CN109755850B - Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity - Google Patents
Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity Download PDFInfo
- Publication number
- CN109755850B CN109755850B CN201910174040.0A CN201910174040A CN109755850B CN 109755850 B CN109755850 B CN 109755850B CN 201910174040 A CN201910174040 A CN 201910174040A CN 109755850 B CN109755850 B CN 109755850B
- Authority
- CN
- China
- Prior art keywords
- fiber
- microcavity
- raman
- ultrafast
- laser oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 143
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 84
- 230000003287 optical effect Effects 0.000 claims abstract description 31
- 239000006096 absorbing agent Substances 0.000 claims abstract description 25
- 230000010287 polarization Effects 0.000 claims abstract description 23
- 239000006185 dispersion Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000010521 absorption reaction Methods 0.000 claims abstract 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 238000010168 coupling process Methods 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 239000004005 microsphere Substances 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 14
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 8
- 150000002910 rare earth metals Chemical class 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 5
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 5
- -1 rare earth ion Chemical class 0.000 claims description 5
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- 102000029749 Microtubule Human genes 0.000 claims description 3
- 108091022875 Microtubule Proteins 0.000 claims description 3
- 210000004688 microtubule Anatomy 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract description 2
- 230000001427 coherent effect Effects 0.000 abstract 1
- 238000004891 communication Methods 0.000 abstract 1
- 230000007123 defense Effects 0.000 abstract 1
- 239000013307 optical fiber Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007526 fusion splicing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种基于微腔的中红外拉曼超快光纤激光振荡器,属于激光技术和非线性光学领域。本激光振荡器采用线形腔结构,主要包括锁模元件可饱和吸收体、泵浦源、光纤合束器、用于产生2~5微米激光的增益光纤、色散补偿元件、偏振控制器、高Q值的微腔,所述高Q值的微腔为回音壁模式光学微腔,其品质因数Q值不低于106。本发明利用可饱和吸收晶体的可饱和吸收效应和高Q值微腔的拉曼散射效应,取代了传统千米量级长度的光纤来增加腔内非线性的方法,可以产生相干的锁模脉冲激光,并通过腔内振荡直接实现长波拉曼频移,获得高重复速率,高功率的2~5微米超快拉曼激光;本发明可应用于基础研究,国防,通信传感,生物医疗和材料加工等领域。
The invention discloses a microcavity-based mid-infrared Raman ultrafast fiber laser oscillator, which belongs to the fields of laser technology and nonlinear optics. The laser oscillator adopts a linear cavity structure, which mainly includes a mode-locked element saturable absorber, a pump source, a fiber combiner, a gain fiber for generating 2-5 micron laser light, a dispersion compensation element, a polarization controller, a high-Q The microcavity with a high Q value is a whispering gallery mode optical microcavity, and its quality factor Q value is not lower than 10 6 . The invention utilizes the saturable absorption effect of the saturable absorption crystal and the Raman scattering effect of the high-Q-value microcavity to replace the traditional fiber with a length of kilometer to increase the nonlinearity in the cavity, and can generate coherent mode-locked pulses laser, and directly realize long-wave Raman frequency shift through intra-cavity oscillation to obtain a high repetition rate, high power ultrafast Raman laser of 2-5 microns; the invention can be applied to basic research, national defense, communication sensing, biomedical and material processing and other fields.
Description
技术领域technical field
本发明属于激光技术及非线性光学领域,具体涉及一种基于微腔的中红外拉曼超快光纤激光振荡器。The invention belongs to the field of laser technology and nonlinear optics, in particular to a mid-infrared Raman ultrafast fiber laser oscillator based on a microcavity.
背景技术Background technique
由于波长灵活的特性,拉曼光纤激光器一直受到研究者们的关注。目前,拉曼激光器波长范围已经覆盖了可见光至中红外波段,并在近红外波段最大输出功率可超过千瓦。高功率拉曼光纤激光器技术的现有发展有以下特点:1通过多个超快种子源对功率进行放大来实现高功率拉曼光纤激光器,这种方法需要多个泵浦源和隔离器,因此腔形结构复杂,成本高且可靠性低;2虽然在近红外波段,Yb3+离子掺杂光纤激光器和Er3+离子掺杂光纤激光器,可通过千米量级的长光纤构成振荡器,从而在腔内直接实现拉曼超快激光输出;但是千米量级的长光纤导致拉曼激光的阈值非常高、获得的脉冲重复频率在几十开赫兹量级,低于通常锁模光纤激光器两个量级。这正是中红外波段拉曼超快光纤激光振荡器缺乏的原因。Due to the flexible wavelength characteristics, Raman fiber lasers have always attracted the attention of researchers. At present, the wavelength range of Raman lasers has covered the visible light to mid-infrared band, and the maximum output power in the near-infrared band can exceed kilowatts. The existing development of high-power Raman fiber laser technology has the following characteristics: 1. Amplification of power through multiple ultrafast seed sources to achieve high-power Raman fiber lasers, this method requires multiple pump sources and isolators, so The cavity structure is complex, the cost is high and the reliability is low; 2 Although in the near-infrared band, Yb 3+ ion-doped fiber lasers and Er 3+ ion-doped fiber lasers can be used to form oscillators with long fibers on the order of kilometers. Thus, the Raman ultrafast laser output is directly realized in the cavity; however, the long fiber on the order of kilometer leads to a very high threshold of Raman laser, and the obtained pulse repetition frequency is on the order of tens of KHz, which is lower than that of the usual mode-locked fiber laser. two magnitudes. This is the reason for the lack of Raman ultrafast fiber laser oscillators in the mid-infrared band.
