and step S604 can be referred to the specific implementation manners of step S400, step S401, step S403, and step S404 in the foregoing embodiment, and are not performed here. Narration.
  • the base station determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the base station is configured according to the third resource.
  • the block communicates with the base station, which enables the base station to flexibly determine the location of the resource block and increases the flexibility of use of the frequency domain resource.
  • the base station can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • FIG. 9 is a schematic flowchart diagram of an embodiment of a method for determining a frequency band according to the present invention. As shown in FIG. 9, a method for determining a frequency band according to an embodiment of the present invention includes the following steps:
  • the UE receives location information sent by the base station, where the location information indicates a location of the first frequency band, where the location information includes one or more of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or A multiple of the frequency domain granularity corresponding to the width of the carrier of the UE.
  • the UE generally determines the location of the frequency band based on the location information of the frequency band transmitted by the base station.
  • the location information of the frequency band transmitted by the base station includes a multiple of 100 kHz.
  • the UE may obtain an offset according to the multiple and 100 kHz, where the offset may be the DC subcarrier of the frequency band or the lowest frequency point relative to the known DC subcarrier or lowest of the UE.
  • the offset of the frequency point the UE may determine the DC subcarrier or the lowest frequency point of the frequency band according to the known frequency bit position and the offset, thereby determining the frequency band of the UE.
  • the base station needs to transmit a multiple of 200, and Log 2 is required. (200) signaling, which causes the base station to send a notification to the UE with a large signaling overhead and wastes signaling resources.
  • the first frequency band is a frequency band configured by the base station to the UE, and the first frequency band may be It is the carrier of the UE, or a part of the frequency band of the UE's carrier, such as 6 consecutive PRBs.
  • the carrier of the UE is a frequency band allocated by the base station to the UE according to the carrier processing capability or service requirement of the UE. For example, when the carrier processing capability of the UE is 5 MHz, the base station may allocate a frequency band of 5 MHz to the UE as a carrier. When the base station does not allocate a frequency band to the UE according to the carrier processing capability or service requirement of the UE, the frequency band is not a carrier. For example, when the carrier processing capability of the UE is 5 MHz, the base station allocates a frequency band of 4 MHz to the UE, and the frequency band is only a part of the frequency band of the UE.
  • the location information may include one or more of a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity, or a multiple of the frequency domain granularity corresponding to the width of the carrier of the UE. That is, the location information may include a multiple of the first frequency domain granularity, or a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity, or a multiple of the frequency domain granularity corresponding to the width of the carrier.
  • the UE may have a first frequency domain granularity, a second frequency domain granularity, or a corresponding relationship between a carrier width and a frequency domain granularity, where the first frequency domain granularity may be any one of 300 kHz or 900 kHz, and the second frequency domain granularity may be In addition to the first frequency domain granularity in 300 kHz or 900 kHz. Further, the first frequency domain granularity and the second frequency domain granularity may also be other values greater than 100 kHz as needed. According to the frequency domain granularity of the embodiment of the present invention, the overhead of saving base station configuration location information can be saved.
  • the location information includes a multiple of the frequency domain granularity corresponding to the width of the carrier
  • different carrier widths may correspond to different frequency domain granularities.
  • a large carrier bandwidth can correspond to a large frequency domain granularity, thereby saving the overhead of configuring the location information of the base station.
  • the UE confirms the first frequency band according to the location information.
  • the second frequency band is a frequency band known by the UE, that is, the second frequency band may be a frequency band known to the UE that the base station has allocated to the UE, or a UE that is predefined by the base station is known. Frequency band.
  • the UE parses the location information to obtain a multiple.
  • the location information includes the first frequency domain granular multiple
  • the UE obtains a specified offset of the specified location of the first frequency band from the second frequency band according to the first frequency domain granularity multiple and the first frequency domain granularity, where the specified location It can be a DC subcarrier or a center frequency.
  • the first frequency domain granularity is 900 kHz
  • the multiple of the first frequency domain granularity 2
  • the UE can obtain the DC subcarrier offset of the first frequency band relative to the DC subcarrier of the second frequency band.
  • the UE may perform offset 1800 kHz on the basis of the position of the DC subcarrier of the second frequency band to obtain the position of the subcarrier of the first frequency band, thereby determining the first frequency band of the UE.
  • the UE obtains according to the first frequency domain granular multiple, the second frequency domain granular multiple, the first frequency domain granularity, and the second frequency domain granularity.
  • a specified offset of the designated location of the first frequency band relative to the second frequency band, wherein the designated location may be a direct current subcarrier or a center frequency.
  • the UE may
  • the UE When the location information includes a multiple of the frequency domain granularity corresponding to the width of the carrier, the UE first acquires the width of the carrier of the UE, and obtains the frequency domain granularity according to the correspondence between the width of the carrier and the granularity of the frequency domain, where different carrier widths may correspond.
  • Different frequency domain granularity For example, the corresponding relationship between the width of the carrier and the frequency domain granularity may be: when the carrier is 20 MHz, the frequency domain granularity is 900 kHz, and when the carrier is 5 MHz, the frequency domain granularity is 300 kHz, that is, the UE may obtain the frequency according to the carrier's carrier 5 MHz.
  • the domain granularity is 300 kHz.
  • the UE obtains a specified offset of the specified location of the first frequency band from the second frequency band according to a multiple of the frequency domain granularity corresponding to the width of the carrier and the obtained frequency domain granularity, where the designated location may be a DC subcarrier or a center frequency.
  • the UE communicates with the base station according to the first frequency band.
  • the UE receives location information, which is sent by the base station, for determining a location of the first frequency band, where the location information includes a multiple of the first frequency domain granularity, or a multiple of the first frequency domain granularity and a second frequency domain. a multiple of the granularity, or a multiple of the frequency domain granularity corresponding to the width of the carrier, confirming the first frequency band according to the location information, and finally communicating with the base station according to the confirmed first frequency band, thereby enabling the base station to flexibly adjust the notification signal The cost of the order, saving resources.
  • FIG. 10 is a schematic flowchart diagram of an embodiment of a method for determining a frequency band according to the present invention. A method of determining a frequency band will be described below from the base station side. As shown in FIG. 10, a method for determining a frequency band according to an embodiment of the present invention includes the following steps:
  • the base station acquires an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band, where the first frequency band is a frequency band configured by the base station to the UE, and the second frequency band is A frequency band known to the UE.
  • the first frequency band is a frequency band configured by the base station to the UE, and the first frequency band may be a carrier of the UE, or a part of a frequency band of the carrier of the UE, such as six consecutive PRBs.
  • the carrier of the UE is a frequency band allocated by the base station to the UE according to the carrier processing capability or service requirement of the UE. For example, when the carrier processing capability of the UE is 5 MHz, the base station may allocate a frequency band of 5 MHz to the UE as a carrier. When the base station does not allocate a frequency band to the UE according to the carrier processing capability or service requirement of the UE, the frequency band is not a carrier. For example, when the carrier processing capability of the UE is 5 MHz, the base station allocates a frequency band of 4 MHz to the UE, and the frequency band is only a part of the frequency band of the UE.
  • the second frequency band is a frequency band known by the UE, that is, the second frequency band may be a frequency band known to the UE that the base station has allocated to the UE, or a UE that is predefined by the base station is known. Frequency band.
  • the designated position of the first frequency band may be a DC subcarrier of the first frequency band or a center frequency of the first frequency band; the designated position of the second frequency band may be a DC subcarrier of the second frequency band or a second The center frequency of the band.
  • the base station may acquire an offset of the direct current subcarrier of the first frequency band from the direct current subcarrier of the second frequency band according to the direct current subcarrier of the first frequency band and the direct current subcarrier of the second frequency band.
  • the offset may be an absolute value of a difference between a frequency domain value of the DC subcarrier of the first frequency band and a frequency domain value of the DC subcarrier of the second frequency band.
  • the base station may acquire the offset of the center frequency of the first frequency band from the center frequency of the second frequency band according to the center frequency of the first frequency band and the center frequency of the second frequency band.
  • the offset may be an absolute value of a difference between a frequency domain value of a center frequency of the first frequency band and a frequency domain value of a center frequency of the second frequency band.
  • the offset of the center frequency of the first frequency band with respect to the center frequency of the second frequency band is
  • 400KHz.
  • the base station acquires location information according to the offset, where the location information includes At least one of a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity, or a multiple of the frequency domain granularity corresponding to the width of the carrier of the UE.
  • the base station may acquire the location information according to at least one of the first frequency domain granularity and the second frequency domain granularity, or according to the correspondence between the width of the carrier and the frequency domain granularity.
  • the base station when the base station has the first frequency domain granularity, wherein the first frequency domain granularity may be 900 kHz or 300 kHz.
  • the base station obtains a multiple of the first frequency domain granularity according to the offset and the first frequency domain granularity.
  • the base station when the base station has the first frequency domain granularity and the second frequency domain granularity, wherein the first frequency domain granularity may be 900 kHz or 300 kHz, and the second frequency domain granularity may be in the 900 kHz and 300 kHz. Another one outside of the frequency domain granularity. For example, when the first frequency domain granularity is 900 kHz, then the second frequency domain granularity is 300 kHz.
  • the base station acquires a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity according to the offset, the first frequency domain granularity, and the second frequency domain granularity.
  • the multiple of the first frequency domain granularity may be a rounding down of the offset and the first frequency domain granularity
  • the multiple of the second frequency domain granularity may be the remainder of the offset and the first frequency domain granularity.
  • the quotient of the two-frequency domain granularity For example, when the offset is 2100 kHz, the first frequency domain granularity is 900 kHz, and the second frequency domain granularity is 300 kHz, the multiple of the first frequency domain granularity is 2100 kHz divided by 900 kHz rounded down equal to 2, the first frequency The multiple of the domain granularity is 2100 kHz divided by the remainder of 900 kHz 300 kHz divided by 300 kHz equals 1.
  • the base station when the base station has the corresponding relationship between the carrier width and the frequency domain granularity, the base station first acquires the width of the carrier, and obtains the frequency domain granularity according to the correspondence between the carrier width and the frequency domain granularity, where different
  • the carrier width can correspond to different frequency domain granularities.
  • the corresponding relationship between the width of the carrier and the frequency domain granularity may be: when the carrier is 20 MHz, the frequency domain granularity is 900 kHz, and when the carrier is 5 MHz, the frequency domain granularity is 300 kHz, that is, the UE may obtain the frequency according to the carrier's carrier 5 MHz.
  • the domain granularity is 300 kHz.
  • the UE obtains a multiple of the frequency domain granularity corresponding to the width of the carrier of the UE according to the frequency domain granularity and the offset corresponding to the width of the carrier of the UE.
  • the multiple of the frequency domain granularity corresponding to the width of the carrier of the UE may be a quotient of the frequency domain granularity corresponding to the width of the carrier of the UE.
  • the base station sends the location information to the UE, so that the UE is according to the bit.
  • the information determines the first frequency band.
  • the base station acquires an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band, acquires location information according to the offset, and finally sends the location information by the base station.
  • the UE is configured to determine, by the UE, the first frequency band according to the location information, so that the base station can flexibly adjust the overhead of the signaling, and save resources.
  • FIG. 11 is a schematic flowchart diagram of an embodiment of a method for determining a resource block according to the present invention. As shown in FIG. 11, a method for determining a resource block according to an embodiment of the present invention includes the following steps:
  • the UE acquires location information indicating a location of a DC subcarrier of the UE, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside a resource block.
  • the DC subcarrier of the UE is not used for signal transmission, that is, it belongs to an unavailable resource, and is not divided into resource blocks.
  • the DC subcarrier is the 151th subcarrier
  • the 145th subcarrier is the starting subcarrier of the PRB. If the 151th subcarrier is a DC subcarrier, the UE identifies the 145th subcarrier to the 150th subcarrier and the 152th subcarrier to the 157th subcarrier as the first resource block, so that the UE is in the first resource block.
  • the 151th subcarrier is not included in the PRB, and the 158th subcarrier to 169 subcarriers are confirmed as another resource block.
  • the UE's DC subcarrier may be in an overlapping region with the transmission band of the other UE, the UE skips the DC subcarrier when the UE confirms the PRB corresponding to the DC subcarrier, but other UEs
  • the PRB of the location of the DC subcarrier of the UE is confirmed, if the DC subcarrier of the carrier is not the DC subcarrier of the other carrier, the UE corresponding to the other carrier does not skip the DC subcarrier to confirm the PRB.
  • the confirmed PRB includes the DC subcarrier. This makes the PRBs of the two carriers in the overlapping area unable to be aligned on the boundary, resulting in the resources of the carrier overlapping areas of multiple UEs being unable to be effectively utilized.
  • the UE acquires location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or information of the DC subcarrier outside the resource block.
  • the UE may obtain the location information by using a base station, or the UE may obtain the location information by using a self-test.
  • the UE may obtain the location information by using a self-test.
  • the UE may determine whether the DC subcarrier is located in a transmission frequency band of another carrier in the access base station, that is, whether the DC subcarrier of the carrier overlaps with the transmission frequency band of other carriers.
  • the location information acquired by the UE includes the DC subcarrier in the resource block.
  • the information obtained by the UE includes the DC subcarrier when the UE determines that the DC subcarrier is not located in the transmission band of the other carrier in the access base station, that is, when the DC subcarrier of the UE does not overlap with the transmission band of the other carrier.
  • Information outside the resource block is used to transmit signals.
  • the UE When the location information includes information that the DC subcarrier is inside a resource block, the UE confirms the DC subcarrier as a subcarrier that constitutes a resource block, and determines a resource block according to the carrier of the UE.
  • the resource block may be a PRB.
  • the UE receives the information of the DC subcarrier of the UE in the resource block, the UE confirms the DC block of the UE as the component PRB when the UE confirms the resource block.
  • Subcarriers such that the number of valid subcarriers of the PRB is one less than the number of standard PRB subcarriers, and then all resource blocks are determined, so that the resource blocks of the UE correspond to the resource blocks of other UEs in the overlapping part. .
  • the carrier of the UE overlaps with other carriers at this time.
  • the UE may perform step S803.
  • the UE confirms the DC subcarrier as a subcarrier that is not a resource block, and determines a resource block according to the carrier of the UE. .
  • the resource block may be a PRB.
  • the UE acquires the information that the DC subcarrier of the UE is outside the resource block, when the UE confirms the resource block, the UE does not use the DC subcarrier of the UE as the PRB.
  • the number of valid subcarriers of the PRB is one less than the number of standard PRB subcarriers, and all resource blocks are determined on this basis.
  • the DC subcarrier of the UE does not overlap with the carriers of other UEs at this time.
  • the UE may perform step S903.
  • the UE communicates with the base station according to the resource block.
  • the UE may obtain location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or the DC subcarrier is outside the resource block.
  • the information when the location information includes information that the DC subcarrier is inside the resource block, the UE confirms the DC subcarrier as a subcarrier that constitutes a resource block, and determines a resource block according to the carrier of the UE.
  • the UE When the location information includes information that the DC subcarrier is outside the resource block, the UE confirms the DC subcarrier as a subcarrier that is not a resource block, and determines a resource block according to the carrier of the UE, The UE communicates with the base station according to the determined resource block, which makes it possible to flexibly adjust the resource block according to the carrier overlap condition.
  • multiple carriers can be overlapped
  • the PRB can be aligned to improve resource usage.
  • FIG. 12 is a schematic flowchart diagram of an embodiment of a method for determining a resource block according to the present invention. A method of determining a resource block is explained below from the base station side. As shown in FIG. 12, a method for determining a resource block according to an embodiment of the present invention includes the following steps:
  • the base station acquires location information for describing a location of a DC subcarrier of the UE, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside a resource block. .
  • the base station acquires location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or information of the DC subcarrier outside the resource block.
  • the base station may obtain the location information, where the base station may determine whether the DC subcarrier of the UE is located in a transmission frequency band of another carrier in the base station, that is, whether the DC subcarrier of the UE overlaps with the transmission frequency band of other carriers in the base station.
  • the location information acquired by the base station includes information of the DC subcarrier within the resource block; when the base station determines that the DC subcarrier is not located in another carrier in the base station.
  • the transmission band is used to transmit signals.
  • the base station may send the location information to the UE, so that the UE determines the corresponding resource block according to the location information.
  • the base station When the location information includes information that the DC subcarrier is inside a resource block, the base station confirms the DC subcarrier as a subcarrier that constitutes a resource block, and determines a resource block according to the carrier of the UE.
  • the resource block may be a PRB.
  • the base station acquires the information of the DC subcarrier of the UE in the resource block, the base station confirms the DC subcarrier of the UE when determining the resource block corresponding to the UE.
  • the number of effective subcarriers of the PRB is reduced by one according to the number of standard PRB subcarriers, and then all resource blocks are determined according to the carrier of the UE, so that the resource blocks of the UE determined by the base station are
  • the resource blocks of other carriers correspond in overlapping portions.
  • the carrier of the UE overlaps with the transmission band of other carriers.
  • the base station may perform step S1003.
  • the base station confirms the DC subcarriers as subcarriers that are not a resource block, and determines a resource block according to the carrier of the UE.
  • the resource block may be a PRB.
  • the base station acquires the information that the DC subcarrier of the UE is outside the resource block, when the base station confirms the resource block, the base station does not use the DC subcarrier of the UE as the PRB.
  • the carrier of the UE does not overlap with the transmission band of the carrier of other UEs.
  • the base station may perform step S1003.
  • the base station communicates with the UE according to the determined resource block.
  • the base station may obtain location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or the DC subcarrier is outside the resource block.
  • the information when the location information includes information that the DC subcarrier is inside the resource block, the base station confirms the DC subcarrier as a subcarrier that constitutes a resource block, and determines a resource block according to the carrier of the UE.
  • the base station When the location information includes information that the DC subcarrier is outside the resource block, the base station confirms the DC subcarrier as a subcarrier that is not a resource block, and determines a resource block according to the carrier of the UE, The base station communicates with the UE according to the determined resource block, which enables the base station to flexibly adjust resource blocks according to carrier overlap conditions, thereby improving resource utilization rate.
  • a device may include:
  • the first obtaining unit 100 is configured to acquire carrier information.
  • a first determining unit 200 configured to determine first location information according to the carrier information, where the first location information indicates a starting location of a first resource block outside a guard band on a carrier, or a location information indicating a termination location of a second resource block outside the guard band on the carrier, wherein the first resource block is the first resource block outside the guard band, and the second resource block is the The last resource block outside the guard band, the carrier being the carrier corresponding to the carrier information.
  • the second acquiring unit 300 is configured to acquire second location information, where the second location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, where the n frequency domain elements are A resource block is formed, N is a positive integer greater than 0, and N is not equal to an integer multiple of n.
  • the second determining unit 400 is configured to determine a third resource block according to the first location information and the second location information.
  • the communication unit 500 is configured to, by the UE, communicate with the base station according to the third resource block.
  • the second obtaining unit 300 is specifically configured to receive the second location information sent by the base station.
  • the second obtaining unit 300 includes:
  • a first determining subunit configured to determine, by the UE, the second location information according to a relative relationship between the carrier and a first system frequency band, where the first system frequency band is a system frequency band known by the UE; or ,
  • a second determining subunit configured to determine the second location information according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band accessed by the UE.
  • the first determining subunit includes:
  • a third determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the first system band;
  • a fourth determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the first system band;
  • a fifth determining subunit configured to determine the second location information according to an RS sequence of the carrier and a relative position of an RS sequence of the first system band.
  • the second determining subunit includes:
  • a sixth determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the access band;
  • a seventh determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes: an offset of an offset of N frequency domain elements and/or an offset direction.
  • the second location information includes: a start location and/or a termination location of the first resource block or a start location and/or a termination location of the last resource block.
  • the second determining unit 400 is specifically configured to perform an offset on a start position of the first resource block or an end position of the second resource block according to the offset and the offset direction, where Determining the third resource block.
  • the N frequency domain elements include any one of four frequency domain elements, six frequency domain elements, and eight frequency domain elements.
  • the second determining unit 400 includes:
  • An eighth determining subunit configured to: when the second location information includes a starting location of the first resource block, determine a first resource block according to a starting location of the first resource block and a first resource block width Determining the first resource block as a third resource block;
  • a ninth determining subunit configured to: when the second location information includes a termination location of the last resource block, determine a last resource block according to a start location of the last resource block and a last resource block width, And determining the last resource block as a third resource block.
  • the communication unit comprises:
  • a tenth determining subunit configured to determine, according to the third resource block and a reference resource block width, all resource blocks of the UE, where boundary positions of adjacent resource blocks are coincident;
  • a communication subunit configured to communicate with the base station according to the all resource blocks.
  • the first resource block width and/or the width of the last resource block are different from the reference resource block width.
  • the resource block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is one of the subcarriers of the PRB except the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier.
  • the DC subcarrier of the carrier of the UE is still a carrier center of the UE or a subcarrier adjacent to the carrier center of the UE.
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the UE is configured according to the third resource.
  • the block communicates with the base station, which enables the UE to flexibly determine the resource block location and increases the flexibility of frequency domain resource usage.
  • the UE can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • this A base station according to an embodiment may include:
  • the first obtaining unit 600 is configured to acquire carrier information of the UE.
  • a first determining unit 700 configured to determine, by the base station, first location information corresponding to the UE according to the carrier information, where the second location information indicates a start of a first resource block outside a guard band on a carrier of the UE a start position, or the second location information indicating a termination location of a second resource block outside the guard band on the carrier, wherein the first resource block is the first resource block outside the guard band
  • the second resource block is the last resource block except the guard frequency bandwidth
  • the carrier is a carrier corresponding to the carrier information.
  • the second obtaining unit 800 is configured to acquire second location information, where the second resource block location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, n frequency domains
  • the elements are composed of one resource block, N is a positive integer greater than 0, and N is not equal to an integer multiple of n.
  • the second determining unit 900 is configured to determine a third resource block according to the second location information and the second location information.
  • the communication unit 1000 is configured to communicate with the UE according to the third resource block.
  • the base station includes:
  • a sending unit configured to send the second location information to the UE.
  • the second obtaining unit 600 includes:
  • a first determining subunit configured to determine second location information according to a relative relationship between the carrier and a first system frequency band, where the first system frequency band is a system frequency band of the UE;
  • a second determining subunit configured to determine the second location information according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band in which the UE accesses the base station.
  • the first determining subunit includes:
  • a third determining subunit configured to determine the second location information according to a relative relationship between a center frequency of the carrier and a center frequency of the first system band;
  • a fourth determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the first system band;
  • a fifth determining subunit configured to determine the second location information according to an RS sequence of the carrier and a relative position of an RS sequence of the first system band.
  • the second determining subunit includes:
  • a sixth determining subunit configured to use a center frequency of the carrier and a center of the access band The relative relationship of frequencies determines the second location information
  • a seventh determining subunit configured to determine the second location information according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes:
  • the second location information includes:
  • the starting position of the first resource block and/or the ending position of the last resource block are defined by the starting position of the first resource block and/or the ending position of the last resource block.
  • the second determining unit is specifically configured to: perform, according to the offset and the offset direction, the starting position of the first resource block or the termination position of the second resource block according to the offset and the offset direction. Move to determine the third resource block.
  • the N frequency domain elements include any one of four frequency domain elements, six frequency domain elements, and eight frequency domain elements, wherein the frequency domain elements form the resource block.
  • the second determining unit includes:
  • An eighth determining subunit configured to: when the second location information includes a starting location of the first resource block, determine a first resource block according to a starting location of the first resource block and a first resource block width Determining the first resource block as a third resource block;
  • a ninth determining subunit configured to: when the second location information includes a termination location of the last resource block, determine a last resource block according to a start location of the last resource block and a last resource block width, And determining the last resource block as a third resource block.
  • the communication unit comprises:
  • a tenth determining subunit configured to determine, according to the third resource block and a reference resource block width, all resource blocks of the UE, where boundary positions of adjacent resource blocks are coincident;
  • a communication subunit configured to communicate with the base station according to the all resource blocks.
  • the first resource block width and/or the width of the last resource block are different from the reference resource block width.
  • the resource block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is one of a subcarrier type other than the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier in one PRB.
  • the DC subcarrier of the carrier of the UE is still a carrier center of the UE or a subcarrier adjacent to the carrier center of the UE.
  • the base station determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the base station is configured according to the third resource.
  • the block communicates with the base station, which enables the base station to flexibly determine the location of the resource block and increases the flexibility of use of the frequency domain resource.
  • the base station can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • a system for determining a resource block according to an embodiment of the present invention is provided. As shown in FIG. 15, a system for determining a resource block according to this embodiment may include:
  • an apparatus according to an embodiment of the present invention is provided. As shown in FIG. 16, an apparatus according to this embodiment may include:
  • the receiving unit 10 is configured to receive location information sent by the base station, where the location information indicates a location of the first frequency band, where the location information includes one or more of a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity. , or a multiple of the frequency domain granularity corresponding to the width of the carrier of the UE.
  • the determining unit 20 is configured to determine the first frequency band according to the location information.
  • the communication unit 30 is configured to communicate with the base station according to the first frequency band.
