WO2016116605A1 - Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition - Google Patents

Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition Download PDF

Info

Publication number
WO2016116605A1
WO2016116605A1 PCT/EP2016/051350 EP2016051350W WO2016116605A1 WO 2016116605 A1 WO2016116605 A1 WO 2016116605A1 EP 2016051350 W EP2016051350 W EP 2016051350W WO 2016116605 A1 WO2016116605 A1 WO 2016116605A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
corrosion
weight
substrate
composition according
Prior art date
Application number
PCT/EP2016/051350
Other languages
English (en)
Inventor
Sébastien CATEL
Sébastien GENTY
Grégoire Herve
Original Assignee
Socomore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socomore filed Critical Socomore
Priority to ES16701594T priority Critical patent/ES2935065T3/es
Priority to EP16701594.0A priority patent/EP3247751B1/fr
Publication of WO2016116605A1 publication Critical patent/WO2016116605A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment

Definitions

  • the invention relates to an anti-corrosion composition for preparing an anti-corrosion layer or film, also called a corrosion protection layer or film, on a surface of a substrate, in particular on a surface of a substrate.
  • an anti-corrosion composition for preparing an anti-corrosion layer or film also called a corrosion protection layer or film, on a surface of a substrate, in particular on a surface of a substrate.
  • the metal is aluminum
  • the alloy is an aluminum alloy
  • the composite is a thermoplastic polymer (a "plastic") with fiber reinforcements, such as carbon fibers.
  • the substrate on which the layer is prepared may be bare or already coated, in particular with a paint.
  • the invention also relates to a method for preparing an anticorrosive layer or film on a surface of a substrate that implements said composition.
  • the technical field of the invention can be defined, in general, as that of the surface treatment, in particular of surfaces made of metals or alloys of metals or composite materials.
  • the technical field of the invention can be defined in particular as that of the coating of surfaces of metals, such as aluminum, iron, or titanium, or alloys of metals such as steel or aluminum alloys, or composite materials, which are used for example in the aviation, aerospace, rail, and automobile industries, shipbuilding, oil and gas transportation, wind or water exploration, particularly gas or oil, for example to manufacture motor vehicles (cars, trucks, motorcycles etc.), boats, aircraft (airplanes, helicopters, seaplanes, drones etc.), gas pipelines, pipelines, aqueducts, and offshore platforms.
  • metals such as aluminum, iron, or titanium
  • alloys of metals such as steel or aluminum alloys, or composite materials
  • gas or oil for example to manufacture motor vehicles (cars, trucks, motorcycles etc.), boats, aircraft (airplanes, helicopters, seaplanes, drones etc.), gas pipelines, pipelines, aqueducts, and offshore platforms.
  • the invention belongs to the technical field of compositions used to coat the surface of optionally painted substrates and to protect the surface of these substrates against aggressive environments such as corrosive atmospheres, and chemical and / or mechanical aggression.
  • compositions are generally applied to painted surfaces to protect the underlying structures from possible corrosion in case of defects in the paint layers and even to ensure a long service life of these layers of paint, that is to say that these layers of paint are durable and permanent. This avoids these layers are replaced during the service life of an aircraft for example.
  • the coatings obtained with these compositions also protect the paint from external attacks, for example condensation, particularly related to the number of passengers, toilet liquids from aircraft, and de-icing products or hydraulic fluids.
  • Anti-corrosion compositions currently known in the aviation market are such products available from Chemetall ® under the name ARDROX ® as ARDROX ® AV 15, the ARDROX ® AV 30, or ARDROX ® AV 35D, or product available from SOCOMORE under the name of SOCOPAC 65 H or the product available from Zip-Chem Products under the name Cor-Ban ® such as Cor-Ban ® 35, Cor-Ban ® 23.
  • compositions known as "1-K" or single-component compositions which generally comprise a binder resin and anticorrosion agents in a generally organic solvent.
  • the anti-corrosion properties are generally appreciated by means of the Salt Fog Corrosion Resistance (BS) test.
  • BS Salt Fog Corrosion Resistance
  • BS resistor salt spray
  • this product is characterized by a drying time of the order of 60-90 minutes, and which strongly depends on the conditions in which the drying is carried out, namely essentially the temperature and humidity.
  • the low viscosity of this composition can cause coating defects, such as run-off problems when the composition is applied with thicknesses greater than 60 ⁇ in the wet state.
  • the coating obtained with this composition has a very low mechanical strength because it is little or not crosslinked.
  • an anti-corrosion composition which while giving coatings having excellent anti-corrosion properties, advantageously improved over prior art compositions, also has excellent adhesion properties on all kinds of substrates, such as bare and painted aluminum alloys, steels, and bare and painted composites, excellent properties of mechanical resistance and resistance to chemical attack eg solvents, hydraulic fluids and other fluids, such as fluids used in aircraft.
  • substrates such as bare and painted aluminum alloys, steels, and bare and painted composites
  • mechanical resistance and resistance to chemical attack eg solvents, hydraulic fluids and other fluids, such as fluids used in aircraft.
  • the person skilled in the art is constantly seeking to improve the anticorrosive properties but also the mechanical properties of the coatings obtained by using these anti-corrosion compositions in particular since the composition once applied can be trodden by the operators during maintenance or manufacturing operations. .
  • Such a composition must advantageously have a fast drying time to reduce the durations of the production cycles during manufacture, or during maintenance operations (MRO) and thus reduce the costs associated with these operations. For example, it is sought to have downtimes for shorter ground aircraft.
  • MRO maintenance operations
  • Such a composition must, moreover, advantageously contain only little or no organic solvents.
  • the object of the present invention is to provide an anti-corrosion composition that meets the needs and requirements listed above, among others.
  • the object of the present invention is still to provide an anti-corrosion composition which does not have the limitations, defects and disadvantages of the anticorrosion compositions of the prior art and which provides a solution to the problems of the anti-corrosion compositions of the prior art. .
  • an anti-corrosion composition characterized in that it comprises:
  • At least one organic corrosion inhibiting agent selected from compounds comprising at least one thiol function and / or at least one thione function;
  • the solvent (the solvent is chosen from water, organic solvents and mixtures thereof, preferentially water) is only optional and is added only if it is necessary to adjust the viscosity.
  • Compounds comprising at least one thiol function and / or at least one thione function will also be referred to as convenience mercaptans, mercaptan compounds, or compounds of the family of mercaptans in the following.
  • composition according to the invention is a composition called "1-K" or one-component composition or formulation.
  • the components that make up the composition according to the invention are not stored separately and mixed only shortly before use.
  • composition according to the invention once prepared can be stored for a long time, if, however, of course it is not subjected to conditions leading to its drying.
  • composition according to the invention has never been described in the prior art.
  • composition according to the invention comprises a specific combination of corrosion inhibiting agents, namely the combination of at least one specific organic corrosion inhibiting agent chosen from compounds comprising at least one thiol function and / or at least one a thione function and at least one solid inorganic corrosion inhibiting agent.
  • the composition according to the invention makes it possible to prepare layers on substrates, in particular metallic substrates, which, while having excellent anti-corrosion properties, improved with respect to the layers obtained with the compositions of the prior art, generally also exhibit excellent properties of strength, adhesion and resistance to chemical attack.
  • salt spray protection levels of a few hundred hours to several thousand hours in tests performed according to ASTM B117 or ISO 9227: 2012.
  • the adhesion of the anti-corrosion layer according to the invention to the surface is preserved after continuous exposure to moisture.
  • the anti-corrosion layer according to the invention does not exhibit blisters, cracks or delamination even beyond several hundred or even several thousand hours of exposure in a condensation chamber (ISO 6270-1: 1998 / ASTM D4585).
  • the film shows no blistering, cracking or delamination after several tens of hours or hundreds of hours spent in a climatic chamber whose temperature and humidity periodically vary, namely respectively -55 ° C to 80 ° C and from 50% RH to 100% RH.
  • compositions of the invention of a specific organic corrosion inhibiting agent chosen from compounds comprising at least one thiol function and / or at least one thione function in place of the corrosion inhibitors usually used in the compositions anti-corrosion already leads to an improvement of the anti-corrosion properties and this improvement is further increased when this specific organic corrosion inhibiting agent of the family of mercaptans is combined with a solid inorganic corrosion inhibiting agent.
  • a specific organic corrosion inhibiting agent chosen from compounds comprising at least one thiol function and / or at least one thione function in place of the corrosion inhibitors usually used in the compositions anti-corrosion already leads to an improvement of the anti-corrosion properties and this improvement is further increased when this specific organic corrosion inhibiting agent of the family of mercaptans is combined with a solid inorganic corrosion inhibiting agent.
  • composition solves the problem underlying the invention as soon as the essential components a), b) and d) in their most general definition are present.
  • the other components are only optional components that can, however, provide some advantageous properties.
  • composition according to the invention comprises, in% by weight relative to the total weight of the composition:
  • organic corrosion inhibiting agent chosen from compounds comprising at least one thiol function and / or at least one thione function;
  • composition according to the invention generally has a solids content of 30% to 60% by weight. For higher or lower concentrations, application problems may be observed.
  • This binder resin may be chosen from the binder resins commonly used in anti-corrosion compositions.
  • the binder resin may be chosen from alkyd resins, modified alkyd resins such as modified urethane alkyd resins or epoxy-modified alkyd resins, terpene resins, acrylic resins such as styrene-acrylic resins, hydrocarbon resins, and the like.
  • vinyl resins such as vinyl acrylic resins and vinyl styrenic resins.
  • the binder resin is chosen from urethane modified alkyd resins also known as urethane alkyd resins.
  • modified alkyd resins and in particular modified urethane alkyd resins or acrylic vinyl resins may be available in an organic solvent medium (solvent medium) such as white spirit, or in an aqueous medium, generally in the form of dispersions or emulsions in water. 'water.
  • solvent medium such as white spirit
  • aqueous medium generally in the form of dispersions or emulsions in water. 'water.
  • Resins, and especially modified urethane alkyd resins, in an aqueous medium which are generally in the form of dispersion or emulsion of these resins in water are still preferred because they give the layers having the best properties.
  • compositions of the prior art all contain tackifying resins, "tackifying", hydrocarbon resins, or even terpene resins which are resins used in the adhesive field and which have a sufficiently high glass transition temperature Tg. to give the product once formulated an adequate physical drying.
  • modified alkyd resins leads to crosslinked films with strongly reinforced properties.
  • These films can also optionally be removed using solvents such as DIESTONE DLS ® , SOCOCLEAN AQUAFORTE ® and others that are qualified in the aeronautical field for this type of operation.
