WO2016117676A1 - Filter device - Google Patents

Filter device Download PDF

Info

Publication number
WO2016117676A1
WO2016117676A1 PCT/JP2016/051825 JP2016051825W WO2016117676A1 WO 2016117676 A1 WO2016117676 A1 WO 2016117676A1 JP 2016051825 W JP2016051825 W JP 2016051825W WO 2016117676 A1 WO2016117676 A1 WO 2016117676A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filter circuit
resonator
signal line
acoustic
Prior art date
Application number
PCT/JP2016/051825
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 野阪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE112016000452.4T priority Critical patent/DE112016000452B4/en
Priority to CN201680006094.0A priority patent/CN107210733B/en
Priority to JP2016570717A priority patent/JP6432610B2/en
Priority to KR1020177020191A priority patent/KR101944652B1/en
Publication of WO2016117676A1 publication Critical patent/WO2016117676A1/en
Priority to US15/633,850 priority patent/US10158341B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/175Series LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source

Definitions

  • the present invention relates to a filter device having first to third filter circuits connected to a common terminal.
  • Patent Document 1 discloses a third branching filter in which first to third filters F1 to F3 are connected to an antenna terminal.
  • the first filter F1 is a low-pass filter whose pass band is the first frequency band and whose attenuation bands are the second and third frequency bands.
  • the second filter F2 uses the second frequency band as a pass band, and uses the first and third frequency bands as attenuation bands.
  • the second filter F2 is a bandpass filter having a SAW filter.
  • the third filter F3 is composed of an LC filter, and has a third frequency band as a pass band and first and second frequency bands as attenuation bands.
  • first to third filters F1 to F3 are commonly connected to antenna terminals. Therefore, an impedance matching circuit has to be provided on the first and third filter side composed of the LC filter.
  • An object of the present invention is to provide a filter device that can omit an impedance matching circuit.
  • the filter device includes a first filter circuit which is a low-pass filter having a common terminal and a first signal line connected to the common terminal and having a first passband, A second signal line connected to a common terminal; and a second pass band located on a higher frequency side than the first pass band of the first filter circuit. And a second filter circuit that is a bandpass filter and a third signal line connected to the common terminal, the band being higher than the second passband of the second filter circuit And a third filter circuit having a third passband located on the side, wherein the first filter circuit is disposed closest to the common terminal in the first signal line.
  • the second filter circuit is disposed closest to the common terminal in the second signal line
  • the third filter circuit includes a third acoustic resonator disposed closest to the common terminal in the third signal line.
  • the first filter circuit has a first acoustic resonator having an anti-resonance frequency and a resonance frequency located in the second passband; A second capacitive element connected to the first signal line and a ground potential; In this case, the attenuation amount in the second pass band can be sufficiently increased in the first filter circuit.
  • the second signal of the first filter circuit is an acoustic resonator
  • the second filter circuit is a series arm.
  • a parallel arm connecting a line and a ground potential, an acoustic resonator is disposed on the parallel arm, and the acoustic resonator constituting the second capacitor element of the first filter circuit; and
  • the resonance frequency of the acoustic resonator disposed on the parallel arm of the second filter circuit is substantially the same as the resonance frequency of the second acoustic resonator.
  • the loss can be further reduced, and the attenuation in the vicinity of the passband can be further increased in each of the first to third filter circuits.
  • the second acoustic resonator, the acoustic resonator and the second filter constituting the second capacitive element of the first filter circuit.
  • Resonant frequencies of the acoustic resonators arranged on the parallel arms of the circuit are within an average value ⁇ 5% of resonance frequencies of these acoustic resonators.
  • the loss can be further reduced, and the attenuation in the vicinity of the passband can be further increased in each of the first to third filter circuits.
  • the second filter circuit is connected to a parallel arm that connects the second acoustic resonator, the second signal line, and a ground potential. It is a ladder type filter which has the 4th acoustic resonator provided. In this case, the steepness of the filter characteristics in the second filter circuit can be enhanced.
  • the third filter circuit includes a second inductor connected between the third signal line and a ground potential, and the second inductor.
  • This is an LC filter having a third capacitor element connected in series. In this case, the size of the third filter circuit can be reduced.
  • the third filter circuit may be a band-pass filter.
  • a signal in a specific frequency band can be reliably transmitted or received by the third filter circuit.
  • the band-pass filter a ladder type filter is preferably used. In that case, the steepness of the filter characteristic in the third filter circuit can be enhanced.
  • At least one of the first to third acoustic resonators is an elastic wave resonator.
  • the steepness of the filter characteristics can be further enhanced.
  • a surface acoustic wave resonator is preferably used. When the surface acoustic wave resonator is used, the steepness of the filter characteristics can be further effectively improved.
  • the first capacitive element is an acoustic resonator.
  • the first capacitive element may be configured using the capacitance of the acoustic resonator. In this case, the amount of attenuation can be increased by setting the resonance frequency of the acoustic resonator to the attenuation band.
  • the impedance matching circuit can be omitted in the configuration in which the first to third filter circuits are connected to the common terminal.
  • FIG. 1 is a circuit diagram of a filter device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the filter characteristics of the first filter circuit of the filter device according to the first embodiment.
  • FIG. 3 is a diagram illustrating the filter characteristics of the second filter circuit of the filter device according to the first embodiment.
  • FIG. 4 is a diagram illustrating the filter characteristics of the third filter circuit of the filter device according to the first embodiment.
  • FIG. 5 is a circuit diagram of a filter device according to the second embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a filter device according to the third embodiment of the present invention.
  • FIG. 7 is a front sectional view showing a surface acoustic wave resonator as an example of an acoustic resonator.
  • FIG. 1 is a circuit diagram of a filter device according to a first embodiment of the present invention.
  • the filter device 1 has a common terminal 2. One end of the first to third filter circuits F1 to F3 is commonly connected to the common terminal 2.
  • the first filter circuits F1 to F3 have the following first to third passbands f1 to f3, respectively.
  • F1 Low band cellular band, 699 MHz to 960 MHz.
  • F2 GPS, GLONASS and BEIDOU bands, 1559 MHz to 1608 MHz.
  • F3 Middle band cellular band, 1700 MHz to 2170 MHz.
  • the first filter circuit F1 is a low-pass filter having an LC resonator and an acoustic resonator.
  • the first filter circuit F1 has the first pass band f1 that is the low-band cellular band, but is a low-pass filter, and therefore passes signals in a band of 960 MHz or less. That is, the first pass band f1 is set so as to pass the low band cellular band of 699 to 960 MHz.
  • the second filter circuit F2 is a bandpass filter made of an acoustic resonator, and is made of a ladder type filter.
  • the third filter circuit F3 is a high-pass filter having an LC resonator and an acoustic resonator.
  • the third filter circuit F3 is a high-pass filter, and passes a signal having a frequency of 1700 MHz or higher which is the lower limit of the third passband f3.
  • the first filter circuit F1 has a first signal line 4 connecting the common terminal 2 and the first terminal 3.
  • a plurality of first inductors 5 a to 5 c are provided on the first signal line 4.
  • the plurality of first inductors 5 a to 5 c are connected in series in the first signal line 4.
  • the first capacitive elements 6a to 6c are connected in parallel to the first inductors 5a to 5c, respectively. Further, a second capacitance element 7a for impedance adjustment is connected between a connection point between the first inductor 5a and the first inductor 5b and the ground potential. The second capacitive element 7a is a capacitor. An inductor 8 is connected in series with the second capacitor element 7a for impedance adjustment. A first acoustic resonator is connected as a second capacitive element 7b between a connection point between the first inductor 5b and the first inductor 5c and the ground potential.
  • the first acoustic resonator as the second capacitive element 7b has a resonance frequency and an anti-resonance frequency.
  • the second capacitor element 7b is formed of a surface acoustic wave resonator.
  • a surface acoustic wave resonator is used as the second capacitive element 7b by utilizing the capacitance of the surface acoustic wave resonator.
  • a first acoustic resonator similar to the second capacitive element 7b is connected as the second capacitive element 7c between the connection point between the first inductor 5c and the first terminal 3 and the ground potential. Has been.
  • the element closest to the common terminal 2 is the first inductor 5a.
  • the second capacitance elements 7a to 7c are impedance adjustment capacitance elements.
  • the two second capacitive elements 7b and 7c are composed of the first acoustic resonator as described above, and the resonance frequency is located in the pass band f2 of the second filter circuit F2. Therefore, the signal in the pass band of the second filter circuit F2 can be released to the ground potential side.
  • the second filter circuit F2 has a second signal line 10 connecting the common terminal 2 and the second terminal 9.
  • series arm resonators S1, S2, S3, S4, and S5 are provided in order from the common terminal 2 side. That is, the second signal line 10 constitutes a series arm, and the series arm resonators S1 to S5 are connected in series in this series arm.
  • the series arm resonators S1 to S5 are composed of surface acoustic wave resonators.
  • the series arm resonators S1 to S5 correspond to a second acoustic resonator having a resonance frequency and an anti-resonance frequency.
  • the parallel arm resonator P1 is provided on the parallel arm connecting the connection point between the series arm resonator S1 and the series arm resonator S2 and the ground potential.
  • the parallel arm resonator P2 is provided on the parallel arm that connects the connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential.
  • the parallel arm resonator P3 is provided on the parallel arm that connects the connection point between the series arm resonator S3 and the series arm resonator S4 and the ground potential.
  • a parallel arm resonator P4 is provided on the parallel arm connecting the connection point between the series arm resonator S4 and the series arm resonator S5 and the ground potential.
  • the parallel arm resonators P1 to P4 are also composed of surface acoustic wave resonators.
  • the second filter circuit F2 is a ladder filter having the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4.
  • the second filter circuit F2 is a band pass filter, and the center frequency of the pass band is located in the above-described pass band f2.
  • the resonance frequencies of the series arm resonators S1 to S5 are in the passband f2, and the antiresonance frequencies of the parallel arm resonators P1 to P4 are in the passband f2.
  • the element closest to the common terminal 2 in the second signal line 10 is the second acoustic resonator which is the series arm resonator S1.
  • the third filter circuit F3 has a third signal line 12 connecting the common terminal 2 and the third terminal 11.
  • a low pass filter 21 is connected between the third filter circuit F 3 and the third terminal 11.
  • the third filter circuit F3 is a high-pass filter.
  • the third filter circuit F3 and the low-pass filter 21 are connected in series. Therefore, the third filter circuit F3 and the low-pass filter 21 form a pass band.
  • third acoustic resonators 13 a to 13 c are provided on the third signal line 12.
  • the plurality of third acoustic resonators 13 a to 13 c are connected to each other in series on the third signal line 12.
