WO2016117385A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2016117385A1
WO2016117385A1 PCT/JP2016/050454 JP2016050454W WO2016117385A1 WO 2016117385 A1 WO2016117385 A1 WO 2016117385A1 JP 2016050454 W JP2016050454 W JP 2016050454W WO 2016117385 A1 WO2016117385 A1 WO 2016117385A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
component
resin composition
curable resin
group
Prior art date
Application number
PCT/JP2016/050454
Other languages
French (fr)
Japanese (ja)
Inventor
寛 田代
一洋 幸田
俊伸 藤村
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to KR1020177004380A priority Critical patent/KR101850257B1/en
Priority to JP2016570570A priority patent/JPWO2016117385A1/en
Priority to CN201680000405.2A priority patent/CN106414556B/en
Priority to TW105112896A priority patent/TWI585136B/en
Publication of WO2016117385A1 publication Critical patent/WO2016117385A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0245Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds

Definitions

  • the present invention relates to a curable resin composition capable of obtaining a cured film having excellent adhesion and flexibility to a substrate even in a cold region.
  • JP2012-246464 discloses a curable resin composition in which a polyfunctional thiol compound and a specific thioether-containing alkoxysilane derivative are mixed with an epoxy resin composition and a polyfunctional polyene having a plurality of double bonds. is doing.
  • This curable resin composition does not require the addition of other adhesion assistants as in the case of using a silane coupling agent, and can exhibit excellent adhesion to an inorganic substrate.
  • JP 2012-246464 A a curable resin composition in which a polyfunctional thiol compound and a specific thioether-containing alkoxysilane derivative are mixed with an epoxy resin composition and a polyfunctional polyene having a plurality of double bonds.
  • the product has excellent adhesion to the inorganic substrate and excellent storage stability of the resin composition, the cured film is poor in flexibility in cold regions, so cracks tend to occur when the cured film is bent, and adhesion It became clear that there were problems such as lack.
  • the curable resin composition includes (A) a thioether-containing (meth) acrylate derivative represented by the following formula 1, and (B) a polyfunctional (meth) having a weight average molecular weight of 200 to 50,000. Acrylate, and the mass ratio ((A) / (B)) of the component (A) to the component (B) is 0.05 to 30.
  • a in the formula is an integer from 1 to 2
  • b is an integer from 1 to 2
  • R 2 is A divalent group represented by the following formula 3 or 4.
  • the R 3 is a hydrocarbon group having 1 to 12 carbon atoms.
  • the curable resin composition may further contain (C) a photopolymerization initiator in addition to the components (A) to (B).
  • the component (C) is 0.01 to 10 parts by mass with respect to 100 parts by mass as the total mass of the component (A) and the component (B).
  • the curable resin composition further includes (D) a weight average molecular weight of 90 to 700 in addition to the components (A) to (B) or the components (A) to (C).
  • An amine compound that is The component (D) is 0.01 to 50 parts by mass with respect to 100 parts by mass as the total mass of the component (A) and the component (B).
  • the polyfunctional (meth) acrylate (B) having a specific molecular weight is blended in a well-balanced manner while using the specific thioether-containing (meth) acrylate derivative (A) as an active ingredient for improving adhesion.
  • the cured film of the curable resin composition can realize excellent adhesion to the substrate without adding other adhesion assistants or the like as in the case of using a conventional silane coupling agent.
  • the obtained cured film exhibits excellent adhesion and flexibility to the substrate.
  • the curable resin composition of the present disclosure includes the following components (A) and (B) as essential components, and optionally further contains at least one of components (C) and (D).
  • “molecular weight” means “weight average molecular weight” unless otherwise specified.
  • “(Meth) acrylate” means a generic name including both acrylate and methacrylate
  • “(meth) acryloxy group” means a generic name including both an acryloxy group and a methacryloxy group.
  • the description of “XX to XX” indicating the numerical range includes the lower limit (“XX”) and upper limit (“XX”) unless otherwise specified. Means more than xx.
  • the (A) component thioether-containing (meth) acrylate derivative is a compound represented by the following formula 1.
  • a in the formula is an integer from 1 to 2
  • b is an integer from 1 to 2
  • R 2 is A divalent group represented by the following formula 3 or 4.
  • the R 3 is a hydrocarbon group having 1 to 12 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 12 carbon atoms, which is R 3 in the above formula 1, include a linear alkyl group, an alkyl group having a side chain, and a cyclic alkyl group.
  • R 4 in the above formula 2 is the same methylene group, ethylene group, or isopropylene group, and an ethylene group or isopropylene group is particularly preferable because the effect of improving adhesion is enhanced.
  • the polyfunctional (meth) acrylate as the component (B) has a (meth) acryloxy group at the terminal, and preferred examples thereof include a compound represented by the following formula 5.
  • the polyfunctional (meth) acrylate which is (B) component can also be used individually by 1 type, and 2 or more types can also be mixed and used for it.
  • C is an integer of 2 to 30, and R 6 is a hydrocarbon group having 2 to 200 carbon atoms, a group consisting only of ether oxygen (—O—) having 2 to 300 carbon atoms and a hydrocarbon group, or An isocyanurate ring or a group consisting only of an isocyanurate ring and a hydrocarbon group, and R 7 is a hydrogen atom or a methyl group.
  • the (B) polyfunctional (meth) acrylate a polymer type can also be suitably used.
  • a polymer type polyfunctional (meth) acrylate a (meth) acrylate having an epoxy group such as glycidyl (meth) acrylate or a copolymer has a group that reacts with an epoxy group such as (meth) acrylic acid.
  • the polyfunctional (meth) acrylate has a weight average molecular weight of 200 to 50000, preferably 220 to 40000, more preferably 240 to 30000.
  • the (meth) acrylate equivalent of (B) polyfunctional (meth) acrylate is 80 to 6000 g / mol, preferably 80 to 4500 g / mol, more preferably 85 to 3000 g / mol.
  • the (meth) acrylate equivalent is less than 80 g / mol, the (meth) acryloxy group per unit volume becomes excessive, and the thiol group of the (A) thioether-containing (meth) acrylate derivative and the unreacted (meth) acryloxy group
  • the toughness of the cured film made of the curable resin composition is lowered, and the adhesion may be lowered.
  • the (meth) acrylate equivalent is larger than 6000 g / mol, the (meth) acryloxy group concentration is extremely low, so that the reaction efficiency with the thiol group of the (A) thioether-containing (meth) acrylate derivative is reduced, thereby curing. There is a possibility that the toughness of the cured film made of the adhesive resin composition is lowered and the adhesiveness is lowered.
  • the photopolymerization initiator as the component (C) is added to promote the reaction between the thiol group and the (meth) acryloxy group, and can reduce the light irradiation necessary for curing the curable composition.
  • the photopolymerization initiator include a photoradical polymerization initiator, a photocationic polymerization initiator, and a photoanionic polymerization initiator.
  • the photoradical polymerization initiator is preferably used for shortening the reaction time
  • the photocationic polymerization initiator is preferably used for reducing curing shrinkage
  • the photoanionic polymerization initiator is used in the field of electronic circuits and the like. It is preferable to use it when imparting adhesiveness.
  • Examples of the photo radical polymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2 -Hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, etc. It is.
  • Examples of the cationic photopolymerization initiator include bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, cyclopropyldiphenylsulfonium tetrafluoroborate, and diphenyl.
  • Iodonium hexafluorophosphate diphenyliodonium hexafluoroarsenate, 2- (3,4-dimethoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, triphenylsulfonium tetrafluoroborate, Examples thereof include triphenylsulfonium bromide, tri-p-tolylsulfonium hexafluorophosphate, and tri-p-tolylsulfonium trifluoromethanesulfonate.
  • photoanionic polymerization initiator examples include acetophenone o-benzoyloxime, nifedipine, 2- (9-oxoxanthen-2-yl) propionic acid 1,5,7-triazabicyclo [4,4,0] deca- 5-ene, 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate, 1,2 -Dicyclohexyl-4,4,5,5-tetramethylbiguanidinium, n-butyltriphenylborate and the like.
  • the amine compound as component (D) include monofunctional amines and polyamines having a weight average molecular weight of 90 to 700, preferably 100 to 690, more preferably 110 to 680, and a plurality of amino groups.
  • the weight average molecular weight of the amine compound is less than 90, not only the volatility of the amine is increased, causing odor and void, but also the amine concentration at the time of heat curing is lowered, so that the crosslinking reaction is difficult to proceed and the adhesion is improved. It tends to decrease.
  • the weight average molecular weight of an amine compound exceeds 700, water resistance will become low and adhesiveness will fall easily.
  • Monofunctional amines include primary amines, secondary amines, and tertiary amines.
  • polyamines include primary amines, secondary amines, tertiary amines, and complex amines.
  • a complex amine is an amine having two or more of a primary amino group, a secondary amino group, and a tertiary amino group. Examples of such complex amines include imidazoline compounds, imidazole compounds, N-substituted piperazine compounds, and N, N-dimethylurea derivatives.
  • an amine compound can also be used individually by 1 type, and 2 or more types can also be mixed and used for it.
  • the amine compound may form a salt with an organic acid in advance in order to adjust the catalytic activity.