目前尚没有实现2~5微米波段拉曼光纤激光振荡器的报道,主要有两个原因:一是由于光与物质相互作用的非线性强度与光的波长成反比(光子能量成正比),因此拉曼阈值随着光的波长增加而升高;二是因为随着波长靠近2微米,此波段下石英光纤对激光的本征损耗增加,拉曼阈值更难达到,因此基于长光纤实现2微米波段拉曼超快激光阈值高,结构复杂。因为脉冲的重复频率可由计算得出。其中f为脉冲重复频率,L表示光在谐振腔内往还一次的光程,c表示光速。由上述公式可知脉冲重复频率与腔长成反比,因此要想获得高重复频率,应尽量减短腔长。There are no reports on the realization of Raman fiber laser oscillators in the 2-5 micron band. There are two main reasons: one is that the nonlinear intensity of the interaction between light and matter is inversely proportional to the wavelength of the light (proportional to the photon energy), so The Raman threshold increases as the wavelength of light increases; second, as the wavelength approaches 2 microns, the intrinsic loss of the silica fiber to the laser increases in this band, and the Raman threshold is more difficult to achieve, so 2 microns are achieved based on long fibers. Band Raman ultrafast laser has high threshold and complex structure. Because the repetition rate of the pulse can be determined by Calculated. Among them, f is the pulse repetition frequency, L is the optical path of the light in the resonator, and c is the speed of light. It can be known from the above formula that the pulse repetition frequency is inversely proportional to the cavity length, so in order to obtain a high repetition frequency, the cavity length should be shortened as much as possible.
发明内容SUMMARY OF THE INVENTION
为了解决通过长腔实现中红外拉曼超快激光输出导致高阈值低重复频率的问题,本发明提供一种基于微腔的中红外拉曼超快光纤激光振荡器。In order to solve the problem of high threshold and low repetition frequency caused by realizing mid-infrared Raman ultrafast laser output through a long cavity, the present invention provides a mid-infrared Raman ultrafast fiber laser oscillator based on a microcavity.
为实现上述目的,本发明采用的技术方案如下:一种基于微腔的中红外拉曼超快光纤激光振荡器,采用线形腔结构,主要包括锁模元件可饱和吸收体、透镜Ⅰ、透镜Ⅱ、泵浦源、光纤合束器、增益光纤、色散补偿元件、偏振控制器、高Q值的微腔,所述高Q值的微腔为回音壁模式光学微腔,其品质因数Q值不低于106;In order to achieve the above objects, the technical solutions adopted in the present invention are as follows: a mid-infrared Raman ultrafast fiber laser oscillator based on a microcavity adopts a linear cavity structure, and mainly includes a mode-locking element saturable absorber, a lens I, and a lens II. , pump source, fiber combiner, gain fiber, dispersion compensation element, polarization controller, microcavity with high Q value, the microcavity with high Q value is a whispering gallery mode optical microcavity, and its quality factor Q value is different less than 10 6 ;
在光纤合束器的信号输入端一侧切割一个角度α为8°~20°的斜角,斜角的出射光垂直射向透镜中心,即斜角有角度一端通过合适焦距的透镜聚焦到锁模元件可饱和吸收体上,斜角的平角端与光纤合束器的信号输入端连接形成谐振,泵浦源连接光纤合束器的泵浦端,增益光纤一端连接光纤合束器的信号输出端,增益光纤另一端连接色散补偿元件一端,色散补偿元件另一端连接偏振控制器一端,高Q值的微腔连接在偏振控制器后面,或者高Q值的微腔连接在光纤合束器和增益光纤之间,或者高Q值的微腔连接在增益光纤和色散补偿元件之间。Cut an oblique angle with an angle α of 8° to 20° on the side of the signal input end of the fiber combiner, and the outgoing light of the oblique angle is perpendicular to the center of the lens, that is, the angled end of the oblique angle is focused to the lock by a lens with a suitable focal length. On the saturable absorber of the mode element, the flat end of the oblique angle is connected to the signal input end of the fiber combiner to form resonance, the pump source is connected to the pump end of the fiber combiner, and one end of the gain fiber is connected to the signal output of the fiber combiner. The other end of the gain fiber is connected to one end of the dispersion compensation element, the other end of the dispersion compensation element is connected to one end of the polarization controller, the high-Q microcavity is connected to the back of the polarization controller, or the high-Q microcavity is connected to the fiber combiner and Between gain fibers, or a high-Q microcavity is connected between the gain fiber and the dispersion compensating element.
优选的,所述的高Q值的微腔为微球型、微柱型、微盘型、微泡型、微管型或微环型中的一种。Preferably, the high-Q microcavity is one of a microsphere type, a microcolumn type, a microdisk type, a microbubble type, a microtubule type or a microring type.
优选的,所述的高Q值的微腔的材料为2微米波段低损耗的石英或3微米波段低损耗的硅、锗、氟化钙、硒化锌中红外低损耗材料中的一种。Preferably, the material of the high-Q microcavity is one of low-loss quartz in a 2-micron waveband or a mid-infrared low-loss material of silicon, germanium, calcium fluoride, and zinc selenide with low-loss in a 3-micron waveband.
优选的,所述的高Q值的微腔的耦合方式采用拉锥光纤耦合或者棱镜对自由空间耦合中的一种。Preferably, the coupling mode of the high-Q microcavity adopts one of taper fiber coupling or prism-to-free space coupling.