  • the third inductor 14a and the third capacitive element 15a are connected in series between the connection point between the third acoustic resonator 13a and the third acoustic resonator 13b and the ground potential.
  • the third inductor 14b and the third capacitive element 15b are connected in series between the connection point between the third acoustic resonator 13b and the third acoustic resonator 13c and the ground potential. ing.
  • the element closest to the common terminal 2 is the third acoustic resonator 13a.
  • the element closest to the common terminal 2 is the first inductor 5a, and is closest to the common terminal 2 of the second filter circuit F2 and the third filter circuit F3.
  • the elements are second and third acoustic resonators, respectively, and these elements are arranged on the signal line. Therefore, the impedance matching circuit on the common terminal 2 side of the first and third filter circuits F1 and F3 made of LC filters and the second filter circuit F2 using the acoustic resonator can be omitted.
  • the anti-resonance frequency of the third acoustic resonators 13a to 13c of the third filter circuit F3 is located in the pass band f2 of the second filter circuit F2.
  • a trap can be formed in the pass band f2 in the filter characteristics of the third filter circuit F3.
  • the low-pass filter 21 includes fourth inductors 22 a and 22 b provided on the third signal line 12. Fourth capacitive elements 23a and 23b are connected in parallel to the fourth inductors 22a and 22b, respectively.
  • a fifth capacitor 24a is connected between the end of the fourth inductor 22a on the third filter circuit F3 side and the ground potential.
  • the fifth capacitive element 24b is connected between the connection point between the fourth inductor 22a and the fourth inductor 22b and the ground potential.
  • a fifth capacitive element 24c is connected between the connection point between the fourth inductor 22b and the third terminal 11 and the ground potential.
  • the fifth capacitive elements 24a to 24c are made of acoustic resonators and have a resonance frequency and an anti-resonance frequency.
  • the low-pass filter 21 is not necessarily provided, but by providing the low-pass filter 21, a pass band can be formed as described above.
  • the resonance frequency of the fifth capacitive elements 24a to 24c is positioned in the pass band f2 of the second filter circuit F2.
  • the attenuation in the second pass band can be further increased.
  • the second capacitive elements 7b and 7c constituted by acoustic resonators, the series arm resonators S1 to S5, the parallel arm resonators P1 to P4, and the third filter used in the second filter circuit F2. It is desirable that all the acoustic resonators constituting the third acoustic resonators 13a to 13c and the fifth capacitive elements 24a to 24c used in the circuit F3 have substantially the same resonance frequency and antiresonance frequency. As a result, the types of acoustic resonators can be reduced, the cost can be reduced, and the piezoelectric substrate or the like constituting the filter device 1 can be shared. Therefore, the filter device 1 can be downsized. In particular, the first to third filter circuits F1 to F3 can be configured using the same piezoelectric body.
  • the second capacitive element of the first filter circuit is formed of an acoustic resonator
  • the second filter circuit has a parallel arm that connects the second signal line, which is a serial arm, and a ground potential, and is connected in parallel.
  • An acoustic resonator is arranged on the arm, and the resonance frequency of the acoustic resonator constituting the second capacitive element of the first filter circuit and the acoustic resonator arranged on the parallel arm of the second filter circuit Is substantially the same as the resonance frequency of the second acoustic resonator.
  • each of the second acoustic resonator, the acoustic resonator constituting the second capacitive element of the first filter circuit, and the acoustic resonator disposed in the parallel arm of the second filter circuit The resonance frequency is in the range of the average value ⁇ 5% of the resonance frequencies of these acoustic resonators.
  • FIG. 2 shows the filter characteristics of the first filter circuit F1
  • FIG. 3 shows the filter characteristics of the second filter circuit
  • FIG. 4 shows the filter characteristics of the third filter circuit F3.
  • the attenuation amount is small in the first pass band f1.
  • the amount of attenuation is sufficiently large.
  • an arrow A below the second passband f2 indicates the position of the trap due to the antiresonance frequency of the acoustic resonator used as the second capacitive elements 7b and 7c in the first filter circuit. That is, since the antiresonance frequency of the acoustic resonator as the second capacitive elements 7b and 7c is located at the frequency indicated by the arrow A, it is possible to sufficiently increase the attenuation in the second passband f2. .
  • the second capacitive elements 7b and 7c are made of acoustic resonators, but at least one first capacitive element is made of an acoustic resonator. It only has to be done.
  • the attenuation amount of the second passband f2 is sufficiently small.
  • a sufficiently large attenuation is obtained in the first passband f1 and the third passband f3.
  • This pass band is obtained by the characteristics of the second filter circuit F2 as a band pass filter.
  • the resonance frequency of the series arm resonators S1 to S5 and the antiresonance frequency of the parallel arm resonators P1 to P4 are located in the position indicated by the arrow B, that is, in the passband f2. Yes. Further, the frequency position characteristic indicated by the arrow C indicates the attenuation pole due to the resonance frequency of the parallel arm resonators P1 to P4. Arrow D indicates the attenuation pole due to the antiresonance frequency of the series arm resonators S1 to S5.
  • the resonance frequencies of the series arm resonators S1 to S5 and the parallel arm resonators are used.
  • the antiresonance frequencies P1 to P4 are positions indicated by arrows B.
  • the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4 made of acoustic resonators do not necessarily have substantially the same resonance frequency and antiresonance frequency.
  • the attenuation is sufficiently small in the third passband f3.
  • a sufficiently large attenuation is obtained in the first passband f1 and the second passband f2. That is, the attenuation amount in the first pass band f1 is sufficiently large due to the characteristics as a high-pass filter.
  • the attenuation in the second pass band f2 is due to the antiresonance frequencies of the third acoustic resonators 13a to 13c being located in the pass band f2, as indicated by the arrow E. Thereby, it is possible to sufficiently increase the attenuation in the second passband f2.
  • the low-pass filter 21 since the low-pass filter 21 is connected, the amount of attenuation gradually increases on the higher frequency side than the third passband f3.
  • the resonance frequency of each acoustic resonator as the fifth capacitive elements 24a to 24c is located at the frequency indicated by the arrow F. Therefore, it is possible to form a trap at the frequency position indicated by the arrow F on the high frequency side of the third passband f3. Therefore, traps with sufficiently large attenuation can be formed on the low frequency side and high frequency side of the third passband f3, and the selectivity can be increased.
  • the acoustic resonators as the fifth capacitive elements 24a to 24c are provided to form the trap. However, if at least one acoustic resonator is provided, the trap can be formed. .
  • the third filter circuit F3 only needs to include the third acoustic resonator 13a closest to the common terminal 2 among the third acoustic resonators 13a to 13c.
  • the third acoustic resonators 13b and 13c may be omitted.
  • the second capacitor element 7b is formed of a surface acoustic wave resonator.
  • the structure of such a surface acoustic wave resonator is not particularly limited.
  • a surface acoustic wave resonator 31 shown in FIG. 7 can be used.
  • an IDT electrode 33 is provided on a piezoelectric substrate 32.
  • a dielectric film 34 made of SiO 2 is provided so as to cover the IDT electrode 33.
  • the frequency position of the resonance frequency and the anti-resonance frequency can be adjusted by adjusting the metal constituting the IDT electrode and the film thickness.
  • the surface acoustic wave resonator is shown as an acoustic resonator.
  • an acoustic resonator other than the surface acoustic wave resonator may be used.
  • a boundary acoustic wave resonator may be used.
  • a BAW resonator using a bulk wave propagating through the piezoelectric thin film may be used.
  • a piezoelectric resonator using a single piezoelectric substrate or a laminated piezoelectric material may be used.
  • FIG. 5 is a circuit diagram of a filter device according to the second embodiment of the present invention.
  • the first capacitive elements 6a to 6c are acoustic resonators.
  • a second capacitive element 7d made of an acoustic resonator is connected between a connection point between the first inductor 5a and the first inductor 5b and the ground potential.
  • the third capacitive elements 15c and 15d are made of acoustic resonators.
  • the filter device 41 is configured in the same manner as the filter device 1.
  • the first capacitive elements 6a to 6c as described above may be constituted by acoustic resonators, and in the first filter circuit F1, capacitors arranged on the line connecting the first signal line 4 and the ground potential. All the elements may be acoustic resonators.
  • acoustic resonators may be used as the fifth capacitive elements 24a to 24c on the line connecting the third signal line 12 and the ground potential.
  • the filter device 41 has the same effects as the filter device 1.
  • the anti-resonance frequency is positioned in the second pass band f2, so that the second resonator in the second pass band f2
  • the amount of attenuation can be increased.
  • the attenuation in the second passband f2 is further increased by positioning the antiresonance frequency in the second passband f2. Can be bigger.
  • FIG. 6 is a circuit diagram of the filter device 51 according to the third embodiment.
  • the first and second filter circuits F1, F2 are configured in the same manner as the filter device 41 of the second embodiment.
  • the difference is that the third filter circuit F3 is a band-pass filter composed of a ladder filter.
  • the series arm resonators S11 to S15 are connected in series on the third signal line 12 connecting the common terminal 2 and the third terminal 11.
  • a parallel arm resonator P11 is provided on the parallel arm connecting the connection point between the series arm resonators S11 and S12 and the ground potential.
  • a parallel arm resonator P12 is provided between the connection point between the series arm resonators S12 and S13 and the ground potential.
  • a parallel arm resonator P13 is provided between the connection point between the series arm resonators S13 and S14 and the ground potential.
  • a parallel arm resonator P14 is provided on the parallel arm connecting the connection point between the series arm resonators S14 and S15 and the ground potential.
  • an inductor 52a is connected between the connection point between the series arm resonator S11 and the series arm resonator S12 and the ground potential.
  • An inductor 52b is connected between a connection point between the series arm resonator S14 and the series arm resonator S15 and the ground potential.
  • the inductors 52a and 52b are provided to adjust the impedance.
  • the third filter circuit F3 itself may be a bandpass filter.
  • the series arm resonators S11 to S15 and the parallel arm resonators P11 to P14 are acoustic resonators having a resonance frequency and an antiresonance frequency.
  • the element closest to the common terminal 2 in the third filter circuit F3 is the series arm resonator S11. That is, the element closest to the common terminal 2 is the third acoustic resonator and is provided on the third signal line 12.
  • the element closest to the common terminal 2 in the first filter circuit F1 is the first inductor 5a provided in the first signal line 4, and the second and third filter circuits F2, F2 are provided.
  • F3 there are a series arm resonator S1 and a series arm resonator S11 made of acoustic resonators, which are provided on the second and third signal lines 10 and 12, respectively. Therefore, it is not necessary to provide an impedance matching circuit on the common terminal 2 side. Therefore, the filter device 51 can also be reduced in size and cost.
  • the first to third filter circuits F1 to F3 can be appropriately modified as will be apparent from appropriate first to third embodiments. That is, the number of filter circuits and the number of elements in the first to third filter circuits F1 to F3 are not limited to the contents of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Filters And Equalizers (AREA)