  • organic acid to be reacted in advance with the amine compound include aliphatic carboxylic acids such as stearic acid and 2-ethylhexanoic acid having 1 to 20 carbon atoms and 1 to 5 carboxyl groups in the molecule, and carboxyl groups having 1 to 20 carbon atoms.
  • aromatic carboxylic acids such as pyromellitic acid, trimellitic acid and benzoic acid having 1 to 10 groups in the molecule, or isocyanuric acid.
  • imidazole compounds with high basicity are suitable for curing at the lowest temperature. Further, an imidazole compound coated with a phenol resin or the like can also be used.
  • the imidazole compound is a compound represented by the following formula 6.
  • R 9 is a cyano group, a hydrocarbon group having 1 to 10 carbon atoms, a hydrocarbon group having 1 to 10 carbon atoms substituted with 2,3-diaminotriazine, an alkoxy group having 1 to 4 carbon atoms, or a hydrogen atom.
  • R 8 , R 10 and R 11 are each a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydrogen atom, and R 8 to R 11 are bonded to form a ring. If it is, it is a hydrocarbon group having 2 to 8 carbon atoms.
  • the curable resin composition has a mass ratio ((A) / (B)) of (A) a thioether-containing (meth) acrylate derivative and (B) a polyfunctional (meth) acrylate of 0.05 to 30.
  • Blend “(A) / (B)” is a value obtained by dividing the mass of (A) the thioether-containing (meth) acrylate derivative by the mass of (B) polyfunctional (meth) acrylate.
  • (A) / (B) is less than 0.05 or more than 30, the adhesion tends to decrease.
  • the optimum value of (A) / (B) varies depending on the characteristics required for the curable resin composition, the type of (A) thioether-containing (meth) acrylate derivative and (B) polyfunctional (meth) acrylate.
  • the characteristics after curing the curable resin composition are the values of (number of thiol groups) / (number of (meth) acryloxy groups) (hereinafter referred to as thiol / ene ratio) in the unit weight of the curable resin composition. to be influenced. For example, when the thiol / ene ratio is in the range of 0.5 to 1.5, it is easy to form dense crosslinks and to become a tough cured product.
  • the thiol / ene ratio is 0.1 or more and less than 0.5 or more than 1.5 and 2.0 or less, a flexible and sticky cured product can be obtained. If the thiol / ene ratio is less than 0.1 or exceeds 2.0, gelation is difficult and adhesion tends to decrease.
  • curable resin composition is (C) with respect to 100 mass parts of total mass ((A) + (B)) of (A) thioether containing (meth) acrylate derivative and (B) polyfunctional (meth) acrylate (C).
  • the photopolymerization initiator is blended in an amount of 0.01 to 10 parts by mass.
  • the blending amount of the component (C) is less than 0.01 parts by mass with respect to 100 parts by mass of ((A) + (B))
  • a large amount of integrated light is required for the reaction of the thiol group and the (meth) acryloxy group to proceed Is required, and if it exceeds 10 parts by mass, the crosslink density may be lowered and the adhesion may be lowered.
  • the total weight of (A) thioether-containing (meth) acrylate derivative and (B) polyfunctional (meth) acrylate ((A) + (B)) 100 parts by mass of (D) the amine compound is blended in an amount of 0.01 to 50 parts by mass, preferably 0.01 to 45 parts by mass.
  • the blending amount of the component (D) is less than 0.01 with respect to ((A) + (B))
  • the function as a catalyst becomes insufficient, the curing is not accelerated by heating, and the amount exceeds 50 parts by mass.
  • the storage stability of the curable resin composition is lowered.
  • the curable resin composition can form a cured film by coating on a substrate and curing.
  • the curable resin composition exhibits adhesion to the substrate due to the thioether group of the (A) thioether-containing (meth) acrylate derivative. Therefore, as a base material, a base material that forms a chemical bond with a thioether group (high chemical affinity), such as a transition metal or an alloy thereof, a silicon compound, a phosphorus compound, a sulfur compound, or a boron compound, etc.
  • an organic substrate such as an inorganic substrate, an organic substance having an unsaturated bond (including an aromatic ring), an organic substance having a hydroxyl group or a carboxyl group, or an organic substance treated with plasma or UV ozone.
  • the inorganic base material include glass, silicon, and various metals.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polybutylene terephthalate
  • polycarbonate resins polyimide resins
  • polyolefins such as polyethylene and polypropylene
  • Preferable examples include resin, polycarbonate, polyimide, ABS resin, polyvinyl alcohol, vinyl chloride resin, and polyacetal.
  • curable resin composition a cured film is excellent in a softness
  • the curable resin composition can be cured by irradiating light.
  • the light to be irradiated include active energy rays such as UV (ultraviolet rays) and EB (electron beams).
  • the curable resin composition comprises a component (C)
  • curable resin composition contains (D) component
  • hardening at about 80 degreeC low temperature is attained.
  • the curable resin composition contains the component (C) and the component (D)
  • it can be cured through a two-stage process including a curing process by light irradiation and a curing process by heating.
  • the curable resin composition may be diluted with an organic solvent to make the reaction system uniform and facilitate coating.
  • organic solvents include alcohol solvents, aromatic hydrocarbon solvents, ether solvents, ester solvents, ether ester solvents, ketone solvents, and phosphate ester solvents. These organic solvents are preferably suppressed to a blending amount of less than 10000 parts by mass with respect to 100 parts by mass of the curable resin composition, but basically the solvent is volatilized at the time of becoming a cured film. It does not have a big influence on the physical properties.
  • the curable resin composition may be blended with a viscosity modifier such as silica powder for the purpose of adjusting the viscosity.
  • a viscosity modifier such as silica powder for the purpose of adjusting the viscosity.
  • These viscosity modifiers are preferably suppressed to a blending amount of less than 300 parts by mass with respect to 100 parts by mass of the curable resin composition. When the blending amount of the viscosity modifier exceeds 300 parts by mass, the adhesion may be lowered.
  • the curable resin composition may be added with various additives such as those used in ordinary paints and adhesives.
  • additives such as those used in ordinary paints and adhesives.
  • examples of such an additive include a surfactant for smoothing the coated surface, and an aluminum salt for increasing the usable time.
  • These additives are preferably suppressed to a blending amount of less than 80 parts by mass with respect to 100 parts by mass of the curable resin composition. When the compounding amount of these additives exceeds 80 parts by mass, the adhesion may be lowered.
  • ⁇ (B) component polyfunctional (meth) acrylate> (B-1, Mw: 5000) (N is an average of 13) (B-2, Mw: 246) (B-3, Mw: 352) (B-4, Mw: 22000)
  • B-1, Mw: 5000 N is an average of 13
  • B-2, Mw: 246 B-3, Mw: 352
  • B-4, Mw: 22000 A polymer obtained by adding equimolar amounts of methacrylic acid to a copolymer of glycidyl methacrylate and cyclohexyl methacrylate using the following D-3 as a catalyst (a white solid obtained by reprecipitation of a 50 wt% methyl isobutyl ketone solution with hexane).
  • ⁇ (C) component photopolymerization initiator> (C-1, Mw: 204) 1-hydroxy-cyclohexyl-phenyl-ketone (C-2, Mw: 348) 2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide (C-3, Mw: 407) 2- (9-Oxoxanthen-2-yl) propionic acid 1,5,7-triazabicyclo [4.4.0] dec-5-ene
  • ⁇ (D) component amine compound> (D-1, Mw: 110) (D-2, Mw: 102) N, N-dimethyl-1,3-propanediamine (D-3, Mw: 680) (N1, n2, n3 are integers of 1 to 5, and the average is 3.5)
  • the components (A) to (D) were mixed at the blending ratios shown in Tables 1 to 4, respectively, and stirred with a spatula until uniform, to obtain samples of the curable resin compositions of Examples and Comparative Examples.
  • the following adhesiveness 1 room temperature adhesiveness
  • adhesiveness 2 cold region adhesiveness
  • flexibility flexibility
  • storage stability were evaluated for the samples of the curable resin compositions obtained in Examples and Comparative Examples. went. The results are shown in Tables 1 to 4.
  • Test pieces for evaluation of adhesion 1, adhesion 2, and flexibility were obtained as follows. Each sample of the curable resin composition was coated on a 25 mm wide PET film with a die coater to a thickness of 100 microns, and another PET film was stacked thereon, and then the curing conditions shown in Tables 1 to 4 were applied. A test piece for evaluation was obtained by curing. Note that Lumirror U46-100 manufactured by Toray Industries, Inc. was used as the PET film. For the light irradiation, a UV lamp system “Light Hammer 6” manufactured by Heraeus Noble Light Fusion Ubuy Co., Ltd. was used, and an H bulb was used as the lamp bulb.
  • Adhesion 1 room temperature adhesion
  • the test piece for evaluation was allowed to stand at 25 ° C. for 24 hours, and was measured within 5 minutes by the T-type peeling method defined in JIS K6854-3, and evaluated as follows.
  • the curable resin compositions of Examples 1-1 to 1-13 were confirmed to have high adhesion at room temperature and cold conditions, good flexibility, and excellent storage stability.
  • the curable compositions of Examples 2-1 to 2-5 were cured with a small amount of light irradiation, and high adhesion at room temperature and cold conditions, good flexibility, and excellent storage stability were confirmed.
  • the curable compositions of Examples 3-1 to 3-5 were cured by low light irradiation and low-temperature heating, and high adhesion at room temperature and cold conditions, good flexibility, and excellent storage stability were confirmed. It was.
  • Comparative Example 1-1 in which component (A) is too small relative to component (B) and Comparative Example 1-2 in which component (A) is excessive relative to component (B) Adhesion was poor even at room temperature.
  • Comparative Examples 1-3 to 1-7 in which the compound having the structure of the above formula 1 was used as the component (A), the adhesion under cold conditions was inferior.

