WO2016117028A1 - Angle error correction device for position detector and angle error correction method - Google Patents

Angle error correction device for position detector and angle error correction method Download PDF

Info

Publication number
WO2016117028A1
WO2016117028A1 PCT/JP2015/051390 JP2015051390W WO2016117028A1 WO 2016117028 A1 WO2016117028 A1 WO 2016117028A1 JP 2015051390 W JP2015051390 W JP 2015051390W WO 2016117028 A1 WO2016117028 A1 WO 2016117028A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle error
position detector
electric motor
angle
error correction
Prior art date
Application number
PCT/JP2015/051390
Other languages
French (fr)
Japanese (ja)
Inventor
盛臣 見延
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580073876.1A priority Critical patent/CN107210691B/en
Priority to PCT/JP2015/051390 priority patent/WO2016117028A1/en
Priority to JP2016570375A priority patent/JP6305573B2/en
Priority to DE112015006001.4T priority patent/DE112015006001T5/en
Publication of WO2016117028A1 publication Critical patent/WO2016117028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24485Error correction using other sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/05Determination of the rotor position by using two different methods and/or motor models
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference

Definitions

  • the present invention is applied to, for example, a control device for an elevator hoisting machine, a control device for an on-vehicle motor, or a control device for a motor of a machine tool, and a position detector including a periodic error that is uniquely determined according to the rotational position of the motor.
  • the present invention relates to an angle error correction apparatus and an angle error correction method for a position detector that correct the angle error of the position detector.
  • an angle detector detects an angle signal from a signal detected by a resolver, and utilizes that the resolver error waveform is composed of a determined n-order component unique to the resolver and is reproducible. Then, the position error is calculated by referring to the detected angle signal by the angle error estimator, the speed error signal is calculated by differentiating the position error, and the speed error signal is subjected to frequency analysis by, for example, Fourier transform. The detection error for each frequency component is calculated, the calculated detection errors are combined to generate an estimated angle error signal, and the angle signal correction circuit corrects the detected angle signal using the generated estimated angle error signal.
  • a resolver angle detection device is known (see, for example, Patent Document 1).
  • the prior art has the following problems.
  • speed detection is performed using a conventional resolver device or resolver angle detection device
  • the rotational speed of the motor is detected by differentiating the angle signal detected by the angle detector, and the detected speed is Fourier transformed to obtain an angle error. Is estimated.
  • the angle error estimation accuracy is determined by the position resolution of the angle detection device and the sampling time (time resolution) of the speed calculation. For this reason, an angle detection device with low position resolution has a problem that quantization errors occur and angle error estimation accuracy cannot be obtained sufficiently.
  • the obtained angle error is When the angle signal detected by the position detector is corrected, the resolution of the position detector becomes a bottleneck, and there is a problem that a sufficient correction effect cannot be obtained.
  • the present invention has been made in order to solve the above-described problems, and is capable of accurately estimating an angle error and sufficiently correcting the angle error, and an angle error correction device for the position detector and the angle error.
  • the purpose is to obtain a correction method.
  • An angle error correction apparatus for a position detector detects the rotational position of an electric motor and corrects the angle error of the position detector including a periodic error that is uniquely determined according to the rotational position.
  • An error correction device that uses an angle error estimator that estimates an angle error with respect to the rotational position of the motor detected by the position detector, and an angle error estimated value that is an output of the angle error estimator.
  • An angle error correction unit that corrects the error, and the angle error correction unit uses the estimated angle error value after multiplying the rotational position of the motor detected by the position detector by ⁇ ( ⁇ is an integer of 2 or more). Thus, the angle error is corrected.
  • an angle error correction device for a position detector that detects a rotational position of an electric motor and corrects an angular error of the position detector including a periodic error that is uniquely determined according to the rotational position.
  • An angle error correction device for a detector wherein an angle error estimator for estimating an angle error with respect to the rotational position of the motor detected by the position detector, and an angle error estimated value that is an output of the angle error estimator And an angle error correction unit that corrects the angle error, and the angle error correction unit increases the angle error estimated value by 1 / ⁇ times ( ⁇ is the rotation angle of the motor detected by the position detector). The angle error is corrected using a positive value.
  • the position detector detects the rotational position of the electric motor, includes a cyclic error that is uniquely determined according to the rotational position, and the angle error estimator is The angle error is estimated with respect to the rotational position of the electric motor detected by the position detector, and the angle error correction unit corrects the angle error using the angle error estimated value that is the output of the angle error estimator.
  • the angle error correction unit corrects the angle error using the angle error estimated value after multiplying the rotational position of the motor detected by the position detector by ⁇ ( ⁇ is an integer of 2 or more), or The angle error is corrected using a value obtained by multiplying the estimated angle error value by 1 / ⁇ ( ⁇ is a positive number) with respect to the rotational position of the motor detected by the position detector.
  • the angle error correction value to be corrected can be higher than the resolution of the position detector, so that the angle error of the position detector that can accurately estimate the angle error and sufficiently correct the angle error can be obtained.
  • a correction device and an angle error correction method can be obtained.
  • a position detector that performs correction by estimating a position-dependent angle error included in the rotation position of the motor, which is an output from the position detector, based on the current flowing in the motor.
  • a method for sufficiently correcting the angle error regardless of the resolution of the position detector in the angle error correction apparatus will be described. Further, in the following embodiments, an estimation method for estimating an angle error based on current will be described as an example. However, if the estimation method is an estimation method that does not depend on the resolution of the position detector, another estimation method is used. Is also applicable.
  • FIG. 1 is a block diagram showing the overall configuration of a motor control device including an angle error correction device for a position detector according to the present invention.
  • 2 and 3 are block diagrams showing a motor control device to which the position detector angle error correction device according to Embodiment 1 of the present invention is applied.
  • the motor control device includes a speed command value generator 1, a speed controller 2, a current controller 3, an inverter 4, an electric motor 5, a position detector 6, a current sensor (current detector) 7, A speed calculation unit 8, a detection position correction unit (angle error correction unit) 9, a position calculation unit 11, a coordinate converter 12, and an angle error estimation unit 20 are provided.
  • the speed command value generation unit 1 generates and outputs a speed command value for the electric motor 5.
  • the speed command value generation unit 1 may include a position control system. The present invention can be applied even when the speed command value generation unit 1 includes a position control system.
  • the speed controller 2 receives the difference between the speed command value from the speed command value generation unit 1 and the rotation speed of the electric motor 5 calculated by the speed calculation unit 8, and generates and outputs a current command value for the electric motor 5. To do.
  • the speed calculation unit 8 calculates and outputs the rotation speed of the electric motor 5 based on the position information in which the rotation position of the electric motor 5 output from the position detector 6 is corrected by the detection position correction unit 9.
  • the speed calculation unit 8 calculates the rotation speed by the time differentiation of the position in the simplest manner.
  • the speed calculation unit 8 may perform speed calculation based on the position information of the position detector 6 (for example, the number of pulses of the optical encoder). Further, the speed calculation unit 8 may include a configuration for measuring time.
  • the current controller 3 converts the current command value from the speed controller 2 and the phase current output from the current sensor 7 shown in FIG. 2 or the phase current shown in FIG. Using the difference from the shaft current of the electric motor 5 converted to a shaft or the like as an input, a voltage command value for the electric motor 5 is generated and output.
  • the position calculation unit 11 calculates and outputs angle information of the electric motor 5 based on the position information corrected by the detected position correction unit 9.
  • the coordinate converter 12 converts the phase current from the current sensor 7 into coordinates suitable for control, such as an ⁇ - ⁇ axis, dq axis, or ⁇ - ⁇ axis, when the electric motor 5 is vector-controlled. .
  • the detected position correction unit 9 adds or subtracts an estimated angle error value output from the angle error estimation unit 20 to the rotational position of the electric motor 5 output from the position detector 6 to obtain a corrected position. Output information.
  • the detailed function of the detection position correction unit 9 will be described later.
  • the current sensor 7 measures the current of the electric motor 5. For example, when the motor 5 is a three-phase motor, a two-phase phase current is often measured, but a three-phase phase current may be measured. 1 to 3, the current sensor 7 measures the output current of the inverter 4. However, the current sensor 7 measures the bus current of the inverter 4 as in a current measurement method using a one-shunt resistor, and Each phase current may be estimated. Even in this case, the present invention is not affected at all.
  • the inverter 4 converts the voltage of the power source (not shown) into a desired variable voltage variable frequency based on the voltage command value from the current controller 3.
  • a power converter that converts the DC voltage to an AC voltage by an inverter, or a matrix converter A variable voltage variable frequency power converter including a power converter that directly converts an AC voltage into an AC variable voltage variable frequency.
  • the inverter 4 may include a coordinate conversion function in addition to the inverter 4 described above. That is, when the voltage command value is a dq-axis voltage command value, the dq-axis voltage command value is converted into a phase voltage or a line voltage, and the voltage in accordance with the commanded voltage command value. It is expressed as an inverter 4 including a coordinate conversion function for converting to. Although not shown, the present invention can be applied even if a device or means for correcting the dead time of the inverter 4 is provided.
  • the position detector 6 detects the rotational position of the electric motor 5 necessary for controlling the electric motor 5, such as an optical encoder, a magnetic encoder, or a resolver. Further, as shown in FIG. 4, the position detector 6 includes a cyclic error that is uniquely determined according to the rotational position of the electric motor 5 in the output rotational position information.
  • the periodic error uniquely determined according to the rotational position of the electric motor 5 is, for example, the detection error of the resolver described in paragraphs 0020 and 0021 of the above-mentioned Patent Document 1, and the missing pulse due to the slit failure in the optical encoder. It also refers to a reproducible error depending on the rotational position, such as an imbalance in the distance between pulses.
  • the periodic error uniquely determined according to the rotational position of the electric motor 5 is expressed as an angle error ⁇ err obtained by converting the position information into an angle.
  • the present invention can be applied when the position detector 6 includes a periodic error uniquely determined according to the rotational position of the electric motor 5 and the principal component order of the angle error ⁇ err is known.
  • the periodic angular error ⁇ err of the position detector 6 can be approximately expressed using a sine wave as shown in the following equation (1).
  • the first embodiment of the present invention unifies the notation by the sine wave.
  • ⁇ m represents the mechanical angle of the motor 5
  • a 1 represents an error amplitude in N 1 order order
  • a 2 represents an error amplitude at the N 2 order order
  • a n is N 1 indicates the error amplitude in the N- th order
  • ⁇ 1 indicates a phase shift (error phase) with respect to the mechanical angle of the motor 5 in the N 1 -order
  • ⁇ 2 indicates the mechanical angle of the motor 5 in the N- second order.
  • a phase shift is indicated
  • ⁇ n indicates a phase shift with respect to the mechanical angle of the electric motor 5 in the N n -th order.
  • the spatial orders of N 1 , N 2 ... N n in equation (1) do not have to be consecutive integers such as 1, 2... Nn, and are periodically determined uniquely depending on the rotational position of the motor 5.
  • the main component here refers to a component whose amplitude in the spatial order is larger than the amplitude of other frequencies.
  • the expression (1) is expressed as a combination of three or more frequency components, but the frequency component of the periodic angular error ⁇ err may be one, two, or more components. It may be configured.
  • the frequency analysis unit 21 corrects the phase current from the current sensor 7 and the rotational position of the electric motor 5 that is an output from the position detector 6 by the detection position correction unit 9 and calculates the electric motor by the position calculation unit 11. Using the angle information of 5 as an input, the amplitude or amplitude and phase of the input current at a desired frequency is obtained.