  • the determining unit 20 includes:
  • a first acquiring subunit configured to acquire, according to the first frequency domain granularity multiple and the first frequency domain granularity, a specified position of the first frequency band, relative to the second, when the location information includes the first frequency domain granularity multiple An offset of a specified position of the frequency band, the second frequency band being a frequency band known to the UE;
  • a first determining subunit configured to determine the first frequency band according to the offset
  • a second determining subunit configured to: when the location information includes the first frequency domain granular multiple and the second frequency domain granular multiple, according to the first frequency domain granular multiple, the second frequency domain granular multiple, and The first frequency domain granularity and the second frequency domain granularity acquire an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band;
  • a third determining subunit configured to determine the first frequency band according to the offset
  • a second acquiring subunit configured to acquire a width of a carrier of the UE when the location information includes a multiple of a frequency domain granularity corresponding to a width of a carrier of the UE, and according to a width of the carrier and a frequency domain Obtaining a frequency domain granularity corresponding to a width of a carrier of the UE;
  • a third acquiring sub-unit acquiring an offset of a specified position of the first frequency band from a specified position of the second frequency band according to a multiple of the frequency domain granularity and a frequency domain granularity corresponding to a width of the carrier of the UE;
  • a fourth determining subunit configured to determine the first frequency band according to the offset.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • the UE receives location information, which is sent by the base station, for determining a location of the first frequency band, where the location information includes a multiple of the first frequency domain granularity, or a multiple of the first frequency domain granularity and a second frequency domain. a multiple of the granularity, or a multiple of the frequency domain granularity corresponding to the width of the carrier, confirming the first frequency band according to the location information, and finally communicating with the base station according to the confirmed first frequency band, thereby enabling the base station to flexibly adjust the notification signal The cost of the order, saving resources.
  • a base station according to an embodiment of the present invention is provided. As shown in FIG. 17, a base station according to this embodiment may include:
  • the first obtaining unit 11 is configured to acquire an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band, where the first frequency band is a frequency band configured by the base station to the UE, and the second The frequency band is a frequency band known to the UE.
  • a second acquiring unit 21 configured to acquire location information according to the offset, where the location information includes at least one of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or with a UE
  • the width of the carrier corresponds to a multiple of the frequency domain granularity.
  • the sending unit 31 is configured to send the location information to the UE, so that the UE determines the first frequency band according to the location information.
  • the second obtaining unit 21 includes:
  • a first acquiring subunit configured to acquire, when the base station has a first frequency domain granularity, a multiple of the first frequency domain granularity according to the offset and the first frequency domain granularity, and a multiple of a frequency domain granularity as the location information;
  • a second acquiring subunit configured to acquire, according to the offset, the first frequency domain granularity, and the second frequency domain granularity, when the base station has a first frequency domain granularity and a second frequency domain granularity a multiple of the first frequency domain granularity and a multiple of the second frequency domain granularity, and the multiple of the first frequency domain granularity and the multiple of the second frequency domain granularity are used as the location information;
  • a third acquiring subunit configured to acquire a width of a carrier of the UE when the base station has a corresponding relationship between a carrier width and a frequency domain granularity
  • a fourth obtaining sub-unit configured to acquire a frequency domain granularity corresponding to a width of a carrier of the UE according to a correspondence between a width of the carrier and a frequency domain granularity
  • a fifth obtaining subunit configured to acquire, according to the offset and the frequency domain granularity corresponding to the width of the carrier of the UE, a multiple of a frequency domain granularity corresponding to a width of a carrier of the UE, and use the carrier of the UE
  • the width corresponds to a multiple of the frequency domain granularity as the location information.
  • the base station acquires an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band, acquires location information according to the offset, and finally sends the location information by the base station.
  • the UE is configured to determine, by the UE, the first frequency band according to the location information, so that the base station can flexibly adjust the overhead of the signaling, and save resources.
  • a system for determining a frequency band according to an embodiment of the present invention may include:
  • an apparatus according to an embodiment of the present invention is provided. As shown in FIG. 19, an apparatus according to this embodiment may include:
  • the obtaining unit 12 is configured to acquire location information indicating a location of the DC subcarrier of the device, where the location information includes information of the DC subcarrier within the resource block or information of the DC subcarrier outside the resource block.
  • a first confirming unit 22 configured to: when the location information includes the DC subcarrier, inside a resource block The information is confirmed as the subcarriers constituting the resource block, and the resource block is determined according to the carrier of the device.
  • a second confirming unit 32 configured to: when the location information includes information that the DC subcarrier is outside the resource block, identify the DC subcarrier as a subcarrier that is not a resource block, and according to the carrier of the device Determine the resource block.
  • the communication unit 42 is configured to communicate with the base station according to the resource block.
  • the obtaining unit includes:
  • a receiving subunit configured to receive the location information sent by the base station
  • a determining subunit configured to determine whether the DC subcarrier is located in another transmission frequency band in the base station, where the transmission frequency band is used to transmit a signal
  • the location information acquired by the acquiring unit includes information that the DC subcarrier is inside the resource block;
  • the location information acquired by the acquiring unit includes information that the DC subcarrier is outside the resource block.
  • the UE acquires location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or information of the DC subcarrier outside the resource block.
  • the UE may obtain the location information by using a base station, or the UE may obtain the location information by using a self-test.
  • the UE obtains the location information by using the self-test.
  • the UE may determine whether the DC subcarrier is located in a transmission frequency band of another carrier in the access base station, that is, whether the DC subcarrier of the UE overlaps with the transmission frequency band of other carriers.
  • the location information acquired by the UE includes information of the DC subcarrier within the resource block; when the UE determines that the DC subcarrier is not located in another carrier in the access base station
  • the transmission band is used to transmit signals.
  • a base station according to an embodiment of the present invention is provided.
  • this A base station according to an embodiment may include:
  • the obtaining unit 13 is configured to acquire location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or information of the DC subcarrier outside the resource block.
  • the first confirming unit 23 is configured to: when the location information includes the information that the DC subcarrier is inside the resource block, confirm the DC subcarrier as a subcarrier that constitutes a resource block corresponding to the UE, and according to the The carrier of the UE determines the resource block.
  • a second confirming unit 33 configured to: when the location information includes information that the DC subcarrier is outside the resource block, confirm the DC subcarrier as a subcarrier that is not a resource block corresponding to the UE, and according to The carrier of the UE determines a resource block.
  • the communication unit 43 is configured to communicate with the UE according to the resource block.
  • the base station may obtain location information indicating a location of the DC subcarrier of the UE, where the location information includes information of the DC subcarrier within the resource block or the DC subcarrier is outside the resource block.
  • the information when the location information includes information that the DC subcarrier is inside the resource block, the base station confirms the DC subcarrier as a subcarrier that constitutes a resource block, and determines a resource block according to the carrier of the UE.
  • the base station When the location information includes information that the DC subcarrier is outside the resource block, the base station confirms the DC subcarrier as a subcarrier that is not a resource block, and determines a resource block according to the carrier of the UE, The base station communicates with the UE according to the determined resource block, which enables the base station to flexibly adjust resource blocks and improve resource usage.
  • a system for determining a resource block according to an embodiment of the present invention is provided. As shown in FIG. 20, a system for determining a resource block according to this embodiment may include:
  • an apparatus according to an embodiment of the present invention is provided. As shown in FIG. 22, an apparatus according to this embodiment may include:
  • the processor 201 (the number of processors 201 in the proxy server may be one or more, FIG. 22 is exemplified by one processor), the memory 202, the output device 203, and the input device 204.
  • the processor 201, the memory 202, the output device 203, and the input device 204 can be connected by a bus or other means, wherein the memory 202 stores an application executed by the processor.
  • the processor performs the following steps:
  • first location information Determining, according to the carrier information, first location information, where the first location information indicates a start location of a first resource block outside a guard band on a carrier, or the first location information indicates protection on a carrier a termination location of the second resource block outside the frequency band, wherein the first resource block is a first resource block outside the guard band, and the second resource block is a last resource outside the guard band Block, the carrier is a carrier corresponding to the carrier information;
  • Obtaining second location information where the second location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, where n frequency domain elements form a resource block, and N is greater than a positive integer of 0, and N is not equal to an integer multiple of n;
  • the processor acquires the second location information specifically for:
  • the acquiring, by the processor, the second location information includes:
  • the second location information Determining the second location information according to a relative relationship between the carrier and a first system frequency band, where the first system frequency band is a system frequency band known by the UE; or
  • the second location information is determined according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band accessed by the UE.
  • the determining, by the processor, the second location information according to the relative relationship between the carrier and the first system frequency band includes:
  • the second location information is determined according to a relative position of an RS sequence of the carrier and an RS sequence of the first system band.
  • the processor determines the second bit according to the relative relationship between the carrier and the access frequency band.
  • the information includes:
  • the second location information is determined according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes: an offset of an offset of N frequency domain elements and/or an offset direction.
  • the second location information includes: a start location and/or a termination location of the first resource block or a start location and/or a termination location of the last resource block.
  • the processor determines, according to the first location information and the second location information, that the third resource block is specifically used to:
  • the N frequency domain elements include any one of four frequency domain elements, six frequency domain elements, and eight frequency domain elements.
  • the determining, by the processor, the third resource block according to the first location information and the second location information includes:
  • the second location information includes a starting location of the first resource block, determining a first resource block according to a starting location of the first resource block and a first resource block width, where the first resource block is Determined to be the third resource block;
  • the second location information includes a termination location of the last resource block, determining a last resource block according to a start location of the last resource block and a last resource block width, and the last resource block Determined as the third resource block.
  • the processor communicating with the base station according to the third resource block includes:
  • the first resource block width and/or the width of the last resource block are different from the reference resource block width.
  • the resource block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is one of the subcarriers of the PRB except the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier.
  • the DC subcarrier of the carrier of the UE is still a carrier center of the UE or a subcarrier adjacent to the carrier center of the UE.
  • a base station according to an embodiment of the present invention is provided. As shown in FIG. 23, a base station according to this embodiment may include:
  • the processor 301 (the number of processors 301 in the proxy server may be one or more, FIG. 23 is exemplified by one processor), the memory 302, the output device 303, and the input device 304.
  • the second processor 301, the memory 302, the output device 303, and the input device 304 may be connected by a bus or other means, wherein the memory 302 stores an application executed by the processor.
  • the processor performs the following steps:
  • first location information corresponding to the UE Determining, by the base station, first location information corresponding to the UE according to the carrier information, where the second location information indicates a starting location of a first resource block outside a guard band on a carrier of the UE, or The second location information indicates a termination location of the second resource block outside the guard band on the carrier, where the first resource block is the first resource block except the guard band, and the second resource block is The last resource block except the protection frequency bandwidth, where the carrier is a carrier corresponding to the carrier information;
  • the second resource block location information indicates that the location of the N frequency domain elements is offset from the start location or the termination location, where n frequency domain elements form a resource block, N Is a positive integer greater than 0, and N is not equal to an integer multiple of n;
  • the processor After the processor acquires the second location information, the processor further performs:
  • the acquiring, by the processor, the second location information includes:
  • the second location information is determined according to a relative relationship between the carrier and an access frequency band, where the access frequency band is a frequency band in which the UE accesses the base station.
  • the determining, by the processor, the second location information according to the relative relationship between the carrier and the first system frequency band includes:
  • the second location information is determined according to a relative position of an RS sequence of the carrier and an RS sequence of the first system band.
  • the determining, by the processor, the second location information according to the relative relationship between the carrier and the access frequency band includes:
  • the second location information is determined according to a relative relationship between a DC subcarrier of the carrier and a DC subcarrier of the access band.
  • the second location information includes:
  • the second location information includes:
  • the starting position of the first resource block and/or the ending position of the last resource block are defined by the starting position of the first resource block and/or the ending position of the last resource block.
  • the determining, by the base station, the third resource block according to the first location information and the second location information includes:
  • the base station performs offset according to the offset and the offset direction at a starting position of the first resource block or a termination position of the second resource block, and determines the third resource block.
  • the N frequency domain elements include any one of four frequency domain elements, six frequency domain elements, and eight frequency domain elements, wherein the frequency domain elements form the resource block.
  • the determining, by the base station, the third resource block according to the first location information and the second location information includes:
  • the base station determines a first resource block according to a start location of the first resource block and a first resource block width, and the first resource block The resource blocks are determined as the third resource block;
  • the base station Determining a last resource block according to a starting position of the last resource block and a last resource block width, and determining the last resource block as a third resource block.
  • the communicating, by the base station, with the UE according to the third resource block includes:
  • the base station communicates with the base station according to the all resource blocks.
  • the first resource block width and/or the width of the last resource block are different from the reference resource block width.
  • the resource block includes: a physical resource block PRB or a resource block set RBG.
  • the DC subcarrier is one of a subcarrier type other than the middle two subcarriers, the lowest frequency subcarrier, and the highest frequency subcarrier in one PRB.
  • the DC subcarrier of the carrier of the UE is still a carrier center of the UE or a subcarrier adjacent to the carrier center of the UE.
  • a device in this embodiment may include:
  • the processor 401 (the number of processors 401 in the proxy server may be one or more, FIG. 24 is exemplified by one processor), the memory 402, the output device 403, and the input device 404.
  • processor 401, memory 402, output device 403, and input device 404 may be connected by a bus or other means, wherein memory 402 stores an application executed by the processor.
  • the processor performs the following steps:
  • the location information indicates a location of the first frequency band, the location information including one or more of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or with a device a multiple of the frequency domain granularity corresponding to the width of the carrier;
  • the determining, by the processor, the first frequency band according to the location information includes:
  • the location information includes the first frequency domain granularity multiple, obtaining an offset of a specified location of the first frequency band from a specified location of the second frequency band according to the first frequency domain granularity multiple and the first frequency domain granularity
  • the second frequency band is a frequency band known to the device
  • the location information includes the first frequency domain granular multiple and the second frequency domain granular multiple, according to the first frequency domain granular multiple, the second frequency domain granular multiple, and the first frequency domain granularity and the second The frequency domain granularity acquires an offset of a specified position of the first frequency band with respect to a specified position of the second frequency band;
  • the first frequency band is determined based on the offset.
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • an apparatus may include:
  • the processor 501 (the number of processors 501 in the proxy server may be one or more, FIG. 25 is exemplified by one processor), the memory 502, the output device 503, and the input device 504.
  • the processor 501, the memory 502, the output device 503, and the input device 504 may be connected by a bus or other means, wherein the memory 502 stores an application executed by the processor.
  • the processor performs the following steps:
  • the first frequency band is a frequency band configured by the base station to the UE, and the second frequency band is known to the UE One frequency band;
  • the location information includes at least one of a multiple of a first frequency domain granularity and a multiple of a second frequency domain granularity, or a frequency domain granularity corresponding to a width of a carrier of the UE Multiple of
  • the obtaining, by the processor, the location information according to the offset includes:
  • the designated location of the first frequency band includes a center frequency of the first frequency band or a DC subcarrier of the first frequency band;
  • the designated location of the second frequency band includes a center frequency of the second frequency band or a DC subcarrier of the second frequency band;
  • the first frequency domain granularity is any one of 300 kHz or 900 kHz
  • the second frequency domain granularity is another one other than the first frequency domain granularity in 300 kHz or 900 kHz.
  • a device in this embodiment may include:
  • the processor 601 (the number of processors 601 in the proxy server may be one or more, FIG. 26 is exemplified by one processor), the memory 602, the output device 603, and the input device 604.
  • the processor 601, the memory 602, the output device 603, and the input device 604 may be connected by a bus or other means, wherein the memory 602 stores an application executed by the processor.
  • the processor performs the following steps:
  • location information indicating a location of a DC subcarrier of the device, where the location information includes information of the DC subcarrier within a resource block or information of the DC subcarrier outside a resource block;
  • the location information includes the information that the DC subcarrier is inside the resource block
  • the DC subcarrier is confirmed as a subcarrier that constitutes a resource block, and the resource block is determined according to the carrier of the device;
  • the location information includes information that the DC subcarrier is outside the resource block
  • the DC subcarrier is confirmed as a subcarrier that is not a resource block, and the resource block is determined according to the carrier of the device;
  • the location information obtained by the processor for describing a location of a DC subcarrier of the device includes:
  • the acquired location information includes information that the DC subcarrier is inside the resource block
  • the acquired location information includes information that the DC subcarrier is outside the resource block.
  • an apparatus according to an embodiment of the present invention is provided. As shown in FIG. 27, an apparatus according to this embodiment may include:
  • the processor 701 (the number of processors 701 in the proxy server may be one or more, FIG. 27 is exemplified by one processor), the memory 702, the output device 703, and the input device 704.
  • the processor 701, the memory 702, the output device 703, and the input device 704 may be connected by a bus or other means, wherein the memory 702 stores an application executed by the processor.
  • the processor performs the following steps:
  • the location information includes the information that the DC subcarrier is inside the resource block
  • the DC subcarrier is confirmed as a subcarrier that constitutes a resource block corresponding to the UE, and the resource block is determined according to the carrier of the UE;
  • the DC is The subcarrier is confirmed as not a subcarrier constituting a resource block corresponding to the UE, and the resource block is determined according to the carrier of the UE;
  • the acquiring, by the processor, the location information used to describe the location of the DC subcarrier of the UE includes:
  • the acquired location information includes information that the DC subcarrier is inside the resource block
  • the acquired location information includes information that the DC subcarrier is outside the resource block
  • the method includes:
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information, so that the UE
  • the third resource block communicates with the base station, which enables the UE to flexibly determine the resource block location and increases the flexibility of frequency domain resource usage.
  • the UE can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • the UE determines the first location information according to the acquired carrier information, and acquires the second location information, and determines the third resource block according to the first location information and the second location information. Therefore, the UE communicates with the base station according to the third resource block, which enables the UE to flexibly determine the resource block location and increases the flexibility of the frequency domain resource usage. And, when multiple UEs access the base station, The UE can flexibly determine the location of the resource block, so that the location of the resource block overlaps with the reference resource block of the base station, thereby effectively improving resource utilization.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了种确定资源块的方法,包括:UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而基站根据第三资源块与基站通信。本发明实施例还公开了一种基站和系统。釆用本发明,使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。

Description

一种确定资源块的方法、装置及系统 技术领域
本发明涉及通信技术领域,尤其涉及一种确定资源块的方法、装置及系统。
背景技术
在一些网络结构的标准中定义了标准带宽,如3GPP(3rd Generation Partnership Project,第三代合作伙伴计划标准)中定义的长期演进LTE(Long Term Evolution,长期演进)系统的标准带宽包括:1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz。
但在实际运营环境中,由于频谱的划分或者其他资源重新规划的原因,会产生很多不同于上述标准带宽的非标准带宽,如:6.2MHz、6.5MHz、12MHz或13MHz等非标准带宽。
当基站在使用非标准带宽的频带系统时,基站可根据UE(User Equipment,用户设备)的载波处理能力或业务需求对UE分配载波,如:当终端UE具有接入并处理5MHz标准带宽对应的业务需求时,基站可以在非标准带宽中划分出5MHz载波分配给UE,使得UE能够接入系统并能够在分配的载波中与基站进行通信。但是,当基站对UE进行分配载波后,UE只能根据其载波进行确定其资源块的位置,使得资源块的位置无法进行灵活调整,资源使用方式受限。
发明内容
本发明实施例提供了一种确定资源块的方法,可以灵活确定资源块位置,增加了频域资源使用的灵活性。
本发明第一方面提供一种确定资源块的方法,所述方法包括:
用户设备UE获取载波信息;
所述UE根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
所述UE获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块;
所述UE根据所述第三资源块与基站通信。
在第一种可能的实现方式中,所述UE获取第二位置信息包括:
所述UE接收基站发送的所述第二位置信息。
结合第一方面,在第二种可能的实现方式中,所述UE获取第二位置信息包括:
所述UE根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述UE已知的一个系统频带;或者,
所述UE根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入的频带。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述UE根据所述载波与第一系统频带的相对关系确定所述第二位置信息包括:
所述UE根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
所述UE根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
所述UE根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
结合第一方面的第二种可能的实现方式,在第四种可能的实现方式中,所述UE根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
所述UE根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
所述UE根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
结合第一方面,或第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现方式,或第一方面的第三种可能的实现方式,或第一方面的第 四种可能的实现方式,在第五种可能的实现方式中,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
结合第一方面,或第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现方式,或第一方面的第三种可能的实现方式,或第一方面的第四种可能的实现方式,或第一方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第二位置信息包括:首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置。
结合第一方面的第五种可能的实现方式,在第七种可能的实现方式中,所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
所述UE根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
结合第一方面的第五种可能的实现方式,或第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种。
结合第一方面的第六种可能的实现方式,在第九种可能的实现方式中,所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
当所述第二位置信息包括所述首个资源块的起始位置时,所述UE根据所述首个资源块的起始位置和预置的首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
当所述第二位置信息包括所述最后一个资源块的终止位置时,所述UE根据所述最后一个资源块的终止位置和预置的最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
结合第一方面的第七种可能的实现方式,或第一方面的第九种可能的实现方式,在第十种可能的实现方式中,所述UE根据所述第三资源块与基站通信包括:
所述UE根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
所述UE根据所述所有的资源块与基站进行通信。
结合第一方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述预置的首个资源块宽度和/或所述预置的最后一个资源块的宽度与所述基 准资源块宽度不同。
结合第一方面,或第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现方式,或第一方面的第三种可能的实现方式,或第一方面的第四种可能的实现方式,或第一方面的第五种可能的实现方式,或第一方面的第六种可能的实现方式,或第一方面的第七种可能的实现方式,或第一方面的第九种可能的实现方式,或第一方面的第十种可能的实现方式,或第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述资源块包括:物理资源块PRB或资源块集合RBG。
结合第一方面的第三种可能的实现方式,或第一方面的第四种可能的实现方式,在第十三种可能的实现方式中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。
本发明第二方面提供了一种确定资源块的方法,所述方法包括:
基站获取UE的载波信息;
所述基站根据所述载波信息确定UE对应的第二位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
所述基站获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
所述基站根据所述第二位置信息和所述第二位置信息确定第三资源块;
所述基站根据所述第三资源块与所述UE通信。
在第一种可能的实现方式中,所述基站获取第二位置信息之后包括:
所述基站向所述UE发送所述第二位置信息。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述基站获取第二位置信息包括:
所述基站根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
所述基站根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述基站根据载波与第一系统频带的相对关系确定第二位置信息包括:
所述基站根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
所述基站根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
所述基站根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
结合第二方面的第二种可能的实现方式,在第四种可能的实现方式中,所述基站根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
所述基站根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
所述基站根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
结合第二方面,或第二方面的第一种可能的实现方式,或第二方面的第二种可能的实现方式,或第二方面的第三种可能的实现方式,或第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述第二位置信息包括:
偏移N个频域元素的偏移量和/或偏移方向。
结合第二方面,或第二方面的第一种可能的实现方式,或第二方面的第二种可能的实现方式,或第二方面的第三种可能的实现方式,或第二方面的第四种可能的实现方式,在第六种可能的实现方式中,所述第二位置信息包括:
首个资源块的起始位置和/或最后一个资源块的终止位置。
结合第二方面的第五种可能的实现方式,在第七种可能的实现方式中,所述基站根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
所述基站根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
结合第二方面的第五种可能的实现方式,或第二方面的第七种可能的实现方式,在第八种可能的实现方式中,所述N个频域元素包括4个频域元素、 6个频域元素和8个频域元素中的任意一种,其中,所述频域元素组成所述资源块。
结合第二方面的第六种可能的实现方式,在第九种可能的实现方式中,所述基站根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
当所述第二位置信息包括所述首个资源块的起始位置时,所述基站根据所述首个资源块的起始位置和预置的首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
当所述第二位置信息包括所述最后一个资源块的终止位置时,所述基站根据所述最后一个资源块的终止位置和预置的最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
结合第二方面的第七种可能的实现方式,或第二方面的第九种可能的实现方式,在第十种可能的实现方式中,所述基站根据所述第三资源块与所述UE通信包括:
所述基站根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
所述基站根据所述所有的资源块与基站进行通信。
结合第二方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述预置的首个资源块宽度和/或所述预置的最后一个资源块的宽度与所述基准资源块宽度不同。
结合第二方面,或第二方面的第一种可能的实现方式,或第二方面的第二种可能的实现方式,或第二方面的第三种可能的实现方式,或第二方面的第四种可能的实现方式,或第二方面的第五种可能的实现方式,或第二方面的第六种可能的实现方式,或第二方面的第七种可能的实现方式,或第二方面的第九种可能的实现方式,或第二方面的第十种可能的实现方式,或第二方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述资源块包括:物理资源块PRB或资源块集合RBG。
结合第二方面的第三种可能的实现方式,或第二方面的第四种可能的实现方式,在第十三种可能的实现方式中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。
本发明第三方面提供了一种确定频带的方法,所述方法包括:
UE接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与UE的载波的宽度对应的频域粒度的倍数;
所述UE根据所述位置信息确定第一频带;
所述UE根据所述第一频带通信。
在第一种可能的实现方式中,所述UE根据所述位置信息确定第一频带包括:
当所述位置信息包括所述第一频域粒度倍数时,所述UE根据所述第一频域粒度倍数和预置的第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述UE已知的一个频带;
所述UE根据所述偏移量确定所述第一频带;或者,
当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,所述UE根据所述第一频域粒度倍数、所述第二频域粒度倍数以及预置的第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
所述UE根据所述偏移量确定所述第一频带;或者,
当所述位置信息包括所述UE的载波的宽度对应的频域粒度的倍数时,所述UE获取所述UE的载波的宽度,并根据预置的载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
所述UE根据所述频域粒度的倍数和所述UE的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
所述UE根据所述偏移量确定所述第一频带。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
本发明第四方面提供了一种确定频带的方法,所述方法包括:
所述基站获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
所述基站根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
所述基站将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
在第一种可能的实现方式中,所述基站根据所述偏移量获取位置信息包括:
当所述基站预置有第一频域粒度时,所述基站根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数;
将所述第一频域粒度的倍数作为所述位置信息;或者,
当所述基站预置有第一频域粒度和第二频域粒度时,所述基站根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数;
将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
当所述基站预置有载波的宽度与频域粒度的对应关系时,所述基站获取所述UE的载波的宽度;
所述基站根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数;
将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
结合第四方面,或第四方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
本发明第五方面提供了一种确定资源块的方法,所述方法包括:
所述UE获取用于描述所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
当所述位置信息包括所述直流子载波在资源块内部的信息时,所述UE将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块;
当所述位置信息包括所述直流子载波在资源块外部的信息时,所述UE将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块;
所述UE根据所述确定的资源块与基站通信。
在第一种可能的实现方式中,所述UE获取用于描述所述UE的直流子载波的位置的位置信息包括:
所述UE接收基站发送的所述位置信息;或者,
所述UE判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当所述UE判断所述直流子载波位于所述基站内的其他的传输频带内时,所述UE获取的位置信息包括所述直流子载波在资源块内部的信息;
当所述UE判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述UE获取的位置信息包括所述直流子载波在资源块外部的信息。
本发明第六方面提供了一种确定资源块的方法,所述方法包括:
所述基站获取用于描述所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
当所述位置信息包括所述直流子载波在资源块内部的信息时,所述基站将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
当所述位置信息包括所述直流子载波在资源块外部的信息时,所述基站将 所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
所述基站根据所述确定的资源块与所述UE通信。
在第一种可能的实现方式中,所述基站获取用于描述所述UE的直流子载波的位置的位置信息包括:
所述基站判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当所述基站判断所述直流子载波位于所述基站内的其他的传输频带内时,所述基站获取的位置信息包括所述直流子载波在资源块内部的信息;
当所述基站判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述基站获取的位置信息包括所述直流子载波在资源块外部的信息;
所述基站获取用于描述所述UE的直流子载波的位置的位置信息之后包括:
所述基站向所述UE发送所述位置信息。
本发明第七方面提供了一种设备,所述设备包括:
第一获取单元,用于获取载波信息;
第一确定单元,用于根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
第二获取单元,用于获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
第二确定单元,用于根据所述第一位置信息和所述第二位置信息确定第三资源块;
通信单元,用于所述设备根据所述第三资源块与基站通信。
在第一种可能的实现方式中,所述第二获取单元具体用于,接收基站发送的所述第二位置信息。
结合第七方面,在第二种可能的实现方式中,所述第二获取单元包括:
第一确定子单元,用于所述设备根据所述载波与第一系统频带的相对关 系确定所述第二位置信息,其中所述第一系统频带为所述设备已知的一个系统频带;或者,
