WO2016117506A1 - Laser resonator device, laser device provided with same, and variable bandpass filter device - Google Patents

Laser resonator device, laser device provided with same, and variable bandpass filter device Download PDF

Info

Publication number
WO2016117506A1
WO2016117506A1 PCT/JP2016/051285 JP2016051285W WO2016117506A1 WO 2016117506 A1 WO2016117506 A1 WO 2016117506A1 JP 2016051285 W JP2016051285 W JP 2016051285W WO 2016117506 A1 WO2016117506 A1 WO 2016117506A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
laser
light
wavelength
optical system
Prior art date
Application number
PCT/JP2016/051285
Other languages
French (fr)
Japanese (ja)
Inventor
靖 藤本
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2016117506A1 publication Critical patent/WO2016117506A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • the present invention relates to a laser resonance device, a laser device including the same, and a variable bandpass filter device.
  • a wavelength tunable laser capable of changing the wavelength (oscillation wavelength) of laser light is used.
  • the wavelength tunable laser can change the wavelength of the laser beam while maintaining the coherence characteristic of the laser beam.
  • a general wavelength tunable laser includes a laser medium (gain medium) having a broad emission wavelength characteristic (wideband gain) and a spectroscope.
  • a general tunable laser operates as follows. That is, first, light in a wide wavelength range (spontaneously emitted light) is emitted from the laser medium. Light emitted from the laser medium is spatially spread and dispersed for each wavelength by a spectroscope such as a diffraction grating or a prism. Light having a desired wavelength is selected from the spatially dispersed light and returned to the laser medium. As a result, laser light having a desired wavelength oscillates.
  • a slit transmission window with a wide space
  • an angle adjustment mechanism are used as the mechanism for selecting light.
  • the slit is disposed in front of the diffraction grating or the prism.
  • Light that has passed through the slit is incident on the diffraction grating or the prism.
  • the angle adjusting mechanism adjusts the angle of the diffraction grating or the prism.
  • the angle adjustment mechanism adjusts the angle of the output mirror that returns light to the laser medium. By adjusting the angle, only light having a desired wavelength out of spatially dispersed light is returned to the laser medium.
  • Patent Document 1 discloses a wavelength tunable laser that changes the wavelength of laser light by adjusting the angle of a prism.
  • a blue semiconductor laser is used as an excitation light source and light in a wide wavelength range is emitted from a Pr 3+ (praseodymium) -added fluoride glass fiber.
  • Patent Document 1 discloses that light emitted from a Pr 3+ -added fluoride glass fiber is spatially spread and dispersed for each wavelength using a prism.
  • Patent Document 1 discloses that only light having a desired wavelength is returned to the Pr 3+ doped fluoride glass fiber by rotating the prism, that is, adjusting the angle of the prism.
  • a wavelength tunable laser using an etalon As another wavelength tunable laser, a wavelength tunable laser using an etalon is known.
  • the etalon includes two mirrors arranged in parallel. Light having a wavelength equivalent to the distance between the two mirrors resonates, and laser light oscillates. When the etalon is used, the wavelength of the laser beam can be changed by adjusting the distance between the two mirrors.
  • a wavelength tunable laser using a diffraction grating or a prism needs to disperse light spatially. For this reason, it has been difficult to reduce the size of the laser resonator. In addition, a complicated operation is required to calibrate the position of each optical element such as a diffraction grating or a prism. Furthermore, in order to select a wavelength appropriately in a wavelength tunable laser using a diffraction grating or a prism, feedback control is necessary for adjusting the angle. For this reason, the configuration is complicated.
  • a wavelength tunable laser that uses an etalon does not need to spatially disperse light, so that the laser resonator can be miniaturized.
  • the wavelength tunable laser using the etalon requires a feedback control to adjust the distance between the two mirrors, and the configuration is complicated.
  • An object of the present invention is to provide a laser resonator capable of changing a wavelength to be selected with a simple configuration, a laser device including the laser resonator, and a variable bandpass filter device.
  • a laser resonance apparatus includes an optical system, an optical waveguide, a first resonance element, and a drive device.
  • the optical system collects light on the optical axis.
  • the optical waveguide includes a gain medium that emits light in a wavelength range wider than a single wavelength, and the light emitted from the gain medium is incident on the optical system.
  • the first resonance element has an incident surface that reflects part of the light collected by the optical system.
  • the drive device changes the position of the incident surface along the optical axis. Or the said drive device changes the position of the optical element which comprises the said optical system along the said optical axis.
  • Light having a wavelength corresponding to the position of the incident surface or the position of the optical element returns from the first resonant element to the optical waveguide through the optical system. Thereby, a laser beam oscillates.
  • the optical system includes two condenser lenses as the optical element.
  • the drive device changes the position of the incident surface.
  • the driving device changes the position of the condensing lens closer to the first resonance element among the two condensing lenses.
  • the optical system includes a single gradient index lens as the optical element.
  • the drive device changes the position of the incident surface.
  • the driving device changes the position of the gradient index lens.
  • the first resonance element has a saturable absorption characteristic.
  • the laser resonance apparatus further includes a second resonance element that transmits excitation light and reflects light emitted from the gain medium.
  • the optical waveguide is an optical fiber, and the optical fiber includes an incident end on which the excitation light is incident.
  • the second resonance element is provided at the incident end, and the gain medium is contained in a core portion of the optical fiber.
  • the gain medium includes an ionized rare earth element, an ionized transition element, or bismuth.
  • the rare earth element is cerium, praseodymium, neodymium, samarium, europium, ytterbium, erbium, or thulium.
  • the transition element is copper or tin.
  • the optical fiber includes fluoride glass.
  • the gain medium may include ionized praseodymium.
  • the core portion of the optical fiber includes quartz glass to which an ionized rare earth element, an ionized transition element, or bismuth is added using zeolite.
  • the gain medium may include ionized neodymium or ytterbium.
  • the length of the optical fiber may be 1 mm or more.
  • the optical waveguide is a semiconductor laser.
  • a laser apparatus includes the above laser resonance apparatus and an excitation light source.
  • the excitation light source generates excitation light incident on the optical waveguide.
  • the variable band-pass filter device includes an optical system, a first optical waveguide, and a driving device.
  • the optical system collects light on the optical axis.
  • the first optical waveguide has an incident end to which light collected by the optical system is irradiated.
  • the drive device changes the position of the incident end of the first optical waveguide or the position of the optical element constituting the optical system along the optical axis.
  • Light having a wavelength corresponding to the position of the incident end of the first optical waveguide or the position of the optical element is incident on the inside of the first optical waveguide from the incident end of the first optical waveguide.
  • variable bandpass filter device further includes a second optical waveguide.
  • the second optical waveguide emits light toward the optical system.
  • at least one of the first optical waveguide and the second optical waveguide may include a gain medium.
  • the wavelength to be selected can be changed with a simple configuration.
  • (A) is a figure which shows the structure of the laser resonance apparatus which concerns on 1st Embodiment of this invention.
  • (B) is sectional drawing of the optical fiber which concerns on 1st Embodiment of this invention. It is a front view which shows the output mirror and drive device which concern on 1st Embodiment of this invention.
  • (A) is a figure which shows the axial chromatic aberration of the condensing lens which concerns on 1st Embodiment of this invention.
  • (B) is a figure which shows the relationship between the position of the output mirror which concerns on 1st Embodiment of this invention, and the oscillation wavelength of a laser beam.
  • (C) is a figure which shows the other relationship between the position of the output mirror which concerns on 1st Embodiment of this invention, and the oscillation wavelength of a laser beam. It is a figure which shows the structural example of the laser apparatus which concerns on 1st Embodiment of this invention. It is a figure which shows the structure of the laser resonance apparatus which concerns on 2nd Embodiment of this invention. It is a graph which shows the wavelength dependence characteristic of the focal position of the gradient index lens which concerns on 2nd Embodiment of this invention. It is a figure which shows the structure of the laser resonance apparatus which concerns on 3rd Embodiment of this invention. It is a front view which shows the condensing lens and drive device which concern on 3rd Embodiment of this invention.
  • (A) is a figure which shows the relationship between the position of the condensing lens which concerns on 3rd Embodiment of this invention, and the oscillation wavelength of a laser beam.
  • (B) is a figure which shows the other relationship between the position of the condensing lens which concerns on 3rd Embodiment of this invention, and the oscillation wavelength of a laser beam. It is a figure which shows the structure of the laser resonance apparatus which concerns on 4th Embodiment of this invention. It is a figure which shows the structure of the variable type band pass filter apparatus concerning 5th Embodiment of this invention. It is a graph which shows the measurement result which concerns on the Example of this invention. It is a graph which shows the measurement result which concerns on the Example of this invention.
  • FIG. 1A is a diagram illustrating a configuration of the laser resonator 1 according to the first embodiment.
  • the laser resonance apparatus 1 includes an optical system 2, an optical fiber 3 (an example of an optical waveguide), an output mirror 4 (an example of a first resonance element), and a drive device 5.
  • the optical system 2 may be referred to as the first optical system 2.
  • the first optical system 2 collects light on the optical axis A.
  • the optical fiber 3 includes a gain medium that emits light in a wavelength range wider than a single wavelength, and the light emitted from the gain medium enters the optical system 2.
  • the output mirror 4 has an incident surface 4 a that reflects a part of the light collected by the first optical system 2.
  • the driving device 5 changes the position of the incident surface 4 a of the output mirror 4 along the optical axis A.
  • Light having a wavelength corresponding to the position of the incident surface 4 a of the output mirror 4 returns from the output mirror 4 to the optical fiber 3 via the first optical system 2. Thereby, the laser beam 6 having the wavelength of the light returned to the optical fiber 3 oscillates.
  • the wavelength of the light returned to the optical fiber 3 can be changed with a simple configuration in which the driving device 5 changes the position of the incident surface 4a of the output mirror 4 along the optical axis A. That is, the wavelength of the laser beam 6 can be changed.
  • the laser resonance apparatus 1 according to the first embodiment will be described in detail.
  • the laser resonance apparatus 1 further includes a dielectric multilayer film 8 (an example of a second resonance element).
  • the dielectric multilayer film 8 is provided at the incident end of the optical fiber 3.
  • the laser resonator 1 according to the first embodiment oscillates the laser light 6 when the excitation light 7 is incident on the incident end of the optical fiber 3 via the dielectric multilayer film 8.
  • the laser beam 6 is a continuous wave (CW: Continuous Wave).
  • the output of the laser light 6 depends on the output of the excitation light 7.
  • the output of the laser beam 6 can be about several millimeters to several tens of millimeters.
  • the optical fiber 3 includes a core portion 3a and a clad portion 3b.
  • the core part 3a contains a laser medium (gain medium).
  • the laser medium of the present embodiment has a broadband emission wavelength characteristic (wideband gain). That is, the laser medium of the present embodiment emits light (spontaneously emitted light) in a wavelength range wider than a single wavelength when the excitation light 7 is irradiated.
  • the refractive index of the core portion 3a is larger than that of the cladding portion 3b.
  • the clad part 3b is provided around the core part 3a.
  • One end (left end in FIG. 1) of the optical fiber 3 is an incident end on which the excitation light 7 is incident.
  • the incident end of the optical fiber 3 can be polished at a right angle. From the incident end of the optical fiber 3, one end face of each of the core part 3a and the clad part 3b is exposed.
  • the dielectric multilayer film 8 is formed in close contact with the incident end of the optical fiber 3.
  • the dielectric multilayer film 8 transmits the excitation light 7 and reflects the light emitted from the core portion 3a.
  • the dielectric multilayer film 8 preferably has a reflectivity of 100% with respect to the light emitted from the core portion 3a in order to improve the laser output efficiency.
  • the dielectric multilayer film 8 is designed so as to have a reflectance of 100% with respect to light having a wavelength within the variable range in accordance with the variable range of the wavelength (oscillation wavelength) of the laser light 6. It is preferable.
  • the core portion 3a When the excitation light 7 enters the core portion 3a through the dielectric multilayer film 8, the core portion 3a emits light. Light (spontaneously emitted light) emitted from the core portion 3a is emitted from the other end (right end in FIG. 1) of the optical fiber 3. Therefore, the other end of the optical fiber 3 is an emission end from which light emitted from the core portion 3a is emitted.
  • the exit end of the optical fiber 3 can be polished at a right angle. From the output end of the optical fiber 3, the other end face of each of the core part 3a and the clad part 3b is exposed.
  • the first optical system 2 and the output mirror 4 are arranged in this order along the optical axis A of the light emitted from the exit end of the optical fiber 3 in front of the exit end of the optical fiber 3.
  • the first optical system 2 includes a pair of condenser lenses 2a and 2b (an example of an optical element). Therefore, the exit end of the optical fiber 3, the pair of condensing lenses 2 a and 2 b constituting the first optical system 2, and the output mirror 4 are arranged along the optical axis A.
  • the condenser lens 2a may be referred to as a first condenser lens 2a
  • the condenser lens 2b may be referred to as a second condenser lens 2b.
  • the light emitted from the exit end of the optical fiber 3 is applied to the first condenser lens 2a to become parallel light.
  • the parallel light is applied to the second condenser lens 2b and is condensed toward the focal position of the second condenser lens 2b.
  • the focal position of the second condenser lens 2b exists on the optical axis A. Accordingly, the parallel light is condensed on the optical axis A by the second condenser lens 2b.
  • the output mirror 4 reflects a part of the light collected by the second condenser lens 2b and transmits the remaining light.
  • the output mirror 4 can be a dielectric mirror.
  • the light reflected by the output mirror 4 returns to the optical fiber 3 via the first optical system 2 (a pair of condensing lenses 2a and 2b).
  • the driving device 5 can change the position of the output mirror 4 along the optical axis A.
  • the position of the incident surface 4 a (surface on the second condenser lens 2 b side) of the output mirror 4 changes along the optical axis A.
  • the first embodiment of the light returning to the optical fiber 3, only light having a wavelength (color) corresponding to the position of the incident surface 4a of the output mirror 4 is incident on the core portion 3a. That is, only light having a wavelength corresponding to the position of the incident surface 4a of the output mirror 4 is condensed on the end surface of the core portion 3a (the surface on the emission end side of the optical fiber 3) by the first condenser lens 2a.
  • the laser beam 6 having a wavelength (oscillation wavelength) corresponding to the position of the incident surface 4 a of the output mirror 4 oscillates, and part of the oscillated laser beam 6 passes through the output mirror 4.
  • the wavelength of the laser beam 6 can be changed only by linear movement of the output mirror 4 along the optical axis A. Therefore, the wavelength of the laser beam 6 can be changed with a simple configuration. In addition, the wavelength of the laser beam 6 can be selected with a simple configuration.
  • the distance L1 from the exit end of the optical fiber 3 to the incident surface 4a of the output mirror 4 (hereinafter referred to as the optical system length L1) is mainly the maximum moving distance of the output mirror 4 by the drive device 5 and a pair of collecting points. It is determined by the thickness of each of the optical lenses 2a and 2b and the focal length f.
  • the maximum moving distance of the output mirror 4 is, for example, about 100 ⁇ m to 130 ⁇ m.
  • the dielectric multilayer film 8 and the output mirror 4 constitute a laser resonator.
  • the distance L2 from the dielectric multilayer film 8 to the output mirror 4 (hereinafter referred to as the resonator length L2) mainly includes the optical system length L1 and the length L3 of the optical fiber 3 (hereinafter referred to as “resonator length L2”). It is described as fiber length L3).
  • FIG. 1B is a cross-sectional view of the optical fiber 3.
  • the diameter D1 of the core part 3a may be 2 ⁇ m or more and 100 ⁇ m or less.
  • the diameter D2 of the clad 3b (the diameter of the optical fiber 3) can be 50 ⁇ m or more and 2000 ⁇ m or less.
  • the optical fiber 3 of the present embodiment is a single mode fiber.
  • the optical fiber 3 is not limited to a single mode fiber.
  • the optical fiber 3 may be a multimode fiber or a double clad fiber. Glass materials such as quartz glass and fluoride glass can be used for the material of the core portion 3a and the cladding portion 3b. Or resin may be used for the material of the core part 3a and the clad part 3b.
  • the core portion 3a contains an ionized rare earth element, an ionized transition element, or bismuth (Bi) as a laser medium.
  • ionized rare earth elements include cerium (Ce 3+ ), praseodymium (Pr 3+ ), neodymium (Nd 3+ ), samarium (Sm 3+ ), europium (Er 3+ ), ytterbium (Yb 3+ ). , Erbium (Er 3+ ), or Thulium (Tm 3+ ) may be doped into the core portion 3a.
  • copper (Cu + ) or tin (Sn 2+ ) can be doped into the core portion 3a as an ionized transition element.
  • cerium (Ce 3+ ), praseodymium (Pr 3+ ), samarium (Sm 3+ ), europium (Er 3+ ), copper (Cu + ), or tin (Sn 2+ ) As the laser medium The wavelength can be changed (selected) within the visible light range. Further, by using neodymium (Nd 3+ ), ytterbium (Yb 3+ ), erbium (Er 3+ ), thulium (Tm 3+ ), or bismuth (Bi) as the laser medium, the near infrared range It is possible to change (select) the wavelength within. Erbium (Er 3+ ) also allows for wavelength changes (selection) within the mid-infrared range.
  • FIG. 2 is a front view showing the output mirror 4 and the driving device 5. As shown in FIG. 2, the output mirror 4 is supported by a first mirror holder 9. Therefore, the laser resonator 1 described with reference to FIG. 1A further includes a first mirror holder 9.
  • the first mirror holder 9 is fixed to the driving device 5.
  • the driving device 5 a stage capable of position control on the order of micrometers ( ⁇ m) can be used.
  • the driving device 5 is a slide type single-axis stage.
  • the second condenser lens 2b is a plano-convex lens, but the second condenser lens 2b is limited to a plano-convex lens. is not.
  • the oscillation wavelength of the laser beam 6 is changed by utilizing the axial chromatic aberration that the lens generally has.
  • On-axis chromatic aberration indicates the property of a lens that the focal position (imaging position) of light on the optical axis differs for each wavelength (color) of light.
  • FIG. 3A is a diagram showing the axial chromatic aberration of the second condenser lens 2b.
  • the light S1 having the wavelength W1 is incident on the second condenser lens 2b
  • the light S1 is condensed at a position P1 on the optical axis A.
  • the light S2 having the wavelength W2 is incident on the second condenser lens 2b
  • the light S2 is condensed at the position P2 on the optical axis A.
  • the position P2 is a position different from the position P1.
  • the shorter the wavelength the higher the refractive index. Therefore, when a general lens is used for the second condenser lens 2b, the wavelength W1 of the light S1 condensed at the position P1 is shorter than the wavelength W2 of the light S2 condensed at the position P2.
  • FIG. 3B is a diagram showing the relationship between the position of the output mirror 4 and the oscillation wavelength of the laser beam 6. Specifically, FIG. 3B shows the position of the output mirror 4 for oscillating the laser beam 6 having the wavelength W1. As shown in FIG. 3B, when the position of the incident surface 4a of the output mirror 4 is positioned at the position P1, only the light S1 having the wavelength W1 returns to the end surface of the core portion 3a described with reference to FIG. . That is, only the light S1 having the wavelength W1 is incident (returned) into the core portion 3a. As a result, the laser beam 6 having the wavelength W1 oscillates.
  • the light S2 (wavelength W2) does not form an image on the end surface of the core portion 3a.
  • the light S ⁇ b> 2 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
  • FIG. 3C is a diagram showing another relationship between the position of the output mirror 4 and the oscillation wavelength of the laser beam 6. Specifically, FIG. 3C shows the position of the output mirror 4 for oscillating the laser beam 6 having the wavelength W2. As shown in FIG. 3C, when the laser beam 6 having the wavelength W2 is oscillated, the output mirror 4 is moved along the optical axis A so that the position of the incident surface 4a of the output mirror 4 is a position P2. Position to. At this time, the position of the incident surface 4a of the output mirror 4 can be positioned at the position P2 by moving the output mirror 4 on the order of ⁇ m.
  • the position of the incident surface 4a of the output mirror 4 When the position of the incident surface 4a of the output mirror 4 is positioned at the position P2, only the light S2 having the wavelength W2 returns to the end surface of the core portion 3a described with reference to FIG. That is, only the light S2 having the wavelength W2 enters (returns) into the core portion 3a. Therefore, the laser beam 6 having the wavelength W2 oscillates.
  • the position of the incident surface 4a of the output mirror 4 is positioned at the position P2, the light S1 (wavelength W1) does not form an image on the end surface of the core portion 3a. In other words, the light S ⁇ b> 1 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
  • FIG. 4 is a diagram illustrating a configuration example of the laser device 10.
  • the laser device 10 includes a laser resonance device 1.
  • the laser device 10 further includes an excitation light source 11, a second optical system 12, and a ferrule 13.
  • the excitation light source 11 generates and emits the excitation light 7 described with reference to FIG.
  • the excitation light source 11 is selected according to the type of laser medium contained in the core portion 3a of the optical fiber 3. Specifically, when the laser medium is praseodymium (Pr 3+ ), a blue semiconductor laser that emits laser light (excitation light 7) having a wavelength of 430 nm or more and 480 nm or less is used as the excitation light source 11. When the laser medium is neodymium (Nd 3+ ), a near-infrared semiconductor laser that emits laser light having a wavelength of 800 nm (excitation light 7) is used as the excitation light source 11.
  • the laser medium is ytterbium (Yb 3+ ) or erbium (Er 3+ )
  • a near-infrared semiconductor laser that emits laser light having a wavelength of 975 nm (excitation light 7) is used as the excitation light source 11.
  • the laser medium is thulium (Tm 3+ )
  • a near-infrared semiconductor laser that emits laser light (excitation light 7) having a wavelength of 780 nm is used as the excitation light source 11.
  • the excitation light 7 emitted from the excitation light source 11 is incident on one end of the ferrule 13 via the second optical system 12.
  • the optical fiber 3 is fixed in the ferrule 13.
  • the excitation light 7 incident on the ferrule 13 is applied to the dielectric multilayer film 8 to excite the core portion 3a.
  • the core portion 3a emits light.
  • the second optical system 12 is an optical fiber.
  • the second optical system 12 is not limited to an optical fiber.
  • the second optical system 12 may be composed of one or a plurality of optical elements (for example, lenses and mirrors). In this case, the ferrule 13 can be omitted.