  • the frequency analysis unit 21 is preferably configured to obtain an amplitude and phase at a desired frequency of an input signal, such as Fourier transform, Fourier series analysis, or fast Fourier transform.
  • a configuration may be used in which a desired frequency signal is extracted and a desired amplitude or phase of an input signal is calculated by an amplitude detection unit or a phase detection unit like a filter.
  • the filter used here may be an electrical filter that combines a resistor, a capacitor, a coil, or the like, or may be a process performed in a computer.
  • the configuration of the frequency analysis unit 21 is not limited as long as it can detect information proportional to the amplitude of the desired frequency or information proportional to the power of the amplitude.
  • the phase current is input.
  • the d-axis current, the q-axis current, the ⁇ -axis current, the ⁇ -axis current, the ⁇ -axis current, and the ⁇ -axis obtained by coordinate conversion of the phase current Any one of the currents may be input.
  • the signal having a desired frequency (specific frequency) referred to here indicates a signal having the same frequency as the main component of the angle error ⁇ err caused by the periodic angle error ⁇ err of the position detector 6.
  • a desired frequency is expressed as a spatial frequency, but there is no essential difference even if it is a time frequency.
  • the spatial frequency refers to a frequency in one rotation of the electric motor 5 in a specific section, in Embodiment 1 of the present invention.
  • a periodic N wave signal in one rotation of the motor 5 is referred to as a spatial order N wave.
  • the frequency analysis is preferably an analysis based on the spatial frequency. 1)
  • the angle error ⁇ err is expressed by the spatial frequency
  • the frequency analysis unit 21 shown in FIGS. 1 to 3 also has an input (current and angle) corresponding to the spatial frequency analysis. Yes.
  • Embodiment 1 of the present invention can also be applied to frequency analysis based on time frequency.
  • frequency analysis based on time frequency instead of inputting current and angle, detection speed and time measurement Frequency analysis is performed using the measurement time and current measured by the unit as inputs.
  • the angle error estimator 22 the current amplitude value of a desired frequency component that is an output of the frequency analysis unit 21 and the rotational position of the electric motor 5 that is an output from the position detector 6 are corrected by the detection position correction unit 9. Then, the angle information of the electric motor 5 calculated by the position calculation unit 11 is used as an input, and a cyclic angle error ⁇ err uniquely determined according to the rotational position of the electric motor 5 is estimated by an estimation method to be described later. Is output.
  • the angle error estimator 22 outputs position information. That is, when the position detector 6 is an optical encoder, the resolution is 1024 pulses / rotation, and the estimation result of the angle error estimator 22 is 1 °, the angle error estimator 22 is 1 °. The corresponding number of pulses of 3 is output as position information.
  • the angle error when there are a plurality of frequency components of the angle error, the angle error may be estimated and added sequentially with each component, or a plurality of frequency components may be estimated simultaneously. At this time, in the case of simultaneous estimation, the estimation time can be shortened as compared with the case where the angle error is sequentially estimated for each component.
  • the angle error is composed of only a single frequency component.
  • the motor 5 is a permanent magnet synchronous motor. in some case, the current ripple appearing in the phase current, the pole and the logarithm with P n, when the order of the desired frequency and n n, the P n ⁇ n n next degree machine degree.
  • phase currents frequency analysis of at least one of the phase currents is performed, and the P n + N n -order or P n -N n -order current is estimated from the P n + N n -order or P n -N n -order current. do it.
  • the P n -N n following order when the order N n of the desired frequency than the pole pair number P n of the electric motor 5 is large, because it may not present a negative number, P It is desirable to analyze the frequency of n + N nth order current. Moreover, when performing estimation, constant torque and constant speed operation is desirable.
  • the current pulsation component appearing on the dq axis is the same as the N n order due to the angular error of the machine N n order. Has a pulsating component of order.
  • the d-axis current has a current pulsation similar to the angle error because the q-axis current, which is the torque current, wraps around due to the magnetic pole deviation caused by the angle error.
  • the speed pulsation becomes the pulsation of the current command value through the speed control system. Therefore, the q-axis current becomes a current pulsation similar to the angle error that causes the speed pulsation.
  • the angle error estimator 22 may estimate the angle error so as to minimize the N n -order current amplitude of the d-axis current or the q-axis current obtained by the frequency analysis in the frequency analysis unit 21. .
  • the condition that the q-axis current that wraps around is constant, that is, the condition of constant acceleration. Estimate with. In particular, it is desirable to perform the estimation under the condition that the acceleration is zero, that is, the electric motor 5 is rotating at a constant speed.
  • the angle error estimated value is added to the optical encoder resolution D that is obtained by counting the AB phase pulses of the optical encoder. According to the above, the discretization is applied and corrected.
  • the resolution D ′ of the angle error estimator is the same as the resolution D of the position detector 6.
  • the angle per pulse of the position detector 6 and the angle error estimator is expressed by the following equation (2).
  • the angle error estimator 20 estimates the angle error estimated value based on the current flowing through the electric motor 5, so that the resolution D ′ of the angle error estimator 22 is the current sensor.
  • the resolution D ′ of the angle error estimator is higher than the resolution D of the position detector 6 (D ′> D).
  • the resolution D of the position detector 6 becomes a bottleneck, and the original angle error estimator.
  • the angle error can be corrected only with the resolution D of the position detector 6 smaller than the resolution D ′ of 22, and a sufficient correction effect cannot be obtained.
  • the angle error estimator 22 can estimate the angle error estimated value in increments of 0.1 °.
  • the resolution D of the position detector 6 is Under the influence, the position information (pulse) is corrected in increments of 0.5 °.
  • Embodiment 1 of the present invention when the angle error of the position detector 6 is corrected using the angle error estimated value from the angle error estimating unit 20, the resolution D of the position detector 6 is set to ⁇ times ( ⁇ Will be described as a method for obtaining a sufficient correction effect by setting the resolution of the detection position correction unit 9 to ⁇ D higher than the resolution D of the position detector 6.
  • FIG. 6 is a block diagram showing the detection position correction unit of the angle error correction device for the position detector according to the first embodiment of the present invention, together with the angle error estimator and the position detector.
  • the detection position correction unit 9 includes a high resolution position conversion unit 91, a discretization processing unit 92, a multiplication unit 93, a position corrector 94, and a 1 / multiplication unit 95.
  • the high resolution position conversion unit 91 discretizes the angle error estimation value from the angle error estimator 22 with the resolution ⁇ D.
  • the discretization processing unit 92 discretizes the position information of the position detector 6 with a resolution D.
  • the multiplier 93 multiplies the output from the discretization processor 92 by ⁇ .
  • the position corrector 94 applies the estimated angle error value discretized by the high resolution position converter 91 to the output from the multiplier 93, and outputs corrected position information.
  • the 1 / multiplier 95 multiplies the output from the position corrector 94 by 1 / ⁇ .
  • the discretized detection value of the position detector 6 is multiplied by ⁇ , and the correction by the angle error estimated value is performed, and then the corrected value is multiplied by 1 / ⁇ .
  • the resolution of the detection position correction unit 9 can be increased from the resolution D of the position detector 6 to ⁇ D that is ⁇ times larger. At this time, the resolution ⁇ D of the detection position correction unit 9 is limited to the resolution D ′ of the angle error estimator 22.
  • the position correction unit 9 can correct the angle error of the position detector 6 with five times the resolution.
  • the discrete value Pe when the angle error estimated value ⁇ err * is discretized with the resolution D of the position detector 6 is expressed by the following equation (3).
  • Equation (4) ⁇ is a discrete value that has become newly visible by performing discretization processing with high resolution, and is an integer satisfying ⁇ ⁇ .
  • the conventional corrected pulse number is Ps-Pe
  • the embodiment of the present invention The number of pulses after correction by 1 is ( ⁇ Ps ⁇ Pe ′) / ⁇ , and is expressed by the following equation (5).
  • FIG. 7 shows the effect of the angle error correction device for the position detector according to Embodiment 1 of the present invention.
  • A indicates the angular error estimated value
  • B indicates the conventional corrected pulse
  • C indicates the corrected pulse according to the first embodiment of the present invention.
  • the position detector detects the rotational position of the electric motor, includes a cyclic error that is uniquely determined according to the rotational position, and the current detection unit includes the current flowing through the electric motor.
  • the frequency analysis unit uses the rotational position of the electric motor to analyze the frequency of the current detected by the current detection unit, calculates the amplitude of a specific frequency component corresponding to the angle error, and the angle error estimator Based on the amplitude calculated by the frequency analysis unit and the rotational position of the electric motor, an angular error consisting of a specific frequency component is estimated as an angular error estimated value, and the angular error correction unit detects the rotation of the electric motor detected by the position detector.
  • the angle error is corrected with respect to the position by using the estimated angle error value.
  • the angle error correction unit corrects the angle error by using the estimated angle error value after multiplying the rotational position of the motor detected by the position detector by ⁇ ( ⁇ is an integer of 2 or more). Therefore, it is possible to accurately estimate the angle error and sufficiently correct the angle error.
  • Embodiment 2 when the angle error of the position detector 6 is corrected using the angle error estimated value from the angle error estimation unit 20, the resolution D of the position detector 6 is ⁇ times ( ⁇ is 2 or more). The method has been described in which a sufficient correction effect can be obtained by setting the resolution of the detection position correction unit 9 to ⁇ D that is higher than the resolution D of the position detector 6.
  • the angle error of the position detector 6 when the angle error of the position detector 6 is corrected using the angle error estimated value from the angle error estimating unit 20, it is discretized with a resolution ⁇ D ( ⁇ is a positive number). By multiplying the estimated angle error value by 1 / ⁇ , the angle error of the position detector 6 is corrected with a fractional or fractional pulse higher than the resolution D of the position detector 6 to obtain a sufficient correction effect.
  • ⁇ D a resolution
  • FIG. 8 is a block diagram showing a detection position correction unit of an angle error correction device for a position detector according to Embodiment 2 of the present invention, together with an angle error estimator and a position detector.
  • the detection position correction unit 9 includes a high resolution position conversion unit 91, a discretization processing unit 92, a 1 / multiplication unit 95, and a position corrector 94.
  • the high resolution position conversion unit 91 discretizes the angle error estimation value from the angle error estimator 22 with the resolution ⁇ D.
  • the discretization processing unit 92 discretizes the position information of the position detector 6 with a resolution D.
  • the 1 / multiplier 95 multiplies the output from the position corrector 94 by 1 / ⁇ .
  • the position corrector 94 applies an angle error estimated value that is discretized by the high resolution position converting unit 91 and multiplied by 1 / ⁇ by the 1 / multiplying unit 95 to the output from the discretization processing unit 92 to correct it. Output later position information.
  • the angle error estimated value from the angle error estimator 22 is discretized with the resolution ⁇ D and multiplied by 1 / ⁇ , and this is used to convert the angle error of the position detector 6 into the resolution of the position detector 6. Correct with fractional or fractional pulses higher than D.
  • the angle error can be corrected by a fractional pulse of 1 / ⁇ , and the resolution of the detection position correction unit 9 is artificially changed to the position detector 6.
  • the resolution D can be increased to ⁇ times ⁇ times.
  • is the ratio of the resolution D ′ of the angle error estimator 22 and the resolution D of the position detector 6.
  • the position detector detects the rotational position of the electric motor, includes a cyclic error that is uniquely determined according to the rotational position, and the current detection unit includes the current flowing through the electric motor.
  • the frequency analysis unit uses the rotational position of the electric motor to analyze the frequency of the current detected by the current detection unit, calculates the amplitude of a specific frequency component corresponding to the angle error, and the angle error estimator Based on the amplitude calculated by the frequency analysis unit and the rotational position of the electric motor, an angular error consisting of a specific frequency component is estimated as an angular error estimated value, and the angular error correction unit detects the rotation of the electric motor detected by the position detector.
  • the angle error is corrected with respect to the position by using the estimated angle error value.
  • the angle error correction unit corrects the angle error using a value obtained by multiplying the rotation angle of the motor detected by the position detector by 1 / ⁇ times ( ⁇ is a positive number). To do. Therefore, it is possible to accurately estimate the angle error and sufficiently correct the angle error.
  • the constant multiplication method is, for example, mathematical processing of the position information signal represented by a pulse in the example of the optical encoder after discretization, or bit shift with a shifter. Or may be corrected.