Abstract

A curable resin composition containing (A) a thioether-containing (meth)acrylate derivative having a specific structure, and (B) a polyfunctional (meth)acrylate having a weight-average molecular weight of 200-50,000. The mass ratio ((A)/(B)) of component (A) and component (B) is 0.05-30.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、寒冷地においても基材に対する密着性及び柔軟性に優れる硬化膜を得ることができる硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition capable of obtaining a cured film having excellent adhesion and flexibility to a substrate even in a cold region.
 従来、エポキシ樹脂を主成分とする塗料等の無機基材に対する密着性を向上させるために、シランカップリング剤を添加する技術がある(特開平7-300491号公報)。しかしながら、シランカップリング剤の多くは沸点が低く、熱硬化樹脂に対しては多量に添加する必要があった。また、シランカップリング剤の添加による密着性向上効果は充分ではなく、例えばチタン・ジルコニウム等の塩や、リン酸エステル、ウレタン樹脂等の密着性助剤も同時に添加することによって初めて実用レベルで求められる密着性を達成できる場合も多かった。この場合、これら密着性助剤の配合は工程数が増加するだけでなく、塗料特性を損なわないような密着性助剤種の選定や、その添加量の厳密な最適化作業も必要であるという問題点があった。 Conventionally, there is a technique of adding a silane coupling agent in order to improve adhesion to an inorganic base material such as a paint mainly composed of an epoxy resin (Japanese Patent Laid-Open No. 7-300491). However, many of the silane coupling agents have a low boiling point, and it was necessary to add a large amount to the thermosetting resin. In addition, the effect of improving adhesion by adding a silane coupling agent is not sufficient. For example, the addition of an adhesion aid such as a salt of titanium or zirconium, a phosphate ester, or a urethane resin at the same time is required for practical use. In many cases, the adhesion can be achieved. In this case, the formulation of these adhesion assistants not only increases the number of steps, but also requires selection of adhesion assistant types that do not impair the coating properties and strict optimization of the amount added. There was a problem.
 特開2012-246464号公報は、多官能チオール化合物と特定のチオエーテル含有アルコキシシラン誘導体を、エポキシ樹脂組成物、及び、二重結合を複数個有する多官能ポリエンと混合した硬化性樹脂組成物を開示している。この硬化性樹脂組成物は、シランカップリング剤を使用する場合のようにその他の密着性助剤等を添加する必要が無く、無機基材に対して優れた密着性を発揮することができる。 JP2012-246464 discloses a curable resin composition in which a polyfunctional thiol compound and a specific thioether-containing alkoxysilane derivative are mixed with an epoxy resin composition and a polyfunctional polyene having a plurality of double bonds. is doing. This curable resin composition does not require the addition of other adhesion assistants as in the case of using a silane coupling agent, and can exhibit excellent adhesion to an inorganic substrate.
 しかしながら、特開2012-246464号公報のように多官能チオール化合物及び特定のチオエーテル含有アルコキシシラン誘導体を、エポキシ樹脂組成物、及び、二重結合を複数個有する多官能ポリエンと混合した硬化性樹脂組成物は、無機基材に対する密着性に優れ、樹脂組成物の貯蔵安定性に優れるものの、寒冷地においては硬化膜が柔軟性に乏しいため、硬化膜の屈曲時にクラックが生じやすく、更に、密着性に乏しいといった課題があることが判明した。 However, as disclosed in JP 2012-246464 A, a curable resin composition in which a polyfunctional thiol compound and a specific thioether-containing alkoxysilane derivative are mixed with an epoxy resin composition and a polyfunctional polyene having a plurality of double bonds. Although the product has excellent adhesion to the inorganic substrate and excellent storage stability of the resin composition, the cured film is poor in flexibility in cold regions, so cracks tend to occur when the cured film is bent, and adhesion It became clear that there were problems such as lack.
 そのため、寒冷地においても基材に対する密着性が優れ、且つ、得られた硬化膜が柔軟性を有する材料が求められている。 Therefore, there is a demand for a material that has excellent adhesion to a substrate even in a cold region, and that the obtained cured film has flexibility.
 本開示の一側面において、硬化性樹脂組成物は、(A)下記式1で表されるチオエーテル含有(メタ)アクリレート誘導体と、(B)重量平均分子量が200~50000である多官能(メタ)アクリレートと、を含有し、前記(A)成分と前記(B)成分との質量比((A)/(B))が0.05~30である。
Figure JPOXMLDOC01-appb-C000005

(式中のaは1~2の整数であり、bは1~2の整数であり、a+b=3である。Rは下記式2で表される3価の基であり、Rは下記式3または下記式4で表される2価の基である。Rは炭素数が1~12の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000006

(式中のRは-CH-、-CHCH-、または-CHCH(CH)-である。)
Figure JPOXMLDOC01-appb-C000007

(Rは水素原子またはメチル基である。)
Figure JPOXMLDOC01-appb-C000008

(Rは水素原子またはメチル基である。)
In one aspect of the present disclosure, the curable resin composition includes (A) a thioether-containing (meth) acrylate derivative represented by the following formula 1, and (B) a polyfunctional (meth) having a weight average molecular weight of 200 to 50,000. Acrylate, and the mass ratio ((A) / (B)) of the component (A) to the component (B) is 0.05 to 30.
Figure JPOXMLDOC01-appb-C000005

(A in the formula is an integer from 1 to 2, b is an integer from 1 to 2, .R 1 is a + b = 3 is a trivalent group represented by the following formula 2, R 2 is A divalent group represented by the following formula 3 or 4. The R 3 is a hydrocarbon group having 1 to 12 carbon atoms.
Figure JPOXMLDOC01-appb-C000006

(-CH 2 R 4 in the formula -, - CH 2 CH 2 - , or -CH 2 CH (CH 3) - and is.)
Figure JPOXMLDOC01-appb-C000007

(R 5 is a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000008

(R 5 is a hydrogen atom or a methyl group.)
 本開示の他の側面において、硬化性樹脂組成物は、前記(A)~(B)成分に加えて、さらに(C)光重合開始剤を含有してもよい。当該(C)成分は、前記(A)成分と前記(B)成分との合計質量100質量部に対し、0.01~10質量部である。 In another aspect of the present disclosure, the curable resin composition may further contain (C) a photopolymerization initiator in addition to the components (A) to (B). The component (C) is 0.01 to 10 parts by mass with respect to 100 parts by mass as the total mass of the component (A) and the component (B).
 本開示の他の側面において、硬化性樹脂組成物は、前記(A)~(B)成分、または、(A)~(C)成分に加えて、さらに(D)重量平均分子量が90~700であるアミン化合物を含有してもよい。当該(D)成分は、前記(A)成分と前記(B)成分との合計質量100質量部に対し、0.01~50質量部である。 In another aspect of the present disclosure, the curable resin composition further includes (D) a weight average molecular weight of 90 to 700 in addition to the components (A) to (B) or the components (A) to (C). An amine compound that is The component (D) is 0.01 to 50 parts by mass with respect to 100 parts by mass as the total mass of the component (A) and the component (B).
 上記硬化性樹脂組成物によれば、特定のチオエーテル含有(メタ)アクリレート誘導体(A)を密着性向上作用の有効成分としながら、特定の分子量の多官能(メタ)アクリレート(B)がバランス良く配合されている。それにより、従来のシランカップリング剤を使用する場合のようにその他の密着性助剤等を添加することなく、硬化性樹脂組成物の硬化膜は基材に対する優れた密着性を実現できる。特に、寒冷地においても、得られた硬化膜が基材に対する優れた密着性及び柔軟性を発揮する。 According to the curable resin composition, the polyfunctional (meth) acrylate (B) having a specific molecular weight is blended in a well-balanced manner while using the specific thioether-containing (meth) acrylate derivative (A) as an active ingredient for improving adhesion. Has been. Thereby, the cured film of the curable resin composition can realize excellent adhesion to the substrate without adding other adhesion assistants or the like as in the case of using a conventional silane coupling agent. In particular, even in cold regions, the obtained cured film exhibits excellent adhesion and flexibility to the substrate.
 本開示の硬化性樹脂組成物は、下記(A)及び(B)成分を必須成分とし、任意に(C)及び(D)成分の少なくとも一方をさらに含有する。なお、本開示において、「分子量」とは別途記載が無い限り「重量平均分子量」を意味する。「(メタ)アクリレート」とは、アクリレートとメタクリレートの双方を含む総称を意味し、「(メタ)アクリロキシ基」とは、アクリロキシ基とメタクリロキシ基の双方を含む総称を意味する。数値範囲を示す「○○~××」の記載は、別途記載が無い限り、その下限値(「○○」)や上限値(「××」)を含む、すなわち、正確には「○○以上××以下」を意味する。 The curable resin composition of the present disclosure includes the following components (A) and (B) as essential components, and optionally further contains at least one of components (C) and (D). In the present disclosure, “molecular weight” means “weight average molecular weight” unless otherwise specified. “(Meth) acrylate” means a generic name including both acrylate and methacrylate, and “(meth) acryloxy group” means a generic name including both an acryloxy group and a methacryloxy group. The description of “XX to XX” indicating the numerical range includes the lower limit (“XX”) and upper limit (“XX”) unless otherwise specified. Means more than xx.
<チオエーテル含有(メタ)アクリレート誘導体((A)成分)>
 (A)成分であるチオエーテル含有(メタ)アクリレート誘導体とは、下記式1で表される化合物である。
Figure JPOXMLDOC01-appb-C000009

(式中のaは1~2の整数であり、bは1~2の整数であり、a+b=3である。Rは下記式2で表される3価の基であり、Rは下記式3または下記式4で表される2価の基である。Rは炭素数が1~12の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000010