  • the wavelength of the laser beam 6 can be changed by moving the output mirror 4 along the optical axis A.
  • the wavelength of the laser beam 6 can be selected. Therefore, it is not necessary to spatially disperse the light emitted from the optical fiber 3 (spontaneously emitted light emitted from the laser medium), so that the laser resonator can be miniaturized.
  • the optical system length L1 can be shortened, the resonator length L2 can be shortened.
  • the optical elements of the emission end of the optical fiber 3, the condensing lenses 2a and 2b constituting the first optical system 2, and the output mirror 4 are arranged along the optical axis A. The Accordingly, calibration of the position of each optical element such as the exit end of the optical fiber 3 is facilitated.
  • each of the output ends of the optical fiber 3 is confined so that the reflected light from the output mirror 4 is confined within the divergence angles of the condenser lenses 2a and 2b and the numerical aperture (NA) of the optical fiber 3. It is only necessary to calibrate the position of the optical element.
  • the wavelength of the laser beam 6 can be changed with a simple configuration. Therefore, the number of parts can be reduced.
  • the laser resonator can be miniaturized. Furthermore, maintenance becomes easy. Therefore, it is possible to provide a tunable laser that is small and robust and low in cost.
  • the laser resonance apparatus 1 and the laser apparatus 10 of the first embodiment can be applied to various fields such as a medical field, a laser measurement field, a laser measurement field, and an optical communication field by appropriately selecting a laser medium. .
  • the drive device 5 continuously changes the position of the output mirror 4 so that automatic wavelength sweeping is possible.
  • the wavelength automatic sweep function is a useful function in various fields such as the medical field and the laser measurement field.
  • WPFGF weatherproof fluoralumino-aluminate glass fiber
  • Pr 3+ praseodymium
  • Fluoroaluminate glass is a kind of fluoride glass.
  • the fiber length L3 of Pr: WFGF can be set to 40 mm. Therefore, by using Pr: WPFGF having a fiber length L3 of 40 mm as the optical fiber 3, the resonator length L2 can be further shortened.
  • Pr: WPFGF 3000 ppm of Pr 3+ is added to the core portion 3a of Pr: WPFGF.
  • the diameter D1 of the core portion 3a of Pr: WPFGF may be 8 ⁇ m.
  • the diameter of Pr: WPFGF (the diameter D2 of the cladding part 3b) may be 300 ⁇ m.
  • the excitation light 7 for Pr: WFGF for example, blue laser light (quasi-continuous wave) emitted from a gallium nitride semiconductor laser is used.
  • Pr: WPFGF can oscillate blue-green, green, and red laser beams 6. Therefore, by using Pr: WPFGF, the wavelength can be varied in the visible light band.
  • the fiber length L3 can be further shortened.
  • the quartz glass fiber added with Nd 3+ is referred to as an Nd 3 + -added quartz glass fiber.
  • the fiber length L3 of the Nd 3+ added quartz glass fiber can be shortened to 1 mm. Therefore, by using the Nd 3+ doped quartz glass fiber as the optical fiber 3, the resonator length L2 can be further shortened.
  • Nd 3+ -added quartz glass which is a material of the core portion 3a of the Nd 3 + -added quartz glass fiber
  • Nd 3+ core glass which is a material of the core portion 3a of the Nd 3 + -added quartz glass fiber
  • Zeolite methods are described, for example, in literature 1 “Y. Fujimoto, M. Nakatsuka,“ A novel method for uniform form of the earth earth in SiO 2 glass using Zeol 15th year, J. Vol. 182-191.
  • an Nd 3 + -added silica glass fiber having a fiber length L3 of 4 mm is described in Reference 2: “Motoichiro Murakami et al.,“ Short-length fiber laser oscillation in 4 ”.
  • -Mm Nd-doped Silica fiber fabricated by zeolite method ", ptics Communications, 2014 year, # 328, Volume, are described in the 121-123 pages ".
  • the excitation light source 11 for the Nd 3+ doped quartz glass fiber a semiconductor laser that emits laser light having a wavelength of 810 nm can be used.
  • the laser beam 6 oscillated from the Nd 3+ doped quartz glass fiber is a near infrared laser. Therefore, by using the Nd 3+ doped quartz glass fiber, the wavelength can be varied in the near infrared band.
  • Nd 3+ core glass can be produced by the following method (zeolite method). That is, first, sodium (Na) ions of the X-type zeolite are replaced with neodymium ions by an ion exchange method. Next, the substituted X-type zeolite and colloidal quartz are mixed. Then water is added to form a slurry. Then, the slurry is stirred and dried. Thereby, a dry powder can be obtained. Finally, the dried powder can be sintered at 1800 ° C. to obtain Nd 3+ core glass.
  • zeolite method zeolite method
  • the composition of the Nd 3+ core glass is, for example, 1.25 wt% of the acid value neodymium (Nd 2 O 3 ), 2.72 wt% of aluminum oxide (Al 2 O 3 ), and 96.03 wt. Of silicon dioxide (SiO 2 ). %.
  • the composition of the Nd 3+ core glass can be measured by X-ray emission analysis.
  • the Nd 3+ doped quartz glass fiber can be manufactured by a rod-in-tube method. That is, first, Nd 3+ core glass is formed into a rod shape. The diameter of the Nd 3+ core glass formed into a rod shape is, for example, 1 mm. Next, the Nd 3+ core glass formed into a rod shape is inserted into a quartz glass tube to form a base material. For example, the inner diameter of the quartz glass tube is 1 mm, and the outer diameter of the quartz glass tube is 12 mm. Thereafter, by drawing the base material, an Nd 3+ added quartz glass fiber can be obtained. The diameter D1 of the core portion 3a of the Nd 3+ added quartz glass fiber can be 12 ⁇ m.
  • the diameter of the Nd 3+ doped quartz glass fiber (the diameter D2 of the cladding part 3b) may be 144 ⁇ m.
  • the refractive index of the clad portion 3b of the Nd 3+ added quartz glass fiber is, for example, 1.4545
  • the refractive index of the core portion 3a of the Nd 3+ added quartz glass fiber is, for example, 1.4499.
  • the refractive index of the core portion 3a and the cladding portion 3b of the Nd 3+ added quartz glass fiber can be measured by a spectroscopic ellipsometer.
  • ytterbium (Yb 3+ ) may be used instead of neodymium (Nd 3+ ). Even when ytterbium (Yb 3+ ) is used, a quartz glass fiber capable of shortening the fiber length L3 to 1 mm can be produced.
  • FIG. 5 is a diagram showing a configuration of the laser resonance apparatus 1 according to the second embodiment.
  • the first optical system 2 includes a single gradient index (GRIN) lens 2c as an optical element.
  • GRIN gradient index
  • FIG. 6 is a graph showing the wavelength dependence characteristics of the focal position of the gradient index lens 2c.
  • the horizontal axis indicates the wavelength [nm] of light incident on the gradient index lens 2c
  • the vertical axis indicates the focal position shift amount [ ⁇ m] along the optical axis A.
  • FIG. 6 shows values calculated by optical analysis software (CODE V).
  • the focal position shifts approximately 130 ⁇ m substantially linearly along the optical axis A. Therefore, as in the first embodiment, the wavelength (oscillation wavelength) of the laser light 6 can be changed by positioning the incident surface 4a of the output mirror 4 at the focal position at each wavelength. Specifically, when the output mirror 4 is moved (shifted) by 1.3 ⁇ m, the wavelength of the laser beam 6 changes by 1 nm.
  • the first optical system 2 can be configured by a single lens.
  • the diameter of the gradient index lens 2c is about 2 mm to 3 mm, and the length of the gradient index lens 2c is about 5 mm to 6 mm. Therefore, the optical system length L1 can be shortened, and hence the resonator length L2 can be shortened.
  • Pr: WFGF with a fiber length L3 of 40 mm as the optical fiber 3 the resonator length L2 can be reduced to about 5 cm to 6 cm.
  • an Nd 3+ doped silica glass fiber having a fiber length L3 of 4 mm as the optical fiber 3 the resonator length L2 can be set to about 1 cm to 2 cm.
  • the output of the laser beam 6 can be several tens of milliwatts.
  • the laser resonance apparatus 1 and the laser apparatus 10 according to the third embodiment are different from the first embodiment in that the second condenser lens 2b is moved (shifted) to change the wavelength.
  • FIG. 7 is a diagram showing a configuration of the laser resonance apparatus 1 according to the third embodiment.
  • the driving device 5 transmits the position of the condenser lens 2b closer to the output mirror 4 out of the two condenser lenses 2a and 2b. Change along axis A.
  • FIG. 8 is a front view showing the second condenser lens 2b and the driving device 5 according to the third embodiment.
  • the second condenser lens 2 b is supported by the second mirror holder 21. Therefore, the laser resonator 1 shown in FIG. 7 further includes the second mirror holder 21. The second mirror holder 21 is fixed to the driving device 5.
  • the wavelength variable mechanism of the laser beam 6 in the third embodiment will be described with reference to FIGS.
  • the wavelength (oscillation wavelength) of the laser beam 6 is changed using the axial chromatic aberration that the lens generally has.
  • the second condenser lens 2b is a plano-convex lens, but the second condenser lens 2b is limited to a plano-convex lens. is not.
  • FIG. 9A is a diagram showing the relationship between the position of the second condenser lens 2b and the oscillation wavelength of the laser light 6.
  • FIG. 9A shows the position of the second condenser lens 2b for oscillating the laser beam 6 having the wavelength W11.
  • FIG. 9A when the light S11 having the wavelength W11 is condensed on the incident surface 4a of the output mirror 4 by the second condenser lens 2b, only the light S11 having the wavelength W11 is shown in the core shown in FIG. Return to the end surface of the portion 3a (surface on the output end side of the optical fiber 3). That is, only the light S11 having the wavelength W11 enters (returns) the core portion 3a.
  • the laser beam 6 having the wavelength W11 oscillates.
  • the light S12 having the wavelength W12 different from the light S11 does not form an image on the end face of the core portion 3a.
  • the light S12 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
  • FIG. 9B is a diagram showing another relationship between the position of the second condenser lens 2 b and the oscillation wavelength of the laser light 6. Specifically, FIG. 9B shows the position of the second condenser lens 2b for oscillating the laser beam 6 having the wavelength W12. As shown in FIG. 9B, when the laser beam 6 having the wavelength W12 is oscillated, the second condenser lens 2b is moved along the optical axis A so that the light S12 having the wavelength W12 is output mirror. 4 is focused on the incident surface 4a. Thereby, only the light S12 having the wavelength W12 returns to the end face of the core portion 3a shown in FIG. That is, only the light S12 having the wavelength W12 enters (returns) into the core portion 3a.
  • the laser beam 6 having the wavelength W12 oscillates.
  • the light S11 does not form an image on the end face of the core portion 3a.
  • the light S11 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
  • the first optical system 2 includes two condensing lenses 2a and 2b.
  • the configuration of the first optical system 2 is not limited to this configuration.
  • the first optical system 2 may be configured by a single gradient index lens 2c.
  • the driving device 5 changes the position of the gradient index lens 2c along the optical axis A.
  • FIG. 10 is a diagram showing a configuration of the laser resonance apparatus 1 according to the fourth embodiment.
  • a saturable absorber (SA) 22 is installed on the incident surface 4 a of the output mirror 4.
  • SA saturable absorber
  • carbon nanotubes, graphene, or the like can be used. Since the output mirror 4 has saturable absorption characteristics, a pulse laser by a Q switch or a mode lock can be configured.
  • the output mirror 4 itself may have a saturable absorption characteristic.
  • SESAM semiconductor saturable absorber mirror
  • the laser resonator device and the laser device according to the present invention have been described with reference to the drawings.
  • the laser resonator according to the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the gist thereof.
  • the optical waveguide including the gain medium is not limited to the optical fiber 3.
  • the optical waveguide including the gain medium can be, for example, a semiconductor laser.
  • a semiconductor laser By using a semiconductor laser as an optical waveguide including a gain medium, an external resonant semiconductor laser capable of changing the wavelength can be configured.
  • an external resonant semiconductor laser When configuring an external resonant semiconductor laser, a semiconductor laser that emits laser light in a wavelength range wider than a single wavelength is used, and the reflected light from the output mirror 4 is fed back into the internal resonator of the semiconductor laser.
  • the second resonance element dielectric multilayer film 8 can be omitted.
  • the second resonator element is not limited to the dielectric multilayer film 8.
  • the second resonant element may be a dielectric mirror.
  • the dielectric mirror is a mirror on which a dielectric multilayer film is formed.
  • the dielectric mirror is preferably in close contact with the incident end of the optical fiber 3 in order to prevent light leakage from the incident end of the optical fiber 3.
  • FIG. 11 is a diagram illustrating a configuration of the variable bandpass filter device 30 according to the present embodiment.
  • the variable band-pass filter device 30 can change the wavelength of light transmitted through the first optical fiber 31 (an example of the first optical waveguide) using axial chromatic aberration that a lens generally has.
  • variable bandpass filter device 30 includes an optical system 2, a drive device 5, a first optical fiber 31, and one end portion (end portion on the incident end side) of the first optical fiber 31. And a supporting member 32 for supporting.
  • the optical system 2 and the incident end of the first optical fiber 31 are arranged in this order along the optical axis A of the light 34 emitted from the emission end (right end in FIG. 11) of the second optical fiber 33.
  • the second optical fiber 33 includes a core part 33a and a clad part 33b.
  • Light 34 having a wavelength range wider than a single wavelength is incident on the incident end (left end in FIG. 11) of the second optical fiber 33.
  • the second optical fiber 33 transmits the light 34 and emits the light 34 from the emission end toward the optical system 2 (first condenser lens 2a).
  • the first optical fiber 31 includes a core part 31a and a clad part 31b.
  • the incident end of the first optical fiber 31 is irradiated with light 34 condensed by the optical system 2 (second condenser lens 2b).
  • the support member 32 is fixed to the driving device 5.
  • the drive device 5 changes the position of the incident end of the first optical fiber 31 along the optical axis A by changing the position of the support member 32 along the optical axis A.
  • the wavelength of light transmitted through the first optical fiber 31 can be changed by changing the position of the incident end of the first optical fiber 31 along the optical axis A.
  • the position (focal position) at which light is collected by the second condenser lens 2b is different for each wavelength of light due to axial chromatic aberration. Therefore, the wavelength of the light transmitted through the first optical fiber 31 can be changed by changing the position of the incident end of the first optical fiber 31 between the focal positions at the respective wavelengths. That is, only light having a wavelength corresponding to the position of the incident end of the first optical fiber 31 is condensed on the core portion 31a of the first optical fiber 31 by the second condenser lens 2b. Therefore, when the position of the incident end of the first optical fiber 31 coincides with the focal position of light having a certain wavelength, only that light is incident on the core portion 31a of the first optical fiber 31 and is transmitted through the first optical fiber 31. .
  • the core part 31a of the first optical fiber 31 may include a gain medium. Therefore, the first optical fiber 31 may be the optical fiber 3 described in the first embodiment.
  • the variable bandpass filter device 30 may include a second optical fiber 33 (an example of a second optical waveguide). In this case, the core part 33a of the second optical fiber 33 may include a gain medium. Therefore, the second optical fiber 33 can be the optical fiber 3 described in the first embodiment.
  • the variable bandpass filter device 30 may include a semiconductor laser that emits laser light in a wavelength range wider than a single wavelength as the second optical waveguide.
  • variable bandpass filter device according to the present invention has been described above with reference to the drawings.
  • variable band-pass filter device according to the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof.
  • the first optical waveguide is an optical fiber (optical fiber 31), but the first optical waveguide is not limited to an optical fiber.
  • the first optical waveguide can be, for example, a semiconductor optical waveguide.
  • the mode in which the second optical waveguide that does not include the gain medium is an optical fiber has been described.
  • the second optical waveguide that does not include the gain medium is not limited to the optical fiber.
  • the second optical waveguide that does not include the gain medium may be, for example, a semiconductor optical waveguide.
  • the first optical system 2 includes two condenser lenses 2a and 2b as optical elements, but the present invention is not limited to this. Not.
  • the first optical system 2 may include a single gradient index lens 2c as described in the second embodiment.
  • the drive device 5 changes the position of the incident end of the first optical fiber 31, but the present invention is not limited to this.
  • the drive device 5 is the one closer to the incident end of the first optical fiber 31 of the two condenser lenses 2a and 2b, as described in the third embodiment.
  • the position of the condenser lens 2b may be changed along the optical axis A.
  • the configuration of the laser apparatus 10 shown in FIG. 4 was used.
  • the excitation light source 11 a gallium nitride semiconductor laser (manufactured by Nichia Chemical Co., Ltd., product name: NDB7875E, production number: BA2898) is used. -Continuous wave) was emitted. The wavelength of the excitation light 7 (blue) was 442 nm and the output was 1.6 W.
  • the second optical system 12 an optical fiber manufactured by Sumita Optical Glass Co., Ltd. was used.
  • Pr WPFGF having a fiber length L3 of 40 mm was used.
  • the diameter D1 of the core part 3a was 8 ⁇ m, and the diameter D2 of the optical fiber 3 (cladding part 3b) was 300 ⁇ m.
  • Praseodymium (Pr 3+ ) was added at 3000 ppm.
  • the dielectric multilayer film 8 had a reflectance of 99% to 99.5% with respect to a wavelength of 550 ⁇ m to 650 ⁇ m and a transmittance of 90% to 95% with respect to a wavelength of 400 ⁇ m to 480 ⁇ m.
  • An aspherical lens (manufactured by Edmund Optics, serial number: # 49104, NA: 0.33, focal length f: 37.5 mm) was used for each condenser lens 2a, 2b.
  • the distance from the output end of the optical fiber 3 to the first condenser lens 2a is set to 37.5 mm, the distance between the pair of condenser lenses 2a and 2b is set to 76 mm, and the output mirror 4 from the second condenser lens 2b.
  • the distance to the initial setting position was set to 37.5 mm.
  • the output mirror 4 used was a “short pass filter (manufacturing number: # 64603)” manufactured by Edmund Optics.
  • the output mirror 4 had a reflectance of 90% to 99.5% for wavelengths of 550 ⁇ m to 650 ⁇ m and a transmittance of 0.5% to 10% for wavelengths of 550 ⁇ m to 650 ⁇ m.
  • the output mirror 4 is shifted along the optical axis A in a direction away from the second condenser lens 2b by 10 ⁇ m from the initial setting position, and the wavelength (oscillation spectrum) of the laser light 6 transmitted through the output mirror 4 is changed to an optical spectrum analyzer.
  • an optical spectrum analyzer Measured by Ocean Optics, product name: HR2000. The measurement results are shown in FIGS.
  • 12 to 25 show oscillation spectra measured by shifting the output mirror 4 by 10 ⁇ m from the initial setting position (location 37.5 mm away from the second condenser lens 2b), respectively. 12 to 25, the horizontal axis indicates the wavelength (oscillation spectrum) of the laser light 6. FIG. The vertical axis indicates the intensity of the laser beam 6. In this embodiment, the laser beam 6 is a continuous wave.
  • FIG. 12 shows an oscillation spectrum obtained when the output mirror 4 is located at the initial setting position. As shown in FIG. 12, when the output mirror 4 is located at the initial setting position, the peak wavelength is about 603.5 nm.
  • FIG. 13 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 10 ⁇ m from the initial setting position. As shown in FIG. 13, when the output mirror 4 is shifted by 10 ⁇ m from the initial setting position, the peak wavelength is about 603.7 nm.
  • FIG. 14 shows an oscillation spectrum obtained when the output mirror 4 is shifted 20 ⁇ m from the initial setting position. As shown in FIG. 14, when the output mirror 4 is shifted by 20 ⁇ m from the initial setting position, the peak wavelength is about 604.8 nm.
  • FIG. 15 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 30 ⁇ m from the initial setting position.
  • two peak wavelengths were observed. Specifically, a peak wavelength of about 605.5 nm and a peak wavelength of about 606.3 nm were observed. This is because the shift width of the focal position due to the axial chromatic aberration of the second condenser lens 2b with respect to the light having the wavelength of about 605.5 nm and the light having the wavelength of about 606.3 nm is small, and the wavelength of about 605.5 nm. This is considered to be because both of the light and the light having a wavelength of about 606.3 nm have returned to the core portion 3 a of the optical fiber 3.
  • FIG. 16 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 40 ⁇ m from the initial setting position. As shown in FIG. 16, when the output mirror 4 was shifted by 40 ⁇ m from the initial setting position, the peak wavelength was about 607.6 nm.
  • FIG. 17 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 50 ⁇ m from the initial setting position. As shown in FIG. 17, when the output mirror 4 is shifted by 50 ⁇ m from the initial setting position, the peak wavelength is about 609.3 nm.
  • FIG. 18 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 60 ⁇ m from the initial setting position.
  • two peak wavelengths were observed. Specifically, a peak wavelength of about 610.7 nm and a peak wavelength of about 611.9 nm were observed. This is because the shift width of the focal position due to the axial chromatic aberration of the second condenser lens 2b with respect to the light having the wavelength of about 610.7 nm and the light having the wavelength of about 611.9 nm is small, and the wavelength of about 610.7 nm. This is considered to be because both of the light and the light having a wavelength of about 611.9 nm have returned to the core portion 3 a of the optical fiber 3.
  • FIG. 19 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 70 ⁇ m from the initial setting position. As shown in FIG. 19, when the output mirror 4 is shifted by 70 ⁇ m from the initial setting position, the peak wavelength is about 613.1 nm.
  • FIG. 20 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 80 ⁇ m from the initial setting position. As shown in FIG. 20, when the output mirror 4 is shifted by 80 ⁇ m from the initial setting position, the peak wavelength is about 614.4 nm.
  • FIG. 21 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 90 ⁇ m from the initial setting position. As shown in FIG. 21, when the output mirror 4 is shifted by 90 ⁇ m from the initial setting position, the peak wavelength is about 616.8 nm.
  • FIG. 22 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 100 ⁇ m from the initial setting position. As shown in FIG. 22, when the output mirror 4 is shifted by 100 ⁇ m from the initial setting position, the peak wavelength is about 619.1 nm.
  • FIG. 23 shows an oscillation spectrum obtained when the output mirror 4 is shifted 110 ⁇ m from the initial setting position. As shown in FIG. 23, when the output mirror 4 is shifted from the initial setting position by 110 ⁇ m, the peak wavelength is about 620.2 nm.
  • FIG. 24 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 120 ⁇ m from the initial setting position. As shown in FIG. 24, when the output mirror 4 is shifted by 120 ⁇ m from the initial setting position, the peak wavelength is about 622.1 nm.
  • FIG. 25 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 130 ⁇ m from the initial setting position. As shown in FIG. 25, when the output mirror 4 is shifted by 130 ⁇ m from the initial setting position, the peak wavelength is about 624.7 nm.
  • the laser resonance apparatus and laser apparatus of the present invention can be applied to medical lasers. Specifically, it can be used as a light source for a laser knife, a light source for photodynamic therapy, a light source for OCT (Optical Coherence Tomography), and the like. Further, the laser resonance apparatus and laser apparatus of the present invention can be applied to a measurement laser. Specifically, it can be used for a light source of LIDAR (Laser Detection and Ranging), a light source of an atmospheric remote sensor, and the like. Further, the laser resonance apparatus and laser apparatus of the present invention can be applied to a laser for measuring fine particles. Specifically, it can be used as a light source for Raman spectroscopy, a light source for flow cytometry, and the like. The laser resonance apparatus and laser apparatus of the present invention can be used as a light source for measuring physical properties such as solar cells. Moreover, the laser resonance apparatus and laser apparatus of the present invention can be used as a light source for optical communication.
  • LIDAR Laser Detection and