  • Table II Surface drying of coatings (dry thickness of 35 ⁇ at room temperature in a chamber of dimensions 220 mm ⁇ 100 mm ⁇ 100 mm having an opening on the upper part of dimensions 40 mm ⁇ 20 mm.
  • compositions according to the invention dries very hardly, if ever, because of the non-binding nature of the resins employed, while the drying time of the compositions according to the invention is comparatively very small.
  • the shortest drying times are obtained with the composition according to the invention containing an aqueous dispersion of alkyd resin modified urethane.
  • An additional advantage related to the preferred implementation of modified alkyd resins in the compositions according to the invention is based on the fact that the drying time can be modulated very easily by the adjustment of siccatives possibly present in the formula, which is technically impossible with the compositions of the prior art not containing such resins, because of the chemical nature of the resins contained in the compositions of the prior art, namely non-crosslinkable resins, which dry "physically" without crosslinking.
  • salt spray resistance (BS) of coatings prepared with the anti-corrosion compositions according to the invention containing modified alkyd resins is significantly better than the salt spray resistance of coatings prepared with compositions of the art.
  • ARDROX ® AV 35D or SOCOPAC ® 65H is clearly clear from Table III below.
  • Table III Salt spray resistance according to ASTM B-117 / ISO 9227: 2012 coatings prepared from compositions according to the invention or according to the prior art, applied to 2024-T3 aluminum alloy plates after degreasing, sodium attack and deoxidation, then dried for 7 days at room temperature.
  • SB solvent composition
  • WB aqueous composition.
  • DMA analyzes were performed indicating that the composition (1) according to the invention dries to form a "manipulable" free film having a non-zero level of crosslinking (identified by the presence of a rubber plateau succeeding the Tg transition). tan measured between 51 ° C and 55 ° C).
  • composition (1) according to the invention leads to a layer having a perfect resistance, namely 0.15% mass loss only after 500 cycles.
  • composition (1) according to the invention which is a preferred composition comprising a modified urethane resin has a cohesion and cross-linking at its core capable of withstanding mechanical stresses.
  • compositions according to the invention which advantageously contain modified alkyd resins lead to a drastic reduction of the drying time under degraded conditions, for example in a solvent-rich confined atmosphere, a better mechanical strength and anti-aging properties. corrosion superior to the compositions of the prior art, such as ARDROX ® AV35D.
  • the organic corrosion inhibiting agent may be chosen from 2-Mercaptobenzothiazole or 2-MBT, also called Benzothiazole-2-thiol or 2 (3H) -Benzothiazolethione, 6-Methyl-2-mercaptobenzothiazole, the
  • the organic corrosion inhibiting agent may be chosen from the sodium salt (1/1) of benzothiazolethione, the zinc salt (2: 1) of benzothiazolethione, and the cyclohexylamine salt of 2-mercaptobenzothiazole.
  • the preferred organic corrosion inhibiting agent that provides the best results in terms of anti-corrosion properties is 2-MBT or a salt thereof.
  • composition according to the invention may further comprise at least one accelerator.
  • the composition according to the invention comprises from 2 to 20% by weight, preferably from 5 to 10% by weight of accelerator relative to the total weight of the composition.
  • the organic corrosion inhibiting agent chosen from mercaptans may be coupled, associated with one or more accelerators, for example with one or more vulcanization accelerators.
  • the accelerator may be in particular a thiocarbamate (thiocarbamates are vulcanization accelerators) such as 1-pyrrolidine-dithiocarbamate or PYRR.
  • thiocarbamates are vulcanization accelerators
  • PYRR 1-pyrrolidine-dithiocarbamate
  • the inorganic corrosion inhibitor can be chosen from corrosion inhibitors in the form of pigments, that is to say pigments that have a corrosion inhibiting action or corrosion inhibiting pigments.
  • the inorganic corrosion inhibiting agent is chosen from metal oxides such as oxides of zinc, cerium IV, titanium, zirconium, iron, praseodymium (III) and antimony; metalloid oxides; zinc orthophosphosilicate calcium strontium aluminum hydrated or commercially HEUCOPHOS ZCP ® ; synthetic amorphous silica exchanged with calcium ions; hydrated aluminum strontium polyphosphate; barium sulfate; zinc 5-nitroisophthalate; calcium and strontium phosphosilicate made organophilic; zinc phosphate especially rendered organophilic; zinc molybdate especially rendered organophilic; modified aluminum polyphosphate; strontium titanate; antimony tin oxide (ATO); molybdenum.
  • metal oxides such as oxides of zinc, cerium IV, titanium, zirconium, iron, praseodymium (III) and antimony
  • metalloid oxides zinc orthophosphosilicate calcium strontium aluminum hydrated or commercially HEUCOPHOS ZCP ® ;
  • the inorganic corrosion inhibiting agent has a nanometric particle size.
  • nanometric particle size it is meant that the average size, for example the mean diameter (dso), of the nanometric particles is from 1 to 100 nm, preferably from 5 to 50 nm, more preferably from 10 to 50 nm, better from 10 to 20 nm. Particle size is measured by TEM (Transmission Electron Microscopy).
  • compositions according to the invention greatly improves the corrosion resistance of the coatings prepared from the compositions according to the invention.
  • invention for example on 2024-T3 aluminum plates compared to compositions containing corrosion inhibitors of non-nanometric size, for example micrometric.
  • the coating containing the nanometric ZnO allows to resist between 1000 and 1400 hours exposure to salt spray (BS) with a dry layer thickness of 6 ⁇ , while that containing non-nanometric zinc oxide has a resistance of between 850 and 1000 hours under the same conditions.
  • Including a corrosion inhibitor in nanometric form therefore significantly improves the corrosion resistance performance of the coating.
  • This effect would consist in filling the defects, cavities, cracks appearing during the aging and oxidation process at the level of the substrate and of its passivating layer (for example alumina) or even at the level of the coating itself.
  • alumina passivating layer
  • a low content for example from 2% to 10% by weight is sufficient.
  • the solvent may be selected from water, organic solvents and mixtures thereof; preferably the solvent comprises a majority by weight of water (more than 50% by weight); more preferably the solvent is water.
  • the composition according to the invention has the advantage of being formulated in a solvent medium, but also in an aqueous medium.
  • the formulation in an aqueous medium has many benefits, for example: reduction of "VOCs", a composition which is less harmful to humans (that is to say operators responsible for applying the composition) ) and its environment, less odor problem and feeling of suffocation for example in the confined areas of the aircraft.
  • composition (and method) according to the invention is advantageously environmentally friendly and meets the latest guidelines for environmental protection, directives because it preferably has a very low content.
  • organic solvents generally less than 5% by weight, preferably less than 3% by weight, more preferably less than 1% by weight.
  • modified alkyd resins and in particular the urethane modified alkyd resins in an aqueous medium will be preferred, especially as these resins in an aqueous medium give the best properties in terms of terms of drying time and corrosion resistance.
  • composition according to the invention may be in the form of an emulsion (water in oil or oil-in-water presence) or a solution.
  • composition according to the invention may comprise, in addition, at least one dispersing agent.
  • the dispersing agent may be present in a proportion of 0.5% to 3% by weight of the total weight of the composition.
  • the dispersing agent may be the product known under the name DISPERBYK ® 2010.
  • the composition of the invention may further comprise at least one antifoaming agent.
  • the anti-foaming agent may be present in a proportion of 0.1% to 1% by weight of the total weight of the composition.
  • the anti-foaming agent can be for example the product known under the name of BYK ® 1798.
  • the composition according to the invention may comprise, in addition, at least one fungicidal agent.
  • the fungicidal agent may be present in a proportion of 0.01% to 0.5% by weight of the total weight of the composition.
  • the fungicidal agent may be, for example, sodium pyrithione.
  • composition according to the invention may comprise, in addition, at least one bactericidal agent.
  • the bactericidal agent may be present in a proportion of from 0.01% to 0.5% by weight of the total weight of the composition.
  • the bactericidal agent can be chosen for example from
  • composition according to the invention may comprise, in addition, at least one dye and / or at least one pigment.
  • Each dye or pigment may be present at from 0.1% to 1% by weight of the total weight of the composition.
  • the pigments also include nacres, lacquers and mixtures thereof.
  • the pigments or dyes may be chosen from decorative pigments, in particular colored pigments or from UV pigments.
  • pigments may also act as corrosion inhibitors.
  • composition according to the invention may comprise, in addition, at least one wetting agent.
  • the wetting agent may be present at from 0.1% to 5% by weight of the total weight of the composition.
  • wetting agent a surfactant is expected which lowers the surface tension of the composition according to the invention, rather than the interfacial tension between the composition and the surface of the substrate.
  • the wetting agent improves the mixing of the various constituents of the composition and the adhesion of the anti-corrosion layer to a metal surface or other smooth surface.
  • the wetting agent improves the wetting and spreading properties on various substrates, but also the quality of the formed network and the intrinsic anti-corrosion properties of the layer.
  • composition according to the invention may further comprise at least one rheological agent.
  • the rheological agent may be present in an amount of 0.01% to 5% by weight, preferably 0.01% to 0.5% by weight, of the total weight of the composition.
  • the rheological agent may be chosen from polyurethane thickeners such as nonionic polyurethane ® under the name TAFIGEL ® PUR 60 and others.
  • composition according to the invention may further comprise one or more additives chosen for example from anti-skin agents, drying agents, waxes, etc.
  • the additive or each of the additives may be present in a proportion of from 0.1% to 1.0% by weight of the total weight of the composition.
  • composition according to the invention may comprise, in addition, at least one filler.
  • the filler may be present in a proportion of 5% to 20% by weight of the total weight of the composition.
  • the filler may be chosen from micas, silicas, talcs, clays, and PTFE powders, which, because of their lamellar or nodular structure and / or their size, for example micrometric or nanometric, may optimize certain properties such as anti-sag properties, hardness, scratch resistance, and even the anti-corrosion properties of the layer.
  • the filler such as talc, mica, silica or clay is generally in the form of particles, or nanoparticles whose surface can be modified.
  • composition according to the invention can be prepared by weighing and dispersing, mixing these components by means of any suitable mixing device.
  • the invention also relates to a method for preparing an anti-corrosion layer on a surface of a substrate in which:
  • the composition as described above is deposited on the surface of the substrate to give a layer of the composition on the surface of the substrate;
  • said layer of the composition is dried, whereby the anti-corrosion layer is obtained on the surface of the substrate.
  • the method according to the invention has all the advantages related to the implementation in this process of the specific composition according to the invention.
  • the method according to the invention allows the preparation in a single pass, a single operation, a single step anti-corrosion layers having excellent anti-corrosion properties.
  • the process according to the invention makes it possible to prepare layers, films, with a dry thickness ranging from 5 to 50 ⁇ in a single pass, step, instead of several steps in the known analogous processes of product deposits. protection against corrosion.
  • the film layers obtained are therefore, even for large thicknesses of homogeneous monolayer films and not films made up of several layers as with the methods of the prior art.
  • the thick layers obtained are excellent qualities, regular and without sagging, unlike the layers obtained with the methods of the prior art which implement a composition that is not that according to the invention.