Abstract

Provided is a filter device which can dispense with an impedance matching circuit. This filter device 1 comprises a first through a third filter circuit F1-F3 which are connected to a common terminal 2. The first filter circuit F1 comprises a first inductor 5a, which is nearest to the common terminal 2 on a first signal line 4, and a first capacitive element 6a which is connected in parallel to the first inductor 5a. The second filter circuit F2 comprises a series arm resonator S1 which is a second acoustic resonator nearest to the common terminal 2 on a second signal line 10, and the third filter circuit F3 comprises a third acoustic resonator 13a which is arranged nearest to the common terminal 2 on a third signal line 12.

Description

フィルタ装置Filter device
 本発明は、共通端子に接続された第1~第3のフィルタ回路を有するフィルタ装置に関する。 The present invention relates to a filter device having first to third filter circuits connected to a common terminal.
 従来、携帯電話機などにおいては、周波数帯が異なる3つの信号を分波する分波器が用いられている。下記の特許文献1には、アンテナ端子に、第1~第3のフィルタF1~F3が接続されている3分波器が開示されている。第1のフィルタF1は、第1の周波数帯を通過帯域とし、第2及び第3の周波数帯を減衰帯域とするローパスフィルタである。第2のフィルタF2は、第2の周波数帯を通過帯域とし、第1及び第3の周波数帯を減衰帯域とする。また、第2のフィルタF2は、SAWフィルタを有するバンドパスフィルタである。第3のフィルタF3は、LCフィルタからなり、第3の周波数帯を通過帯域とし、第1及び第2の周波数帯を減衰帯域とする。 Conventionally, in a mobile phone or the like, a duplexer that demultiplexes three signals having different frequency bands is used. Patent Document 1 below discloses a third branching filter in which first to third filters F1 to F3 are connected to an antenna terminal. The first filter F1 is a low-pass filter whose pass band is the first frequency band and whose attenuation bands are the second and third frequency bands. The second filter F2 uses the second frequency band as a pass band, and uses the first and third frequency bands as attenuation bands. The second filter F2 is a bandpass filter having a SAW filter. The third filter F3 is composed of an LC filter, and has a third frequency band as a pass band and first and second frequency bands as attenuation bands.
特開2004-194240号公報JP 2004-194240 A
 特許文献1に記載の3分波器では、アンテナ端子に第1~第3のフィルタF1~F3が共通接続されている。そのため、LCフィルタからなる第1,第3のフィルタ側に、インピーダンス整合回路を設けねばならなかった。 In the third branching filter described in Patent Document 1, first to third filters F1 to F3 are commonly connected to antenna terminals. Therefore, an impedance matching circuit has to be provided on the first and third filter side composed of the LC filter.
 本発明の目的は、インピーダンス整合回路を省略することを可能とするフィルタ装置を提供することにある。 An object of the present invention is to provide a filter device that can omit an impedance matching circuit.
 本発明に係るフィルタ装置は、共通端子と、前記共通端子に接続されている第1の信号ラインを有しており、第1の通過帯域を有するローパスフィルタである第1のフィルタ回路と、前記共通端子に接続されている第2の信号ラインを有しており、前記第1のフィルタ回路の前記第1の通過帯域よりも高域側に位置している第2の通過帯域を有しており、バンドパスフィルタである第2のフィルタ回路と、前記共通端子に接続されている第3の信号ラインを有しており、前記第2のフィルタ回路の前記第2の通過帯域よりも高域側に位置している第3の通過帯域を有する第3のフィルタ回路とを備え、前記第1のフィルタ回路が、前記第1の信号ラインにおいて、前記共通端子に最も近くに配置されている第1のインダクタと、前記第1のインダクタと並列に接続されてLC共振回路を構成している第1の容量素子とを含んでおり、前記第2のフィルタ回路が、前記第2の信号ラインにおいて、前記共通端子に最も近くに配置されている第2の音響共振子を含んでおり、前記第3のフィルタ回路が、前記第3の信号ラインにおいて、前記共通端子に最も近くに配置されている第3の音響共振子を含んでいる。 The filter device according to the present invention includes a first filter circuit which is a low-pass filter having a common terminal and a first signal line connected to the common terminal and having a first passband, A second signal line connected to a common terminal; and a second pass band located on a higher frequency side than the first pass band of the first filter circuit. And a second filter circuit that is a bandpass filter and a third signal line connected to the common terminal, the band being higher than the second passband of the second filter circuit And a third filter circuit having a third passband located on the side, wherein the first filter circuit is disposed closest to the common terminal in the first signal line. 1 inductor and the first A first capacitive element connected in parallel with the inductor to form an LC resonance circuit, and the second filter circuit is disposed closest to the common terminal in the second signal line And the third filter circuit includes a third acoustic resonator disposed closest to the common terminal in the third signal line. Yes.
 本発明に係るフィルタ装置のある特定の局面によれば、前記第1のフィルタ回路が、反共振周波数と前記第2の通過帯域内に位置する共振周波数とを有する第1の音響共振子と、前記第1の信号ラインとグラウンド電位とに接続される第2の容量素子とを含んでいる。この場合には、第1のフィルタ回路において、第2の通過帯域における減衰量を十分大きくすることができる。 According to a specific aspect of the filter device according to the present invention, the first filter circuit has a first acoustic resonator having an anti-resonance frequency and a resonance frequency located in the second passband; A second capacitive element connected to the first signal line and a ground potential; In this case, the attenuation amount in the second pass band can be sufficiently increased in the first filter circuit.
 本発明に係るフィルタ装置の他の特定の局面では、前記第1のフィルタ回路の前記第2の容量素子が音響共振子からなり、前記第2のフィルタ回路が、直列腕である第2の信号ラインとグラウンド電位とを結ぶ並列腕を有し、前記並列腕に音響共振子が配置されており、前記第1のフィルタ回路の前記第2の容量素子を構成している前記音響共振子及び前記第2のフィルタ回路の前記並列腕に配置されている音響共振子の共振周波数が、前記第2の音響共振子の共振周波数とほぼ同じである。この場合には、損失をより一層低減することができ、かつ第1~第3のフィルタ回路において、それぞれ、通過帯域近傍における減衰量をより一層大きくすることができる。 In another specific aspect of the filter device according to the present invention, the second signal of the first filter circuit is an acoustic resonator, and the second filter circuit is a series arm. A parallel arm connecting a line and a ground potential, an acoustic resonator is disposed on the parallel arm, and the acoustic resonator constituting the second capacitor element of the first filter circuit; and The resonance frequency of the acoustic resonator disposed on the parallel arm of the second filter circuit is substantially the same as the resonance frequency of the second acoustic resonator. In this case, the loss can be further reduced, and the attenuation in the vicinity of the passband can be further increased in each of the first to third filter circuits.
 本発明に係るフィルタ装置の他の特定の局面では、前記第2の音響共振子、前記第1のフィルタ回路の前記第2の容量素子を構成している前記音響共振子及び前記第2のフィルタ回路の前記並列腕に配置されている音響共振子の各共振周波数が、これらの音響共振子の共振周波数の平均値±5%の範囲内にある。この場合には、損失をより一層低減することができ、かつ第1~第3のフィルタ回路において、それぞれ、通過帯域近傍における減衰量をより一層大きくすることができる。 In another specific aspect of the filter device according to the present invention, the second acoustic resonator, the acoustic resonator and the second filter constituting the second capacitive element of the first filter circuit. Resonant frequencies of the acoustic resonators arranged on the parallel arms of the circuit are within an average value ± 5% of resonance frequencies of these acoustic resonators. In this case, the loss can be further reduced, and the attenuation in the vicinity of the passband can be further increased in each of the first to third filter circuits.
 本発明に係るフィルタ装置のさらに他の特定の局面では、前記第2のフィルタ回路が、前記第2の音響共振子と、前記第2の信号ラインとグラウンド電位とを接続している並列腕に設けられた第4の音響共振子とを有する、ラダー型フィルタである。この場合には、第2のフィルタ回路におけるフィルタ特性の急峻性を高めることができる。 In still another specific aspect of the filter device according to the present invention, the second filter circuit is connected to a parallel arm that connects the second acoustic resonator, the second signal line, and a ground potential. It is a ladder type filter which has the 4th acoustic resonator provided. In this case, the steepness of the filter characteristics in the second filter circuit can be enhanced.
 本発明に係るフィルタ装置の別の特定の局面では、前記第3のフィルタ回路が、前記第3の信号ラインとグラウンド電位との間に接続された第2のインダクタと、該第2のインダクタと直列に接続された第3の容量素子とを有するLCフィルタである。この場合には、第3のフィルタ回路の小型化を図ることができる。 In another specific aspect of the filter device according to the present invention, the third filter circuit includes a second inductor connected between the third signal line and a ground potential, and the second inductor. This is an LC filter having a third capacitor element connected in series. In this case, the size of the third filter circuit can be reduced.
 もっとも、本発明においては、第3のフィルタ回路はバンドパスフィルタであってもよい。その場合には、第3のフィルタ回路により、特定の周波数帯の信号を確実に送信または受信することができる。上記バンドパスフィルタとしては、好ましくは、ラダー型フィルタが用いられる。その場合には、第3のフィルタ回路におけるフィルタ特性の急峻性を高めることができる。 However, in the present invention, the third filter circuit may be a band-pass filter. In that case, a signal in a specific frequency band can be reliably transmitted or received by the third filter circuit. As the band-pass filter, a ladder type filter is preferably used. In that case, the steepness of the filter characteristic in the third filter circuit can be enhanced.
 本発明に係るフィルタ装置の別の特定の局面では、前記第1~第3の音響共振子の少なくとも1つが、弾性波共振子である。この場合には、フィルタ特性の急峻性をより一層高めることができる。弾性波共振子としては、弾性表面波共振子が好適に用いられる。弾性表面波共振子を用いた場合には、フィルタ特性の急峻性をより一層効果的に高めることができる。 In another specific aspect of the filter device according to the present invention, at least one of the first to third acoustic resonators is an elastic wave resonator. In this case, the steepness of the filter characteristics can be further enhanced. As the acoustic wave resonator, a surface acoustic wave resonator is preferably used. When the surface acoustic wave resonator is used, the steepness of the filter characteristics can be further effectively improved.
 本発明に係るフィルタ装置のさらに他の特定の局面では、前記第1の容量素子が、音響共振子からなる。このように、音響共振子の容量を利用して第1の容量素子を構成してもよい。この場合には、音響共振子の共振周波数を、減衰帯域に設定することにより、減衰量の拡大を図ることも可能となる。 In still another specific aspect of the filter device according to the present invention, the first capacitive element is an acoustic resonator. As described above, the first capacitive element may be configured using the capacitance of the acoustic resonator. In this case, the amount of attenuation can be increased by setting the resonance frequency of the acoustic resonator to the attenuation band.
 本発明に係るフィルタ装置によれば、共通端子に第1~第3のフィルタ回路が接続されている構成において、インピーダンス整合回路を省略することが可能となる。 According to the filter device of the present invention, the impedance matching circuit can be omitted in the configuration in which the first to third filter circuits are connected to the common terminal.