Abstract

Provided are: an angle error correction device that is for a position detector and that makes it possible to accurately estimate and correct an angle error; and an angle error correction method. A position detector detects the rotational position of an electric motor and includes a periodic error determined uniquely in accordance with the rotational position. An angle error correction unit multiplies the rotational position of the electric motor detected by the position detector by α (α is an integer of 2 or more), then corrects an angle error using an estimated angle error value or uses a value that is the result of multiplying the estimated angle error value by 1/γ (γ is a positive number) in order to correct the angle error with respect to the rotational position of the electric motor detected by the position detector.

Description

位置検出器の角度誤差補正装置および角度誤差補正方法Angular error correction device and angular error correction method for position detector
 この発明は、例えばエレベータ巻上機の制御装置、車載電動機の制御装置または工作機械の電動機の制御装置等に適用され、電動機の回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置および角度誤差補正方法に関するものである。 The present invention is applied to, for example, a control device for an elevator hoisting machine, a control device for an on-vehicle motor, or a control device for a motor of a machine tool, and a position detector including a periodic error that is uniquely determined according to the rotational position of the motor. The present invention relates to an angle error correction apparatus and an angle error correction method for a position detector that correct the angle error of the position detector.
 従来から、角度検出器により、レゾルバにおいて検出された信号から角度信号を検出し、レゾルバの誤差波形がレゾルバ固有の決められたn次成分から構成されていること、および再現性があることを利用して、角度誤差推定器により、検出された角度信号を参照して位置誤差を算出し、当該位置誤差を微分して速度誤差信号を算出し、当該速度誤差信号を例えばフーリエ変換により周波数分析して周波数成分ごとの検出誤差を算出し、算出した検出誤差を合成して推定角度誤差信号を生成し、角度信号補正回路により、生成した推定角度誤差信号を用いて検出された角度信号を補正するレゾルバの角度検出装置が知られている(例えば、特許文献1参照)。 Conventionally, an angle detector detects an angle signal from a signal detected by a resolver, and utilizes that the resolver error waveform is composed of a determined n-order component unique to the resolver and is reproducible. Then, the position error is calculated by referring to the detected angle signal by the angle error estimator, the speed error signal is calculated by differentiating the position error, and the speed error signal is subjected to frequency analysis by, for example, Fourier transform. The detection error for each frequency component is calculated, the calculated detection errors are combined to generate an estimated angle error signal, and the angle signal correction circuit corrects the detected angle signal using the generated estimated angle error signal. A resolver angle detection device is known (see, for example, Patent Document 1).
特開2012-145371号公報JP 2012-145371 A
 しかしながら、従来技術には、以下のような課題がある。
 従来のレゾルバ装置、レゾルバの角度検出装置を用いて速度検出をする場合、角度検出器で検出された角度信号を微分してモータの回転速度が検出され、この検出速度をフーリエ変換して角度誤差を推定している。ここで、検出速度を用いて角度誤差を推定する場合には、角度検出装置の位置分解能、および速度演算のサンプリング時間(時間分解能)によって、角度誤差の推定精度が決定される。そのため、位置分解能の低い角度検出装置では、量子化誤差が生じ、角度誤差の推定精度が十分に得られないという問題がある。
However, the prior art has the following problems.
When speed detection is performed using a conventional resolver device or resolver angle detection device, the rotational speed of the motor is detected by differentiating the angle signal detected by the angle detector, and the detected speed is Fourier transformed to obtain an angle error. Is estimated. Here, when the angle error is estimated using the detection speed, the angle error estimation accuracy is determined by the position resolution of the angle detection device and the sampling time (time resolution) of the speed calculation. For this reason, an angle detection device with low position resolution has a problem that quantization errors occur and angle error estimation accuracy cannot be obtained sufficiently.
 また、従来例とは別の方法で角度誤差を推定する方法において、位置検出器の分解能を超えて、良好な推定精度の角度誤差が得られた場合であっても、得られた角度誤差を用いて位置検出器で検出された角度信号を補正するときに、位置検出器の分解能がボトルネックとなり、十分な補正効果を得ることができないという問題がある。 In addition, in the method of estimating the angle error by a method different from the conventional example, even if the angle error with good estimation accuracy is obtained exceeding the resolution of the position detector, the obtained angle error is When the angle signal detected by the position detector is corrected, the resolution of the position detector becomes a bottleneck, and there is a problem that a sufficient correction effect cannot be obtained.
 この発明は、上記のような課題を解決するためになされたものであり、角度誤差を正確に推定するとともに、角度誤差を十分に補正することができる位置検出器の角度誤差補正装置および角度誤差補正方法を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and is capable of accurately estimating an angle error and sufficiently correcting the angle error, and an angle error correction device for the position detector and the angle error. The purpose is to obtain a correction method.
 この発明に係る位置検出器の角度誤差補正装置は、電動機の回転位置を検出し、回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置であって、位置検出器で検出された電動機の回転位置に対して、角度誤差を推定する角度誤差推定器と、角度誤差推定器の出力である角度誤差推定値を用いて、角度誤差を補正する角度誤差補正部と、を備え、角度誤差補正部は、位置検出器で検出された電動機の回転位置をα倍(αは2以上の整数)した後に、角度誤差推定値を用いて、角度誤差を補正するものである。 An angle error correction apparatus for a position detector according to the present invention detects the rotational position of an electric motor and corrects the angle error of the position detector including a periodic error that is uniquely determined according to the rotational position. An error correction device that uses an angle error estimator that estimates an angle error with respect to the rotational position of the motor detected by the position detector, and an angle error estimated value that is an output of the angle error estimator. An angle error correction unit that corrects the error, and the angle error correction unit uses the estimated angle error value after multiplying the rotational position of the motor detected by the position detector by α (α is an integer of 2 or more). Thus, the angle error is corrected.
 また、この発明に係る別の位置検出器の角度誤差補正装置は、電動機の回転位置を検出し、回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置であって、位置検出器で検出された電動機の回転位置に対して、角度誤差を推定する角度誤差推定器と、角度誤差推定器の出力である角度誤差推定値を用いて、角度誤差を補正する角度誤差補正部と、を備え、角度誤差補正部は、位置検出器で検出された電動機の回転位置に対して、角度誤差推定値を1/γ倍(γは正の数)した値を用いて、角度誤差を補正するものである。 According to another aspect of the present invention, there is provided an angle error correction device for a position detector that detects a rotational position of an electric motor and corrects an angular error of the position detector including a periodic error that is uniquely determined according to the rotational position. An angle error correction device for a detector, wherein an angle error estimator for estimating an angle error with respect to the rotational position of the motor detected by the position detector, and an angle error estimated value that is an output of the angle error estimator And an angle error correction unit that corrects the angle error, and the angle error correction unit increases the angle error estimated value by 1 / γ times (γ is the rotation angle of the motor detected by the position detector). The angle error is corrected using a positive value.
 この発明に係る位置検出器の角度誤差補正装置によれば、位置検出器は、電動機の回転位置を検出し、回転位置に応じて一意に決まる周期的な誤差を含み、角度誤差推定器は、位置検出器で検出された電動機の回転位置に対して、角度誤差を推定し、角度誤差補正部は、角度誤差推定器の出力である角度誤差推定値を用いて、角度誤差を補正する。
 このとき、角度誤差補正部は、位置検出器で検出された電動機の回転位置をα倍(αは2以上の整数)した後に、角度誤差推定値を用いて、角度誤差を補正するか、または、位置検出器で検出された電動機の回転位置に対して、角度誤差推定値を1/γ倍(γは正の数)した値を用いて、角度誤差を補正する。
 そのため、補正する角度誤差補正値を位置検出器の分解能よりも高くすることが可能となるので、角度誤差を正確に推定するとともに、角度誤差を十分に補正することができる位置検出器の角度誤差補正装置および角度誤差補正方法を得ることができる。
According to the angle error correction device for a position detector according to the present invention, the position detector detects the rotational position of the electric motor, includes a cyclic error that is uniquely determined according to the rotational position, and the angle error estimator is The angle error is estimated with respect to the rotational position of the electric motor detected by the position detector, and the angle error correction unit corrects the angle error using the angle error estimated value that is the output of the angle error estimator.
At this time, the angle error correction unit corrects the angle error using the angle error estimated value after multiplying the rotational position of the motor detected by the position detector by α (α is an integer of 2 or more), or The angle error is corrected using a value obtained by multiplying the estimated angle error value by 1 / γ (γ is a positive number) with respect to the rotational position of the motor detected by the position detector.
As a result, the angle error correction value to be corrected can be higher than the resolution of the position detector, so that the angle error of the position detector that can accurately estimate the angle error and sufficiently correct the angle error can be obtained. A correction device and an angle error correction method can be obtained.
この発明に係る位置検出器の角度誤差補正装置を含む電動機の制御装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the control apparatus of the electric motor containing the angle error correction apparatus of the position detector which concerns on this invention. この発明の実施の形態1に係る位置検出器の角度誤差補正装置が適用された電動機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the electric motor to which the angle error correction apparatus of the position detector which concerns on Embodiment 1 of this invention was applied. この発明の実施の形態1に係る位置検出器の角度誤差補正装置が適用された電動機の制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the electric motor to which the angle error correction apparatus of the position detector which concerns on Embodiment 1 of this invention was applied. この発明の実施の形態1に係る位置検出器の角度誤差補正装置の位置検出器の検出誤差を例示するグラフである。It is a graph which illustrates the detection error of the position detector of the angle error correction apparatus of the position detector which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る位置検出器の角度誤差補正装置の角度誤差推定部を示すブロック図である。It is a block diagram which shows the angle error estimation part of the angle error correction apparatus of the position detector which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る位置検出器の角度誤差補正装置の検出位置補正部を、角度誤差推定器および位置検出器と併せて示すブロック図である。It is a block diagram which shows the detection position correction | amendment part of the angle error correction apparatus of the position detector which concerns on Embodiment 1 of this invention together with an angle error estimator and a position detector. この発明の実施の形態1に係る位置検出器の角度誤差補正装置の効果を示す説明図である。It is explanatory drawing which shows the effect of the angle error correction apparatus of the position detector which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る位置検出器の角度誤差補正装置の検出位置補正部を、角度誤差推定器および位置検出器と併せて示すブロック図である。It is a block diagram which shows the detection position correction | amendment part of the angle error correction apparatus of the position detector which concerns on Embodiment 2 of this invention with the angle error estimator and the position detector.
 以下、この発明に係る位置検出器の角度誤差補正装置および角度誤差補正方法の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。 Hereinafter, preferred embodiments of an angle error correction device and an angle error correction method for a position detector according to the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals. To explain.
 なお、以下の実施の形態では、電動機に流れる電流に基づいて、位置検出器からの出力である電動機の回転位置に含まれる位置依存性のある角度誤差を推定し、補正を行う位置検出器の角度誤差補正装置において、位置検出器の分解能によらず、角度誤差を十分に補正することができる方法について説明する。
 また、以下の実施の形態では、電流に基づいて角度誤差を推定する推定方法を例に説明を行うが、推定方法が位置検出器の分解能に依存しない推定方法であれば、別の推定方法にも適用可能である。
In the following embodiment, a position detector that performs correction by estimating a position-dependent angle error included in the rotation position of the motor, which is an output from the position detector, based on the current flowing in the motor. A method for sufficiently correcting the angle error regardless of the resolution of the position detector in the angle error correction apparatus will be described.
Further, in the following embodiments, an estimation method for estimating an angle error based on current will be described as an example. However, if the estimation method is an estimation method that does not depend on the resolution of the position detector, another estimation method is used. Is also applicable.
 実施の形態1.
 図1は、この発明に係る位置検出器の角度誤差補正装置を含む電動機の制御装置の全体構成を示すブロック図である。また、図2、3は、この発明の実施の形態1に係る位置検出器の角度誤差補正装置が適用された電動機の制御装置を示すブロック図である。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the overall configuration of a motor control device including an angle error correction device for a position detector according to the present invention. 2 and 3 are block diagrams showing a motor control device to which the position detector angle error correction device according to Embodiment 1 of the present invention is applied.