  • the application method according to the invention is reliable, fast and of a lower cost than the methods of the prior art.
  • This process for preparing a layer, a corrosion protection film according to the invention can easily be integrated into an existing conventional chain comprising other substrate treatments prior to or subsequent to the deposition of said film.
  • the substrate according to the invention may be of any material capable of receiving a anti-corrosion layer.
  • the process according to the invention can be implemented with a wide variety of materials, always with excellent results in terms of properties and, above all, anti-corrosion properties of the layer obtained.
  • the substrate may be a material selected from metals; metal alloys; organic or mineral glasses; organic polymers such as thermoplastic polymers (plastics); wood ; ceramics; textiles; concretes; the papers ; stone ; carbon fibers; and composite materials comprising many of the previously enumerated materials, such as composite materials comprising carbon fibers such as carbon fiber reinforced plastics; this material possibly being plated and / or having undergone a surface treatment and / or being coated, for example painted.
  • organic polymers such as thermoplastic polymers (plastics); wood ; ceramics; textiles; concretes; the papers ; stone ; carbon fibers; and composite materials comprising many of the previously enumerated materials, such as composite materials comprising carbon fibers such as carbon fiber reinforced plastics; this material possibly being plated and / or having undergone a surface treatment and / or being coated, for example painted.
  • the substrate may be made of a material chosen from aluminum; titanium; the copper ; the iron ; magnesium; and alloys thereof, such as steels, for example, stainless steels, aluminum alloys, such as 2024-T3 aluminum alloy, and Inconel; the surface of the substrate having optionally been plated and / or having undergone a surface treatment and / or being coated, for example painted.
  • Aluminum alloys include 7075, 6056 and 2024 alloys such as 2024-T3 aluminum alloy.
  • Titanium alloys include Ti6-4, Ti-15-3-3-3, Ti-6-2-2-2-2 and Ti-3-2-5 alloys.
  • the substrate may be of any shape but is generally in the form of a plate, sheet or sheet.
  • the method according to the invention allows the deposition of layers on surfaces of very complex geometry.
  • the substrate may consist in particular of several plates composed of different materials, riveted.
  • the protection against corrosion imparted by the anti-corrosion layer according to the invention is effective both on the surface of the substrate (s) but also inside the rivets.
  • the surface on which the layer is deposited may be only a part of the total surface of the substrate, but it may also be all of said surface, for example can with the method according to the invention deposit a layer on both sides of a sheet substrate.
  • the surface Prior to the deposition of the composition, the surface is preferably cleaned and / or activated and / or pickled by chemical and / or physical and / or mechanical treatment.
  • this cleaning is important in order to obtain good adhesion of the deposited layer.
  • cleaning processes are known to those skilled in the art: it may be a wet cleaning, for example by acidic or basic solutions, an alkaline or solvent degreasing or a cleaning by lane. dry, for example by shot blasting and / or sanding and / or flaming, etc.
  • a particular treatment such as adhesion promoter, may be added.
  • compositions according to the invention allow the deposition of thin layers or films, but also the deposition of thicker layers or films.
  • a layer of the composition is deposited with a wet thickness of 10 to 100 ⁇ , preferably 40 to 50 ⁇ .
  • the anti-corrosion layer (that is to say the final dried layer) has a thickness in the dry state of 5 to 45 ⁇ , preferably 10 to 25 ⁇ , more preferably 20 to 25 ⁇ . .
  • the thickness of the anti-corrosion layer (that is to say of the dried final layer) is a function of the dry extract of the composition.
  • composition can be deposited by any known technique, for example the composition can be deposited by a technique selected from spraying for example by means of a gun, spraying, soaking, brushing, or aerosol deposition.
  • the composition is applied by spraying, for example by means of a spray gun, in a very simple manner, similar to the application of a paint or varnish.
  • the desired dry thickness of the layer can be easily obtained by, for example, changing the settings of the guns, the type of gun and the distance of application.
  • the deposition operation, application, of the composition according to the invention on the surface is generally carried out at a temperature of 7 ° C to 40 ° C, preferably 15 ° C to 25 ° C, for example 23 ° C .
  • a substrate is obtained, the surface of which is coated with a layer of the composition according to the invention.
  • This layer is a layer that can be described as a "wet” layer because it still contains solvent such as water.
  • the drying of the composition layer is carried out at room temperature, and in the open air, for a period of 15 minutes to 7 days, preferably for a period of 15 to 60 minutes.
  • a drying time 15 to 60 min is sufficient to allow handling or so that the layer is recoverable, while a longer time, preferably 7 days is necessary to obtain a total crosslinking.
  • ambient temperature is generally meant a temperature of 15 ° C to 30 ° C, especially 20 ° C to 25 ° C.
  • this anticorrosion layer generally having a dry thickness as defined above.
  • the anti-corrosion layer may have various properties.
  • said surface is coated only with said anti-corrosion layer, preferably containing a dye and / or a pigment, thus forming a monolayer coating on said surface.
  • the substrate is a metal or a metal alloy and said monolayer coating is a coating called "Direct to Metal” or "DTM".
  • the invention also relates to an anti-corrosion layer that can be prepared by the method described above.
  • the invention further relates to a substrate comprising at least one surface coated with at least one anti-corrosion layer as described above.
  • said surface is coated only with said anticorrosion layer (no other coating layer being present), and preferably said layer contains at least one dye and / or a pigment.
  • the anti-corrosion layer may be applied in the form of a monolayer coating, colored or not, pigmented or otherwise, on the surface of the substrate.
  • such a single anti-corrosion layer can be used alone as a protective anti-corrosion coating.
  • Such a single anti-corrosion layer thus forms a monolayer coating on said surface; preferably the substrate is a metal or a metal alloy and said monolayer coating is then a coating called "Direct to Metal” or "DTM".
  • the substrate may consist of part or all of an aircraft such as an airplane, a seaplane, a helicopter, or a drone; a spacecraft; a rocket; a ship; a hovercraft; an offshore platform; a motor vehicle such as a car, a motorcycle, or a truck; a gas pipeline, an oil pipeline, or an aqueduct; a railway vehicle such as a locomotive or a wagon; a wind turbine; of a tidal turbine.
  • the invention also relates to the use of the anti-corrosion layer according to the invention as described above for imparting corrosion resistance properties to a surface of a substrate, in particular to a surface made of a material selected from metals such as aluminum, metal alloys such as aluminum alloys, and composite materials comprising a metal or metal alloy.
  • the substrate is aluminum or aluminum alloy
  • the layer anti-corrosion gives the surface a corrosion resistance in the salt spray corrosion resistance test, in accordance with the NF EN ISO 9227: 2012 standard, of more than 1000 hours, preferably more than 2000 hours, and more preferably more than 3000 hours for a layer with a thickness of 25 ⁇ in the dry state
  • said surface is coated only by said anti-corrosion layer
  • said anti-corrosion layer is used alone, as a single layer on the surface.
  • said single anti-corrosion layer forms a monolayer coating on the surface.
  • DTM Direct To Metal
  • This anti-corrosion “DTM” coating gives very good properties of corrosion resistance and mechanical protection to the substrate.
  • the anti-corrosion layer according to the invention allows, surprisingly alone, by itself - without another layer, such as a layer
  • the primer or coat of paint may be used to simultaneously impart corrosion resistance, chemical protection, mechanical strength, scratch protection, a metal or metal alloy surface.
  • the method according to the invention is simple, reliable, fast and less expensive than the processes of the prior art because a single coating step and a single layer can replace several.
  • compositions, formulations according to the invention are prepared.
  • compositions, formulations according to the invention are deposited, applied in the form of films on the surface of substrates, namely the surface of aluminum alloy plates.
  • the substrates coated with the films are dried and the properties of the films according to the invention thus prepared are evaluated.
  • a dispersing agent which is a copolymer comprising groups having affinity for pigments, available from BYK under the name DISPERBYK ® 2010;
  • the three components thus weighed are placed together in a disperser and the mixture is stirred for 5 minutes.
  • a premix of 0.30 g of a wetting agent, dipropylene glycol methyl ether (DPGME) and 0.073 g of a rheological agent which is a nonionic polyurethane available from Munzig ® are prepared separately.
  • This premix is then added to the vortex and stirring is continued for 30 minutes.
  • the substrates are panels, plates, 2024-T3 aluminum alloy. ⁇ Preparation of substrates
  • the copper present in the 2024-T3 aluminum alloy tends to deteriorate the naturally occurring oxide protective layer. Therefore, it is important to prepare the surface of said alloy to remove surface contaminants, oxides that could interfere with subsequent steps of the film preparation process, and the plates thus undergo four successive surface treatments.
  • the plates, panels, of aluminum alloy (2024-T3) are first degreased with DIESTONE ® DLS in order to eliminate dust and other contaminants on the surface of the plates.
  • the plates are degreased in a SOCOCLEAN ® A3431 bath whose volume concentration is 10%, heated between 40 ° C and 45 ° C, and with gentle stirring, for 5 to 30 minutes. minutes.
  • the plates are then rinsed twice. The first rinsing is done with city water for two minutes and the second rinsing is carried out with distilled water for 2 minutes also.
  • the third surface treatment is a sodium attack in a soda bath whose concentration is 40 g / l, heated between 50 ° C and 65 ° C for 1 to 5 minutes (s). The plates are then rinsed twice with distilled water for 2 minutes.
  • the fourth surface treatment is a deoxidation treatment in a nitric acid bath whose concentration is between 400 and 500 g / l.
  • the plates are immersed in this bath at room temperature for 5 to 15 minutes.
  • the plates are then rinsed twice with distilled water for 2 minutes and then dried for a few minutes at 60 ° C.
  • the formulation is applied, deposited by spraying with a KREMLIN ® brand gun onto the aluminum alloy plates, in order to obtain a film, a layer having a wet thickness of 60 ⁇ .
  • the plates thus coated with a film or wet layer are then left at ambient temperature for 7 days, after which aluminum alloy plates coated with a protective layer against corrosion are obtained, in the state dry.
  • the samples i.e., said aluminum alloy plates coated with a protective layer against corrosion, in the dry state are then ready to be characterized. • Characterization of the samples.
  • the average thickness of the deposited film or layer, in the dry state is measured according to the ISO 2360: 2003 standard with a MiniTest 7400 type device marketed by ElektroPhysik equipped with the N4 probe for panels, alloy plates Aluminum (Measurements based on eddy currents).
  • This thickness is 20-25 ⁇ .
  • the salt spray corrosion resistance test is used to estimate the corrosion resistance of metallic materials. This test is performed according to the ISO 9227: 2012 standard.
  • the coated aluminum alloy plates are placed in an enclosure (Q-FOG Cyclic Corrosion Tester Q-Panel) at 35 ° C ⁇ 2 ° C on supports with an angle of 20 ° ⁇ 5 ° to the vertical .
  • the plates are exposed to an artificial mist from a solution of sodium chloride. This solution contains 50 g / L ⁇ 5 g / L of sodium chloride, and its pH is between 6.5 and 7.2 at 25 ° C ⁇ 5 ° C.
  • the plates are observed regularly and the presence of corrosion (uniform corrosion, pitting, etc.) is noted.
  • Corrosion is less than 3% of the surface after 3000 hours for a dry film thickness of 25 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