図1は、本発明の第1の実施形態に係るフィルタ装置の回路図である。FIG. 1 is a circuit diagram of a filter device according to a first embodiment of the present invention. 図2は、第1の実施形態のフィルタ装置の第1のフィルタ回路のフィルタ特性を示す図である。FIG. 2 is a diagram illustrating the filter characteristics of the first filter circuit of the filter device according to the first embodiment. 図3は、第1の実施形態のフィルタ装置の第2のフィルタ回路のフィルタ特性を示す図である。FIG. 3 is a diagram illustrating the filter characteristics of the second filter circuit of the filter device according to the first embodiment. 図4は、第1の実施形態のフィルタ装置の第3のフィルタ回路のフィルタ特性を示す図である。FIG. 4 is a diagram illustrating the filter characteristics of the third filter circuit of the filter device according to the first embodiment. 図5は、本発明の第2の実施形態に係るフィルタ装置の回路図である。FIG. 5 is a circuit diagram of a filter device according to the second embodiment of the present invention. 図6は、本発明の第3の実施形態に係るフィルタ装置の回路図である。FIG. 6 is a circuit diagram of a filter device according to the third embodiment of the present invention. 図7は、音響共振子の一例としての弾性表面波共振子を示す正面断面図である。FIG. 7 is a front sectional view showing a surface acoustic wave resonator as an example of an acoustic resonator.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係るフィルタ装置の回路図である。 FIG. 1 is a circuit diagram of a filter device according to a first embodiment of the present invention.
 フィルタ装置1は、共通端子2を有する。共通端子2に、第1~第3のフィルタ回路F1~F3の一端が共通接続されている。第1のフィルタ回路F1~F3は、それぞれ、下記の第1~第3の通過帯域f1~f3を有する。 The filter device 1 has a common terminal 2. One end of the first to third filter circuits F1 to F3 is commonly connected to the common terminal 2. The first filter circuits F1 to F3 have the following first to third passbands f1 to f3, respectively.
 f1;ローバンドセルラー帯、699MHz~960MHz。 F1: Low band cellular band, 699 MHz to 960 MHz.
 f2;GPS、GLONASS及びBEIDOU帯、1559MHz~1608MHz。 F2: GPS, GLONASS and BEIDOU bands, 1559 MHz to 1608 MHz.
 f3;ミドルバンドセルラー帯、1700MHz~2170MHz。 F3: Middle band cellular band, 1700 MHz to 2170 MHz.
 第1のフィルタ回路F1は、LC共振器と音響共振子とを有する、ローパスフィルタである。なお、第1のフィルタ回路F1は、上記ローバンドセルラー帯である第1の通過帯域f1を有するが、ローパスフィルタであるため、960MHz以下の帯域の信号を通過させる。すなわち、699~960MHzのローバンドセルラー帯を通過させるように、第1の通過帯域f1が設定されている。また、第2のフィルタ回路F2は、音響共振子からなるバンドパスフィルタであり、ラダー型フィルタからなる。 The first filter circuit F1 is a low-pass filter having an LC resonator and an acoustic resonator. The first filter circuit F1 has the first pass band f1 that is the low-band cellular band, but is a low-pass filter, and therefore passes signals in a band of 960 MHz or less. That is, the first pass band f1 is set so as to pass the low band cellular band of 699 to 960 MHz. The second filter circuit F2 is a bandpass filter made of an acoustic resonator, and is made of a ladder type filter.
 第3のフィルタ回路F3は、LC共振器と音響共振子とを有する、ハイパスフィルタである。第3のフィルタ回路F3はハイパスフィルタであり、上記第3の通過帯域f3の下限である1700MHz以上の周波数の信号を通過させる。 The third filter circuit F3 is a high-pass filter having an LC resonator and an acoustic resonator. The third filter circuit F3 is a high-pass filter, and passes a signal having a frequency of 1700 MHz or higher which is the lower limit of the third passband f3.
 より詳細には、第1のフィルタ回路F1は、共通端子2と第1の端子3とを結ぶ第1の信号ライン4を有する。第1の信号ライン4に、複数の第1のインダクタ5a~5cが設けられている。複数の第1のインダクタ5a~5cは第1の信号ライン4において直列に接続されている。 More specifically, the first filter circuit F1 has a first signal line 4 connecting the common terminal 2 and the first terminal 3. A plurality of first inductors 5 a to 5 c are provided on the first signal line 4. The plurality of first inductors 5 a to 5 c are connected in series in the first signal line 4.
 第1のインダクタ5a~5cにそれぞれ並列に第1の容量素子6a~6cが接続されている。また、第1のインダクタ5aと第1のインダクタ5bとの間の接続点とグラウンド電位との間に、インピーダンス調整用の第2の容量素子7aが接続されている。第2の容量素子7aはコンデンサからなる。インピーダンス調整用の第2の容量素子7aと直列にインダクタ8が接続されている。また、第1のインダクタ5bと第1のインダクタ5cとの間の接続点とグラウンド電位との間に、第2の容量素子7bとして、第1の音響共振子が接続されている。 The first capacitive elements 6a to 6c are connected in parallel to the first inductors 5a to 5c, respectively. Further, a second capacitance element 7a for impedance adjustment is connected between a connection point between the first inductor 5a and the first inductor 5b and the ground potential. The second capacitive element 7a is a capacitor. An inductor 8 is connected in series with the second capacitor element 7a for impedance adjustment. A first acoustic resonator is connected as a second capacitive element 7b between a connection point between the first inductor 5b and the first inductor 5c and the ground potential.
 第2の容量素子7bとしての第1の音響共振子は、共振周波数と反共振周波数とを有する。本実施形態では、第2の容量素子7bは、弾性表面波共振子からなる。この弾性表面波共振子の容量性を利用して、第2の容量素子7bとして、弾性表面波共振子が用いられている。第1のインダクタ5cと第1の端子3との間の接続点とグラウンド電位との間に、第2の容量素子7cとして、第2の容量素子7bと同様の第1の音響共振子が接続されている。 The first acoustic resonator as the second capacitive element 7b has a resonance frequency and an anti-resonance frequency. In the present embodiment, the second capacitor element 7b is formed of a surface acoustic wave resonator. A surface acoustic wave resonator is used as the second capacitive element 7b by utilizing the capacitance of the surface acoustic wave resonator. A first acoustic resonator similar to the second capacitive element 7b is connected as the second capacitive element 7c between the connection point between the first inductor 5c and the first terminal 3 and the ground potential. Has been.
 上記のように、第1のフィルタ回路F1において、共通端子2に最も近い素子は、第1のインダクタ5aである。第1のフィルタ回路F1においては、第2の容量素子7a~7cは、インピーダンス調整用の容量素子である。そして、2個の第2の容量素子7b,7cが、上記のように第1の音響共振子からなり、この共振周波数は第2のフィルタ回路F2の通過帯域f2に位置している。従って、第2のフィルタ回路F2の通過帯域の信号を、グラウンド電位側に逃がすことができる。 As described above, in the first filter circuit F1, the element closest to the common terminal 2 is the first inductor 5a. In the first filter circuit F1, the second capacitance elements 7a to 7c are impedance adjustment capacitance elements. The two second capacitive elements 7b and 7c are composed of the first acoustic resonator as described above, and the resonance frequency is located in the pass band f2 of the second filter circuit F2. Therefore, the signal in the pass band of the second filter circuit F2 can be released to the ground potential side.
 第2のフィルタ回路F2は、共通端子2と第2の端子9とを結ぶ第2の信号ライン10を有する。第2の信号ライン10において、共通端子2側から順に、直列腕共振子S1,S2,S3,S4,S5が設けられている。すなわち、第2の信号ライン10は、直列腕を構成しており、この直列腕において、直列腕共振子S1~S5が直列に接続されている。上記直列腕共振子S1~S5は、弾性表面波共振子からなる。直列腕共振子S1~S5が共振周波数と、反共振周波数とを有する第2の音響共振子に相当する。 The second filter circuit F2 has a second signal line 10 connecting the common terminal 2 and the second terminal 9. In the second signal line 10, series arm resonators S1, S2, S3, S4, and S5 are provided in order from the common terminal 2 side. That is, the second signal line 10 constitutes a series arm, and the series arm resonators S1 to S5 are connected in series in this series arm. The series arm resonators S1 to S5 are composed of surface acoustic wave resonators. The series arm resonators S1 to S5 correspond to a second acoustic resonator having a resonance frequency and an anti-resonance frequency.
 直列腕共振子S1と直列腕共振子S2との間の接続点とグラウンド電位とを結ぶ並列腕に並列腕共振子P1が設けられている。直列腕共振子S2と直列腕共振子S3との間の接続点とグラウンド電位とを結ぶ並列腕に並列腕共振子P2が設けられている。直列腕共振子S3と直列腕共振子S4との間の接続点とグラウンド電位とを結ぶ並列腕に並列腕共振子P3が設けられている。直列腕共振子S4と直列腕共振子S5との間の接続点とグラウンド電位とを結ぶ並列腕に並列腕共振子P4が設けられている。上記並列腕共振子P1~P4もまた、弾性表面波共振子からなる。 The parallel arm resonator P1 is provided on the parallel arm connecting the connection point between the series arm resonator S1 and the series arm resonator S2 and the ground potential. The parallel arm resonator P2 is provided on the parallel arm that connects the connection point between the series arm resonator S2 and the series arm resonator S3 and the ground potential. The parallel arm resonator P3 is provided on the parallel arm that connects the connection point between the series arm resonator S3 and the series arm resonator S4 and the ground potential. A parallel arm resonator P4 is provided on the parallel arm connecting the connection point between the series arm resonator S4 and the series arm resonator S5 and the ground potential. The parallel arm resonators P1 to P4 are also composed of surface acoustic wave resonators.
 第2のフィルタ回路F2は、上記直列腕共振子S1~S5及び並列腕共振子P1~P4を有するラダー型フィルタである。第2のフィルタ回路F2は、バンドパスフィルタであり、その通過帯域の中心周波数は、前述した通過帯域f2に位置している。 The second filter circuit F2 is a ladder filter having the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4. The second filter circuit F2 is a band pass filter, and the center frequency of the pass band is located in the above-described pass band f2.
 直列腕共振子S1~S5の共振周波数は通過帯域f2内に、並列腕共振子P1~P4の反共振周波数は通過帯域f2内にある。 The resonance frequencies of the series arm resonators S1 to S5 are in the passband f2, and the antiresonance frequencies of the parallel arm resonators P1 to P4 are in the passband f2.
 第2のフィルタ回路F2においては、第2の信号ライン10において、共通端子2に最も近い素子は、上記直列腕共振子S1である第2の音響共振子である。 In the second filter circuit F2, the element closest to the common terminal 2 in the second signal line 10 is the second acoustic resonator which is the series arm resonator S1.
 第3のフィルタ回路F3は、共通端子2と第3の端子11とを結ぶ第3の信号ライン12を有する。第3の信号ライン12において、第3のフィルタ回路F3と第3の端子11との間に、ローパスフィルタ21が接続されている。 The third filter circuit F3 has a third signal line 12 connecting the common terminal 2 and the third terminal 11. In the third signal line 12, a low pass filter 21 is connected between the third filter circuit F 3 and the third terminal 11.
 第3のフィルタ回路F3はハイパスフィルタである。第3のフィルタ回路F3と、ローパスフィルタ21とが直列に接続されており、従って、第3のフィルタ回路F3とローパスフィルタ21とにより通過帯域が形成されている。 The third filter circuit F3 is a high-pass filter. The third filter circuit F3 and the low-pass filter 21 are connected in series. Therefore, the third filter circuit F3 and the low-pass filter 21 form a pass band.
 第3のフィルタ回路F3においては、第3の信号ライン12上に第3の音響共振子13a~13cが設けられている。複数の第3の音響共振子13a~13cは、第3の信号ライン12上において、互いに直列に接続されている。 In the third filter circuit F 3, third acoustic resonators 13 a to 13 c are provided on the third signal line 12. The plurality of third acoustic resonators 13 a to 13 c are connected to each other in series on the third signal line 12.
 第3の音響共振子13aと第3の音響共振子13bとの間の接続点とグラウンド電位の間において第3のインダクタ14aと、第3の容量素子15aとが互いに直列に接続されている。同様に、第3の音響共振子13bと第3の音響共振子13cとの間の接続点とグラウンド電位との間において、第3のインダクタ14bと第3の容量素子15bとが直列に接続されている。 The third inductor 14a and the third capacitive element 15a are connected in series between the connection point between the third acoustic resonator 13a and the third acoustic resonator 13b and the ground potential. Similarly, the third inductor 14b and the third capacitive element 15b are connected in series between the connection point between the third acoustic resonator 13b and the third acoustic resonator 13c and the ground potential. ing.
 第3のフィルタ回路F3において、共通端子2に最も近い素子は、第3の音響共振子13aである。 In the third filter circuit F3, the element closest to the common terminal 2 is the third acoustic resonator 13a.