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A laser resonator device (1), provided with an optical system (2), an optical waveguide (3), a first resonance element (4), and a driving device (5). The optical system (2) collects light onto an optical axis (A). The optical waveguide (3) includes a gain medium. The gain medium emits light having a wavelength range greater than a single wavelength. The optical waveguide (3) causes light emitted by the gain medium to enter the optical system (2). The first resonance element (4) has an entry surface (4a) for reflecting some of the light collected by the optical system (2). The driving device (5) varies the position of the entry surface (4a) of the first resonance element (4) along the optical axis (A). Light having a wavelength corresponding to the position of the entry surface (4a) of the first resonance element (4) returns from the first resonance element (4) to the optical waveguide (3) via the optical system (2). Laser light (6) is thereby oscillated.

Description

レーザー共振装置、及びそれを備えたレーザー装置、並びに、可変型バンドパスフィルタ装置Laser resonance device, laser device including the same, and variable bandpass filter device
 本発明は、レーザー共振装置、及びそれを備えたレーザー装置、並びに、可変型バンドパスフィルタ装置に関する。 The present invention relates to a laser resonance device, a laser device including the same, and a variable bandpass filter device.
 従来、医療や創薬、光計測等の各分野において、レーザー光の波長(発振波長)を可変し得る波長可変レーザーが用いられている。波長可変レーザーは、レーザー光の特徴であるコヒーレンスを保ちつつ、レーザー光の波長を変化させることができる。 Conventionally, in each field such as medical treatment, drug discovery, and optical measurement, a wavelength tunable laser capable of changing the wavelength (oscillation wavelength) of laser light is used. The wavelength tunable laser can change the wavelength of the laser beam while maintaining the coherence characteristic of the laser beam.
 一般的な波長可変レーザーは、広帯域な発光波長特性(広帯域な利得)を有するレーザー媒質(利得媒質)と、分光器とを備える。一般的な波長可変レーザーは次のように動作する。即ち、まず、レーザー媒質から広い波長範囲の光(自然放出光)が発光する。レーザー媒質から発光した光は、回折格子又はプリズムのような分光器によって、波長ごとに、空間的に広がって分散される。空間的に分散した光から所望の波長を有する光が選択されて、レーザー媒質に戻される。その結果、所望の波長を有するレーザー光が発振する。 A general wavelength tunable laser includes a laser medium (gain medium) having a broad emission wavelength characteristic (wideband gain) and a spectroscope. A general tunable laser operates as follows. That is, first, light in a wide wavelength range (spontaneously emitted light) is emitted from the laser medium. Light emitted from the laser medium is spatially spread and dispersed for each wavelength by a spectroscope such as a diffraction grating or a prism. Light having a desired wavelength is selected from the spatially dispersed light and returned to the laser medium. As a result, laser light having a desired wavelength oscillates.
 光を選択する機構には、スリット(狹空間幅の透過窓)及び角度調節機構等が用いられる。具体的には、スリットは、回折格子又はプリズムの手前に配置される。回折格子又はプリズムには、スリットを通過した光が入射される。角度調節機構は、回折格子又はプリズムの角度を調節する。あるいは、角度調節機構は、レーザー媒質へ光を戻す出力ミラーの角度を調節する。角度の調節により、空間的に分散した光のうちから所望の波長を有する光のみがレーザー媒質に戻される。 ス リ ッ ト A slit (transmission window with a wide space) and an angle adjustment mechanism are used as the mechanism for selecting light. Specifically, the slit is disposed in front of the diffraction grating or the prism. Light that has passed through the slit is incident on the diffraction grating or the prism. The angle adjusting mechanism adjusts the angle of the diffraction grating or the prism. Alternatively, the angle adjustment mechanism adjusts the angle of the output mirror that returns light to the laser medium. By adjusting the angle, only light having a desired wavelength out of spatially dispersed light is returned to the laser medium.
 例えば特許文献1には、プリズムの角度を調節してレーザー光の波長を変化させる波長可変レーザーが開示されている。詳しくは、特許文献1には、励起光源として青色半導体レーザーを使用し、Pr3+(プラセオジウム)添加フッ化物ガラスファイバーから広い波長範囲の光を発光させることが開示されている。また、特許文献1には、プリズムを使用して、Pr3+添加フッ化物ガラスファイバーから発光した光を波長ごとに、空間的に広げて分散させることが開示されている。また、特許文献1には、プリズムを回転させて、つまりプリズムの角度を調節して、所望の波長を有する光のみをPr3+添加フッ化物ガラスファイバーに戻すことが開示されている。 For example, Patent Document 1 discloses a wavelength tunable laser that changes the wavelength of laser light by adjusting the angle of a prism. Specifically, Patent Document 1 discloses that a blue semiconductor laser is used as an excitation light source and light in a wide wavelength range is emitted from a Pr 3+ (praseodymium) -added fluoride glass fiber. Patent Document 1 discloses that light emitted from a Pr 3+ -added fluoride glass fiber is spatially spread and dispersed for each wavelength using a prism. Patent Document 1 discloses that only light having a desired wavelength is returned to the Pr 3+ doped fluoride glass fiber by rotating the prism, that is, adjusting the angle of the prism.
 他の波長可変レーザーとして、エタロンを使用する波長可変レーザーが知られている。エタロンは、平行に配置された2枚のミラーを含む。2枚のミラー間の距離と同等の波長を有する光が共鳴して、レーザー光が発振する。エタロンを使用する場合、2枚のミラー間の距離を調節することにより、レーザー光の波長を変化させることができる。 As another wavelength tunable laser, a wavelength tunable laser using an etalon is known. The etalon includes two mirrors arranged in parallel. Light having a wavelength equivalent to the distance between the two mirrors resonates, and laser light oscillates. When the etalon is used, the wavelength of the laser beam can be changed by adjusting the distance between the two mirrors.
国際公開第2010/004882号International Publication No. 2010/004882
 しかしながら、回折格子又はプリズムを用いた波長可変レーザーは、光を空間的に分散させる必要がある。このため、レーザー共振器の小型化を図ることが困難であった。また、回折格子又はプリズム等の各光学要素の位置の校正に、複雑な作業が必要であった。更に、回折格子又はプリズムを用いた波長可変レーザーにおいて適切に波長を選択するためには、角度の調節にフィードバック制御が必要であった。このため、構成が複雑であった。 However, a wavelength tunable laser using a diffraction grating or a prism needs to disperse light spatially. For this reason, it has been difficult to reduce the size of the laser resonator. In addition, a complicated operation is required to calibrate the position of each optical element such as a diffraction grating or a prism. Furthermore, in order to select a wavelength appropriately in a wavelength tunable laser using a diffraction grating or a prism, feedback control is necessary for adjusting the angle. For this reason, the configuration is complicated.
 一方、エタロンを使用する波長可変レーザーは、光を空間的に分散させる必要がないため、レーザー共振器の小型化を図ることができる。しかしながら、2枚のミラー間の距離が所望の波長と同等となるように、2枚のミラー間の距離を調節する必要がある。このため、ナノメートル(nm)オーダーで2枚のミラー間の距離を調節する必要があった。更に、エタロンを使用する波長可変レーザーにおいては、2枚のミラー間の距離の調節にフィードバック制御を要し、構成が複雑であった。 On the other hand, a wavelength tunable laser that uses an etalon does not need to spatially disperse light, so that the laser resonator can be miniaturized. However, it is necessary to adjust the distance between the two mirrors so that the distance between the two mirrors is equal to the desired wavelength. For this reason, it was necessary to adjust the distance between the two mirrors on the nanometer (nm) order. Furthermore, the wavelength tunable laser using the etalon requires a feedback control to adjust the distance between the two mirrors, and the configuration is complicated.
 本発明の目的は、簡易な構成で、選択する波長を可変し得るレーザー共振装置、及びそれを備えたレーザー装置、並びに可変型バンドパスフィルタ装置を提供することである。 An object of the present invention is to provide a laser resonator capable of changing a wavelength to be selected with a simple configuration, a laser device including the laser resonator, and a variable bandpass filter device.
 本発明によるレーザー共振装置は、光学系と、光導波路と、第1共振要素と、駆動装置とを備える。前記光学系は、光軸上に光を集光する。前記光導波路は、単一波長よりも広い波長範囲の光を発光する利得媒質を含み、前記利得媒質が発光した光を前記光学系に入射する。前記第1共振要素は、前記光学系によって集光された光の一部を反射する入射面を有する。前記駆動装置は、前記入射面の位置を前記光軸に沿って変化させる。又は、前記駆動装置は、前記光学系を構成する光学要素の位置を前記光軸に沿って変化させる。前記入射面の位置、又は前記光学要素の位置に応じた波長を有する光が、前記第1共振要素から前記光学系を介して前記光導波路へ戻る。これにより、レーザー光が発振する。 A laser resonance apparatus according to the present invention includes an optical system, an optical waveguide, a first resonance element, and a drive device. The optical system collects light on the optical axis. The optical waveguide includes a gain medium that emits light in a wavelength range wider than a single wavelength, and the light emitted from the gain medium is incident on the optical system. The first resonance element has an incident surface that reflects part of the light collected by the optical system. The drive device changes the position of the incident surface along the optical axis. Or the said drive device changes the position of the optical element which comprises the said optical system along the said optical axis. Light having a wavelength corresponding to the position of the incident surface or the position of the optical element returns from the first resonant element to the optical waveguide through the optical system. Thereby, a laser beam oscillates.
 ある実施形態において、前記光学系は、前記光学要素として2枚の集光レンズを備える。前記駆動装置は、前記入射面の位置を変化させる。又は、前記駆動装置は、前記2枚の集光レンズのうち前記第1共振要素に近い方の前記集光レンズの位置を変化させる。 In one embodiment, the optical system includes two condenser lenses as the optical element. The drive device changes the position of the incident surface. Alternatively, the driving device changes the position of the condensing lens closer to the first resonance element among the two condensing lenses.
 ある実施形態において、前記光学系は、前記光学要素として1枚の屈折率分布型レンズを備える。前記駆動装置は、前記入射面の位置を変化させる。又は、前記駆動装置は、前記屈折率分布型レンズの位置を変化させる。 In one embodiment, the optical system includes a single gradient index lens as the optical element. The drive device changes the position of the incident surface. Alternatively, the driving device changes the position of the gradient index lens.
 ある実施形態において、前記第1共振要素は、可飽和吸特性を有する。 In one embodiment, the first resonance element has a saturable absorption characteristic.
 ある実施形態において、前記レーザー共振装置は、励起光を透過し且つ前記利得媒質が発光した光を反射する第2共振要素を更に備える。また、前記光導波路は、光ファイバーであり、前記光ファイバーは、前記励起光が入射する入射端を含む。前記第2共振要素は、前記入射端に設けられ、前記利得媒質は、前記光ファイバーのコア部に含有される。 In one embodiment, the laser resonance apparatus further includes a second resonance element that transmits excitation light and reflects light emitted from the gain medium. The optical waveguide is an optical fiber, and the optical fiber includes an incident end on which the excitation light is incident. The second resonance element is provided at the incident end, and the gain medium is contained in a core portion of the optical fiber.
 ある実施形態において、前記利得媒質は、イオン化された希土類元素、イオン化された遷移元素、又はビスマスを含む。 In one embodiment, the gain medium includes an ionized rare earth element, an ionized transition element, or bismuth.
 ある実施形態において、前記希土類元素は、セリウム、プラセオジウム、ネオジウム、サマリウム、ユーロピウム、イッテルビウム、エルビウム、又はツリウムである。また、前記遷移元素は、銅又は錫である。 In one embodiment, the rare earth element is cerium, praseodymium, neodymium, samarium, europium, ytterbium, erbium, or thulium. The transition element is copper or tin.
 ある実施形態において、前記光ファイバーは、フッ化物ガラスを含む。この場合、前記利得媒質は、イオン化されたプラセオジウムを含み得る。 In one embodiment, the optical fiber includes fluoride glass. In this case, the gain medium may include ionized praseodymium.
 ある実施形態において、前記光ファイバーのコア部は、イオン化された希土類元素、イオン化された遷移元素、又はビスマスがゼオライトを用いて添加された石英ガラスを含む。この場合、前記利得媒質は、イオン化されたネオジウム又はイッテルビウムを含み得る。また、前記光ファイバーの長さは、1mm以上であり得る。 In one embodiment, the core portion of the optical fiber includes quartz glass to which an ionized rare earth element, an ionized transition element, or bismuth is added using zeolite. In this case, the gain medium may include ionized neodymium or ytterbium. The length of the optical fiber may be 1 mm or more.
 ある実施形態において、前記光導波路は、半導体レーザーである。 In one embodiment, the optical waveguide is a semiconductor laser.
 本発明によるレーザー装置は、上記のレーザー共振装置と、励起光源とを備える。前記励起光源は、前記光導波路に入射する励起光を発生させる。 A laser apparatus according to the present invention includes the above laser resonance apparatus and an excitation light source. The excitation light source generates excitation light incident on the optical waveguide.
 本発明による可変型バンドパスフィルタ装置は、光学系と、第1光導波路と、駆動装置とを備える。前記光学系は、光軸上に光を集光する。前記第1光導波路は、前記光学系によって集光された光が照射される入射端を有する。前記駆動装置は、前記第1光導波路の入射端の位置、又は前記光学系を構成する光学要素の位置を、前記光軸に沿って変化させる。前記第1光導波路の入射端の位置、又は前記光学要素の位置に応じた波長を有する光が、前記第1光導波路の入射端から、前記第1光導波路の内部へ入射する。 The variable band-pass filter device according to the present invention includes an optical system, a first optical waveguide, and a driving device. The optical system collects light on the optical axis. The first optical waveguide has an incident end to which light collected by the optical system is irradiated. The drive device changes the position of the incident end of the first optical waveguide or the position of the optical element constituting the optical system along the optical axis. Light having a wavelength corresponding to the position of the incident end of the first optical waveguide or the position of the optical element is incident on the inside of the first optical waveguide from the incident end of the first optical waveguide.
 ある実施形態において、前記可変型バンドパスフィルタ装置は、第2光導波路を更に備える。前記第2光導波路は、前記光学系へ向けて光を出射する。この場合、前記第1光導波路及び前記第2光導波路の少なくも一方が、利得媒質を含み得る。 In one embodiment, the variable bandpass filter device further includes a second optical waveguide. The second optical waveguide emits light toward the optical system. In this case, at least one of the first optical waveguide and the second optical waveguide may include a gain medium.
 本発明によれば、簡易な構成で、選択する波長を変化させることができる。 According to the present invention, the wavelength to be selected can be changed with a simple configuration.
(a)は、本発明の第1実施形態に係るレーザー共振装置の構成を示す図である。(b)は、本発明の第1実施形態に係る光ファイバーの断面図である。(A) is a figure which shows the structure of the laser resonance apparatus which concerns on 1st Embodiment of this invention. (B) is sectional drawing of the optical fiber which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る出力ミラー及び駆動装置を示す正面図である。It is a front view which shows the output mirror and drive device which concern on 1st Embodiment of this invention. (a)は、本発明の第1実施形態に係る集光レンズの軸上色収差を示す図である。(b)は、本発明の第1実施形態に係る出力ミラーの位置とレーザー光の発振波長との関係を示す図である。(c)は、本発明の第1実施形態に係る出力ミラーの位置とレーザー光の発振波長との他の関係を示す図である。(A) is a figure which shows the axial chromatic aberration of the condensing lens which concerns on 1st Embodiment of this invention. (B) is a figure which shows the relationship between the position of the output mirror which concerns on 1st Embodiment of this invention, and the oscillation wavelength of a laser beam. (C) is a figure which shows the other relationship between the position of the output mirror which concerns on 1st Embodiment of this invention, and the oscillation wavelength of a laser beam. 本発明の第1実施形態に係るレーザー装置の構成例を示す図である。It is a figure which shows the structural example of the laser apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るレーザー共振装置の構成を示す図である。It is a figure which shows the structure of the laser resonance apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る屈折率分布型レンズの焦点位置の波長依存特性を示すグラフである。It is a graph which shows the wavelength dependence characteristic of the focal position of the gradient index lens which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るレーザー共振装置の構成を示す図である。It is a figure which shows the structure of the laser resonance apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る集光レンズ及び駆動装置を示す正面図である。It is a front view which shows the condensing lens and drive device which concern on 3rd Embodiment of this invention. (a)は、本発明の第3実施形態に係る集光レンズの位置とレーザー光の発振波長との関係を示す図である。(b)は、本発明の第3実施形態に係る集光レンズの位置とレーザー光の発振波長との他の関係を示す図である。(A) is a figure which shows the relationship between the position of the condensing lens which concerns on 3rd Embodiment of this invention, and the oscillation wavelength of a laser beam. (B) is a figure which shows the other relationship between the position of the condensing lens which concerns on 3rd Embodiment of this invention, and the oscillation wavelength of a laser beam. 本発明の第4実施形態に係るレーザー共振装置の構成を示す図である。It is a figure which shows the structure of the laser resonance apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る可変型バンドパスフィルタ装置の構成を示す図である。It is a figure which shows the structure of the variable type band pass filter apparatus concerning 5th Embodiment of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention. 本発明の実施例に係る測定結果を示すグラフである。It is a graph which shows the measurement result which concerns on the Example of this invention.
 以下、図面を参照して本発明の実施形態を説明する。但し、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示している。また、以下の各実施形態で示す材質や形状、寸法等は、一例であって特に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, in the figures, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated. In order to facilitate understanding, the drawings schematically show each component as a main component. The materials, shapes, dimensions, etc. shown in the following embodiments are merely examples, and are not particularly limited.
[第1実施形態]
 まず図1(a)を参照して、第1実施形態に係るレーザー共振装置1の構成について説明する。図1(a)は、第1実施形態に係るレーザー共振装置1の構成を示す図である。図1(a)に示すように、レーザー共振装置1は、光学系2と、光ファイバー3(光導波路の一例)と、出力ミラー4(第1共振要素の一例)と、駆動装置5とを備える。なお、以下の説明において、光学系2を第1光学系2と記載する場合がある。
[First Embodiment]
First, with reference to FIG. 1A, the configuration of the laser resonator 1 according to the first embodiment will be described. FIG. 1A is a diagram illustrating a configuration of the laser resonator 1 according to the first embodiment. As shown in FIG. 1A, the laser resonance apparatus 1 includes an optical system 2, an optical fiber 3 (an example of an optical waveguide), an output mirror 4 (an example of a first resonance element), and a drive device 5. . In the following description, the optical system 2 may be referred to as the first optical system 2.
 第1光学系2は、光軸A上に光を集光する。光ファイバー3は、単一波長よりも広い波長範囲の光を発光する利得媒質を含み、その利得媒質が発光した光を光学系2に入射する。出力ミラー4は、第1光学系2によって集光された光の一部を反射する入射面4aを有する。駆動装置5は、出力ミラー4の入射面4aの位置を光軸Aに沿って変化させる。出力ミラー4の入射面4aの位置に応じた波長を有する光が、出力ミラー4から第1光学系2を介して光ファイバー3へ戻る。これにより、光ファイバー3へ戻された光の波長を有するレーザー光6が発振する。 The first optical system 2 collects light on the optical axis A. The optical fiber 3 includes a gain medium that emits light in a wavelength range wider than a single wavelength, and the light emitted from the gain medium enters the optical system 2. The output mirror 4 has an incident surface 4 a that reflects a part of the light collected by the first optical system 2. The driving device 5 changes the position of the incident surface 4 a of the output mirror 4 along the optical axis A. Light having a wavelength corresponding to the position of the incident surface 4 a of the output mirror 4 returns from the output mirror 4 to the optical fiber 3 via the first optical system 2. Thereby, the laser beam 6 having the wavelength of the light returned to the optical fiber 3 oscillates.
 以上のように、駆動装置5が出力ミラー4の入射面4aの位置を光軸Aに沿って変化させるという簡易な構成で、光ファイバー3へ戻す光の波長を変化させることが可能となる。即ち、レーザー光6の波長を変化させることが可能となる。以下、第1実施形態に係るレーザー共振装置1について詳細に説明する。 As described above, the wavelength of the light returned to the optical fiber 3 can be changed with a simple configuration in which the driving device 5 changes the position of the incident surface 4a of the output mirror 4 along the optical axis A. That is, the wavelength of the laser beam 6 can be changed. Hereinafter, the laser resonance apparatus 1 according to the first embodiment will be described in detail.
 第1実施形態に係るレーザー共振装置1は、誘電体多層膜8(第2共振要素の一例)を更に備える。誘電体多層膜8は、光ファイバー3の入射端に設けられている。第1実施形態に係るレーザー共振装置1は、励起光7が光ファイバー3の入射端に誘電体多層膜8を介して入射すると、レーザー光6を発振する。レーザー光6は、連続波(CW:Continuous Wave)である。レーザー光6の出力は、励起光7の出力に依存する。レーザー光6の出力は、数ミリW~数十ミリW程度となり得る。 The laser resonance apparatus 1 according to the first embodiment further includes a dielectric multilayer film 8 (an example of a second resonance element). The dielectric multilayer film 8 is provided at the incident end of the optical fiber 3. The laser resonator 1 according to the first embodiment oscillates the laser light 6 when the excitation light 7 is incident on the incident end of the optical fiber 3 via the dielectric multilayer film 8. The laser beam 6 is a continuous wave (CW: Continuous Wave). The output of the laser light 6 depends on the output of the excitation light 7. The output of the laser beam 6 can be about several millimeters to several tens of millimeters.
 光ファイバー3は、コア部3aとクラッド部3bとを含む。コア部3aは、レーザー媒質(利得媒質)を含有する。本実施形態のレーザー媒質は、広帯域な発光波長特性(広帯域な利得)を有する。つまり、本実施形態のレーザー媒質は、励起光7が照射されると単一波長よりも広い波長範囲の光(自然放出光)を発光する。コア部3aの屈折率は、クラッド部3bよりも大きい。クラッド部3bは、コア部3aの周囲に設けられている。 The optical fiber 3 includes a core portion 3a and a clad portion 3b. The core part 3a contains a laser medium (gain medium). The laser medium of the present embodiment has a broadband emission wavelength characteristic (wideband gain). That is, the laser medium of the present embodiment emits light (spontaneously emitted light) in a wavelength range wider than a single wavelength when the excitation light 7 is irradiated. The refractive index of the core portion 3a is larger than that of the cladding portion 3b. The clad part 3b is provided around the core part 3a.
 光ファイバー3の一方端(図1では左端)は、励起光7が入射する入射端である。光ファイバー3の入射端は直角に研磨され得る。光ファイバー3の入射端から、コア部3a及びクラッド部3bの各々の一方の端面が露出する。 One end (left end in FIG. 1) of the optical fiber 3 is an incident end on which the excitation light 7 is incident. The incident end of the optical fiber 3 can be polished at a right angle. From the incident end of the optical fiber 3, one end face of each of the core part 3a and the clad part 3b is exposed.
 光ファイバー3の入射端には、誘電体多層膜8が密着して形成されている。誘電体多層膜8は、励起光7を透過させ、コア部3aで発光した光を反射する。誘電体多層膜8は、レーザー出力効率を向上させるために、コア部3aで発光する光に対して100%の反射率を有することが好ましい。具体的には、レーザー光6の波長(発振波長)の可変範囲に合わせて、その可変範囲内の波長の光に対して100%の反射率を有するように、誘電体多層膜8を設計することが好ましい。 The dielectric multilayer film 8 is formed in close contact with the incident end of the optical fiber 3. The dielectric multilayer film 8 transmits the excitation light 7 and reflects the light emitted from the core portion 3a. The dielectric multilayer film 8 preferably has a reflectivity of 100% with respect to the light emitted from the core portion 3a in order to improve the laser output efficiency. Specifically, the dielectric multilayer film 8 is designed so as to have a reflectance of 100% with respect to light having a wavelength within the variable range in accordance with the variable range of the wavelength (oscillation wavelength) of the laser light 6. It is preferable.