(式中のRは-CH-、-CHCH-、または-CHCH(CH)-である。)
Figure JPOXMLDOC01-appb-C000011

(Rは水素原子またはメチル基である。)
Figure JPOXMLDOC01-appb-C000012

(Rは水素原子またはメチル基である。)
<Thioether-containing (meth) acrylate derivative (component (A))>
The (A) component thioether-containing (meth) acrylate derivative is a compound represented by the following formula 1.
Figure JPOXMLDOC01-appb-C000009

(A in the formula is an integer from 1 to 2, b is an integer from 1 to 2, .R 1 is a + b = 3 is a trivalent group represented by the following formula 2, R 2 is A divalent group represented by the following formula 3 or 4. The R 3 is a hydrocarbon group having 1 to 12 carbon atoms.
Figure JPOXMLDOC01-appb-C000010

(-CH 2 R 4 in the formula -, - CH 2 CH 2 - , or -CH 2 CH (CH 3) - and is.)
Figure JPOXMLDOC01-appb-C000011

(R 5 is a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000012

(R 5 is a hydrogen atom or a methyl group.)
 上記式1中のRである炭素数が1~12の炭化水素基としては、直鎖のアルキル基、側鎖を持つアルキル基、環状のアルキル基が挙げられる。 Examples of the hydrocarbon group having 1 to 12 carbon atoms, which is R 3 in the above formula 1, include a linear alkyl group, an alkyl group having a side chain, and a cyclic alkyl group.
 上記式2中のRは、相互に同一なメチレン基、エチレン基、またはイソプロピレン基であり、密着性向上効果が高くなることから、エチレン基、イソプロピレン基が特に好ましい。 R 4 in the above formula 2 is the same methylene group, ethylene group, or isopropylene group, and an ethylene group or isopropylene group is particularly preferable because the effect of improving adhesion is enhanced.
<多官能(メタ)アクリレート((B)成分)>
 (B)成分である多官能(メタ)アクリレートは末端に(メタ)アクリロキシ基を有しており、その好ましい例として下記式5で表される化合物が挙げられる。なお、(B)成分である多官能(メタ)アクリレートは、1種のみを単独で使用することもできるし、2種以上を混合使用することもできる。
Figure JPOXMLDOC01-appb-C000013

(式中のCは2~30の整数であり、Rは炭素数2~200の炭化水素基、炭素数2~300のエーテル酸素(-O-)と炭化水素基のみからなる基、またはイソシアヌレート環若しくはイソシアヌレート環と炭化水素基のみからなる基であり、Rは水素原子またはメチル基である。)
<Multifunctional (meth) acrylate (component (B))>
The polyfunctional (meth) acrylate as the component (B) has a (meth) acryloxy group at the terminal, and preferred examples thereof include a compound represented by the following formula 5. In addition, the polyfunctional (meth) acrylate which is (B) component can also be used individually by 1 type, and 2 or more types can also be mixed and used for it.
Figure JPOXMLDOC01-appb-C000013

(In the formula, C is an integer of 2 to 30, and R 6 is a hydrocarbon group having 2 to 200 carbon atoms, a group consisting only of ether oxygen (—O—) having 2 to 300 carbon atoms and a hydrocarbon group, or An isocyanurate ring or a group consisting only of an isocyanurate ring and a hydrocarbon group, and R 7 is a hydrogen atom or a methyl group.)
 また、(B)多官能(メタ)アクリレートとしては、ポリマータイプのものも好適に用いることができる。ポリマータイプの多官能(メタ)アクリレートとしては、グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート単独あるいは共重合体に、(メタ)アクリル酸のようにエポキシ基と反応する基を有する(メタ)アクリレートを反応させて得られるポリマー、ヒドロキシエチル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート単独あるいは共重合体に、2-メチルプロペン酸2-イソシアナトエチルのように水酸基と反応する基を有する(メタ)アクリレートを反応させて得られるポリマー、(メタ)アクリル酸等のカルボキシル基を有する(メタ)アクリレート単独あるいは共重合体に、グリシジル(メタ)アクリレートのようにカルボキシル基と反応する基を有する(メタ)アクリレートを反応させて得られるポリマー等が挙げられる。 Further, as the (B) polyfunctional (meth) acrylate, a polymer type can also be suitably used. As a polymer type polyfunctional (meth) acrylate, a (meth) acrylate having an epoxy group such as glycidyl (meth) acrylate or a copolymer has a group that reacts with an epoxy group such as (meth) acrylic acid. Polymer obtained by reacting (meth) acrylate, (meth) acrylate having a hydroxyl group such as hydroxyethyl (meth) acrylate, or a copolymer, reacting with a hydroxyl group such as 2-methylpropenoic acid 2-isocyanatoethyl A polymer obtained by reacting a (meth) acrylate having a group to react, (meth) acrylate having a carboxyl group such as (meth) acrylic acid or a copolymer, and reacting with a carboxyl group like glycidyl (meth) acrylate (Meth) acrylate having a group that reacts with Resulting Te polymers.
 (B)多官能(メタ)アクリレートの重量平均分子量は200~50000、好ましくは220~40000、より好ましくは240~30000である。(B)多官能(メタ)アクリレートの重量平均分子量が200より小さくても密着性に関しては問題ないが、揮発性が高くなり臭気が強くなる傾向があるため好ましくない。一方、重量平均分子量が50000より大きいと、密着性に関しては問題ないが、他の成分に対する溶解性が低くなる可能性があるため好ましくない。 (B) The polyfunctional (meth) acrylate has a weight average molecular weight of 200 to 50000, preferably 220 to 40000, more preferably 240 to 30000. (B) Even if the weight average molecular weight of the polyfunctional (meth) acrylate is smaller than 200, there is no problem with respect to adhesion, but it is not preferable because the volatility tends to increase and the odor tends to increase. On the other hand, if the weight average molecular weight is larger than 50000, there is no problem with the adhesion, but the solubility in other components may be lowered, which is not preferable.
 また、(B)多官能(メタ)アクリレートの(メタ)アクリレート当量は80~6000g/mol、好ましくは80~4500g/mol、より好ましくは85~3000g/molとする。(メタ)アクリレート当量が80g/molより小さいと、単位体積あたりの(メタ)アクリロキシ基が過剰になって(A)チオエーテル含有(メタ)アクリレート誘導体のチオール基と未反応の(メタ)アクリロキシ基が多量に残存することで、硬化性樹脂組成物からなる硬化膜の靭性が低下し、密着性が低下するおそれがある。一方、(メタ)アクリレート当量が6000g/molより大きくなると、(メタ)アクリロキシ基濃度が著しく低いことから(A)チオエーテル含有(メタ)アクリレート誘導体のチオール基との反応効率が低下することで、硬化性樹脂組成物からなる硬化膜の靭性が低下し、密着性が低下するおそれがある。 The (meth) acrylate equivalent of (B) polyfunctional (meth) acrylate is 80 to 6000 g / mol, preferably 80 to 4500 g / mol, more preferably 85 to 3000 g / mol. When the (meth) acrylate equivalent is less than 80 g / mol, the (meth) acryloxy group per unit volume becomes excessive, and the thiol group of the (A) thioether-containing (meth) acrylate derivative and the unreacted (meth) acryloxy group By remaining in a large amount, the toughness of the cured film made of the curable resin composition is lowered, and the adhesion may be lowered. On the other hand, when the (meth) acrylate equivalent is larger than 6000 g / mol, the (meth) acryloxy group concentration is extremely low, so that the reaction efficiency with the thiol group of the (A) thioether-containing (meth) acrylate derivative is reduced, thereby curing. There is a possibility that the toughness of the cured film made of the adhesive resin composition is lowered and the adhesiveness is lowered.
<光重合開始剤((C)成分)>
 (C)成分である光重合開始剤は、チオール基と(メタ)アクリロキシ基との反応を促進するために添加され、硬化性組成物の硬化に必要な光照射を少なくすることができる。光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤、光アニオン重合開始剤等があげられる。光ラジカル重合開始剤は、反応時間を短縮する際に用いることが好ましく、光カチオン重合開始剤は、硬化収縮を小さくする際に用いることが好ましく、光アニオン重合開始剤は、電子回路等の分野での接着性を付与する際に用いることが好ましい。