优选的,所述的锁模元件可饱和吸收体为半导体可饱和吸收镜、石墨烯可饱和吸收镜、碳纳米管可饱和吸收镜或氧化石墨烯可饱和吸收镜中的一种,其工作范围覆盖2~3微米波段,其调制深度ΔR的取值范围为8%≤ΔR≤30%。Preferably, the mode-locking element saturable absorber is one of a semiconductor saturable absorber mirror, a graphene saturable absorber mirror, a carbon nanotube saturable absorber mirror or a graphene oxide saturable absorber mirror, and its working range is Covering the 2-3 micron waveband, the value range of the modulation depth ΔR is 8%≤ΔR≤30%.
优选的,所述的泵浦源为半导体激光器泵浦源,中心波长λ为793nm或976nm,激励相应的稀土离子掺杂增益光纤产生2~5微米波段的激光。Preferably, the pump source is a semiconductor laser pump source, the center wavelength λ is 793 nm or 976 nm, and the corresponding rare-earth ion-doped gain fiber is excited to generate laser light in the wavelength range of 2-5 microns.
优选的,所述的增益光纤为稀土单掺杂Tm3+石英光纤或稀土离子Tm3+、Ho3+共掺的石英光纤,用以产生1.6~2.2微米的激光,或Er3+掺杂的氟化物光纤,用以产生3微米左右的激光,再经过拉曼频移获得一阶斯托克斯激光和高阶斯托克斯激光,即可产生2~5微米波长的中红外超快激光。Preferably, the gain fiber is a rare earth singly doped Tm 3+ silica fiber or a rare earth ion Tm 3+ and Ho 3+ co-doped silica fiber, which is used to generate a laser of 1.6-2.2 microns, or Er 3+ doped silica fiber. The fluoride fiber is used to generate a laser of about 3 microns, and then a first-order Stokes laser and a high-order Stokes laser are obtained through Raman frequency shift, which can generate mid-infrared ultrafast with a wavelength of 2 to 5 microns. laser.
优选的,所述的色散补偿元件为色散补偿光纤或啁啾光纤光栅。Preferably, the dispersion compensation element is a dispersion compensation fiber or a chirped fiber grating.
进一步,所述的基于微腔的中红外拉曼超快光纤激光振荡器还包括带通滤波器,所述带通滤波器连接在谐振腔外。Further, the microcavity-based mid-infrared Raman ultrafast fiber laser oscillator further includes a band-pass filter, and the band-pass filter is connected outside the resonant cavity.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、良好的波长扩展特性,且结构简单,紧凑,波长切换容易。通过激励稀土单掺杂Tm3+石英光纤或稀土离子Tm3+、Ho3+共掺的石英光纤提供增益产生2微米左右的激光,通过增减增益光纤的长度改变中心波长和腔内增益,通过微腔元件的拉曼散射效应,在腔内实现拉曼频移,通过增加泵浦功率,更可实现级联拉曼,拉曼频移使激光向长波方向移动,从而可输出2~3微米的拉曼激光。同样,通过激励Er3+掺杂的氟化物光纤提供增益产生3微米左右的激光,可通过拉曼频移产生3~5微米的拉曼激光。1. Good wavelength expansion characteristics, simple and compact structure, and easy wavelength switching. By exciting rare earth singly doped Tm 3+ silica fiber or rare earth ion Tm 3+ , Ho 3+ co-doped silica fiber to provide gain to generate a laser of about 2 microns, and by increasing or decreasing the length of the gain fiber to change the center wavelength and intra-cavity gain, Through the Raman scattering effect of the microcavity element, the Raman frequency shift is realized in the cavity. By increasing the pump power, the cascaded Raman can be realized. The Raman frequency shift makes the laser move to the long-wave direction, so that the output of 2-3 Micron Raman Laser. Similarly, by exciting Er 3+ doped fluoride fiber to provide gain to generate a laser of about 3 microns, a Raman laser of 3 to 5 microns can be generated by Raman frequency shift.
2、可实现高重频(近百兆赫兹)、高功率激光(瓦级)的飞秒激光。本发明采用微腔作为提供拉曼效应的主要元器件。微腔具有极高的Q值和极低的光学非线性阈值,大大降低了中红外拉曼激光实现的难度,并且可以通过腔内振荡直接实现长波拉曼频移,获得数十兆赫兹的高重复速率,瓦级水平的高功率的2~5微米超快拉曼激光。并且微腔可通过石英或硅等常见材料制得,成本低廉且工艺简单,满足实际应用需求。2. Femtosecond laser with high repetition frequency (nearly 100 MHz) and high power laser (watt level) can be realized. The present invention adopts the microcavity as the main component for providing the Raman effect. The microcavity has a very high Q value and a very low optical nonlinear threshold, which greatly reduces the difficulty of mid-infrared Raman laser realization, and can directly realize long-wave Raman frequency shift through intracavity oscillation, and obtain a high frequency of tens of megahertz. Repetition rate, watt-level high-power 2-5 micron ultrafast Raman laser. In addition, the microcavity can be made of common materials such as quartz or silicon, and the cost is low and the process is simple, which can meet the needs of practical applications.