 誘電体多層膜8を介してコア部3aに励起光7が入射すると、コア部3aが発光する。コア部3aで発光した光(自然放出光)は、光ファイバー3の他方端(図1では右端)から出射する。したがって、光ファイバー3の他方端は、コア部3aで発光した光が出射する出射端である。光ファイバー3の出射端は直角に研磨され得る。光ファイバー3の出射端から、コア部3a及びクラッド部3bの各々の他方の端面が露出する。 When the excitation light 7 enters the core portion 3a through the dielectric multilayer film 8, the core portion 3a emits light. Light (spontaneously emitted light) emitted from the core portion 3a is emitted from the other end (right end in FIG. 1) of the optical fiber 3. Therefore, the other end of the optical fiber 3 is an emission end from which light emitted from the core portion 3a is emitted. The exit end of the optical fiber 3 can be polished at a right angle. From the output end of the optical fiber 3, the other end face of each of the core part 3a and the clad part 3b is exposed.
 光ファイバー3の出射端の前方には、光ファイバー3の出射端から出射される光の光軸Aに沿って、第1光学系2と出力ミラー4とがこの順に並んでいる。第1実施形態において、第1光学系2は一対の集光レンズ2a、2b(光学要素の一例)を含む。したがって、光ファイバー3の出射端と、第1光学系2を構成する一対の集光レンズ2a、2bと、出力ミラー4とが、光軸Aに沿って並んでいる。以下、集光レンズ2aを第1集光レンズ2aと記載し、集光レンズ2bを第2集光レンズ2bと記載する場合がある。 The first optical system 2 and the output mirror 4 are arranged in this order along the optical axis A of the light emitted from the exit end of the optical fiber 3 in front of the exit end of the optical fiber 3. In the first embodiment, the first optical system 2 includes a pair of condenser lenses 2a and 2b (an example of an optical element). Therefore, the exit end of the optical fiber 3, the pair of condensing lenses 2 a and 2 b constituting the first optical system 2, and the output mirror 4 are arranged along the optical axis A. Hereinafter, the condenser lens 2a may be referred to as a first condenser lens 2a, and the condenser lens 2b may be referred to as a second condenser lens 2b.
 光ファイバー3の出射端から出射された光は、第1集光レンズ2aに照射されて平行光となる。平行光は第2集光レンズ2bに照射され、第2集光レンズ2bの焦点位置へ向けて集光される。第2集光レンズ2bの焦点位置は、光軸A上に存在する。したがって平行光は、第2集光レンズ2bにより光軸A上に集光される。出力ミラー4は、第2集光レンズ2bによって集光された光の一部を反射し、残りの光を透過する。出力ミラー4は、誘電体ミラーであり得る。出力ミラー4によって反射された光は、第1光学系2(一対の集光レンズ2a、2b)を介して光ファイバー3に戻る。 The light emitted from the exit end of the optical fiber 3 is applied to the first condenser lens 2a to become parallel light. The parallel light is applied to the second condenser lens 2b and is condensed toward the focal position of the second condenser lens 2b. The focal position of the second condenser lens 2b exists on the optical axis A. Accordingly, the parallel light is condensed on the optical axis A by the second condenser lens 2b. The output mirror 4 reflects a part of the light collected by the second condenser lens 2b and transmits the remaining light. The output mirror 4 can be a dielectric mirror. The light reflected by the output mirror 4 returns to the optical fiber 3 via the first optical system 2 (a pair of condensing lenses 2a and 2b).
 駆動装置5は、光軸Aに沿って出力ミラー4の位置を変化させることができる。駆動装置5が出力ミラー4の位置の変化させることで、出力ミラー4の入射面4a(第2集光レンズ2b側の面)の位置が、光軸Aに沿って変化する。第1実施形態では、光ファイバー3へ戻る光のうち、出力ミラー4の入射面4aの位置に応じた波長(色)の光のみがコア部3aに入射する。つまり、出力ミラー4の入射面4aの位置に応じた波長の光のみが、第1集光レンズ2aによってコア部3aの端面(光ファイバー3の出射端側の面)に集光する。この結果、出力ミラー4の入射面4aの位置に応じた波長の光のみが、誘電体多層膜8と出力ミラー4との間を往復する。したがって、出力ミラー4の入射面4aの位置に応じた波長(発振波長)を有するレーザー光6が発振し、発振したレーザー光6の一部が出力ミラー4を透過する。このように、光軸Aに沿った出力ミラー4の直線移動のみで、レーザー光6の波長を変化させることができる。よって、簡易な構成で、レーザー光6の波長を変化させることができる。また、簡易な構成で、レーザー光6の波長の選択が可能となる。 The driving device 5 can change the position of the output mirror 4 along the optical axis A. When the drive device 5 changes the position of the output mirror 4, the position of the incident surface 4 a (surface on the second condenser lens 2 b side) of the output mirror 4 changes along the optical axis A. In the first embodiment, of the light returning to the optical fiber 3, only light having a wavelength (color) corresponding to the position of the incident surface 4a of the output mirror 4 is incident on the core portion 3a. That is, only light having a wavelength corresponding to the position of the incident surface 4a of the output mirror 4 is condensed on the end surface of the core portion 3a (the surface on the emission end side of the optical fiber 3) by the first condenser lens 2a. As a result, only light having a wavelength corresponding to the position of the incident surface 4 a of the output mirror 4 reciprocates between the dielectric multilayer film 8 and the output mirror 4. Therefore, the laser beam 6 having a wavelength (oscillation wavelength) corresponding to the position of the incident surface 4 a of the output mirror 4 oscillates, and part of the oscillated laser beam 6 passes through the output mirror 4. Thus, the wavelength of the laser beam 6 can be changed only by linear movement of the output mirror 4 along the optical axis A. Therefore, the wavelength of the laser beam 6 can be changed with a simple configuration. In addition, the wavelength of the laser beam 6 can be selected with a simple configuration.
 光ファイバー3の出射端から出力ミラー4の入射面4aまでの距離L1(以下、光学系長さL1と記載する。)は主として、駆動装置5による出力ミラー4の最大移動距離、並びに、一対の集光レンズ2a、2bの各々の厚み及び焦点距離fによって決まる。出力ミラー4の最大移動距離は、例えば100μm~130μm程度である。また本実施形態では、誘電体多層膜8と出力ミラー4とによってレーザー共振器が構成される。本実施形態において、誘電体多層膜8から出力ミラー4までの距離L2(以下、共振器長さL2と記載する。)は主として、光学系長さL1と、光ファイバー3の長さL3(以下、ファイバー長さL3と記載する。)とによって決まる。 The distance L1 from the exit end of the optical fiber 3 to the incident surface 4a of the output mirror 4 (hereinafter referred to as the optical system length L1) is mainly the maximum moving distance of the output mirror 4 by the drive device 5 and a pair of collecting points. It is determined by the thickness of each of the optical lenses 2a and 2b and the focal length f. The maximum moving distance of the output mirror 4 is, for example, about 100 μm to 130 μm. In the present embodiment, the dielectric multilayer film 8 and the output mirror 4 constitute a laser resonator. In the present embodiment, the distance L2 from the dielectric multilayer film 8 to the output mirror 4 (hereinafter referred to as the resonator length L2) mainly includes the optical system length L1 and the length L3 of the optical fiber 3 (hereinafter referred to as “resonator length L2”). It is described as fiber length L3).
 図1(b)は、光ファイバー3の断面図である。コア部3aの直径D1は、2μm以上100μm以下であり得る。クラッド部3bの直径D2(光ファイバー3の直径)は、50μm以上2000μm以下であり得る。コア部3aの直径D1を2μm以上100μm以下とすることにより、レーザー発振させる光の波長の選択が可能となる。本実施形態の光ファイバー3は、シングルモードファイバーである。但し、光ファイバー3はシングルモードファイバーに限定されるものではない。光ファイバー3は、マルチモードファイバー又はダブルクラッドファイバー等であってもよい。コア部3a及びクラッド部3bの材質には、石英ガラスやフッ化物ガラス等のガラス素材を使用し得る。あるいは、コア部3a及びクラッド部3bの材質に樹脂が使用されてもよい。 FIG. 1B is a cross-sectional view of the optical fiber 3. The diameter D1 of the core part 3a may be 2 μm or more and 100 μm or less. The diameter D2 of the clad 3b (the diameter of the optical fiber 3) can be 50 μm or more and 2000 μm or less. By setting the diameter D1 of the core portion 3a to 2 μm or more and 100 μm or less, it is possible to select the wavelength of light to be oscillated. The optical fiber 3 of the present embodiment is a single mode fiber. However, the optical fiber 3 is not limited to a single mode fiber. The optical fiber 3 may be a multimode fiber or a double clad fiber. Glass materials such as quartz glass and fluoride glass can be used for the material of the core portion 3a and the cladding portion 3b. Or resin may be used for the material of the core part 3a and the clad part 3b.
 コア部3aは、レーザー媒質として、イオン化された希土類元素、イオン化された遷移元素、又はビスマス(Bi)を含有する。イオン化された希土類元素として、例えば、セリウム(Ce3+)、プラセオジウム(Pr3+)、ネオジウム(Nd3+)、サマリウム(Sm3+)、ユーロピウム(Er3+)、イッテルビウム(Yb3+)、エルビウム(Er3+)、又はツリウム(Tm3+)がコア部3aにドープされ得る。また、イオン化された遷移元素として、銅(Cu+)、又は錫(Sn2+)がコア部3aにドープされ得る。レーザー媒質として、セリウム(Ce3+)、プラセオジウム(Pr3+)、サマリウム(Sm3+)、ユーロピウム(Er3+)、銅(Cu+)、又は錫(Sn2+)を使用することにより、可視光の範囲内での波長の変化(選択)が可能となる。また、レーザー媒質として、ネオジウム(Nd3+)、イッテルビウム(Yb3+)、エルビウム(Er3+)、ツリウム(Tm3+)、又はビスマス(Bi)を使用することにより、近赤外の範囲内での波長の変化(選択)が可能となる。エルビウム(Er3+)は、更に、中赤外の範囲内での波長の変化(選択)も可能にする。 The core portion 3a contains an ionized rare earth element, an ionized transition element, or bismuth (Bi) as a laser medium. Examples of ionized rare earth elements include cerium (Ce 3+ ), praseodymium (Pr 3+ ), neodymium (Nd 3+ ), samarium (Sm 3+ ), europium (Er 3+ ), ytterbium (Yb 3+ ). , Erbium (Er 3+ ), or Thulium (Tm 3+ ) may be doped into the core portion 3a. Further, copper (Cu + ) or tin (Sn 2+ ) can be doped into the core portion 3a as an ionized transition element. By using cerium (Ce 3+ ), praseodymium (Pr 3+ ), samarium (Sm 3+ ), europium (Er 3+ ), copper (Cu + ), or tin (Sn 2+ ) as the laser medium The wavelength can be changed (selected) within the visible light range. Further, by using neodymium (Nd 3+ ), ytterbium (Yb 3+ ), erbium (Er 3+ ), thulium (Tm 3+ ), or bismuth (Bi) as the laser medium, the near infrared range It is possible to change (select) the wavelength within. Erbium (Er 3+ ) also allows for wavelength changes (selection) within the mid-infrared range.
 図2は、出力ミラー4及び駆動装置5を示す正面図である。図2に示すように、出力ミラー4は第1ミラーホルダー9によって支持されている。したがって、図1(a)を参照して説明したレーザー共振装置1は、第1ミラーホルダー9を更に備える。 FIG. 2 is a front view showing the output mirror 4 and the driving device 5. As shown in FIG. 2, the output mirror 4 is supported by a first mirror holder 9. Therefore, the laser resonator 1 described with reference to FIG. 1A further includes a first mirror holder 9.
 第1ミラーホルダー9は、駆動装置5に固定されている。駆動装置5には、マイクロメートル(μm)オーダーで位置制御が可能なステージを使用し得る。例えば、駆動装置5は、スライド式の1軸ステージである。 The first mirror holder 9 is fixed to the driving device 5. As the driving device 5, a stage capable of position control on the order of micrometers (μm) can be used. For example, the driving device 5 is a slide type single-axis stage.
 続いて図3(a)~図3(c)を参照して、第1実施形態におけるレーザー光6の波長可変メカニズムについて説明する。なお、図3(a)~図3(c)を参照して説明する具体例では、第2集光レンズ2bは平凸レンズであるが、第2集光レンズ2bは平凸レンズに限定されるものではない。 Subsequently, the wavelength variable mechanism of the laser beam 6 in the first embodiment will be described with reference to FIGS. 3 (a) to 3 (c). In the specific example described with reference to FIGS. 3A to 3C, the second condenser lens 2b is a plano-convex lens, but the second condenser lens 2b is limited to a plano-convex lens. is not.
 本実施形態では、レンズが一般的に有する軸上色収差を利用して、レーザー光6の発振波長を変化させる。軸上色収差は、光軸上における光の焦点位置(結像位置)が光の波長(色)ごとに異なるというレンズの性質を示す。 In this embodiment, the oscillation wavelength of the laser beam 6 is changed by utilizing the axial chromatic aberration that the lens generally has. On-axis chromatic aberration indicates the property of a lens that the focal position (imaging position) of light on the optical axis differs for each wavelength (color) of light.
 図3(a)は、第2集光レンズ2bの軸上色収差を示す図である。図3(a)に示すように、波長W1を有する光S1が第2集光レンズ2bに入射すると、光S1は光軸A上の位置P1に集光する。また、波長W2を有する光S2が第2集光レンズ2bに入射すると、光S2は光軸A上の位置P2に集光する。位置P2は、位置P1とは異なる位置である。一般的には、波長が短い程、屈折率が高くなる。したがって、第2集光レンズ2bに一般的なレンズが使用された場合、位置P1に集光する光S1の波長W1は、位置P2に集光する光S2の波長W2よりも短い。 FIG. 3A is a diagram showing the axial chromatic aberration of the second condenser lens 2b. As shown in FIG. 3A, when the light S1 having the wavelength W1 is incident on the second condenser lens 2b, the light S1 is condensed at a position P1 on the optical axis A. Further, when the light S2 having the wavelength W2 is incident on the second condenser lens 2b, the light S2 is condensed at the position P2 on the optical axis A. The position P2 is a position different from the position P1. In general, the shorter the wavelength, the higher the refractive index. Therefore, when a general lens is used for the second condenser lens 2b, the wavelength W1 of the light S1 condensed at the position P1 is shorter than the wavelength W2 of the light S2 condensed at the position P2.
 図3(b)は、出力ミラー4の位置とレーザー光6の発振波長との関係を示す図である。具体的には、図3(b)は、波長W1を有するレーザー光6を発振するための出力ミラー4の位置を示している。図3(b)に示すように、出力ミラー4の入射面4aの位置を位置P1に位置決めすると、波長W1を有する光S1のみが、図1を参照して説明したコア部3aの端面に戻る。即ち、波長W1を有する光S1のみが、コア部3aの内部に入射する(戻る)。その結果、波長W1を有するレーザー光6が発振する。なお、出力ミラー4の入射面4aの位置が位置P1に位置決めされると、光S2(波長W2)はコア部3aの端面に結像しない。換言すれば、出力ミラー4によって反射された光S2は、光ファイバー3の出射端において、ぼやけた像となる。 FIG. 3B is a diagram showing the relationship between the position of the output mirror 4 and the oscillation wavelength of the laser beam 6. Specifically, FIG. 3B shows the position of the output mirror 4 for oscillating the laser beam 6 having the wavelength W1. As shown in FIG. 3B, when the position of the incident surface 4a of the output mirror 4 is positioned at the position P1, only the light S1 having the wavelength W1 returns to the end surface of the core portion 3a described with reference to FIG. . That is, only the light S1 having the wavelength W1 is incident (returned) into the core portion 3a. As a result, the laser beam 6 having the wavelength W1 oscillates. When the position of the incident surface 4a of the output mirror 4 is positioned at the position P1, the light S2 (wavelength W2) does not form an image on the end surface of the core portion 3a. In other words, the light S <b> 2 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
 図3(c)は、出力ミラー4の位置とレーザー光6の発振波長との他の関係を示す図である。具体的には、図3(c)は、波長W2を有するレーザー光6を発振するための出力ミラー4の位置を示している。図3(c)に示すように、波長W2を有するレーザー光6を発振させる際には、出力ミラー4を光軸Aに沿って移動させて、出力ミラー4の入射面4aの位置を位置P2に位置決めする。このとき、μmオーダーで出力ミラー4を移動させることにより、出力ミラー4の入射面4aの位置を位置P2に位置決めすることができる。 FIG. 3C is a diagram showing another relationship between the position of the output mirror 4 and the oscillation wavelength of the laser beam 6. Specifically, FIG. 3C shows the position of the output mirror 4 for oscillating the laser beam 6 having the wavelength W2. As shown in FIG. 3C, when the laser beam 6 having the wavelength W2 is oscillated, the output mirror 4 is moved along the optical axis A so that the position of the incident surface 4a of the output mirror 4 is a position P2. Position to. At this time, the position of the incident surface 4a of the output mirror 4 can be positioned at the position P2 by moving the output mirror 4 on the order of μm.
 出力ミラー4の入射面4aの位置が位置P2に位置決めされると、波長W2を有する光S2のみが、図1を参照して説明したコア部3aの端面に戻る。即ち、波長W2を有する光S2のみが、コア部3aの内部に入射する(戻る)。したがって、波長W2を有するレーザー光6が発振する。なお、出力ミラー4の入射面4aの位置が位置P2に位置決めされると、光S1(波長W1)はコア部3aの端面に結像しない。換言すれば、出力ミラー4によって反射された光S1は、光ファイバー3の出射端において、ぼやけた像となる。 When the position of the incident surface 4a of the output mirror 4 is positioned at the position P2, only the light S2 having the wavelength W2 returns to the end surface of the core portion 3a described with reference to FIG. That is, only the light S2 having the wavelength W2 enters (returns) into the core portion 3a. Therefore, the laser beam 6 having the wavelength W2 oscillates. When the position of the incident surface 4a of the output mirror 4 is positioned at the position P2, the light S1 (wavelength W1) does not form an image on the end surface of the core portion 3a. In other words, the light S <b> 1 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
 続いて図4を参照して、図1(a)に示すレーザー共振装置1を用いて構成され得るレーザー装置10の一例について説明する。図4は、レーザー装置10の構成例を示す図である。図4に示すように、レーザー装置10は、レーザー共振装置1を備える。レーザー装置10は更に、励起光源11と、第2光学系12と、フェルール13とを備える。 Next, an example of a laser device 10 that can be configured using the laser resonator 1 shown in FIG. 1A will be described with reference to FIG. FIG. 4 is a diagram illustrating a configuration example of the laser device 10. As shown in FIG. 4, the laser device 10 includes a laser resonance device 1. The laser device 10 further includes an excitation light source 11, a second optical system 12, and a ferrule 13.
 励起光源11は、図1(a)を参照して説明した励起光7を発生させて、出射する。励起光源11は、光ファイバー3のコア部3aに含有されるレーザー媒質の種類に応じて選択される。具体的には、レーザー媒質がプラセオジウム(Pr3+)の場合には、波長430nm以上480nm以下のレーザー光(励起光7)を出射する青色半導体レーザーが励起光源11として使用される。レーザー媒質がネオジウム(Nd3+)の場合には、波長800nmのレーザー光(励起光7)を出射する近赤外半導体レーザーが励起光源11として使用される。レーザー媒質がイッテルビウム(Yb3+)又はエルビウム(Er3+)の場合には、波長975nmのレーザー光(励起光7)を出射する近赤外半導体レーザーが励起光源11として使用される。レーザー媒質がツリウム(Tm3+)の場合には、波長780nmのレーザー光(励起光7)を出射する近赤外半導体レーザーが励起光源11として使用される。 The excitation light source 11 generates and emits the excitation light 7 described with reference to FIG. The excitation light source 11 is selected according to the type of laser medium contained in the core portion 3a of the optical fiber 3. Specifically, when the laser medium is praseodymium (Pr 3+ ), a blue semiconductor laser that emits laser light (excitation light 7) having a wavelength of 430 nm or more and 480 nm or less is used as the excitation light source 11. When the laser medium is neodymium (Nd 3+ ), a near-infrared semiconductor laser that emits laser light having a wavelength of 800 nm (excitation light 7) is used as the excitation light source 11. When the laser medium is ytterbium (Yb 3+ ) or erbium (Er 3+ ), a near-infrared semiconductor laser that emits laser light having a wavelength of 975 nm (excitation light 7) is used as the excitation light source 11. When the laser medium is thulium (Tm 3+ ), a near-infrared semiconductor laser that emits laser light (excitation light 7) having a wavelength of 780 nm is used as the excitation light source 11.
 励起光源11から出射された励起光7は、第2光学系12を介してフェルール13の一方端に入射する。光ファイバー3は、フェルール13内に固定されている。フェルール13に入射した励起光7は、誘電体多層膜8に照射され、コア部3aを励起する。この結果、コア部3aが発光する。本実施形態において、第2光学系12は光ファイバーである。但し、第2光学系12は光ファイバーに限定されるものではない。第2光学系12は、1つ又は複数の光学要素(例えば、レンズやミラー)から構成されてもよい。この場合、フェルール13は省略し得る。 The excitation light 7 emitted from the excitation light source 11 is incident on one end of the ferrule 13 via the second optical system 12. The optical fiber 3 is fixed in the ferrule 13. The excitation light 7 incident on the ferrule 13 is applied to the dielectric multilayer film 8 to excite the core portion 3a. As a result, the core portion 3a emits light. In the present embodiment, the second optical system 12 is an optical fiber. However, the second optical system 12 is not limited to an optical fiber. The second optical system 12 may be composed of one or a plurality of optical elements (for example, lenses and mirrors). In this case, the ferrule 13 can be omitted.
 以上説明したように第1実施形態によれば、出力ミラー4を光軸Aに沿って移動させることにより、レーザー光6の波長を変化させることができる。また、レーザー光6の波長の選択が可能となる。したがって、光ファイバー3から出射された光(レーザー媒質が発光した自然放出光)を空間的に分散させる必要がないため、レーザー共振器の小型化を図ることができる。更に、光学系長さL1の短縮化を図ることができるため、共振器長さL2の短縮化を図ることができる。 As described above, according to the first embodiment, the wavelength of the laser beam 6 can be changed by moving the output mirror 4 along the optical axis A. In addition, the wavelength of the laser beam 6 can be selected. Therefore, it is not necessary to spatially disperse the light emitted from the optical fiber 3 (spontaneously emitted light emitted from the laser medium), so that the laser resonator can be miniaturized. Furthermore, since the optical system length L1 can be shortened, the resonator length L2 can be shortened.
 また、回折格子又はプリズムを用いて光を分散させる一般的な波長可変レーザーにおいては、回折格子又はプリズム等の各光学要素の位置の校正に、複雑な作業が必要となる。これに対して、第1実施形態では、光ファイバー3の出射端、第1光学系2を構成する集光レンズ2a、2b、及び出力ミラー4の各光学要素は、光軸Aに沿って配置される。したがって、光ファイバー3の出射端等の各光学要素の位置の校正が容易となる。具体的には、各集光レンズ2a、2bの発散角内、及び光ファイバー3の開口数(NA)内に、出力ミラー4からの反射光が閉じ込められるように、光ファイバー3の出射端等の各光学要素の位置を校正するのみでよい。 Further, in a general wavelength tunable laser that disperses light using a diffraction grating or a prism, complicated work is required for calibration of the position of each optical element such as the diffraction grating or the prism. On the other hand, in the first embodiment, the optical elements of the emission end of the optical fiber 3, the condensing lenses 2a and 2b constituting the first optical system 2, and the output mirror 4 are arranged along the optical axis A. The Accordingly, calibration of the position of each optical element such as the exit end of the optical fiber 3 is facilitated. Specifically, each of the output ends of the optical fiber 3 is confined so that the reflected light from the output mirror 4 is confined within the divergence angles of the condenser lenses 2a and 2b and the numerical aperture (NA) of the optical fiber 3. It is only necessary to calibrate the position of the optical element.
 また、回折格子又はプリズムを用いる一般的な波長可変レーザー、及び、エタロンを用いる一般的な波長可変レーザーにおいては、フィードバック制御が必要となり、構成が複雑となる。これに対して、第1実施形態によれば、出力ミラー4を光軸Aに沿ってμmオーダーで移動させればよく(位置決めすればよく)、簡易な構成で、レーザー光6の波長を変化させることができる。 Further, in a general wavelength tunable laser using a diffraction grating or a prism and a general wavelength tunable laser using an etalon, feedback control is required, and the configuration becomes complicated. On the other hand, according to the first embodiment, it is only necessary to move the output mirror 4 on the order of μm along the optical axis A (positioning is required), and the wavelength of the laser light 6 is changed with a simple configuration. Can be made.
 また、エタロンを用いる一般的な波長可変レーザーにおいては、nmオーダーで2枚のミラー間の距離を調節する必要がある。これに対して、第1実施形態によれば、出力ミラー4を光軸Aに沿ってμmオーダーで移動させればよく(位置決めすればよく)、精度の高い位置決めを必要としない。 Also, in a general wavelength tunable laser using an etalon, it is necessary to adjust the distance between two mirrors on the order of nm. On the other hand, according to the first embodiment, it is only necessary to move the output mirror 4 along the optical axis A on the order of μm (it is sufficient to position it), and high-precision positioning is not required.