 図1~3において、この電動機の制御装置は、速度指令値生成部1、速度制御器2、電流制御器3、インバータ4、電動機5、位置検出器6、電流センサ(電流検出部)7、速度演算部8、検出位置補正部(角度誤差補正部)9、位置演算部11、座標変換器12および角度誤差推定部20を備えている。 1 to 3, the motor control device includes a speed command value generator 1, a speed controller 2, a current controller 3, an inverter 4, an electric motor 5, a position detector 6, a current sensor (current detector) 7, A speed calculation unit 8, a detection position correction unit (angle error correction unit) 9, a position calculation unit 11, a coordinate converter 12, and an angle error estimation unit 20 are provided.
 速度指令値生成部1は、電動機5に対する速度指令値を生成して出力する。なお、図示していないが、速度指令値生成部1は、位置制御系を含んでいてもよい。速度指令値生成部1が位置制御系を含む場合であっても、この発明は、適用することができる。 The speed command value generation unit 1 generates and outputs a speed command value for the electric motor 5. Although not shown, the speed command value generation unit 1 may include a position control system. The present invention can be applied even when the speed command value generation unit 1 includes a position control system.
 速度制御器2は、速度指令値生成部1からの速度指令値と、速度演算部8で演算された電動機5の回転速度との差分を入力として、電動機5に対する電流指令値を生成して出力する。 The speed controller 2 receives the difference between the speed command value from the speed command value generation unit 1 and the rotation speed of the electric motor 5 calculated by the speed calculation unit 8, and generates and outputs a current command value for the electric motor 5. To do.
 速度演算部8は、位置検出器6からの出力である電動機5の回転位置が、検出位置補正部9で補正された位置情報に基づいて、電動機5の回転速度を演算して出力する。なお、速度演算部8は、最も簡単には、位置の時間微分によって回転速度を演算する。 The speed calculation unit 8 calculates and outputs the rotation speed of the electric motor 5 based on the position information in which the rotation position of the electric motor 5 output from the position detector 6 is corrected by the detection position correction unit 9. The speed calculation unit 8 calculates the rotation speed by the time differentiation of the position in the simplest manner.
 また、速度演算部8は、位置検出器6の位置情報(例えば、光学式エンコーダのパルス数)をもとに速度演算を行ってもよい。また、速度演算部8は、時間を計測するための構成を含んでいてもよい。 Further, the speed calculation unit 8 may perform speed calculation based on the position information of the position detector 6 (for example, the number of pulses of the optical encoder). Further, the speed calculation unit 8 may include a configuration for measuring time.
 電流制御器3は、速度制御器2からの電流指令値と、図2に示される電流センサ7からの出力である相電流、または図3に示される相電流を座標変換器12でd-q軸等に変換した電動機5の軸電流との差分を入力として、電動機5の電圧指令値を生成して出力する。 The current controller 3 converts the current command value from the speed controller 2 and the phase current output from the current sensor 7 shown in FIG. 2 or the phase current shown in FIG. Using the difference from the shaft current of the electric motor 5 converted to a shaft or the like as an input, a voltage command value for the electric motor 5 is generated and output.
 位置演算部11は、検出位置補正部9で補正された位置情報に基づいて、電動機5の角度情報を演算して出力する。また、座標変換器12は、電動機5をベクトル制御する場合に、電流センサ7からの相電流を、α-β軸、d-q軸またはγ-δ軸等、制御に適した座標に変換する。 The position calculation unit 11 calculates and outputs angle information of the electric motor 5 based on the position information corrected by the detected position correction unit 9. The coordinate converter 12 converts the phase current from the current sensor 7 into coordinates suitable for control, such as an α-β axis, dq axis, or γ-δ axis, when the electric motor 5 is vector-controlled. .
 検出位置補正部9は、位置検出器6からの出力である電動機5の回転位置に対して、角度誤差推定部20からの出力である角度誤差推定値を加算または減算して、補正後の位置情報を出力する。なお、検出位置補正部9の詳細な機能については、後述する。 The detected position correction unit 9 adds or subtracts an estimated angle error value output from the angle error estimation unit 20 to the rotational position of the electric motor 5 output from the position detector 6 to obtain a corrected position. Output information. The detailed function of the detection position correction unit 9 will be described later.
 電流センサ7は、電動機5の電流を測定する。例えば、電動機5が三相電動機である場合には、二相の相電流を測定することが多いが、三相の相電流を測定してもよい。なお、図1~3では、電流センサ7がインバータ4の出力電流を測定しているが、電流センサ7は、ワンシャント抵抗による電流測定法のように、インバータ4の母線電流を測定して、各相電流を推定してもよい。この場合であっても、この発明には何等影響を与えない。 The current sensor 7 measures the current of the electric motor 5. For example, when the motor 5 is a three-phase motor, a two-phase phase current is often measured, but a three-phase phase current may be measured. 1 to 3, the current sensor 7 measures the output current of the inverter 4. However, the current sensor 7 measures the bus current of the inverter 4 as in a current measurement method using a one-shunt resistor, and Each phase current may be estimated. Even in this case, the present invention is not affected at all.
 インバータ4は、電流制御器3からの電圧指令値に基づいて、図示しない電源の電圧を、所望の可変電圧可変周波数に変換する。この発明では、一般的に販売されているインバータ装置のように、コンバータによって交流電圧を直流電圧に変換した後に、インバータによって直流電圧を交流電圧に変換する電力変換装置や、マトリクスコンバータのように、交流電圧を直接交流の可変電圧可変周波数に変換する電力変換装置を含む可変電圧可変周波数の電力変換装置を指す。 The inverter 4 converts the voltage of the power source (not shown) into a desired variable voltage variable frequency based on the voltage command value from the current controller 3. In this invention, like an inverter device generally sold, after converting an AC voltage to a DC voltage by a converter, a power converter that converts the DC voltage to an AC voltage by an inverter, or a matrix converter, A variable voltage variable frequency power converter including a power converter that directly converts an AC voltage into an AC variable voltage variable frequency.
 また、この発明の実施の形態1に係るインバータ4は、上述したインバータ4に加えて、座標変換の機能を含んでもよい。すなわち、電圧指令値がd-q軸の電圧指令値である場合には、d-q軸の電圧指令値を相電圧または線間電圧に変換して、指令された電圧指令値に従った電圧に変換する座標変換機能も含めて、インバータ4と表現する。なお、図示していないが、インバータ4のデッドタイムを補正する装置または手段が設けられていても、この発明は、適用することができる。 Moreover, the inverter 4 according to the first embodiment of the present invention may include a coordinate conversion function in addition to the inverter 4 described above. That is, when the voltage command value is a dq-axis voltage command value, the dq-axis voltage command value is converted into a phase voltage or a line voltage, and the voltage in accordance with the commanded voltage command value. It is expressed as an inverter 4 including a coordinate conversion function for converting to. Although not shown, the present invention can be applied even if a device or means for correcting the dead time of the inverter 4 is provided.
 位置検出器6は、例えば光学式エンコーダや磁気式エンコーダ、レゾルバのように、電動機5の制御に必要な電動機5の回転位置を検出する。また、位置検出器6は、図4に示されるように、出力される回転位置の情報には、電動機5の回転位置に応じて一意に決まる周期的な誤差を含んでいる。 The position detector 6 detects the rotational position of the electric motor 5 necessary for controlling the electric motor 5, such as an optical encoder, a magnetic encoder, or a resolver. Further, as shown in FIG. 4, the position detector 6 includes a cyclic error that is uniquely determined according to the rotational position of the electric motor 5 in the output rotational position information.
 ここで、電動機5の回転位置に応じて一意に決まる周期的な誤差とは、例えば上記特許文献1の段落0020、0021に記載されたレゾルバの検出誤差や、光学式エンコーダにおけるスリット不良によるパルス抜けおよびパルス間距離の不均衡のように、回転位置に応じて再現性のある誤差を指す。 Here, the periodic error uniquely determined according to the rotational position of the electric motor 5 is, for example, the detection error of the resolver described in paragraphs 0020 and 0021 of the above-mentioned Patent Document 1, and the missing pulse due to the slit failure in the optical encoder. It also refers to a reproducible error depending on the rotational position, such as an imbalance in the distance between pulses.
 以下、電動機5の回転位置に応じて一意に決まる周期的な誤差は、位置情報を角度に変換した角度誤差θerrとして表現する。なお、この発明は、位置検出器6が電動機5の回転位置に応じて一意に決まる周期的な誤差を含み、かつ角度誤差θerrの主成分次数が既知である場合に適用することができる。 Hereinafter, the periodic error uniquely determined according to the rotational position of the electric motor 5 is expressed as an angle error θ err obtained by converting the position information into an angle. The present invention can be applied when the position detector 6 includes a periodic error uniquely determined according to the rotational position of the electric motor 5 and the principal component order of the angle error θ err is known.
 位置検出器6の周期的な角度誤差θerrは、次式(1)のように、正弦波を用いて近似的に表すことができる。なお、正弦波による表記でも余弦波による表記でも本質的な違いはないので、この発明の実施の形態1では、正弦波による表記に統一する。 The periodic angular error θ err of the position detector 6 can be approximately expressed using a sine wave as shown in the following equation (1). In addition, since there is no essential difference between the notation by the sine wave and the notation by the cosine wave, the first embodiment of the present invention unifies the notation by the sine wave.
 ただし、式(1)において、θmは電動機5の機械角度を示し、A1はN1次の次数における誤差振幅を示し、A2はN2次の次数における誤差振幅を示し、AnはNn次の次数における誤差振幅を示し、φ1はN1次の次数における電動機5の機械角度に対する位相ずれ(誤差位相)を示し、φ2はN2次の次数における電動機5の機械角度に対する位相ずれを示し、φnはNn次の次数における電動機5の機械角度に対する位相ずれを示している。 However, in the formula (1), θ m represents the mechanical angle of the motor 5, A 1 represents an error amplitude in N 1 order order, A 2 represents an error amplitude at the N 2 order order, A n is N 1 indicates the error amplitude in the N- th order, φ 1 indicates a phase shift (error phase) with respect to the mechanical angle of the motor 5 in the N 1 -order, and φ 2 indicates the mechanical angle of the motor 5 in the N- second order. A phase shift is indicated, and φ n indicates a phase shift with respect to the mechanical angle of the electric motor 5 in the N n -th order.
 なお、式(1)のN1、N2…Nnの空間次数は、1、2…Nnのように連続した整数である必要はなく、電動機5の回転位置に応じて一意に決まる周期的な誤差の主成分の空間次数である。ここでいう主成分とは、他の周波数の振幅に対して、その空間次数における振幅が大きなものを指す。 It should be noted that the spatial orders of N 1 , N 2 ... N n in equation (1) do not have to be consecutive integers such as 1, 2... Nn, and are periodically determined uniquely depending on the rotational position of the motor 5. Is the spatial order of the principal component of the error. The main component here refers to a component whose amplitude in the spatial order is larger than the amplitude of other frequencies.
 また、式(1)は、3つ以上の周波数成分を合成したものとして表記されているが、周期的な角度誤差θerrの周波数成分は、1つでも2つでも、またはそれ以上の成分から構成されていてもよい。 Further, the expression (1) is expressed as a combination of three or more frequency components, but the frequency component of the periodic angular error θ err may be one, two, or more components. It may be configured.
 図5は、この発明の実施の形態1に係る位置検出器の角度誤差補正装置の角度誤差推定部を示すブロック図である。図5において、角度誤差推定部20は、周波数解析部21および角度誤差推定器22を有している。 FIG. 5 is a block diagram showing an angle error estimation unit of the angle error correction device for the position detector according to Embodiment 1 of the present invention. In FIG. 5, the angle error estimation unit 20 includes a frequency analysis unit 21 and an angle error estimator 22.
 周波数解析部21は、電流センサ7からの相電流と、位置検出器6からの出力である電動機5の回転位置が、検出位置補正部9で補正されて、位置演算部11で演算された電動機5の角度情報とを入力として、入力電流の所望の周波数における振幅、または振幅および位相を得る。 The frequency analysis unit 21 corrects the phase current from the current sensor 7 and the rotational position of the electric motor 5 that is an output from the position detector 6 by the detection position correction unit 9 and calculates the electric motor by the position calculation unit 11. Using the angle information of 5 as an input, the amplitude or amplitude and phase of the input current at a desired frequency is obtained.
 ここで、周波数解析部21は、フーリエ変換、フーリエ級数解析または高速フーリエ変換のように、入力する信号の所望の周波数における振幅および位相が得られる構成が望ましいが、ノッチフィルタやバンドパスフィルタを組み合わせたフィルタのように、所望の周波数信号を抽出し、振幅検出部や位相検出部によって、入力信号の所望の振幅や位相を演算する構成であってもよい。また、ここで用いるフィルタは、抵抗やコンデンサ、コイル等を組み合わせた電気的なものであっても、計算機内で行う処理であってもよい。 Here, the frequency analysis unit 21 is preferably configured to obtain an amplitude and phase at a desired frequency of an input signal, such as Fourier transform, Fourier series analysis, or fast Fourier transform. A configuration may be used in which a desired frequency signal is extracted and a desired amplitude or phase of an input signal is calculated by an amplitude detection unit or a phase detection unit like a filter. Moreover, the filter used here may be an electrical filter that combines a resistor, a capacitor, a coil, or the like, or may be a process performed in a computer.
 特に、この発明の実施の形態1においては、所望の周波数の振幅に比例した情報、または振幅のべき乗に比例した情報を検出できる構成であれば、周波数解析部21の構成は問わない。また、図2では、相電流を入力としているが、図3に示されるように、相電流を座標変換したd軸電流、q軸電流、γ軸電流、δ軸電流またはα軸電流、β軸電流の何れかの電流を入力としてもよい。 In particular, in the first embodiment of the present invention, the configuration of the frequency analysis unit 21 is not limited as long as it can detect information proportional to the amplitude of the desired frequency or information proportional to the power of the amplitude. In FIG. 2, the phase current is input. As shown in FIG. 3, the d-axis current, the q-axis current, the γ-axis current, the δ-axis current, the α-axis current, and the β-axis obtained by coordinate conversion of the phase current Any one of the currents may be input.