3、采用简单的线性结构,损伤阈值高,可维护性强。本发明中采用稀土离子掺杂光纤和斜角构成的自由空间线性谐振结构,线性腔结构无需复杂的隔离装置,降低了成本。谐振结构极大地提高了腔内的拉曼激光产生所需能量,从而提高中红外拉曼激光振荡器的输出功率和效率。针对可饱和吸收镜的损伤特性,其采用的自由空间结构,使得可饱和吸收镜位置可调,从而使得中红外拉曼激光振荡器维护性好,寿命长。3. Adopt simple linear structure, high damage threshold and strong maintainability. In the present invention, a free space linear resonance structure formed by rare earth ion-doped optical fiber and an oblique angle is adopted, and the linear cavity structure does not need a complicated isolation device, thereby reducing the cost. The resonant structure greatly increases the energy required for Raman laser generation in the cavity, thereby improving the output power and efficiency of mid-infrared Raman laser oscillators. In view of the damage characteristics of the saturable absorber mirror, the free space structure adopted by the saturable absorber mirror makes the position of the saturable absorber mirror adjustable, so that the mid-infrared Raman laser oscillator has good maintenance and long life.
4、本发明采用被动锁模技术产生超短脉冲激光,不需要外界附加的调制源,结构简单。本发明采用可饱和吸收体作为锁模器件,锁模性能较稳定。4. The present invention adopts passive mode locking technology to generate ultra-short pulse laser, does not need external additional modulation source, and has a simple structure. The invention adopts the saturable absorber as the mode-locking device, and the mode-locking performance is relatively stable.
附图说明Description of drawings
图1为本发明实施例1基于微腔的中红外拉曼超快光纤激光振荡器的基本原理图;1 is a basic schematic diagram of a microcavity-based mid-infrared Raman ultrafast fiber laser oscillator according to
图2为锥形光纤制备装置图;2 is a diagram of a tapered optical fiber preparation device;
图3为微球型回音壁模式光学微腔制备装置图;Figure 3 is a diagram of a device for preparing a microsphere whispering gallery mode optical microcavity;
图4为制备的带光纤柄的微球型回音壁模式光学微腔显微镜成像图;Figure 4 is an image of the optical microcavity microscope image of the prepared microsphere whispering gallery mode with an optical fiber handle;
图5为微球型回音壁模式光学微腔与拉锥光纤耦合显微镜图;Figure 5 is a microscope view of the microsphere-shaped whispering gallery mode optical microcavity coupled with a taper fiber;
图6为本发明实施例1预期获得锁模脉冲序列图;FIG. 6 is a diagram of the expected mode-locked pulse sequence obtained in
图7为本发明实施例1预期获得拉曼光谱图;Fig. 7 is the Raman spectrogram expected to be obtained in Example 1 of the present invention;
图8为本发明实施例2基于微腔的中红外拉曼超快光纤激光振荡器的基本原理图;FIG. 8 is a basic schematic diagram of a microcavity-based mid-infrared Raman ultrafast fiber laser oscillator according to
图9为制备的微盘型回音壁模式光学微腔显微镜成像图:(a)俯视,(b)主视;Fig. 9 is the imaging image of the prepared microdisk-type whispering gallery mode optical microcavity microscope: (a) top view, (b) front view;
图10为本发明实施例2预期获得锁模脉冲序列图;FIG. 10 is a diagram of a mode-locked pulse sequence expected to be obtained in
图11为本发明实施例2预期获得拉曼光谱图。FIG. 11 is a Raman spectrum expected to be obtained in Example 2 of the present invention.
图中,1-锁模元件可饱和吸收体,2-透镜Ⅰ,3-透镜Ⅱ,4-斜角,5-泵浦源,6-光纤合束器,7-增益光纤,801-色散补偿光纤,802-啁啾光纤光栅,9-偏振控制器,101-微球型回音壁模式光学微腔,102-微盘型回音壁模式光学微腔,11-带通滤波器,12-单模光纤,13-步进电机,14-计算机,15-电机驱动,16-摄像头,17-三维移动平台,18-二氧化碳激光器,19-聚焦透镜,20-光纤柄,21-拉锥光纤。In the figure, 1-mode-locked element saturable absorber, 2-lens I, 3-lens II, 4-oblique angle, 5-pump source, 6-fiber combiner, 7-gain fiber, 801-dispersion compensation Fiber, 802-chirped fiber grating, 9-polarization controller, 101-microsphere whispering gallery mode optical microcavity, 102-microdisk whispering gallery mode optical microcavity, 11-bandpass filter, 12-single-mode fiber , 13-stepping motor, 14-computer, 15-motor drive, 16-camera, 17-three-dimensional mobile platform, 18-carbon dioxide laser, 19-focusing lens, 20-fiber handle, 21-pulled fiber.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1基于2微米波长泵浦产生2~3微米拉曼锁模激光Example 1 Generation of 2-3 micron Raman mode-locked laser based on 2 micron wavelength pumping
一种基于微腔的中红外拉曼超快光纤激光振荡器结构如图1所示,包括:The structure of a mid-infrared Raman ultrafast fiber laser oscillator based on microcavity is shown in Figure 1, including:
锁模元件可饱和吸收体1,选用2μm波段的宽带半导体可饱和吸收镜(SESAM),SESAM的调制深度范围为8%≤ΔR≤30%,通过增加泵浦功率来控制腔内脉冲能量,使脉冲能量通量达到饱和通量的3~5倍时,适当调节SESAM的三维空间位置从而达到锁模;The
透镜Ⅰ2,焦距为50mm;Lens Ⅰ2, focal length is 50mm;
透镜Ⅱ3,焦距为100mm;Lens II3, focal length is 100mm;
斜角4,利用光纤斜角切割刀切割一个角度为8°~20°的斜角来防止激光反馈,避免F-P效应破坏锁模状态。Bevel 4, use a fiber bevel cutter to cut a bevel with an angle of 8° to 20° to prevent laser feedback and avoid F-P effect from destroying the mode-locked state.