 以上のように、第1実施形態によれば、簡易な構成で、レーザー光6の波長を変化させることが可能となる。したがって、部品点数の削減を図ることができる。また、レーザー共振器の小型化が可能となる。更に、メンテナンスが容易となる。よって、小型堅牢で、低コストの波長可変レーザーを提供することができる。 As described above, according to the first embodiment, the wavelength of the laser beam 6 can be changed with a simple configuration. Therefore, the number of parts can be reduced. In addition, the laser resonator can be miniaturized. Furthermore, maintenance becomes easy. Therefore, it is possible to provide a tunable laser that is small and robust and low in cost.
 また第1実施形態のレーザー共振装置1及びレーザー装置10は、レーザー媒質の適切な選択により、医療分野やレーザー測定分野、レーザー計測分野、光通信分野等の様々な分野への応用が可能となる。 In addition, the laser resonance apparatus 1 and the laser apparatus 10 of the first embodiment can be applied to various fields such as a medical field, a laser measurement field, a laser measurement field, and an optical communication field by appropriately selecting a laser medium. .
 また第1実施形態によれば、駆動装置5が出力ミラー4の位置を連続的に変化させることにより、波長自動掃引が可能となる。波長自動掃引機能は、医療分野やレーザー計測分野等の各分野において、有用な機能である。 Further, according to the first embodiment, the drive device 5 continuously changes the position of the output mirror 4 so that automatic wavelength sweeping is possible. The wavelength automatic sweep function is a useful function in various fields such as the medical field and the laser measurement field.
 更に第1実施形態によれば、ファイバー長さL3の短い光ファイバー3を使用することで、共振器長さL2の更なる短縮化を図ることが可能となる。 Furthermore, according to the first embodiment, it is possible to further shorten the resonator length L2 by using the optical fiber 3 having a short fiber length L3.
 例えば、プラセオジウム(Pr3+)を添加した耐候性フッ化アルミ酸ガラスファイバー(WPFGF:Waterproof Fluoro-aluminate Glass Fiber)を光ファイバー3として使用することにより、ファイバー長さL3の短縮化を図ることができる。以下、Pr3+を添加した耐候性フッ化アルミ酸ガラスファイバーを、Pr:WPFGFと記載する。フッ化アルミ酸ガラスは、フッ化物ガラスの一種である。 For example, the use of a weatherproof fluoralumino-aluminate glass fiber (WPFGF) to which praseodymium (Pr 3+ ) is added as the optical fiber 3 can shorten the fiber length L3. . Hereinafter, the weather-resistant fluoroaluminate glass fiber to which Pr 3+ is added is referred to as Pr: WPFGF. Fluoroaluminate glass is a kind of fluoride glass.
 具体的には、Pr:WPFGFのファイバー長さL3は、40mmとすることができる。したがって、ファイバー長さL3が40mmのPr:WPFGFを光ファイバー3として使用することにより、共振器長さL2の更なる短縮化を図ることができる。 Specifically, the fiber length L3 of Pr: WFGF can be set to 40 mm. Therefore, by using Pr: WPFGF having a fiber length L3 of 40 mm as the optical fiber 3, the resonator length L2 can be further shortened.
 なお、Pr:WPFGFのコア部3aには、Pr3+が例えば3000ppm添加される。また、Pr:WPFGFのコア部3aの直径D1は8μmであり得る。Pr:WPFGFの直径(クラッド部3bの直径D2)は300μmであり得る。Pr:WPFGFに対する励起光7には、例えば、窒化ガリウム半導体レーザーから出射される青色レーザー光(準連続波)が使用される。Pr:WPFGFは、青緑色、緑色、及び赤色のレーザー光6を発振することができる。したがって、Pr:WPFGFを使用することにより、可視光の帯域での波長可変が可能となる。 For example, 3000 ppm of Pr 3+ is added to the core portion 3a of Pr: WPFGF. In addition, the diameter D1 of the core portion 3a of Pr: WPFGF may be 8 μm. The diameter of Pr: WPFGF (the diameter D2 of the cladding part 3b) may be 300 μm. As the excitation light 7 for Pr: WFGF, for example, blue laser light (quasi-continuous wave) emitted from a gallium nitride semiconductor laser is used. Pr: WPFGF can oscillate blue-green, green, and red laser beams 6. Therefore, by using Pr: WPFGF, the wavelength can be varied in the visible light band.
 また、ネオジウム(Nd3+)を添加した石英ガラスファイバー(Nd-doped silica fiber)を光ファイバー3として使用することにより、ファイバー長さL3の更なる短縮化を図ることができる。以下、Nd3+を添加した石英ガラスファイバーを、Nd3+添加石英ガラスファイバーと記載する。 Further, by using a quartz glass fiber (Nd-doped silica fiber) added with neodymium (Nd 3+ ) as the optical fiber 3, the fiber length L3 can be further shortened. Hereinafter, the quartz glass fiber added with Nd 3+ is referred to as an Nd 3 + -added quartz glass fiber.
 具体的には、Nd3+添加石英ガラスファイバーのファイバー長さL3は、1mmまで短縮化することができる。したがって、Nd3+添加石英ガラスファイバーを光ファイバー3として使用することにより、共振器長さL2の更なる短縮化を図ることができる。 Specifically, the fiber length L3 of the Nd 3+ added quartz glass fiber can be shortened to 1 mm. Therefore, by using the Nd 3+ doped quartz glass fiber as the optical fiber 3, the resonator length L2 can be further shortened.
 Nd3+添加石英ガラスファイバーのコア部3aの素材となるNd3+添加石英ガラス(以下、Nd3+コアガラスと記載する。)は、ゼオライト(zeolite)法で製造することができる。ゼオライト法は、例えば、文献1"Y.Fujimoto、M.Nakatsuka、「A novel method for uniform dispersion of the rare earth ions in SiO2 glass using Zeolite X」、Journal of Non-Crystalline Solids、1997年、第215巻、182-191頁"に記載されている。また、ファイバー長さL3が4mmのNd3+添加石英ガラスファイバーが、文献2:"Motoichiro Murakami 他4名、「Short-length fiber laser oscillation in 4-mm Nd-doped Silica fiber fabricated by zeolite method」、Optics Communications、2014年、第328巻、121-123頁"に記載されている。 Nd 3+ -added quartz glass (hereinafter referred to as Nd 3+ core glass), which is a material of the core portion 3a of the Nd 3 + -added quartz glass fiber, can be produced by a zeolite method. Zeolite methods are described, for example, in literature 1 “Y. Fujimoto, M. Nakatsuka,“ A novel method for uniform form of the earth earth in SiO 2 glass using Zeol 15th year, J. Vol. 182-191. Also, an Nd 3 + -added silica glass fiber having a fiber length L3 of 4 mm is described in Reference 2: “Motoichiro Murakami et al.,“ Short-length fiber laser oscillation in 4 ”. -Mm Nd-doped Silica fiber fabricated by zeolite method ", ptics Communications, 2014 year, # 328, Volume, are described in the 121-123 pages ".
 Nd3+添加石英ガラスファイバーに対する励起光源11には、波長810nmのレーザー光を出射する半導体レーザーを使用し得る。Nd3+添加石英ガラスファイバーから発振するレーザー光6は、近赤外レーザーである。したがって、Nd3+添加石英ガラスファイバーを使用することにより、近赤外の帯域での波長可変が可能となる。 As the excitation light source 11 for the Nd 3+ doped quartz glass fiber, a semiconductor laser that emits laser light having a wavelength of 810 nm can be used. The laser beam 6 oscillated from the Nd 3+ doped quartz glass fiber is a near infrared laser. Therefore, by using the Nd 3+ doped quartz glass fiber, the wavelength can be varied in the near infrared band.
 Nd3+コアガラスは、以下の方法(ゼオライト法)によって製造することができる。即ち、まず、X型ゼオライトのナトリウム(Na)イオンを、イオン交換法によってネオジウムイオンに置換する。次に、置換後のX型ゼオライトと、コロイド化された石英とを混合する。そして、水を加えて、スラリーを形成する。その後、スラリーをかき混ぜて、乾燥させる。これにより、乾燥した粉体を得ることができる。最後に、乾燥した粉体を1800℃で焼結することにより、Nd3+コアガラスを得ることができる。Nd3+コアガラスの組成は、例えば、酸価ネオジウム(Nd23)が1.25wt%、酸化アルミニウム(Al23)が2.72wt%、二酸化ケイ素(SiO2)が96.03wt%となる。Nd3+コアガラスの組成は、X線発光分析法によって測定することができる。 Nd 3+ core glass can be produced by the following method (zeolite method). That is, first, sodium (Na) ions of the X-type zeolite are replaced with neodymium ions by an ion exchange method. Next, the substituted X-type zeolite and colloidal quartz are mixed. Then water is added to form a slurry. Then, the slurry is stirred and dried. Thereby, a dry powder can be obtained. Finally, the dried powder can be sintered at 1800 ° C. to obtain Nd 3+ core glass. The composition of the Nd 3+ core glass is, for example, 1.25 wt% of the acid value neodymium (Nd 2 O 3 ), 2.72 wt% of aluminum oxide (Al 2 O 3 ), and 96.03 wt. Of silicon dioxide (SiO 2 ). %. The composition of the Nd 3+ core glass can be measured by X-ray emission analysis.
 Nd3+添加石英ガラスファイバーは、ロッドインチューブ法で製造することができる。即ち、まず、Nd3+コアガラスを棒形状に成形する。棒形状に成形されたNd3+コアガラスの直径は、例えば1mmである。次に、棒形状に成形されたNd3+コアガラスを石英ガラスチューブに挿入して、母材を形成する。例えば、石英ガラスチューブの内径は1mm、石英ガラスチューブの外径は12mmである。その後、母材を線引きすることにより、Nd3+添加石英ガラスファイバーを得ることができる。Nd3+添加石英ガラスファイバーのコア部3aの直径D1は、12μmであり得る。Nd3+添加石英ガラスファイバーの直径(クラッド部3bの直径D2)は、144μmであり得る。Nd3+添加石英ガラスファイバーのクラッド部3bの屈折率は、例えば1.4545であり、Nd3+添加石英ガラスファイバーのコア部3aの屈折率は、例えば1.4499である。Nd3+添加石英ガラスファイバーのコア部3a及びクラッド部3bの屈折率は、分光エリプソメーターによって測定することができる。 The Nd 3+ doped quartz glass fiber can be manufactured by a rod-in-tube method. That is, first, Nd 3+ core glass is formed into a rod shape. The diameter of the Nd 3+ core glass formed into a rod shape is, for example, 1 mm. Next, the Nd 3+ core glass formed into a rod shape is inserted into a quartz glass tube to form a base material. For example, the inner diameter of the quartz glass tube is 1 mm, and the outer diameter of the quartz glass tube is 12 mm. Thereafter, by drawing the base material, an Nd 3+ added quartz glass fiber can be obtained. The diameter D1 of the core portion 3a of the Nd 3+ added quartz glass fiber can be 12 μm. The diameter of the Nd 3+ doped quartz glass fiber (the diameter D2 of the cladding part 3b) may be 144 μm. The refractive index of the clad portion 3b of the Nd 3+ added quartz glass fiber is, for example, 1.4545, and the refractive index of the core portion 3a of the Nd 3+ added quartz glass fiber is, for example, 1.4499. The refractive index of the core portion 3a and the cladding portion 3b of the Nd 3+ added quartz glass fiber can be measured by a spectroscopic ellipsometer.
 なお、ネオジウム(Nd3+)に替えて、イッテルビウム(Yb3+)が使用されてもよい。イッテルビウム(Yb3+)を使用しても、ファイバー長さL3を1mmまで短縮化できる石英ガラスファイバーを作製することができる。 Note that ytterbium (Yb 3+ ) may be used instead of neodymium (Nd 3+ ). Even when ytterbium (Yb 3+ ) is used, a quartz glass fiber capable of shortening the fiber length L3 to 1 mm can be produced.
[第2実施形態]
 続いて第2実施形態について説明する。但し、第1実施形態と異なる事項を説明し、第1実施形態と同じ事項についての説明は割愛する。第2実施形態に係るレーザー共振装置1及びレーザー装置10は、第1実施形態と比べて、第1光学系2が異なる。
[Second Embodiment]
Next, the second embodiment will be described. However, items different from the first embodiment will be described, and descriptions of the same items as the first embodiment will be omitted. The laser resonance device 1 and the laser device 10 according to the second embodiment are different from the first embodiment in the first optical system 2.
 図5は、第2実施形態に係るレーザー共振装置1の構成を示す図である。図5に示すように、第2実施形態に係るレーザー共振装置1は、第1光学系2が、光学要素として1枚の屈折率分布型(GRIN:gradient index)レンズ2cを備える。 FIG. 5 is a diagram showing a configuration of the laser resonance apparatus 1 according to the second embodiment. As shown in FIG. 5, in the laser resonance apparatus 1 according to the second embodiment, the first optical system 2 includes a single gradient index (GRIN) lens 2c as an optical element.
 図6は、屈折率分布型レンズ2cの焦点位置の波長依存特性を示すグラフである。図6において、横軸は、屈折率分布型レンズ2cに入射する光の波長[nm]を示し、縦軸は光軸Aに沿った焦点位置のシフト量[μm]を示す。具体的には、図6は、光学解析ソフトウエア(CODE V)による計算値を示す。 FIG. 6 is a graph showing the wavelength dependence characteristics of the focal position of the gradient index lens 2c. In FIG. 6, the horizontal axis indicates the wavelength [nm] of light incident on the gradient index lens 2c, and the vertical axis indicates the focal position shift amount [μm] along the optical axis A. Specifically, FIG. 6 shows values calculated by optical analysis software (CODE V).
 図6に示すように、波長600nm~700nmの範囲において、焦点位置は光軸Aに沿って略線形に約130μmシフトする。したがって、第1実施形態と同様に、それぞれの波長における焦点位置に出力ミラー4の入射面4aを位置決めすることにより、レーザー光6の波長(発振波長)を変化させることができる。具体的には、出力ミラー4を1.3μm移動(シフト)させると、レーザー光6の波長が1nm変化する。 As shown in FIG. 6, in the wavelength range of 600 nm to 700 nm, the focal position shifts approximately 130 μm substantially linearly along the optical axis A. Therefore, as in the first embodiment, the wavelength (oscillation wavelength) of the laser light 6 can be changed by positioning the incident surface 4a of the output mirror 4 at the focal position at each wavelength. Specifically, when the output mirror 4 is moved (shifted) by 1.3 μm, the wavelength of the laser beam 6 changes by 1 nm.
 第2実施形態によれば、屈折率分布型レンズ2cを使用することにより、第1光学系2を1枚のレンズで構成することが可能となる。また、屈折率分布型レンズ2cの直径は2mm~3mm程度であり、屈折率分布型レンズ2cの長さは5mm~6mm程度ある。したがって、光学系長さL1の短縮化、ひいては共振器長さL2の短縮化を図ることができる。例えば、光ファイバー3として、ファイバー長さL3が40mmのPr:WPFGFを使用することにより、共振器長さL2を5cm~6cm程度にすることができる。また、光ファイバー3として、ファイバー長さL3が4mmのNd3+添加石英ガラスファイバーを使用することにより、共振器長さL2を1cm~2cm程度にすることができる。 According to the second embodiment, by using the gradient index lens 2c, the first optical system 2 can be configured by a single lens. The diameter of the gradient index lens 2c is about 2 mm to 3 mm, and the length of the gradient index lens 2c is about 5 mm to 6 mm. Therefore, the optical system length L1 can be shortened, and hence the resonator length L2 can be shortened. For example, by using Pr: WFGF with a fiber length L3 of 40 mm as the optical fiber 3, the resonator length L2 can be reduced to about 5 cm to 6 cm. Further, by using an Nd 3+ doped silica glass fiber having a fiber length L3 of 4 mm as the optical fiber 3, the resonator length L2 can be set to about 1 cm to 2 cm.
 また、屈折率分布型レンズ2cを使用することにより、レーザー光6の出力を数十ミリWにすることができる。 In addition, by using the gradient index lens 2c, the output of the laser beam 6 can be several tens of milliwatts.
[第3実施形態]
 続いて第3実施形態について説明する。但し、第1実施形態と異なる事項を説明し、第1実施形態と同じ事項についての説明は割愛する。第3実施形態に係るレーザー共振装置1及びレーザー装置10は、第1実施形態と比べて、波長可変のために第2集光レンズ2bを移動(シフト)させる点が異なる。
[Third Embodiment]
Next, a third embodiment will be described. However, items different from the first embodiment will be described, and descriptions of the same items as the first embodiment will be omitted. The laser resonance apparatus 1 and the laser apparatus 10 according to the third embodiment are different from the first embodiment in that the second condenser lens 2b is moved (shifted) to change the wavelength.
 図7は、第3実施形態に係るレーザー共振装置1の構成を示す図である。図7に示すように、第3実施形態に係るレーザー共振装置1では、駆動装置5が、2枚の集光レンズ2a、2bのうち出力ミラー4に近い方の集光レンズ2bの位置を光軸Aに沿って変化させる。 FIG. 7 is a diagram showing a configuration of the laser resonance apparatus 1 according to the third embodiment. As shown in FIG. 7, in the laser resonance apparatus 1 according to the third embodiment, the driving device 5 transmits the position of the condenser lens 2b closer to the output mirror 4 out of the two condenser lenses 2a and 2b. Change along axis A.
 図8は、第3実施形態に係る第2集光レンズ2b及び駆動装置5を示す正面図である。図8に示すように、第2集光レンズ2bは第2ミラーホルダー21によって支持されている。したがって、図7に示すレーザー共振装置1は、第2ミラーホルダー21を更に備える。第2ミラーホルダー21は、駆動装置5に固定されている。 FIG. 8 is a front view showing the second condenser lens 2b and the driving device 5 according to the third embodiment. As shown in FIG. 8, the second condenser lens 2 b is supported by the second mirror holder 21. Therefore, the laser resonator 1 shown in FIG. 7 further includes the second mirror holder 21. The second mirror holder 21 is fixed to the driving device 5.
 続いて図9(a)及び図9(b)を参照して、第3実施形態におけるレーザー光6の波長可変メカニズムについて説明する。第3実施形態においても第1実施形態と同様に、レンズが一般的に有する軸上色収差を利用して、レーザー光6の波長(発振波長)を変化させる。なお、図9(a)及び図9(b)を参照して説明する具体例では、第2集光レンズ2bは平凸レンズであるが、第2集光レンズ2bは平凸レンズに限定されるものではない。 Subsequently, the wavelength variable mechanism of the laser beam 6 in the third embodiment will be described with reference to FIGS. Also in the third embodiment, as in the first embodiment, the wavelength (oscillation wavelength) of the laser beam 6 is changed using the axial chromatic aberration that the lens generally has. In the specific example described with reference to FIGS. 9A and 9B, the second condenser lens 2b is a plano-convex lens, but the second condenser lens 2b is limited to a plano-convex lens. is not.
 図9(a)は、第2集光レンズ2bの位置とレーザー光6の発振波長との関係を示す図である。具体的には、図9(a)は、波長W11を有するレーザー光6を発振するための第2集光レンズ2bの位置を示している。図9(a)に示すように、波長W11を有する光S11が第2集光レンズ2bによって出力ミラー4の入射面4aに集光すると、波長W11を有する光S11のみが、図7に示すコア部3aの端面(光ファイバー3の出射端側の面)に戻る。即ち、波長W11を有する光S11のみが、コア部3aの内部に入射する(戻る)。その結果、波長W11を有するレーザー光6が発振する。なお、このとき、光S11とは異なる波長W12を有する光S12は、コア部3aの端面に結像しない。換言すれば、出力ミラー4によって反射された光S12は、光ファイバー3の出射端において、ぼやけた像となる。 FIG. 9A is a diagram showing the relationship between the position of the second condenser lens 2b and the oscillation wavelength of the laser light 6. FIG. Specifically, FIG. 9A shows the position of the second condenser lens 2b for oscillating the laser beam 6 having the wavelength W11. As shown in FIG. 9A, when the light S11 having the wavelength W11 is condensed on the incident surface 4a of the output mirror 4 by the second condenser lens 2b, only the light S11 having the wavelength W11 is shown in the core shown in FIG. Return to the end surface of the portion 3a (surface on the output end side of the optical fiber 3). That is, only the light S11 having the wavelength W11 enters (returns) the core portion 3a. As a result, the laser beam 6 having the wavelength W11 oscillates. At this time, the light S12 having the wavelength W12 different from the light S11 does not form an image on the end face of the core portion 3a. In other words, the light S12 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
 図9(b)は、第2集光レンズ2bの位置とレーザー光6の発振波長との他の関係を示す図である。具体的には、図9(b)は、波長W12を有するレーザー光6を発振するための第2集光レンズ2bの位置を示している。図9(b)に示すように、波長W12を有するレーザー光6を発振させる際には、第2集光レンズ2bを光軸Aに沿って移動させて、波長W12を有する光S12が出力ミラー4の入射面4aに集光するようにする。これにより、波長W12を有する光S12のみが、図7に示すコア部3aの端面に戻る。即ち、波長W12を有する光S12のみが、コア部3aの内部に入射する(戻る)。その結果、波長W12を有するレーザー光6が発振する。なお、このとき、光S11はコア部3aの端面に結像しない。換言すれば、出力ミラー4によって反射された光S11は、光ファイバー3の出射端において、ぼやけた像となる。 FIG. 9B is a diagram showing another relationship between the position of the second condenser lens 2 b and the oscillation wavelength of the laser light 6. Specifically, FIG. 9B shows the position of the second condenser lens 2b for oscillating the laser beam 6 having the wavelength W12. As shown in FIG. 9B, when the laser beam 6 having the wavelength W12 is oscillated, the second condenser lens 2b is moved along the optical axis A so that the light S12 having the wavelength W12 is output mirror. 4 is focused on the incident surface 4a. Thereby, only the light S12 having the wavelength W12 returns to the end face of the core portion 3a shown in FIG. That is, only the light S12 having the wavelength W12 enters (returns) into the core portion 3a. As a result, the laser beam 6 having the wavelength W12 oscillates. At this time, the light S11 does not form an image on the end face of the core portion 3a. In other words, the light S11 reflected by the output mirror 4 becomes a blurred image at the exit end of the optical fiber 3.
 なお、第3実施形態では、第1光学系2が2枚の集光レンズ2a、2bを備える形態について説明しているが、第1光学系2の構成はこの形態に限定されない。第1光学系2は、第2実施形態で説明したように、1枚の屈折率分布型レンズ2cによって構成されてもよい。この場合、駆動装置5は、屈折率分布型レンズ2cの位置を光軸Aに沿って変化させる。 In the third embodiment, the first optical system 2 includes two condensing lenses 2a and 2b. However, the configuration of the first optical system 2 is not limited to this configuration. As described in the second embodiment, the first optical system 2 may be configured by a single gradient index lens 2c. In this case, the driving device 5 changes the position of the gradient index lens 2c along the optical axis A.
[第4実施形態]
 続いて第4実施形態について説明する。但し、第1実施形態と異なる事項を説明し、第1実施形態と同じ事項についての説明は割愛する。第4実施形態に係るレーザー共振装置1及びレーザー装置10は、出力ミラー4が可飽和吸特性を有する点で、第1実施形態と異なる。
[Fourth Embodiment]
Next, a fourth embodiment will be described. However, items different from the first embodiment will be described, and descriptions of the same items as the first embodiment will be omitted. The laser resonance apparatus 1 and the laser apparatus 10 according to the fourth embodiment are different from the first embodiment in that the output mirror 4 has saturable absorption characteristics.
 図10は、第4実施形態に係るレーザー共振装置1の構成を示す図である。図10に示すように、第4実施形態に係るレーザー共振装置1では、出力ミラー4の入射面4aに、可飽和吸収体(SA:saturable absorber)22が設置されている。これにより、出力ミラー4に可飽和吸特性を付与することができる。可飽和吸収体22には、カーボンナノチューブやグラフェン等を使用し得る。出力ミラー4が可飽和吸特性を有することにより、Qスイッチ又はモードロックによるパルスレーザーを構成することができる。 FIG. 10 is a diagram showing a configuration of the laser resonance apparatus 1 according to the fourth embodiment. As shown in FIG. 10, in the laser resonator 1 according to the fourth embodiment, a saturable absorber (SA) 22 is installed on the incident surface 4 a of the output mirror 4. Thereby, a saturable absorption characteristic can be imparted to the output mirror 4. For the saturable absorber 22, carbon nanotubes, graphene, or the like can be used. Since the output mirror 4 has saturable absorption characteristics, a pulse laser by a Q switch or a mode lock can be configured.
 なお、第4実施形態では、出力ミラー4の入射面4aに可飽和吸収体22を設置する形態について説明しているが、出力ミラー4自身が可飽和吸収特性を有してもよい。例えば、出力ミラー4として半導体可飽和吸収ミラー(SESAM:semiconductor absorption saturable mirror)を使用することにより、出力ミラー4自身が可飽和吸特性を有することができる。 In addition, although the form which installs the saturable absorber 22 in the entrance plane 4a of the output mirror 4 is demonstrated in 4th Embodiment, the output mirror 4 itself may have a saturable absorption characteristic. For example, by using a semiconductor saturable absorber mirror (SESAM) as the output mirror 4, the output mirror 4 itself can have saturable absorption characteristics.
 以上、図面を参照しながら本発明によるレーザー共振装置、及びレーザー装置の実施形態について説明した。但し、本発明によるレーザー共振装置は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。 In the above, embodiments of the laser resonator device and the laser device according to the present invention have been described with reference to the drawings. However, the laser resonator according to the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the gist thereof.
 例えば本発明によるレーザー共振装置、及びレーザー装置の実施形態では、利得媒質を含む光導波路として光ファイバー3が使用される形態について説明したが、利得媒質を含む光導波路は光ファイバー3に限定されない。利得媒質を含む光導波路は、例えば半導体レーザーであり得る。利得媒質を含む光導波路として半導体レーザーを使用することにより、波長を変化させることが可能な外部共振型半導体レーザーを構成することができる。外部共振型半導体レーザーを構成する場合、単一波長よりも広い波長範囲のレーザー光を出射する半導体レーザーを使用し、出力ミラー4からの反射光を半導体レーザーの内部共振器内に帰還させる。また、この場合、第2共振要素(誘電体多層膜8)は省略できる。 For example, in the embodiments of the laser resonator device and the laser device according to the present invention, the form in which the optical fiber 3 is used as the optical waveguide including the gain medium has been described. However, the optical waveguide including the gain medium is not limited to the optical fiber 3. The optical waveguide including the gain medium can be, for example, a semiconductor laser. By using a semiconductor laser as an optical waveguide including a gain medium, an external resonant semiconductor laser capable of changing the wavelength can be configured. When configuring an external resonant semiconductor laser, a semiconductor laser that emits laser light in a wavelength range wider than a single wavelength is used, and the reflected light from the output mirror 4 is fed back into the internal resonator of the semiconductor laser. In this case, the second resonance element (dielectric multilayer film 8) can be omitted.