第二确定子单元,用于根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述设备接入的频带。
结合第七方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第一确定子单元包括:
第三确定子单元,用于根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
第四确定子单元,用于根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
第五确定子单元,用于根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
结合第七方面的第二种可能的实现方式,在第四种可能的实现方式中,所述第二确定子单元包括:
第六确定子单元,用于根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
第七确定子单元,用于根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
结合第七方面,或第七方面的第一种可能的实现方式,或第七方面的第二种可能的实现方式,或第七方面的第三种可能的实现方式,或第七方面的第四种可能的实现方式,在第五种可能的实现方式中,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
结合第七方面,或第七方面的第一种可能的实现方式,或第七方面的第二种可能的实现方式,或第七方面的第三种可能的实现方式,或第七方面的第四种可能的实现方式,或第七方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第二位置信息包括:首个资源块的起始位置和/或终止位置或最后一个资源块的起始位置和/或终止位置。
结合第七方面的第五种可能的实现方式,在第七种可能的实现方式中,所述第二确定单元具体用于,根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
结合第七方面的第五种可能的实现方式,或第七方面的第七种可能的实现方式,在第八种可能的实现方式中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种。
结合第七方面的第六种可能的实现方式,在第九种可能的实现方式中,所述第二确定单元包括:
第八确定子单元,用于当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和预置的首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
第九确定子单元,用于当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和预置的最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
结合第七方面的第七种可能的实现方式,或第七方面的第九种可能的实现方式,在第十种可能的实现方式中,所述通信单元包括:
第十确定子单元,用于根据所述第三资源块和基准资源块宽度确定所述设备所有的资源块,其中,相邻的资源块的边界位置重合;
通信子单元,用于根据所述所有的资源块与基站进行通信。
结合第七方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述预置的首个资源块宽度和/或所述预置的最后一个资源块的宽度与所述基准资源块宽度不同。
结合第七方面,或第七方面的第一种可能的实现方式,或第七方面的第二种可能的实现方式,或第七方面的第三种可能的实现方式,或第七方面的第四种可能的实现方式,或第七方面的第五种可能的实现方式,或第七方面的第六种可能的实现方式,或第七方面的第七种可能的实现方式,或第七方面的第九种可能的实现方式,或第七方面的第十种可能的实现方式,或第七方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述资源块包括:物理资源块PRB或资源块集合RBG。
结合第七方面的第三种可能的实现方式,或第七方面的第四种可能的实现方式,在第十三种可能的实现方式中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。
本发明第八方面提供了一种基站,所述基站包括:
第一获取单元,用于获取UE的载波信息;
第一确定单元,用于根据所述载波信息确定UE对应的第二位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
第二获取单元,用于获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
第二确定单元,用于根据所述第二位置信息和所述第二位置信息确定第三资源块;
通信单元,用于根据所述第三资源块与所述UE通信。
在第一种可能的实现方式中,所述基站包括:
发送单元,用于向所述UE发送所述第二位置信息。
结合第八方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第二获取单元包括:
第一确定子单元,用于根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
第二确定子单元,用于根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
结合第八方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第一确定子单元包括:
第三确定子单元,用于根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
第四确定子单元,用于根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
第五确定子单元,用于根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
结合第八方面的第二种可能的实现方式,在第四种可能的实现方式中,所 述第二确定子单元包括:
第六确定子单元,用于根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
第七确定子单元,用于根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
结合第八方面,或第八方面的第一种可能的实现方式,或第八方面的第二种可能的实现方式,或第八方面的第三种可能的实现方式,或第八方面的第四种可能的实现方式,在第五种可能的实现方式中,所述第二位置信息包括:
偏移N个频域元素的偏移量和/或偏移方向。
结合第八方面,或第八方面的第一种可能的实现方式,或第八方面的第二种可能的实现方式,或第八方面的第三种可能的实现方式,或第八方面的第四种可能的实现方式,在第六种可能的实现方式中,所述第二位置信息包括:
首个资源块的起始位置和/或最后一个资源块的终止位置。
结合第八方面的第五种可能的实现方式,在第七种可能的实现方式中,所述第二确定单元具体用于,所述基站根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
结合第八方面的第五种可能的实现方式,或第八方面的第七种可能的实现方式,在第八种可能的实现方式中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,其中,所述频域元素组成所述资源块。
结合第八方面的第六种可能的实现方式,在第九种可能的实现方式中,所述第二确定单元包括:
第八确定子单元,用于当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和预置的首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
第九确定子单元,用于当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和预置的最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
结合第八方面的第七种可能的实现方式,或第八方面的第九种可能的实 现方式,在第十种可能的实现方式中,其特征在于,所述通信单元包括:
第十确定子单元,用于根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
通信子单元,用于根据所述所有的资源块与基站进行通信。
结合第八方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述预置的首个资源块宽度和/或所述预置的最后一个资源块的宽度与所述基准资源块宽度不同。
结合第八方面,或第八方面的第一种可能的实现方式,或第八方面的第二种可能的实现方式,或第八方面的第三种可能的实现方式,或第八方面的第四种可能的实现方式,或第八方面的第五种可能的实现方式,或第八方面的第六种可能的实现方式,或第八方面的第七种可能的实现方式,或第八方面的第九种可能的实现方式,或第八方面的第十种可能的实现方式,或第八方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述资源块包括:物理资源块PRB或资源块集合RBG。
结合第八方面的第三种可能的实现方式,或第八方面的第四种可能的实现方式,在第十三种可能的实现方式中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。
本发明第九方面提供了一种设备,所述设备包括:
接收单元,用于接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与设备的载波的宽度对应的频域粒度的倍数;
确定单元,用于根据所述位置信息确定第一频带;
通信单元,用于根据所述第一频带与所述基站通信。
在第一种可能的实现方式中,所述确定单元包括:
第一获取子单元,用于当所述位置信息包括所述第一频域粒度倍数时,根据所述第一频域粒度倍数和预置的第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述设备已知的一个频带;
第一确定子单元,用于根据所述偏移量确定所述第一频带;或者,
第二确定子单元,用于当所述位置信息包括所述第一频域粒度倍数和第二 频域粒度倍数时,根据所述第一频域粒度倍数、所述第二频域粒度倍数以及预置的第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
第三确定子单元,用于根据所述偏移量确定所述第一频带;或者,
第二获取子单元,用于当所述位置信息包括所述设备的载波的宽度对应的频域粒度的倍数时,获取所述设备的载波的宽度,并根据预置的载波的宽度与频域粒度的对应关系,获取所述设备的载波的宽度对应的频域粒度;
第三获取子单元,根据所述频域粒度的倍数和所述设备的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
第四确定子单元,用于根据所述偏移量确定所述第一频带。
结合第九方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
本发明第十方面提供了一种基站,所述基站包括:
第一获取单元,用于获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
第二获取单元,用于根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
发送单元,用于将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
在第一种可能的实现方式中,所述第二获取单元包括:
第一获取子单元,用于当所述基站预置有第一频域粒度时,根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数,并将所述第一频域粒度的倍数作为所述位置信息;或者,
第二获取子单元,用于当所述基站预置有第一频域粒度和第二频域粒度时,根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数,并将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
第三获取子单元,用于当所述基站预置有载波的宽度与频域粒度的对应关系时,获取所述UE的载波的宽度;
第四获取子单元,用于根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
第五获取子单元,用于根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数,并将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
结合第十方面,或第十方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
本发明第十一方面提供了一种设备,所述设备包括:
获取单元,用于获取指示所述设备的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
第一确认单元,用于当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成资源块的子载波,并根据所述设备的载波确定资源块;
第二确认单元,用于当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成资源块的子载波,并根据所述设备的载波确定资源块;
通信单元,用于根据所述资源块与基站进行通信。
在第一种可能的实现方式中,所述获取单元包括:
接收子单元,用于接收基站发送的所述位置信息;或者,
判断子单元,用于判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当所述判断子单元判断所述直流子载波位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块内部的信息;
当所述判断子单元判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块外部的信息。
本发明第十二方面提供了一种基站,所述基站包括:
获取单元,用于获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
第一确认单元,用于当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
第二确认单元,用于当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
通信单元,用于根据所述资源块与所述UE通信。
在第一种可能的实现方式中,所述获取单元包括:
判断子单元,用于判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当所述判断子单元判断所述直流子载波位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块内部的信息;
当所述判断子单元判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块外部的信息;
所述基站还包括:
发送单元,用于向所述UE发送所述位置信息。
本发明第十三方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第一方面提供的一种确定资源块的方法的部分或全部步骤。
本发明第十四方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第二方面提供的一种确定资源块的方法的部分或全部步骤。
本发明第十五方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第三方面提供的一种确定频带的方法的部分或全部步骤。
本发明第十六方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第四方面提供的一种确定频带的方法的部分或全部步骤。
本发明第十七方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第五方面提供的一种确定资源块的方法的部分或全部步骤。
本发明第十八方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第六方面提供的一种确定资源块的方法的部分或全部步骤。
本发明第十九方面提供了一种确定资源块的系统,所述系统包括第七方面提供的所述的设备,和第八方面提供的所述的基站。
本发明第二十方面提供了一种确定频带的系统,所述系统包括第九方面提供的所述的设备,和第十方面提供的所述的基站。
本发明第二十一方面提供了一种确定资源块的系统,所述系统包括第十一方面提供的所述的设备,和第十二方面提供的所述的基站。
本发明第二十二方面提供了,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
获取载波信息;
根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
根据所述第一位置信息和所述第二位置信息确定第三资源块;
根据所述第三资源块与基站通信。
在第一种可能的实现方式中,所述处理器获取第二位置信息具体用于:
接收基站发送的所述第二位置信息。
结合第二十二方面,在第二种可能的实现方式中,所述处理器获取第二位置信息包括:
根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述设备已知的一个系统频带;或者,
根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述设备接入的频带。
结合第二十二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理器根据所述载波与第一系统频带的相对关系确定所述第二位置信息包括:
根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
结合第二十二方面的第二种可能的实现方式,在第四种可能的实现方式中,所述处理器根据所述载波与接入频带的相对关系确定所述第二位置信息包 括:
根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
结合第二十二方面,或第二十二方面的第一种可能的实现方式,或第二十二方面的第二种可能的实现方式,或第二十二方面的第三种可能的实现方式,或第二十二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
结合第二十二方面,或第二十二方面的第一种可能的实现方式,或第二十二方面的第二种可能的实现方式,或第二十二方面的第三种可能的实现方式,或第二十二方面的第四种可能的实现方式,或第二十二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述第二位置信息包括:首个资源块的起始位置和/或终止位置或最后一个资源块的起始位置和/或终止位置。
结合第二十二方面的第五种可能的实现方式,在第七种可能的实现方式中,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块具体用于:
根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
结合第二十二方面的第五种可能的实现方式,或第二十二方面的第七种可能的实现方式,在第八种可能的实现方式中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种。
结合第二十二方面的第六种可能的实现方式,在第九种可能的实现方式中,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和预置的首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和预置的最后一个资源块宽度确定最后一个资源 块,并将所述最后一个资源块确定为第三资源块。
结合第二十二方面的第七种可能的实现方式,或第二十二方面的第九种可能的实现方式,在第十种可能的实现方式中,所述处理器根据所述第三资源块与基站通信包括:
根据所述第三资源块和基准资源块宽度确定所述设备所有的资源块,其中,相邻的资源块的边界位置重合;
根据所述所有的资源块与基站进行通信。
结合第二十二方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述预置的首个资源块宽度和/或所述预置的最后一个资源块的宽度与所述基准资源块宽度不同。
结合第二十二方面,或第二十二方面的第一种可能的实现方式,或第二十二方面的第二种可能的实现方式,或第二十二方面的第三种可能的实现方式,或第二十二方面的第四种可能的实现方式,或第二十二方面的第五种可能的实现方式,或第二十二方面的第六种可能的实现方式,或第二十二方面的第七种可能的实现方式,或第二十二方面的第九种可能的实现方式,或第二十二方面的第十种可能的实现方式,或第二十二方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述资源块包括:物理资源块PRB或资源块集合RBG。
结合第二十二方面的第三种可能的实现方式,或第二十二方面的第四种可能的实现方式,在第十三种可能的实现方式中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。
本发明第二十三方面提供了一种基站,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
获取UE的载波信息;
根据所述载波信息确定UE对应的第二位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保 护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
根据所述第二位置信息和所述第二位置信息确定第三资源块;
根据所述第三资源块与所述UE通信。
在第一种可能的实现方式中,所述处理器在获取第二位置信息之后,还执行:
向所述UE发送所述第二位置信息。
结合第二十三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器获取第二位置信息包括:
根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
结合第二十三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理器根据载波与第一系统频带的相对关系确定第二位置信息包括:
根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
结合第二十三方面的第二种可能的实现方式,在第四种可能的实现方式中,所述处理器根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
结合第二十三方面,或第二十三方面的第一种可能的实现方式,或第二十三方面的第二种可能的实现方式,或第二十三方面的第三种可能的实现方式,或第二十三方面的第四种可能的实现方式,在第五种可能的实现方式中,所述第二位置信息包括:
偏移N个频域元素的偏移量和/或偏移方向。
结合第二十三方面,或第二十三方面的第一种可能的实现方式,或第二十三方面的第二种可能的实现方式,或第二十三方面的第三种可能的实现方式,或第二十三方面的第四种可能的实现方式,在第六种可能的实现方式中,所述第二位置信息包括:
首个资源块的起始位置和/或最后一个资源块的终止位置。
结合第二十三方面的第五种可能的实现方式,在第七种可能的实现方式中,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块具体用于:
根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
结合第二十三方面的第五种可能的实现方式,或第二十三方面的第七种可能的实现方式,在第八种可能的实现方式中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,其中,所述频域元素组成所述资源块。
结合第二十三方面的第六种可能的实现方式,在第九种可能的实现方式中,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和预置的首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和预置的最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
结合第二十三方面的第七种可能的实现方式,或第二十三方面的第九种可能的实现方式,在第十种可能的实现方式中,所述处理器根据所述第三资源 块与所述UE通信包括:
根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
根据所述所有的资源块与基站通信。
结合第二十三方面的第九种可能的实现方式,在第十一种可能的实现方式中,所述预置的首个资源块宽度和/或所述预置的最后一个资源块的宽度与所述基准资源块宽度不同。
结合第二十三方面,或第二十三方面的第一种可能的实现方式,或第二十三方面的第二种可能的实现方式,或第二十三方面的第三种可能的实现方式,或第二十三方面的第四种可能的实现方式,或第二十三方面的第五种可能的实现方式,或第二十三方面的第六种可能的实现方式,或第二十三方面的第七种可能的实现方式,或第二十三方面的第九种可能的实现方式,或第二十三方面的第十种可能的实现方式,或第二十三方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述资源块包括:物理资源块PRB或资源块集合RBG。
结合第二十三方面的第三种可能的实现方式,或第二十三方面的第四种可能的实现方式,在第十三种可能的实现方式中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。
本发明第二十四方面提供了一种设备,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与设备的载波的宽度对应的频域粒度的倍数;
根据所述位置信息确定第一频带;
根据所述第一频带与所述基站通信。
在第一种可能的实现方式中,所述处理器根据所述位置信息确定第一频带包括:
当所述位置信息包括所述第一频域粒度倍数时,根据所述第一频域粒度倍 数和预置的第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述设备已知的一个频带;
根据所述偏移量确定所述第一频带;或者,
当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,根据所述第一频域粒度倍数、所述第二频域粒度倍数以及预置的第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
根据所述偏移量确定所述第一频带;或者,
当所述位置信息包括所述设备的载波的宽度对应的频域粒度的倍数时,获取所述设备的载波的宽度,并根据预置的载波的宽度与频域粒度的对应关系,获取所述设备的载波的宽度对应的频域粒度;
根据所述频域粒度的倍数和所述设备的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
根据所述偏移量确定所述第一频带。
结合第二十四方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
本发明第二十五方面提供了一种基站,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述 第一频带。
在第一种可能的实现方式中,所述处理器根据所述偏移量获取位置信息包括:
当所述基站预置有第一频域粒度时,根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数,并将所述第一频域粒度的倍数作为所述位置信息;或者,
当所述基站预置有第一频域粒度和第二频域粒度时,根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数,并将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
当所述基站预置有载波的宽度与频域粒度的对应关系时,获取所述UE的载波的宽度;
根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数,并将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
结合第二十五方面,或第二十五方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
本发明第二十六方面提供了一种设备,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
获取指示所述设备的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成资源块的子载波,并根据所述设备的载波确定资源块;
当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成资源块的子载波,并根据所述设备的载波确定资源块;
根据所述资源块与基站通信。
在第一种可能的实现方式中,所述处理器获取用于描述所述设备的直流子载波的位置的位置信息包括:
接收基站发送的所述位置信息;或者,
判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当判断所述直流子载波位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块内部的信息;
当判断所述直流子载波不位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块外部的信息。
本发明第二十七方面提供了一种基站,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
根据所述资源块与所述UE通信。
在第一种可能的实现方式中,所述处理器获取用于描述所述UE的直流子载波的位置的位置信息包括:
判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当判断所述直流子载波位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块内部的信息;
当判断所述直流子载波不位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块外部的信息;
在所述处理器获取指示所述UE的直流子载波的位置的位置信息之后包括:
向所述UE发送所述位置信息。
在本发明实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而基站根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种确定资源块的方法的一种实施例流程图;
图2为本发明实施例的基站分配频带资源示意图;
图3为本发明实施例的基站和UE的资源块分布示意图;
图4为本发明一种确定资源块的方法的另一种实施例流程图;
图5为本发明一种确定资源块的方法的又一种实施例流程图;
图6为本发明一种确定资源块的方法的一种实施例流程图;
图7为本发明一种确定资源块的方法的另一种实施例流程图;
[根据细则91更正 02.02.2015] 
图8为本发明一种确定资源块的方法的又一种实施例流程图;
图9为本发明一种确定频带的方法的一种实施例流程图;
图10为本发明一种确定频带的方法的一种实施例流程图;
图11为本发明一种确定资源块的方法的一种实施例流程图;
图12为本发明一种确定资源块的方法的一种实施例流程图;
图13为本发明一种设备的结构图;
图14为本发明一种基站的结构图;
图15为本发明一种确定资源块的系统的结构图;
图16为本发明一种设备的结构图;
图17为本发明一种基站的结构图;
图18为本发明一种确定频带的系统的结构图;
图19为本发明一种设备的结构图;
图20为本发明一种基站的结构图;
图21为本发明一种确定资源块的系统的结构图;
图22为本发明一种设备的结构图;
图23为本发明一种基站的结构图;
图24为本发明一种设备的结构图;
图25为本发明一种基站的结构图;
图26为本发明一种设备的结构图;
图27为本发明一种基站的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的宽度。
本实施例所描述的UE可包括:手机、平板电脑、掌上电脑或者移动互联网设备(Mobile Internet Device,MID)等,上述终端仅是举例,而非穷举,包含但不限于上述终端。
请参见图1,为本发明一种确定资源块的方法的一种实施例流程示意图。如图1所示,本发明实施例所述的一种确定资源块的方法包括以下步骤:
S100,用户设备UE获取载波信息。
在本发明实施例中,UE可接入非标准带宽LTE系统或标准带宽LTE系统。其中,标准带宽LTE系统的频带带宽可以包括:1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz或其他的标准带宽中的任一种。非标准带宽LTE系统的频带带宽可以包括6.2MHz、6.5MHz、12MHz和13MHz等宽度不同的非标准带宽。当UE接入到LTE系统中,基站可根据UE的带宽接入能力或处理能力或业务需求为其分配对应的载波,例如:当UE具有接入5M标准宽带 的对应业务需求时,基站可以在其系统频带中划分出5MHz标准带宽分配给UE,作为UE的载波,使得UE与基站的数据交互在分配的载波内进行传输,其中,基站的频带可以是10MHz或20MHz等标准带宽,或者基站的频带可以是7MHz或12MHz等非标准带宽。UE可获取载波信息从而确定基站对其所分配的载波。其中,载波信息可以包括载波的大小以及载波的中心频率,或者载波的大小以及载波的直流子载波,或者可以包括在载波的大小以及载波的起始位置,或者可以包括载波的大小以及载波的终止位置等。需要指出的是,作出UE标准带宽分配决定的可以是网络侧的基站或其他节点。
在本发明实施例中,UE可以通过扫频得到载波的直流子载波,并从PBCH中盲检得到载波的大小,从而确定所对应的载波。或者UE接收基站发送的消息,其中消息包括基站配置的载波的大小,以及基站配置的载波的直流子载波或载波的中心频率或载波的起始位置或结束的位置中的一个或多个来确定所对应的载波。
S101,所述UE根据所述载波信息确定第一位置信息。
在LTE系统中,子载波的间隔为15KHz,每12个子载波为一个物理资源块PRB,即每个PRB的大小可以是15KHz*12=180KHz。在LTE系统中,基站与UE之间的数据交互是通过资源块来进行数据交互,其中,资源块可以是物理资源块PRB,或者可以是资源块集合RBG,RBG包括多个PRB,PRB可包括多个子载波,即是,RBG可由频域元素PRB组成,PRB可由频域元素子载波组成。优选的,在本发明实施例中,资源块可以是PRB。
在本发明实施例中,载波可包括位于载波两侧的保护频带、保护频带之间的用于信号传输的传输频带,或者,载波可包括位于载波两侧的保护频带、保护频带之间的用于信号传输的传输频带以及保护频带之间的不用于信号传输的不可用频带。传输频带用于数据的传输,保护频带不用于数据的传输。优选的,每个保护频带的大小可为载波带宽大小的5%。
在本发明实施例中,当UE确定载波信息对应的载波后,UE根据载波信息确定第一位置信息,其中,第一位置信息用于指示载波上的保护频带之外的所有资源块的位置,可包括所有资源块的位置,其中,每个资源块的位置包括每个资源块的起始位置和终止位置。优选的,第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,第一位置信息指示载波上的保护频 带之外的第二资源块的终止位置,其中,第一资源块为载波的保护频带之外的首个资源块,第二资源块为载波的保护频带之外的最后一个资源块,即可包括第一资源块的起始位置和第二资源块的终止位置。具体的,信号传输UE根据载波信息确定第一位置信息可以是:UE以载波信息对应的载波内保护频带以外的频带的起始位置为首个资源块的起始位置,以基准资源块宽度来逐个确定每个资源块的起始位置和终止位置,即UE获得第一位置信息。其中,UE可以以载波的保护频带以外的频带的第一个子载波为首个资源块的起始位置,即载波的保护频带以外的频带的第一个子载波为首个资源块的第一个子载波,然后按照基准资源块宽度为12个子载波且相邻PRB的边界重合的方式确定所有的频带内的PRB,即以频带的第13个子载波为第二个资源块的起始位置,以频带的第25个子载波为第三个资源块的起始位置,按照以上获取第二位置的方式依次获取UE的每个资源块的起始位置和终止位置,即UE可获得第一位置信息。而根据第一位置信息确定的最后一个资源块的终止位置为载波的保护频带以外的最后一个子载波,据此可以确定载波的所有资源块。当UE的系统带宽为5M时,UE可获得对应的25个PRB,从而UE与基站之间的数据交互可在这25个PRB中选择至少一个PRB进行交互数据。UE根据载波信息确定第一位置信息还可以是:当载波保护频带以外的频带有N个RBG时,前N-1个RBG包括的PRB数量可以是上述保护频带以外的频带内总PRB数除以N得到的商向上取整的值,最后一个RBG包括的PRB的数量可以是上述保护频带以外的频带内总PRB数量减去前N-1个RBG包括的总PRB数量的差的值。其中,UE的第一个PRB是UE的第一个RBG的第一个PRB,从而UE可获每个RBG的起始位置和终止位置,即UE可获得第一位置信息。
在本发明实施例中,当UE获得第一位置信息进行确认对应的资源块后,UE还可对确认的资源块进行分配编号。如:UE可对PRB进行分配编号,例如:当传输频带映射25个PRB时,UE可以对其所映射的资源块从0~24进行分配编号。同理,UE也可以对RBG进行编号。进一步的,UE获得第一位置信息还可以是UE按照LTE标准预定义载波中资源块位置的方式确定载波中的资源块从而获得第一位置信息。
S102,所述UE获取第二位置信息。
在本发明实施例中,第二位置信息指示从第一资源块的起始位置或第二资 源块的终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍。即UE重新确定的资源块为UE的载波内保护频带以外的第N个组成资源块的频域元素开始或UE的载波内保护频带以外的第N个组成资源块的频域元素结束;而UE的第一位置信息所指示的资源块为UE的载波内保护频带宽以外的第1个或第M+1个组成资源块的频域元素位置,或为所述UE的载波内保护频带宽以外的倒数第1个或倒数第M+1个组成资源块的频域元素位置,其中M等于资源块包括的频域元素数量的整数倍。其中,相邻的两个资源块的边界重合。其中,组成PRB的频域元素为子载波,组成RBG的频域元素为PRB。
在本发明实施例中,第二位置信息可以是用于重新确定载波上的首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或任意一个资源块的起始位置和/或终止位置,或每一个资源块的起始位置和/或终止位置,重新确定的载波上的首个资源块或最后一个资源块或指定资源块与第一位置信息所指示的首个资源块或最后一个资源块或指定资源块的位置不同。即是:第二位置信息可以包括:载波上的首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或任意一个资源块的起始位置和/或终止位置,或每一个资源块的起始位置和/或终止位置。优选的,第二位置信息可以包括首个资源块的起始位置或最后一个资源块的终止位置,其中,首个资源块、最后一个资源块或指定资源块可以为第三资源块。当第二位置信息指示的不是首个资源块或最后一个资源块的位置时,偏移量可以N不等于n的整数倍,但可以为n的整数倍与m的和,其中m为1~(n-1)之间的一个正整数。
进一步的,第二位置信息还可以包括重新确认后的首个资源块的起始位置和/或终止位置,或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或全部资源块中每一个的起始位置和/或终止位置相对于第一位置信息所指示的首个资源块的起始位置和/或终止位置,或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或全部资源块中每一个的起始位置和/或终止位置的偏移N个频域元素的偏移量和/或偏移方向。优选的,第二位置信息包括首个资源块的起始位置相 对于第一资源块的起始位置的偏移量和/或偏移方向,和/或最后一个资源块的起始位置相对于第二资源块的终止位置的偏移量和/或偏移方向。其中,偏移N个频域元素的偏移量可以包括4个频域元素的偏移量、6个频域元素的偏移量和8个频域元素的偏移量中的任意一种。第二位置信息可以包括偏移量和偏移方向中的一个信息,而另一个信息可以是预定义的或通过其他信息获取的,比如提前获取的。其中,偏移量可以是任意个频域单位。优选的,频域单位可以是组成资源块的频域元素单位,例如子载波,偏移量的大小可以小于资源块的大小。进一步的,偏移方向可以是向前方向或向后方向,向前方向可是是向频率更高的方向,向后方向可以是向频率更低的方向。其中,首个资源块、最后一个资源块或指定资源块可以为第三资源块。
其中,组成资源块的所有频域元素为可以用于传输信号的频域元素,不包括直流子载波。