 なお、ここでいう所望の周波数(特定周波数)の信号とは、位置検出器6の周期的な角度誤差θerrに起因する、角度誤差θerrの主成分と同じ周波数の信号を指す。また、この発明の実施の形態1では、所望の周波数を空間周波数として表すが、時間周波数であっても本質的な違いはない。 The signal having a desired frequency (specific frequency) referred to here indicates a signal having the same frequency as the main component of the angle error θ err caused by the periodic angle error θ err of the position detector 6. In the first embodiment of the present invention, a desired frequency is expressed as a spatial frequency, but there is no essential difference even if it is a time frequency.
 ここで、空間周波数とは、特定の区間、この発明の実施の形態1においては、電動機5の1回転における周波数をいう。また、電動機5の機械1回転における周期的なN個の波の信号を、空間次数のNの波と呼ぶ。 Here, the spatial frequency refers to a frequency in one rotation of the electric motor 5 in a specific section, in Embodiment 1 of the present invention. A periodic N wave signal in one rotation of the motor 5 is referred to as a spatial order N wave.
 位置検出器6を備えた電動機5の制御装置では、位置検出器6の誤差が電動機5の回転位置に応じた周期性を有することから、周波数解析は、空間周波数による解析が望ましく、上記式(1)でも、角度誤差θerrが空間周波数による表現となっており、さらに図1~3に示された周波数解析部21も、入力が空間周波数解析に対応した入力(電流および角度)になっている。 In the control device for the electric motor 5 provided with the position detector 6, since the error of the position detector 6 has a periodicity corresponding to the rotational position of the electric motor 5, the frequency analysis is preferably an analysis based on the spatial frequency. 1), the angle error θ err is expressed by the spatial frequency, and the frequency analysis unit 21 shown in FIGS. 1 to 3 also has an input (current and angle) corresponding to the spatial frequency analysis. Yes.
 しかしながら、この発明の実施の形態1は、時間周波数による周波数解析にも適用することができ、時間周波数による周波数解析を行う場合には、電流および角度を入力とする代わりに、検出速度、時間計測部による計測時間および電流を入力として、周波数解析を行う。 However, Embodiment 1 of the present invention can also be applied to frequency analysis based on time frequency. When performing frequency analysis based on time frequency, instead of inputting current and angle, detection speed and time measurement Frequency analysis is performed using the measurement time and current measured by the unit as inputs.
 角度誤差推定器22は、周波数解析部21の出力である所望の周波数成分の電流振幅値と、位置検出器6からの出力である電動機5の回転位置が、検出位置補正部9で補正されて、位置演算部11で演算された電動機5の角度情報とを入力として、電動機5の回転位置に応じて一意に決まる周期的な角度誤差θerrを後述する推定方法によって推定し、角度誤差推定値を出力する。 In the angle error estimator 22, the current amplitude value of a desired frequency component that is an output of the frequency analysis unit 21 and the rotational position of the electric motor 5 that is an output from the position detector 6 are corrected by the detection position correction unit 9. Then, the angle information of the electric motor 5 calculated by the position calculation unit 11 is used as an input, and a cyclic angle error θ err uniquely determined according to the rotational position of the electric motor 5 is estimated by an estimation method to be described later. Is output.
 ここで、検出位置補正部9の入力の一方が、位置検出器6の出力信号(電動機5の回転位置)なので、角度誤差推定器22は、位置情報を出力する。すなわち、位置検出器6が光学式エンコーダで、その分解能が1024パルス/回転であり、角度誤差推定器22の推定結果が1°である場合を考えると、角度誤差推定器22は、1°に相当するパルス数3パルスを位置情報として出力する。 Here, since one of the inputs of the detection position correction unit 9 is the output signal of the position detector 6 (the rotational position of the electric motor 5), the angle error estimator 22 outputs position information. That is, when the position detector 6 is an optical encoder, the resolution is 1024 pulses / rotation, and the estimation result of the angle error estimator 22 is 1 °, the angle error estimator 22 is 1 °. The corresponding number of pulses of 3 is output as position information.
 なお、上記式(1)で示されるように、角度誤差の周波数成分が複数ある場合には、逐次各成分で角度誤差を推定して足し合わせるか、または複数の周波数成分を同時に推定すればよい。このとき、逐次各成分で角度誤差を推定する場合に比べて、同時推定の場合には、推定時間を短縮することができる。ここでは、簡単のため、角度誤差が単一の周波数成分のみからなる場合について説明する。 As shown in the above equation (1), when there are a plurality of frequency components of the angle error, the angle error may be estimated and added sequentially with each component, or a plurality of frequency components may be estimated simultaneously. . At this time, in the case of simultaneous estimation, the estimation time can be shortened as compared with the case where the angle error is sequentially estimated for each component. Here, for simplicity, a case will be described in which the angle error is composed of only a single frequency component.
 ここで、電動機5の回転位置に応じて一意に決まる周期的な角度誤差を含む位置検出器6によって速度フィードバック制御を行うと、角度誤差と同一次数の周波数成分を含む電流脈動または電流指令値の脈動が発生することがわかっている。そのため、電流脈動を抑制するように角度誤差を推定して補正してやれば、角度誤差、および位置検出器6からの出力を用いて演算される電動機5の回転位置の誤差を小さくすることができる。 Here, when speed feedback control is performed by the position detector 6 including a cyclic angle error uniquely determined according to the rotational position of the electric motor 5, a current pulsation or current command value including a frequency component of the same order as the angle error is obtained. It is known that pulsation occurs. Therefore, if the angle error is estimated and corrected so as to suppress the current pulsation, the angle error and the error of the rotational position of the electric motor 5 calculated using the output from the position detector 6 can be reduced.
 なお、位置検出器6が、電動機5の回転位置に応じて一意に決まる周期的な誤差を含む場合に、周波数解析部21によって相電流の周波数解析を行うと、電動機5が永久磁石同期電動機であるときに、相電流に現れる電流脈動は、極対数をPnとし、所望の周波数の次数をNnとすると、機械次数でPn±Nn次の次数となる。 When the position detector 6 includes a periodic error that is uniquely determined according to the rotational position of the motor 5, if the frequency analysis is performed by the frequency analysis unit 21, the motor 5 is a permanent magnet synchronous motor. in some case, the current ripple appearing in the phase current, the pole and the logarithm with P n, when the order of the desired frequency and n n, the P n ± n n next degree machine degree.
 そのため、相電流のうち、少なくとも1相の電流を周波数解析し、Pn+Nn次またはPn-Nn次の電流から、Pn+Nn次またはPn-Nn次の角度誤差を推定すればよい。ただし、Pn-Nn次の次数については、電動機5の極対数Pnよりも所望の周波数の次数Nnが大きい場合には、負の数となって存在しない可能性があるので、Pn+Nn次の電流を周波数解析することが望ましい。また、推定を行う際は、定トルク、定速度運転が望ましい。 Therefore, frequency analysis of at least one of the phase currents is performed, and the P n + N n -order or P n -N n -order current is estimated from the P n + N n -order or P n -N n -order current. do it. However, the P n -N n following order, when the order N n of the desired frequency than the pole pair number P n of the electric motor 5 is large, because it may not present a negative number, P It is desirable to analyze the frequency of n + N nth order current. Moreover, when performing estimation, constant torque and constant speed operation is desirable.
 また、d軸電流またはq軸電流の何れかを周波数解析部21によって周波数解析する場合には、機械Nn次の次数の角度誤差によって、dq軸に現れる電流脈動成分は、Nn次と同一次数の脈動する成分を持つ。また、d軸電流は、角度誤差によって生じる磁極ずれに起因して、トルク電流であるq軸電流が回り込んでくるので、角度誤差に相似の電流脈動となる。さらに、q軸電流は、速度脈動が速度制御系を通して電流指令値の脈動となる。そのため、q軸電流は、速度脈動の原因となる角度誤差相似の電流脈動となる。 When either the d-axis current or the q-axis current is subjected to frequency analysis by the frequency analysis unit 21, the current pulsation component appearing on the dq axis is the same as the N n order due to the angular error of the machine N n order. Has a pulsating component of order. In addition, the d-axis current has a current pulsation similar to the angle error because the q-axis current, which is the torque current, wraps around due to the magnetic pole deviation caused by the angle error. Furthermore, in the q-axis current, the speed pulsation becomes the pulsation of the current command value through the speed control system. Therefore, the q-axis current becomes a current pulsation similar to the angle error that causes the speed pulsation.
 そこで、例えば、角度誤差推定器22は、周波数解析部21における周波数解析によって得られたd軸電流またはq軸電流のNn次の電流振幅を最小にするように、角度誤差を推定すればよい。 Therefore, for example, the angle error estimator 22 may estimate the angle error so as to minimize the N n -order current amplitude of the d-axis current or the q-axis current obtained by the frequency analysis in the frequency analysis unit 21. .
 なお、d軸電流またはq軸電流の何れかの電流検出値、または何れかの電流指令値で周波数解析を行う場合には、回り込んでくるq軸電流が一定の条件、すなわち一定加速度の条件で推定を行う。特に、加速度がゼロ、つまり一定速度で電動機5が回転しているという条件で推定を行うことが望ましい。 In addition, when performing a frequency analysis with the current detection value of either the d-axis current or the q-axis current, or any current command value, the condition that the q-axis current that wraps around is constant, that is, the condition of constant acceleration. Estimate with. In particular, it is desirable to perform the estimation under the condition that the acceleration is zero, that is, the electric motor 5 is rotating at a constant speed.
 続いて、検出位置補正部9の詳細な機能について説明する。まず、位置検出器6からの出力である電動機5の回転位置に含まれる位置依存性のある角度誤差を推定し、補正を行う場合には、角度誤差推定部20からの出力である角度誤差推定値を位置検出器6の位置情報に変換し、位置検出器6の検出値に合わせこんでいた。 Subsequently, a detailed function of the detection position correction unit 9 will be described. First, when the position-dependent angle error included in the rotational position of the electric motor 5 that is an output from the position detector 6 is estimated and corrected, an angle error estimation that is an output from the angle error estimation unit 20 is performed. The value was converted into position information of the position detector 6 and adjusted to the detection value of the position detector 6.
 例えば、位置検出器6が、出力の位置情報をAB相で表す光学式エンコーダである場合には、光学式エンコーダのAB相パルスをカウントしたものに、角度誤差推定値を光学式エンコーダの分解能Dに応じて離散化したものを適用して補正していた。 For example, in the case where the position detector 6 is an optical encoder that expresses output position information in the AB phase, the angle error estimated value is added to the optical encoder resolution D that is obtained by counting the AB phase pulses of the optical encoder. According to the above, the discretization is applied and corrected.
 そのため、従来、角度誤差推定器の分解能D’は、位置検出器6の分解能Dと同一であった。このとき、位置検出器6および角度誤差推定器の1パルスあたりの角度は、次式(2)で表される。 Therefore, conventionally, the resolution D ′ of the angle error estimator is the same as the resolution D of the position detector 6. At this time, the angle per pulse of the position detector 6 and the angle error estimator is expressed by the following equation (2).
  360/D=360/D’[°/パルス]   ・・・(2) 360 / D = 360 / D '[° / pulse] (2)
 しかしながら、この発明の実施の形態1によれば、角度誤差推定部20は、電動機5に流れる電流に基づいて角度誤差推定値を推定するので、角度誤差推定器22の分解能D’は、電流センサ7の分解能によって決まり、角度誤差推定器の分解能D’が位置検出器6の分解能Dよりも高くなる場合が存在する(D’>D)。 However, according to the first embodiment of the present invention, the angle error estimator 20 estimates the angle error estimated value based on the current flowing through the electric motor 5, so that the resolution D ′ of the angle error estimator 22 is the current sensor. The resolution D ′ of the angle error estimator is higher than the resolution D of the position detector 6 (D ′> D).
 この場合には、角度誤差推定器22からの角度誤差推定値を用いて位置検出器6の角度誤差を補正するときに、位置検出器6の分解能Dがボトルネックとなり、本来の角度誤差推定器22の分解能D’よりも小さな位置検出器6の分解能Dでしか角度誤差を補正することができず、十分な補正効果を得ることができない。 In this case, when correcting the angle error of the position detector 6 using the angle error estimated value from the angle error estimator 22, the resolution D of the position detector 6 becomes a bottleneck, and the original angle error estimator. The angle error can be corrected only with the resolution D of the position detector 6 smaller than the resolution D ′ of 22, and a sufficient correction effect cannot be obtained.
 具体的には、角度誤差推定器22の分解能D’=3600(360/D’=0.1[°/パルス])であり、位置検出器6の分解能D=720(360/D=0.5[°/パルス])である場合を考える。 Specifically, the resolution D ′ = 3600 (360 / D ′ = 0.1 [° / pulse]) of the angle error estimator 22 and the resolution D = 720 (360 / D = 0.360 of the position detector 6). 5 [° / pulse]).
 このとき、角度誤差推定器22は、0.1°刻みで角度誤差推定値を推定することができるものの、位置検出器6の角度誤差を補正する場合には、位置検出器6の分解能Dの影響を受けて、0.5°刻みで位置情報(パルス)を補正することになる。 At this time, the angle error estimator 22 can estimate the angle error estimated value in increments of 0.1 °. However, when correcting the angle error of the position detector 6, the resolution D of the position detector 6 is Under the influence, the position information (pulse) is corrected in increments of 0.5 °.
 そこで、この発明の実施の形態1では、角度誤差推定部20からの角度誤差推定値を用いて位置検出器6の角度誤差を補正する場合に、位置検出器6の分解能Dをα倍(αは2以上の整数)することにより、検出位置補正部9の分解能を、位置検出器6の分解能Dよりも高いαDとして、十分な補正効果を得ることができる方法について説明する。 Therefore, in Embodiment 1 of the present invention, when the angle error of the position detector 6 is corrected using the angle error estimated value from the angle error estimating unit 20, the resolution D of the position detector 6 is set to α times (α Will be described as a method for obtaining a sufficient correction effect by setting the resolution of the detection position correction unit 9 to αD higher than the resolution D of the position detector 6.