 フィルタ装置1においては、第1のフィルタ回路F1において、共通端子2に最も近い素子が第1のインダクタ5aであり、第2のフィルタ回路F2及び第3のフィルタ回路F3の共通端子2に最も近い素子が、それぞれ第2,第3の音響共振子であり、かつこれらの素子が信号ライン上に配置されている。そのため、LCフィルタからなる第1,第3のフィルタ回路F1,F3と、音響共振子を用いた第2のフィルタ回路F2との共通端子2側におけるインピーダンス整合回路を省略することができる。 In the filter device 1, in the first filter circuit F1, the element closest to the common terminal 2 is the first inductor 5a, and is closest to the common terminal 2 of the second filter circuit F2 and the third filter circuit F3. The elements are second and third acoustic resonators, respectively, and these elements are arranged on the signal line. Therefore, the impedance matching circuit on the common terminal 2 side of the first and third filter circuits F1 and F3 made of LC filters and the second filter circuit F2 using the acoustic resonator can be omitted.
 第3のフィルタ回路F3の第3の音響共振子13a~13cの反共振周波数は第2のフィルタ回路F2の通過帯域f2に位置している。 The anti-resonance frequency of the third acoustic resonators 13a to 13c of the third filter circuit F3 is located in the pass band f2 of the second filter circuit F2.
 従って、第3のフィルタ回路F3のフィルタ特性において、通過帯域f2にトラップを形成することができる。 Therefore, a trap can be formed in the pass band f2 in the filter characteristics of the third filter circuit F3.
 ローパスフィルタ21は、第3の信号ライン12上に設けられた第4のインダクタ22a,22bを有する。第4のインダクタ22a,22bに、それぞれ、第4の容量素子23a,23bが並列に接続されている。第4のインダクタ22aの第3のフィルタ回路F3側端部とグラウンド電位との間に、第5の容量素子24aが接続されている。また、第4のインダクタ22aと第4のインダクタ22bとの間の接続点とグラウンド電位との間に、第5の容量素子24bが接続されている。第4のインダクタ22bと第3の端子11との間の接続点とグラウンド電位との間に第5の容量素子24cが接続されている。第5の容量素子24a~24cは、音響共振子からなり、共振周波数と反共振周波数とを有する。 The low-pass filter 21 includes fourth inductors 22 a and 22 b provided on the third signal line 12. Fourth capacitive elements 23a and 23b are connected in parallel to the fourth inductors 22a and 22b, respectively. A fifth capacitor 24a is connected between the end of the fourth inductor 22a on the third filter circuit F3 side and the ground potential. In addition, the fifth capacitive element 24b is connected between the connection point between the fourth inductor 22a and the fourth inductor 22b and the ground potential. A fifth capacitive element 24c is connected between the connection point between the fourth inductor 22b and the third terminal 11 and the ground potential. The fifth capacitive elements 24a to 24c are made of acoustic resonators and have a resonance frequency and an anti-resonance frequency.
 ローパスフィルタ21は必ずしも設けられずともよいが、ローパスフィルタ21を設けることにより、前述したように、通過帯域を形成することができる。 The low-pass filter 21 is not necessarily provided, but by providing the low-pass filter 21, a pass band can be formed as described above.
 好ましくは、第5の容量素子24a~24cの共振周波数を第2のフィルタ回路F2の通過帯域f2に位置させることが望ましい。それによって、共通端子2と第3の端子11との間のフィルタ回路において、第2の通過帯域における減衰量をより一層大きくすることができる。 Preferably, the resonance frequency of the fifth capacitive elements 24a to 24c is positioned in the pass band f2 of the second filter circuit F2. Thereby, in the filter circuit between the common terminal 2 and the third terminal 11, the attenuation in the second pass band can be further increased.
 好ましくは、音響共振子で構成される第2の容量素子7b,7c、第2のフィルタ回路F2で用いられている直列腕共振子S1~S5、並列腕共振子P1~P4及び第3のフィルタ回路F3で用いられている第3の音響共振子13a~13c、第5の容量素子24a~24cを構成している音響共振子は、全て共振周波数及び反共振周波数がほぼ等しいことが望ましい。それによって、音響共振子の種類を削減することができ、コストの低減及びフィルタ装置1を構成する圧電基板等の共通化を図ることができる。よって、フィルタ装置1の小型化も図ることが可能となる。特に同じ圧電体を用いて、第1~第3のフィルタ回路F1~F3を構成することができる。 Preferably, the second capacitive elements 7b and 7c constituted by acoustic resonators, the series arm resonators S1 to S5, the parallel arm resonators P1 to P4, and the third filter used in the second filter circuit F2. It is desirable that all the acoustic resonators constituting the third acoustic resonators 13a to 13c and the fifth capacitive elements 24a to 24c used in the circuit F3 have substantially the same resonance frequency and antiresonance frequency. As a result, the types of acoustic resonators can be reduced, the cost can be reduced, and the piezoelectric substrate or the like constituting the filter device 1 can be shared. Therefore, the filter device 1 can be downsized. In particular, the first to third filter circuits F1 to F3 can be configured using the same piezoelectric body.
 好ましくは、第1のフィルタ回路の第2の容量素子が音響共振子からなり、第2のフィルタ回路が、直列腕である第2の信号ラインとグラウンド電位とを結ぶ並列腕を有し、並列腕に音響共振子が配置されており、第1のフィルタ回路の第2の容量素子を構成している音響共振子及び第2のフィルタ回路の並列腕に配置されている音響共振子の共振周波数が、第2の音響共振子の共振周波数とほぼ同じである。 Preferably, the second capacitive element of the first filter circuit is formed of an acoustic resonator, and the second filter circuit has a parallel arm that connects the second signal line, which is a serial arm, and a ground potential, and is connected in parallel. An acoustic resonator is arranged on the arm, and the resonance frequency of the acoustic resonator constituting the second capacitive element of the first filter circuit and the acoustic resonator arranged on the parallel arm of the second filter circuit Is substantially the same as the resonance frequency of the second acoustic resonator.
 より好ましくは、第2の音響共振子、第1のフィルタ回路の第2の容量素子を構成している音響共振子及び上記第2のフィルタ回路の並列腕に配置されている音響共振子の各共振周波数が、これらの音響共振子の共振周波数の平均値±5%の範囲内にある。 More preferably, each of the second acoustic resonator, the acoustic resonator constituting the second capacitive element of the first filter circuit, and the acoustic resonator disposed in the parallel arm of the second filter circuit The resonance frequency is in the range of the average value ± 5% of the resonance frequencies of these acoustic resonators.
 図2は、第1のフィルタ回路F1のフィルタ特性を示し、図3は第2のフィルタ回路のフィルタ特性を示し、図4は第3のフィルタ回路F3のフィルタ特性を示す。 2 shows the filter characteristics of the first filter circuit F1, FIG. 3 shows the filter characteristics of the second filter circuit, and FIG. 4 shows the filter characteristics of the third filter circuit F3.
 図2に示すように、第1のフィルタ回路では、第1の通過帯域f1において減衰量が小さくなっている。これに対して、第2の通過帯域f2及び第3の通過帯域f3においては、減衰量が十分大きくされている。 As shown in FIG. 2, in the first filter circuit, the attenuation amount is small in the first pass band f1. In contrast, in the second passband f2 and the third passband f3, the amount of attenuation is sufficiently large.
 なお、第2の通過帯域f2の下の矢印Aは第1のフィルタ回路における第2の容量素子7b,7cとして用いられている音響共振子の反共振周波数によるトラップの位置を示す。すなわち、第2の容量素子7b,7cとしての音響共振子の反共振周波数が矢印Aで示す周波数に位置するため、第2の通過帯域f2における減衰量を十分大きくすることが可能とされている。 Note that an arrow A below the second passband f2 indicates the position of the trap due to the antiresonance frequency of the acoustic resonator used as the second capacitive elements 7b and 7c in the first filter circuit. That is, since the antiresonance frequency of the acoustic resonator as the second capacitive elements 7b and 7c is located at the frequency indicated by the arrow A, it is possible to sufficiently increase the attenuation in the second passband f2. .
 第1のフィルタ回路F1では、第2の容量素子7a~7cの内、第2の容量素子7b,7cが音響共振子からなるが、少なくとも1個の第1の容量素子が音響共振子により構成されておればよい。 In the first filter circuit F1, among the second capacitive elements 7a to 7c, the second capacitive elements 7b and 7c are made of acoustic resonators, but at least one first capacitive element is made of an acoustic resonator. It only has to be done.
 図3に示すように、第2のフィルタ回路F2のフィルタ特性では、第2の通過帯域f2の減衰量が十分に小さくされている。これに対して、第1の通過帯域f1及び第3の通過帯域f3では、十分大きな減衰量が得られている。この通過帯域は、第2のフィルタ回路F2のバンドパスフィルタとしての特性により得られている。 As shown in FIG. 3, in the filter characteristic of the second filter circuit F2, the attenuation amount of the second passband f2 is sufficiently small. In contrast, a sufficiently large attenuation is obtained in the first passband f1 and the third passband f3. This pass band is obtained by the characteristics of the second filter circuit F2 as a band pass filter.
 なお、バンドパスフィルタであるため、矢印Bで示す位置、すなわち通過帯域f2内に、直列腕共振子S1~S5の共振周波数と、並列腕共振子P1~P4の反共振周波数とが位置している。さらに、矢印Cで示す周波数位置の特性は並列腕共振子P1~P4の共振周波数による減衰極を示す。矢印Dは、直列腕共振子S1~S5の反共振周波数による減衰極を示す。 Since it is a bandpass filter, the resonance frequency of the series arm resonators S1 to S5 and the antiresonance frequency of the parallel arm resonators P1 to P4 are located in the position indicated by the arrow B, that is, in the passband f2. Yes. Further, the frequency position characteristic indicated by the arrow C indicates the attenuation pole due to the resonance frequency of the parallel arm resonators P1 to P4. Arrow D indicates the attenuation pole due to the antiresonance frequency of the series arm resonators S1 to S5.
 直列腕共振子S1~S5と並列腕共振子P1~P4とを構成している音響共振子として全て同じものを用いているため、直列腕共振子S1~S5の共振周波数と、並列腕共振子P1~P4の反共振周波数とは矢印Bで示す位置とされている。 Since all the same acoustic resonators are used as the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4, the resonance frequencies of the series arm resonators S1 to S5 and the parallel arm resonators are used. The antiresonance frequencies P1 to P4 are positions indicated by arrows B.
 もっとも、音響共振子からなる直列腕共振子S1~S5及び並列腕共振子P1~P4は、必ずしも共振周波数や反共振周波数がほぼ一致しておらずともよい。 However, the series arm resonators S1 to S5 and the parallel arm resonators P1 to P4 made of acoustic resonators do not necessarily have substantially the same resonance frequency and antiresonance frequency.
 図4に示すように、第3の通過帯域f3において減衰量が十分に小さくされている。そして、第1の通過帯域f1及び第2の通過帯域f2では十分大きな減衰量が得られている。すなわちハイパスフィルタとしての特性により第1の通過帯域f1における減衰量が十分大きくされている。他方、第2の通過帯域f2における減衰量は、第3の音響共振子13a~13cの反共振周波数が矢印Eで示すように、通過帯域f2に位置していることによる。それによって、第2の通過帯域f2における減衰量を十分大きくすることが可能とされている。 As shown in FIG. 4, the attenuation is sufficiently small in the third passband f3. A sufficiently large attenuation is obtained in the first passband f1 and the second passband f2. That is, the attenuation amount in the first pass band f1 is sufficiently large due to the characteristics as a high-pass filter. On the other hand, the attenuation in the second pass band f2 is due to the antiresonance frequencies of the third acoustic resonators 13a to 13c being located in the pass band f2, as indicated by the arrow E. Thereby, it is possible to sufficiently increase the attenuation in the second passband f2.
 さらにローパスフィルタ21が接続されているため、第3の通過帯域f3よりも高域側においては減衰量が徐々に大きくなっている。加えて、第5の容量素子24a~24cとしての各音響共振子の共振周波数が矢印Fで示す周波数に位置する。そのため、第3の通過帯域f3の高域側に矢印Fで示す周波数位置にトラップを形成することが可能とされている。よって、第3の通過帯域f3の低域側及び高域側において、減衰量が十分大きなトラップを形成することができ、選択度を高めることが可能とされている。 Furthermore, since the low-pass filter 21 is connected, the amount of attenuation gradually increases on the higher frequency side than the third passband f3. In addition, the resonance frequency of each acoustic resonator as the fifth capacitive elements 24a to 24c is located at the frequency indicated by the arrow F. Therefore, it is possible to form a trap at the frequency position indicated by the arrow F on the high frequency side of the third passband f3. Therefore, traps with sufficiently large attenuation can be formed on the low frequency side and high frequency side of the third passband f3, and the selectivity can be increased.