 また本発明によるレーザー共振装置、及びレーザー装置の実施形態では、第2共振要素として誘電体多層膜8が使用される形態について説明したが、第2共振要素は誘電体多層膜8に限定されない。第2共振要素は、誘電体ミラーであってもよい。誘電体ミラーは、誘電体多層膜が形成されたミラーである。誘電体ミラーは、光ファイバー3の入射端からの光の漏れを防ぐために、光ファイバー3の入射端に密着させることが好ましい。 In the laser resonator device and the laser device according to the embodiment of the present invention, the form in which the dielectric multilayer film 8 is used as the second resonator element has been described. However, the second resonator element is not limited to the dielectric multilayer film 8. The second resonant element may be a dielectric mirror. The dielectric mirror is a mirror on which a dielectric multilayer film is formed. The dielectric mirror is preferably in close contact with the incident end of the optical fiber 3 in order to prevent light leakage from the incident end of the optical fiber 3.
[第5実施形態]
 続いて、本発明による可変型バンドパスフィルタ装置の実施形態について説明する。図11は、本実施形態に係る可変型バンドパスフィルタ装置30の構成を示す図である。可変型バンドパスフィルタ装置30は、レンズが一般的に有する軸上色収差を利用して、第1光ファイバー31(第1光導波路の一例)内を伝送する光の波長を変化させることができる。
[Fifth Embodiment]
Next, an embodiment of a variable bandpass filter device according to the present invention will be described. FIG. 11 is a diagram illustrating a configuration of the variable bandpass filter device 30 according to the present embodiment. The variable band-pass filter device 30 can change the wavelength of light transmitted through the first optical fiber 31 (an example of the first optical waveguide) using axial chromatic aberration that a lens generally has.
 図11に示すように、可変型バンドパスフィルタ装置30は、光学系2と、駆動装置5と、第1光ファイバー31と、第1光ファイバー31の一方の端部(入射端側の端部)を支持する支持部材32とを備える。 As shown in FIG. 11, the variable bandpass filter device 30 includes an optical system 2, a drive device 5, a first optical fiber 31, and one end portion (end portion on the incident end side) of the first optical fiber 31. And a supporting member 32 for supporting.
 本実施形態では、第2光ファイバー33の出射端(図11では右端)から出射される光34の光軸Aに沿って、光学系2と第1光ファイバー31の入射端とがこの順に並んでいる。第2光ファイバー33は、コア部33aとクラッド部33bとを含む。第2光ファイバー33の入射端(図11では左端)には、単一波長よりも広い波長範囲の光34が入射される。第2光ファイバー33は、光34を伝送して、出射端から光学系2(第1集光レンズ2a)へ向けて光34を出射する。 In the present embodiment, the optical system 2 and the incident end of the first optical fiber 31 are arranged in this order along the optical axis A of the light 34 emitted from the emission end (right end in FIG. 11) of the second optical fiber 33. . The second optical fiber 33 includes a core part 33a and a clad part 33b. Light 34 having a wavelength range wider than a single wavelength is incident on the incident end (left end in FIG. 11) of the second optical fiber 33. The second optical fiber 33 transmits the light 34 and emits the light 34 from the emission end toward the optical system 2 (first condenser lens 2a).
 第1光ファイバー31は、コア部31aとクラッド部31bとを含む。第1光ファイバー31の入射端には、光学系2(第2集光レンズ2b)によって集光された光34が照射される。 The first optical fiber 31 includes a core part 31a and a clad part 31b. The incident end of the first optical fiber 31 is irradiated with light 34 condensed by the optical system 2 (second condenser lens 2b).
 支持部材32は、駆動装置5に固定されている。駆動装置5は、支持部材32の位置を光軸Aに沿って変化させることにより、第1光ファイバー31の入射端の位置を光軸Aに沿って変化させる。 The support member 32 is fixed to the driving device 5. The drive device 5 changes the position of the incident end of the first optical fiber 31 along the optical axis A by changing the position of the support member 32 along the optical axis A.
 本実施形態によれば、第1光ファイバー31の入射端の位置を光軸Aに沿って変化させることにより、第1光ファイバー31内を伝送する光の波長を変化させることができる。 According to this embodiment, the wavelength of light transmitted through the first optical fiber 31 can be changed by changing the position of the incident end of the first optical fiber 31 along the optical axis A.
 即ち、第1実施形態で説明したように、軸上色収差に起因して、第2集光レンズ2bによって光が集光される位置(焦点位置)は、光の波長ごとに異なる。したがって、それぞれの波長における焦点位置の間で第1光ファイバー31の入射端の位置を変化させることにより、第1光ファイバー31内を伝送する光の波長を変化させることができる。つまり、第1光ファイバー31の入射端の位置に応じた波長の光のみが、第2集光レンズ2bによって第1光ファイバー31のコア部31aに集光する。よって、第1光ファイバー31の入射端の位置が、ある波長を有する光の焦点位置と一致すると、その光のみが第1光ファイバー31のコア部31aに入射して、第1光ファイバー31内を伝送する。 That is, as described in the first embodiment, the position (focal position) at which light is collected by the second condenser lens 2b is different for each wavelength of light due to axial chromatic aberration. Therefore, the wavelength of the light transmitted through the first optical fiber 31 can be changed by changing the position of the incident end of the first optical fiber 31 between the focal positions at the respective wavelengths. That is, only light having a wavelength corresponding to the position of the incident end of the first optical fiber 31 is condensed on the core portion 31a of the first optical fiber 31 by the second condenser lens 2b. Therefore, when the position of the incident end of the first optical fiber 31 coincides with the focal position of light having a certain wavelength, only that light is incident on the core portion 31a of the first optical fiber 31 and is transmitted through the first optical fiber 31. .
 なお、第1光ファイバー31のコア部31aは利得媒質を含んでもよい。よって、第1光ファイバー31は、第1実施形態で説明した光ファイバー3であり得る。また、可変型バンドパスフィルタ装置30は、第2光ファイバー33(第2光導波路の一例)を含んでもよい。この場合、第2光ファイバー33のコア部33aは利得媒質を含んでもよい。よって、第2光ファイバー33は、第1実施形態で説明した光ファイバー3であり得る。また、可変型バンドパスフィルタ装置30は、第2光導波路として、単一波長よりも広い波長範囲のレーザー光を出射する半導体レーザーを含んでもよい。 In addition, the core part 31a of the first optical fiber 31 may include a gain medium. Therefore, the first optical fiber 31 may be the optical fiber 3 described in the first embodiment. Further, the variable bandpass filter device 30 may include a second optical fiber 33 (an example of a second optical waveguide). In this case, the core part 33a of the second optical fiber 33 may include a gain medium. Therefore, the second optical fiber 33 can be the optical fiber 3 described in the first embodiment. The variable bandpass filter device 30 may include a semiconductor laser that emits laser light in a wavelength range wider than a single wavelength as the second optical waveguide.
 以上、図面を参照しながら本発明による可変型バンドパスフィルタ装置の実施形態について説明した。但し、本発明による可変型バンドパスフィルタ装置は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。 The embodiment of the variable bandpass filter device according to the present invention has been described above with reference to the drawings. However, the variable band-pass filter device according to the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist thereof.
 例えば本発明による可変型バンドパスフィルタ装置の実施形態では、第1光導波路が光ファイバー(光ファイバー31)である形態について説明したが、第1光導波路は光ファイバーに限定されない。第1光導波路は、例えば半導体光導波路であり得る。同様に、利得媒質を含まない第2光導波路が光ファイバー(利得媒質を含まない光ファイバー33)である形態について説明したが、利得媒質を含まない第2光導波路は光ファイバーに限定されない。利得媒質を含まない第2光導波路は、例えば半導体光導波路であり得る。 For example, in the embodiments of the variable bandpass filter device according to the present invention, the first optical waveguide is an optical fiber (optical fiber 31), but the first optical waveguide is not limited to an optical fiber. The first optical waveguide can be, for example, a semiconductor optical waveguide. Similarly, the mode in which the second optical waveguide that does not include the gain medium is an optical fiber (the optical fiber 33 that does not include the gain medium) has been described. However, the second optical waveguide that does not include the gain medium is not limited to the optical fiber. The second optical waveguide that does not include the gain medium may be, for example, a semiconductor optical waveguide.
 以上、本発明によるレーザー共振装置、レーザー装置、及び可変型バンドパスフィルタ装置の実施形態について説明したが、本発明の実施形態で説明された各事項は適宜組み合わせることが可能である。 The embodiments of the laser resonator device, the laser device, and the variable band-pass filter device according to the present invention have been described above, but the items described in the embodiments of the present invention can be combined as appropriate.
 例えば、図10を参照して説明した第4実施形態のレーザー共振装置1では、第1光学系2が光学要素として2枚の集光レンズ2a、2bを備えたが、本発明はこれに限定されない。第4実施形態のレーザー共振装置1において、第1光学系2は、第2実施形態で説明したように、1枚の屈折率分布型レンズ2cを備えてもよい。 For example, in the laser resonator 1 of the fourth embodiment described with reference to FIG. 10, the first optical system 2 includes two condenser lenses 2a and 2b as optical elements, but the present invention is not limited to this. Not. In the laser resonator 1 of the fourth embodiment, the first optical system 2 may include a single gradient index lens 2c as described in the second embodiment.
 また例えば、図11を参照して説明した第5実施形態の可変型バンドパスフィルタ装置30では、駆動装置5が第1光ファイバー31の入射端の位置を変化させたが、本発明はこれに限定されない。第5実施形態の可変型バンドパスフィルタ装置30において、駆動装置5は、第3実施形態で説明したように、2枚の集光レンズ2a、2bのうち第1光ファイバー31の入射端に近い方の集光レンズ2bの位置を光軸Aに沿って変化させてもよい。 Further, for example, in the variable bandpass filter device 30 of the fifth embodiment described with reference to FIG. 11, the drive device 5 changes the position of the incident end of the first optical fiber 31, but the present invention is not limited to this. Not. In the variable bandpass filter device 30 of the fifth embodiment, the drive device 5 is the one closer to the incident end of the first optical fiber 31 of the two condenser lenses 2a and 2b, as described in the third embodiment. The position of the condenser lens 2b may be changed along the optical axis A.
 以下、本発明の実施例について説明する。但し、本発明は、以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
 本実施例では、図4に示すレーザー装置10の構成を使用した。励起光源11には、窒化ガリウム半導体レーザー(日亜化学工業社製、製品名:NDB7875E、製造番号:BA2898)を使用し、窒化ガリウム半導体レーザーから、励起光7として、準連続波(QCW:Quasi-continuous wave)を出射させた。励起光7(青色)の波長は442nm、出力は1.6Wであった。また、第2光学系12として、住田光学ガラス社製の光ファイバーを使用した。 In this example, the configuration of the laser apparatus 10 shown in FIG. 4 was used. As the excitation light source 11, a gallium nitride semiconductor laser (manufactured by Nichia Chemical Co., Ltd., product name: NDB7875E, production number: BA2898) is used. -Continuous wave) was emitted. The wavelength of the excitation light 7 (blue) was 442 nm and the output was 1.6 W. Further, as the second optical system 12, an optical fiber manufactured by Sumita Optical Glass Co., Ltd. was used.
 光ファイバー3には、ファイバー長さL3が40mmのPr:WPFGFを使用した。コア部3aの直径D1は8μm、光ファイバー3(クラッド部3b)の直径D2は300μmとした。プラセオジウム(Pr3+)は3000ppm添加した。誘電体多層膜8は、波長550μm以上650μm以下に対する反射率が99%以上99.5%以下、波長400μm以上480μm以下に対する透過率が90%以上95%以下であった。 For the optical fiber 3, Pr: WPFGF having a fiber length L3 of 40 mm was used. The diameter D1 of the core part 3a was 8 μm, and the diameter D2 of the optical fiber 3 (cladding part 3b) was 300 μm. Praseodymium (Pr 3+ ) was added at 3000 ppm. The dielectric multilayer film 8 had a reflectance of 99% to 99.5% with respect to a wavelength of 550 μm to 650 μm and a transmittance of 90% to 95% with respect to a wavelength of 400 μm to 480 μm.
 各集光レンズ2a、2bには非球面レンズ(エドモンド オプティクス社製、製造番号:#49104、NA:0.33、焦点距離f:37.5mm)を使用した。光ファイバー3の出射端から第1集光レンズ2aまでの距離を37.5mmに設定し、一対の集光レンズ2a、2b間の距離を76mmに設定し、第2集光レンズ2bから出力ミラー4の初期設定位置までの距離を37.5mmに設定した。 An aspherical lens (manufactured by Edmund Optics, serial number: # 49104, NA: 0.33, focal length f: 37.5 mm) was used for each condenser lens 2a, 2b. The distance from the output end of the optical fiber 3 to the first condenser lens 2a is set to 37.5 mm, the distance between the pair of condenser lenses 2a and 2b is set to 76 mm, and the output mirror 4 from the second condenser lens 2b. The distance to the initial setting position was set to 37.5 mm.
 出力ミラー4には、エドモンド オプティクス社製の「ショートパスフィルタ(製造番号:♯64603)」を使用した。出力ミラー4は、波長550μm以上650μm以下に対する反射率が90%以上99.5%以下、波長550μm以上650μm以下に対する透過率が0.5%以上10%以下であった。 The output mirror 4 used was a “short pass filter (manufacturing number: # 64603)” manufactured by Edmund Optics. The output mirror 4 had a reflectance of 90% to 99.5% for wavelengths of 550 μm to 650 μm and a transmittance of 0.5% to 10% for wavelengths of 550 μm to 650 μm.
 出力ミラー4を、初期設定位置から10μmずつ第2集光レンズ2bから遠ざかる向きに光軸Aに沿ってシフトさせて、出力ミラー4を透過したレーザー光6の波長(発振スペクトル)を光スペクトラムアナライザ(オーシャン オプティクス社製、製品名:HR2000)により測定した。測定結果を図12~図25に示す。 The output mirror 4 is shifted along the optical axis A in a direction away from the second condenser lens 2b by 10 μm from the initial setting position, and the wavelength (oscillation spectrum) of the laser light 6 transmitted through the output mirror 4 is changed to an optical spectrum analyzer. (Measured by Ocean Optics, product name: HR2000). The measurement results are shown in FIGS.
 図12~図25はそれぞれ、出力ミラー4を初期設定位置(第2集光レンズ2bから37.5mm離れた箇所)から10μmずつシフトさせて測定した発振スペクトルを示す。図12~図25において、横軸は、レーザー光6の波長(発振スペクトル)を示す。縦軸は、レーザー光6の強度を示す。本実施例において、レーザー光6は、連続波である。 12 to 25 show oscillation spectra measured by shifting the output mirror 4 by 10 μm from the initial setting position (location 37.5 mm away from the second condenser lens 2b), respectively. 12 to 25, the horizontal axis indicates the wavelength (oscillation spectrum) of the laser light 6. FIG. The vertical axis indicates the intensity of the laser beam 6. In this embodiment, the laser beam 6 is a continuous wave.
 図12は、出力ミラー4が初期設定位置に位置する際に得られた発振スペクトルを示す。図12に示すように、出力ミラー4が初期設定位置に位置する場合、ピーク波長は約603.5nmとなった。 FIG. 12 shows an oscillation spectrum obtained when the output mirror 4 is located at the initial setting position. As shown in FIG. 12, when the output mirror 4 is located at the initial setting position, the peak wavelength is about 603.5 nm.
 図13は、出力ミラー4を初期設定位置から10μmシフトさせた際に得られた発振スペクトルを示す。図13に示すように、出力ミラー4を初期設定位置から10μmシフトさせると、ピーク波長が約603.7nmとなった。 FIG. 13 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 10 μm from the initial setting position. As shown in FIG. 13, when the output mirror 4 is shifted by 10 μm from the initial setting position, the peak wavelength is about 603.7 nm.
 図14は、出力ミラー4を初期設定位置から20μmシフトさせた際に得られた発振スペクトルを示す。図14に示すように、出力ミラー4を初期設定位置から20μmシフトさせると、ピーク波長が約604.8nmとなった。 FIG. 14 shows an oscillation spectrum obtained when the output mirror 4 is shifted 20 μm from the initial setting position. As shown in FIG. 14, when the output mirror 4 is shifted by 20 μm from the initial setting position, the peak wavelength is about 604.8 nm.
 図15は、出力ミラー4を初期設定位置から30μmシフトさせた際に得られた発振スペクトルを示す。図15に示すように、出力ミラー4を初期設定位置から30μmシフトさせると、2つのピーク波長が観察された。具体的には、約605.5nmのピーク波長と、約606.3nmのピーク波長とが観察された。これは、約605.5nmの波長の光と、約606.3nmの波長の光とに対する第2集光レンズ2bの軸上色収差に起因する焦点位置のズレ幅が小さく、約605.5nmの波長の光と、約606.3nmの波長の光とのいずれもが、光ファイバー3のコア部3aに戻ったためであると考えられる。 FIG. 15 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 30 μm from the initial setting position. As shown in FIG. 15, when the output mirror 4 was shifted by 30 μm from the initial setting position, two peak wavelengths were observed. Specifically, a peak wavelength of about 605.5 nm and a peak wavelength of about 606.3 nm were observed. This is because the shift width of the focal position due to the axial chromatic aberration of the second condenser lens 2b with respect to the light having the wavelength of about 605.5 nm and the light having the wavelength of about 606.3 nm is small, and the wavelength of about 605.5 nm. This is considered to be because both of the light and the light having a wavelength of about 606.3 nm have returned to the core portion 3 a of the optical fiber 3.
 図16は、出力ミラー4を初期設定位置から40μmシフトさせた際に得られた発振スペクトルを示す。図16に示すように、出力ミラー4を初期設定位置から40μmシフトさせると、ピーク波長が約607.6nmとなった。 FIG. 16 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 40 μm from the initial setting position. As shown in FIG. 16, when the output mirror 4 was shifted by 40 μm from the initial setting position, the peak wavelength was about 607.6 nm.
 図17は、出力ミラー4を初期設定位置から50μmシフトさせた際に得られた発振スペクトルを示す。図17に示すように、出力ミラー4を初期設定位置から50μmシフトさせると、ピーク波長が約609.3nmとなった。 FIG. 17 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 50 μm from the initial setting position. As shown in FIG. 17, when the output mirror 4 is shifted by 50 μm from the initial setting position, the peak wavelength is about 609.3 nm.
 図18は、出力ミラー4を初期設定位置から60μmシフトさせた際に得られた発振スペクトルを示す。図18に示すように、出力ミラー4を初期設定位置から60μmシフトさせると、2つのピーク波長が観察された。具体的には、約610.7nmのピーク波長と、約611.9nmのピーク波長とが観察された。これは、約610.7nmの波長の光と、約611.9nmの波長の光とに対する第2集光レンズ2bの軸上色収差に起因する焦点位置のズレ幅が小さく、約610.7nmの波長の光と、約611.9nmの波長の光とのいずれもが、光ファイバー3のコア部3aに戻ったためであると考えられる。 FIG. 18 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 60 μm from the initial setting position. As shown in FIG. 18, when the output mirror 4 was shifted by 60 μm from the initial setting position, two peak wavelengths were observed. Specifically, a peak wavelength of about 610.7 nm and a peak wavelength of about 611.9 nm were observed. This is because the shift width of the focal position due to the axial chromatic aberration of the second condenser lens 2b with respect to the light having the wavelength of about 610.7 nm and the light having the wavelength of about 611.9 nm is small, and the wavelength of about 610.7 nm. This is considered to be because both of the light and the light having a wavelength of about 611.9 nm have returned to the core portion 3 a of the optical fiber 3.
 図19は、出力ミラー4を初期設定位置から70μmシフトさせた際に得られた発振スペクトルを示す。図19に示すように、出力ミラー4を初期設定位置から70μmシフトさせると、ピーク波長が約613.1nmとなった。 FIG. 19 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 70 μm from the initial setting position. As shown in FIG. 19, when the output mirror 4 is shifted by 70 μm from the initial setting position, the peak wavelength is about 613.1 nm.
 図20は、出力ミラー4を初期設定位置から80μmシフトさせた際に得られた発振スペクトルを示す。図20に示すように、出力ミラー4を初期設定位置から80μmシフトさせると、ピーク波長が約614.4nmとなった。 FIG. 20 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 80 μm from the initial setting position. As shown in FIG. 20, when the output mirror 4 is shifted by 80 μm from the initial setting position, the peak wavelength is about 614.4 nm.
 図21は、出力ミラー4を初期設定位置から90μmシフトさせた際に得られた発振スペクトルを示す。図21に示すように、出力ミラー4を初期設定位置から90μmシフトさせると、ピーク波長が約616.8nmとなった。 FIG. 21 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 90 μm from the initial setting position. As shown in FIG. 21, when the output mirror 4 is shifted by 90 μm from the initial setting position, the peak wavelength is about 616.8 nm.
 図22は、出力ミラー4を初期設定位置から100μmシフトさせた際に得られた発振スペクトルを示す。図22に示すように、出力ミラー4を初期設定位置から100μmシフトさせると、ピーク波長が約619.1nmとなった。 FIG. 22 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 100 μm from the initial setting position. As shown in FIG. 22, when the output mirror 4 is shifted by 100 μm from the initial setting position, the peak wavelength is about 619.1 nm.
 図23は、出力ミラー4を初期設定位置から110μmシフトさせた際に得られた発振スペクトルを示す。図23に示すように、出力ミラー4を初期設定位置から110μmシフトさせると、ピーク波長が約620.2nmとなった。 FIG. 23 shows an oscillation spectrum obtained when the output mirror 4 is shifted 110 μm from the initial setting position. As shown in FIG. 23, when the output mirror 4 is shifted from the initial setting position by 110 μm, the peak wavelength is about 620.2 nm.
 図24は、出力ミラー4を初期設定位置から120μmシフトさせた際に得られた発振スペクトルを示す。図24に示すように、出力ミラー4を初期設定位置から120μmシフトさせると、ピーク波長が約622.1nmとなった。 FIG. 24 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 120 μm from the initial setting position. As shown in FIG. 24, when the output mirror 4 is shifted by 120 μm from the initial setting position, the peak wavelength is about 622.1 nm.
 図25は、出力ミラー4を初期設定位置から130μmシフトさせた際に得られた発振スペクトルを示す。図25に示すように、出力ミラー4を初期設定位置から130μmシフトさせると、ピーク波長が約624.7nmとなった。 FIG. 25 shows an oscillation spectrum obtained when the output mirror 4 is shifted by 130 μm from the initial setting position. As shown in FIG. 25, when the output mirror 4 is shifted by 130 μm from the initial setting position, the peak wavelength is about 624.7 nm.
 したがって、図12~図25に示すように、出力ミラー4の移動範囲(最大移動距離)を130μmに設定することにより、20nm以上の波長可変特性を得ることができた。 Therefore, as shown in FIGS. 12 to 25, by setting the movement range (maximum movement distance) of the output mirror 4 to 130 μm, a wavelength variable characteristic of 20 nm or more could be obtained.
 本発明のレーザー共振装置及びレーザー装置は、医療用レーザーに適用できる。具体的には、レーザーメスの光源、光線力学療法の光源、及びOCT(Optical Coherence Tomography)の光源等に利用できる。また、本発明のレーザー共振装置及びレーザー装置は、計測用レーザーに適用できる。具体的には、LIDAR(Laser Detection and Ranging)の光源、及び大気リモートセンサーの光源等に利用できる。また、本発明のレーザー共振装置及びレーザー装置は、微粒子測定用レーザーに適用できる。具体的には、ラマン分光の光源、及びフローサイトメトリーの光源等に利用できる。また、本発明のレーザー共振装置及びレーザー装置は、太陽電池等の物性計測用の光源に利用できる。また、本発明のレーザー共振装置及びレーザー装置は、光通信の光源に利用できる。 The laser resonance apparatus and laser apparatus of the present invention can be applied to medical lasers. Specifically, it can be used as a light source for a laser knife, a light source for photodynamic therapy, a light source for OCT (Optical Coherence Tomography), and the like. Further, the laser resonance apparatus and laser apparatus of the present invention can be applied to a measurement laser. Specifically, it can be used for a light source of LIDAR (Laser Detection and Ranging), a light source of an atmospheric remote sensor, and the like. Further, the laser resonance apparatus and laser apparatus of the present invention can be applied to a laser for measuring fine particles. Specifically, it can be used as a light source for Raman spectroscopy, a light source for flow cytometry, and the like. The laser resonance apparatus and laser apparatus of the present invention can be used as a light source for measuring physical properties such as solar cells. Moreover, the laser resonance apparatus and laser apparatus of the present invention can be used as a light source for optical communication.
1   レーザー共振装置
2   第1光学系
2a  集光レンズ
2b  集光レンズ
2c  屈折率分布型レンズ
3   光ファイバー
3a  コア部
3b  クラッド部
4   出力ミラー
4a  入射面
5   駆動装置
6   レーザー光
7   励起光
8   誘電体多層膜
10  レーザー装置
30  可変型バンドパスフィルタ装置
A   光軸
DESCRIPTION OF SYMBOLS 1 Laser resonance apparatus 2 1st optical system 2a Condensing lens 2b Condensing lens 2c Refractive index distribution type lens 3 Optical fiber 3a Core part 3b Clad part 4 Output mirror 4a Incident surface 5 Drive apparatus 6 Laser light 7 Excitation light 8 Dielectric multilayer Film 10 Laser device 30 Variable bandpass filter device A Optical axis