 図6は、この発明の実施の形態1に係る位置検出器の角度誤差補正装置の検出位置補正部を、角度誤差推定器および位置検出器と併せて示すブロック図である。図6において、検出位置補正部9は、高分解能位置変換部91、離散化処理部92、逓倍部93、位置補正器94および1/逓倍部95を有している。 FIG. 6 is a block diagram showing the detection position correction unit of the angle error correction device for the position detector according to the first embodiment of the present invention, together with the angle error estimator and the position detector. In FIG. 6, the detection position correction unit 9 includes a high resolution position conversion unit 91, a discretization processing unit 92, a multiplication unit 93, a position corrector 94, and a 1 / multiplication unit 95.
 高分解能位置変換部91は、角度誤差推定器22からの角度誤差推定値を分解能αDで離散化する。離散化処理部92は、位置検出器6の位置情報を分解能Dで離散化する。逓倍部93は、離散化処理部92からの出力をα倍する。位置補正器94は、逓倍部93からの出力に対して、高分解能位置変換部91で離散化された角度誤差推定値を適用し、補正後の位置情報を出力する。1/逓倍部95は、位置補正器94からの出力を1/α倍する。 The high resolution position conversion unit 91 discretizes the angle error estimation value from the angle error estimator 22 with the resolution αD. The discretization processing unit 92 discretizes the position information of the position detector 6 with a resolution D. The multiplier 93 multiplies the output from the discretization processor 92 by α. The position corrector 94 applies the estimated angle error value discretized by the high resolution position converter 91 to the output from the multiplier 93, and outputs corrected position information. The 1 / multiplier 95 multiplies the output from the position corrector 94 by 1 / α.
 このように、位置検出器6の検出値を離散化したものをα倍し、角度誤差推定値による補正を行い、その後、補正したものを1/α倍する。これにより、疑似的に、検出位置補正部9の分解能を、位置検出器6の分解能Dから、α倍のαDに高くすることができる。このとき、検出位置補正部9の分解能αDは、角度誤差推定器22の分解能D’が上限となる。 In this way, the discretized detection value of the position detector 6 is multiplied by α, and the correction by the angle error estimated value is performed, and then the corrected value is multiplied by 1 / α. As a result, the resolution of the detection position correction unit 9 can be increased from the resolution D of the position detector 6 to αD that is α times larger. At this time, the resolution αD of the detection position correction unit 9 is limited to the resolution D ′ of the angle error estimator 22.
 具体的には、上記の例では、検出位置補正部9の分解能を、位置検出器6の分解能D=720から、最大で角度誤差推定器22の分解能D’=3600とすることができ、検出位置補正部9は、5倍の分解能で位置検出器6の角度誤差を補正することができる。 Specifically, in the above example, the resolution of the detection position correction unit 9 can be changed from the resolution D = 720 of the position detector 6 to the resolution D ′ = 3600 of the angle error estimator 22 at the maximum. The position correction unit 9 can correct the angle error of the position detector 6 with five times the resolution.
 ここで、角度誤差推定値をθerr *とすると、角度誤差推定値θerr *を位置検出器6の分解能Dで離散化した場合の離散値Peは、次式(3)で表される。 Here, assuming that the angle error estimated value is θ err * , the discrete value Pe when the angle error estimated value θ err * is discretized with the resolution D of the position detector 6 is expressed by the following equation (3).
  Pe≒θerr *D/2π   ・・・(3) Pe≈θ err * D / 2π (3)
 また、角度誤差推定値θerr *を分解能αDで離散化した場合の離散値Pe’について、次式(4)の関係が成立する。
  Pe’≒θerr *αD/2π=αPe+β   ・・・(4)
Further, for the discrete value Pe ′ when the angular error estimated value θ err * is discretized with the resolution αD, the relationship of the following equation (4) is established.
Pe′≈θ err * αD / 2π = αPe + β (4)
 なお、式(4)において、βは、高分解能に離散化処理することによって、新たに見えるようになった離散値であり、β<αとなる整数である。 Note that in Equation (4), β is a discrete value that has become newly visible by performing discretization processing with high resolution, and is an integer satisfying β <α.
 このとき、位置検出器6の位置情報を分解能Dで離散化した場合の離散値をPsとすると、従来の補正後のパルス数がPs-Peであるのに対して、この発明の実施の形態1による補正後のパルス数は、(αPs-Pe’)/αとなり、次式(5)で表される。 At this time, if the discrete value when the position information of the position detector 6 is discretized with the resolution D is Ps, the conventional corrected pulse number is Ps-Pe, whereas the embodiment of the present invention The number of pulses after correction by 1 is (αPs−Pe ′) / α, and is expressed by the following equation (5).
  (αPs-Pe’)/α=Ps-Pe’/α=Ps-(αPe+β)/α=Ps-Pe-β/α   ・・・(5) (ΑPs−Pe ′) / α = Ps−Pe ′ / α = Ps− (αPe + β) / α = Ps−Pe−β / α (5)
 ここで、式(5)より、この発明の実施の形態1によって、β/αの分だけ高精度に、位置検出器6の角度誤差を補正することができる。この発明の実施の形態1に係る位置検出器の角度誤差補正装置の効果を図7に示す。図7において、Aは角度誤差推定値を示し、Bは従来の補正後のパルスを示し、Cはこの発明の実施の形態1による補正後のパルスを示している。 Here, from the equation (5), according to the first embodiment of the present invention, the angle error of the position detector 6 can be corrected with high accuracy by β / α. FIG. 7 shows the effect of the angle error correction device for the position detector according to Embodiment 1 of the present invention. In FIG. 7, A indicates the angular error estimated value, B indicates the conventional corrected pulse, and C indicates the corrected pulse according to the first embodiment of the present invention.
 以上のように、実施の形態1によれば、位置検出器は、電動機の回転位置を検出し、回転位置に応じて一意に決まる周期的な誤差を含み、電流検出部は、電動機に流れる電流を検出し、周波数解析部は、電動機の回転位置を用いて、電流検出部で検出された電流を周波数解析し、角度誤差に対応した特定周波数成分の振幅を演算し、角度誤差推定器は、周波数解析部で演算された振幅と電動機の回転位置とに基づいて、特定周波数成分からなる角度誤差を角度誤差推定値として推定し、角度誤差補正部は、位置検出器で検出された電動機の回転位置に対して、角度誤差推定値を用いて、角度誤差を補正する。
 このとき、角度誤差補正部は、位置検出器で検出された電動機の回転位置をα倍(αは2以上の整数)した後に、角度誤差推定値を用いて、角度誤差を補正する。
 そのため、角度誤差を正確に推定するとともに、角度誤差を十分に補正することができる。
As described above, according to the first embodiment, the position detector detects the rotational position of the electric motor, includes a cyclic error that is uniquely determined according to the rotational position, and the current detection unit includes the current flowing through the electric motor. The frequency analysis unit uses the rotational position of the electric motor to analyze the frequency of the current detected by the current detection unit, calculates the amplitude of a specific frequency component corresponding to the angle error, and the angle error estimator Based on the amplitude calculated by the frequency analysis unit and the rotational position of the electric motor, an angular error consisting of a specific frequency component is estimated as an angular error estimated value, and the angular error correction unit detects the rotation of the electric motor detected by the position detector. The angle error is corrected with respect to the position by using the estimated angle error value.
At this time, the angle error correction unit corrects the angle error by using the estimated angle error value after multiplying the rotational position of the motor detected by the position detector by α (α is an integer of 2 or more).
Therefore, it is possible to accurately estimate the angle error and sufficiently correct the angle error.
 実施の形態2.
 上記実施の形態1では、角度誤差推定部20からの角度誤差推定値を用いて位置検出器6の角度誤差を補正する場合に、位置検出器6の分解能Dをα倍(αは2以上の整数)することにより、検出位置補正部9の分解能を、位置検出器6の分解能Dよりも高いαDとして、十分な補正効果を得ることができる方法について説明した。
Embodiment 2. FIG.
In the first embodiment, when the angle error of the position detector 6 is corrected using the angle error estimated value from the angle error estimation unit 20, the resolution D of the position detector 6 is α times (α is 2 or more). The method has been described in which a sufficient correction effect can be obtained by setting the resolution of the detection position correction unit 9 to αD that is higher than the resolution D of the position detector 6.
 これに対して、実施の形態2では、角度誤差推定部20からの角度誤差推定値を用いて位置検出器6の角度誤差を補正する場合に、分解能γD(γは正の数)で離散化された角度誤差推定値を1/γ倍することにより、位置検出器6の角度誤差を、位置検出器6の分解能Dよりも高い小数または分数パルスで補正することで、十分な補正効果を得ることができる方法について説明する。 On the other hand, in the second embodiment, when the angle error of the position detector 6 is corrected using the angle error estimated value from the angle error estimating unit 20, it is discretized with a resolution γD (γ is a positive number). By multiplying the estimated angle error value by 1 / γ, the angle error of the position detector 6 is corrected with a fractional or fractional pulse higher than the resolution D of the position detector 6 to obtain a sufficient correction effect. A method that can be used will be described.
 図8は、この発明の実施の形態2に係る位置検出器の角度誤差補正装置の検出位置補正部を、角度誤差推定器および位置検出器と併せて示すブロック図である。図8において、検出位置補正部9は、高分解能位置変換部91、離散化処理部92、1/逓倍部95および位置補正器94を有している。 FIG. 8 is a block diagram showing a detection position correction unit of an angle error correction device for a position detector according to Embodiment 2 of the present invention, together with an angle error estimator and a position detector. In FIG. 8, the detection position correction unit 9 includes a high resolution position conversion unit 91, a discretization processing unit 92, a 1 / multiplication unit 95, and a position corrector 94.
 高分解能位置変換部91は、角度誤差推定器22からの角度誤差推定値を分解能γDで離散化する。離散化処理部92は、位置検出器6の位置情報を分解能Dで離散化する。1/逓倍部95は、位置補正器94からの出力を1/γ倍する。位置補正器94は、離散化処理部92からの出力に対して、高分解能位置変換部91で離散化され、1/逓倍部95で1/γ倍された角度誤差推定値を適用し、補正後の位置情報を出力する。 The high resolution position conversion unit 91 discretizes the angle error estimation value from the angle error estimator 22 with the resolution γD. The discretization processing unit 92 discretizes the position information of the position detector 6 with a resolution D. The 1 / multiplier 95 multiplies the output from the position corrector 94 by 1 / γ. The position corrector 94 applies an angle error estimated value that is discretized by the high resolution position converting unit 91 and multiplied by 1 / γ by the 1 / multiplying unit 95 to the output from the discretization processing unit 92 to correct it. Output later position information.
 このように、角度誤差推定器22からの角度誤差推定値を分解能γDで離散化したものを1/γ倍し、これを用いて、位置検出器6の角度誤差を、位置検出器6の分解能Dよりも高い小数または分数パルスで補正する。 In this way, the angle error estimated value from the angle error estimator 22 is discretized with the resolution γD and multiplied by 1 / γ, and this is used to convert the angle error of the position detector 6 into the resolution of the position detector 6. Correct with fractional or fractional pulses higher than D.
 これにより、位置検出器6の分解能Dを基準とした場合に、1/γの分数パルスにより角度誤差を補正することができ、疑似的に、検出位置補正部9の分解能を、位置検出器6の分解能Dから、γ倍のγDに高くすることができる。このとき、γは、角度誤差推定器22の分解能D’と位置検出器6の分解能Dとの比率となる。 Thereby, when the resolution D of the position detector 6 is used as a reference, the angle error can be corrected by a fractional pulse of 1 / γ, and the resolution of the detection position correction unit 9 is artificially changed to the position detector 6. The resolution D can be increased to γ times γ times. At this time, γ is the ratio of the resolution D ′ of the angle error estimator 22 and the resolution D of the position detector 6.
 以上のように、実施の形態2によれば、位置検出器は、電動機の回転位置を検出し、回転位置に応じて一意に決まる周期的な誤差を含み、電流検出部は、電動機に流れる電流を検出し、周波数解析部は、電動機の回転位置を用いて、電流検出部で検出された電流を周波数解析し、角度誤差に対応した特定周波数成分の振幅を演算し、角度誤差推定器は、周波数解析部で演算された振幅と電動機の回転位置とに基づいて、特定周波数成分からなる角度誤差を角度誤差推定値として推定し、角度誤差補正部は、位置検出器で検出された電動機の回転位置に対して、角度誤差推定値を用いて、角度誤差を補正する。
 このとき、角度誤差補正部は、位置検出器で検出された電動機の回転位置に対して、角度誤差推定値を1/γ倍(γは正の数)した値を用いて、角度誤差を補正する。
 そのため、角度誤差を正確に推定するとともに、角度誤差を十分に補正することができる。
As described above, according to the second embodiment, the position detector detects the rotational position of the electric motor, includes a cyclic error that is uniquely determined according to the rotational position, and the current detection unit includes the current flowing through the electric motor. The frequency analysis unit uses the rotational position of the electric motor to analyze the frequency of the current detected by the current detection unit, calculates the amplitude of a specific frequency component corresponding to the angle error, and the angle error estimator Based on the amplitude calculated by the frequency analysis unit and the rotational position of the electric motor, an angular error consisting of a specific frequency component is estimated as an angular error estimated value, and the angular error correction unit detects the rotation of the electric motor detected by the position detector. The angle error is corrected with respect to the position by using the estimated angle error value.
At this time, the angle error correction unit corrects the angle error using a value obtained by multiplying the rotation angle of the motor detected by the position detector by 1 / γ times (γ is a positive number). To do.
Therefore, it is possible to accurately estimate the angle error and sufficiently correct the angle error.
 なお、上記実施の形態2では、分数パルスを用いて位置検出器6の角度誤差を補正する場合について説明したが、小数パルスを用いて位置検出器6の角度誤差を補正する場合であっても、この発明を適用することができ、同様の効果を得ることができる。 In the second embodiment, the case where the angle error of the position detector 6 is corrected using the fractional pulse has been described. However, even when the angle error of the position detector 6 is corrected using the fractional pulse, The present invention can be applied and the same effect can be obtained.
 また、上記実施の形態1、2において、定数倍の方法は、例えば離散化後の、光学式エンコーダの例ではパルスで表される位置情報信号を数学的処理したり、シフターでビットシフトをしたりして補正を行ってもよい。 In the first and second embodiments, the constant multiplication method is, for example, mathematical processing of the position information signal represented by a pulse in the example of the optical encoder after discretization, or bit shift with a shifter. Or may be corrected.