 また、第5の容量素子24a~24cとしての音響共振子は、上記トラップを形成するために設けられているが、少なくとも1個の音響共振子が備えられておればトラップを形成することができる。 The acoustic resonators as the fifth capacitive elements 24a to 24c are provided to form the trap. However, if at least one acoustic resonator is provided, the trap can be formed. .
 なお、第3のフィルタ回路F3においては、第3の音響共振子13a~13cの内、共通端子2に最も近い第3の音響共振子13aを含んでおればよい。第3の音響共振子13b,13cは省略されてもよい。 The third filter circuit F3 only needs to include the third acoustic resonator 13a closest to the common terminal 2 among the third acoustic resonators 13a to 13c. The third acoustic resonators 13b and 13c may be omitted.
 前述したように、第2の容量素子7bは、弾性表面波共振子により構成されていた。このような弾性表面波共振子の構造は特に限定されない。例えば、図7に示す弾性表面波共振子31を用いることができる。弾性表面波共振子31では、圧電基板32上にIDT電極33が設けられている。特に限定されないが、IDT電極33を覆うようにSiOからなる誘電体膜34が設けられている。この誘電体膜34の膜厚や材質を調整することにより、前述した音響共振子の共振特性上の応答の大きさを調整することができる。また、IDT電極を構成している金属や膜厚を調整することにより、共振周波数と反共振周波数との周波数位置を調整することもできる。 As described above, the second capacitor element 7b is formed of a surface acoustic wave resonator. The structure of such a surface acoustic wave resonator is not particularly limited. For example, a surface acoustic wave resonator 31 shown in FIG. 7 can be used. In the surface acoustic wave resonator 31, an IDT electrode 33 is provided on a piezoelectric substrate 32. Although not particularly limited, a dielectric film 34 made of SiO 2 is provided so as to cover the IDT electrode 33. By adjusting the film thickness and material of the dielectric film 34, the magnitude of the response on the resonance characteristics of the acoustic resonator described above can be adjusted. Moreover, the frequency position of the resonance frequency and the anti-resonance frequency can be adjusted by adjusting the metal constituting the IDT electrode and the film thickness.
 また、上記実施形態では、音響共振子として上記弾性表面波共振子を示したが、弾性表面波共振子以外の音響共振子を用いてもよい。例えば、弾性境界波共振子を用いてもよい。また、圧電薄膜を伝搬するバルク波を利用したBAW共振子を用いてもよい。さらに、単一の圧電基板または積層型圧電体を用いた圧電共振子を用いてもよい。 In the above embodiment, the surface acoustic wave resonator is shown as an acoustic resonator. However, an acoustic resonator other than the surface acoustic wave resonator may be used. For example, a boundary acoustic wave resonator may be used. A BAW resonator using a bulk wave propagating through the piezoelectric thin film may be used. Furthermore, a piezoelectric resonator using a single piezoelectric substrate or a laminated piezoelectric material may be used.
 図5は、本発明の第2の実施形態に係るフィルタ装置の回路図である。第1のフィルタ回路F1では第1の容量素子6a~6cが音響共振子からなる。また、第1のインダクタ5aと第1のインダクタ5bとの間の接続点とグラウンド電位との間には、音響共振子からなる第2の容量素子7dが接続されている。 FIG. 5 is a circuit diagram of a filter device according to the second embodiment of the present invention. In the first filter circuit F1, the first capacitive elements 6a to 6c are acoustic resonators. A second capacitive element 7d made of an acoustic resonator is connected between a connection point between the first inductor 5a and the first inductor 5b and the ground potential.
 さらに、第3のフィルタ回路F3において、第3の容量素子15c,15dが音響共振子からなる。その他の構成は、フィルタ装置41はフィルタ装置1と同様に構成されている。 Furthermore, in the third filter circuit F3, the third capacitive elements 15c and 15d are made of acoustic resonators. In other configurations, the filter device 41 is configured in the same manner as the filter device 1.
 上記のような、第1の容量素子6a~6cを音響共振子により構成してもよく、第1のフィルタ回路F1において、第1の信号ライン4とグラウンド電位とを結ぶ線路に配置される容量素子を全て音響共振子としてもよい。 The first capacitive elements 6a to 6c as described above may be constituted by acoustic resonators, and in the first filter circuit F1, capacitors arranged on the line connecting the first signal line 4 and the ground potential. All the elements may be acoustic resonators.
 また、第3のフィルタ回路F3においても図5に示すように、第3の信号ライン12とグラウンド電位とを結ぶ線路に、第5の容量素子24a~24cとして音響共振子を用いてもよい。音響共振子の容量を用いることにより、フィルタ装置41は、フィルタ装置1と同様の作用効果を奏する。 Also in the third filter circuit F3, as shown in FIG. 5, acoustic resonators may be used as the fifth capacitive elements 24a to 24c on the line connecting the third signal line 12 and the ground potential. By using the capacitance of the acoustic resonator, the filter device 41 has the same effects as the filter device 1.
 加えて、音響共振子を用いた場合、第3の信号ライン12に接続されている音響共振子では、反共振周波数を第2の通過帯域f2に位置させることにより、第2の通過帯域f2における減衰量の拡大を図ることができる。また、第3の信号ライン12とグラウンド電位とを結ぶ線路に設けられる音響共振子では、反共振周波数を第2の通過帯域f2に位置させることにより、第2の通過帯域f2における減衰量をさらに大きくすることができる。 In addition, when an acoustic resonator is used, in the acoustic resonator connected to the third signal line 12, the anti-resonance frequency is positioned in the second pass band f2, so that the second resonator in the second pass band f2 The amount of attenuation can be increased. In the acoustic resonator provided on the line connecting the third signal line 12 and the ground potential, the attenuation in the second passband f2 is further increased by positioning the antiresonance frequency in the second passband f2. Can be bigger.
 図6は、第3の実施形態に係るフィルタ装置51の回路図である。第3の実施形態のフィルタ装置51では、第1及び第2のフィルタ回路F1,F2は、第2の実施形態のフィルタ装置41と同様に構成されている。異なるところは、第3のフィルタ回路F3がラダー型フィルタからなるバンドパスフィルタであることにある。 FIG. 6 is a circuit diagram of the filter device 51 according to the third embodiment. In the filter device 51 of the third embodiment, the first and second filter circuits F1, F2 are configured in the same manner as the filter device 41 of the second embodiment. The difference is that the third filter circuit F3 is a band-pass filter composed of a ladder filter.
 すなわち、共通端子2と第3の端子11とを結ぶ第3の信号ライン12上に、直列腕共振子S11~S15が互いに直列に接続されている。そして、直列腕共振子S11,S12間の接続点とグラウンド電位とを結ぶ並列腕に、並列腕共振子P11が設けられている。直列腕共振子S12,S13間の接続点とグラウンド電位との間に、並列腕共振子P12が設けられている。直列腕共振子S13,S14間の接続点とグラウンド電位との間に、並列腕共振子P13が設けられている。直列腕共振子S14,S15間の接続点とグラウンド電位とを結ぶ並列腕に、並列腕共振子P14が設けられている。 That is, the series arm resonators S11 to S15 are connected in series on the third signal line 12 connecting the common terminal 2 and the third terminal 11. A parallel arm resonator P11 is provided on the parallel arm connecting the connection point between the series arm resonators S11 and S12 and the ground potential. A parallel arm resonator P12 is provided between the connection point between the series arm resonators S12 and S13 and the ground potential. A parallel arm resonator P13 is provided between the connection point between the series arm resonators S13 and S14 and the ground potential. A parallel arm resonator P14 is provided on the parallel arm connecting the connection point between the series arm resonators S14 and S15 and the ground potential.
 また、直列腕共振子S11と直列腕共振子S12との間の接続点とグラウンド電位との間に、インダクタ52aが接続されている。直列腕共振子S14と直列腕共振子S15との間の接続点とグラウンド電位との間に、インダクタ52bが接続されている。インダクタ52a,52bは、インピーダンスを調整するために設けられている。 Further, an inductor 52a is connected between the connection point between the series arm resonator S11 and the series arm resonator S12 and the ground potential. An inductor 52b is connected between a connection point between the series arm resonator S14 and the series arm resonator S15 and the ground potential. The inductors 52a and 52b are provided to adjust the impedance.
 フィルタ装置51のように、第3のフィルタ回路F3はそれ自身がバンドパスフィルタであってもよい。 Like the filter device 51, the third filter circuit F3 itself may be a bandpass filter.
 直列腕共振子S11~S15及び並列腕共振子P11~P14は、共振周波数と反共振周波数とを有する音響共振子からなる。フィルタ装置51において、第3のフィルタ回路F3における共通端子2に最も近い素子は、直列腕共振子S11である。すなわち、共通端子2に最も近い素子は第3の音響共振子であり、かつ第3の信号ライン12上に設けられている。 The series arm resonators S11 to S15 and the parallel arm resonators P11 to P14 are acoustic resonators having a resonance frequency and an antiresonance frequency. In the filter device 51, the element closest to the common terminal 2 in the third filter circuit F3 is the series arm resonator S11. That is, the element closest to the common terminal 2 is the third acoustic resonator and is provided on the third signal line 12.
 フィルタ装置51においても、第1のフィルタ回路F1において共通端子2に最も近い素子は、第1の信号ライン4に設けられた第1のインダクタ5aであり、第2及び第3のフィルタ回路F2,F3においては、音響共振子からなる直列腕共振子S1,及び直列腕共振子S11であり、それぞれ第2及び第3の信号ライン10,12上に設けられている。よって、共通端子2側において、インピーダンス整合回路を設ける必要はない。そのため、フィルタ装置51においても、小型化及び低コスト化を果たすことができる。 Also in the filter device 51, the element closest to the common terminal 2 in the first filter circuit F1 is the first inductor 5a provided in the first signal line 4, and the second and third filter circuits F2, F2 are provided. In F3, there are a series arm resonator S1 and a series arm resonator S11 made of acoustic resonators, which are provided on the second and third signal lines 10 and 12, respectively. Therefore, it is not necessary to provide an impedance matching circuit on the common terminal 2 side. Therefore, the filter device 51 can also be reduced in size and cost.
 なお、本発明において、上記第1~第3のフィルタ回路F1~F3は適宜の第1~第3の実施形態からも明らかなように適宜変形することができる。すなわち、第1~第3のフィルタ回路F1~F3におけるフィルタ回路の段数や素子数は、実施形態の内容に限定されるものではない。 In the present invention, the first to third filter circuits F1 to F3 can be appropriately modified as will be apparent from appropriate first to third embodiments. That is, the number of filter circuits and the number of elements in the first to third filter circuits F1 to F3 are not limited to the contents of the embodiment.
1…フィルタ装置
2…共通端子
3…第1の端子
4…第1の信号ライン
5a~5c…第1のインダクタ
6a~6c…第1の容量素子
7a~7d…第2の容量素子
8…インダクタ
9…第2の端子
10…第2の信号ライン
11…第3の端子
12…第3の信号ライン
13a~13c…第3の音響共振子
14a,14b…第3のインダクタ
15a~15d…第3の容量素子
21…ローパスフィルタ
22a,22b…第4のインダクタ
23a,23b…第4の容量素子
24a~24c…第5の容量素子
31…弾性表面波共振子
32…圧電基板
33…IDT電極
34…誘電体膜
41…フィルタ装置
51…フィルタ装置
52a,52b…インダクタ
F1~F3…第1~第3のフィルタ回路
P1~P4…並列腕共振子
S1~S5…直列腕共振子
P11~P14…並列腕共振子
S11~S15…直列腕共振子
DESCRIPTION OF SYMBOLS 1 ... Filter apparatus 2 ... Common terminal 3 ... 1st terminal 4 ... 1st signal line 5a-5c ... 1st inductor 6a-6c ... 1st capacitive element 7a-7d ... 2nd capacitive element 8 ... Inductor 9 ... 2nd terminal 10 ... 2nd signal line 11 ... 3rd terminal 12 ... 3rd signal line 13a-13c ... 3rd acoustic resonator 14a, 14b ... 3rd inductor 15a-15d ... 3rd Capacitor 21 ... low pass filters 22a and 22b ... fourth inductors 23a and 23b ... fourth capacitors 24a to 24c ... fifth capacitor 31 ... surface acoustic wave resonator 32 ... piezoelectric substrate 33 ... IDT electrode 34 ... Dielectric film 41 ... Filter device 51 ... Filter devices 52a and 52b ... Inductors F1 to F3 ... First to third filter circuits P1 to P4 ... Parallel arm resonators S1 to S5 ... Series arm resonators P11 to P14 ... Column arm resonators S11 ~ S15 ... the series arm resonator

