WO2016115901A1 - 中间腔结构及双级增焓转子式压缩机 - Google Patents

中间腔结构及双级增焓转子式压缩机 Download PDF

Info

Publication number
WO2016115901A1
WO2016115901A1 PCT/CN2015/088184 CN2015088184W WO2016115901A1 WO 2016115901 A1 WO2016115901 A1 WO 2016115901A1 CN 2015088184 W CN2015088184 W CN 2015088184W WO 2016115901 A1 WO2016115901 A1 WO 2016115901A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate chamber
intermediate cavity
order
hole
stage
Prior art date
Application number
PCT/CN2015/088184
Other languages
English (en)
French (fr)
Inventor
卢林高
胡余生
魏会军
赵旭敏
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2016115901A1 publication Critical patent/WO2016115901A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to the field of compressors, and more particularly to an intermediate chamber structure and a two-stage enhanced rotor compressor having the intermediate chamber structure.
  • the working principle of the two-stage enhanced rotor compressor is as follows: the refrigerant enters the low-pressure cylinder for one-stage compression, and the discharged gas is mixed with the medium-pressure gas in the intermediate chamber, and then enters the high-pressure cylinder for secondary compression to complete the entire compression cycle. .
  • the suction saturation of the high pressure cylinder is reduced, thereby affecting the refrigeration function of the compressor and reducing the APF. (Annual Performance Factor, annual energy consumption rate) energy efficiency rating.
  • the invention provides an intermediate cavity structure, which can effectively improve the suction saturation of the high pressure cylinder and the APF energy efficiency rating of the compressor.
  • the present invention also provides a two-stage enhanced rotor compressor.
  • An intermediate chamber structure for a two-stage enhanced rotor compressor wherein the intermediate chamber structure is provided with a first assembly hole and an intermediate chamber, wherein the intermediate chamber is provided with a baffle, and the baffle plate
  • the intermediate cavity is divided into a first-order intermediate cavity and a second-order intermediate cavity, and the baffle is provided with a gas-filling through hole, and the gas-filling through hole is provided with a gas-filling component.
  • the volume of the first-order intermediate cavity is less than or equal to the volume of the second-order intermediate cavity.
  • the ratio of the volume of the first-order intermediate cavity to the volume of the second-order intermediate cavity is greater than or equal to 0.5 and less than or equal to 1.
  • the intermediate chamber structure is further provided with an air inlet hole, and the air inlet hole is provided with an air intake assembly.
  • the intermediate cavity structure is a partition or a flange.
  • a two-stage enhanced rotor compressor comprising a reinforced component, an exhaust pipe, a low pressure cylinder and a high pressure cylinder, further comprising the intermediate cavity structure;
  • a first-order intermediate cavity of the intermediate cavity structure is in communication with the augmentation assembly, and a second-order intermediate cavity of the intermediate cavity structure is in communication with the high-pressure cylinder and the low-pressure cylinder, respectively.
  • the high pressure cylinder is provided with an air inlet, a boring port and an exhaust port;
  • the suction port is in communication with the second-order intermediate cavity of the intermediate cavity structure; the garter opening is in communication with the entanglement assembly, and the first-order intermediate cavity of the intermediate cavity structure passes through the ridge opening and the The boosting assembly is in communication; the exhaust port is in communication with the exhaust pipe.
  • the two-stage enhanced rotor compressor further includes an upper partition disposed between the intermediate chamber structure and the high pressure cylinder, and the upper partition is opened There are a second assembly hole, a medium pressure flow channel and a supplemental air supply hole;
  • the suction port communicates with the second-order intermediate cavity of the intermediate cavity structure through the medium-pressure flow passage;
  • the supplemental air entrainment hole is in communication with the sputum opening, and the first-order intermediate cavity of the intermediate cavity structure is in communication with the entanglement component through the sputum opening and the plenum.
  • the cross-sectional area of the supplemental through-hole of the intermediate cavity structure is greater than the cross-sectional area of the supplemental air-enhancement aperture.
  • the ratio of the cross-sectional area of the supplemental through-hole of the intermediate cavity structure to the cross-sectional area of the supplemental air-enhancement aperture is greater than or equal to 1.2.
  • the intermediate cavity structure and the two-stage enthalpy rotor type compressor of the invention realize the automatic switching of the large effective working volume of the intermediate cavity under the open and reinforced conditions by setting the baffle in the intermediate cavity, and the completion of the closing
  • the automatic switching of the smaller effective working volume enables the optimal working volume of the intermediate cavity to be matched under different working conditions, thereby effectively improving the suction saturation of the high-pressure cylinder, thereby improving the two-stage enhanced rotor compressor.