<Photopolymerization initiator (component (C))>
The photopolymerization initiator as the component (C) is added to promote the reaction between the thiol group and the (meth) acryloxy group, and can reduce the light irradiation necessary for curing the curable composition. Examples of the photopolymerization initiator include a photoradical polymerization initiator, a photocationic polymerization initiator, and a photoanionic polymerization initiator. The photoradical polymerization initiator is preferably used for shortening the reaction time, the photocationic polymerization initiator is preferably used for reducing curing shrinkage, and the photoanionic polymerization initiator is used in the field of electronic circuits and the like. It is preferable to use it when imparting adhesiveness.
 光ラジカル重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が挙げられる。 Examples of the photo radical polymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane. -1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2 -Hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, etc. It is.
 光カチオン重合開始剤としては、例えば、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート、ビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、シクロプロピルジフェニルスルホニウムテトラフルオロボラート、ジフェニルヨードニウムヘキサフルオロホスファート、ジフェニルヨードニウムヘキサフルオロアルセナート、2-(3,4-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、トリフェニルスルホニウムテトラフルオロボラート、トリフェニルスルホニウムブロミド、トリ-p-トリルスルホニウムヘキサフルオロホスファート、トリ-p-トリルスルホニウムトリフルオロメタンスルホナート等が挙げられる。 Examples of the cationic photopolymerization initiator include bis (4-tert-butylphenyl) iodonium hexafluorophosphate, bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, cyclopropyldiphenylsulfonium tetrafluoroborate, and diphenyl. Iodonium hexafluorophosphate, diphenyliodonium hexafluoroarsenate, 2- (3,4-dimethoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, triphenylsulfonium tetrafluoroborate, Examples thereof include triphenylsulfonium bromide, tri-p-tolylsulfonium hexafluorophosphate, and tri-p-tolylsulfonium trifluoromethanesulfonate.
 光アニオン重合開始剤としては、例えば、アセトフェノン o-ベンゾイルオキシム、ニフェジピン、2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4,4,0]デカ-5-エン、2-ニトロフェニルメチル4-メタクリロイルオキシピペリジン-1-カルボキシラート、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム2-(3-ベンゾイルフェニル)プロピオナート、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウム n-ブチルトリフェニルボラート等が挙げられる。 Examples of the photoanionic polymerization initiator include acetophenone o-benzoyloxime, nifedipine, 2- (9-oxoxanthen-2-yl) propionic acid 1,5,7-triazabicyclo [4,4,0] deca- 5-ene, 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate, 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate, 1,2 -Dicyclohexyl-4,4,5,5-tetramethylbiguanidinium, n-butyltriphenylborate and the like.
<アミン化合物((D)成分)>
 (D)成分であるアミン化合物は、チオール基と(メタ)アクリロキシ基との反応を促進(触媒)するために添加される。具体的には、(D)成分を含有することによって、チオール基と(メタ)アクリロキシ基とを低温で反応させることができるため、(A)成分と(B)成分とを含む硬化性樹脂組成物を低温硬化することが可能となる。(D)成分であるアミン化合物としては、重量平均分子量が90~700、好ましくは100~690、より好ましくは110~680の、単官能アミンや複数個のアミノ基とを有するポリアミンが挙げられる。アミン化合物の重量平均分子量が90未満では、アミンの揮発性が高くなり、臭気やボイドの原因となるだけではなく、加熱硬化時のアミン濃度が低くなるため架橋反応が進行し難くなり密着性が低下し易くなる。アミン化合物の重量平均分子量が700を超えると、耐水性が低くなり密着性が低下し易くなる。
<Amine compound (component (D))>
The amine compound as component (D) is added to promote (catalyze) the reaction between the thiol group and the (meth) acryloxy group. Specifically, since the thiol group and the (meth) acryloxy group can be reacted at a low temperature by containing the component (D), the curable resin composition containing the component (A) and the component (B). An object can be cured at a low temperature. Examples of the amine compound as component (D) include monofunctional amines and polyamines having a weight average molecular weight of 90 to 700, preferably 100 to 690, more preferably 110 to 680, and a plurality of amino groups. If the weight average molecular weight of the amine compound is less than 90, not only the volatility of the amine is increased, causing odor and void, but also the amine concentration at the time of heat curing is lowered, so that the crosslinking reaction is difficult to proceed and the adhesion is improved. It tends to decrease. When the weight average molecular weight of an amine compound exceeds 700, water resistance will become low and adhesiveness will fall easily.
 単官能アミンとしては、1級アミン、2級アミン、又は3級アミンが挙げられる。ポリアミンとしては、1級アミン、2級アミン、3級アミン、複合アミンが挙げられる。複合アミンとは、1級アミノ基、2級アミノ基、3級アミノ基のうち2種以上を有するアミンのことである。このような複合アミンとしては、イミダゾリン化合物、イミダゾール化合物、N置換ピペラジン化合物、N,N-ジメチル尿素誘導体等が挙げられる。なお、アミン化合物は、1種のみを単独で使用することもできるし、2種以上を混合使用することもできる。 Monofunctional amines include primary amines, secondary amines, and tertiary amines. Examples of polyamines include primary amines, secondary amines, tertiary amines, and complex amines. A complex amine is an amine having two or more of a primary amino group, a secondary amino group, and a tertiary amino group. Examples of such complex amines include imidazoline compounds, imidazole compounds, N-substituted piperazine compounds, and N, N-dimethylurea derivatives. In addition, an amine compound can also be used individually by 1 type, and 2 or more types can also be mixed and used for it.
 また、アミン化合物は、触媒活性を調整するために予め有機酸との塩を形成していても良い。アミン化合物と予め反応させる有機酸としては、炭素数1~20でカルボキシル基を分子中に1~5個有するステアリン酸や2-エチルヘキサン酸等の脂肪族カルボン酸、炭素数1~20でカルボキシル基を分子中に1~10個有するピロメリット酸、トリメリット酸、安息香酸等の芳香族カルボン酸、又はイソシアヌル酸が挙げられる。 Further, the amine compound may form a salt with an organic acid in advance in order to adjust the catalytic activity. Examples of the organic acid to be reacted in advance with the amine compound include aliphatic carboxylic acids such as stearic acid and 2-ethylhexanoic acid having 1 to 20 carbon atoms and 1 to 5 carboxyl groups in the molecule, and carboxyl groups having 1 to 20 carbon atoms. Examples thereof include aromatic carboxylic acids such as pyromellitic acid, trimellitic acid and benzoic acid having 1 to 10 groups in the molecule, or isocyanuric acid.
 アミン化合物の中でも、塩基性が高いイミダゾール化合物が最も低温における硬化に適している。また、フェノール樹脂等でコーティングしたイミダゾール化合物も用いることができる。 Among the amine compounds, imidazole compounds with high basicity are suitable for curing at the lowest temperature. Further, an imidazole compound coated with a phenol resin or the like can also be used.
 当該イミダゾール化合物は、下記式6で表される化合物である。
Figure JPOXMLDOC01-appb-C000014