Claims (15)

  1.  光軸上に光を集光する光学系と、
     単一波長よりも広い波長範囲の光を発光する利得媒質を含み、前記利得媒質が発光した光を前記光学系に入射する光導波路と、
     前記光学系によって集光された光の一部を反射する入射面を有する第1共振要素と、
     前記入射面の位置、又は前記光学系を構成する光学要素の位置を、前記光軸に沿って変化させる駆動装置と
     を備え、
     前記入射面の位置、又は前記光学要素の位置に応じた波長を有する光が、前記第1共振要素から前記光学系を介して前記光導波路へ戻ることにより、レーザー光が発振する、レーザー共振装置。
    An optical system that focuses light on the optical axis;
    An optical waveguide including a gain medium that emits light in a wavelength range wider than a single wavelength, and the light emitted from the gain medium is incident on the optical system;
    A first resonant element having an incident surface that reflects a portion of the light collected by the optical system;
    A drive device that changes the position of the incident surface or the position of the optical element constituting the optical system along the optical axis;
    A laser resonance apparatus in which laser light oscillates when light having a wavelength corresponding to the position of the incident surface or the position of the optical element returns from the first resonance element to the optical waveguide through the optical system. .
  2.  前記光学系は、前記光学要素として2枚の集光レンズを備え、
     前記駆動装置が、前記入射面の位置、又は、前記2枚の集光レンズのうち前記第1共振要素に近い方の前記集光レンズの位置を変化させる、請求項1に記載のレーザー共振装置。
    The optical system includes two condenser lenses as the optical element,
    2. The laser resonance apparatus according to claim 1, wherein the driving device changes a position of the incident surface or a position of the condenser lens closer to the first resonance element of the two condenser lenses. .
  3.  前記光学系は、前記光学要素として1枚の屈折率分布型レンズを備え、
     前記駆動装置が、前記入射面の位置、又は前記屈折率分布型レンズの位置を変化させる、請求項1に記載のレーザー共振装置。
    The optical system includes a single gradient index lens as the optical element,
    The laser resonator according to claim 1, wherein the driving device changes a position of the incident surface or a position of the gradient index lens.
  4.  前記第1共振要素が、可飽和吸特性を有する、請求項1~請求項3のいずれか1項に記載のレーザー共振装置。 The laser resonator according to any one of claims 1 to 3, wherein the first resonance element has a saturable absorption characteristic.
  5.  励起光を透過し且つ前記利得媒質が発光した光を反射する第2共振要素を更に備え、
     前記光導波路が、光ファイバーであり、
     前記光ファイバーは、前記励起光が入射する入射端を含み、
     前記第2共振要素は、前記入射端に設けられ、
     前記利得媒質は、前記光ファイバーのコア部に含有される、請求項1~請求項4のいずれか1項に記載のレーザー共振装置。
    A second resonant element that transmits the excitation light and reflects the light emitted by the gain medium;
    The optical waveguide is an optical fiber;
    The optical fiber includes an incident end on which the excitation light is incident,
    The second resonance element is provided at the incident end,
    The laser resonator according to any one of claims 1 to 4, wherein the gain medium is contained in a core portion of the optical fiber.
  6.  前記利得媒質が、イオン化された希土類元素、イオン化された遷移元素、又はビスマスを含む、請求項1~請求項5のいずれか1項に記載のレーザー共振装置。 6. The laser resonance apparatus according to claim 1, wherein the gain medium includes an ionized rare earth element, an ionized transition element, or bismuth.
  7.  前記希土類元素が、セリウム、プラセオジウム、ネオジウム、サマリウム、ユーロピウム、イッテルビウム、エルビウム、又はツリウムであり、
     前記遷移元素が、銅又は錫である、請求項6に記載のレーザー共振装置。
    The rare earth element is cerium, praseodymium, neodymium, samarium, europium, ytterbium, erbium, or thulium;
    The laser resonator according to claim 6, wherein the transition element is copper or tin.
  8.  前記光ファイバーが、フッ化物ガラスを含む、請求項5に記載のレーザー共振装置。 The laser resonator according to claim 5, wherein the optical fiber includes fluoride glass.
  9.  前記利得媒質が、イオン化されたプラセオジウムを含む、請求項8に記載のレーザー共振装置。 9. The laser resonator according to claim 8, wherein the gain medium includes ionized praseodymium.
  10.  前記コア部が、イオン化された希土類元素、イオン化された遷移元素、又はビスマスがゼオライトを用いて添加された石英ガラスを含む、請求項5に記載のレーザー共振装置。 6. The laser resonator according to claim 5, wherein the core portion includes an ionized rare earth element, an ionized transition element, or quartz glass to which bismuth is added using zeolite.
  11.  前記利得媒質が、イオン化されたネオジウム又はイッテルビウムを含み、
     前記光ファイバーの長さが1mm以上である、請求項10に記載のレーザー共振装置。
    The gain medium comprises ionized neodymium or ytterbium;
    The laser resonator according to claim 10, wherein a length of the optical fiber is 1 mm or more.
  12.  前記光導波路が、半導体レーザーである、請求項1~請求項4のいずれか1項に記載のレーザー共振装置。 The laser resonator device according to any one of claims 1 to 4, wherein the optical waveguide is a semiconductor laser.
  13.  請求項1~請求項11のいずれか1項に記載のレーザー共振装置と、
     前記光導波路に入射する励起光を発生させる励起光源と
     を備えたレーザー装置。
    A laser resonator according to any one of claims 1 to 11,
    A laser apparatus comprising: an excitation light source that generates excitation light incident on the optical waveguide.
  14.  光軸上に光を集光する光学系と、
     前記光学系によって集光された光が照射される入射端を有する第1光導波路と、
     前記第1光導波路の入射端の位置、又は前記光学系を構成する光学要素の位置を、前記光軸に沿って変化させる駆動装置と
     を備え、
     前記第1光導波路の入射端の位置、又は前記光学要素の位置に応じた波長を有する光が、前記第1光導波路の入射端から、前記第1光導波路の内部へ入射する、可変型バンドパスフィルタ装置。
    An optical system that focuses light on the optical axis;
    A first optical waveguide having an incident end irradiated with light condensed by the optical system;
    A drive device for changing a position of an incident end of the first optical waveguide or a position of an optical element constituting the optical system along the optical axis;
    A variable band in which light having a wavelength corresponding to the position of the incident end of the first optical waveguide or the position of the optical element is incident on the inside of the first optical waveguide from the incident end of the first optical waveguide. Pass filter device.
  15.  前記光学系へ向けて光を出射する第2光導波路を更に備え、
     前記第1光導波路及び前記第2光導波路の少なくとも一方が利得媒質を含む、請求項14に記載の可変型バンドパスフィルタ装置。
    A second optical waveguide that emits light toward the optical system;
    The variable band-pass filter device according to claim 14, wherein at least one of the first optical waveguide and the second optical waveguide includes a gain medium.
PCT/JP2016/051285 2015-01-19 2016-01-18 Laser resonator device, laser device provided with same, and variable bandpass filter device WO2016117506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015007850A JP2016134484A (en) 2015-01-19 2015-01-19 Laser resonance device, laser device including the same, and variable bandpass filter
JP2015-007850 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016117506A1 true WO2016117506A1 (en) 2016-07-28