Claims (6)

  1.  電動機の回転位置を検出し、前記回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置であって、
     前記位置検出器で検出された前記電動機の回転位置に対して、前記角度誤差を推定する角度誤差推定器と、
     前記角度誤差推定器の出力である角度誤差推定値を用いて、前記角度誤差を補正する角度誤差補正部と、を備え、
     前記角度誤差補正部は、前記位置検出器で検出された前記電動機の回転位置をα倍(αは2以上の整数)した後に、前記角度誤差推定値を用いて、前記角度誤差を補正する
     位置検出器の角度誤差補正装置。
    An angular error correction device for a position detector that detects a rotational position of an electric motor and corrects an angular error of the position detector including a cyclic error that is uniquely determined according to the rotational position,
    An angle error estimator for estimating the angle error with respect to the rotational position of the electric motor detected by the position detector;
    An angle error correction unit that corrects the angle error using an angle error estimated value that is an output of the angle error estimator, and
    The angle error correction unit corrects the angle error using the angle error estimated value after multiplying the rotational position of the motor detected by the position detector by α (α is an integer of 2 or more). Detector angle error correction device.
  2.  電動機の回転位置を検出し、前記回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置であって、
     前記位置検出器で検出された前記電動機の回転位置に対して、前記角度誤差を推定する角度誤差推定器と、
     前記角度誤差推定器の出力である角度誤差推定値を用いて、前記角度誤差を補正する角度誤差補正部と、を備え、
     前記角度誤差補正部は、前記位置検出器で検出された前記電動機の回転位置に対して、前記角度誤差推定値を1/γ倍(γは正の数)した値を用いて、前記角度誤差を補正する
     位置検出器の角度誤差補正装置。
    An angular error correction device for a position detector that detects a rotational position of an electric motor and corrects an angular error of the position detector including a cyclic error that is uniquely determined according to the rotational position,
    An angle error estimator for estimating the angle error with respect to the rotational position of the electric motor detected by the position detector;
    An angle error correction unit that corrects the angle error using an angle error estimated value that is an output of the angle error estimator, and
    The angle error correction unit uses the angle error estimated value obtained by multiplying the angle error estimated value by 1 / γ times (γ is a positive number) with respect to the rotational position of the electric motor detected by the position detector. A position detector angle error correction device.
  3.  前記電動機に流れる電流を検出する電流検出部と、
     前記電動機の回転位置を用いて、前記電流検出部で検出された電流を周波数解析し、前記角度誤差に対応した特定周波数成分の振幅を演算する周波数解析部と、をさらに備え、
     前記角度誤差推定器は、前記周波数解析部で演算された振幅と前記電動機の回転位置とに基づいて、前記特定周波数成分からなる前記角度誤差を角度誤差推定値として推定する
     請求項1または請求項2に記載の位置検出器の角度誤差補正装置。
    A current detector for detecting a current flowing in the motor;
    A frequency analysis unit that performs frequency analysis of the current detected by the current detection unit using the rotational position of the electric motor, and calculates an amplitude of a specific frequency component corresponding to the angle error;
    The angle error estimator estimates the angle error composed of the specific frequency component as an angle error estimated value based on the amplitude calculated by the frequency analysis unit and the rotational position of the electric motor. 3. An angle error correction device for a position detector according to 2.
  4.  電動機の回転位置を検出し、前記回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置によって実行される角度誤差補正方法であって、
     前記角度誤差を角度誤差推定値として推定する角度誤差推定ステップと、
     前記位置検出器で検出された前記電動機の回転位置に対して、前記角度誤差推定値を用いて、前記角度誤差を補正する角度誤差補正ステップと、を有し、
     前記角度誤差補正ステップは、
     前記位置検出器で検出された前記電動機の回転位置をα倍(αは2以上の整数)するステップと、
     α倍された前記電動機の回転位置に対して、前記角度誤差推定値を用いて、前記角度誤差を補正するステップと、を含む
     位置検出器の角度誤差補正方法。
    An angle error correction method executed by an angle error correction device of a position detector that detects a rotation position of an electric motor and corrects an angle error of the position detector including a periodic error uniquely determined according to the rotation position. And
    An angle error estimating step of estimating the angle error as an angle error estimated value;
    An angle error correction step of correcting the angle error with respect to the rotational position of the electric motor detected by the position detector, using the angle error estimated value;
    The angle error correction step includes
    Multiplying the rotational position of the electric motor detected by the position detector by α (α is an integer of 2 or more);
    correcting the angle error using the estimated angle error value for the rotation position of the motor multiplied by α. An angle error correction method for a position detector.
  5.  電動機の回転位置を検出し、前記回転位置に応じて一意に決まる周期的な誤差を含む位置検出器の角度誤差を補正する位置検出器の角度誤差補正装置によって実行される角度誤差補正方法であって、
     前記角度誤差を角度誤差推定値として推定する角度誤差推定ステップと、
     前記位置検出器で検出された前記電動機の回転位置に対して、前記角度誤差推定値を用いて、前記角度誤差を補正する角度誤差補正ステップと、を有し、
     前記角度誤差補正ステップは、
     前記角度誤差推定値を1/γ倍(γは正の数)するステップと、
     前記位置検出器で検出された前記電動機の回転位置に対して、1/γ倍された前記角度誤差推定値を用いて、前記角度誤差を補正するステップと、を含む
     位置検出器の角度誤差補正方法。
    An angle error correction method executed by an angle error correction device of a position detector that detects a rotation position of an electric motor and corrects an angle error of the position detector including a periodic error uniquely determined according to the rotation position. And
    An angle error estimating step of estimating the angle error as an angle error estimated value;
    An angle error correction step of correcting the angle error with respect to the rotational position of the electric motor detected by the position detector, using the angle error estimated value;
    The angle error correction step includes
    Multiplying the angular error estimate by 1 / γ (where γ is a positive number);
    Correcting the angular error using the estimated angular error value multiplied by 1 / γ with respect to the rotational position of the electric motor detected by the position detector, and correcting the angular error of the position detector Method.
  6.  前記電動機に流れる電流を検出する電流検出ステップと、
     前記電動機の回転位置を用いて、前記電流検出ステップで検出された電流を周波数解析し、前記角度誤差に対応した特定周波数成分の振幅を演算する周波数解析ステップと、をさらに含み、
     前記角度推定ステップは、前記周波数解析ステップで演算された振幅と前記電動機の回転位置とに基づいて、前記特定周波数成分からなる前記角度誤差を角度誤差推定値として推定する
     請求項4または請求項5に記載の位置検出器の角度誤差補正方法。
    A current detection step for detecting a current flowing through the motor;
    Using the rotational position of the electric motor, frequency analysis of the current detected in the current detection step, and further including a frequency analysis step of calculating the amplitude of a specific frequency component corresponding to the angle error,
    6. The angle estimation step estimates the angle error including the specific frequency component as an angle error estimated value based on the amplitude calculated in the frequency analysis step and the rotational position of the motor. An angle error correction method for the position detector described in 1.
PCT/JP2015/051390 2015-01-20 2015-01-20 Angle error correction device for position detector and angle error correction method WO2016117028A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580073876.1A CN107210691B (en) 2015-01-20 2015-01-20 The angular error means for correcting of position detector and angular error bearing calibration
PCT/JP2015/051390 WO2016117028A1 (en) 2015-01-20 2015-01-20 Angle error correction device for position detector and angle error correction method
JP2016570375A JP6305573B2 (en) 2015-01-20 2015-01-20 Angular error correction device and angular error correction method for position detector
DE112015006001.4T DE112015006001T5 (en) 2015-01-20 2015-01-20 Angle error correction device and angular error correction method for a position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051390 WO2016117028A1 (en) 2015-01-20 2015-01-20 Angle error correction device for position detector and angle error correction method