进一步的,第二位置信息还可以包括首个资源块的起始位置和首个资源块的宽度,或最后一个资源块的终止位置和最后一个资源块的宽度。其中,首个资源块、最后一个资源块或指定资源块可以为第三资源块。
在本发明实施例中,当有多个UE接入到LTE系统中,可参见图3,为了高效使用基站的频带资源,基站可在频带中将一部分频带资源分配给UE1,将另一部分频带资源分配给UE2,其中,为了最大效率使用频带资源,基站可遵循使UE1的频带资源与UE2频带资源最大限度的不重合的原则进行频带资源分配。参见图3,当基站的带宽为6.4MHz时,UE1的载波为5MHz,UE2的载波为5MHz时,基站为了最大效率使用频域资源,基站对UE1和UE2进行分配载波,此时UE1的载波和UE2的载波有3.6MHz左右的交叠,且由于UE1和UE2是以100KHz的栅格进行扫频,且子载波间隔15KHz,故UE1的载波中心频率和UE2的载波中心频率的距离是300kHz的整数倍,其中,300为15和100的最小公倍数,UE1的载波中心频率低于UE2的载波中心频率。当基站对UE1和UE2进行分配载波后,UE1获得的第一位置信息所指示的资源块位置可与基站中的已映射的基准资源块位置重合,但UE2获得的第一位置信息所指示的资源块的位置与基站中的已映射的基准资源块的位置可能不重合,其中,基站与第一个接入的UE通信时所映射的资源块可为基准资源块。如:UE1的载波对应的PRB可如图3中的UE1的PRB分布,UE2的载 波对应的PRB可与图3的UE2的PRB分布,我们可以获知UE2获得的第一位置信息所指示的资源块的位置与基站中的已映射的基准资源块位置不重合,导致基站需要针对UE2重新进行PRB映射。这使得当基站需至少同时为UE1和UE2分配资源进行通信时,基站无法连续使用资源而浪费了资源,其中:如图3,当基站获得的UE1的第一位置信息所指示的第一个PRB的起始位置和终止位置为基站的系统频带上的第1个子载波和第12个子载波,UE1的第二个PRB的起始位置和终止位置为基站的系统频带上的第13个子载波和第24个子载波;当基站仅获得UE2的第一位置信息所指示的第一个PRB的起始位置和终止位置为基站的系统频带上的第81个子载波和第92个子载波,UE2的第二个PRB的起始位置和终止位置为基站的系统频带上的第93个子载波和第104个子载波,可见,UE1的PRB与UE2的PRB不重合。当基站调用UE2的第一个PRB与UE2进行通信时,则基站无法调用UE1的第7个PRB或UE1的第8个PRB与UE1进行通信,因为UE1的第7个PRB或UE1的第8个PRB的部分子载波已被UE2的第一个PRB占用,无法进行调用,使得基站无法连续使用资源。
在本发明实施例中,为了使得基站可连续使用资源,当基站无法连续使用资源时,UE可重新确定资源块的位置,以使重新确定的资源块的位置与基站的基准资源块的位置重合,从而有效提高资源利用率。
在本发明实施例中,当UE需重新确定资源块的位置时,UE获取第二位置信息。
S103,所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块。
在本发明实施例中,当所述第二位置信息包括偏移N个频域元素的偏移量和/或偏移方向时,所述UE根据获取到的偏移量和偏移方向在第一位置信息所指示的第一资源块的起始位置的基础上或第二资源块的终止位置的基础上进行偏移,从而确定第三资源块。例如:当第一位置信息指示的是第一资源块的起始位置,偏移方向是向后方向,偏移量是4个子载波时,则UE在第一资源块的起始位置的基础上向后方向偏移4个子载波,确定第三资源块的起始位置,进而根据基准资源块宽度确定第三资源块;当第一位置信息指示的是第一资源块的起始位置,偏移方向是向后方向,偏移量是8个子载波时,则UE在 第一资源块的起始位置的基础上向后方向偏移8个子载波,确定第三资源块的起始位置,进而根据基准资源块宽度确定第三资源块;当第一位置信息指示的是第一资源块的起始位置,偏移方向是向后方向,偏移量是6个子载波时,则UE在第一资源块的起始位置的基础上向后方向偏移6个子载波,确定第三资源块的起始位置,进而根据基准资源块宽度确定第三资源块;当第一位置信息指示的是第二资源块的终止位置,偏移方向是向前方向,偏移量为6个子载波时,则UE在第二资源块的终止位置的基础上向前方向偏移6个子载波,确定第三资源块的终止位置,进而根据基准资源块宽度确定第三资源块。
其中,在偏移结束后,当UE是在第一资源块的起始位置的基础上进行向前方向偏移时,则确认的第三资源块占用了保护频带,当UE在第二资源块的终止位置的基础上进行向后方向偏移时,则确认的第三资源块占用了保护频带。为了不占用保护频带,保障数据正常收发,当UE在第一资源块的起始位置的基础上进行偏移的偏移方向是向前方向时,UE可将第三资源块的终止位置作为首个资源块的起始位置,并将确认的首个资源块作为第三资源块;当UE在第二资源块的终止位置的基础上进行偏移的偏移方向是向后方向时,UE可将第三资源块的起始位置作为最后一个资源块的终止位置,并将确认的最后一个资源块作为第三资源块。但是,UE在进行偏移后确认的资源块数量比UE偏移前所映射的资源块数量少了一个。故,当UE在进行向前方向偏移结束后,UE还可以将最后一个资源块与高频保护频带之间的频域资源确认为一个非标准资源块,其中,该非标准资源块的大小小于基准资源块宽度。进一步的,当UE在上进行向后方向偏移结束后,UE还可以将首个资源块与低频保护频带之间的频域资源确认为一个非标准资源块,其中,该非标准资源块的大小小于基准资源块宽度。
具体应用中,参见图3,基站的频带为6.4MHz,基站给UE1分配5MHz的载波,基站给UE2分配5MHz的载波,其中,UE1和UE2的载波有3.6MHz的交叠。UE1的载波可以为6.4MHz中频率最低的5MHz。当此时UE2的载波的中心频率与基站的频带的中心频率或与UE1的载波的中心频率相差为1200kHz时,此时UE2的第一位置信息所指示的PRB的位置可如图3所示,UE2的第一位置信息所指示的PRB的位置相对于基站映射的基准资源块的位置向前方向偏移4个子载波或向后方向偏移了8个子载波。具体的,按照频率 从低到高的顺序依次将子载波排序,从第1个子载波开始,将第5个子载波作为UE2的第一个PRB的起始位置,即第5~16子载波为一个PRB,第17~28子载波为第二个PRB,其他PRB的位置依此类推,而UE2根据第一位置信息获得的PRB的位置则是从第1个子载波开始第一个PRB的,从而,UE2根据第一位置信息获得的PRB的位置相对于基站映射的基准资源块的位置向前方向偏移4个子载波或向后方向偏移了8个子载波。为了使得UE2的PRB可以与基站映射的基准资源块重合,UE2获得的第二位置信息可以包括偏移量为4个子载波和偏移方向为向后方向,或者偏移量为8个子载波和偏移方向为向前方向。UE2可根据第二位置信息对UE2第一位置信息所指示的第一资源块的起始位置或第二资源块的终止位置进行偏移,获得第三资源块。使得UE根据第三资源块重新确定所有资源块,所有资源块与基站映射的基准资源块重合。
具体应用中,当UE接入的基站的频带为3MHz、5MHz或15MHz时,若此时UE只能使用6个PRB对应的频带,即UE的传输频带带宽为180KHz*6=1280KHz。此时UE从基站的频带中心偏移(N个PRB+6个子载波)的位置作为一个第三资源块的的左或右边界,从而偏移量为6个子载波的倍数,偏移方向可以为向前方向或向后方向。
在本发明实施例中,当第二位置信息包括载波上的首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或任意一个资源块的起始位置和/或终止位置,或每一个资源块的起始位置和/或终止位置时,UE可根据第二位置信息确定第三资源块。
具体的,当第二位置信息包括首个资源块的起始位置时,UE可根据首个资源块的起始位置重新确定首个资源块,将首个资源块确定为第三资源块。其中,首个资源块的起始位置与UE的载波的保护频带以外的起始位置可以不重合,其中载波的保护频带可以为载波两侧载波带宽5%的频域范围;当第二位置信息包括最后一个资源块的终止位置时,UE可根据最后一个资源块的终止位置重新确定最后一个资源块,将最后一个资源块确定为第三资源块。其中,最后一个资源块的终止位置可以与UE的载波的保护频带以外的终止位置不重合,其中载波的保护频带可以为载波两侧载波带宽5%的频域范围。
由上实施例我们可以获知的是,当UE在第一资源块的起始位置的基础 上进行偏移的偏移方向是向前方向时,UE可将偏移后的第三资源块的终止位置作为首个资源块的起始位置,并将确认的首个资源块作为第三资源块;当UE在第二资源块的终止位置的基础上进行偏移的偏移方向是向后方向时,UE可将偏移后的第三资源块的起始位置作为最后一个资源块的终止位置,并将最后一个资源块作为第三资源块。此时UE的首个资源块(第三资源块)的最低频率边界不是保护频带频率边界和/或最后一个资源块的最高频率边界不是保护频带的频率边界,从而在第一个完整资源块和低频保护频带之间有部分频域资源不属于任何完整的资源块和/或在最后一个完整资源块和高频保护频带之间有部分频域资源不属于任何完整的资源块。其中,该部分频域资源可包括可用于信号传输的可用资源和/或不可用于信号传输的不可用资源。
进一步的,为了充分利用可用资源,在本发明实施例中,第二位置信息包括的首个资源块的起始位置时,第二位置信息还可以包括首个资源块宽度或者首个资源块的终止位置,或者UE首个资源块宽度。当第二位置信息包括首个资源块的起始位置时,UE可根据首个资源块的宽度确定首个资源块的终止位置。则首个资源块的起始位置和终止位置可以是第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源的位置,其中,第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源可以是第一个完整资源块和低频保护频带之间可用于信号传输的可用资源。优选的,首个资源块的起始位置和终止位置为该部分频域资源的起始位置和终止位置,UE可根据首个资源块的起始位置和终止位置确定该部分频域资源为首个资源块,将该首个资源块设为第三资源块。其中,首个资源块(第三资源块)的宽度小于基准资源块宽度,即是,首个资源块(第三资源块)的大小小于基准资源块大小。进一步的,UE确定的首个资源块的起始位置和终止位置还可以是第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源以及第一个完整资源块的位置,其中,第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源可以是第一个完整资源块和低频保护频带之间可用于信号传输的可用资源,首个资源块的起始位置和终止位置所包括的首个资源块的起始位置和终止位置为该部分频域资源以及相邻的第一个完整资源块的起始位置和终止位置。UE可根据首个资源块的起始位置和终止位置确定该部分频域资源和第一个完整资源块为首个资源块, 将该首个资源块设为第三资源块。其中,首个资源块(第三资源块)的宽度大于基准资源块宽度,即是,首个资源块(第三资源块)的大小大于基准资源块大小。
其中,当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度为基准资源块宽度;当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度小于基准资源块宽度。
其中,当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度为基准资源块宽度;当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度小于基准资源块宽度。
其中,基准资源块宽度可以为标准预定义的资源块宽度。
其中,本发明实施例中,将宽度等于基准资源块宽度的资源块叫做完整资源块或标准资源块,将宽度小于基准资源块宽度的资源块叫做非完整资源块或非标准资源块。
在本发明实施例中,第二位置信息包括的最后一个资源块的终止位置时,第二位置信息还可以包括最后一个资源块的宽度或最后一个资源块的起始位置,或者UE首个资源块宽度。当第二位置信息包括最后一个资源块的终止位置时,UE可根据最后一个资源块的宽度确定最后一个资源块的起始位置。则最后一个资源块的起始位置和终止位置可以是倒数第一个完整资源块和高频保护频带宽之间的不属于任何完整的资源块的部分频域资源的位置,其中,倒数第一个完整资源块和高频保护频带之间的不属于任何完整的资源块的部分频域资源可以是倒数第一个完整资源块和高频保护频带之间可用于信号传输的可用资源。优选的,最后一个资源块的起始位置和终止位置所包括的最后一个资源块的起始位置和终止位置为该部分频域资源的起始位置和终止位置,UE可根据最后一个资源块的起始位置和终止位置确定该部分频域资源为最后一个资源块,将该资源块设为第三资源块。其中,最后一个资源块(第三资源块)的宽度小于基准资源块宽度,即是,最后一个资源块(第三资源块)的大小小于基准资源块大小。进一步的,UE确定的最后一个资源块的起始位置和终止位置还可以是倒数第一个完整资源块和高频保护频带之间的不属于任何 完整的资源块的部分频域资源以及倒数第一个完整资源块的位置,其中,倒数第一个完整资源块和高频保护频带之间的不属于任何完整的资源块的部分频域资源可以是倒数第一个完整资源块和高频保护频带之间可用于信号传输的可用资源,最后一个资源块的起始位置和终止位置所包括的最后一个资源块的起始位置和终止位置为该部分频域资源以及相邻的倒数第一个完整资源块的起始位置和终止位置。UE可根据最后一个资源块的起始位置和终止位置确定该部分频域资源和倒数第一个完整资源块为最后一个资源块,将最后一个资源块设为第三资源块。其中,最后一个资源块(第三资源块)的宽度大于基准资源块宽度,即是,最后一个资源块(第三资源块)的大小大于基准资源块大小。
其中,当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度为基准资源块宽度;当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度小于基准资源块宽度。
其中,当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度为基准资源块宽度;当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度小于基准资源块宽度。
其中,基准资源块宽度可以为标准预定义的资源块宽度。
本发明实施例中,完整资源块的大小为根据载波按照预定义方式确定的资源块大小,如完整PRB的大小为12个子载波,完整RBG的大小为载波中除最后一个RBG之外其他RBG的大小。
S104,所述UE根据所述第三资源块与基站通信。
在本发明实施例中,UE根据第三资源块和基准资源块宽度确定UE所有的资源块,其中,相邻的资源块的边界位置重合。进一步的,当UE在以上实施例确定的资源块包括第三资源块和非标准资源块时,UE根据第三资源块、非标准资源块和基准资源块宽度确定UE所有的资源块,其中,相邻的资源块的边界位置重合。
在本发明实施例中,UE的重新确认后的资源块中有至少一个资源块的大小与UE根据第一位置信息所确定的资源块中至少一个资源块的大小相同。即可以是,UE根据第三资源块所确定的所有的资源块中有至少一个资源块所包 括的频域元素数量与UE根据第一位置信息所确定的资源块中至少一个资源块所包括的频域元素数量相同。
由上实施例我们可以理解的是,在资源块按照默认或预定义的方式在频域上连续排列且资源块的边界互相重合的情况下,只要获取到一个资源块的位置即可相应获取到其他资源块的位置。
在本发明实施例中,我们可以理解的是,UE可以根据多个载波交叠的需要使多个载波交叠的UE的资源块位置重合,且与基站的基准资源块位置重合,从而基站可连续使用资源,提高资源的使用效率。
在本发明实施例中,当UE确定所有资源块后,UE可获取确定的所有资源块的编号,其中,UE可获取PRB的编号或RBG的编号。具体的,UE获取PRB的编号与子载波的关系可以是:
Figure PCTCN2015071675-appb-000001
其中,
Figure PCTCN2015071675-appb-000002
为每一个完整资源块内的元素个数,k为大于等于0的整数,k0为0或1或2或-1或-2,nPRB为PRB的编号。k0为重新确认后的第一位置相对于第二位置的偏移量除以4的值,其中,PRB的起始编号可以为0。上述举例为第一位置相对或者,UE获取PRB的编号与子载波的关系可以是:
Figure PCTCN2015071675-appb-000003
其中,
Figure PCTCN2015071675-appb-000004
为每一个完整资源块内的元素个数,k为大于等于0的整数,k0为0或1或-1,nPRB为PRB的编号。k0为重新确认后的第一位置相对于第二位置的偏移量除以6的值,其中,PRB的起始编号可以为0。
在本发明实施例中,UE获取RBG的编号可以是:当UE载波对应的RBG数量为NRBG,可以通过载波包括的RBG总数NRBG和RBG大小P来获得RBG,其中RBG与PRB的关系为:
Figure PCTCN2015071675-appb-000005
其中
Figure PCTCN2015071675-appb-000006
为载波对应的PRB数量。如果
Figure PCTCN2015071675-appb-000007
那么有一个RBG的大小为
Figure PCTCN2015071675-appb-000008
其中i为UE的第一个PRB到第一个RBG的距离或偏移量,以PRB为单位其中载波中保护频带以外的前i个PRB为不完整RBG。
其中,在本发明实施例中,UE的载波的直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。其中,UE的载波的直流子载波仍然为UE的载波中心或UE的载波中心旁边的一个子载波。
在本发明实施例中,UE可根据确定的资源块与基站通信。
在本发明实施例中,信号可包括参考信号、控制信息、反馈信息、同步信号、随机接入信号、广播信号中的至少一种或多种。
可选的,UE根据载波中心频点或直流子载波所在的位置对应的PRB的位置确定确定PBCH/PSS/SSS等公共信号的位置。
可选的,UE根据载波中心频点或直流子载波所在的位置对应的PRB的位置确定确定PHICH、PDCCH等公共信道的位置
在本发明实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而UE根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,UE可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参见图4,为本发明一种确定资源块的方法的另一种实施例流程示意图。如图4所示,本发明实施例所述的一种确定资源块的方法包括以下步骤:
S200,用户设备UE获取载波信息。
S201,所述UE根据所述载波信息确定第一位置信息。
S202,所述UE根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述UE已知的一个系统频带;或者,所述UE根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入的频带。
在本发明实施例中,第一系统频带为UE在接入基站中,基站对其曾配置过的至少一个系统频带中的一个系统频带,且是UE已获知的系统频带。UE可以根据第一系统频带与载波的相对关系来进行确定第二位置信息。具体的,UE可以根据载波的中心频率与第一系统频带的中心频率的相对位置来进行确定第二位置信息。由上述实施例我们可以获知的是,由于UE是以100KHz的栅格进行扫频,且子载波间隔15KHz,故UE的载波的中心频率与第一系统频带的中心频率的间隔为300KHz的整数倍,其中,300为15和100的最小公倍数。UE可根据载波的中心频率与第一系统频带的中心频率的之间的距离来 进行确定UE的载波的中心频率相对于第一系统频带的中心频率偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,UE确定偏移量可以是,UE将获取到的UE的载波的中心频率相对于第一系统频带的中心频率偏移量除以基准资源块宽度,获得的余数为偏移量,UE确定偏移方向可以是,当UE的传输频带的中心频率相对于系统频带的中心频率偏移量为正数时,则偏移方向为向后方向,当UE的传输频带的中心频率相对于系统频带的中心频率偏移量为负数时,则偏移方向为向前方向。
进一步的,在本发明实施例中,UE还可以根据载波的直流子载波与第一系统频带的直流子载波的相对关系来进行确定第二位置信息。具体的,UE可根据载波的直流子载波与第一系统频带的直流子载波的之间的距离来进行确定载波的直流子载波相对于第一系统频带的直流子载波偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,UE确定偏移量可以是,UE将获取到的UE的载波的直流子载波相对于第一系统频带的直流子载波偏移量除以基准资源块宽度,获得的余数作为偏移量,UE确定偏移方向可以是,当UE的直流子载波的直流子载波相对于第一系统频带的直流子载波偏移量为正数时,则偏移方向为向后方向,当UE的载波的直流子载波相对于第一系统频带的直流子载波偏移量为负数时,则偏移方向为向前方向。
进一步的,在本发明实施例中,UE还可以根据传输频带的RS(Reference Signal,参考信号)序列与第一系统频带的RS序列的相对位置来进行确定第二位置信息。具体的,UE可根据载波的RS序列相对于第一系统频带的RS序列偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,UE确定偏移量可以是,UE将获取到的载波的RS序列相对于第一系统频带的RS序列偏移量作为偏移量,UE确定偏移方向可以与载波的RS序列相对于第一系统频带的RS序列相同。
其中RS可以为CRS(Cell-specific RS,小区专属参考信号)、CSI-RS(Channel State Information-RS,信道状态信息参考信号)、UE-specific RS(UE专属参考信号)等各种RS。
进一步的,在本发明实施例中,接入频带为所述UE接入基站时,基站对UE进行分配载波或频带前时UE随机接入的频带。UE可以根据载波与接入频带的相对关系来进行确定第二位置信息。具体的,UE可以根据载波的中心频 率与接入频带的中心频率的相对位置来进行确定第二位置信息。具体的,UE可根据载波的中心频率与接入频带的中心频率之间的距离来进行确定载波的中心频率相对于接入频带的中心频率的偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,UE确定偏移量可以是,UE将获取到的UE的载波的中心频率相对于接入频带的中心频率偏移量除以基准资源块宽度,获得的余数为偏移量,UE确定偏移方向可以是,当UE的载波的中心频率相对于接入频带的中心频率偏移量为正数时,则偏移方向为向后方向,当UE的载波的中心频率相对于接入频带的中心频率偏移量为负数时,则偏移方向为向前方向。
进一步的,在本发明实施例中,UE还可以根据载波的直流子载波与接入频带的直流子载波的相对关系来进行确定第二位置信息。具体的,UE可根据载波的直流子载波与接入频带的直流子载波的之间的距离来进行确定载波的直流子载波相对于接入频带的直流子载波偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,UE确定偏移量可以是,UE将获取到的UE的载波的直流子载波相对于接入频带的直流子载波偏移量除以基准资源块宽度,获得的余数作为偏移量,UE确定偏移方向可以是,当UE的载波的直流子载波相对于接入频带的直流子载波偏移量为正数时,则偏移方向为向后方向,当UE的载波的直流子载波相对于接入频带的直流子载波偏移量为负数时,则偏移方向为向前方向。
S203,所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块。
S204,所述UE根据所述第三资源块与基站通信。
在本发明实施例中,步骤S200、步骤S201、步骤S203和步骤S204的具体实施方式可以参见以上实施例中的步骤S100、步骤S101、步骤S103和步骤S104的具体实施方式,在此不再进行赘述。
在本发明实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而UE根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,UE可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参见图5,为本发明一种确定资源块的方法的又一种实施例流程示意图。如图5所示,本发明实施例所述的一种确定资源块的方法包括以下步骤:
S300,用户设备UE获取载波信息。
S301,所述UE根据所述载波信息确定第一位置信息。
S302,所述UE接收基站基站发送的所述第二位置信息。
在本发明实施例中,所述UE可以接收基站基站发送的第二位置信息,从而获取到第二位置信息。其中,当第二位置信息包括资源块的偏移量时,基站可通过1bit或2bit来通知,其中1bit或2bit对应的2种状态用于指示偏移量等于4或等于8等。
S303,所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块。
S304,所述UE根据所述第三资源块与基站通信。
在本发明实施例中,步骤S300、步骤S301、步骤S303和步骤S304的具体实施方式可以参见以上实施例中的步骤S100、步骤S101、步骤S103和步骤S104的具体实施方式,在此不再进行赘述。
在本发明实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而UE根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,UE可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参照图6,为本发明一种确定资源块的方法的一种实施例流程图。下面从基站侧阐述一种确定资源块的方法。如图6所示,本实施例所述的一种确定资源块的方法可包括:
S400,基站获取UE的载波信息。
在本发明实施例中,UE可接入非标准带宽LTE系统或标准带宽LTE系统。其中,标准带宽LTE系统的频带带宽可以包括:1.4MHz、3MHz、5MHz、10MHz、15MHz和20MHz或其他的标准带宽中的任一种。非标准带宽LTE系统的频带带宽可以包括6.2MHz、6.5MHz、12MHz和13MHz等宽度不同的非标准带宽。当UE接入到LTE系统中,基站可根据UE的带宽接入能力或处 理能力或业务需求为其分配对应的载波,例如:当UE具有接入5M标准宽带的对应业务需求时,基站可以在其系统频带中划分出5MHz标准带宽分配给UE,作为UE的载波,使得UE与基站的数据交互在分配的载波内进行传输,其中,基站的频带可以是10MHz或20MHz等标准带宽,或者基站的频带可以是7MHz或12MHz等非标准带宽。基站对UE进行分配载波后,基站可获取UE的载波信息。其中,载波信息可以包括载波的大小以及载波的中心频率,或者载波的大小以及载波的直流子载波,或者可以包括在载波的大小以及载波的起始位置,或者可以包括载波的大小以及载波的终止位置等。
S401,所述基站根据所述载波信息确定UE对应的第一位置信息。
在LTE系统中,子载波的间隔为15KHz,每12个子载波为一个物理资源块PRB,即每个PRB的大小可以是15KHz*12=180KHz。在LTE系统中,基站与UE之间的数据交互是通过资源块来进行数据交互,其中,资源块可以是物理资源块PRB,或者可以是资源块集合RBG,RBG包括多个PRB,PRB可包括多个子载波,即是,RBG可由频域元素PRB组成,PRB可由频域元素子载波组成。优选的,在本发明实施例中,资源块可以是PRB。
在本发明实施例中,载波可包括位于载波两侧的保护频带、保护频带之间的用于信号传输的传输频带,或者,载波可包括位于载波两侧的保护频带、保护频带之间的用于信号传输的传输频带以及保护频带之间的不用于信号传输的不可用频带。传输频带用于数据的传输,保护频带不用于数据的传输。优选的,每个保护频带的大小可为载波带宽大小的5%。
在本发明实施例中,当基站确定载波信息对应的载波后,基站根据载波信息确定第一位置信息,其中,第一位置信息用于指示载波上的保护频带之外的所有资源块的位置,可包括所有资源块的位置,其中,每个资源块的位置包括每个资源块的起始位置和终止位置。优选的,第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,第一资源块为载波的保护频带之外的首个资源块,第二资源块为载波的保护频带之外的最后一个资源块,即可包括第一资源块的起始位置和第二资源块的终止位置。具体的,基站根据载波信息确定第一位置信息可以是:基站以载波信息对应的载波内保护频带以外的频带的起始位置为首个资源块的起始位置,以基准资源块宽度来逐个确定每个资 源块的起始位置和终止位置,即基站获得第一位置信息。其中:基站可以以载波的保护频带以外的频带的第一个子载波为首个资源块的起始位置,即载波的保护频带以外的频带的第一个子载波为首个资源块的第一个子载波,然后按照基准资源块宽度为12个子载波且相邻PRB的边界重合的方式确定所有的频带内的PRB,即以频带的第13个子载波为第二个资源块的起始位置,以频带的第25个子载波为第三个资源块的起始位置,按照以上获取第二位置的方式依次获取UE的每个资源块的起始位置和终止位置,即基站可获得第一位置信息。而根据第一位置信息确定的最后一个资源块的终止位置为载波的保护频带以外的最后一个子载波,据此可以确定载波的所有资源块。当UE的系统带宽为5M时,基站可获得对应的25个PRB,从而UE与基站之间的数据交互可在这25个PRB中选择至少一个PRB进行交互数据。基站根据载波信息确定第一位置信息还可以是:当载波保护频带以外的频带有N个RBG时,前N-1个RBG包括的PRB数量可以是上述保护频带以外的频带内总PRB数除以N得到的商向上取整的值,最后一个RBG包括的PRB的数量可以是上述保护频带以外的频带内总PRB数量减去前N-1个RBG包括的总PRB数量的差的值。其中,UE的第一个PRB是UE的第一个RBG的第一个PRB,从而基站可获每个RBG的起始位置和终止位置,即UE可获得第一位置信息。
在本发明实施例中,当基站获得第一位置信息进行确认对应的资源块后,基站还可对确认的资源块进行分配编号。如:基站可对PRB进行分配编号,例如:当传输频带映射25个PRB时,UE可以对其所映射的资源块从0~24进行分配编号。同理,基站也可以对RBG进行编号。进一步的,基站获得第一位置信息还可以是UE按照LTE标准预定义载波中资源块位置的方式确定载波中的资源块从而获得第一位置信息。
S402,所述基站获取第二位置信息。
在本发明实施例中,第二位置信息指示从第一资源块的起始位置或第二资源块的终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍。即基站重新确定的资源块为UE的载波内保护频带以外的第N个组成资源块的频域元素开始或UE的载波内保护频带以外的第N个组成资源块的频域元素结束;而基站的第一位置信息所指示的资源块为UE的载波内保护频带宽以外的第1个或第M+1个组成 资源块的频域元素位置,或为所述UE的载波内保护频带宽以外的倒数第1个或倒数第M+1个组成资源块的频域元素位置,其中M等于资源块包括的频域元素数量的整数倍。其中,相邻的两个资源块的边界重合。其中,组成PRB的频域元素为子载波,组成RBG的频域元素为PRB。
在本发明实施例中,第二位置信息可以是用于重新确定载波上的首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或任意一个资源块的起始位置和/或终止位置,或每一个资源块的起始位置和/或终止位置,重新确定的载波上的首个资源块或最后一个资源块或指定资源块与第一位置信息所指示的首个资源块或最后一个资源块或指定资源块的位置不同。即是:第二位置信息可以包括:载波上的首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或任意一个资源块的起始位置和/或终止位置,或每一个资源块的起始位置和/或终止位置。优选的,第二位置信息可以包括首个资源块的起始位置或最后一个资源块的终止位置,其中,首个资源块、最后一个资源块或指定资源块可以为第三资源块。当第二位置信息指示的不是首个资源块或最后一个资源块的位置时,偏移量可以N不等于n的整数倍,但可以为n的整数倍与m的和,其中m为1~(n-1)之间的一个正整数。
进一步的,第二位置信息还可以包括重新确认后的首个资源块的起始位置和/或终止位置,或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或全部资源块中每一个的起始位置和/或终止位置相对于第一位置信息所指示的首个资源块的起始位置和/或终止位置,或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或全部资源块中每一个的起始位置和/或终止位置的偏移N个频域元素的偏移量和/或偏移方向。优选的,第二位置信息包括首个资源块的起始位置相对于第一资源块的起始位置的偏移量和/或偏移方向,和/或最后一个资源块的起始位置相对于第二资源块的终止位置的偏移量和/或偏移方向。其中,偏移N个频域元素的偏移量可以包括4个频域元素的偏移量、6个频域元素的偏移量和8个频域元素的偏移量中的任意一种。第二位置信息可以包括偏移量和偏移方向中的一个信息,而另一个信息可以是预定义的或通过其他信息获取的, 比如提前获取的。其中,偏移量可以是任意个频域单位。优选的,频域单位可以是组成资源块的频域元素单位,例如子载波,偏移量的大小可以小于资源块的大小。进一步的,偏移方向可以是向前方向或向后方向,向前方向可是是向频率更高的方向,向后方向可以是向频率更低的方向。其中,首个资源块、最后一个资源块或指定资源块可以为第三资源块。
其中,组成资源块的所有频域元素为可以用于传输信号的频域元素,不包括直流子载波。
进一步的,第二位置信息还可以包括首个资源块的起始位置和首个资源块的宽度,或最后一个资源块的终止位置和最后一个资源块的宽度。其中,首个资源块、最后一个资源块或指定资源块可以为第三资源块。
在本发明实施例中,当有多个UE接入到LTE系统中,可参见图3,为了高效使用基站的频带资源,基站可在频带中将一部分频带资源分配给UE1,将另一部分频带资源分配给UE2,其中,为了最大效率使用频带资源,基站可遵循使UE1的频带资源与UE2频带资源最大限度的不重合的原则进行频带资源分配。参见图3,当基站的带宽为6.4MHz时,UE1的载波为5MHz,UE2的载波为5MHz时,基站为了最大效率使用频域资源,基站对UE1和UE2进行分配载波,此时UE1的载波和UE2的载波有3.6MHz左右的交叠,且由于UE1和UE2是以100KHz的栅格进行扫频,且子载波间隔15KHz,故UE1的载波中心频率和UE2的载波中心频率的距离是300kHz的整数倍,其中,300为15和100的最小公倍数,UE1的载波中心频率低于UE2的载波中心频率。当基站对UE1和UE2进行分配载波后,基站根据获得UE1的载波对应的第一位置信息所指示的资源块位置可与基站中的已映射的基准资源块位置重合,但基站获得UE2的载波对应的第一位置信息所指示的资源块的位置与基站中的已映射的基准资源块的位置可能不重合,其中,基站与第一个接入的UE通信时所映射的资源块可为基准资源块。如:基站获得UE1的载波对应的PRB可如图3中的UE1的PRB分布,基站获得UE2的载波对应的PRB可与图3的UE2的PRB分布,我们可以获知基站获得UE2的第一位置信息所指示的资源块的位置与基站中的已映射的基准资源块位置不重合,导致基站需至少同时为UE1和UE2分配资源进行通信时,基站无法连续使用资源而浪费了资源,其中:如图3,当基站获得的UE1的第一位置信息所指示的第一个PRB的起 始位置和终止位置为基站的系统频带上的第1个子载波和第12个子载波,基站获得获得UE1的第二个PRB的起始位置和终止位置为基站的系统频带上的第13个子载波和第24个子载波;当基站获得UE2的第一位置信息所指示的第一个PRB的起始位置和终止位置为基站的系统频带上的第81个子载波和第92个子载波,基站获得UE2的第二个PRB的起始位置和终止位置为基站的系统频带上的第93个子载波和第104个子载波,可见,基站获得的UE1的PRB与基站获得的UE2的PRB不重合。当基站调用UE2的第一个PRB与UE2进行通信时,则基站无法调用UE1的第7个PRB或UE1的第8个PRB与UE1进行通信,因为UE1的第7个PRB或UE1的第8个PRB的部分子载波已被UE2的第一个PRB占用,无法进行调用,使得基站无法连续使用资源。
在本发明实施例中,为了使得基站可连续使用资源,当基站无法连续使用资源时,基站可重新确定资源块的位置,以使重新确定的资源块的位置与基站的基准资源块的位置重合,从而有效提高资源利用率。
在本发明实施例中,当基站需重新确定资源块的位置时,基站获取第二位置信息。
进一步的,在本发明实施例中,当基站获取到第二位置信息,基站可向UE发送第二位置信息。
S403,所述基站根据所述第二位置信息和所述第二位置信息确定第三资源块。
在本发明实施例中,当所述第二位置信息包括偏移N个频域元素的偏移量和/或偏移方向时,基站根据获取到的偏移量和偏移方向在第一位置信息所指示的第一资源块的起始位置的基础上或第二资源块的终止位置的基础上进行偏移,从而确定第三资源块。例如:当第一位置信息指示的是第一资源块的起始位置,偏移方向是向后方向,偏移量是4个子载波时,则基站在第一资源块的起始位置的基础上向后方向偏移4个子载波,确定第三资源块的起始位置,进而根据基准资源块宽度确定第三资源块;当第一位置信息指示的是第一资源块的起始位置,偏移方向是向后方向,偏移量是8个子载波时,则基站在第一资源块的起始位置的基础上向后方向偏移8个子载波,确定第三资源块的起始位置,进而根据基准资源块宽度确定第三资源块;当第一位置信息指示的是第一资源块的起始位置,偏移方向是向后方向,偏移量是6个子载波时,则 基站在第一资源块的起始位置的基础上向后方向偏移6个子载波,确定第三资源块的起始位置,进而根据基准资源块宽度确定第三资源块;当第一位置信息指示的是第二资源块的终止位置,偏移方向是向前方向,偏移量为6个子载波时,则基站在第二资源块的终止位置的基础上向前方向偏移6个子载波,确定第三资源块的终止位置,进而根据基准资源块宽度确定第三资源块。
其中,在偏移结束后,当基站是在第一资源块的起始位置的基础上进行向前方向偏移时,则确认的第三资源块占用了保护频带,当基站在第二资源块的终止位置的基础上进行向后方向偏移时,则确认的第三资源块占用了保护频带。为了不占用保护频带,保障数据正常收发,当基站在第一资源块的起始位置的基础上进行偏移的偏移方向是向前方向时,基站可将第三资源块的终止位置作为首个资源块的起始位置,并将确认的首个资源块作为第三资源块;当基站在第二资源块的终止位置的基础上进行偏移的偏移方向是向后方向时,基站可将第三资源块的起始位置作为最后一个资源块的终止位置,并将确认的最后一个资源块作为第三资源块。但是,基站在进行偏移后确认的资源块数量比基站偏移前所映射的资源块数量少了一个。故,当基站在进行向前方向偏移结束后,基站还可以将最后一个资源块与高频保护频带之间的频域资源确认为一个非标准资源块,其中,该非标准资源块的大小小于基准资源块宽度。进一步的,当基站在上进行向后方向偏移结束后,基站还可以将首个资源块与低频保护频带之间的频域资源确认为一个非标准资源块,其中,该非标准资源块的大小小于基准资源块宽度。
具体应用中,参见图3,基站的频带为6.4MHz,基站给UE1分配5MHz的载波,基站给UE2分配5MHz的载波,其中,UE1和UE2的载波有3.6MHz的交叠。UE1的载波可以为6.4MHz中频率最低的5MHz。当此时UE2的载波的中心频率与基站的频带的中心频率或与UE1的载波的中心频率相差为1200kHz时,此时基站获得的UE2的载波对应的第一位置信息所指示的PRB的位置可如图3所示,基站获得的UE2的载波对应的第一位置信息所指示的PRB的位置相对于基站映射的基准资源块的位置向前方向偏移4个子载波或向后方向偏移了8个子载波。具体的,按照频率从低到高的顺序依次将子载波排序,从第1个子载波开始,将第5个子载波作为UE2的第一个PRB的起始位置,即第5~16子载波为一个PRB,第17~28子载波为第二个PRB,其他 PRB的位置依此类推,而基站根据UE2的载波对应的第一位置信息获得的PRB的位置则是从第1个子载波开始第一个PRB的,从而,基站根据UE2的载波对应的第一位置信息获得的PRB的位置相对于基站映射的基准资源块的位置向前方向偏移4个子载波或向后方向偏移了8个子载波。为了使得基站获得的UE2的PRB可以与基站映射的基准资源块重合,基站获得UE2的载波对应的第二位置信息可以包括偏移量为4个子载波和偏移方向为向后方向,或者偏移量为8个子载波和偏移方向为向前方向。基站可根据UE2对应的第二位置信息对基站获得的UE2第一位置信息所指示的第一资源块的起始位置或第二资源块的终止位置进行偏移,获得第三资源块。使得基站根据第三资源块重新确定所有资源块,所有资源块与基站映射的基准资源块重合。
具体应用中,当UE接入的基站的频带为3MHz、5MHz或15MHz时,若此时UE只能使用6个PRB对应的频带,即UE的传输频带带宽为180KHz*6=1280KHz。此时基站从频带中心偏移(N个PRB+6个子载波)的位置作为一个第三资源块的的左或右边界,从而偏移量为6个子载波的倍数,偏移方向可以为向前方向或向后方向。
在本发明实施例中,当第二位置信息包括载波上的首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置,或指定资源块的起始位置和/或终止位置,或任意一个资源块的起始位置和/或终止位置,或每一个资源块的起始位置和/或终止位置时,基站可根据第二位置信息确定第三资源块。