Composition anti-corrosion comprenant au moins une résine liante organique; au moins un agent inhibiteur de corrosion organique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione; éventuellement un solvant; et au moins un agent inhibiteur de corrosion inorganique solide. La présente invention concerne également un procédé pour préparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition; une couche anti-corrosion préparée par ledit procédé; et un substrat revêtu par ladite couche. L'utilisation de ladite couche anti-corrosion confère des propriétés de résistance à la corrosion à la surface d'un substrat.

Description

COMPOSITION ANTI-CORROSION ET PROCEDE POUR PREPARER UNE COUCHE ANTICORROSION SUR UNE SURFACE D'UN SUBSTRAT UTILISANT LADITE COMPOSITION
DESCRIPTION
DOMAINE TECHNIQUE
L'invention concerne une composition anti-corrosion pour préparer une couche ou film anti-corrosion, aussi appelé(e) couche ou film de protection contre la corrosion, sur une surface d'un substrat, en particulier sur une surface d'un substrat comprenant, un métal et/ou un alliage d'un métal, et/ou un matériau composite, de préférence sur une surface d'un substrat constitué par un métal et/ou un alliage d'un métal, et/ou un matériau composite.
De préférence, le métal est l'aluminium, l'alliage est un alliage d'aluminium et le composite est un polymère thermoplastique (un « plastique ») à renforts de fibres, telles que des fibres de carbone.
Le substrat sur lequel est préparée la couche peut être nu ou déjà revêtu notamment d'une peinture.
L'invention a également trait à un procédé pour préparer une couche ou film anticorrosion sur une surface d'un substrat qui met en œuvre ladite composition.
Le domaine technique de l'invention peut être défini, de manière générale, comme celui du traitement de surfaces, en particulier de surfaces en métaux ou en alliages de métaux ou en matériaux composites.
Le domaine technique de l'invention peut être défini notamment comme celui du revêtement de surfaces en métaux, tels que l'aluminium, le fer, ou le titane, ou d'alliages de métaux comme l'acier ou les alliages d'aluminium , ou de matériaux composites, qui sont utilisés par exemple dans les industries aéronautique, aérospatiale, ferroviaire, et automobile, la construction navale, le transport de pétrole et de gaz, la production d'énergie éolienne ou hydrolienne, et les industries du forage et de l'exploration notamment gazière ou pétrolière, pour fabriquer par exemple des véhicules automobiles (voitures, camions, motocyclettes etc.), des bateaux, des aéronefs (avions, hélicoptères, hydravions, drones etc.), des gazoducs, oléoducs, aqueducs, et plateformes « offshore ».
Plus précisément, l'invention appartient au domaine technique des compositions utilisées pour revêtir la surface de substrats éventuellement peints et pour protéger la surface de ces substrats contre les environnements agressifs tels que les atmosphères corrosives, et les agressions chimiques et/ou mécaniques.
Ces compositions sont généralement appliquées sur des surfaces peintes pour protéger les structures sous-jacentes d'une corrosion éventuelle en cas de défauts dans les couches de peintures et même pour garantir une longue durée de vie de ces couches de peinture, autrement dit pour que ces couches de peinture soient durables et permanentes. On évite ainsi que ces couches ne soient remplacées au cours du temps de service d'un avion par exemple.
Les revêtements obtenus avec ces compositions protègent aussi la peinture des attaques extérieures, par exemple de la condensation notamment liée au nombre de passagers, des liquides toilettes des aéronefs, et des produits dégivrants ou des liquides hydrauliques.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les compositions anti-corrosion connues actuellement sur le marché aéronautique sont par exemple les produits disponibles auprès de la société Chemetall® sous la dénomination ARDROX® comme le ARDROX® AV 15, le ARDROX® AV 30, ou le ARDROX® AV 35D, ou le produit disponible auprès de la société SOCOMORE sous la dénomination de SOCOPAC 65 H ou le produit disponible auprès de la société Zip-Chem Products sous la dénomination Cor-Ban® comme le Cor-Ban® 35, le Cor-Ban® 23.
Les compositions connues, sont des compositions dites compositions «1-K » ou mono-composant, qui comprennent généralement une résine liante et des agents anticorrosion dans un solvant généralement organique.
Bien que les compositions connues permettent de préparer des revêtements qui possèdent une certaine résistance à la corrosion, il existe toujours un besoin pour une composition anti-corrosion qui permettent de préparer des revêtements présentant des propriétés anti-corrosion excellentes, et améliorées par rapport aux propriétés anticorrosion des revêtements obtenus avec les compositions anti-corrosion connues.
Les propriétés anti-corrosion sont généralement appréciées au moyen du test de résistance à la corrosion au brouillard salin (BS).
Ainsi les compositions actuellement couramment utilisées dans le domaine de l'aéronautique comme le SOCOPAC® 65 H, ou l'ARDROX® AV15 lorsqu'elles sont appliquées à une épaisseur de 15 μιη (épaisseur du film sec), permettent d'obtenir une résistance au brouillard salin (BS) de 1500 heures pour le SOCOPAC® 65 H ou l'ARDROX AV15®.
La dernière composition en date, à savoir l'ARDROX® AV35D permet d'obtenir
3000 heures au BS à 35 μιη sec mais il s'agit là d'un système à deux couches. De plus, ce produit se caractérise par une durée de séchage de l'ordre de 60-90 minutes, et qui dépend fortement des conditions dans lesquelles est réalisé le séchage, à savoir essentiellement la température et l'humidité. Enfin, la faible viscosité de cette composition peut entraîner des défauts du revêtement, tels que des problèmes de coulures lorsque la composition est appliquée avec des épaisseurs supérieures à 60 μιη à l'état humide.
En outre, le revêtement obtenu avec cette composition présente une très faible résistance mécanique, car il est peu ou pas réticulé.
Cela pose des problèmes lorsque le personnel chargé d'appliquer cette composition doit accéder une seconde fois à la zone où la composition a été appliquée, car le revêtement est alors piétiné et colle sous les pieds.
Ce phénomène est accentué dans les ambiances humides et chaudes.
Il existe aussi un besoin pour une telle composition anti-corrosion qui tout en donnant des revêtements possédant d'excellentes propriétés anti-corrosion, avantageusement améliorées par rapport aux compositions de l'art antérieur, présente aussi d'excellentes propriétés d'adhérence sur toutes sortes de substrats, comme les alliages d'Aluminium nus et peints, les aciers, et les composites nus et peints, d'excellentes propriétés de résistance mécanique et de résistance aux agressions chimiques par exemple les solvants, fluides hydrauliques et autres fluides, tels que les fluides utilisées dans les aéronefs. L'homme du métier cherche en effet constamment à améliorer les propriétés anticorrosion mais aussi les propriétés mécaniques des revêtements obtenus en utilisant ces compositions anti-corrosion notamment car la composition une fois appliquée peut être foulée par les opérateurs lors des opérations de maintenance ou de fabrication.
Une telle composition doit avantageusement posséder une durée de séchage rapide pour réduire les durées des cycles de production lors de la fabrication, ou lors des opérations de maintenance (MRO) et ainsi réduire les coûts liés à ces opérations. Par exemple on cherche à avoir des temps d'immobilisation des aéronefs au sol plus courts.
Une telle composition doit, en outre, avantageusement ne contenir que peu ou pas de solvants organiques.
Le but de la présente invention est de fournir une composition anti-corrosion qui réponde entre autres aux besoins et exigences énumérés plus haut.
Le but de la présente invention est encore de fournir une composition anti-corrosion qui ne présente pas les limitations, défauts et désavantages des compositions anticorrosion de l'art antérieur et qui apporte une solution aux problèmes des compositions anti-corrosion de l'art antérieur.
EXPOSÉ DE L'INVENTION
Ce but, et d'autres encore, sont atteints, conformément à l'invention, par une composition anti-corrosion caractérisée en ce qu'elle comprend :
a) au moins une résine liante organique;
b) au moins un agent inhibiteur de corrosion organique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione;
c) éventuellement un solvant ; et
d) au moins un agent inhibiteur de corrosion inorganique solide.
Le solvant (le solvant est choisi parmi l'eau, les solvants organiques et leurs mélanges, préférentiellement l'eau) n'est qu'optionnel et n'est ajouté que s'il est nécessaire d'ajuster la viscosité. Les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione seront aussi appelés par commodité mercaptans, composés mercaptans, ou composés de la famille des mercaptans dans ce qui suit.
La composition selon l'invention est une composition dite composition ou formulation « 1-K » ou mono-composant. Autrement dit, les composants qui composent la composition selon l'invention ne sont pas stockés séparément et mélangés seulement peu de temps avant l'utilisation.
Au contraire, la composition selon l'invention une fois préparée peut être stockée pendant une longue durée, si toutefois, bien sûr elle n'est pas soumise à des conditions conduisant à son séchage.
La composition selon l'invention n'a jamais été décrite dans l'art antérieur.
En particulier, la composition selon l'invention comprend une combinaison spécifique d'agents inhibiteurs de corrosion, à savoir la combinaison d'au moins un agent inhibiteur de corrosion organique spécifique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione et d'au moins un agent inhibiteur de corrosion inorganique solide.
Une telle combinaison spécifique d'agents inhibiteurs de corrosion n'a jamais été décrite dans l'art antérieur lié au domaine des revêtements anticorrosion.
De manière surprenante, la composition selon l'invention permet de préparer des couches sur des substrats notamment métalliques qui tout en possédant d'excellentes propriétés anti-corrosion, améliorées par rapport aux couches obtenues avec les compositions de l'art antérieur, présentent généralement aussi d'excellentes propriétés de résistance mécanique, d'adhérence et de résistance aux agressions chimiques.
A titre d'exemple, suivant l'épaisseur de la couche anti-corrosion selon l'invention, il est possible d'obtenir des niveaux de protection au brouillard salin (BS) de quelques centaines d'heures à plusieurs milliers d'heures dans des essais réalisés selon la norme ASTM B117 ou ISO 9227:2012.
Cet excellent niveau de protection est obtenu avec un film dont l'épaisseur sèche va généralement de 5 à 50 μιη. A titre d'exemple, l'adhérence de la couche anti-corrosion selon l'invention, sur la surface par exemple en métal, en alliage ou en composite est conservée après une exposition continue à l'humidité. La couche anti-corrosion selon l'invention ne présente pas de cloques, de craquelures ou de délamination même au-delà de plusieurs centaines voire plusieurs milliers d'heures d'exposition dans une enceinte de condensation (ISO 6270-1 :1998/ ASTM D4585). De même, le film ne présente aucune cloque, craquelure ou délamination après plusieurs dizaines d'heures voire centaines d'heures passées dans une enceinte climatique dont la température et l'humidité varient périodiquement, à savoir respectivement de -55°C à 80°C et de 50% HR à 100% HR.
La mise en œuvre dans les compositions de l'invention d'un agent inhibiteur de corrosion organique spécifique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione à la place des inhibiteurs de corrosion habituellement utilisés dans les compositions anti-corrosion conduit déjà à une amélioration des propriétés anti-corrosion et cette amélioration est encore accrue lorsque l'on associe cet agent inhibiteur de corrosion organique spécifique de la famille des mercaptans à un agent inhibiteur de corrosion inorganique solide.
Il est à noter que la composition résout le problème à la base de l'invention dès que les composants essentiels a), b), et d) dans leur définition la plus générale sont présents. Les autres composants ne sont que des composants optionnels qui peuvent cependant apporter certaines propriétés avantageuses.
De la même manière, la sélection de composants particuliers parmi les composants rentrant dans la définition des composants essentiels a), b) et d), peut permettre d'apporter également certaines propriétés avantageuses.
Avantageusement, la composition selon l'invention comprend, en % en poids par rapport au poids total de la composition :
- de 30 % à 60 % en poids de la résine liante organique ;
- de 5 % à 20 % en poids de l'agent inhibiteur de corrosion organique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione ;