  • APF energy efficiency value
  • Figure 1 is a plan view of an embodiment of an intermediate cavity structure of the present invention
  • FIG. 2 is a top plan view of an embodiment of a baffle in an intermediate cavity structure of the present invention
  • FIG 3 is a bottom view of the baffle shown in Figure 2;
  • Figure 4 is a cross-sectional view showing an embodiment of a two-stage enhanced rotor compressor of the present invention
  • Figure 5 is a plan view of the high pressure cylinder of the two-stage enhanced boring rotor compressor shown in Figure 4;
  • Fig. 6 is a plan view showing the upper partition of the two-stage boring rotor type compressor shown in Fig. 4.
  • the present invention provides an intermediate chamber structure 9 for a two-stage enhanced rotor compressor having a first mounting aperture 910 and an intermediate cavity 920.
  • the first fitting hole 910 is disposed in a central region of the intermediate cavity structure 9, and the intermediate cavity 920 is disposed on a circumferential side of the first fitting hole 910.
  • the first fitting hole 910 is used to assemble the intermediate cavity structure 9 into the two-stage booster-rotor compressor.
  • a baffle 930 is disposed in the intermediate cavity 920.
  • the baffle 930 divides the intermediate cavity 920 into a first-order intermediate cavity 922 and a second-order intermediate cavity 924.
  • the baffle 930 is provided with a gas-filling through-hole 932 and a gas-filling through-hole 932.
  • a gas supply component 934 is provided at the place. When the pressure in the first-order intermediate chamber 922 is greater than two When the pressure in the intermediate chamber 924 is normal, the gas supply assembly 934 is opened by the pressure difference.
  • the first-order intermediate chamber 922 and the second-order intermediate chamber 924 are communicated through the gas-filling through-hole 932, and the first-order intermediate chamber 922 is The gas is mixed with the gas in the second-order intermediate chamber 924; when the pressure in the first-order intermediate chamber 922 is less than the pressure in the second-order intermediate chamber 924, the gas-filling assembly 934 is closed under the action of the pressure difference, at this time, the first-order intermediate The cavity 922 and the second-order intermediate cavity 924 are not in communication with each other.
  • the intermediate chamber 920 is not a cavity located in the middle, but refers to a cavity for the transition from a low pressure gas to a high pressure gas and a gas mixed with the helium gas.
  • a supplemental air assembly 934 is disposed on a side of the baffle 930 that faces the second-order intermediate cavity 924.
  • the supplemental air assembly 934 can be opened such that the first-order intermediate chamber 922 and the second-order intermediate chamber 924 communicate through the supplemental gas passage 932.
  • the gas-incorporating assembly 934 is closed under the pressure difference. At this time, the first-order intermediate chamber 922 and the second-order intermediate chamber 924 are not in communication with each other.
  • the air supply module 934 has a sheet-like structure in which one end is fixed to the shutter 930.
  • the air supply assembly 934 is secured to the baffle 930 by a fastener, such as a screw, at one end.
  • the sheet structure can be deformed under the action of a pressure difference, so that the through hole 932 can be avoided.
  • the above structure is simple and easy to implement.
  • the intermediate chamber structure 9 of the present invention is installed between the high pressure cylinder 4 and the low pressure cylinder 5, and is fitted over the crankshaft 12 through the first fitting hole 910.
  • the diameter of the first fitting hole 910 matches the diameter of the crankshaft 12 in order to enhance the firmness of the mounting.
  • the first-order intermediate chamber 922 is in communication with the augmentation assembly 17; the second-order intermediate chamber 924 is in communication with the high pressure cylinder 4 and the low pressure cylinder 5, respectively.
  • the specific working process of the two-stage enhanced rotor compressor is as follows:
  • the first-order intermediate chamber 922 is filled with the medium-pressure gas supplemented by the enthalpy assembly 17, and the second-order intermediate chamber 924 is the medium-pressure gas discharged by the low-pressure cylinder 5 after being compressed.
  • the first order The pressure in the intermediate chamber 922 is greater than the pressure in the second-order intermediate chamber 924.
  • the air supply assembly 934 at the air supply through hole 932 is opened, and the first-order intermediate chamber 922 is opened.