具体的,当第二位置信息包括首个资源块的起始位置时,基站可根据首个资源块的起始位置重新确定首个资源块,将首个资源块确定为第三资源块。其中,首个资源块的起始位置与UE的载波的保护频带以外的起始位置可以不重合,其中载波的保护频带可以为载波两侧载波带宽5%的频域范围;当第二位置信息包括最后一个资源块的终止位置时,基站可根据最后一个资源块的终止位置重新确定最后一个资源块,将最后一个资源块确定为第三资源块。其中,最后一个资源块的终止位置可以与UE的载波的保护频带以外的终止位置不重合,其中载波的保护频带可以为载波两侧载波带宽5%的频域范围。
由上实施例我们可以获知的是,当基站在第一资源块的起始位置的基础上进行偏移的偏移方向是向前方向时,基站可将偏移后的第三资源块的终止位 置作为首个资源块的起始位置,并将确认的首个资源块作为第三资源块;当基站在第二资源块的终止位置的基础上进行偏移的偏移方向是向后方向时,基站可将偏移后的第三资源块的起始位置作为最后一个资源块的终止位置,并将最后一个资源块作为第三资源块。此时基站获得的UE的首个资源块(第三资源块)的最低频率边界不是保护频带频率边界和/或最后一个资源块的最高频率边界不是保护频带的频率边界,从而在第一个完整资源块和低频保护频带之间有部分频域资源不属于任何完整的资源块和/或在最后一个完整资源块和高频保护频带之间有部分频域资源不属于任何完整的资源块。其中,该部分频域资源可包括可用于信号传输的可用资源和/或不可用于信号传输的不可用资源。
进一步的,为了充分利用可用资源,在本发明实施例中,第二位置信息包括的首个资源块的起始位置时,第二位置信息还可以包括首个资源块宽度或者首个资源块的终止位置,或者基站首个资源块宽度。当第二位置信息包括首个资源块的起始位置时,基站可根据首个资源块的宽度确定首个资源块的终止位置。则首个资源块的起始位置和终止位置可以是第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源的位置,其中,第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源可以是第一个完整资源块和低频保护频带之间可用于信号传输的可用资源。优选的,首个资源块的起始位置和终止位置为该部分频域资源的起始位置和终止位置,基站可根据首个资源块的起始位置和终止位置确定该部分频域资源为首个资源块,将该首个资源块设为第三资源块。其中,首个资源块(第三资源块)的宽度小于基准资源块宽度,即是,首个资源块(第三资源块)的大小小于基准资源块大小。进一步的,基站确定的首个资源块的起始位置和终止位置还可以是第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源以及第一个完整资源块的位置,其中,第一个完整资源块和低频保护频带之间的不属于任何完整的资源块的部分频域资源可以是第一个完整资源块和低频保护频带之间可用于信号传输的可用资源,首个资源块的起始位置和终止位置所包括的首个资源块的起始位置和终止位置为该部分频域资源以及相邻的第一个完整资源块的起始位置和终止位置。基站可根据首个资源块的起始位置和终止位置确定该部分频域资源和第一个完整资源块为首个资源块,将该首个资源块设为第三资源块。其中,首个资源块(第三资源块)的宽 度大于基准资源块宽度,即是,首个资源块(第三资源块)的大小大于基准资源块大小。
其中,当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度为基准资源块宽度;当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度小于基准资源块宽度。
其中,当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度为基准资源块宽度;当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度小于基准资源块宽度。
其中,基准资源块宽度可以为标准预定义的资源块宽度。
其中,本发明实施例中,将宽度等于基准资源块宽度的资源块叫做完整资源块或标准资源块,将宽度小于基准资源块宽度的资源块叫做非完整资源块或非标准资源块。
在本发明实施例中,第二位置信息包括的最后一个资源块的终止位置时,第二位置信息还可以包括最后一个资源块的宽度或最后一个资源块的起始位置,或者基站首个资源块宽度。当第二位置信息包括最后一个资源块的终止位置时,基站可根据最后一个资源块的宽度确定最后一个资源块的起始位置。则最后一个资源块的起始位置和终止位置可以是倒数第一个完整资源块和高频保护频带宽之间的不属于任何完整的资源块的部分频域资源的位置,其中,倒数第一个完整资源块和高频保护频带之间的不属于任何完整的资源块的部分频域资源可以是倒数第一个完整资源块和高频保护频带之间可用于信号传输的可用资源。优选的,最后一个资源块的起始位置和终止位置所包括的最后一个资源块的起始位置和终止位置为该部分频域资源的起始位置和终止位置,基站可根据最后一个资源块的起始位置和终止位置确定该部分频域资源为最后一个资源块,将该资源块设为第三资源块。其中,最后一个资源块(第三资源块)的宽度小于基准资源块宽度,即是,最后一个资源块(第三资源块)的大小小于基准资源块大小。进一步的,基站确定的最后一个资源块的起始位置和终止位置还可以是倒数第一个完整资源块和高频保护频带之间的不属于任何 完整的资源块的部分频域资源以及倒数第一个完整资源块的位置,其中,倒数第一个完整资源块和高频保护频带之间的不属于任何完整的资源块的部分频域资源可以是倒数第一个完整资源块和高频保护频带之间可用于信号传输的可用资源,最后一个资源块的起始位置和终止位置所包括的最后一个资源块的起始位置和终止位置为该部分频域资源以及相邻的倒数第一个完整资源块的起始位置和终止位置。基站可根据最后一个资源块的起始位置和终止位置确定该部分频域资源和倒数第一个完整资源块为最后一个资源块,将最后一个资源块设为第三资源块。其中,最后一个资源块(第三资源块)的宽度大于基准资源块宽度,即是,最后一个资源块(第三资源块)的大小大于基准资源块大小。
其中,当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度为基准资源块宽度;当第一个完整资源块与低频保护带之间的频域资源不用于信号传输时,首个资源块的宽度小于基准资源块宽度。
其中,当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度为基准资源块宽度;当最后一个完整资源块与低频保护带之间的频域资源不用于信号传输时,最后一个资源块的宽度小于基准资源块宽度。
其中,基准资源块宽度可以为标准预定义的资源块宽度。
本发明实施例中,完整资源块的大小为根据载波按照预定义方式确定的资源块大小,如完整PRB的大小为12个子载波,完整RBG的大小为载波中除最后一个RBG之外其他RBG的大小。
S404,所述基站根据所述第三资源块与所述UE通信。
在本发明实施例中,基站根据第三资源块和基准资源块宽度确定UE对应的所有的资源块,其中,相邻的资源块的边界位置重合。进一步的,当基站在以上实施例确定的资源块包括第三资源块和非标准资源块时,基站根据第三资源块、非标准资源块和基准资源块宽度确定UE对应的所有的资源块,其中,相邻的资源块的边界位置重合。
在本发明实施例中,基站的重新确认后的资源块中有至少一个资源块的大小与基站根据第一位置信息所确定的资源块中至少一个资源块的大小相同。即可以是,基站根据第三资源块所确定的所有的资源块中有至少一个资源块所包 括的频域元素数量与基站根据第一位置信息所确定的资源块中至少一个资源块所包括的频域元素数量相同。
由上实施例我们可以理解的是,在资源块按照默认或预定义的方式在频域上连续排列且资源块的边界互相重合的情况下,只要获取到一个资源块的位置即可相应获取到其他资源块的位置。
在本发明实施例中,我们可以理解的是,基站可以根据多个载波交叠的需要使多个载波交叠的UE的资源块位置重合,且与基站的基准资源块位置重合,从而基站可连续使用资源,提高资源的使用效率。
在本发明实施例中,当基站确定所有资源块后,基站可获取确定的所有资源块的编号,其中,基站可获取PRB的编号或RBG的编号。具体的,UE获取PRB的编号与子载波的关系可以是:
Figure PCTCN2015071675-appb-000009
其中,
Figure PCTCN2015071675-appb-000010
为每一个完整资源块内的元素个数,k为大于等于0的整数,k0为0或1或2或-1或-2,nPRB为PRB的编号。k0为重新确认后的第一位置相对于第二位置的偏移量除以4的值,其中,PRB的起始编号可以为0。上述举例为第一位置相对或者,基站获取PRB的编号与子载波的关系可以是:
Figure PCTCN2015071675-appb-000011
其中,
Figure PCTCN2015071675-appb-000012
为每一个完整资源块内的元素个数,k为大于等于0的整数,k0为0或1或-1,nPRB为PRB的编号。k0为重新确认后的第一位置相对于第二位置的偏移量除以6的值,其中,PRB的起始编号可以为0。
在本发明实施例中,基站获取RBG的编号可以是:当UE载波对应的RBG数量为NRBG,可以通过载波包括的RBG总数NRBG和RBG大小P来获得RBG,其中RBG与PRB的关系为:
Figure PCTCN2015071675-appb-000013
其中
Figure PCTCN2015071675-appb-000014
为载波对应的PRB数量。如果
Figure PCTCN2015071675-appb-000015
那么有一个RBG的大小为
Figure PCTCN2015071675-appb-000016
其中i为UE的第一个PRB到第一个RBG的距离或偏移量,以PRB为单位其中载波中保护频带以外的前i个PRB为不完整RBG。
其中,在本发明实施例中,UE的载波的直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。其中,UE的载波的直流子载波仍然为UE的载波中心或UE的载波中心旁边的一个子载波。
在本发明实施例中,基站可根据确定的资源块与UE通信。
在本发明实施例中,信号可包括参考信号、控制信息、反馈信息、同步信号、随机接入信号、广播信号中的至少一种或多种。
在本发明实施例中,基站根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而基站根据第三资源块与基站通信,这使得基站可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,基站可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
信号传输信号传输信号传输信号传输信号传输信号传输信号传输信号传输信号传输信号传输。
请参照图7,为本发明一种确定资源块的方法的另一种实施例流程图。下面从基站侧阐述一种确定资源块的方法。如图7所示,本实施例所述的一种确定资源块的方法可包括:
S500,基站获取UE的载波信息。
S501,所述基站根据所述载波信息确定UE对应的第一位置信息。
S502,所述基站根据所述UE的载波与第一系统频带的相对关系确定第二位置信息。
在本发明实施例中,第一系统频带为UE在接入基站中,基站对其曾配置过的至少一个系统频带中的一个系统频带,且是UE已获知的系统频带。基站可以根据第一系统频带与UE的载波的相对关系来进行确定第二位置信息。具体的,基站可以根据UE的载波的中心频率与第一系统频带的中心频率的相对位置来进行确定第二位置信息。由上述实施例我们可以获知的是,由于UE是以100KHz的栅格进行扫频,且子载波间隔15KHz,故UE的载波的中心频率与第一系统频带的中心频率的间隔为300KHz的整数倍,其中,300为15和100的最小公倍数。基站可根据UE的载波的中心频率与第一系统频带的中心频率的之间的距离来进行确定UE的载波的中心频率相对于第一系统频带的中心频率偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,基站确定偏移量可以是,基站将获取到的UE的载波的中心频率相对于第一系统频 带的中心频率偏移量除以基准资源块宽度,获得的余数为第一位置相对于第二位置的偏移量。基站确定偏移方向可以是,当UE的载波的中心频率相对于系统频带的中心频率偏移量为正数时,则偏移方向为向后方向,当UE的载波的中心频率相对于系统频带的中心频率偏移量为负数时,则偏移方向为向前方向。
进一步的,在本发明实施例中,基站还可以根据UE的载波的直流子载波与第一系统频带的直流子载波的相对关系来进行确定第二位置信息。具体的,基站可根据载波的直流子载波与第一系统频带的直流子载波的之间的距离来进行确定载波的直流子载波相对于第一系统频带的直流子载波偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,基站确定偏移量可以是,基站将获取到的UE的载波的直流子载波相对于第一系统频带的直流子载波偏移量除以基准资源块宽度,获得的余数作为偏移量,基站确定偏移方向可以是,当UE的直流子载波的直流子载波相对于第一系统频带的直流子载波偏移量为正数时,则确定的偏移方向为向后方向,当UE的载波的直流子载波相对于第一系统频带的直流子载波偏移量为负数时,则确定的偏移方向为向前方向。
进一步的,在本发明实施例中,基站还可以根据UE的载波的RS序列与第一系统频带的RS序列的相对位置来进行确定第二位置信息。具体的,基站可根据载波的RS序列相对于第一系统频带的RS序列偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,基站确定偏移量可以是,基站将获取到的载波的RS序列相对于第一系统频带的RS序列偏移量作为偏移量,基站确定偏移方向可以与载波的RS序列相对于第一系统频带的RS序列相同。
其中RS可以为CRS、CSI-RS、UE-specific RS等各种RS。
S503,所述基站根据所述第二位置信息和所述第二位置信息确定第三资源块。
S504,所述基站根据所述第三资源块与所述UE通信。
在本发明实施例中,步骤S500、步骤S501、步骤S503和步骤S504的具体实施方式可以参见以上实施例中的步骤S400、步骤S401、步骤S403和步骤S404的具体实施方式,在此不再进行赘述。
在本发明实施例中,基站根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从 而基站根据第三资源块与基站通信,这使得基站可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,基站可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参照图8,为本发明一种确定资源块的方法的又一种实施例流程图。如图8所示,本实施例所述的一种确定资源块的方法可包括:
S600,基站获取UE的载波信息。
S601,所述基站根据所述载波信息确定UE对应的第一位置信息。
S602,所述基站根据所述UE的载波与接入频带的相对关系确定所述第二位置信息。
在本发明实施例中,接入频带为所述UE接入基站时,基站对UE进行分配载波或频带前时UE随机接入的频带。基站可以根据载波与接入频带的相对关系来进行确定第二位置信息。具体的,基站可以根据载波的中心频率与接入频带的中心频率的相对位置来进行确定第二位置信息。具体的,基站可根据载波的中心频率与接入频带的中心频率之间的距离来进行确定载波的中心频率相对于接入频带的中心频率的偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,基站确定偏移量可以是,基站将获取到的UE的载波的中心频率相对于接入频带的中心频率偏移量除以基准资源块宽度,获得的余数为偏移量,基站确定偏移方向可以是,当UE的载波的中心频率相对于接入频带的中心频率偏移量为正数时,则确定的偏移方向为向后方向,当UE的载波的中心频率相对于接入频带的中心频率偏移量为负数时,则确定的偏移方向为向前方向。
进一步的,在本发明实施例中,基站还可以根据载波的直流子载波与接入频带的直流子载波的相对关系来进行确定第二位置信息。具体的,基站可根据载波的直流子载波与接入频带的直流子载波的之间的距离来进行确定载波的直流子载波相对于接入频带的直流子载波偏移量,从而确定偏移量和偏移方向,获得第二位置信息。其中,基站确定偏移量可以是,基站将获取到的UE的载波的直流子载波相对于接入频带的直流子载波偏移量除以基准资源块宽度,获得的余数作为偏移量,基站确定偏移方向可以是,当UE的载波的直流子载波相对于接入频带的直流子载波偏移量为正数时,则偏移方向为向后方 向,当UE的载波的直流子载波相对于接入频带的直流子载波偏移量为负数时,则确定的偏移方向为向前方向。
S603,所述基站根据所述第二位置信息和所述第二位置信息确定第三资源块。
S604,所述基站根据所述第三资源块与所述UE通信。
在本发明实施例中,步骤S600、步骤S601、步骤S603和步骤S604的具体实施方式可以参见以上实施例中的步骤S400、步骤S401、步骤S403和步骤S404的具体实施方式,在此不再进行赘述。
在本发明实施例中,基站根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而基站根据第三资源块与基站通信,这使得基站可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,基站可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参见图9,为本发明一种确定频带的方法的一种实施例流程示意图。如图9所示,本发明实施例所述的一种确定频带的方法包括以下步骤:
S700,UE接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与UE的载波的宽度对应的频域粒度的倍数。
在现有技术中,UE通常是根据基站发送的频带的位置信息来进行确定频带的位置。其中,基站发送的频带的位置信息包括100kHz的倍数。当UE接收到基站发送的100kHz的倍数时,UE可以根据倍数以及100kHz获得偏移量,其中,偏移量可以是频带的直流子载波或最低频点相对于UE已知的直流子载波或最低频点的偏移量,UE可根据已知的频位位置和偏移量确定频带的直流子载波或最低频点,从而确定UE的频带。但是,当基站分配的频带的直流子载波相对于UE已知的直流子载波的偏移量比较大时,例如,偏移量为20MHz时,此时基站需要发送的倍数为200,需要Log2(200)个信令,这导致基站向UE发送通知的信令开销大,浪费信令资源。
在本发明实施例中,第一频带是基站对UE进行配置的频带,第一频带可 以是UE的载波,或者是UE的载波中的一部分频带,如6个连续的PRB。其中,UE的载波是基站根据UE的载波处理能力或业务需求对UE分配的频带。例如:当UE的载波处理能力为5MHz时,基站可以对UE分配5MHz的频带为载波。当基站不根据UE的载波处理能力或业务需求对UE进行分配频带时,该频带不是载波。例如:当UE的载波处理能力为5MHz时,基站对UE分配4MHz的频带,该频带仅为UE的载波中的一部分频带。
在本发明实施例中,位置信息可以包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与UE的载波的宽度对应的频域粒度的倍数。即是,位置信息可以包括第一频域粒度的倍数,或第一频域粒度的倍数和第二频域粒度的倍数,或与载波的宽度对应的频域粒度的倍数。UE可以第一频域粒度,第二频域粒度,或者载波的宽度与频域粒度的对应关系,其中,第一频域粒度可以为300kHz或900kHz中的任一种,第二频域粒度可以为在300kHz或900kHz中除第一频域粒度之外的另一种。进一步的,第一频域粒度和第二频域粒度还可以根据需要其他大于100kHz的数值。根据本发明实施例的频域粒度,可以节省节省基站配置位置信息的开销。当位置信息包括与载波的宽度对应的频域粒度的倍数,不同的载波宽度可以对应不同的频域粒度。如大的载波带宽可以对应大的频域粒度,从而可以节省基站配置位置信息的开销。
S701,所述UE根据所述位置信息确认第一频带。
在本发明实施例中,第二频带为UE已知的一个频带,即是,第二频带可以是基站给UE曾经分配过的一个UE已知的频带,或者是基站预定义的一个UE已知的频带。
当UE接收到位置信息时,UE解析位置信息获得倍数。其中,当位置信息包括第一频域粒度倍数时,UE根据第一频域粒度倍数和第一频域粒度获得第一频带的指定位置相对于第二频带的指定偏移量,其中,指定位置可以是直流子载波或者中心频率。在具体应用中,可例如:当第一频域粒度为900kHz时,第一频域粒度的倍数为2时,则UE可获得第一频带的直流子载波相对于第二频带的直流子载波偏移量可以是900kHz*2=1800kHz。则UE可以在第二频带的直流子载波的位置的基础上进行偏移1800kHz,获得第一频带的子载波的位置,从而确定UE的第一频带。
进一步的,当位置信息包括第一频域粒度倍数和第二频域粒度倍数时,UE根据第一频域粒度倍数、第二频域粒度倍数、第一频域粒度和第二频域粒度获得第一频带的指定位置相对于第二频带的指定偏移量,其中,指定位置可以是直流子载波或者中心频率。在具体应用中,可例如:当第一频域粒度为900kHz,第二频域粒度为300kHz时,第一频域粒度的倍数为2,第二频域粒度的倍数为1时,则UE可获得第一频带的直流子载波相对于第二频带的直流子载波偏移量可以是900kHz*2+300*1=2100kHz。则UE可以在第二频带的直流子载波的位置的基础上进行偏移2100kHz,获得第一频带的子载波的位置,从而确定UE的第一频带。
当位置信息包括载波的宽度对应的频域粒度的倍数时,UE首先获取UE的载波的宽度,并根据载波的宽度与频域粒度的对应关系获得频域粒度,其中,不同的载波宽度可以对应不同的频域粒度。例如:载波的宽度与频域粒度的对应关系可以是,当载波是20MHz时,频域粒度为900kHz,当载波是5MHz时,频域粒度为300kHz,即,UE可以根据UE的载波5MH获得频域粒度为300kHz。其中,对应关系不仅仅限制于以上所描述的实施方式,还可以根据需要其他对应关系,在此不进行赘述。进一步的,UE根据载波的宽度对应的频域粒度的倍数和获得的频域粒度获得第一频带的指定位置相对于第二频带的指定偏移量,其中,指定位置可以是直流子载波或者中心频率。在具体应用中,可例如:当获得的载波的宽度对应的频域粒度为500kHz时,载波的宽度对应的频域粒度的倍数为2时,则UE可获得第一频带的直流子载波相对于第二频带的直流子载波偏移量可以是500kHz*2=1000kHz。则UE可以在第二频带的直流子载波的位置的基础上进行偏移1000kHz,获得第一频带的子载波的位置,从而确定UE的第一频带。
S702,所述UE根据所述第一频带与所述基站通信。
在本发明实施例中,UE接收基站发送的用于确定第一频带的位置的位置信息,所述位置信息包括第一频域粒度的倍数,或第一频域粒度的倍数和第二频域粒度的倍数,或与载波的宽度对应的频域粒度的倍数,根据所述位置信息确认第一频带,最后根据所述确认的第一频带与所述基站通信,从而使得基站可以灵活调整通知信令的开销,节省资源。
请参见图10,为本发明一种确定频带的方法的一种实施例流程示意图。 下面从基站侧阐述一种确定频带的方法。如图10所示,本发明实施例所述的一种确定频带的方法包括以下步骤:
S800,所述基站获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带。
在本发明实施例中,第一频带是基站对UE进行配置的频带,第一频带可以是UE的载波,或者是UE的载波中的一部分频带,如6个连续的PRB。其中,UE的载波是基站根据UE的载波处理能力或业务需求对UE分配的频带。例如:当UE的载波处理能力为5MHz时,基站可以对UE分配5MHz的频带为载波。当基站不根据UE的载波处理能力或业务需求对UE进行分配频带时,该频带不是载波。例如:当UE的载波处理能力为5MHz时,基站对UE分配4MHz的频带,该频带仅为UE的载波中的一部分频带。
在本发明实施例中,第二频带为UE已知的一个频带,即是,第二频带可以是基站给UE曾经分配过的一个UE已知的频带,或者是基站预定义的一个UE已知的频带。
在本发明实施例中,第一频带的指定位置可以是第一频带的直流子载波或者是第一频带的中心频率;第二频带的指定位置可以是第二频带的直流子载波或者是第二频带的中心频率。基站可以根据第一频带的直流子载波和第二频带的直流子载波来获取第一频带的直流子载波相对于第二频带的直流子载波的偏移量。其中,偏移量可以是第一频带的直流子载波的频域值与第二频带的直流子载波的频域值的差的绝对值。例如:当第一频带的直流子载波为5.2MHz,第二频带的直流子载波为5.6MHz,则第一频带的直流子载波相对于第二频带的直流子载波的偏移量为|5.2MHz-5.6MHz|=400KHz。进一步的,基站可以根据第一频带的中心频率和第二频带的中心频率来获取第一频带的中心频率相对于第二频带的中心频率的偏移量。其中,偏移量可以是第一频带的中心频率的频域值与第二频带的中心频率的频域值的差的绝对值。例如:当第一频带的中心频率为5.2MHz,第二频带的中心频率为5.6MHz,则第一频带的中心频率相对于第二频带的中心频率的偏移量为|5.2MHz-5.6MHz|=400KHz。
S801,所述基站根据所述偏移量获取位置信息,其中,所述位置信息包括 第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数。
当基站获取到偏移量时,基站可以根据第一频域粒度和第二频域粒度中的至少一种,或者根据载波的宽度与频域粒度的对应关系,获取位置信息。
在本发明实施例中,当基站有第一频域粒度时,其中,第一频域粒度可以是900kHz或者300kHz。基站根据偏移量和第一频域粒度获取第一频域粒度的倍数。具体的,基站的第一频域粒度的倍数可以是偏移量与第一频域粒度之商。例如:当偏移量为1800kHz,第一频域粒度为900kHz时,则第一频域粒度的倍数为1800kHz/900kHz=2。
在本发明实施例中,当基站有第一频域粒度和第二频域粒度时,其中,第一频域粒度可以是900kHz或者300kHz,第二频域粒度可以是在900kHz和300kHz中除第一频域粒度之外的另一种。例如,当第一频域粒度为900kHz时,则第二频域粒度为300kHz。基站根据偏移量、第一频域粒度和第二频域粒度获取第一频域粒度的倍数和第二频域粒度的倍数。具体的,第一频域粒度的倍数可以是偏移量与第一频域粒度之商向下取整,第二频域粒度的倍数可以是偏移量与第一频域粒度的余数与第二频域粒度之商。例如:当偏移量为2100kHz,第一频域粒度为900kHz,第二频域粒度为300kHz时,则第一频域粒度的倍数为对2100kHz除以900kHz向下取整等于2,第一频域粒度的倍数为2100kHz除以900kHz的余数300kHz除以300kHz等于1。
在本发明实施例中,当基站有载波的宽度与频域粒度的对应关系时,基站首先获取载波的宽度,并根据载波的宽度与频域粒度的对应关系获得频域粒度,其中,不同的载波宽度可以对应不同的频域粒度。例如:载波的宽度与频域粒度的对应关系可以是,当载波是20MHz时,频域粒度为900kHz,当载波是5MHz时,频域粒度为300kHz,即,UE可以根据UE的载波5MH获得频域粒度为300kHz。其中,对应关系不仅仅限制于以上所描述的实施方式,还可以根据需要其他对应关系,在此不进行赘述。进一步的,UE根据UE的载波的宽度对应的频域粒度和偏移量获得UE的载波的宽度对应的频域粒度的倍数。具体的,UE的载波的宽度对应的频域粒度的倍数可以是偏移量与UE的载波的宽度对应的频域粒度之商。
S802,所述基站将所述位置信息发送给所述UE,以使所述UE根据所述位 置信息确定所述第一频带。
在本发明实施例中,所述基站获取第一频带的指定位置相对于第二频带的指定位置的偏移量,根据所述偏移量获取位置信息,最后所述基站将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带,从而使得基站可以灵活调整通知信令的开销,节省资源。
请参见图11,为本发明一种确定资源块的方法的一种实施例流程示意图。如图11所示,本发明实施例所述的一种确定资源块的方法包括以下步骤:
S900,所述UE获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。
在现有技术中,UE的直流子载波不用于信号传输,即属于不可用资源,不划分在资源块内部。例如:在UE的5MHz载波上,在第145个子载波~169个子载波中,直流子载波为第151个子载波,其中,第145个子载波为PRB的起始子载波。则UE在确定资源块时,由于第151个子载波是直流子载波,则UE将第145个子载波~第150个子载波和第152个子载波~第157个子载波确认为第一个资源块,从而在该PRB中不包括第151个子载波,将第158个子载波~169个子载波确认为另一个资源块。但这导致当该UE的直流子载波可能处于与其他UE的传输频带的交叠区域中时,该UE在确认直流子载波所对应的PRB时,UE会跳过该直流子载波,但其他UE在确认该UE的直流子载波所在位置的PRB时,由于该载波的的直流子载波不是其他载波的直流子载波,则其他载波对应的UE不会进行跳过该直流子载波来确认PRB,而是确认的PRB包括该直流子载波。这使得两个载波在交叠区域的PRB将不能边界对齐,导致多个UE的载波交叠区域的资源不能有效利用。
在本发明实施例中,UE获取指示UE的直流子载波的位置的位置信息,该位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。其中,UE可通过基站获取该位置信息,或者UE可通过自检获得该位置信息。其中,UE通过自检获得该位置信息可以是:UE可以判断直流子载波是否位于接入基站内的其他载波的传输频带内,即载波的直流子载波是否与其他载波的传输频带重叠,当UE判断直流子载波位于接入基站内的其他UE的传输频带内时,UE获取的位置信息包括直流子载波在资源块内 部的信息;当UE判断直流子载波不位于接入基站内的其他载波的传输频带内时,即UE的直流子载波不与其他载波的传输频带重叠时,UE获取的位置信息包括直流子载波在资源块外部的信息。其中,传输频带用于传输信号。
S901,当所述位置信息包括所述直流子载波在资源块内部的信息时,所述UE将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块。
在本发明实施例中,资源块可以是PRB,当UE接收到UE的直流子载波在资源块内部的信息时,则UE在确认资源块时,UE将UE的直流子载波也确认为组成PRB的子载波,从而该PRB的有效子载波个数为标准PRB子载波个数减1,在此基础上再确定所有资源块,以使得UE的资源块与其他UE的资源块在重叠部分相对应。其中,此时UE的载波与其他载波有重叠。
在本发明实施例中,当UE确认了所有资源块后,UE可执行步骤S803。
S902,当所述位置信息包括所述直流子载波在资源块外部的信息时,所述UE将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块。
在本发明实施例中,资源块可以是PRB,当UE获取到UE的直流子载波在资源块外部的信息时,则UE在确认资源块时,UE将UE的直流子载波不作为组成PRB的子载波,该PRB的有效子载波个数为标准PRB子载波个数减1,在此基础上再确定所有资源块。其中,此时UE的直流子载波与其他UE的载波没有重叠。
在本发明实施例中,当UE确认了所有资源块后,UE可执行步骤S903。
S903,所述UE根据所述资源块与所述基站通信。
在本发明实施例中,UE可获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息,当所述位置信息包括所述直流子载波在资源块内部的信息时,所述UE将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块,当所述位置信息包括所述直流子载波在资源块外部的信息时,所述UE将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块,所述UE根据所述确定的资源块与所述基站通信,这使得可以根据载波交叠情况灵活调整资源块。此外,可以使交叠的多个载波 的PRB能够对齐,提高资源使用率。
请参见图12,为本发明一种确定资源块的方法的一种实施例流程示意图。下面从基站侧阐述一种确定资源块的方法。如图12所示,本发明实施例所述的一种确定资源块的方法包括以下步骤:
S1000,所述基站获取用于描述所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。
在本发明实施例中,基站获取指示UE的直流子载波的位置的位置信息,该位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。其中,基站获取该位置信息可以是:基站可以判断UE的直流子载波是否位于基站内的其他载波的传输频带内,即UE的直流子载波是否与基站内的其他载波的传输频带重叠。当基站判断UE的直流子载波位于基站内的其他载波的传输频带内时,基站获取的位置信息包括直流子载波在资源块内部的信息;当基站判断直流子载波不位于基站内的其他载波的传输频带内时,即UE的直流子载波不与基站内的其他载波的传输频带重叠时,基站获取的位置信息包括直流子载波在资源块外部的信息。其中,传输频带用于传输信号。
进一步的,当基站获取到位置信息时,基站可将位置信息发送给UE,以使UE根据该位置信息进行确定对应的资源块。
S1001,当所述位置信息包括所述直流子载波在资源块内部的信息时,所述基站将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块。
在本发明实施例中,资源块可以是PRB,当基站获取到UE的直流子载波在资源块内部的信息时,则基站在确定UE对应的资源块时,基站将UE的直流子载波也确认为组成PRB的子载波,从而该PRB的有效子载波个数为标准PRB子载波个数减1,在此基础上再根据UE的载波确定所有资源块,以使得基站确定的UE的资源块与其他载波的资源块在重叠部分相对应。其中,此时UE的载波与其他载波的传输频带有重叠。
在本发明实施例中,当基站确定了所有资源块后,基站可执行步骤S1003。
S1002,当所述位置信息包括所述直流子载波在资源块外部的信息时,所述 基站将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块。
在本发明实施例中,资源块可以是PRB,当基站获取到UE的直流子载波在资源块外部的信息时,则基站在确认资源块时,基站将UE的直流子载波不作为组成PRB的子载波,从而该PRB的有效子载波个数为标准PRB子载波个数,在此基础上再根据UE的载波确定所有资源块。其中,此时UE的载波与其他UE的载波的传输频带没有重叠。
在本发明实施例中,当基站确认了所有资源块后,基站可执行步骤S1003。
S1003,所述基站根据所述确定的资源块与所述UE通信。
在本发明实施例中,基站可获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息,当所述位置信息包括所述直流子载波在资源块内部的信息时,所述基站将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块,当所述位置信息包括所述直流子载波在资源块外部的信息时,所述基站将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块,所述基站根据所述确定的资源块与所述UE通信,这使得基站可以根据载波交叠情况灵活调整资源块,提高资源使用率。
为便于更好的实施本发明实施例的上述方案,下面还提供用于配合实施上述方案的相关装置。
请参照图13,为本发明实施例提供的一种设备。其中,如图13所示,本实施例所述的一种装置可包括:
第一获取单元100,用于获取载波信息。
第一确定单元200,用于根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波。
第二获取单元300,用于获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍。
第二确定单元400,用于根据所述第一位置信息和所述第二位置信息确定第三资源块。
通信单元500,用于所述UE根据所述第三资源块与基站通信。
其中,所述第二获取单元300具体用于,接收基站发送的所述第二位置信息。
其中,所述第二获取单元300包括:
第一确定子单元,用于所述UE根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述UE已知的一个系统频带;或者,
第二确定子单元,用于根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入的频带。
其中,所述第一确定子单元包括:
第三确定子单元,用于根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
第四确定子单元,用于根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
第五确定子单元,用于根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
其中,所述第二确定子单元包括:
第六确定子单元,用于根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
第七确定子单元,用于根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
其中,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
其中,所述第二位置信息包括:首个资源块的起始位置和/或终止位置或最后一个资源块的起始位置和/或终止位置。
其中,所述第二确定单元400具体用于,根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
其中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种。
其中,所述第二确定单元400包括:
第八确定子单元,用于当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
第九确定子单元,用于当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的起始位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
其中,所述通信单元包括:
第十确定子单元,用于根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
通信子单元,用于根据所述所有的资源块与基站进行通信。
其中,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
其中,所述资源块包括:物理资源块PRB或资源块集合RBG。
其中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。其中,UE的载波的直流子载波仍然为UE的载波中心或UE的载波中心旁边的一个子载波。
可以理解的是,本实施例的装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再进行赘述。
在本发明实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而UE根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,UE可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参照图14,为本发明实施例提供的一种基站。其中,如图13所示,本 实施例所述的一种基站可包括:
第一获取单元600,用于获取UE的载波信息。
第一确定单元700,用于所述基站根据所述载波信息确定UE对应的第一位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波。
第二获取单元800,用于获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍。
第二确定单元900,用于根据所述第二位置信息和所述第二位置信息确定第三资源块。
通信单元1000,用于根据所述第三资源块与所述UE通信。
其中,所述基站包括:
发送单元,用于向所述UE发送所述第二位置信息。
其中,所述第二获取单元600包括:
第一确定子单元,用于根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
第二确定子单元,用于根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
其中,所述第一确定子单元包括:
第三确定子单元,用于根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
第四确定子单元,用于根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
第五确定子单元,用于根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
其中,所述第二确定子单元包括:
第六确定子单元,用于根据所述载波的中心频率与所述接入频带的中心 频率的相对关系确定所述第二位置信息;或者,
第七确定子单元,用于根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
其中,所述第二位置信息包括:
偏移N个频域元素的偏移量和/或偏移方向。
其中,所述第二位置信息包括:
首个资源块的起始位置和/或最后一个资源块的终止位置。
其中,所述第二确定单元具体用于,所述基站根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