- de 5 % à 20 % en poids de l'agent inhibiteur de corrosion inorganique solide ; - de 0 % à 50 %, de préférence de 10 % à 40 % en poids du solvant.
Il est clair que la somme des % en poids des constituants de la composition selon l'invention est toujours de 100% en poids.
La composition selon l'invention a généralement un extrait sec de 30 % à 60 % en poids. Pour des concentrations plus élevées ou plus faibles, des problèmes d'application peuvent être éventuellement observés.
Il n'existe aucune limitation quant au choix de la résine liante de la composition selon l'invention.
Cette résine liante peut être choisie parmi les résines liantes couramment utilisées dans les compositions anti-corrosion.
Avantageusement, la résine liante peut être choisie parmi les résines alkydes, les résines alkydes modifiées comme les résines alkydes modifiées uréthanes ou les résines alkydes modifiées époxy, les résines terpéniques, les résines acryliques comme les résines styrène-acryliques, les résines hydrocarbures, et les résines vinyliques comme les résines acryliques vinyliques et les résines styréniques vinyliques.
Avantageusement, la résine liante est choisie parmi les résines alkydes modifiées uréthane aussi appelées résines alkydes uréthanes.
Ces résines alkydes modifiées et notamment les résines alkydes modifiées uréthane ou les résine vinyliques acryliques peuvent être disponibles en milieu solvant organique (milieu solvanté) tel que le white-spirit, ou en milieu aqueux, généralement sous la forme de dispersions ou émulsions dans de l'eau.
Des exemples de telles résines sont donnés dans le Tableau I ci-dessous : Type de Nom de marque de Fabricant de
Milieu
résine la résine la résine
Alkyde
Worlée
aqueux modifiée Worleesol E 150 W
Chemie
uréthane
Alkyde
Worlée
aqueux modifiée Worleesol E 380W
Chemie
uréthane
Alkyde
Worlée
aqueux modifiée Worleesol E 330 W
Chemie
uréthane
Vinylique
aqueux Haloflex 202 ou 299 DSM
acrylique
Tableau I.
Les résines, et notamment les résines alkydes modifiées uréthane, en milieu aqueux, qui se présentent généralement sous la forme de dispersion ou émulsion de ces résines dans de l'eau sont encore préférées car elles donnent les couches présentant les meilleures propriétés.
En effet, il a été mis en évidence que l'un des principaux problèmes des compositions anti-corrosion connu, actuellement disponibles sur le marché, est dû aux liants, autrement dit aux résines utilisées dans ces compositions.
En effet, ces compositions de l'art antérieur contiennent toutes des résines collantes, « tackifiantes », des résines hydrocarbures, ou encore des résines terpéniques qui sont des résines employées dans le domaine des adhésifs et qui possèdent une température de transition vitreuse Tg suffisamment élevée pour conférer au produit une fois formulé un séchage physique adéquat.
Par séchage « physique », on entend un séchage sans réticulation, par simple évaporation du solvant volatil.
Cette technologie faisant appel à de telles résines avec un séchage « physique », donne des revêtements ne possédant aucun réseau dense, et donc par définition, aucune réticulation à cœur. Ces revêtements ont donc de très faibles résistances mécaniques et sont sensibles aux effets environnementaux, par exemple aux atmosphères riches en solvants, aux températures élevées, à la condensation, et aux sollicitations mécaniques.
La mise en œuvre préférentielle, selon l'invention, de résines alkydes modifiées conduit à des films réticulés à propriétés fortement renforcées.
Ces films peuvent en outre être éventuellement retirés à l'aide de solvants tels que le DIESTONE DLS®, le SOCOCLEAN AQUAFORTE® et autres qui sont qualifiés dans le domaine aéronautique pour ce genre d'opération.
C'est notamment le cas des films préparés à partir de compositions contenant les trois premières résines mentionnées dans le tableau I.
Les temps de séchage en milieux confinés, riches en vapeurs de solvants, obtenus avec les compositions anti-corrosion, selon l'invention, contenant des résines alkydes modifiées sont nettement inférieurs aux temps de séchage obtenus avec une composition de l'art antérieur, à savoir l'ARDROX® AV 35D, comme cela ressort clairement du Tableau II ci-dessous.
Figure imgf000010_0001
Tableau II : Séchage en surface de revêtements (épaisseur sèche de 35 μιη à température ambiante dans une enceinte de dimensions 220 mm x 100 mm x 100 mm possédant une ouverture sur la partie supérieure de dimensions 40 mm x 20 mm.
On constate que dans ces conditions riches en solvants, la composition de l'art antérieur sèche très difficilement, voire jamais, du fait de la nature non liante des résines employées, tandis que le temps de séchage des compositions selon l'invention est comparativement très réduit. Les temps de séchage les plus courts sont obtenus avec la composition selon l'invention contenant une dispersion aqueuse de résine alkyde modifiée uréthane.
Un avantage supplémentaire lié à la mise en œuvre préférentielle, de résines alkydes modifiées dans les compositions selon l'invention repose sur le fait que le temps de séchage peut être modulé très facilement par l'ajustement de siccatifs éventuellement présents dans la formule, ce qui est impossible techniquement avec les compositions de l'art antérieur ne contenant pas de telles résines, du fait même de la nature chimique des résines que contiennent les compositions de l'art antérieur, à savoir des résines non-réticulables, qui sèchent « physiquement », sans réticulation.
En outre, la résistance au brouillard salin (BS) de revêtements préparés avec les compositions anti-corrosion, selon l'invention, contenant des résines alkydes modifiées est nettement meilleure que la résistance au brouillard salin de revêtements préparés avec des compositions de l'art antérieur, à savoir l'ARDROX® AV 35D ou le SOCOPAC® 65 H, comme cela ressort clairement du Tableau III ci-dessous.
Figure imgf000011_0001
Tableau III : Résistance au brouillard salin selon la norme ASTM B-117/ISO 9227 : 2012 des revêtements préparés à partir de compositions selon l'invention ou selon l'art antérieur, appliquées sur des plaques d'alliage d'aluminium 2024-T3 après dégraissage, attaque sodique et désoxydation, puis séchées 7 jours à température ambiante. SB = composition solvantée ; WB= composition aqueuse. Des analyses de DMA ont été réalisées indiquant que la composition (1) selon l'invention sèche pour former un film libre « manipulable » possédant un niveau de réticulation non nul (identifié de par la présence d'un plateau caoutchoutique succédant à la transition Tg tan mesurée entre 51°C et 55°C).
La cohésion des films a ensuite été évaluée par un test d'abrasion par voie sèche selon la norme NF EN ISO 7784-2. Il s'avère que la couche préparée avec la composition selon l'art antérieur : ARDROX® AV35D se détériore dès 20 cycles avant d'être complètement détruite après 100 cycles.
La composition (1) selon l'invention conduit à une couche possédant une résistance parfaite, à savoir 0,15% de perte de masse seulement après 500 cycles.
Ce test démontre que la composition (1) selon l'invention qui est une composition préférée comprenant une résine modifiée uréthane possède une cohésion et une réticulation à cœur capable de résister aux sollicitations mécaniques.
Ainsi, les compositions selon l'invention qui contiennent avantageusement des résines alkydes modifiées conduisent à une réduction drastique du temps de séchage dans des conditions dégradées, par exemple dans une atmosphère confinée riche en solvant, à une meilleure résistance mécanique et à des propriétés anti-corrosion supérieures aux compositions de l'art antérieur, telles que l'ARDROX® AV35D.
II n'existe aucune limitation quant au choix du composé comprenant au moins une fonction thiol et/ou au moins une fonction thione. Il existe un grand nombre de ces composés, de structures variées qui peuvent être utilisés dans les compositions selon l'invention et qui donnent d'excellents résultats.
Ainsi, l'agent inhibiteur de corrosion organique peut être choisi parmi le 2-Mercaptobenzothiazole ou 2-MBT, aussi appelé Benzothiazole-2-thiol ou 2(3H)-Benzothiazolethione, le 6-Méthyl-2-mercaptobenzothiazole, le
Naphto[l,2-d]thiazole-2(lH)-thione, le 7-méthyl-benzothiazole-2-thiol, la 4-méthyl-2(3H)-benzothiazolethione, la 6-Ethyl-2-benzothiazolinethione, le 2,5-Dimercapto-l,3,4-thiadiazole ou DMTD, le mercaptobenzimidazole, et les sels de ceux- ci, par exemple les sels de métaux ou d'amine de ceux-ci. Notamment, l'agent inhibiteur de corrosion organique peut être choisi parmi le sel de sodium (1/1) de la Benzothiazolethione, le sel de zinc (2 :1) de la Benzothiazolethione, et le sel de cyclohexylamine du 2-Mercaptobenzothiazole.
L'agent inhibiteur de corrosion organique préféré qui donne les meilleurs résultats en termes de propriétés anti-corrosion est le 2-MBT ou un sel de celui-ci.
La composition selon l'invention peut comprendre, en outre, au moins un accélérateur.
Avantageusement, la composition selon l'invention comprend de 2 à 20% en poids, de préférence de 5 à 10 % en poids d'accélérateur par rapport au poids total de la composition.
En d'autres termes, l'agent inhibiteur de corrosion organique choisi parmi les mercaptans peut être couplé, associé à un ou plusieurs accélérateurs, par exemple à un ou plusieurs accélérateurs de vulcanisation.
Là-encore, les combinaisons de mercaptans et d'accélérateurs peuvent être très nombreuses et très variées.
L'accélérateur peut être notamment un thiocarbamate (les thiocarbamates sont des accélérateurs de vulcanisation) comme le 1-pyrrolidine-dithiocarbamate ou PYRR.
L'association d'un mercaptan avec un accélérateur conduit à une synergie qui peut améliorer les excellents résultats en termes de résistance à la corrosion obtenus avec les mercaptans seuls.
L'inhibiteur de corrosion inorganique peut être choisi parmi les inhibiteurs de corrosion sous la forme de pigments, c'est-à-dire les pigments qui ont une action d'inhibition de la corrosion ou pigments inhibiteurs de la corrosion.
De préférence, l'agent inhibiteur de corrosion inorganique est choisi parmi les oxydes de métaux tels que les oxydes de zinc, de cérium IV, de titane, de zirconium, de fer, de praséodyme (III) et d'antimoine ; les oxydes de métalloïdes ; l'orthophosphosilicate de zinc calcium strontium aluminium hydraté ou commercialement l'HEUCOPHOS ZCP® ; la silice amorphe synthétique échangée par des ions calcium ; le polyphosphate de strontium aluminium hydraté ; le sulfate de baryum ; le 5-nitroisophtalate de zinc ; le phosphosilicate de calcium et de strontium rendu organophile ; le phosphate de zinc notamment rendu organophile ; le molybdate de zinc notamment rendu organophile ; le polyphosphate d'aluminium modifié ; le titanate de strontium ; l'oxyde d'antimoine et d'étain (ATO) ; le molybdène.
Des exemples d'inhibiteurs de corrosion sous la forme de pigments sont donnés dans le Tableau IV ci-dessous.
Figure imgf000014_0001
Tableau IV.
Avantageusement, l'agent inhibiteur de corrosion inorganique présente une taille de particules nanométrique.
Par taille de particules nanométrique, on entend que la taille moyenne, par exemple le diamètre moyen (dso), des particules nanométriques est de 1 à 100 nm, de préférence de 5 à 50 nm, de préférence encore de 10 à 50 nm, mieux de 10 à 20 nm. La taille des particules est mesurée par MET (Microscopie Electronique en Transmission).
Il s'est avéré que l'incorporation dans les compositions selon l'invention d'un agent inhibiteur de corrosion inorganique présentant une taille de particules nanométrique permettait d'améliorer grandement la résistance à la corrosion des revêtements préparés à partir des compositions selon l'invention, par exemple sur des plaques d'aluminium 2024-T3 par rapport à des compositions contenant des inhibiteurs de corrosion de taille non-nanométrique, par exemple micrométrique.
Ainsi, pour un même inhibiteur, par exemple l'oxyde de zinc, introduit dans les mêmes proportions, généralement entre 1% et 5%, le revêtement contenant le ZnO nanométrique (taille moyenne (dso) des particules de 10 à 20 nm) permet de résister entre 1000 et 1400 heures à une exposition au brouillard salin (BS) avec une épaisseur de couche à l'état sec de 6 μιη alors que celui contenant l'oxyde de zinc non nanométrique n'a qu'une résistance comprise entre 850 et 1000 heures dans les mêmes conditions.
Le fait d'incorporer un inhibiteur de corrosion sous forme nanométrique permet donc d'améliorer de façon significative les performances de résistance à la corrosion du revêtement.
Il semblerait qu'il existe un effet spécifique à la nature même des nanoparticules.
Cet effet consisterait à remplir les défauts, cavités, craquelures apparaissant au cours du processus de vieillissement et d'oxydation au niveau du substrat et de sa couche passivante (par exemple alumine) voire même au niveau du revêtement en lui-même.