泵浦源5,选用中心波长为793nm的半导体激光器泵浦源,最大输出功率为30W,可激励相对应的增益光纤产生2微米波段的激光;The
光纤合束器6,选用(2+1)×1石英光纤合束器,合束器泵浦端与LD尾纤采用熔接的方式连接;
增益光纤7,选用稀土单掺杂Tm3+石英光纤或稀土离子Tm3+、Ho3+共掺的石英光纤;The
色散补偿元件,选用UHNA4色散补偿光纤801,来调节谐振腔内非线性与色散的相对平衡,从而实现脉冲宽度的可调谐;Dispersion compensation element, UHNA4 dispersion compensation fiber 801 is selected to adjust the relative balance between nonlinearity and dispersion in the resonator cavity, so as to realize the tunable pulse width;
偏振控制器9,选用手动偏振控制器或电动偏振控制器,本实施例采用手动的偏振控制器,通过旋转偏振控制片来拉扯光纤从而改变腔内的非偏振态,成本低且操作灵活,在调节到合适的偏振态后方便固定,从而增强系统的稳定性;The
高Q值的微腔,选用微球型回音壁模式光学微腔101;For the microcavity with high Q value, the microsphere whispering gallery mode
在(2+1)×1光纤合束器6的信号输入端切割一个角度为8°~20°的斜角4来防止激光反馈,避免F-P效应破坏锁模状态;斜角4有角度一端依次通过焦距为100mm的透镜Ⅱ3、焦距为50mm的透镜Ⅰ2后聚焦到半导体可饱和吸收镜1上,使入射在半导体可饱和吸收镜1的光斑能量更大,利于达到锁模阈值;斜角4的平角端与(2+1)×1光纤合束器6的信号输入端连接形成谐振,半导体激光器泵浦源5与(2+1)×1光纤合束器6的泵浦端连接,增益光纤7一端与(2+1)×1光纤合束器6的信号输出端连接,增益光纤7另一端按顺序依次连接色散补偿光纤801、偏振控制器9和微球型回音壁模式光学微腔101,在微球型回音壁模式光学微腔101输出端采用光纤端面直接输出的方式,从而使一种基于微腔的中红外拉曼超快光纤激光振荡器输出高功率拉曼激光。在谐振腔外连接一个为2微米波段的带通滤波器11可获得特定波长的拉曼激光的输出。所有的光学元件之间的光纤通过普通熔接的方式进行连接。Cut a bevel 4 with an angle of 8° to 20° at the signal input end of the (2+1)×1
其中,微球型回音壁模式光学微腔的制备方法为高温熔融冷却法,具体步骤如下:Wherein, the preparation method of the microsphere whispering gallery mode optical microcavity is a high temperature melting and cooling method, and the specific steps are as follows:
首先采用火焰拉锥法制备锥形光纤:将一段单模光纤12去掉涂覆层并用酒精擦拭干净后,用夹具固定在一对步进电机13上,步进电机13由计算机14控制电机驱动15,一个火焰喷嘴固定在单模光纤12正下方,实验开始时调节火焰大小,使光纤处于外焰中,设置步进电机13以相同速度相离运动,带动光纤向两端拉伸,逐渐形成锥形结构,摄像头16反馈图像信息给计算机14。实验中通过控制步进电机13的步长和移动速度等参数控制全过程,制备出多种结构参数的拉锥光纤;拉锥光纤制备装置图如图2。First, the tapered optical fiber is prepared by the flame taper method: after removing the coating layer of a section of single-mode
利用火焰拉锥法制备出锥形光纤后,对其进行切割,将得到的单锥光纤固定在三维移动平台17上,二氧化碳激光器18发出的激光经过聚焦透镜19聚焦到被切割的一端进行加热,在表面张力的作用下光纤会自动向上卷曲形成球状,冷却后便会得到一个带有光纤柄20的微球型微腔101,摄像头16反馈图像信息给计算机14。利用这种方法制备出的球型微腔均匀性较好,表面比较光滑,带有一段光纤柄20,易于操纵。图3所示为微球型回音壁模式光学微腔制备装置图。图4所示为实验制备出的带光纤柄的微球型回音壁模式光学微腔微腔显微镜成像图,直径为50μm,测得其Q值为106。After the tapered fiber is prepared by the flame taper method, it is cut, and the obtained single tapered fiber is fixed on the three-dimensional
实施例1中的微球型微腔耦合方式为利用拉锥光纤进行耦合,将拉锥光纤21的纤芯直径拉至2微米以保证有足够多的光从拉锥光纤21中耦合到微球型回音壁模式光学微腔101中,通过控制微球型回音壁模式光学微腔101与锥形光纤的距离来控制耦合比,这种方式耦合效率高,且操作简单,微球与拉锥光纤耦合显微镜图如图5所示。The microsphere-type microcavity coupling method in Example 1 is to use a taper fiber for coupling, and the core diameter of the
本发明基于微腔的中红外拉曼超快光纤激光振荡器通过增减增益光纤的长度和调节增益光纤的稀土离子掺杂浓度,可实现中心波长的调谐,调节范围为1.8~2微米;通过微腔元件的拉曼散射效应,可在腔内实现拉曼频移;通过增加泵浦功率和微球腔的耦合效率,可实现拉曼强度的控制,从而实现一阶拉曼向高阶拉曼的转换,从而可获得2~3微米拉曼激光。在腔外加一个2微米波段的带通滤波器,即可得到需要的特定波段的拉曼激光。The microcavity-based mid-infrared Raman ultrafast fiber laser oscillator of the present invention can realize the tuning of the center wavelength by increasing or decreasing the length of the gain fiber and adjusting the rare-earth ion doping concentration of the gain fiber, and the adjustment range is 1.8-2 microns; The Raman scattering effect of the microcavity element can realize the Raman frequency shift in the cavity; by increasing the pump power and the coupling efficiency of the microsphere cavity, the Raman intensity can be controlled, so that the first-order Raman to the higher-order Raman can be realized. Mann conversion, so that a 2-3 micron Raman laser can be obtained. Adding a 2-micron band-pass filter to the cavity can obtain the required Raman laser in a specific band.