Claims (11)

  1.  共通端子と、
     前記共通端子に接続されている第1の信号ラインを有しており、第1の通過帯域を有するローパスフィルタである第1のフィルタ回路と、
     前記共通端子に接続されている第2の信号ラインを有しており、前記第1のフィルタ回路の前記第1の通過帯域よりも高域側に位置している第2の通過帯域を有しており、バンドパスフィルタである第2のフィルタ回路と、
     前記共通端子に接続されている第3の信号ラインを有しており、前記第2のフィルタ回路の前記第2の通過帯域よりも高域側に位置している第3の通過帯域を有する第3のフィルタ回路と、
    を備え、
     前記第1のフィルタ回路が、前記第1の信号ラインにおいて、前記共通端子に最も近くに配置されている第1のインダクタと、前記第1のインダクタと並列に接続されてLC共振回路を構成している第1の容量素子とを含んでおり、
     前記第2のフィルタ回路が、前記第2の信号ラインにおいて、前記共通端子に最も近くに配置されている第2の音響共振子を含んでおり、
     前記第3のフィルタ回路が、前記第3の信号ラインにおいて、前記共通端子に最も近くに配置されている第3の音響共振子を含んでいる、フィルタ装置。
    A common terminal,
    A first filter circuit having a first signal line connected to the common terminal and being a low pass filter having a first passband;
    A second signal line connected to the common terminal; and a second passband located on a higher frequency side than the first passband of the first filter circuit. A second filter circuit that is a bandpass filter;
    A third signal line having a third signal line connected to the common terminal and having a third pass band located on a higher frequency side than the second pass band of the second filter circuit; 3 filter circuits;
    With
    The first filter circuit is connected in parallel with the first inductor disposed closest to the common terminal in the first signal line, and constitutes an LC resonance circuit. A first capacitive element that includes:
    The second filter circuit includes a second acoustic resonator disposed in the second signal line closest to the common terminal;
    The filter device, wherein the third filter circuit includes a third acoustic resonator arranged closest to the common terminal in the third signal line.
  2.  前記第1のフィルタ回路が、反共振周波数と前記第2の通過帯域内に位置する共振周波数とを有する第1の音響共振子と、前記第1の信号ラインとグラウンド電位とに接続される第2の容量素子とを含んでいる、請求項1に記載のフィルタ装置。 The first filter circuit is connected to a first acoustic resonator having an anti-resonance frequency and a resonance frequency located in the second passband, and to a first signal line and a ground potential. The filter device according to claim 1, comprising two capacitive elements.
  3.  前記第1のフィルタ回路の前記第2の容量素子が音響共振子からなり、
     前記第2のフィルタ回路が、直列腕である第2の信号ラインとグラウンド電位とを結ぶ並列腕を有し、前記並列腕に音響共振子が配置されており、
     前記第1のフィルタ回路の前記第2の容量素子を構成している前記音響共振子及び前記第2のフィルタ回路の前記並列腕に配置されている音響共振子の共振周波数が、前記第2の音響共振子の共振周波数とほぼ同じである、請求項2に記載のフィルタ装置。
    The second capacitive element of the first filter circuit comprises an acoustic resonator;
    The second filter circuit has a parallel arm connecting a second signal line as a series arm and a ground potential, and an acoustic resonator is disposed in the parallel arm;
    The acoustic resonator disposed in the parallel arm of the acoustic resonator constituting the second capacitive element of the first filter circuit and the second filter circuit has a resonance frequency of the second The filter device according to claim 2, wherein the filter device is substantially the same as a resonance frequency of the acoustic resonator.
  4.  前記第2の音響共振子、前記第1のフィルタ回路の前記第2の容量素子を構成している前記音響共振子及び前記第2のフィルタ回路の前記並列腕に配置されている音響共振子の各共振周波数が、これらの音響共振子の共振周波数の平均値±5%の範囲内にある、請求項3に記載のフィルタ装置。 The second acoustic resonator, the acoustic resonator constituting the second capacitive element of the first filter circuit, and the acoustic resonator disposed on the parallel arm of the second filter circuit. The filter device according to claim 3, wherein each resonance frequency is within a range of an average value ± 5% of resonance frequencies of these acoustic resonators.
  5.  前記第2のフィルタ回路が、前記第2の音響共振子と、前記第2の信号ラインとグラウンド電位とを接続している並列腕に設けられた第4の音響共振子とを有する、ラダー型フィルタである、請求項1~4のいずれか1項に記載のフィルタ装置。 The ladder type, wherein the second filter circuit includes the second acoustic resonator and a fourth acoustic resonator provided on a parallel arm connecting the second signal line and a ground potential. The filter device according to any one of claims 1 to 4, wherein the filter device is a filter.
  6.  前記第3のフィルタ回路が、前記第3の信号ラインとグラウンド電位との間に接続された第2のインダクタと、該第2のインダクタと直列に接続された第3の容量素子とを有するLCフィルタである、請求項1~5のいずれか1項に記載のフィルタ装置。 The third filter circuit includes a second inductor connected between the third signal line and a ground potential, and an LC having a third capacitor connected in series with the second inductor. The filter device according to any one of claims 1 to 5, wherein the filter device is a filter.
  7.  前記第3のフィルタ回路がバンドパスフィルタである、請求項1~5のいずれか1項に記載のフィルタ装置。 The filter device according to any one of claims 1 to 5, wherein the third filter circuit is a band-pass filter.
  8.  前記第3のフィルタ回路がラダー型フィルタである、請求項7に記載のフィルタ装置。 The filter device according to claim 7, wherein the third filter circuit is a ladder type filter.
  9.  前記第1~第3の音響共振子の少なくとも1つが、弾性波共振子である、請求項2~8のいずれか1項に記載のフィルタ装置。 The filter device according to any one of claims 2 to 8, wherein at least one of the first to third acoustic resonators is an elastic wave resonator.
  10.  前記弾性波共振子が弾性表面波共振子である、請求項9に記載のフィルタ装置。 The filter device according to claim 9, wherein the acoustic wave resonator is a surface acoustic wave resonator.
  11.  前記第1の容量素子が、音響共振子からなる、請求項1~10のいずれか1項に記載のフィルタ装置。 The filter device according to any one of claims 1 to 10, wherein the first capacitive element is formed of an acoustic resonator.
PCT/JP2016/051825 2015-01-23 2016-01-22 Filter device WO2016117676A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016000452.4T DE112016000452B4 (en) 2015-01-23 2016-01-22 filter device
CN201680006094.0A CN107210733B (en) 2015-01-23 2016-01-22 Filter device
JP2016570717A JP6432610B2 (en) 2015-01-23 2016-01-22 Filter device
KR1020177020191A KR101944652B1 (en) 2015-01-23 2016-01-22 Filter device
US15/633,850 US10158341B2 (en) 2015-01-23 2017-06-27 Filter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015011610 2015-01-23
JP2015-011610 2015-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/633,850 Continuation US10158341B2 (en) 2015-01-23 2017-06-27 Filter device

Publications (1)

Publication Number Publication Date
WO2016117676A1 true WO2016117676A1 (en) 2016-07-28

Family

ID=56417206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051825 WO2016117676A1 (en) 2015-01-23 2016-01-22 Filter device

Country Status (6)

Country Link
US (1) US10158341B2 (en)
JP (1) JP6432610B2 (en)
KR (1) KR101944652B1 (en)
CN (1) CN107210733B (en)
DE (1) DE112016000452B4 (en)
WO (1) WO2016117676A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047862A1 (en) * 2016-09-07 2018-03-15 株式会社村田製作所 Elastic wave filter device and compound filter device
CN108400776A (en) * 2017-02-08 2018-08-14 太阳诱电株式会社 filter circuit, multiplexer and module
CN109286387A (en) * 2017-07-21 2019-01-29 株式会社村田制作所 High frequency filter, multiplexer, high frequency front end circuit and communication device
WO2019131501A1 (en) * 2017-12-25 2019-07-04 株式会社村田製作所 Multiplexer
JP2020014204A (en) * 2018-07-18 2020-01-23 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Hybrid elastic LC filter cascaded to LC filter
JP2020031377A (en) * 2018-08-24 2020-02-27 太陽誘電株式会社 Multiplexer
KR20200032207A (en) 2017-09-05 2020-03-25 가부시키가이샤 무라타 세이사쿠쇼 Filter device and manufacturing method of filter device
JP2020048067A (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Extractor
JP2021508215A (en) * 2018-06-04 2021-02-25 安徽安努奇科技有限公司Anhui Anuki Technologies Co., Ltd. Bandband filter circuit and multiplexer
WO2021100611A1 (en) * 2019-11-22 2021-05-27 株式会社村田製作所 Filter device
US11218134B2 (en) 2017-09-07 2022-01-04 Murata Manufacturing Co., Ltd. Acoustic wave filter device and composite filter device
US11323097B2 (en) * 2019-07-24 2022-05-03 Skyworks Solutions, Inc. Bulk acoustic wave filters on shared die
US11757429B2 (en) 2017-09-29 2023-09-12 Murata Manufacturing Co., Ltd. Hybrid filter device and multiplexer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10284178B2 (en) * 2016-03-03 2019-05-07 Qorvo Us, Inc. BAW/SAW-assisted LC filters and multiplexers
JP6289543B2 (en) * 2016-06-07 2018-03-07 三菱電機株式会社 Control device and control method for internal combustion engine
JP6913619B2 (en) * 2017-12-12 2021-08-04 株式会社村田製作所 Multiplexers, high frequency front-end circuits and communication equipment
DE102018104154A1 (en) * 2018-02-23 2019-08-29 RF360 Europe GmbH Filter element, filter unit and filter assembly
KR20190122493A (en) 2018-04-20 2019-10-30 삼성전기주식회사 High pass filter
CN108512526B (en) * 2018-06-04 2019-10-11 安徽安努奇科技有限公司 Bandwidth-limited circuit and multiplexer
JP2020014104A (en) * 2018-07-18 2020-01-23 株式会社村田製作所 Filter and multiplexer
CN113056873A (en) * 2018-11-05 2021-06-29 京瓷株式会社 Elastic wave device, branching filter, and communication device
JP2020150416A (en) * 2019-03-13 2020-09-17 株式会社村田製作所 Multiplexer, high frequency module and communication device
KR20220002618A (en) * 2019-06-24 2022-01-06 가부시키가이샤 무라타 세이사쿠쇼 Composite filter unit
US11626891B2 (en) 2020-06-23 2023-04-11 Qorvo Us, Inc. Multiplexing circuits with BAW resonators as network elements for higher performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216661A (en) * 1999-01-26 2000-08-04 Oki Electric Ind Co Ltd Receiving band division type surface acoustic wave branching filter
JP2006086871A (en) * 2004-09-16 2006-03-30 Kyocera Corp Composite branch circuit, chip part using the same, high-frequency module, and radio communication apparatus
JP2008294780A (en) * 2007-05-25 2008-12-04 Toshiba Corp Branching filter
JP2011211347A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Piezoelectric device, integrated branching filter using the same, and integrated filter