De plus, pour obtenir des performances élevées, une faible teneur, par exemple de 2 % à 10% en poids suffit.
Le solvant peut être choisi parmi l'eau, les solvants organiques et leurs mélanges ; de préférence le solvant comprend une majorité en poids d'eau (plus de 50% en poids) ; de préférence encore le solvant est constitué par de l'eau.
Autrement dit, la composition selon l'invention présente l'avantage de pouvoir être formulée en milieu solvanté, mais aussi en milieu aqueux. La formulation en milieu aqueux offre de nombreux bénéfices, par exemple : réduction des « COV », composition présentant une nocivité moindre vis-à-vis de l'homme (c'est-à-dire des opérateurs chargés d'appliquer la composition)) et de son environnement, moins de problème d'odeur et de sensation d'étouffement par exemple dans les zones confinées de l'avion.
En d'autres termes, la composition (et le procédé) selon l'invention est avantageusement respectueuse de l'environnement et satisfait aux dernières directives en matière de protection de Γ environnement, directives du fait qu'elle a de préférence une teneur très faible en solvants organiques, généralement inférieure à 5% en poids, de préférence inférieure à 3% en poids, de préférence encore inférieure à 1% en poids.
Il s'agit là d'une différence et d'un avantage supplémentaire de la composition (et du procédé selon l'invention) par rapport aux procédés de l'art antérieur qui mettent en œuvre des teneurs plus élevées en solvants organiques.
C'est notamment la raison pour laquelle, comme on l'a vu plus haut, les résines alkydes modifiées et notamment les résines alkydes modifiées uréthane en milieu aqueux seront préférées, d'autant plus que ces résines en milieu aqueux donnent les meilleures propriétés en termes de temps de séchage et de résistance à la corrosion.
La composition selon l'invention peut se présenter sous la forme d'une émulsion (eau dans l'huile ou de présence huile dans l'eau) ou d'une solution.
La composition selon l'invention peut comprendre, en outre, au moins un agent dispersant.
L'agent dispersant peut être présent à raison de 0,5 % à 3 % en poids du poids total de la composition.
L'agent dispersant peut être le produit connu sous la dénomination DISPERBYK® 2010. La composition selon l'invention peut comprendre, en outre, au moins un agent antimousse.
L'agent anti-mousse peut être présent à raison de 0,1 % à 1 % en poids du poids total de la composition.
L'agent anti-mousse peut être par exemple le produit connu sous la dénomination de BYK® 1798. La composition selon l'invention peut comprendre, en outre, au moins un agent fongicide.
L'agent fongicide peut être présent à raison de 0,01 % à 0,5 % en poids du poids total de la composition.
L'agent fongicide peut être par exemple la pyrithione de sodium.
La composition selon l'invention peut comprendre, en outre, au moins un agent bactéricide.
L'agent bactéricide peut être présent à raison de 0,01 % à 0,5 % en poids du poids total de la composition.
L'agent bactéricide peut être choisi par exemple parmi la
2-Benzoisothiazole-3(2H)-one, la 2-Méthyl-2H-isothiazole-3-one, et leurs mélanges.
La composition selon l'invention peut comprendre, en outre, au moins un colorant et/ou au moins un pigment.
Chaque colorant ou pigment peut être présent à raison de 0,1 % à 1 % en poids du poids total de la composition.
Les pigments comprennent aussi les nacres, les laques et leurs mélanges.
Les pigments ou colorants peuvent être choisis parmi les pigments décoratifs, notamment colorés ou parmi les pigments UV.
Comme on l'a mentionné plus haut, certains pigments peuvent aussi jouer le rôle d'agents inhibiteurs de corrosion.
La composition selon l'invention peut comprendre, en outre, au moins un agent mouillant.
L'agent mouillant peut être présent à raison de 0,1 % à 5 % en poids du poids total de la composition.
Par agent mouillant, on attend un agent tensio-actif qui abaisse la tension de surface de la composition selon l'invention, plutôt que la tension interfaciale entre la composition et la surface du substrat. L'agent mouillant améliore le mélange des divers constituants de la composition et l'adhérence de la couche anti-corrosion sur une surface en métal ou toute autre surface lisse. L'agent mouillant améliore les propriétés de mouillage et d'étalement sur divers substrats, mais aussi la qualité du réseau formé et les propriétés anti-corrosion intrinsèques de la couche.
La composition selon l'invention peut comprendre, en outre, au moins un agent rhéologique.
L'agent rhéologique peut être présent à raison de 0,01% à 5 % en poids, de préférence à raison de 0,01 % à 0,5 % en poids, du poids total de la composition.
L'agent rhéologique peut être choisi parmi les épaississants polyuréthane comme le Polyuréthane non ionique® sous la dénomination de TAFIGEL® PUR 60 et autres.
La composition selon l'invention peut comprendre en outre un ou plusieurs additifs, choisi(s) par exemple parmi les agents anti-peau, les siccatifs, les cires, etc.
L'additif ou chacun des additifs peut être présent à raison de 0,1 % à 1,0 % en poids du poids total de la composition.
La composition selon l'invention peut comprendre, en outre, au moins une charge. La charge peut être présente à raison de 5 % à 20 % en poids du poids total de la composition.
La charge peut être choisie parmi les micas, les silices, les talcs, les argiles, et les poudres de PTFE, qui du fait de leur structure lamellaire ou nodulaire et/ou de leur taille, par exemple micrométrique ou nanométrique, peuvent optimiser certaines propriétés, telles que les propriétés anti-coulure, la dureté, la résistance aux rayures, et même les propriétés anti-corrosion de la couche.
La charge telle que le talc, le mica, la silice ou l'argile est généralement sous la forme de particules, ou de nanoparticules dont la surface peut être modifiée.
La composition selon l'invention peut être préparée en pesant et en dispersant, mélangeant ces composants au moyen de tout appareil de dispersion, mélange adéquate.
Par exemple, on peut commencer par peser la résine, l'agent dispersant éventuel, et l'agent anti-mousse éventuel et les disperser, mélanger, dans un appareil de dispersion, mélange, adéquat; puis ajouter dans l'ordre l'agent inhibiteur de corrosion organique et l'agent inhibiteur de corrosion inorganique solide dans l'appareil de dispersion et les mélanger ; puis ajouter dans l'ordre le fongicide, le bactéricide, le pigment et/ou le colorant éventuels dans l'appareil de dispersion et les mélanger ; puis pré-mélanger l'agent mouillant et l'agent rhéologiques éventuels, les ajouter dans l'appareil de dispersion et les mélanger.
L'invention concerne également un procédé pour préparer une couche anti-corrosion sur une surface d'un substrat dans lequel :
- la composition telle que décrite plus haut est déposée, sur la surface du substrat pour donner une couche de la composition sur la surface du substrat ;
- ladite couche de la composition est séchée, moyennant quoi on obtient la couche anti-corrosion sur la surface du substrat.
Le procédé selon l'invention possède tous les avantages liés à la mise en œuvre dans ce procédé de la composition spécifique selon l'invention.
En particulier, le procédé selon l'invention permet la préparation en une seule passe, une seule opération, une seule étape de couches anti-corrosion possédant d'excellentes propriétés anti-corrosion.
Autrement dit, le procédé selon l'invention, permet de préparer des couches, films, d'une épaisseur sèche allant de 5 à 50 μιη en une seule passe, étape, au lieu de plusieurs étapes dans les procédés analogues connus de dépôts de produits de protection contre la corrosion. Les couches, films obtenus sont donc, même pour des épaisseurs importantes des films monocouches homogènes et non des films constitués par plusieurs couches comme avec les procédés de l'art antérieur.
Les couches épaisses obtenues sont d'excellentes qualités, régulières et sans coulures, contrairement aux couches obtenues avec les procédés de l'art antérieur qui mettent en œuvre une composition qui n'est pas celle selon l'invention.
Le procédé d'application selon l'invention est fiable, rapide et d'un coût inférieur aux procédés de l'art antérieur.
Ce procédé de préparation d'une couche, film de protection contre la corrosion selon l'invention, peut facilement s'intégrer dans une chaîne classique existante comportant d'autres traitements du substrat antérieurs ou postérieurs au dépôt dudit film.
Le substrat selon l'invention peut être en tout matériau capable de recevoir une couche anti-corrosion. Le procédé selon l'invention peut être mis en œuvre avec des matériaux très divers avec toujours d'excellents résultats en termes de propriétés et avant tout de propriétés anti-corrosion de la couche obtenue.
Le substrat peut être un matériau choisi parmi les métaux ; les alliages de métaux ; les verres organiques ou minéraux ; les polymères organiques tels que les polymères thermoplastiques (matières plastiques) ; le bois ; les céramiques ; les textiles ; les bétons ; les papiers ; la pierre ; les fibres de carbone ; et les matériaux composites comprenant plusieurs des matériaux précédemment énumérés, tels que les matériaux composites comprenant des fibres de carbone comme les matières plastiques à renforts de fibres de carbone ; ce matériau étant éventuellement plaqué et/ou ayant subi un traitement de surface et/ou étant revêtu, par exemple peint.
Avantageusement, le substrat peut être en un matériau choisi parmi l'aluminium ; le titane ; le cuivre ; le fer ; le magnésium ; et les alliages de ceux-ci, comme les aciers, par exemple les aciers inoxydables, les alliages d'aluminium, comme l'alliage d'aluminium 2024-T3, et l'Inconel ; la surface du substrat ayant éventuellement été plaquée et/ou ayant subi un traitement de surface et/ou étant revêtue, par exemple peinte.
Les alliages d'aluminium comprennent les alliages 7075, 6056 et 2024 comme l'alliage d'aluminium 2024-T3.
Les alliages de titane comprennent les alliages Ti6-4, Ti-15-3-3-3, Ti-6-2-2-2-2 et Ti-3-2-5.
Le substrat peut avoir une forme quelconque mais il a généralement la forme d'une plaque, tôle ou feuille. Le procédé selon l'invention permet cependant le dépôt de couches sur des surfaces de géométrie même très complexe.
Le substrat peut être constitué notamment de plusieurs plaques composées de matériaux différents, rivetées. La protection contre la corrosion conférée par la couche anti-corrosion selon l'invention est efficace à la fois sur la surface du/des substrat(s) mais également à l'intérieur des rivets.
La surface sur laquelle est déposée la couche peut n'être qu'une partie de la surface totale du substrat, mais il peut s'agir aussi de la totalité de ladite surface, par exemple on peut avec le procédé selon l'invention déposer une couche sur les deux faces d'un substrat en feuille.
Préalablement au dépôt de la composition, la surface est de préférence nettoyée et/ou activée et/ou décapée par un traitement chimique et/ou physique et/ou mécanique.
En effet, ce nettoyage est important afin d'obtenir une bonne adhésion de la couche déposée. Ces procédés de nettoyage sont connus de l'homme du métier : il peut s'agir d'un nettoyage par voie humide par exemple par des solutions acides ou basiques, d'un dégraissage alcalin ou par solvant ou bien d'un nettoyage par voie sèche, par exemple par grenaillage et/ou sablage et/ou flammage, etc.
Pour certains supports, un traitement particulier, du type promoteur d'adhérence, peut être ajouté.
De tels traitements de nettoyage et/ou d'activation sont connus de l'homme du métier et sont largement décrits dans l'art antérieur.
Sur la surface du substrat, de préférence nettoyée et activée, on effectue le dépôt de la composition anti-corrosion selon l'invention telle qu'elle a été décrite plus haut.
Les compositions selon l'invention permettent le dépôt de couches ou films fins, mais également le dépôt de couches ou films plus épais.
Avantageusement dans une seule opération, une couche de la composition est déposée avec une épaisseur humide de 10 à 100 μιη, de préférence de 40 à 50 μιη.
Avantageusement, la couche anti-corrosion (c'est-à-dire la couche finale séchée) a une épaisseur à l'état sec de 5 à 45 μιη, de préférence de 10 à 25 μιη, de préférence encore de 20 à 25 μιη.
L'épaisseur de la couche anti-corrosion (c'est-à-dire de la couche finale séchée) est fonction de l'extrait sec de la composition.
La composition peut être déposée par toute technique connue, par exemple la composition peut être déposée par une technique choisie parmi la pulvérisation par exemple au moyen d'un pistolet, l'aspersion, le trempage, le brossage, ou le dépôt par aérosol.