本发明基于微腔的中红外拉曼超快光纤激光振荡器可通过示波器(探测速度为1GHz)观察到锁模脉冲图,锁模脉冲图如图6所示,脉冲模式稳定,且重复频率为16MHz。可通过光谱仪(测量波段为1600nm-3400nm)观察到拉曼光谱。不同的光纤材料所产生的拉曼频移不同,但是同一种材料的拉曼频移值是固定不变的,与入射光波长变化无关,可根据公式计算出拉曼光纤激光器第i阶斯托克斯激光输出波长λi,其中λi-1为入射光波长,Δs为所用光纤的拉曼频移量,且石英光纤的拉曼频移为13.2THz(440cm-1)。实施例1中预期在光谱仪上2150nm波段可观察到拉曼激光,预期获得的光谱图如图7所示。同时,使用自相关仪进一步测量获得的超快脉冲的脉冲宽度和子结构。The micro-cavity-based mid-infrared Raman ultrafast fiber laser oscillator of the present invention can observe the mode-locked pulse diagram through an oscilloscope (the detection speed is 1 GHz). The mode-locked pulse diagram is shown in FIG. 16MHz. The Raman spectrum can be observed by a spectrometer (measurement band is 1600nm-3400nm). The Raman frequency shift generated by different fiber materials is different, but the Raman frequency shift value of the same material is fixed and has nothing to do with the wavelength change of the incident light, which can be determined according to the formula Calculate the output wavelength λ i of the i-th Stokes laser of the Raman fiber laser, where λ i-1 is the wavelength of the incident light, Δs is the Raman frequency shift of the fiber used, and the Raman frequency shift of the silica fiber is 13.2 THz (440cm -1 ). In Example 1, it is expected that Raman laser can be observed in the 2150 nm band on the spectrometer, and the expected spectrum is shown in FIG. 7 . Meanwhile, the pulse width and substructure of the obtained ultrafast pulses were further measured using an autocorrelator.
实施例2基于3微米波长泵浦产生3~5微米拉曼激光Example 2 Generation of 3-5 μm Raman Laser Based on 3 μm Wavelength Pumping
一种基于微腔的中红外拉曼超快光纤激光振荡器结构如图8所示,包括:The structure of a microcavity-based mid-infrared Raman ultrafast fiber laser oscillator is shown in Figure 8, including:
锁模元件可饱和吸收体1,选用3μm波段(2000nm~3400nm)的宽带半导体可饱和吸收镜(SESAM),SESAM的调制深度范围为8%≤ΔR≤30%,通过增加泵浦功率来控制腔内脉冲能量,使脉冲能量通量达到饱和通量的3~5倍时,适当调节SESAM的三维空间位置从而达到锁模;Mode-locking
透镜Ⅰ2,焦距为50mm;Lens Ⅰ2, focal length is 50mm;
透镜Ⅱ3,焦距为100mm;Lens II3, focal length is 100mm;
斜角4,利用光纤斜角切割刀切割一个角度为8°~20°的斜角来防止激光反馈,避免F-P效应破坏锁模状态。Bevel 4, use a fiber bevel cutter to cut a bevel with an angle of 8° to 20° to prevent laser feedback and avoid F-P effect from destroying the mode-locked state.
泵浦源5,选用中心波长为976nm的半导体激光器泵浦源,最大输出功率为30W,可激励相对应的增益光纤产生3微米波段的激光;The
光纤合束器6,选用(2+1)×1氟化物光纤合束器,其中合束器的泵浦端与LD尾纤采用机械拼接的方式连接;
增益光纤7,选用稀土掺杂Er3+氟化物光纤,Er3+掺杂的摩尔浓度范围可为7%~20%,本实施例选择7%的摩尔掺杂浓度;The
色散补偿元件,选用氟化物光纤刻的啁啾光纤光栅802补偿腔内的色散,从而来调节谐振腔内非线性与色散的相对平衡,实现脉冲宽度的可调谐;For the dispersion compensation element, the chirped fiber grating 802 engraved with fluoride fiber is used to compensate the dispersion in the cavity, so as to adjust the relative balance between nonlinearity and dispersion in the resonator cavity, and realize the tunable pulse width;
偏振控制器9,选用手动偏振控制器或电动偏振控制器,本实施例采用手动的偏振控制器,通过旋转偏振控制片来拉扯光纤从而改变腔内的非偏振态,成本低且操作灵活,在调节到合适的偏振态后方便固定,从而增强系统的稳定性;The
高Q值的微腔,选用氟化钙晶体制备的微盘型回音壁模式光学微腔。The microcavity with high Q value is a microdisk-type whispering gallery mode optical microcavity made of calcium fluoride crystal.