其中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,其中,所述频域元素组成所述资源块。
其中,所述第二确定单元包括:
第八确定子单元,用于当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
第九确定子单元,用于当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的起始位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
其中,所述通信单元包括:
第十确定子单元,用于根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
通信子单元,用于根据所述所有的资源块与基站进行通信。
其中,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
其中,所述资源块包括:物理资源块PRB或资源块集合RBG。
其中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。其中,UE的载波的直流子载波仍然为UE的载波中心或UE的载波中心旁边的一个子载波。
可以理解的是,本实施例的装置的各功能模块的功能可根据上述方法实施 例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再进行赘述。
在本发明实施例中,基站根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而基站根据第三资源块与基站通信,这使得基站可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,基站可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
请参照图15,为本发明实施例提供的一种确定资源块的系统。其中,如图15所示,本实施例所述的一种确定资源块的系统可包括:
如图13的实施例所描述的设备以及如图14实施例所描述的基站。
请参照图16,为本发明实施例提供的一种设备。其中,如图16所示,本实施例所述的一种设备可包括:
接收单元10,用于接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与UE的载波的宽度对应的频域粒度的倍数。
确定单元20,用于根据所述位置信息确定第一频带。
通信单元30,用于根据所述第一频带与所述基站通信。
其中,所述确定单元20包括:
第一获取子单元,用于当所述位置信息包括所述第一频域粒度倍数时,根据所述第一频域粒度倍数和第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述UE已知的一个频带;
第一确定子单元,用于根据所述偏移量确定所述第一频带;或者,
第二确定子单元,用于当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,根据所述第一频域粒度倍数、所述第二频域粒度倍数以及第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
第三确定子单元,用于根据所述偏移量确定所述第一频带;或者,
第二获取子单元,用于当所述位置信息包括所述UE的载波的宽度对应的频域粒度的倍数时,获取所述UE的载波的宽度,并根据载波的宽度与频域粒 度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
第三获取子单元,根据所述频域粒度的倍数和所述UE的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
第四确定子单元,用于根据所述偏移量确定所述第一频带。
其中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
可以理解的是,本实施例的装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再进行赘述。
在本发明实施例中,UE接收基站发送的用于确定第一频带的位置的位置信息,所述位置信息包括第一频域粒度的倍数,或第一频域粒度的倍数和第二频域粒度的倍数,或与载波的宽度对应的频域粒度的倍数,根据所述位置信息确认第一频带,最后根据所述确认的第一频带与所述基站通信,从而使得基站可以灵活调整通知信令的开销,节省资源。
请参照图17,为本发明实施例提供的一种基站。其中,如图17所示,本实施例所述的一种基站可包括:
第一获取单元11,用于获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带。
第二获取单元21,用于根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数。
发送单元31,用于将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
其中,所述第二获取单元21包括:
第一获取子单元,用于当所述基站有第一频域粒度时,根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数,并将所述第一频域粒度的倍数作为所述位置信息;或者,
第二获取子单元,用于当所述基站有第一频域粒度和第二频域粒度时,根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数,并将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
第三获取子单元,用于当所述基站有载波的宽度与频域粒度的对应关系时,获取所述UE的载波的宽度;
第四获取子单元,用于根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
第五获取子单元,用于根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数,并将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
可以理解的是,本实施例的装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再进行赘述。
在本发明实施例中,所述基站获取第一频带的指定位置相对于第二频带的指定位置的偏移量,根据所述偏移量获取位置信息,最后所述基站将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带,从而使得基站可以灵活调整通知信令的开销,节省资源。
请参照图18,为本发明实施例提供的一种确定频带的系统。其中,如图18所示,本实施例所述的一种确定频带的系统可包括:
如图16的实施例所描述的设备以及如图17实施例所描述的基站。
请参照图19,为本发明实施例提供的一种设备。其中,如图19所示,本实施例所述的一种设备可包括:
获取单元12,用于获取指示所述设备的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。
第一确认单元22,用于当所述位置信息包括所述直流子载波在资源块内部 的信息时,将所述直流子载波确认为组成资源块的子载波,并根据所述设备的载波确定资源块。
第二确认单元32,用于当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成资源块的子载波,并根据所述设备的载波确定资源块。
通信单元42,用于根据所述资源块与基站进行通信。
其中,所述获取单元包括:
接收子单元,用于接收基站发送的所述位置信息;或者,
判断子单元,用于判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当所述判断子单元判断所述直流子载波位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块内部的信息;
当所述判断子单元判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块外部的信息。
可以理解的是,本实施例的装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再进行赘述。
在本发明实施例中,UE获取指示UE的直流子载波的位置的位置信息,该位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。其中,UE可通过基站获取该位置信息,或者UE可通过自检获得该位置信息。其中,UE通过自检获得该位置信息可以是:UE可以判断直流子载波是否位于接入基站内的其他载波的传输频带内,即UE的直流子载波是否与其他载波的传输频带重叠,当UE判断直流子载波位于接入基站内的其他载波的传输频带内时,UE获取的位置信息包括直流子载波在资源块内部的信息;当UE判断直流子载波不位于接入基站内的其他载波的传输频带内时,即UE的直流子载波不与其他载波的传输频带重叠时,UE获取的位置信息包括直流子载波在资源块外部的信息。其中,传输频带用于传输信号。
请参照图20,为本发明实施例提供的一种基站。其中,如图20所示,本 实施例所述的一种基站可包括:
获取单元13,用于获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息。
第一确认单元23,用于当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块。
第二确认单元33,用于当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块。
通信单元43,用于根据所述资源块与所述UE进行通信。
可以理解的是,本实施例的装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再进行赘述。
在本发明实施例中,基站可获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息,当所述位置信息包括所述直流子载波在资源块内部的信息时,所述基站将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块,当所述位置信息包括所述直流子载波在资源块外部的信息时,所述基站将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块,所述基站根据所述确定的资源块与所述UE通信,这使得基站可灵活调整资源块,提高资源使用率。
请参照图21,为本发明实施例提供的一种确定资源块的系统。其中,如图20所示,本实施例所述的一种确定资源块的系统可包括:
如图19的实施例所描述的设备以及如图20实施例所描述的基站。
请参照图22,为本发明实施例提供的一种设备。如图22所示,本实施例所述的一种设备可包括:
处理器201(代理服务器中的处理器201的数量可以一个或多个,图22以一个处理器为例)、存储器202、输出装置203和输入装置204。在本发明的 实施例中,处理器201、存储器202、输出装置203和输入装置204可通过总线或其它方式连接,其中,存储器202存储所述处理器执行的应用程序。
其中处理器执行以下步骤:
获取载波信息;
根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
根据所述第一位置信息和所述第二位置信息确定第三资源块;
根据所述第三资源块与基站通信。
其中,所述处理器获取第二位置信息具体用于:
接收基站发送的所述第二位置信息。
其中,所述处理器获取第二位置信息包括:
根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述UE已知的一个系统频带;或者,
根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入的频带。
其中,所述处理器根据所述载波与第一系统频带的相对关系确定所述第二位置信息包括:
根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
其中,所述处理器根据所述载波与接入频带的相对关系确定所述第二位 置信息包括:
根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
其中,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
其中,所述第二位置信息包括:首个资源块的起始位置和/或终止位置或最后一个资源块的起始位置和/或终止位置。
其中,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块具体用于:
根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
其中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种。
其中,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的起始位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
其中,所述处理器根据所述第三资源块与基站通信包括:
根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
根据所述所有的资源块与基站进行通信。
其中,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
其中,所述资源块包括:物理资源块PRB或资源块集合RBG。
其中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。其中,UE的载波的直流子载波仍然为UE的载波中心或UE的载波中心旁边的一个子载波。
请参照图23,为本发明实施例提供的一种基站。如图23所示,本实施例所述的一种基站可包括:
处理器301(代理服务器中的处理器301的数量可以一个或多个,图23以一个处理器为例)、存储器302、输出装置303和输入装置304。在本发明的实施例中,第二处理器301、存储器302、输出装置303和输入装置304可通过总线或其它方式连接,其中,存储器302存储所述处理器执行的应用程序。
其中,处理器执行以下步骤:
获取UE的载波信息;
所述基站根据所述载波信息确定UE对应的第一位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
根据所述第二位置信息和所述第二位置信息确定第三资源块;
根据所述第三资源块与所述UE通信。
其中,所述处理器在获取第二位置信息之后,还执行:
向所述UE发送所述第二位置信息。
其中,所述处理器获取第二位置信息包括:
根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
其中,所述处理器根据载波与第一系统频带的相对关系确定第二位置信息包括:
根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
其中,所述处理器根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
其中,所述第二位置信息包括:
偏移N个频域元素的偏移量和/或偏移方向。
其中,所述第二位置信息包括:
首个资源块的起始位置和/或最后一个资源块的终止位置。
其中,所述基站根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
所述基站根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
其中,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,其中,所述频域元素组成所述资源块。
其中,所述基站根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
当所述第二位置信息包括所述首个资源块的起始位置时,所述基站根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
当所述第二位置信息包括所述最后一个资源块的终止位置时,所述基站 根据所述最后一个资源块的起始位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
其中,所述基站根据所述第三资源块与所述UE通信包括:
所述基站根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
所述基站根据所述所有的资源块与基站进行通信。
其中,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
其中,所述资源块包括:物理资源块PRB或资源块集合RBG。
其中,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。其中,UE的载波的直流子载波仍然为UE的载波中心或UE的载波中心旁边的一个子载波。
请参照图24,为本发明实施例提供的一种设备。如图24所示,本实施例所述的一种设备可包括:
处理器401(代理服务器中的处理器401的数量可以一个或多个,图24以一个处理器为例)、存储器402、输出装置403和输入装置404。在本发明的实施例中,处理器401、存储器402、输出装置403和输入装置404可通过总线或其它方式连接,其中,存储器402存储所述处理器执行的应用程序。
其中处理器执行以下步骤:
接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与设备的载波的宽度对应的频域粒度的倍数;
根据所述位置信息确定第一频带;
根据所述第一频带与所述基站通信。
其中,所述处理器根据所述位置信息确定第一频带包括:
当所述位置信息包括所述第一频域粒度倍数时,根据所述第一频域粒度倍数和第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述设备已知的一个频带;
根据所述偏移量确定所述第一频带;或者,
当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,根据所述第一频域粒度倍数、所述第二频域粒度倍数以及第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
根据所述偏移量确定所述第一频带;或者,
当所述位置信息包括所述设备的载波的宽度对应的频域粒度的倍数时,获取所述设备的载波的宽度,并根据载波的宽度与频域粒度的对应关系,获取所述设备的载波的宽度对应的频域粒度;
根据所述频域粒度的倍数和所述设备的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
根据所述偏移量确定所述第一频带。
其中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
请参照图25,为本发明实施例提供的一种基站。如图25所示,本实施例所述的一种设备可包括:
处理器501(代理服务器中的处理器501的数量可以一个或多个,图25以一个处理器为例)、存储器502、输出装置503和输入装置504。在本发明的实施例中,处理器501、存储器502、输出装置503和输入装置504可通过总线或其它方式连接,其中,存储器502存储所述处理器执行的应用程序。
其中处理器执行以下步骤:
获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
其中,所述处理器根据所述偏移量获取位置信息包括:
当所述基站有第一频域粒度时,根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数,并将所述第一频域粒度的倍数作为所述位置信息;或者,
当所述基站有第一频域粒度和第二频域粒度时,根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数,并将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
当所述基站有载波的宽度与频域粒度的对应关系时,获取所述UE的载波的宽度;
根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数,并将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
其中,
所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
请参照图26,为本发明实施例提供的一种设备。如图26所示,本实施例所述的一种设备可包括:
处理器601(代理服务器中的处理器601的数量可以一个或多个,图26以一个处理器为例)、存储器602、输出装置603和输入装置604。在本发明的实施例中,处理器601、存储器602、输出装置603和输入装置604可通过总线或其它方式连接,其中,存储器602存储所述处理器执行的应用程序。
其中处理器执行以下步骤:
获取指示所述设备的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成资源块的子载波,并根据所述设备的载波确定资源块;
当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成资源块的子载波,并根据所述设备的载波确定资源块;
根据所述资源块与基站通信。
其中,所述处理器获取用于描述所述设备的直流子载波的位置的位置信息包括:
接收基站发送的所述位置信息;或者,
判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当判断所述直流子载波位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块内部的信息;
当判断所述直流子载波不位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块外部的信息。
请参照图27,为本发明实施例提供的一种设备。如图27所示,本实施例所述的一种设备可包括:
处理器701(代理服务器中的处理器701的数量可以一个或多个,图27以一个处理器为例)、存储器702、输出装置703和输入装置704。在本发明的实施例中,处理器701、存储器702、输出装置703和输入装置704可通过总线或其它方式连接,其中,存储器702存储所述处理器执行的应用程序。
其中处理器执行以下步骤:
获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流 子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
根据所述资源块与所述UE通信。
其中,所述处理器获取用于描述所述UE的直流子载波的位置的位置信息包括:
判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
当判断所述直流子载波位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块内部的信息;
当判断所述直流子载波不位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块外部的信息;
在所述处理器获取指示所述UE的直流子载波的位置的位置信息之后包括:
向所述UE发送所述位置信息。
由上可见,在本发明实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而UE根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时,UE可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
综上,在本发明的一些可行的实施例中,UE根据获取到的载波信息确定第一位置信息,以及获取第二位置信息,并根据第一位置信息和第二位置信息确定第三资源块,从而UE根据第三资源块与基站通信,这使得UE可灵活确定资源块位置,增加了频域资源使用的灵活性。并且,当多个UE接入基站时, UE可灵活确定资源块的位置,使得资源块的位置与基站的基准资源块重叠,有效提高资源利用率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利宽度,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的宽度。

Claims (123)

  1. 一种确定资源块的方法,其特征在于,所述方法包括:
    用户设备UE获取载波信息;
    所述UE根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
    所述UE获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
    所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块;
    所述UE根据所述第三资源块与基站通信。
  2. 如权利要求1所述的方法,其特征在于,所述UE获取第二位置信息包括:
    所述UE接收基站发送的所述第二位置信息。
  3. 如权利要求1所述的方法,其特征在于,所述UE获取第二位置信息包括:
    所述UE根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述UE已知的一个系统频带;或者,
    所述UE根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入的频带。
  4. 如权利要求3所述的方法,其特征在于,所述UE根据所述载波与第一系统频带的相对关系确定所述第二位置信息包括:
    所述UE根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
    所述UE根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
    所述UE根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
  5. 如权利要求3所述的方法,其特征在于,所述UE根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
    所述UE根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
    所述UE根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第二位置信息包括:首个资源块的起始位置和/或终止位置,和/或最后一个资源块的起始位置和/或终止位置。
  8. 如权利要求6所述的方法,其特征在于,所述UE根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
    所述UE根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
  9. 如权利要求6或8所述的方法,其特征在于,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,或者所述N个频域元素包括n的整数倍与4个频域元素、6个频域元素和8个频域元素中的任意一种的和。
  10. 如权利要求7所述的方法,其特征在于,所述UE根据所述第一位 置信息和所述第二位置信息确定第三资源块包括:
    当所述第二位置信息包括所述首个资源块的起始位置时,所述UE根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
    当所述第二位置信息包括所述最后一个资源块的终止位置时,所述UE根据所述最后一个资源块的终止位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
  11. 如权利要求8或10所述的方法,其特征在于,所述UE根据所述第三资源块与基站通信包括:
    所述UE根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
    所述UE根据所述所有的资源块与基站进行通信。
  12. 如权利要求10所述的方法,其特征在于,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
  13. 如权利要求1-8、10-12任一项所述的方法,其特征在于,所述资源块包括:物理资源块PRB或资源块集合RBG。
  14. 如权利要求4或5所述的方法,其特征在于,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。
  15. 一种确定资源块的方法,其特征在于,所述方法包括:
    基站获取UE的载波信息;
    所述基站根据所述载波信息确定UE对应的第一位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为 所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
    所述基站获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
    所述基站根据所述第二位置信息和所述第二位置信息确定第三资源块;
    所述基站根据所述第三资源块与所述UE通信。
  16. 如权利要求15所述的方法,其特征在于,所述基站获取第二位置信息之后包括:
    所述基站向所述UE发送所述第二位置信息。
  17. 如权利要求15所述的方法,其特征在于,所述基站获取第二位置信息包括:
    所述基站根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
    所述基站根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
  18. 如权利要求17所述的方法,其特征在于,所述基站根据载波与第一系统频带的相对关系确定第二位置信息包括:
    所述基站根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
    所述基站根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
    所述基站根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
  19. 如权利要求17所述的方法,其特征在于,所述基站根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
    所述基站根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
    所述基站根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
  20. 如权利要求15-19任一项所述的方法,其特征在于,所述第二位置信息包括:
    偏移N个频域元素的偏移量和/或偏移方向。
  21. 如权利要求15-19任一项所述的方法,其特征在于,所述第二位置信息包括:
    首个资源块的起始位置和/或最后一个资源块的终止位置。
  22. 如权利要求20所述的方法,其特征在于,所述基站根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
    所述基站根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
  23. 如权利要求20或22所述的方法,其特征在于,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,,或者所述N个频域元素包括n的整数倍与4个频域元素、6个频域元素和8个频域元素中的任意一种的和,其中,所述频域元素组成所述资源块。
  24. 如权利要求21所述的方法,其特征在于,所述基站根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
    当所述第二位置信息包括所述首个资源块的起始位置时,所述基站根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
    当所述第二位置信息包括所述最后一个资源块的终止位置时,所述基站根据所述最后一个资源块的终止位置和最后一个资源块宽度确定最后一个资 源块,并将所述最后一个资源块确定为第三资源块。
  25. 如权利要求22或24所述的方法,其特征在于,所述基站根据所述第三资源块与所述UE通信包括:
    所述基站根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
    所述基站根据所述所有的资源块与基站通信。
  26. 如权利要求24所述的方法,其特征在于,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
  27. 如权利要求15-22、24-26任一项所述的方法,其特征在于,所述资源块包括:物理资源块PRB或资源块集合RBG。
  28. 如权利要求18或19所述的方法,其特征在于,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。
  29. 一种确定频带的方法,其特征在于,所述方法包括:
    UE接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与UE的载波的宽度对应的频域粒度的倍数;
    所述UE根据所述位置信息确定第一频带;
    所述UE根据所述第一频带与基站通信。
  30. 如权利要求29所述的方法,其特征在于,所述UE根据所述位置信息确定第一频带包括:
    当所述位置信息包括所述第一频域粒度倍数时,所述UE根据所述第一频域粒度倍数和第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述UE已知的一个频带;
    所述UE根据所述偏移量确定所述第一频带;或者,
    当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,所述UE根据所述第一频域粒度倍数、所述第二频域粒度倍数以及第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
    所述UE根据所述偏移量确定所述第一频带;或者,
    当所述位置信息包括所述UE的载波的宽度对应的频域粒度的倍数时,所述UE获取所述UE的载波的宽度,并根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
    所述UE根据所述频域粒度的倍数和所述UE的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
    所述UE根据所述偏移量确定所述第一频带。
  31. 如权利要求30所述的方法,其特征在于,
    所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
    所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
    所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
  32. 一种确定频带的方法,其特征在于,所述方法包括:
    所述基站获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
    所述基站根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
    所述基站将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
  33. 如权利要求32所述的方法,其特征在于,所述基站根据所述偏移量获取位置信息包括:
    当所述基站有第一频域粒度时,所述基站根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数;
    将所述第一频域粒度的倍数作为所述位置信息;或者,
    当所述基站有第一频域粒度和第二频域粒度时,所述基站根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数;
    将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
    当所述基站有载波的宽度与频域粒度的对应关系时,所述基站获取所述UE的载波的宽度;
    所述基站根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
    根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数;
    将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
  34. 如权利要求32或33所述的方法,其特征在于,
    所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
    所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
    所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
  35. 一种确定资源块的方法,其特征在于,所述方法包括:
    所述UE获取用于描述所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
    当所述位置信息包括所述直流子载波在资源块内部的信息时,所述UE将所述直流子载波确认为组成资源块的子载波,并根据所述UE的载波确定资源块;
    当所述位置信息包括所述直流子载波在资源块外部的信息时,所述UE将所述直流子载波确认为不是组成资源块的子载波,并根据所述UE的载波确定资源块;
    所述UE根据所述确定的资源块与基站通信。
  36. 如权利要求35所述的方法,其特征在于,所述UE获取用于描述所述UE的直流子载波的位置的位置信息包括:
    所述UE接收基站发送的所述位置信息;或者,
    所述UE判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
    当所述UE判断所述直流子载波位于所述基站内的其他的传输频带内时,所述UE获取的位置信息包括所述直流子载波在资源块内部的信息;
    当所述UE判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述UE获取的位置信息包括所述直流子载波在资源块外部的信息。
  37. 一种确定资源块的方法,其特征在于,所述方法包括:
    所述基站获取用于描述所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
    当所述位置信息包括所述直流子载波在资源块内部的信息时,所述基站将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
    当所述位置信息包括所述直流子载波在资源块外部的信息时,所述基站将所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
    所述基站根据所述确定的资源块与所述UE通信。
  38. 如权利要求37所述的方法,其特征在于,所述基站获取用于描述所述UE的直流子载波的位置的位置信息包括:
    所述基站判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
    当所述基站判断所述直流子载波位于所述基站内的其他的传输频带内时,所述基站获取的位置信息包括所述直流子载波在资源块内部的信息;
    当所述基站判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述基站获取的位置信息包括所述直流子载波在资源块外部的信息;
    所述基站获取用于描述所述UE的直流子载波的位置的位置信息之后包括:
    所述基站向所述UE发送所述位置信息。
  39. 一种设备,其特征在于,所述设备包括:
    第一获取单元,用于获取载波信息;
    第一确定单元,用于根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
    第二获取单元,用于获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
    第二确定单元,用于根据所述第一位置信息和所述第二位置信息确定第三资源块;
    通信单元,用于所述设备根据所述第三资源块与基站通信。
  40. 如权利要求39所述的设备,其特征在于,所述第二获取单元具体用于,接收基站发送的所述第二位置信息。