Afin d'effectuer les finitions ou atteindre des zones difficiles d'accès par les techniques déjà citées, un dépôt par aérosol est possible. De préférence, la composition est appliquée par pulvérisation par exemple au moyen d'un pistolet, de manière très simple, similaire à l'application d'une peinture ou d'un vernis.
L'épaisseur sèche souhaitée de la couche peut être facilement obtenue en modifiant par exemple les réglages des pistolets, le type de pistolet et la distance d'application.
L'opération de dépôt, application, de la composition selon l'invention sur la surface est généralement réalisée à une température de 7°C à 40°C, de préférence de 15°C à 25°C, par exemple de 23°C.
A l'issue du dépôt, on obtient un substrat dont la surface est revêtue par une couche de la composition selon l'invention. Cette couche est une couche que l'on peut qualifier de couche « humide » car elle contient encore du solvant tel que de l'eau.
Généralement, le séchage de la couche de composition est réalisé à la température ambiante, et à l'air libre, pendant une durée de 15 minutes à 7 jours, de préférence pendant une durée de 15 à 60 minutes.
En effet, une durée de séchage 15 à 60 min est suffisante pour permettre la manipulation ou pour que la couche soit recouvrable, tandis qu'une durée plus élevée, de préférence de 7 jours est nécessaire pour obtenir une réticulation totale.
Par température ambiante, on entend généralement une température de 15°C à 30°C, notamment de 20°C à 25°C.
On peut, de préférence, ne déposer qu'une seule couche anti-corrosion par le procédé selon l'invention en formant ainsi un revêtement monocouche, cette couche anticorrosion ayant généralement une épaisseur sèche telle que définie plus haut.
Selon l'invention, d'excellentes propriétés sont en effet obtenues avec une telle couche unique, un tel revêtement monocouche.
On peut aussi déposer, mais cela n'est généralement pas préféré, plusieurs couches anti-corrosion en formant ainsi un revêtement multicouche. On peut déposer généralement de 1 à 3 couches, de préférence 1 couche.
Selon les divers additifs incorporés dans la composition, la couche anti-corrosion pourra posséder des propriétés variées.
Avantageusement, ladite surface est revêtue uniquement avec ladite couche anti- corrosion, contenant de préférence un colorant et/ou un pigment, formant ainsi un revêtement monocouche sur la dite surface.
Dans ce cas, de préférence, le substrat est en un métal ou en un alliage métallique et ledit revêtement monocouche est un revêtement appelé « Direct to Métal» ou « DTM ».
L'invention a également trait à une couche anti-corrosion susceptible d'être préparée par le procédé décrit ci-dessus.
L'invention a trait, en outre, à un substrat comprenant au moins une surface revêtue par au moins une couche anti-corrosion telle que décrite plus haut.
Avantageusement, ladite surface est revêtue uniquement avec ladite couche anticorrosion (aucune autre couche de revêtement n'étant présente), et de préférence ladite couche contient au moins un colorant et/ou un pigment.
En d'autres termes, de préférence, la couche anti-corrosion peut être appliquée sous la forme d'un revêtement monocouche coloré ou non, pigmenté ou non, sur la surface du substrat.
Autrement dit, une telle couche anti-corrosion unique peut être utilisée seule en tant que revêtement anti-corrosion, protecteur.
Une telle couche unique anti-corrosion forme ainsi un revêtement monocouche sur ladite surface ; de préférence le substrat est en un métal ou en un alliage métallique et ledit revêtement monocouche est alors un revêtement appelé « Direct to Métal» ou « DTM ».
Le substrat peut être constitué par une partie ou l'ensemble d'un aéronef tel qu'un avion, un hydravion, un hélicoptère, ou un drone; d'un véhicule spatial; d'une fusée; d'un navire; d'un aéroglisseur ; d'une plateforme « offshore »; d'un véhicule automobile tel qu'une voiture, une motocyclette, ou un camion; d'un gazoduc, d'un oléoduc, ou d'un aqueduc ; d'un véhicule ferroviaire tel qu'une locomotive ou un wagon ; d'une éolienne ; d'une hydrolienne.
L'invention a également trait à l'utilisation de la couche anti-corrosion selon l'invention telle que décrite plus haut pour conférer des propriétés de résistance à la corrosion à une surface d'un substrat, en particulier à une surface en un matériau choisi parmi les métaux comme l'aluminium, les alliages de métaux comme les alliages d'aluminium, et les matériaux composites comprenant un métal ou un alliage de métal.
De préférence, le substrat est en aluminium ou en alliage d'aluminium, et la couche anti-corrosion confère à la surface une résistance à la corrosion dans le test de résistance à la corrosion au brouillard salin, conformément à la norme NF EN ISO 9227:2012, de plus de 1000 heures, de préférence de plus de 2000 heures, et de préférence encore de plus de 3000 heures pour une couche d'une épaisseur de 25 μιη à l'état sec
Avantageusement, ladite surface n'est revêtue que par ladite couche anti-corrosion
(séchée) ; en d'autres termes, ladite couche anti-corrosion est utilisée seule, en tant que couche unique sur la surface.
Autrement dit, ladite couche anti-corrosion unique forme un revêtement monocouche sur la surface.
Lorsque cette surface est une surface en métal ou en alliage de métal, un tel revêtement monocouche est appelé un revêtement « DTM » (« Direct To Métal » en anglais).
Ce revêtement « DTM » anti-corrosion donne de très bonnes propriétés de résistance à la corrosion et de protection mécanique au substrat.
La raison pour cela est que la couche anti-corrosion selon l'invention, ou préparée par le procédé selon l'invention, permet, de manière surprenante seule, par elle-même -sans qu'une autre couche, telle qu'une couche de primaire ou une couche de peinture ne soit utilisée- de communiquer en même temps une résistance à la corrosion, une protection contre les produits chimiques, une résistance mécanique, une protection contre les rayures, d'une surface en métal ou en alliage métallique.
Cela permet d'éviter le dépôt d'autres couches en plus de la couche anti-corrosion et conduit à la réduction des temps de cycles et de production, et l'allégement de la structure, qui sont particulièrement intéressantes, par exemple pour la réduction des coûts dans l'industrie aérospatiale.
Finalement, le procédé selon l'invention est simple, fiable, rapide et moins coûteux que les procédés de l'art antérieur car une seule étape de revêtement et une seule couche peuvent en remplacer plusieurs. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
EXEMPLES.
Dans les exemples expérimentaux qui suivent, des compositions, formulations selon l'invention sont préparés.
Puis, ces compositions, formulations selon l'invention sont déposées, appliquées sous la forme de films sur la surface de substrats, à savoir la surface de plaques en alliage d'aluminium.
Les substrats revêtus des films sont séchés et les propriétés des films selon l'invention ainsi préparés sont évaluées.
Exemple 1.
• Préparation d'une composition, formulation, selon l'invention.
On pèse :
79,74 g d'une émulsion dans l'eau de résine alkyde modifiée polyuréthane (PU) disponible sous la dénomination WorléeSol® E 150 W auprès de la société Worlée de Lauenburg, Allemagne ;
2,00 g d'un agent dispersant, qui est un copolymère comprenant des groupes ayant une affinité pour les pigments, disponible auprès de la société BYK sous la dénomination DISPERBYK® 2010; et
- 0,30 g d'un agent anti-mousse disponible auprès de la société BYK sous la dénomination (BYK® 1798).
Les trois composants ainsi pesés sont placés ensemble dans un disperseur et le mélange est agité pendant 5 minutes.
On ajoute ensuite dans l'ordre, dans le vortex d'agitation formé dans le disperseur :
8,5 g d'un pigment anti-corrosion organique, le 2-MBT, disponible auprès de la société LANXESS sous la dénomination commerciale VULKACIT MERCAPTO/C; et 8,5 g d'un pigment anti-corrosion inorganique, le Zinc Calcium Strontium Aluminium Orthophosphate Silicate Hydrate, disponible auprès de la société HEUBACH sous la dénomination commerciale HEUCOPHOS® ZCP+. Le mélange est maintenu pendant 10 minutes sous forte agitation, à savoir à une vitesse de 1000 trs/min.
On ajoute ensuite dans l'ordre :
0,072 g d'un fongicide, la Pyrithione de Sodium ;
0,012 g d'un bactéricide, la 2-Benzisothiazole-3(2H)-one, 2-Méthyl-2H-isothiazole- 3-one ;
0,10 g d'un pigment anti-UV, sous la forme d'une solution de Sulfostryryl biphenyl sel de sodium ; et
- 0,40 g d'un pigment, le jaune Cl 11680 46%. Le mélange est maintenu au minimum 30 minutes sous agitation.
On prépare séparément un prémélange de 0,30 g d'un agent mouillant, le dipropylene glycol methyl ether (DPGME) et de 0,073 g d'un agent rhéologique qui est un Polyuréthane non ionique disponible auprès de la société Munzig®.
On ajoute ensuite ce prémélange dans le vortex et on continue à agiter pendant 30 minutes.
• Substrats.
Les substrats sont des panneaux, plaques, en alliage d'aluminium 2024-T3. · Préparation des substrats.
Le cuivre présent dans l'alliage d'aluminium 2024-T3 tend à détériorer la couche protectrice d'oxyde naturellement présente. Par conséquent, il est important de préparer la surface dudit alliage pour éliminer les contaminants de surface, les oxydes qui pourraient perturber les étapes suivantes du procédé de préparation du film, et les plaques subissent donc quatre traitements de surface successifs. Lors d'un premier traitement de surface, les plaques, panneaux, d'alliage d'aluminium (2024-T3) sont tout d'abord dégraissés avec du DIESTONE® DLS afin d'éliminer la poussière et tout autre contaminant à la surface des plaques.
Puis, lors d'un deuxième traitement de surface, les plaques sont dégraissées dans un bain de SOCOCLEAN® A3431 dont la concentration volumique est de 10%, chauffé entre 40°C et 45°C, et sous légère agitation, pendant 5 à 30 minutes. Les plaques sont ensuite rincées deux fois. Le premier rinçage est effectué à l'eau de ville pendant deux minutes et le second rinçage est réalisé à l'eau distillée pendant 2 minutes également.
Le troisième traitement de surface est une attaque sodique dans un bain de soude dont la concentration est de 40 g/L, chauffé entre 50°C et 65 °C pendant 1 à 5 minute(s). Les plaques sont ensuite rincées deux fois à l'eau distillée pendant 2 minutes.
Le quatrième traitement de surface est un traitement de désoxydation dans un bain d'acide nitrique dont la concentration est comprise entre 400 et 500 g/L. Les plaques sont plongées dans ce bain à température ambiante pendant 5 à 15 minutes.
Les plaques sont ensuite rincées deux fois à l'eau distillée pendant 2 minutes, puis séchées pendant quelques minutes à 60°C.
• Les plaques doivent être utilisées dans les 12 heures qui suivent ces traitements de surface. · Application de la formulation sur les substrats en alliage d'aluminium.
La formulation est appliquée, déposée par pulvérisation à l'aide d'un pistolet de marque KREMLIN® sur les plaques en alliage d'aluminium, afin d'obtenir un film, couche ayant une épaisseur à l'état humide de 60 μιη.
Les plaques ainsi revêtues d'un film ou couche humide sont alors laissées à la température ambiante pendant 7 jours, à l'issue desquels on obtient des plaques en alliage d'aluminium revêtues d'une couche protectrice contre la corrosion, à l'état sec.
Les échantillons, c'est-à-dire, lesdites plaques en alliage d'aluminium revêtues d'une couche protectrice contre la corrosion, à l'état sec sont alors prêtes à être caractérisées. • Caractérisation des échantillons.
Epaisseur :
L'épaisseur moyenne du film ou couche déposé(e), à l'état sec, est mesurée selon la norme ISO 2360 :2003 avec un appareil de type MiniTest 7400 commercialisé par ElektroPhysik équipé de la sonde N4 pour les panneaux, plaques en alliage d'aluminium (Mesures basées sur les courants de Foucault).
10 mesures sont effectuées à la surface de l'échantillon. L'épaisseur moyenne est relevée.
Cette épaisseur est de 20-25 μιη.
Résistance à la corrosion au brouillard salin (« Sait Spray Test » ou « 557" » en anglais):
Le test de résistance à la corrosion au brouillard salin est utilisé pour estimer la résistance à la corrosion de matériaux métalliques. Ce test est effectué selon la norme ISO 9227 :2012. Les plaques en alliage d'aluminium revêtues sont placées dans une enceinte (Q-FOG Cyclic Corrosion Tester de Q-Panel) à 35 °C ± 2°C sur des supports avec un angle de 20°± 5° par rapport à la verticale. Les plaques sont exposées à un brouillard artificiel issu d'une solution de chlorure de sodium. Cette solution contient 50 g/L ± 5 g/L de chlorure de sodium, et son pH est compris entre 6,5 et 7,2 à 25°C ± 5°C. Les plaques sont observées de façon régulière et la présence de corrosion (corrosion uniforme, piqûres, etc.) est notée.
La corrosion est inférieure à 3% de la surface après 3000 heures pour une épaisseur sèche de film de 25 μιη.