在(2+1)×1光纤合束器6的信号输入端切割一个角度为8°~20°的斜角4来防止激光反馈,避免F-P效应破坏锁模状态;斜角4有角度一端依次通过焦距为100mm的透镜Ⅱ3、焦距为50mm的透镜Ⅰ2后聚焦到半导体可饱和吸收镜1上,使入射在半导体可饱和吸收镜1的光斑能量更大,利于达到锁模阈值;斜角4的平角端与(2+1)×1光纤合束器6的信号输入端通过熔接的方式连接形成谐振,半导体激光器泵浦源5与(2+1)×1光纤合束器6的泵浦端通过机械拼接的方式连接,增益光纤7一端与(2+1)×1光纤合束器6的信号输出端通过熔接的方式连接,增益光纤7另一端按顺序依次通过熔接的方式连接色散补偿啁啾光纤光栅802、通过机械拼接的方式偏振控制器9和通过机械拼接的方式连接微盘型回音壁模式光学微腔102,在微盘型回音壁模式光学微腔102输出端采用光纤端面直接输出的方式,从而使一种基于微腔的中红外拉曼超快光纤激光振荡器输出高功率拉曼激光。在谐振腔外连接一个为3微米波段的带通滤波器11可获得特定波长的拉曼激光的输出。Cut a bevel 4 with an angle of 8° to 20° at the signal input end of the (2+1)×1
其中氟化钙微盘型回音壁模式光学微腔102是利用高纯度的单晶氟化钙作为基本材料,经过切割、研磨和抛光等步骤制备所得。制备的微盘型回音壁模式光学微腔102的显微镜成像图如图9所示,可以看出直径为5毫米,厚度为1毫米,Q值为106。The calcium fluoride microdisk-type whispering gallery mode
本发明基于微腔的中红外拉曼超快光纤激光振荡器实施例2中的微盘型微腔耦合方式为拉锥光纤耦合,此处拉锥光纤23是氟化物光纤,本发明中将拉锥光纤23的纤芯直径拉至2微米左右以保证有足够多的光从拉锥光纤23中耦合到微盘型回音壁模式光学微腔102中,通过控制微盘型回音壁模式光学微腔102与锥形光纤23的距离来控制耦合比,这种方式耦合效率高,且操作简单。The micro-disk-type micro-cavity coupling method in the second embodiment of the micro-cavity-based mid-infrared Raman ultrafast fiber laser oscillator of the present invention is a taper fiber coupling. Here, the taper fiber 23 is a fluoride fiber. The core diameter of the optical fiber 23 is pulled to about 2 microns to ensure that enough light is coupled from the tapered optical fiber 23 into the microdisk-type whispering gallery mode
本发明基于微腔的中红外拉曼超快光纤激光振荡器通过增减增益光纤的长度和调节增益光纤的Er3+掺杂浓度,可实现中心波长的调谐,调谐范围为2.7~2.9微米。不同材料的光纤之间采用机械拼接的方式连接。The mid-infrared Raman ultrafast fiber laser oscillator based on the microcavity of the invention can realize the tuning of the center wavelength by increasing or decreasing the length of the gain fiber and adjusting the Er 3+ doping concentration of the gain fiber, and the tuning range is 2.7-2.9 microns. The fibers of different materials are connected by mechanical splicing.
本发明基于微腔的中红外拉曼超快光纤激光振荡器通过微腔元件的拉曼散射效应,可在腔内实现拉曼频移。通过增加泵浦功率和微球腔的耦合效率,可实现拉曼强度的控制,从而实现一阶拉曼向高阶拉曼的转换,可获得3微米及更长波段的拉曼激光。在输出端加一个3微米波段的带通滤波器11,即可得到需要的特定波段的拉曼激光。The mid-infrared Raman ultrafast fiber laser oscillator based on the microcavity of the present invention can realize the Raman frequency shift in the cavity through the Raman scattering effect of the microcavity element. By increasing the pump power and the coupling efficiency of the microsphere cavity, the Raman intensity can be controlled, so as to realize the conversion of the first-order Raman to the high-order Raman, and obtain a Raman laser with a wavelength of 3 microns and longer. Adding a band-
本发明基于微腔的中红外拉曼超快光纤激光振荡器可通过示波器观察到锁模脉冲图,预期得到的锁模脉冲图如图10所示,脉冲模式稳定,重复频率通过公式计算得出。其中f为脉冲重复频率,L表示光在谐振腔内往返一次的光程,c表示光速,实施例2中为30MHz。可通过光谱仪观察到拉曼光谱,其中氟化物光纤的拉曼频移值为17.4THz(580cm-1)。实施例2中预期在光谱仪上3430nm附近观察到一阶拉曼激光图,预期获得的光谱图如图11所示。同时,使用自相关仪可进一步测量获得的超快脉冲的脉冲宽度和子结构。The micro-cavity-based mid-infrared Raman ultrafast fiber laser oscillator of the present invention can observe the mode-locked pulse diagram through an oscilloscope. The expected mode-locked pulse diagram is shown in Figure 10. The pulse mode is stable, and the repetition frequency is determined by the formula Calculated. Among them, f is the pulse repetition frequency, L represents the optical path of the light going back and forth once in the resonant cavity, and c represents the speed of light, which is 30 MHz in Example 2. The Raman spectrum can be observed by a spectrometer, where the Raman frequency shift value of the fluoride fiber is 17.4 THz (580 cm -1 ). In Example 2, a first-order Raman laser pattern is expected to be observed near 3430 nm on the spectrometer, and the expected spectral pattern is shown in FIG. 11 . Meanwhile, the pulse width and substructure of the obtained ultrafast pulses can be further measured using an autocorrelator.