Family

ID=56417051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051285 WO2016117506A1 (en) 2015-01-19 2016-01-18 Laser resonator device, laser device provided with same, and variable bandpass filter device

Country Status (2)

Country Link
JP (1) JP2016134484A (en)
WO (1) WO2016117506A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707687A (en) * 1970-12-29 1972-12-26 Spectra Physics Dye laser tunable by longitudinal dispersion in the dye cell
US3735278A (en) * 1970-10-20 1973-05-22 Zeiss Stiftung Device for wavelength selection in lasers with broad-band emission
JPS4866855A (en) * 1971-12-13 1973-09-13
JPS59205783A (en) * 1983-05-09 1984-11-21 Matsushita Electric Ind Co Ltd Optical feedback type semiconductor laser device
JP2000501887A (en) * 1995-12-14 2000-02-15 ガッバート,マンフレッド Tunable and tunable semiconductor laser light source and method for optically stable near continuous tuning of a semiconductor laser
JP2005529498A (en) * 2002-06-06 2005-09-29 アルファ・イーエックスエックス・エイビイ Resonator
JP2006041400A (en) * 2004-07-29 2006-02-09 Japan Science & Technology Agency Mode-locked semiconductor laser
WO2010004882A1 (en) * 2008-07-08 2010-01-14 セントラル硝子株式会社 Wide-band wavelength-variable laser device
JP2014049457A (en) * 2012-08-29 2014-03-17 Osaka Univ Fluorescent glass, production method of fluorescent glass, optical fiber and fiber laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735278A (en) * 1970-10-20 1973-05-22 Zeiss Stiftung Device for wavelength selection in lasers with broad-band emission
US3707687A (en) * 1970-12-29 1972-12-26 Spectra Physics Dye laser tunable by longitudinal dispersion in the dye cell
JPS4866855A (en) * 1971-12-13 1973-09-13
JPS59205783A (en) * 1983-05-09 1984-11-21 Matsushita Electric Ind Co Ltd Optical feedback type semiconductor laser device
JP2000501887A (en) * 1995-12-14 2000-02-15 ガッバート,マンフレッド Tunable and tunable semiconductor laser light source and method for optically stable near continuous tuning of a semiconductor laser
JP2005529498A (en) * 2002-06-06 2005-09-29 アルファ・イーエックスエックス・エイビイ Resonator
JP2006041400A (en) * 2004-07-29 2006-02-09 Japan Science & Technology Agency Mode-locked semiconductor laser
WO2010004882A1 (en) * 2008-07-08 2010-01-14 セントラル硝子株式会社 Wide-band wavelength-variable laser device
JP2014049457A (en) * 2012-08-29 2014-03-17 Osaka Univ Fluorescent glass, production method of fluorescent glass, optical fiber and fiber laser

Also Published As

Publication number Publication date
JP2016134484A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
Bufetov et al. Bi-doped optical fibers and fiber lasers
Moulton et al. Tm-doped fiber lasers: fundamentals and power scaling
Crawford et al. High-Power Broadly Tunable 3-$\mu\hbox {m} $ Fiber Laser for the Measurement of Optical Fiber Loss
Dvoyrin et al. Efficient bismuth-doped fiber lasers
Manzani et al. 1.5 μm and visible up-conversion emissions in Er 3+/Yb 3+ co-doped tellurite glasses and optical fibers for photonic applications
WO2010007938A1 (en) Ultraviolet laser device
KR20090107060A (en) Optical element, titanium oxide glass used for the optical element, and light emitting method and light amplifying method using titanium oxide glass
JP2010141283A (en) Wide-band wavelength-variable laser device
WO2007120319A2 (en) Raman spectroscopic apparatus utilizing internal grating stabilized semiconductor laser with high spectral brightness
Dianov Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media
US8199397B2 (en) Negative dispersion mirror and mode-locked solid-state laser apparatus including the mirror
Paramonov et al. Bismuth-doped fibre laser continuously tunable within the range from 1.36 to
CN109755850B (en) Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity
WO2016117506A1 (en) Laser resonator device, laser device provided with same, and variable bandpass filter device
Murakami et al. Laser oscillation in 5-cm Nd-doped silica fiber fabricated by zeolite method
US5267254A (en) Color center laser with transverse auxiliary illumination
Yang et al. Spectroscopic Properties of Er3+/Yb3+-codoped PbO–Bi2O3–Ga2O3–GeO2 glasses
JP2013544441A (en) Device for amplifying light and method for manufacturing the same
Doroshenko et al. Four micron radiation generated by dysprosium doped lead thiogallate laser
WO2016122997A1 (en) Method and apparatus for spectral narrowing and wavelength stabilization of broad-area lasers
CN111837297A (en) Laser oscillator, laser processing apparatus, optical fiber manufacturing method, and optical fiber manufacturing apparatus
CN103236646A (en) Volume Bragg grating mode-locked laser
Carter et al. FIBER LASERS: Thulium-doped fiber forms kilowattclass laser
US20220407281A1 (en) Efficient energy transfer from er3+ to ho3+ and dy3+ in mid-infrared materials
Luhs et al. CW molecular iodine laser pumped with a low power DPSSL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740113

Country of ref document: EP

Kind code of ref document: A1