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194240A (en) 2002-12-13 2004-07-08 Murata Mfg Co Ltd Three demultiplexer/multiplexer
CN100530958C (en) 2003-10-16 2009-08-19 京瓷株式会社 Composite channel splitting circuit, chip element using same, high-frequency model and wireless communication apparatus
JP2005123910A (en) * 2003-10-16 2005-05-12 Kyocera Corp Composite type branch circuit, chip using the same, high frequency module, and wireless communication equipment
JPWO2005055423A1 (en) * 2003-12-01 2007-07-05 株式会社村田製作所 Filter device
JP4053504B2 (en) * 2004-01-30 2008-02-27 株式会社東芝 Tunable filter
CN1930776B (en) * 2004-03-16 2012-02-01 日立金属株式会社 High-frequency circuit and high-frequency component
US7522016B2 (en) * 2004-09-15 2009-04-21 Qualcomm, Incorporated Tunable surface acoustic wave resonators
US20060067254A1 (en) * 2004-09-27 2006-03-30 Sawtek, Inc. Triband passive signal receptor network
JP2007006274A (en) * 2005-06-24 2007-01-11 Kyocera Kinseki Corp Impedance matching circuit and wave divider
JP2007074698A (en) * 2005-08-08 2007-03-22 Fujitsu Media Device Kk Duplexer and ladder type filter
CN101297481B (en) * 2005-11-01 2010-05-19 株式会社村田制作所 Elastic wave filter apparatus
ATE543254T1 (en) * 2006-04-06 2012-02-15 Murata Manufacturing Co DUPLEXER
WO2009025057A1 (en) * 2007-08-23 2009-02-26 Fujitsu Limited Branching filter, module including the branching filter, communication device
JP5662801B2 (en) * 2007-11-16 2015-02-04 ホリンワース ファンド,エル.エル.シー. Filter design method and metamaterial structure based filter
WO2010103882A1 (en) * 2009-03-10 2010-09-16 株式会社村田製作所 Ladder-type acoustic wave filter
JP5210253B2 (en) * 2009-07-01 2013-06-12 太陽誘電株式会社 Elastic wave device
JP2013062556A (en) 2010-01-13 2013-04-04 Murata Mfg Co Ltd Multiplexer
JP5614461B2 (en) * 2011-02-08 2014-10-29 株式会社村田製作所 Ladder type filter device and elastic wave resonator
WO2013061694A1 (en) * 2011-10-24 2013-05-02 株式会社村田製作所 Elastic wave branching filter
JP6017868B2 (en) * 2011-11-04 2016-11-02 太陽誘電株式会社 Demultiplexer, filter and communication module
CN103959647B (en) * 2011-11-30 2016-08-17 天工松下滤波方案日本有限公司 Ladder-type acoustic wave filter and the notch diplexer utilizing this ladder-type acoustic wave filter
CN104756404A (en) * 2012-10-19 2015-07-01 株式会社村田制作所 Antenna branching filter
JP5751265B2 (en) * 2013-02-06 2015-07-22 株式会社村田製作所 High frequency module
WO2016056377A1 (en) * 2014-10-10 2016-04-14 株式会社村田製作所 Demultiplexing device
US9742451B2 (en) * 2015-03-30 2017-08-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiplexer device with hybrid LC/acoustic filter
US9893713B2 (en) * 2015-09-30 2018-02-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Wide bandwidth muliplexer based on LC and acoustic resonator circuits for performing carrier aggregation
JP6743396B2 (en) * 2016-01-25 2020-08-19 Tdk株式会社 Bandpass filters and duplexers
US10284178B2 (en) * 2016-03-03 2019-05-07 Qorvo Us, Inc. BAW/SAW-assisted LC filters and multiplexers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216661A (en) * 1999-01-26 2000-08-04 Oki Electric Ind Co Ltd Receiving band division type surface acoustic wave branching filter
JP2006086871A (en) * 2004-09-16 2006-03-30 Kyocera Corp Composite branch circuit, chip part using the same, high-frequency module, and radio communication apparatus
JP2008294780A (en) * 2007-05-25 2008-12-04 Toshiba Corp Branching filter
JP2011211347A (en) * 2010-03-29 2011-10-20 Ube Industries Ltd Piezoelectric device, integrated branching filter using the same, and integrated filter

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621699B2 (en) 2016-09-07 2023-04-04 Murata Manufacturing Co., Ltd. Acoustic wave filter device and composite filter device
JPWO2018047862A1 (en) * 2016-09-07 2018-11-22 株式会社村田製作所 Elastic wave filter device and composite filter device
KR20190037295A (en) * 2016-09-07 2019-04-05 가부시키가이샤 무라타 세이사쿠쇼 Elastic wave filter device and composite filter device
CN109690944A (en) * 2016-09-07 2019-04-26 株式会社村田制作所 Acoustic wave filter device and composite filter device
KR102200356B1 (en) 2016-09-07 2021-01-07 가부시키가이샤 무라타 세이사쿠쇼 Seismic filter device and composite filter device
WO2018047862A1 (en) * 2016-09-07 2018-03-15 株式会社村田製作所 Elastic wave filter device and compound filter device
CN108400776A (en) * 2017-02-08 2018-08-14 太阳诱电株式会社 filter circuit, multiplexer and module
CN109286387A (en) * 2017-07-21 2019-01-29 株式会社村田制作所 High frequency filter, multiplexer, high frequency front end circuit and communication device
KR20200032207A (en) 2017-09-05 2020-03-25 가부시키가이샤 무라타 세이사쿠쇼 Filter device and manufacturing method of filter device
US11606081B2 (en) 2017-09-05 2023-03-14 Murata Manufacturing Co., Ltd. Filter device and method for manufacturing the same
US11218134B2 (en) 2017-09-07 2022-01-04 Murata Manufacturing Co., Ltd. Acoustic wave filter device and composite filter device
US11757429B2 (en) 2017-09-29 2023-09-12 Murata Manufacturing Co., Ltd. Hybrid filter device and multiplexer
JPWO2019131501A1 (en) * 2017-12-25 2020-08-06 株式会社村田製作所 Multiplexer
WO2019131501A1 (en) * 2017-12-25 2019-07-04 株式会社村田製作所 Multiplexer
JP2021508215A (en) * 2018-06-04 2021-02-25 安徽安努奇科技有限公司Anhui Anuki Technologies Co., Ltd. Bandband filter circuit and multiplexer
JP2020014204A (en) * 2018-07-18 2020-01-23 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Hybrid elastic LC filter cascaded to LC filter
US11652462B2 (en) 2018-07-18 2023-05-16 Skyworks Solutions, Inc. Multiplexer with hybrid acoustic passive filter
TWI834691B (en) * 2018-07-18 2024-03-11 美商天工方案公司 Parallel hybrid acoustic passive filter
US11502662B2 (en) 2018-07-18 2022-11-15 Skyworks Solutions, Inc. Hybrid acoustic LC filter cascaded with LC filter
JP7234062B2 (en) 2018-07-18 2023-03-07 スカイワークス ソリューションズ,インコーポレイテッド Cascaded filter circuit for radio frequency filters and method for filtering radio frequency signals
US11799439B2 (en) 2018-07-18 2023-10-24 Skyworks Solutions, Inc. Parallel hybrid acoustic passive filter
US11791793B2 (en) 2018-07-18 2023-10-17 Skyworks Solutions, Inc. Hybrid acoustic LC filter with harmonic suppression
JP7341641B2 (en) 2018-08-24 2023-09-11 太陽誘電株式会社 multiplexer
JP2020031377A (en) * 2018-08-24 2020-02-27 太陽誘電株式会社 Multiplexer
US11115000B2 (en) 2018-09-19 2021-09-07 Murata Manufacturing Co., Ltd. Extractor
JP2020048067A (en) * 2018-09-19 2020-03-26 株式会社村田製作所 Extractor
US11784634B2 (en) 2019-07-24 2023-10-10 Skyworks Solutions, Inc. Method for forming multiple bulk acoustic wave filters on shared die
US11323097B2 (en) * 2019-07-24 2022-05-03 Skyworks Solutions, Inc. Bulk acoustic wave filters on shared die
US11929739B2 (en) 2019-07-24 2024-03-12 Skyworks Solutions, Inc. Bulk acoustic wave filter co-package
WO2021100611A1 (en) * 2019-11-22 2021-05-27 株式会社村田製作所 Filter device

Also Published As

Publication number Publication date
CN107210733B (en) 2020-09-18
CN107210733A (en) 2017-09-26
JPWO2016117676A1 (en) 2017-07-20
KR20170097740A (en) 2017-08-28
US10158341B2 (en) 2018-12-18
DE112016000452T5 (en) 2017-11-09
JP6432610B2 (en) 2018-12-05
US20170294896A1 (en) 2017-10-12
KR101944652B1 (en) 2019-01-31
DE112016000452B4 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP6432610B2 (en) Filter device
CN108023568B (en) Filter device, multiplexer, high-frequency front-end circuit and communication device
JP6323348B2 (en) Filter device
US10340887B2 (en) Band pass filter and filter module
JP6708177B2 (en) High frequency filter, multiplexer, high frequency front end circuit and communication device
US9998098B2 (en) Band pass filter and duplexer
JP5668852B2 (en) Duplexer
WO2014064987A1 (en) Filter device
JP4640502B2 (en) SAW filter device
WO2011086717A1 (en) Multiplexer
US9966929B2 (en) Duplexer including a low-pass filter capacitor
US10608612B2 (en) Saw filter comprising an additional pole
US10756704B2 (en) Saw filter having suppressed shear mode
JPWO2012172909A1 (en) Duplexer
US10715108B2 (en) Filter device and multiplexer
CN111133678A (en) Filter device, multiplexer, high-frequency front-end circuit, and communication device
US11621699B2 (en) Acoustic wave filter device and composite filter device
CN211830723U (en) Elastic wave filter device and composite filter device
WO2017068877A1 (en) Elastic wave device, high-frequency front-end circuit, and communication device
WO2020013157A1 (en) Multiplexer
WO2017154260A1 (en) Elastic wave apparatus and duplexer
WO2021006073A1 (en) Ladder-type filter, and composite filter device
JP7218807B2 (en) Composite filter device
JP7415261B2 (en) filter device
WO2018056056A1 (en) Elastic wave device, high-frequency front end circuit, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570717

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020191

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000452

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740283

Country of ref document: EP

Kind code of ref document: A1