Publications (1)

Publication Number Publication Date
WO2016117028A1 true WO2016117028A1 (en) 2016-07-28

Family

ID=56416594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051390 WO2016117028A1 (en) 2015-01-20 2015-01-20 Angle error correction device for position detector and angle error correction method

Country Status (4)

Country Link
JP (1) JP6305573B2 (en)
CN (1) CN107210691B (en)
DE (1) DE112015006001T5 (en)
WO (1) WO2016117028A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506681B (en) * 2018-12-26 2021-05-11 绍兴光大芯业微电子有限公司 Magnetic encoder chip structure based on silicon Hall effect
CN114518134B (en) * 2022-02-23 2023-07-21 深蓝汽车科技有限公司 Self-correction method and system for angle measurement error of rotary transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117489A (en) * 1996-10-09 1998-05-06 Matsushita Electric Ind Co Ltd Phase controller
WO2012066617A1 (en) * 2010-11-15 2012-05-24 三菱電機株式会社 Motor control device
JP2012100410A (en) * 2010-11-01 2012-05-24 Denso Corp Inverter control device and inverter control system
JP2012145371A (en) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd Resolver device, angle detecting device of resolver, and method thereof
JP2014153294A (en) * 2013-02-13 2014-08-25 Mitsubishi Heavy Ind Ltd Detected position correction method of electromagnetic induction type position detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117489A (en) * 1996-10-09 1998-05-06 Matsushita Electric Ind Co Ltd Phase controller
JP2012100410A (en) * 2010-11-01 2012-05-24 Denso Corp Inverter control device and inverter control system
WO2012066617A1 (en) * 2010-11-15 2012-05-24 三菱電機株式会社 Motor control device
JP2012145371A (en) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd Resolver device, angle detecting device of resolver, and method thereof
JP2014153294A (en) * 2013-02-13 2014-08-25 Mitsubishi Heavy Ind Ltd Detected position correction method of electromagnetic induction type position detector

Also Published As

Publication number Publication date
DE112015006001T5 (en) 2017-10-26
CN107210691A (en) 2017-09-26
CN107210691B (en) 2019-06-25
JPWO2016117028A1 (en) 2017-04-27
JP6305573B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6272508B2 (en) Angular error correction device and angular error correction method for position detector
EP3040690B1 (en) Angle error correction device and angle error correction method for position detector
JP4519864B2 (en) AC rotating machine electrical constant measuring method and AC rotating machine control apparatus used for carrying out this measuring method
JP5523584B2 (en) Inductance measuring apparatus and measuring method for synchronous motor
US20130049656A1 (en) Sensorless control apparatus for synchronous motor and inverter apparatus
JP6184609B2 (en) Position detector angle error correction device, angle error correction method, elevator control device, and elevator system
US10177695B2 (en) Motor control apparatus and control method for motor control apparatus
EP1729405A1 (en) Speed control apparatus of vector controlled alternating current motor
JP2007306694A (en) Inverter controller of induction motor
JP6305573B2 (en) Angular error correction device and angular error correction method for position detector
JP5163049B2 (en) AC motor control device and AC motor control method
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
US6242882B1 (en) Motor control apparatus
JP2019022353A (en) Offset estimator, inverter control device, and off-set estimation method
JP6098827B2 (en) Control device for permanent magnet type synchronous motor
JP5332667B2 (en) Induction motor control device
JP2018023203A (en) Motor controller
JP4632170B2 (en) Inverter control device for induction motor
JP2015144500A (en) Controller of permanent magnet synchronous motor
JP2004135407A (en) Control device for ac motor
JP2018046654A (en) Control device of power converter
JP2016020819A (en) Angle detection device and motor drive circuit
CN117859263A (en) Current detection device, current detection program, and current detection method
JP2008161051A (en) Control unit of ac motor
JP2006345631A (en) Motor control device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570375

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015006001

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878723

Country of ref document: EP

Kind code of ref document: A1