(R9はシアノ基、炭素数1~10の炭化水素基、2,3-ジアミノトリアジンで置換された炭素数1~10の炭化水素基、炭素数1~4のアルコキシ基、又は水素原子であり、R8、R10、R11は炭素数1~20の炭化水素基、炭素数1~4のアルコキシ基、又は水素原子であり、R8~R11が結合して環を形成している場合には炭素数2~8の炭化水素基である。)
The imidazole compound is a compound represented by the following formula 6.
Figure JPOXMLDOC01-appb-C000014

(R 9 is a cyano group, a hydrocarbon group having 1 to 10 carbon atoms, a hydrocarbon group having 1 to 10 carbon atoms substituted with 2,3-diaminotriazine, an alkoxy group having 1 to 4 carbon atoms, or a hydrogen atom. R 8 , R 10 and R 11 are each a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a hydrogen atom, and R 8 to R 11 are bonded to form a ring. If it is, it is a hydrocarbon group having 2 to 8 carbon atoms.)
 具体的には、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、1-(2-シアノエチル)-2-メチルイミダゾール、1-(2-シアノエチル)-2-ウンデシルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、1-(2-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4'-メチルイミダゾリル-(1')]-エチル -s-トリアジン、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが挙げられる。 Specifically, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1,2-dimethylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methyl Imidazole, 1-benzyl-2-phenylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl) -2-methylimidazole, 1- (2-cyanoethyl) -2-undecylimidazole, 1- ( 2-cyanoethyl) -2-ethyl-4-methylimidazole, 1- (2-cyanoethyl-2-phenylimidazole), 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2,3-dihydro-1H -Pyrrolo [1,2-a] benzimidazole, 2,4-diamino-6- [2 -Methylimidazolyl- (1)] ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl--s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole Can be mentioned.
 <組成比(配合バランス)>
 硬化性樹脂組成物は、(A)チオエーテル含有(メタ)アクリレート誘導体と(B)多官能(メタ)アクリレートとの質量比((A)/(B))が0.05~30となるように配合する。ここで、「(A)/(B)」とは、(A)チオエーテル含有(メタ)アクリレート誘導体の質量を(B)多官能(メタ)アクリレートの質量で除した値である。(A)/(B)が0.05未満又は30を超える場合は、密着性が低下する傾向がある。最適な(A)/(B)の値は、硬化性樹脂組成物に求められる特性や、(A)チオエーテル含有(メタ)アクリレート誘導体や(B)多官能(メタ)アクリレートの種類によって異なる。硬化性樹脂組成物を硬化した後の特性は、厳密には硬化性樹脂組成物単位重量中の(チオール基数)/((メタ)アクリロキシ基数)(以下、チオール/エン比と称す)の値に影響を受ける。例えば、チオール/エン比が0.5~1.5の範囲にあれば、密な架橋を形成し易く、且つ強靭な硬化物になり易い。一方、チオール/エン比が0.1以上0.5未満、あるいは1.5を超え2.0以下であれば、柔軟で粘着質な硬化物を得ることができる。チオール/エン比が0.1未満、あるいは2.0を超えるとゲル化し難くなり、密着性が低下する傾向がある。
<Composition ratio (mixing balance)>
The curable resin composition has a mass ratio ((A) / (B)) of (A) a thioether-containing (meth) acrylate derivative and (B) a polyfunctional (meth) acrylate of 0.05 to 30. Blend. Here, “(A) / (B)” is a value obtained by dividing the mass of (A) the thioether-containing (meth) acrylate derivative by the mass of (B) polyfunctional (meth) acrylate. When (A) / (B) is less than 0.05 or more than 30, the adhesion tends to decrease. The optimum value of (A) / (B) varies depending on the characteristics required for the curable resin composition, the type of (A) thioether-containing (meth) acrylate derivative and (B) polyfunctional (meth) acrylate. Strictly speaking, the characteristics after curing the curable resin composition are the values of (number of thiol groups) / (number of (meth) acryloxy groups) (hereinafter referred to as thiol / ene ratio) in the unit weight of the curable resin composition. to be influenced. For example, when the thiol / ene ratio is in the range of 0.5 to 1.5, it is easy to form dense crosslinks and to become a tough cured product. On the other hand, if the thiol / ene ratio is 0.1 or more and less than 0.5 or more than 1.5 and 2.0 or less, a flexible and sticky cured product can be obtained. If the thiol / ene ratio is less than 0.1 or exceeds 2.0, gelation is difficult and adhesion tends to decrease.
 また、硬化性樹脂組成物は、(A)チオエーテル含有(メタ)アクリレート誘導体と(B)多官能(メタ)アクリレートとの合計質量((A)+(B))100質量部に対し、(C)光重合開始剤が0.01~10質量部となるように配合する。((A)+(B))100質量部に対して(C)成分の配合量が0.01質量部未満では、チオール基と(メタ)アクリロキシ基の反応が進行するのに多くの積算光量が必要となり、10質量部を超えると架橋密度が低くなり密着性が低下する場合がある。 Moreover, curable resin composition is (C) with respect to 100 mass parts of total mass ((A) + (B)) of (A) thioether containing (meth) acrylate derivative and (B) polyfunctional (meth) acrylate (C). ) The photopolymerization initiator is blended in an amount of 0.01 to 10 parts by mass. When the blending amount of the component (C) is less than 0.01 parts by mass with respect to 100 parts by mass of ((A) + (B)), a large amount of integrated light is required for the reaction of the thiol group and the (meth) acryloxy group to proceed Is required, and if it exceeds 10 parts by mass, the crosslink density may be lowered and the adhesion may be lowered.
 また、硬化性樹脂組成物に対して(D)アミン化合物も配合する場合は、(A)チオエーテル含有(メタ)アクリレート誘導体と(B)多官能(メタ)アクリレートとの合計重量((A)+(B))100質量部に対し、(D)アミン化合物が0.01~50質量部、好ましくは0.01~45質量部となるように配合する。((A)+(B))に対して(D)成分の配合量が0.01未満では、触媒としての機能が不十分となり、加熱による硬化促進には至らず、50質量部を超えると、硬化性樹脂組成物の保存安定性が低下する。 When (D) an amine compound is also added to the curable resin composition, the total weight of (A) thioether-containing (meth) acrylate derivative and (B) polyfunctional (meth) acrylate ((A) + (B)) 100 parts by mass of (D) the amine compound is blended in an amount of 0.01 to 50 parts by mass, preferably 0.01 to 45 parts by mass. When the blending amount of the component (D) is less than 0.01 with respect to ((A) + (B)), the function as a catalyst becomes insufficient, the curing is not accelerated by heating, and the amount exceeds 50 parts by mass. The storage stability of the curable resin composition is lowered.
 <硬化膜の形成>
 硬化性樹脂組成物は、基材上に塗工し、硬化させることで、硬化膜を形成することができる。硬化性樹脂組成物は、(A)チオエーテル含有(メタ)アクリレート誘導体のチオエーテル基に起因して基材に対して密着性を発揮する。したがって、基材としては、チオエーテル基と化学的な結合を形成する(化学的な親和力の高い)基材、例えば、遷移金属あるいはその合金や珪素化合物、リン化合物、硫黄化合物、又はホウ素化合物等の無機基材、不飽和結合(芳香環を含む)を有する有機物、水酸基やカルボキシル基を有する有機物、又はプラズマやUVオゾン処理された有機物等の有機基材への密着性向上効果に優れる。具体的には、無機基材としては、ガラス、シリコン、各種金属などが挙げられる。有機基材として、ポリ(メタ)アクリル系樹脂、トリアセテートセルロース(TAC)系樹脂、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリイミド系樹脂、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリカーボネート、ポリイミド、ABS樹脂、ポリビニルアルコール、塩化ビニル系樹脂、ポリアセタールなどが好ましく挙げられる。また、硬化性樹脂組成物は、(A)チオエーテル含有(メタ)アクリレート誘導体が特定の炭化水素基を有することで、硬化膜が柔軟性に優れる。そのため、寒冷条件下でも硬化膜が基材に追従しやすく、基材に対する密着性に優れる。したがって、特に、寒冷条件下で使用され得るフレキシブルな基材のコーティングに特に好適に使用することができる。
<Formation of cured film>
The curable resin composition can form a cured film by coating on a substrate and curing. The curable resin composition exhibits adhesion to the substrate due to the thioether group of the (A) thioether-containing (meth) acrylate derivative. Therefore, as a base material, a base material that forms a chemical bond with a thioether group (high chemical affinity), such as a transition metal or an alloy thereof, a silicon compound, a phosphorus compound, a sulfur compound, or a boron compound, etc. It is excellent in the effect of improving adhesion to an organic substrate such as an inorganic substrate, an organic substance having an unsaturated bond (including an aromatic ring), an organic substance having a hydroxyl group or a carboxyl group, or an organic substance treated with plasma or UV ozone. Specifically, examples of the inorganic base material include glass, silicon, and various metals. Poly (meth) acrylic resins, triacetate cellulose (TAC) resins, polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate, polycarbonate resins, polyimide resins, polyolefins such as polyethylene and polypropylene Preferable examples include resin, polycarbonate, polyimide, ABS resin, polyvinyl alcohol, vinyl chloride resin, and polyacetal. Moreover, as for curable resin composition, a cured film is excellent in a softness | flexibility because (A) thioether containing (meth) acrylate derivative has a specific hydrocarbon group. Therefore, the cured film easily follows the substrate even under cold conditions, and has excellent adhesion to the substrate. Therefore, it can be particularly suitably used for coating flexible substrates that can be used under cold conditions.
 硬化性樹脂組成物は、光を照射することにより硬化させることができる。照射する光としては、UV(紫外線)やEB(電子線)などの活性エネルギー線等が挙げられる。また、硬化性樹脂組成物が(C)成分を含む場合は、通常2500mJ/cm程度必要となる光照射量を100mJ/cm程度まで少なくすることが可能となる。また、硬化性樹脂組成物が(D)成分を含む場合には、80℃程度の低温での硬化が可能となる。更に、硬化性樹脂組成物が、(C)成分と(D)成分を含む場合には、光の照射による硬化工程と、加熱による硬化工程との二段階の工程を経て硬化させることもできる。 The curable resin composition can be cured by irradiating light. Examples of the light to be irradiated include active energy rays such as UV (ultraviolet rays) and EB (electron beams). Further, if the curable resin composition comprises a component (C), it is possible to reduce the amount of light irradiation to be usually 2,500 mJ / cm 2 about need to about 100 mJ / cm 2. Moreover, when curable resin composition contains (D) component, hardening at about 80 degreeC low temperature is attained. Furthermore, when the curable resin composition contains the component (C) and the component (D), it can be cured through a two-stage process including a curing process by light irradiation and a curing process by heating.
 硬化性樹脂組成物は、反応系を均一にし、塗工を容易にするために有機溶媒で希釈して使用してもよい。そのような有機溶媒としては、アルコール系溶剤、芳香族炭化水素系溶剤、エーテル系溶剤、エステル系溶剤及びエーテルエステル系溶剤、ケトン系溶剤、リン酸エステル系溶剤が挙げられる。これらの有機溶媒は硬化性樹脂組成物100質量部に対して、10000質量部未満の配合量に抑えることが好ましいが、基本的に溶剤は硬化膜になる時点では揮発しているため、硬化膜の物性に大きな影響は与えない。 The curable resin composition may be diluted with an organic solvent to make the reaction system uniform and facilitate coating. Examples of such organic solvents include alcohol solvents, aromatic hydrocarbon solvents, ether solvents, ester solvents, ether ester solvents, ketone solvents, and phosphate ester solvents. These organic solvents are preferably suppressed to a blending amount of less than 10000 parts by mass with respect to 100 parts by mass of the curable resin composition, but basically the solvent is volatilized at the time of becoming a cured film. It does not have a big influence on the physical properties.
 また、硬化性樹脂組成物は、粘度を調整する目的でシリカ粉末等の粘度調整剤を配合しても良い。これらの粘度調整剤は、硬化性樹脂組成物100質量部に対して、300質量部未満の配合量に抑えることが好ましい。粘度調整剤の配合量が300質量部を超えると、密着性が低下する可能性がある。 Further, the curable resin composition may be blended with a viscosity modifier such as silica powder for the purpose of adjusting the viscosity. These viscosity modifiers are preferably suppressed to a blending amount of less than 300 parts by mass with respect to 100 parts by mass of the curable resin composition. When the blending amount of the viscosity modifier exceeds 300 parts by mass, the adhesion may be lowered.
 また、硬化性樹脂組成物は、通常の塗料や接着剤に用いられるような各種添加剤を添加しても良い。このような添加剤としては、塗工面を平滑にするための界面活性剤、可使用時間を長くするためのアルミニウム塩等が挙げられる。これらの添加剤は、硬化性樹脂組成物100質量部に対して、80質量部未満の配合量に抑えることが好ましい。これらの添加剤の配合量が80質量部を超えると、密着性が低下する可能性がある。 Also, the curable resin composition may be added with various additives such as those used in ordinary paints and adhesives. Examples of such an additive include a surfactant for smoothing the coated surface, and an aluminum salt for increasing the usable time. These additives are preferably suppressed to a blending amount of less than 80 parts by mass with respect to 100 parts by mass of the curable resin composition. When the compounding amount of these additives exceeds 80 parts by mass, the adhesion may be lowered.
 次に、実施例及び比較例を挙げて、硬化性樹脂組成物をさらに具体的に説明する。本実施例及び比較例で用いた各成分は、次のとおりである。なお、Mwは重量平均分子量を示す。 Next, the curable resin composition will be described more specifically with reference to examples and comparative examples. The components used in the examples and comparative examples are as follows. Mw represents a weight average molecular weight.
<(A)成分>
(A-1:チオエーテル含有(メタ)アクリレート誘導体)
Figure JPOXMLDOC01-appb-C000015