除上述实施例中提及的微球型、微盘型的光学微腔外,光学微腔还可以选用微柱型、微泡型、微管型或微环型中的一种,只要保证微腔的品质因数Q值不低于106即可。其中微环型光学微腔的直径应不低于500微米,保证微腔在增益波段内具有较多的模式数目。In addition to the microsphere type and microdisk type optical microcavity mentioned in the above embodiment, the optical microcavity can also be selected from one of the microcolumn type, the microbubble type, the microtubule type or the microring type, as long as the microcavity is guaranteed The quality factor Q value should not be lower than 10 6 . The diameter of the micro-ring type optical micro-cavity should not be less than 500 microns, so as to ensure that the micro-cavity has a large number of modes in the gain band.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910174040.0A CN109755850B (en) | 2019-03-08 | 2019-03-08 | Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910174040.0A CN109755850B (en) | 2019-03-08 | 2019-03-08 | Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109755850A CN109755850A (en) | 2019-05-14 |
CN109755850B true CN109755850B (en) | 2020-01-03 |
Family
ID=66407007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910174040.0A Active CN109755850B (en) | 2019-03-08 | 2019-03-08 | Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109755850B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111555109B (en) * | 2020-04-16 | 2021-07-06 | 清华大学 | Dissipative Gain-Coupled Microcavity System |
CN113507039B (en) * | 2021-05-13 | 2022-07-08 | 华东师范大学 | Single-mode micro-laser based on single whispering gallery mode optical microcavity and implementation method |
CN115084994A (en) * | 2022-06-20 | 2022-09-20 | 中北大学 | A passive Q-switching device and method based on dual cavity coupling |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7532656B2 (en) * | 2005-02-16 | 2009-05-12 | The Trustees Of Columbia University In The City Of New York | All-silicon raman amplifiers and lasers based on micro ring resonators |
US20150314134A1 (en) * | 2014-05-02 | 2015-11-05 | Krzysztof Slawomir Nowicki | Method of generating life sustaining energy in the terminal and respiratory bronchioles system (trbs) |
CN204927802U (en) * | 2015-07-03 | 2015-12-30 | 安徽大学 | Tunable optical microcavity Raman laser and tunable optical microcavity doped laser |
CN105024269B (en) * | 2015-07-10 | 2018-08-10 | 北京大学 | A kind of Free Space Optics micro-cavity Raman laser sensor arrangements and its method for sensing |
CN105731785B (en) * | 2016-04-26 | 2018-08-21 | 江苏师范大学 | A kind of atmosphere protection type chalcogenide glass fiber prick-drawing device and application method |
CN107046221A (en) * | 2017-02-24 | 2017-08-15 | 南京邮电大学 | A single-frequency narrow-band fiber laser based on a high-roundness three-dimensional rotationally symmetric microcavity |
CN106785861A (en) * | 2017-03-01 | 2017-05-31 | 太原理工大学 | Gao Zhongying ultra-short pulse generation method and device based on Graphene microcavity locked mode |
-
2019
- 2019-03-08 CN CN201910174040.0A patent/CN109755850B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109755850A (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | On-chip erbium-doped lithium niobate microcavity laser | |
US6097741A (en) | Passively mode-locked fiber lasers | |
Peng et al. | Fiber-taper-coupled L-band Er 3+-doped tellurite glass microsphere laser | |
Dvoyrin et al. | Efficient bismuth-doped fiber lasers | |
CN109755850B (en) | Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity | |
CN101510663A (en) | Polarization dual wavelength fiber-optical ultrashort pulse laser | |
CN103825166B (en) | A kind of high-precision wide tunable single-frequency optical fiber laser | |
CN111711062A (en) | A method and device for generating a mid-infrared optical frequency comb | |
CN110323663B (en) | Device and method for generating vector ultrashort laser pulse of intermediate infrared band | |
CN109038192A (en) | Single-frequency blue green light optical fiber laser is converted in one kind | |
Cui et al. | Towards High-Power Densely Step-Tunable Mid-Infrared Fiber Source From 4.27 to 4.43 µm in CO_2-Filled Anti-Resonant Hollow-Core Silica Fibers | |
CN106229803B (en) | A fiber-based single-frequency blue pulsed laser | |
JP2005322864A (en) | Short pulse light source | |
CN115347441B (en) | Cascade-pumped 3.5 μm all-fiber femtosecond amplifier based on frequency-shifted Raman solitons | |
Jheng et al. | Broadly tunable and low-threshold Cr 4+: YAG crystal fiber laser | |
CN115548835A (en) | Tunable microwave source based on single echo wall mode optical microcavity dual-wavelength laser | |
CN106877128A (en) | An Easy-to-Integrate Wavelength Tunable Solid-State Laser | |
Li et al. | Erbium-ytterbium co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 µW | |
CN102332676A (en) | Mid-infrared fiber laser | |
CN113594842A (en) | Device and method for generating ultrashort pulse of erbium-doped laser | |
Hemming et al. | A high power hybrid mid-IR laser source | |
Singh et al. | Chip-scale, CMOS-compatible, high energy passively Q-switched laser | |
CN109273973B (en) | A Dissipative Soliton Laser in the 2-Micron Band | |
CN204333583U (en) | Thulium-doped all-fiber ring laser | |
CN217903673U (en) | 3-5 micron femtosecond optical fiber amplifier based on red-shift Raman solitons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240103 Address after: No. 1, Floor 1, Unit 1, Building 9, No. 1, Chengfei Avenue, Qingyang District, Chengdu, Sichuan 610000 Patentee after: Chengdu Liyuan Optoelectronic Technology Co.,Ltd. Address before: 221116 No. 101, Shanghai Road, Copper Mt. New District, Jiangsu, Xuzhou Patentee before: Jiangsu Normal University |
|
TR01 | Transfer of patent right |