  41. 如权利要求39所述的设备,其特征在于,所述第二获取单元包括:
    第一确定子单元,用于所述设备根据所述载波与第一系统频带的相对关 系确定所述第二位置信息,其中所述第一系统频带为所述设备已知的一个系统频带;或者,
    第二确定子单元,用于根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述设备接入的频带。
  42. 如权利要求41所述的设备,其特征在于,所述第一确定子单元包括:
    第三确定子单元,用于根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
    第四确定子单元,用于根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
    第五确定子单元,用于根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
  43. 如权利要求41所述的设备,其特征在于,所述第二确定子单元包括:
    第六确定子单元,用于根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
    第七确定子单元,用于根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
  44. 如权利要求39-43任一项所述的设备,其特征在于,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
  45. 如权利要求39-44任一项所述的设备,其特征在于,所述第二位置信息包括:首个资源块的起始位置和/或终止位置或最后一个资源块的起始位置和/或终止位置。
  46. 如权利要求44所述的设备,其特征在于,所述第二确定单元具体用于,根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
  47. 如权利要求44或46所述的设备,其特征在于,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,或者所述N个频域元素包括n的整数倍与4个频域元素、6个频域元素和8个频域元素中的任意一种的和。
  48. 如权利要求45所述的设备,其特征在于,所述第二确定单元包括:
    第八确定子单元,用于当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
    第九确定子单元,用于当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
  49. 如权利要求36或48所述的设备,其特征在于,所述通信单元包括:
    第十确定子单元,用于根据所述第三资源块和基准资源块宽度确定所述设备所有的资源块,其中,相邻的资源块的边界位置重合;
    通信子单元,用于根据所述所有的资源块与基站进行通信。
  50. 如权利要求48所述的设备,其特征在于,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
  51. 如权利要求39-46、48-50任一项所述的设备,其特征在于,所述资源块包括:物理资源块PRB或资源块集合RBG。
  52. 如权利要求42或43所述的设备,其特征在于,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。
  53. 一种基站,其特征在于,所述基站包括:
    第一获取单元,用于获取UE的载波信息;
    第一确定单元,用于所述基站根据所述载波信息确定UE对应的第一位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
    第二获取单元,用于获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
    第二确定单元,用于根据所述第二位置信息和所述第二位置信息确定第三资源块;
    通信单元,用于根据所述第三资源块与所述UE通信。
  54. 如权利要求53所述的基站,其特征在于,所述基站包括:
    发送单元,用于向所述UE发送所述第二位置信息。
  55. 如权利要求53所述的基站,其特征在于,所述第二获取单元包括:
    第一确定子单元,用于根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
    第二确定子单元,用于根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
  56. 如权利要求55所述的基站,其特征在于,所述第一确定子单元包括:
    第三确定子单元,用于根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
    第四确定子单元,用于根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
    第五确定子单元,用于根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
  57. 如权利要求55所述的基站,其特征在于,所述第二确定子单元包括:
    第六确定子单元,用于根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
    第七确定子单元,用于根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
  58. 如权利要求5049任一项所述的基站,其特征在于,所述第二位置信息包括:
    偏移N个频域元素的偏移量和/或偏移方向。
  59. 如权利要求53-57任一项所述的基站,其特征在于,所述第二位置信息包括:
    首个资源块的起始位置和/或最后一个资源块的终止位置。
  60. 如权利要求58所述的基站,其特征在于,所述第二确定单元具体用于,所述基站根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
  61. 如权利要求58或60所述的基站,其特征在于,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,或者所述N个频域元素包括n的整数倍与4个频域元素、6个频域元素和8个频域元素中的任意一种的和,其中,所述频域元素组成所述资源块。
  62. 如权利要求59所述的基站,其特征在于,所述第二确定单元包括:
    第八确定子单元,用于当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
    第九确定子单元,用于当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
  63. 如权利要求60或62所述的基站,其特征在于,所述通信单元包括:
    第十确定子单元,用于根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
    通信子单元,用于根据所述所有的资源块与基站进行通信。
  64. 如权利要求62所述的基站,其特征在于,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
  65. 如权利要求53-60、60-64任一项所述的基站,其特征在于,所述资源块包括:物理资源块PRB或资源块集合RBG。
  66. 如权利要求56或57所述的基站,其特征在于,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。
  67. 一种设备,其特征在于,所述设备包括:
    接收单元,用于接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与设备的载波的宽度对应的频域粒度的倍数;
    确定单元,用于根据所述位置信息确定第一频带;
    通信单元,用于根据所述第一频带与所述基站通信。
  68. 如权利要求67所述的设备,其特征在于,所述确定单元包括:
    第一获取子单元,用于当所述位置信息包括所述第一频域粒度倍数时,根据所述第一频域粒度倍数和第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述设备已知的一个频带;
    第一确定子单元,用于根据所述偏移量确定所述第一频带;或者,
    第二确定子单元,用于当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,根据所述第一频域粒度倍数、所述第二频域粒度倍数以及第 一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
    第三确定子单元,用于根据所述偏移量确定所述第一频带;或者,
    第二获取子单元,用于当所述位置信息包括所述设备的载波的宽度对应的频域粒度的倍数时,获取所述设备的载波的宽度,并根据载波的宽度与频域粒度的对应关系,获取所述设备的载波的宽度对应的频域粒度;
    第三获取子单元,根据所述频域粒度的倍数和所述设备的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
    第四确定子单元,用于根据所述偏移量确定所述第一频带。
  69. 如权利要求68所述的设备,其特征在于,
    所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
    所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
    所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
  70. 一种基站,其特征在于,所述基站包括:
    第一获取单元,用于获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
    第二获取单元,用于根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
    发送单元,用于将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
  71. 如权利要求70所述的基站,其特征在于,所述第二获取单元包括:
    第一获取子单元,用于当所述基站有第一频域粒度时,根据所述偏移量和 所述第一频域粒度获取所述第一频域粒度的倍数,并将所述第一频域粒度的倍数作为所述位置信息;或者,
    第二获取子单元,用于当所述基站有第一频域粒度和第二频域粒度时,根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数,并将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
    第三获取子单元,用于当所述基站有载波的宽度与频域粒度的对应关系时,获取所述UE的载波的宽度;
    第四获取子单元,用于根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
    第五获取子单元,用于根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数,并将所述UE的载波的宽度对应的频域粒度的倍数作为所述位置信息。
  72. 如权利要求70或71所述的基站,其特征在于,
    所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
    所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
    所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
  73. 一种设备,其特征在于,所述设备包括:
    获取单元,用于获取指示所述设备的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
    第一确认单元,用于当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成资源块的子载波,并根据所述设备的载波确定资源块;
    第二确认单元,用于当所述位置信息包括所述直流子载波在资源块外部的 信息时,将所述直流子载波确认为不是组成资源块的子载波,并根据所述设备的载波确定资源块;
    通信单元,用于根据所述资源块与基站进行通信。
  74. 如权利要求73所述的设备,其特征在于,所述获取单元包括:
    接收子单元,用于接收基站发送的所述位置信息;或者,
    判断子单元,用于判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
    当所述判断子单元判断所述直流子载波位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块内部的信息;
    当所述判断子单元判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块外部的信息。
  75. 一种基站,其特征在于,所述基站包括:
    获取单元,用于获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
    第一确认单元,用于当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
    第二确认单元,用于当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
    通信单元,用于根据所述资源块与所述UE通信。
  76. 如权利要求75所述的基站,其特征在于,所述获取单元包括:
    判断子单元,用于判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
    当所述判断子单元判断所述直流子载波位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块内部的信息;
    当所述判断子单元判断所述直流子载波不位于所述基站内的其他的传输频带内时,所述获取单元获取的位置信息包括所述直流子载波在资源块外部的信息;
    所述基站还包括:
    发送单元,用于向所述UE发送所述位置信息。
  77. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括如权利要求1至14任一项所述的步骤。
  78. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括如权利要求15至28任一项所述的步骤。
  79. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括如权利要求29至31任一项所述的步骤。
  80. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括如权利要求32至34任一项所述的步骤。
  81. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括如权利要求35或36所述的步骤。
  82. 一种计算机存储介质,其特征在于,
    所述计算机存储介质可存储有程序,该程序执行时包括如权利要求37或38所述的步骤。
  83. 一种确定资源块的系统,其特征在于,所述系统包括:如权利要求39-52任一项所述的设备,和如权利要求53-66任一项所述的基站。
  84. 一种确定频带的系统,其特征在于,所述系统包括:如权利要求67-69任一项所述的设备,和如权利要求70-72任一项所述的基站。
  85. 一种确定资源块的系统,其特征在于,所述系统包括:如权利要求73或74所述的设备,和如权利要求75或76任一项所述的基站。
  86. 一种设备,其特征在于,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
    获取载波信息;
    根据所述载波信息确定第一位置信息,其中,所述第一位置信息指示载波上的保护频带之外的第一资源块的起始位置,或者,所述第一位置信息指示载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带之外的最后一个资源块,所述载波为所述载波信息对应的载波;
    获取第二位置信息,其中,所述第二位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
    根据所述第一位置信息和所述第二位置信息确定第三资源块;
    根据所述第三资源块与基站通信。
  87. 如权利要求86所述的设备,其特征在于,所述处理器获取第二位置信息具体用于:
    接收基站发送的所述第二位置信息。
  88. 如权利要求86所述的设备,其特征在于,所述处理器获取第二位置信息包括:
    根据所述载波与第一系统频带的相对关系确定所述第二位置信息,其中所述第一系统频带为所述设备已知的一个系统频带;或者,
    根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述设备接入的频带。
  89. 如权利要求88所述的设备,其特征在于,所述处理器根据所述载波与第一系统频带的相对关系确定所述第二位置信息包括:
    根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
    根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
    根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
  90. 如权利要求88所述的设备,其特征在于,所述处理器根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
    根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
    根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
  91. 如权利要求86-90任一项所述的设备,其特征在于,所述第二位置信息包括:偏移N个频域元素的偏移量和/或偏移方向。
  92. 如权利要求86-91任一项所述的设备,其特征在于,所述第二位置信息包括:首个资源块的起始位置和/或终止位置或最后一个资源块的起始位置和/或终止位置。
  93. 如权利要求92所述的设备,其特征在于,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块具体用于:
    根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
  94. 如权利要求91或93所述的设备,其特征在于,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种。
  95. 如权利要求92所述的设备,其特征在于,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
    当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
    当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
  96. 如权利要求93或95所述的设备,其特征在于,所述处理器根据所述第三资源块与基站通信包括:
    根据所述第三资源块和基准资源块宽度确定所述设备所有的资源块,其中,相邻的资源块的边界位置重合;
    根据所述所有的资源块与基站进行通信。
  97. 如权利要求95所述的设备,其特征在于,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
  98. 如权利要求86-93、95-97任一项所述的设备,其特征在于,所述资源块包括:物理资源块PRB或资源块集合RBG。
  99. 如权利要求89或90所述的设备,其特征在于,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波中的一个。
  100. 一种基站,其特征在于,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
    获取UE的载波信息;
    所述基站根据所述载波信息确定UE对应的第一位置信息,其中,所述第二位置信息指示UE的载波上的保护频带之外的第一资源块的起始位置,或者,所述第二位置信息指示所述载波上的保护频带之外的第二资源块的终止位置,其中,所述第一资源块为所述保护频带之外的首个资源块,所述第二资源块为所述保护频带宽之外的最后一个资源块,所述载波为所述载波信息对应的载波;
    获取第二位置信息,其中,所述第二资源块位置信息指示从所述起始位置或所述终止位置偏移N个频域元素的位置,n个频域元素为组成一个资源块,N为大于0的正整数,且N不等于n的整数倍;以及
    根据所述第二位置信息和所述第二位置信息确定第三资源块;
    根据所述第三资源块与所述UE通信。
  101. 如权利要求100所述的基站,其特征在于,所述处理器在获取第二位置信息之后,还执行:
    向所述UE发送所述第二位置信息。
  102. 如权利要求100所述的基站,其特征在于,所述处理器获取第二位置信息包括:
    根据所述载波与第一系统频带的相对关系确定第二位置信息,所述第一系统频带为所述UE的一个系统频带;或者,
    根据所述载波与接入频带的相对关系确定所述第二位置信息,其中,所述接入频带为所述UE接入所述基站的频带。
  103. 如权利要求102所述的基站,其特征在于,所述处理器根据载波与第一系统频带的相对关系确定第二位置信息包括:
    根据所述载波的中心频率与所述第一系统频带的中心频率的相对关系确定所述第二位置信息;或者,
    根据所述载波的直流子载波与所述第一系统频带的直流子载波的相对关系确定所述第二位置信息;或者,
    根据所述载波的RS序列和所述第一系统频带的RS序列的相对位置确定所述第二位置信息。
  104. 如权利要求102所述的基站,其特征在于,所述处理器根据所述载波与接入频带的相对关系确定所述第二位置信息包括:
    根据所述载波的中心频率与所述接入频带的中心频率的相对关系确定所述第二位置信息;或者,
    根据所述载波的直流子载波与所述接入频带的直流子载波的相对关系确定所述第二位置信息。
  105. 如权利要求100-104任一项所述的基站,其特征在于,所述第二位置信息包括:
    偏移N个频域元素的偏移量和/或偏移方向。
  106. 如权利要求100-104任一项所述的基站,其特征在于,所述第二位置信息包括:
    首个资源块的起始位置和/或最后一个资源块的终止位置。
  107. 如权利要求115所述的基站,其特征在于,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块具体用于:
    根据所述偏移量和偏移方向在所述第一资源块的起始位置上或所述第二资源块的终止位置上进行偏移,确定所述第三资源块。
  108. 如权利要求115或117所述的基站,其特征在于,所述N个频域元素包括4个频域元素、6个频域元素和8个频域元素中的任意一种,其中,所述频域元素组成所述资源块。
  109. 如权利要求116所述的基站,其特征在于,所述处理器根据所述第一位置信息和所述第二位置信息确定第三资源块包括:
    当所述第二位置信息包括所述首个资源块的起始位置时,根据所述首个资源块的起始位置和首个资源块宽度确定首个资源块,将所述首个资源块确定为第三资源块;
    当所述第二位置信息包括所述最后一个资源块的终止位置时,根据所述最后一个资源块的终止位置和最后一个资源块宽度确定最后一个资源块,并将所述最后一个资源块确定为第三资源块。
  110. 如权利要求117或119所述的基站,其特征在于,所述处理器根据所述第三资源块与所述UE通信包括:
    根据所述第三资源块和基准资源块宽度确定所述UE所有的资源块,其中,相邻的资源块的边界位置重合;
    根据所述所有的资源块与基站通信。
  111. 如权利要求119所述的基站,其特征在于,所述首个资源块宽度和/或所述最后一个资源块的宽度与所述基准资源块宽度不同。
  112. 如权利要求100-107、109-111任一项所述的基站,其特征在于,所述资源块包括:物理资源块PRB或资源块集合RBG。
  113. 如权利要求103或104所述的基站,其特征在于,所述直流子载波为一个PRB中除中间两个子载波、频点最低子载波以及频点最高子载波之外的子载波种的一个。
  114. 一种设备,其特征在于,包括:输入装置、输出装置、存储器和处理 器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
    接收基站发送的位置信息,所述位置信息指示第一频带的位置,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的一种或多种,或与设备的载波的宽度对应的频域粒度的倍数;
    根据所述位置信息确定第一频带;
    根据所述第一频带与所述基站通信。
  115. 如权利要求114所述的设备,其特征在于,所述处理器根据所述位置信息确定第一频带包括:
    当所述位置信息包括所述第一频域粒度倍数时,根据所述第一频域粒度倍数和第一频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量,所述第二频带为所述设备已知的一个频带;
    根据所述偏移量确定所述第一频带;或者,
    当所述位置信息包括所述第一频域粒度倍数和第二频域粒度倍数时,根据所述第一频域粒度倍数、所述第二频域粒度倍数以及第一频域粒度和第二频域粒度获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
    根据所述偏移量确定所述第一频带;或者,
    当所述位置信息包括所述设备的载波的宽度对应的频域粒度的倍数时,获取所述设备的载波的宽度,并根据载波的宽度与频域粒度的对应关系,获取所述设备的载波的宽度对应的频域粒度;
    根据所述频域粒度的倍数和所述设备的载波的宽度对应的频域粒度,获取第一频带的指定位置相对于第二频带的指定位置的偏移量;
    根据所述偏移量确定所述第一频带。
  116. 如权利要求115所述的设备,其特征在于,
    所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
    所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
    所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
  117. 一种基站,其特征在于,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
    获取第一频带的指定位置相对于第二频带的指定位置的偏移量,其中,所述第一频带为所述基站对UE进行配置的频带,所述第二频带为所述UE已知的一个频带;
    根据所述偏移量获取位置信息,其中,所述位置信息包括第一频域粒度的倍数和第二频域粒度的倍数中的至少一种,或与UE的载波的宽度对应的频域粒度的倍数;
    将所述位置信息发送给所述UE,以使所述UE根据所述位置信息确定所述第一频带。
  118. 如权利要求117所述的基站,其特征在于,所述处理器根据所述偏移量获取位置信息包括:
    当所述基站有第一频域粒度时,根据所述偏移量和所述第一频域粒度获取所述第一频域粒度的倍数,并将所述第一频域粒度的倍数作为所述位置信息;或者,
    当所述基站有第一频域粒度和第二频域粒度时,根据所述偏移量、所述第一频域粒度和所述第二频域粒度获取所述第一频域粒度的倍数和第二频域粒度的倍数,并将所述第一频域粒度的倍数和第二频域粒度的倍数作为所述位置信息;或者,
    当所述基站有载波的宽度与频域粒度的对应关系时,获取所述UE的载波的宽度;
    根据载波的宽度与频域粒度的对应关系,获取所述UE的载波的宽度对应的频域粒度;
    根据所述偏移量和所述UE的载波的宽度对应的频域粒度获取所述UE的载波的宽度对应的频域粒度的倍数,并将所述UE的载波的宽度对应的频域粒 度的倍数作为所述位置信息。
  119. 如权利要求117或118所述的基站,其特征在于,
    所述第一频带的指定位置包括所述第一频带的中心频率或所述第一频带的直流子载波;
    所述第二频带的指定位置包括所述第二频带的中心频率或所述第二频带的直流子载波;
    所述第一频域粒度为300kHz或900kHz中的任一种,所述第二频域粒度为在300kHz或900kHz中除第一频域粒度之外的另一种。
  120. 一种设备,其特征在于,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
    获取指示所述设备的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
    当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成资源块的子载波,并根据所述设备的载波确定资源块;
    当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成资源块的子载波,并根据所述设备的载波确定资源块;
    根据所述资源块与基站通信。
  121. 如权利要求120所述的设备,其特征在于,所述处理器获取用于描述所述设备的直流子载波的位置的位置信息包括:
    接收基站发送的所述位置信息;或者,
    判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
    当判断所述直流子载波位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块内部的信息;
    当判断所述直流子载波不位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块外部的信息。
  122. 一种基站,其特征在于,包括:输入装置、输出装置、存储器和处理器,其中,存储器中存储一组程序代码,且处理器用于调用存储器中存储的程序代码,用于执行以下操作:
    获取指示所述UE的直流子载波的位置的位置信息,所述位置信息包括所述直流子载波在资源块内部的信息或所述直流子载波在资源块外部的信息;
    当所述位置信息包括所述直流子载波在资源块内部的信息时,将所述直流子载波确认为组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
    当所述位置信息包括所述直流子载波在资源块外部的信息时,将所述直流子载波确认为不是组成所述UE对应的资源块的子载波,并根据所述UE的载波确定资源块;
    根据所述资源块与所述UE通信。
  123. 如权利要求122所述的基站,其特征在于,所述处理器获取用于描述所述UE的直流子载波的位置的位置信息包括:
    判断所述直流子载波是否位于所述基站内的其他的传输频带内,其中,所述传输频带用于传输信号;
    当判断所述直流子载波位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块内部的信息;
    当判断所述直流子载波不位于所述基站内的其他的传输频带内时,获取的位置信息包括所述直流子载波在资源块外部的信息;
    在所述处理器获取指示所述UE的直流子载波的位置的位置信息之后包括:
    向所述UE发送所述位置信息。
PCT/CN2015/071675 2015-01-27 2015-01-27 一种确定资源块的方法、装置及系统 WO2016119132A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/071675 WO2016119132A1 (zh) 2015-01-27 2015-01-27 一种确定资源块的方法、装置及系统
CN201580004985.8A CN106031230B (zh) 2015-01-27 2015-01-27 一种确定资源块的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071675 WO2016119132A1 (zh) 2015-01-27 2015-01-27 一种确定资源块的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016119132A1 true WO2016119132A1 (zh) 2016-08-04

Family

ID=56542134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071675 WO2016119132A1 (zh) 2015-01-27 2015-01-27 一种确定资源块的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN106031230B (zh)
WO (1) WO2016119132A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109475003A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种信号发送、信号接收方法及装置
CN111642017A (zh) * 2017-11-02 2020-09-08 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3513524B1 (en) * 2016-11-11 2021-09-29 Motorola Mobility LLC Determining a location of a frequency-domain resource block
CN110430617B (zh) * 2017-11-17 2020-12-08 华为技术有限公司 信息指示方法、终端设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014444A (zh) * 2009-12-31 2011-04-13 大唐移动通信设备有限公司 分配下行资源及实现下行数据接收的方法、装置
CN102113397A (zh) * 2008-08-04 2011-06-29 松下电器产业株式会社 基站、终端、频带分配方法以及下行数据通信方法
CN102349346A (zh) * 2009-03-16 2012-02-08 摩托罗拉移动公司 无线通信系统中的资源分配
WO2012150762A2 (ko) * 2011-05-02 2012-11-08 주식회사 팬택 자원할당정보의 전송장치 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532347B2 (en) * 2007-10-18 2016-12-27 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources in a wireless communication system
KR100921467B1 (ko) * 2008-06-19 2009-10-13 엘지전자 주식회사 셀룰라 다중반송파 시스템에서 조밀도를 조절하는 자원할당시그널링 방식
CN101657018B (zh) * 2009-08-18 2015-01-28 中兴通讯股份有限公司 无线信道资源分配的指示方法及基站、解码方法及终端
EP2747500A4 (en) * 2011-08-16 2015-04-08 Fujitsu Ltd RESOURCE ALLOCATION METHOD, BASIC STATION AND END UNIT
CN102870481B (zh) * 2012-06-27 2015-12-23 华为技术有限公司 时频资源分配消息发送方法、解析方法和装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113397A (zh) * 2008-08-04 2011-06-29 松下电器产业株式会社 基站、终端、频带分配方法以及下行数据通信方法
CN102349346A (zh) * 2009-03-16 2012-02-08 摩托罗拉移动公司 无线通信系统中的资源分配
CN102014444A (zh) * 2009-12-31 2011-04-13 大唐移动通信设备有限公司 分配下行资源及实现下行数据接收的方法、装置
WO2012150762A2 (ko) * 2011-05-02 2012-11-08 주식회사 팬택 자원할당정보의 전송장치 및 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109475003A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种信号发送、信号接收方法及装置
CN109475003B (zh) * 2017-09-08 2024-03-29 华为技术有限公司 一种信号发送、信号接收方法及装置
CN111642017A (zh) * 2017-11-02 2020-09-08 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备
CN111642017B (zh) * 2017-11-02 2023-07-14 Oppo广东移动通信有限公司 用于配置资源的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN106031230B (zh) 2020-03-20
CN106031230A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6740442B2 (ja) リソーススケジューリング方法、装置、およびデバイス
RU2732508C1 (ru) Способ и устройство для передачи сигналов
CN108988978B (zh) 扰码序列生成方法及装置
CN109587799B (zh) 一种信息传输方法及装置
CN106559872B (zh) 一种资源分配方法、装置及无线接入系统
CN107925999B (zh) 资源分配方法及装置
US11418304B2 (en) Transmission parameter configuration method and base station, information transmission method and terminal, and storage medium
AU2018315392B2 (en) Physical resource block prb grid indication method and device
US11171753B2 (en) Resource mapping for a user equipment in a communication system
US11343054B2 (en) Communication method, network device, and terminal device
CN109831827B (zh) 数据传输方法、终端和基站
CN108432285B (zh) 一种物理下行信道的传输方法、装置及系统
CN111654868B (zh) 一种公共信息的传输方法及装置
KR102322814B1 (ko) 자원 블록 그룹의 구획 방법 및 사용자 단말
CN111464274A (zh) 一种通信方法及装置
WO2016119440A1 (zh) 一种子带资源确定装置及方法
WO2019148438A1 (zh) 信道发送方法及相关产品
WO2016119132A1 (zh) 一种确定资源块的方法、装置及系统
CN110557833B (zh) 资源配置方法、网络设备和终端
WO2017067236A1 (zh) 支持非标准带宽的调度方法及基站
KR102267182B1 (ko) 다운 링크 리소스 집합을 결정하기 위한 방법 및 장치, 및 리소스 위치 정보를 송신하기 위한 방법 및 장치
JP2018516016A (ja) データ送信方法および装置
JP2018537907A (ja) スケジューリング情報送信方法および装置
RU2734024C1 (ru) Способ конфигурирования части полосы пропускания, сетевое устройство и оконечное устройство
RU2728536C1 (ru) Способ и устройство передачи сигнала

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879343

Country of ref document: EP

Kind code of ref document: A1