(A-2:チオエーテル含有(メタ)アクリレート誘導体)
Figure JPOXMLDOC01-appb-C000016

(A-3:チオエーテル含有(メタ)アクリレート誘導体)
Figure JPOXMLDOC01-appb-C000017

(A-4:チオエーテル含有(メタ)アクリレート誘導体)
Figure JPOXMLDOC01-appb-C000018

(A-5:チオエーテル含有(メタ)アクリレート誘導体)
Figure JPOXMLDOC01-appb-C000019

(A-6:多価チオール化合物)
Figure JPOXMLDOC01-appb-C000020

(A-7:多価チオール化合物)
Figure JPOXMLDOC01-appb-C000021

(A-8:チオエーテル含有アルコキシシラン誘導体)
Figure JPOXMLDOC01-appb-C000022

(A-9:チオエーテル含有アルコキシシラン誘導体)
Figure JPOXMLDOC01-appb-C000023

(A-10:チオエーテル含有(メタ)アクリレート誘導体)
Figure JPOXMLDOC01-appb-C000024
<(A) component>
(A-1: (Meth) acrylate derivative containing thioether)
Figure JPOXMLDOC01-appb-C000015

(A-2: (Meth) acrylate derivative containing thioether)
Figure JPOXMLDOC01-appb-C000016

(A-3: (Meth) acrylate derivative containing thioether)
Figure JPOXMLDOC01-appb-C000017

(A-4: (Meth) acrylate derivative containing thioether)
Figure JPOXMLDOC01-appb-C000018

(A-5: (Meth) acrylate derivative containing thioether)
Figure JPOXMLDOC01-appb-C000019

(A-6: Multivalent thiol compound)
Figure JPOXMLDOC01-appb-C000020

(A-7: Multivalent thiol compound)
Figure JPOXMLDOC01-appb-C000021

(A-8: thioether-containing alkoxysilane derivative)
Figure JPOXMLDOC01-appb-C000022

(A-9: thioether-containing alkoxysilane derivative)
Figure JPOXMLDOC01-appb-C000023

(A-10: (Meth) acrylate derivative containing thioether)
Figure JPOXMLDOC01-appb-C000024
<(B)成分:多官能(メタ)アクリレート>
(B-1、Mw:5000)
Figure JPOXMLDOC01-appb-C000025

(nは平均13)
(B-2、Mw:246)
Figure JPOXMLDOC01-appb-C000026

(B-3、Mw:352)
Figure JPOXMLDOC01-appb-C000027

(B-4、Mw:22000)
 グリシジルメタクリレートとシクロヘキシルメタクリレートの共重合体に下記D-3を触媒としメタクリル酸を当モル付加したポリマー(50wt%メチルイソブチルケトン溶液をヘキサンで再沈した白色固体)。
(B-5、Mw:45000)
 グリシジルメタクリレートとシクロヘキシルメタクリレートの共重合体に下記D-3を触媒としメタクリル酸を当モル付加したポリマー(50wt%メチルイソブチルケトン溶液をヘキサンで再沈した白色固体)。
<(B) component: polyfunctional (meth) acrylate>
(B-1, Mw: 5000)
Figure JPOXMLDOC01-appb-C000025

(N is an average of 13)
(B-2, Mw: 246)
Figure JPOXMLDOC01-appb-C000026

(B-3, Mw: 352)
Figure JPOXMLDOC01-appb-C000027

(B-4, Mw: 22000)
A polymer obtained by adding equimolar amounts of methacrylic acid to a copolymer of glycidyl methacrylate and cyclohexyl methacrylate using the following D-3 as a catalyst (a white solid obtained by reprecipitation of a 50 wt% methyl isobutyl ketone solution with hexane).
(B-5, Mw: 45000)
A polymer obtained by adding equimolar amounts of methacrylic acid to a copolymer of glycidyl methacrylate and cyclohexyl methacrylate using the following D-3 as a catalyst (a white solid obtained by reprecipitation of a 50 wt% methyl isobutyl ketone solution with hexane).
<(C)成分:光重合開始剤>
(C-1、Mw:204)
1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
(C-2、Mw:348)
2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド
(C-3、Mw:407)
2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン
<(C) component: photopolymerization initiator>
(C-1, Mw: 204)
1-hydroxy-cyclohexyl-phenyl-ketone (C-2, Mw: 348)
2,4,6-Trimethylbenzoyl-diphenyl-phosphine oxide (C-3, Mw: 407)
2- (9-Oxoxanthen-2-yl) propionic acid 1,5,7-triazabicyclo [4.4.0] dec-5-ene
<(D)成分:アミン化合物>
(D-1、Mw:110)
Figure JPOXMLDOC01-appb-C000028

(D-2、Mw:102)
N,N-ジメチル-1,3-プロパンジアミン
(D-3、Mw:680)
Figure JPOXMLDOC01-appb-C000029

(n1、n2、n3は1~5の整数であり、平均が3.5である混合物)
<(D) component: amine compound>
(D-1, Mw: 110)
Figure JPOXMLDOC01-appb-C000028

(D-2, Mw: 102)
N, N-dimethyl-1,3-propanediamine (D-3, Mw: 680)
Figure JPOXMLDOC01-appb-C000029

(N1, n2, n3 are integers of 1 to 5, and the average is 3.5)
 表1~表4に示す配合比で(A)~(D)成分をそれぞれ混合し、スパチュラで均一になるまで撹拌し、実施例及び比較例の硬化性樹脂組成物のサンプルを得た。得られた実施例及び比較例の各硬化性樹脂組成物のサンプルに対して以下の密着性1(室温密着性)、密着性2(寒冷地密着性)、柔軟性及び保存安定性の評価を行った。その結果を表1~表4に示す。 The components (A) to (D) were mixed at the blending ratios shown in Tables 1 to 4, respectively, and stirred with a spatula until uniform, to obtain samples of the curable resin compositions of Examples and Comparative Examples. The following adhesiveness 1 (room temperature adhesiveness), adhesiveness 2 (cold region adhesiveness), flexibility, and storage stability were evaluated for the samples of the curable resin compositions obtained in Examples and Comparative Examples. went. The results are shown in Tables 1 to 4.
[評価用試験片の作製]
 密着性1、密着性2、及び柔軟性の評価用試験片は、次のように得た。硬化性樹脂組成物の各サンプルを、25mm幅のPETフィルム上にダイコーターで100ミクロンの厚みに塗布し、その上に別のPETフィルムを重ねた後、表1~表4に示す硬化条件で硬化させ評価用試験片を得た。なお、PETフィルムとしては、東レ(株)製、ルミラーU46-100を用いた。光照射には、ヘレウス・ノーブルライト・フュージョン・ユーブイ株式会社製UVランプシステム「ライトハンマー6」を用い、ランプバルブは、Hバルブを使用した。
[Preparation of test specimen for evaluation]
Test pieces for evaluation of adhesion 1, adhesion 2, and flexibility were obtained as follows. Each sample of the curable resin composition was coated on a 25 mm wide PET film with a die coater to a thickness of 100 microns, and another PET film was stacked thereon, and then the curing conditions shown in Tables 1 to 4 were applied. A test piece for evaluation was obtained by curing. Note that Lumirror U46-100 manufactured by Toray Industries, Inc. was used as the PET film. For the light irradiation, a UV lamp system “Light Hammer 6” manufactured by Heraeus Noble Light Fusion Ubuy Co., Ltd. was used, and an H bulb was used as the lamp bulb.
[密着性1(室温密着性)]
 上記評価用試験片を、25℃で24時間静置した後、5分以内にJIS K6854-3に規定されるT型はく離法で測定し、以下の通り評価した。
 ◎:引っ張り強度が5N/25mm以上(PETフィルムが破断)
 ○:引っ張り強度が5N/25mm以上(PETフィルムは破断せず)
 ×:5N/25mm未満
[Adhesion 1 (room temperature adhesion)]
The test piece for evaluation was allowed to stand at 25 ° C. for 24 hours, and was measured within 5 minutes by the T-type peeling method defined in JIS K6854-3, and evaluated as follows.
A: Tensile strength is 5 N / 25 mm or more (PET film breaks)
○: Tensile strength of 5 N / 25 mm or more (PET film does not break)
X: Less than 5N / 25mm
[密着性2(寒冷地密着性)]
 上記評価用試験片を、-10℃で24時間静置した後、5分以内にJIS K6854-3に規定されるT型はく離法で測定し、以下の通り評価した。
 ◎:引っ張り強度が5N/25mm以上(PETフィルムが破断)
 ○:引っ張り強度が5N/25mm以上(PETフィルムは破断せず)
 ×:5N/25mm未満
[Adhesion 2 (cold region adhesion)]
The test specimen for evaluation was allowed to stand at −10 ° C. for 24 hours, and was measured within 5 minutes by the T-peeling method defined in JIS K6854-3, and evaluated as follows.
A: Tensile strength is 5 N / 25 mm or more (PET film breaks)
○: Tensile strength of 5 N / 25 mm or more (PET film does not break)
X: Less than 5N / 25mm
[柔軟性]
 上記評価用試験片を、-10℃で24時間静置した後、5分以内に直径8mmの棒に1分間巻きつけ、目視にて観察し、以下の通り評価した。
 ○:クラック0本
 ×:クラック1本以上
[Flexibility]
The test piece for evaluation was allowed to stand at −10 ° C. for 24 hours, and then wound around a rod having a diameter of 8 mm for 1 minute within 5 minutes, visually observed, and evaluated as follows.
○: 0 cracks ×: 1 or more cracks
[保存安定性]
 各実施例及び比較例の硬化性樹脂組成物のサンプルについて、混合した直後に25℃における粘度(混合直後の粘度)を測定するとともに、40℃で12時間加熱した後再度粘度(加熱後の粘度)を測定し、加熱後の粘度を混合直後の粘度で除して増粘率を算出し、以下の通り評価した。なお、粘度は、東機産業株式会社製のR型粘度計を用い、下記条件にて測定した。
 使用ロータ:1°34′×R24
 測定範囲:0.5183~103.7 Pa・s
◎:増粘率1.0~1.8
○:増粘率1.8~10
×:増粘率上記範囲外
[Storage stability]
About the sample of the curable resin composition of each Example and Comparative Example, immediately after mixing, the viscosity at 25 ° C. (viscosity immediately after mixing) was measured, and after heating at 40 ° C. for 12 hours, the viscosity again (viscosity after heating) ) Was measured, the viscosity after heating was divided by the viscosity immediately after mixing, and the rate of thickening was calculated and evaluated as follows. The viscosity was measured under the following conditions using an R-type viscometer manufactured by Toki Sangyo Co., Ltd.
Rotor used: 1 ° 34 '× R24
Measurement range: 0.5183 to 103.7 Pa · s
A: Thickening rate: 1.0 to 1.8
○: Thickening rate 1.8 to 10
×: Thickening rate outside the above range
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 実施例1-1~1-13の硬化性樹脂組成物は、室温及び寒冷条件下における高い密着性、良好な柔軟性、及び優れた保存安定性が確認された。実施例2-1~2-5の硬化性組成物は、少ない光照射で硬化し、室温及び寒冷条件下における高い密着性、良好な柔軟性、及び優れた保存安定性が確認された。実施例3-1~3-5の硬化性組成物は、少ない光照射と低温加熱により硬化し、室温及び寒冷条件下における高い密着性、良好な柔軟性、及び優れた保存安定性が確認された。一方、(B)成分に対して(A)成分が少なすぎる比較例1-1、及び(B)成分に対して(A)成分が多すぎる比較例1-2では、寒冷条件下のみならず常温でも密着性が劣っていた。上記式1の構造を有しない化合物を(A)成分として用いた比較例1-3~1-7では、寒冷条件下における密着性が劣っていた。 The curable resin compositions of Examples 1-1 to 1-13 were confirmed to have high adhesion at room temperature and cold conditions, good flexibility, and excellent storage stability. The curable compositions of Examples 2-1 to 2-5 were cured with a small amount of light irradiation, and high adhesion at room temperature and cold conditions, good flexibility, and excellent storage stability were confirmed. The curable compositions of Examples 3-1 to 3-5 were cured by low light irradiation and low-temperature heating, and high adhesion at room temperature and cold conditions, good flexibility, and excellent storage stability were confirmed. It was. On the other hand, Comparative Example 1-1 in which component (A) is too small relative to component (B) and Comparative Example 1-2 in which component (A) is excessive relative to component (B) Adhesion was poor even at room temperature. In Comparative Examples 1-3 to 1-7 in which the compound having the structure of the above formula 1 was used as the component (A), the adhesion under cold conditions was inferior.