Claims

REVENDICATIONS
1. Composition anti-corrosion, caractérisée en ce qu'elle comprend :
a) au moins une résine liante organique ;
b) au moins un agent inhibiteur de corrosion organique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione ;
c) éventuellement un solvant ; et
d) au moins un agent inhibiteur de corrosion inorganique solide.
2. Composition selon la revendication 1, comprenant en % en poids par rapport au poids total de la composition :
- de 30 % à 60 % en poids de la résine liante organique ;
- de 5 % à 20 % en poids de l'agent inhibiteur de corrosion organique choisi parmi les composés comprenant au moins une fonction thiol et/ou au moins une fonction thione;
- de 5 % à 20 % en poids de l'agent inhibiteur de corrosion inorganique solide ;
- de 0 % à 50 %, de préférence de 10 % à 40 %, en poids du solvant.
3. Composition selon l'une quelconque des revendications précédentes, dans laquelle la résine liante est choisie parmi les résines alkydes, les résines alkydes modifiées comme les résine alkydes modifiées uréthanes ou les résines alkydes modifiées époxy, les résines terpéniques, les résines acryliques comme les résines styrène-acryliques, les résines hydrocarbures, et les résines vinyliques comme les résines acryliques vinyliques et les résines styréniques vinyliques.
4. Composition selon l'une quelconque des revendications précédentes, dans laquelle la résine liante est choisie parmi les résines alkydes modifiées uréthane aussi appelées résines alkydes uréthanes.
5. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'agent inhibiteur de corrosion organique est choisi parmi le 2-Mercaptobenzothiazole ou 2-MBT, aussi appelé Benzothiazole-2-thiol ou 2(3H)-Benzothiazolethione, le 6-Méthyl-2-mercaptobenzothiazole, le
Naphto[l,2-d]thiazole-2(lH)-thione, le 7-méthyl-benzothiazole-2-thiol, la 4-méthyl-2(3H)-benzothiazolethione, la 6-Ethyl-2-benzothiazolinethione, le 2,5-Dimercapto-l,3,4-thiadiazole ou DMTD, le mercaptobenzimidazole, et les sels de ceux- ci, par exemple les sels de métaux ou d'amine de ceux-ci.
6. Composition selon la revendication 5, dans laquelle l'agent inhibiteur de corrosion organique est choisi parmi le sel de sodium (1/1) de la Benzothiazolethione, le sel de zinc (2 :1) de la Benzothiazolethione, et le sel de cyclohexylamine du 2-Mercaptobenzothiazole.
7. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un accélérateur, tel qu'un thiocarbamate comme le 1-pyrrolidine-dithiocarbamate ou PYRR.
8. Composition selon la revendication 7, comprenant de 2 à 20 %, de préférence de 5 à 10 % en poids d'accélérateur par rapport au poids total de la composition.
9. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'inhibiteur de corrosion inorganique est choisi parmi les inhibiteurs de corrosion sous la forme de pigments.
10. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'agent inhibiteur de corrosion inorganique est choisi parmi les oxydes de métaux tels que les oxydes de zinc, de cérium (IV), de titane, de zirconium de fer, de praséodyme (III) et d'antimoine ; les oxydes de métalloïdes ; l'orthophosphosilicate de zinc calcium strontium aluminium hydraté ; la silice amorphe synthétique échangée par des ions calcium ; le polyphosphate de strontium aluminium hydraté ; le sulfate de baryum ; le 5-nitroisophtalate de zinc ; le phosphosilicate de calcium et de strontium rendu organophile ; le phosphate de zinc notamment rendu organophile ; le molybdate de zinc notamment rendu organophile ; le polyphosphate d'aluminium modifié ; le titanate de strontium ; l'oxyde d'antimoine et d'étain (ATO) ; et le molybdène.
11. Composition selon l'une quelconque des revendications précédentes, dans laquelle l'agent inhibiteur de corrosion inorganique présente une taille de particules nanométrique.
12. Composition selon l'une quelconque des revendications précédentes, dans laquelle le solvant est choisi parmi l'eau, les solvants organiques et leurs mélanges ; de préférence le solvant comprend une majorité en poids d'eau ; de préférence encore le solvant est constitué par de l'eau.
13. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un agent dispersant, de préférence à raison de 0,5 % à 3 % en poids du poids total de la composition.
14. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un agent anti-mousse, de préférence à raison de 0,1 % à 1 % en poids du poids total de la composition.
15. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un agent fongicide, de préférence à raison de 0,01 % à 0,5 % en poids du poids total de la composition.
16. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un agent bactéricide, de préférence à raison de 0,01 % à 0,5 % en poids du poids total de la composition.
17. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un colorant et/ou au moins un pigment, de préférence à raison de 0,1 % à 1 % en poids du poids total de la composition pour chaque colorant ou pigment.
18. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un agent mouillant, de préférence à raison de 0,1 % à 5 % en poids du poids total de la composition.
19. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins un agent rhéologique, de préférence à raison de 0,01 % à 5 % en poids, de préférence encore à raison de 0,01 % à 0,5 % en poids, du poids total de la composition.
20. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre un ou plusieurs additif(s), choisi(s) par exemple parmi les agents antipeau, les siccatifs, les cires, de préférence chacun à raison de 0,1 % à 1 % en poids du poids total de la composition.
21. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre au moins une charge, de préférence à raison de 5 % à 20 % en poids du poids total de la composition.
22. Procédé pour préparer une couche anti-corrosion sur une surface d'un substrat dans lequel :
- la composition selon l'une quelconque des revendications 1 à 21 est déposée, sur la surface du substrat pour donner une couche de la composition sur la surface du substrat ;
ladite couche de la composition est séchée, moyennant quoi on obtient la couche anti-corrosion sur la surface du substrat.
23. Procédé selon la revendication 22, dans lequel, dans une seule opération, une couche de la composition est déposée avec une épaisseur humide de 10 à 100 μιη, de préférence de 40 à 50 μιη.
24. Procédé selon la revendication 22 ou 23, dans lequel la couche anti-corrosion a une épaisseur à l'état sec de 5 à 45 μιη, de préférence de 10 à 25 μιη, de préférence encore de 20 à 25 μιη.
25. Procédé selon l'une quelconque des revendications 22 à 24, dans lequel la composition est déposée par une technique choisie parmi la pulvérisation par exemple au moyen d'un pistolet, l'aspersion, le trempage, le brossage, ou le dépôt par aérosol.
26. Procédé selon l'une quelconque des revendications 22 à 25, dans lequel le substrat est en un matériau choisi parmi les métaux ; les alliages de métaux ; les verres organiques ou minéraux ; les polymères organiques tels que les polymères thermoplastiques ; le bois ; les céramiques ; les textiles ; les bétons ; les papiers ; la pierre ; les fibres de carbone ; et les matériaux composites comprenant plusieurs des matériaux précédemment énumérés tels que les matériaux composites comprenant des fibres de carbone comme les matériaux plastiques à renforts de fibres de carbone ; ce matériau étant éventuellement plaqué et/ou ayant subi un traitement de surface et/ou étant revêtu, par exemple peint.
27. Procédé selon la revendication 26, dans lequel le substrat est en un matériau choisi parmi l'aluminium ; le titane ; le cuivre ; le fer ; le magnésium ; et les alliages de ceux- ci, comme les aciers, par exemple les aciers inoxydables, les alliages d'aluminium, comme l'alliage d'aluminium 2024-T3, et l'Inconel ; la surface du substrat ayant éventuellement été plaquée et/ou ayant subi un traitement de surface et/ou étant revêtue, par exemple peinte.
28. Procédé selon l'une quelconque des revendications 22 à 27, dans lequel préalablement au dépôt de la composition, la surface est nettoyée et/ou activée et/ou décapée par un traitement chimique et/ou physique et/ou mécanique.
29. Procédé selon l'une quelconque des revendications 22 à 28, dans lequel le séchage de la couche de composition est réalisé à la température ambiante, et à l'air libre, pendant une durée de 15 minutes à 7 jours, de préférence pendant une durée de 15 à 60 minutes.
30. Procédé selon l'une quelconque des revendications 22 à 29, dans lequel ladite surface est revêtue uniquement avec ladite couche anti-corrosion, contenant de préférence un colorant et/ou un pigment, formant ainsi un revêtement monocouche sur ladite surface, de préférence le substrat est en un métal ou en un alliage métallique et ledit revêtement monocouche est un revêtement appelé « Direct to Métal» ou « DTM ».
31. Couche anti-corrosion susceptible d'être préparée par le procédé selon l'une quelconque des revendications 22 à 30.
32. Substrat comprenant au moins une surface revêtue par au moins une couche anti-corrosion selon la revendication 31.
33. Substrat selon la revendication 32, dont au moins une surface est revêtue uniquement avec ladite couche anti-corrosion, contenant de préférence un colorant et/ou un pigment, formant ainsi un revêtement monocouche sur ladite surface, de préférence le substrat est en un métal ou en un alliage métallique et ledit revêtement monocouche est un revêtement appelé « Direct to Métal» ou « DTM ».
34. Substrat selon la revendication 32 ou 33 qui est constitué par une partie ou l'ensemble d'un aéronef tel qu'un avion, un hydravion, un hélicoptère, ou un drone; d'un véhicule spatial; d'une fusée; d'un navire; d'un aéroglisseur ; d'une plateforme « offshore »; d'un véhicule automobile tel qu'une voiture, une motocyclette, ou un camion ; d'un gazoduc, d'un oléoduc, ou d'un aqueduc ; d'un véhicule ferroviaire tel qu'une locomotive ou un wagon ; d'une éolienne ; d'une hydrolienne.
35. Utilisation de la couche anti-corrosion selon la revendication 31, pour conférer des propriétés de résistance à la corrosion à une surface d'un substrat, en particulier à une surface en un matériau choisi parmi les métaux comme l'aluminium, les alliages de métaux comme les alliages d'aluminium, et les matériaux composites comprenant un métal ou un alliage de métal.
36. Utilisation selon la revendication 35, dans laquelle le substrat est en aluminium ou en un alliage d'aluminium, et la couche anti-corrosion confère à la surface une résistance à la corrosion dans le test de résistance à la corrosion au brouillard salin, conformément à la norme NF EN ISO 9227:2012, de plus de 1000 heures, de préférence de plus de 2000 heures, et de préférence encore de plus de 3000 heures pour une couche d'une épaisseur de 25 μιη à l'état sec.
37. Utilisation selon la revendication 36, dans laquelle ladite surface n'est revêtue que par ladite couche anti-corrosion.
PCT/EP2016/051350 2015-01-22 2016-01-22 Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition WO2016116605A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES16701594T ES2935065T3 (es) 2015-01-22 2016-01-22 Composición anticorrosión y procedimiento para preparar una capa anticorrosión sobre una superficie de un sustrato utilizando dicha composición
EP16701594.0A EP3247751B1 (fr) 2015-01-22 2016-01-22 Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550505 2015-01-22
FR1550505A FR3031981B1 (fr) 2015-01-22 2015-01-22 Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition

Publications (1)

Publication Number Publication Date
WO2016116605A1 true WO2016116605A1 (fr) 2016-07-28

Family

ID=52779894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/051350 WO2016116605A1 (fr) 2015-01-22 2016-01-22 Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition

Country Status (4)

Country Link
EP (1) EP3247751B1 (fr)
ES (1) ES2935065T3 (fr)
FR (1) FR3031981B1 (fr)
WO (1) WO2016116605A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575331A (zh) * 2020-12-24 2021-03-30 中国特种飞行器研究所 一种飞机用防霉缓蚀剂及其制备方法
CN114015048A (zh) * 2021-11-02 2022-02-08 国科广化精细化工孵化器(南雄)有限公司 一种可用于水性防腐涂层中的缓蚀剂及其制备方法和应用
CN117567892A (zh) * 2024-01-16 2024-02-20 东北大学 镁合金防腐涂料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638861C1 (ru) * 2017-02-20 2017-12-18 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Ингибирующий состав
CN116875127B (zh) * 2023-07-17 2024-05-31 优美特(北京)环境材料科技股份公司 一种耐腐蚀水性涂料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102034A1 (fr) * 2002-06-04 2003-12-11 Lumimove, Inc. D/B/A Crosslink Polymer Research Formulations de revetement anticorrosion pour la protection de surfaces metalliques
US20070102671A1 (en) * 2005-09-30 2007-05-10 Martin Kendig Corrosion inhibitors, methods of production and uses thereof
US20080216705A1 (en) * 2007-03-05 2008-09-11 Scott Hayes Corrosion resistant coatings with modified metal salts of corrosion resisting organic anions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021086A1 (de) * 1990-07-03 1992-01-09 Heubach Hans Dr Gmbh Co Kg Korrosionsschutzpigmente auf der basis von tertiaeren erdalkali-aluminium-phosphaten und verfahren zu ihrer herstellung
CN102753628A (zh) * 2009-11-11 2012-10-24 比克化学股份有限公司 涂料组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102034A1 (fr) * 2002-06-04 2003-12-11 Lumimove, Inc. D/B/A Crosslink Polymer Research Formulations de revetement anticorrosion pour la protection de surfaces metalliques
US20070102671A1 (en) * 2005-09-30 2007-05-10 Martin Kendig Corrosion inhibitors, methods of production and uses thereof
US20080216705A1 (en) * 2007-03-05 2008-09-11 Scott Hayes Corrosion resistant coatings with modified metal salts of corrosion resisting organic anions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SNIHIROVA DARYA ET AL: "SMART protective ability of water based epoxy coatings loaded with CaCO3microbeads impregnated with corrosion inhibitors applied on AA2024 substrates", ELECTROCHIMICA ACTA, vol. 83, 10 August 2012 (2012-08-10), pages 439 - 447, XP028945030, ISSN: 0013-4686, DOI: 10.1016/J.ELECTACTA.2012.07.102 *
ZENO W. WICKS, JR.,FRANK N. JONES,S. PETER: "Organic Coatings: Science and technology", 1 January 2007, ORGANIC COATINGS : SCIENCE AND TECHNOLOGY, WILEY-INTERSCIENCE, USA, PAGE(S) 320 - 322, ISBN: 0-471-69806-7, article CHAPTER 15.7: "Uralkyds and other autoxidazable urethanes", pages: 320 - 322, XP009187178 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575331A (zh) * 2020-12-24 2021-03-30 中国特种飞行器研究所 一种飞机用防霉缓蚀剂及其制备方法
CN114015048A (zh) * 2021-11-02 2022-02-08 国科广化精细化工孵化器(南雄)有限公司 一种可用于水性防腐涂层中的缓蚀剂及其制备方法和应用
CN114015048B (zh) * 2021-11-02 2023-10-27 国科广化精细化工孵化器(南雄)有限公司 一种可用于水性防腐涂层中的缓蚀剂及其制备方法和应用
CN117567892A (zh) * 2024-01-16 2024-02-20 东北大学 镁合金防腐涂料及其制备方法和应用

Also Published As

Publication number Publication date
ES2935065T3 (es) 2023-03-01
EP3247751A1 (fr) 2017-11-29
EP3247751B1 (fr) 2022-10-19
FR3031981A1 (fr) 2016-07-29
FR3031981B1 (fr) 2018-09-07

Similar Documents

Publication Publication Date Title
EP3247751B1 (fr) Composition anti-corrosion et procede pour preparer une couche anti-corrosion sur une surface d'un substrat utilisant ladite composition
JP4897129B2 (ja) 縮合硬化性シリコーン汚損除去コーティング並びに該コーティングで被覆された物品
FR2602239A1 (fr) Compositions de revetement contenant des pigments reactifs et possedant une excellente resistance a l'agression de l'environnement
EP1885911A2 (fr) Sol pour le revetement par voie sol-gel d'une surface et procede de revetement par voie sol-gel le mettant en uvre
HU221610B (hu) Korrózióvédő bevonókompozíció
KR102481351B1 (ko) 표면 재활성화 처리제
JP2014530954A (ja) 耐腐食性、耐チップ性、及び耐燃料油性組成物
JP7089938B2 (ja) 耐熱塗料組成物、耐熱塗膜、耐熱塗膜付き基材およびその製造方法
KR101275782B1 (ko) 무기 도료 조성물 및 이를 제조하는 방법
TW201841744A (zh) 具備銀鏡膜層之表面裝飾結構及其形成方法
JP5382611B2 (ja) 微粒子含有軟質塗膜及び積層塗膜
WO2000068330A1 (fr) Film organique-inorganique, composition liquide de depart afferente et son procede de preparation et ses applications et leur procede de preparation
US20230089804A1 (en) Organosiloxane-based surface treatments for enhancing the adhesion and lubricity of metal surfaces
WO2019162531A1 (fr) Composition de couche de finition pour revetement anticorrosion de piece metallique, procede humide-sur-humide (wet-on-wet) d'application d'une couche de finition, revetement anticorrosion de pieces metalliques et piece metallique revetue
JP4641563B1 (ja) 防汚塗料組成物及び防汚塗膜の形成方法
KR101611062B1 (ko) 고내식성 방식도료 조성물에 의한 판스프링의 도장방법
US10767076B2 (en) Water-reducible coating composition
WO2000068328A1 (fr) Revetement et adhesif
JP6178679B2 (ja) 積層塗膜付き鉄道車両外板
KR102626829B1 (ko) 내오염성 및 내구성을 제공하는 데크 목재용 수성 도료 및 이를 이용한 데크 목재의 도장 공법
CN102702951A (zh) 一种抗酸碱的水性涂料组合物
EP2214841A1 (fr) Agent pour le traitement de films de peinture de couche de finition pour conférer une résistance aux taches et procédé de traitement de films de peinture de couche de finition pour conférer une résistance aux taches
JP4942983B2 (ja) 塗料用組成物、塗料、塗料用キットおよび塗装物品
KR101659444B1 (ko) 프라이머층을 구비한 강판
FR3078967A1 (fr) Procede de revetement en materiau polymerique pour substrat en terre cuite

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016701594

Country of ref document: EP