Claims (3)

  1.  (A)下記式1で表されるチオエーテル含有(メタ)アクリレート誘導体と、
     (B)重量平均分子量が200~50000である多官能(メタ)アクリレートと、を含有し、
     前記(A)成分と前記(B)成分との質量比((A)/(B))が0.05~30である硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中のaは1~2の整数であり、bは1~2の整数であり、a+b=3である。Rは下記式2で表される3価の基であり、Rは下記式3または下記式4で表される2価の基である。Rは炭素数が1~12の炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000002

    (式中のRは-CH-、-CHCH-、または-CHCH(CH)-である。)
    Figure JPOXMLDOC01-appb-C000003

    (Rは水素原子またはメチル基である。)
    Figure JPOXMLDOC01-appb-C000004

    (Rは水素原子またはメチル基である。)
    (A) a thioether-containing (meth) acrylate derivative represented by the following formula 1,
    (B) a polyfunctional (meth) acrylate having a weight average molecular weight of 200 to 50,000,
    A curable resin composition having a mass ratio ((A) / (B)) of 0.05 to 30 of the component (A) and the component (B).
    Figure JPOXMLDOC01-appb-C000001

    (A in the formula is an integer from 1 to 2, b is an integer from 1 to 2, .R 1 is a + b = 3 is a trivalent group represented by the following formula 2, R 2 is A divalent group represented by the following formula 3 or 4. The R 3 is a hydrocarbon group having 1 to 12 carbon atoms.
    Figure JPOXMLDOC01-appb-C000002

    (-CH 2 R 4 in the formula -, - CH 2 CH 2 - , or -CH 2 CH (CH 3) - and is.)
    Figure JPOXMLDOC01-appb-C000003

    (R 5 is a hydrogen atom or a methyl group.)
    Figure JPOXMLDOC01-appb-C000004

    (R 5 is a hydrogen atom or a methyl group.)
  2.  (C)光重合開始剤を、前記(A)成分と前記(B)成分との合計質量100質量部に対し、0.01~10質量部含有する、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, comprising (C) a photopolymerization initiator in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass as a total mass of the component (A) and the component (B). object.
  3.  (D)重量平均分子量が90~700であるアミン化合物を、前記(A)成分と前記(B)成分との合計質量100質量部に対し、0.01~50質量部含有する、請求項1または請求項2に記載の硬化性樹脂組成物。 (D) The amine compound having a weight average molecular weight of 90 to 700 is contained in an amount of 0.01 to 50 parts by mass with respect to 100 parts by mass of the total mass of the component (A) and the component (B). Or the curable resin composition of Claim 2.
PCT/JP2016/050454 2015-01-20 2016-01-08 Curable resin composition WO2016117385A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177004380A KR101850257B1 (en) 2015-01-20 2016-01-08 Curable resin composition
JP2016570570A JPWO2016117385A1 (en) 2015-01-20 2016-01-08 Curable resin composition
CN201680000405.2A CN106414556B (en) 2015-01-20 2016-01-08 Hardening resin composition
TW105112896A TWI585136B (en) 2015-01-20 2016-04-26 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015008546 2015-01-20
JP2015-008546 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016117385A1 true WO2016117385A1 (en) 2016-07-28

Family

ID=56416933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050454 WO2016117385A1 (en) 2015-01-20 2016-01-08 Curable resin composition

Country Status (5)

Country Link
JP (1) JPWO2016117385A1 (en)
KR (1) KR101850257B1 (en)
CN (1) CN106414556B (en)
TW (1) TWI585136B (en)
WO (1) WO2016117385A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052898A (en) * 2015-09-10 2017-03-16 日油株式会社 Curable resin composition for release sheet, process substrate using the same, and method of protecting substrate
WO2023167067A1 (en) * 2022-03-01 2023-09-07 パナソニックIpマネジメント株式会社 Curable composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230753A (en) * 1985-07-16 1987-02-09 ダブリユ−・ア−ル・グレイス・アンド・カンパニ− Thioether containing mercaptocarboxylic acid and manufacture
JP2008163094A (en) * 2006-12-27 2008-07-17 Dic Corp Fluorine-containing composition and fluorine-containing multifunctional thiol
US20140323647A1 (en) * 2013-04-24 2014-10-30 The Board Of Regents Of The University Of Texas System Softening materials based on thiol-ene copolymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355845B2 (en) 2006-02-24 2013-11-27 太陽ホールディングス株式会社 Photocurable resin composition and cured product thereof.
JP5828225B2 (en) * 2011-05-31 2015-12-02 日油株式会社 Curable resin composition
JP6326875B2 (en) * 2014-03-11 2018-05-23 日油株式会社 Thioether-containing (meth) acrylate derivative and adhesion improver containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230753A (en) * 1985-07-16 1987-02-09 ダブリユ−・ア−ル・グレイス・アンド・カンパニ− Thioether containing mercaptocarboxylic acid and manufacture
JP2008163094A (en) * 2006-12-27 2008-07-17 Dic Corp Fluorine-containing composition and fluorine-containing multifunctional thiol
US20140323647A1 (en) * 2013-04-24 2014-10-30 The Board Of Regents Of The University Of Texas System Softening materials based on thiol-ene copolymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052898A (en) * 2015-09-10 2017-03-16 日油株式会社 Curable resin composition for release sheet, process substrate using the same, and method of protecting substrate
WO2023167067A1 (en) * 2022-03-01 2023-09-07 パナソニックIpマネジメント株式会社 Curable composition

Also Published As

Publication number Publication date
KR101850257B1 (en) 2018-04-18
JPWO2016117385A1 (en) 2017-10-26
CN106414556A (en) 2017-02-15
TWI585136B (en) 2017-06-01
TW201725231A (en) 2017-07-16
CN106414556B (en) 2018-07-10
KR20170031759A (en) 2017-03-21

Similar Documents

Publication Publication Date Title
TWI586728B (en) Curable resin composition
JP6569409B2 (en) Curable resin composition for release sheet, process substrate using the same, and method for protecting substrate
WO2017110472A1 (en) Curable resin composition for release sheet, release sheet, processing base material using same, and method for protecting base material
JP6609993B2 (en) Curable resin composition
WO2016117385A1 (en) Curable resin composition
TWI586729B (en) Curable resin composition
WO2016114268A1 (en) Curable resin composition
JP6710892B2 (en) Curable resin composition
WO2016190157A1 (en) Curable resin composition
JP6569410B2 (en) Curable resin composition for release sheet, process substrate using the same, and method for protecting substrate
JP6582774B2 (en) Curable resin composition for release sheet, process substrate using the same, and method for protecting substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570570

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004380

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739992

Country of ref document: EP

Kind code of ref document: A1