  • the second intermediate cavity 924 is in communication, and the switching of the large effective working volume of the intermediate cavity 920 under the open and expanded conditions is realized.
  • the intermediate gas in the first-order intermediate chamber 922 is not filled, and the second-stage intermediate chamber 924 is the medium-pressure gas discharged after the low-pressure cylinder 5 is compressed.
  • the pressure in the first-order intermediate chamber 922 Less than the pressure in the second-order intermediate chamber 924, under the pressure difference, the gas-filling assembly 934 at the gas-filling through-hole 932 is closed, thereby realizing the switching of the smaller effective working volume of the intermediate chamber 920 under the condition of the increased temperature.
  • the volume of the first-order intermediate chamber 922 is V1
  • the volume of the second-order intermediate chamber 924 is V2.
  • V1 ⁇ V2.
  • the pressure in the first-order intermediate chamber 922 is required to be greater than the pressure in the second-order intermediate chamber 924, so that the gas supply assembly 934 on the baffle 930 can be opened when the refrigerant of the same quality enters one.
  • the pressure in the first-order intermediate cavity 922 is greater than the pressure in the second-order intermediate cavity 924, which facilitates the opening of the gas-filling component 934, making the first-order intermediate
  • the cavity 922 is in communication with the second-order intermediate cavity 924.
  • the ratio of the volume V1 of the first-order intermediate chamber 922 to the volume V2 of the second-order intermediate chamber 924 is greater than or equal to 0.5 and less than or equal to 1, that is, 0.5 ⁇ V1/V2 ⁇ 1.
  • This method not only facilitates the opening of the air supply assembly 934, but also enables the second-stage intermediate chamber 924 to sufficiently accommodate the medium-pressure gas supplemented by the augmentation assembly 17, thereby enhancing the working efficiency of the compressor.
  • the intermediate cavity structure 9 of the present invention is further provided with an air inlet hole 940, and the air inlet hole 940 is provided with an air intake component 950.
  • the second-order intermediate chamber 924 is in communication with the low pressure cylinder 5 through the intake aperture 940.
  • the intake assembly 950 is opened by the compressed refrigerant, and the compressed refrigerant enters the second-order intermediate chamber 924.
  • the intermediate chamber structure 9 is a partition, i.e., an intermediate chamber 920 is formed in the partition. Need It is noted that in other embodiments, the intermediate cavity structure 9 can also be a flange, that is, an intermediate cavity 920 can be formed on the upper flange or the lower flange.
  • the intermediate cavity structure 9 of the present invention is used in a two-stage enhanced rotor compressor, and the intermediate cavity 920 is partitioned by a baffle 930 into a first-order intermediate cavity 922 and a second-order intermediate cavity 924, wherein the first-order intermediate cavity 922 and two
  • the intermediate chambers 924 are connected under the condition of opening and expanding, and are isolated from each other under the condition of closing the enthalpy, thereby realizing the change of the effective working volume of the intermediate chamber 920, and improving the suction of the high-pressure cylinder 4 under the condition of increasing the temperature. Gas saturation, which in turn increases the APF energy efficiency of the compressor.
  • the invention also provides a two-stage enhanced rotor compressor, as shown in FIG. 4, the two-stage enhanced rotor compressor of the invention comprises a liquid separator 1, an upper silencer 2, an upper flange 3, a high voltage Cylinder 4, low pressure cylinder 5, lower flange 6, lower cover 7, lower roller 8, intermediate chamber structure 9, upper roller 11, crankshaft 12, motor 13, housing 14, upper cover 15, exhaust pipe 16 and Enhance component 17.
  • the dispenser 1 is fixed to the outside of the housing 14, and the low pressure cylinder 5 is fixed to the lower flange 6, while the upper end of the low pressure cylinder 5 is adjacent to the intermediate chamber structure.
  • the dispenser 1 is in communication with the suction chamber of the low pressure cylinder 5 through an intake pipe.
  • the augmentation assembly 17 is in communication with a first-order intermediate cavity 922 of the intermediate cavity structure 9.
  • the high pressure cylinder 4 is fixedly coupled to the upper flange 3 and the upper muffler 2 while the high pressure cylinder 4 is in communication with the second intermediate chamber 924 of the intermediate chamber structure 9.
  • the upper flange 3 is fixed within the housing 14.
  • the crankshaft 12 extends through components such as the lower flange 6, the low pressure cylinder 5, the lower roller 8, the intermediate chamber structure 9, the high pressure cylinder 4, the upper roller 11, the upper flange 3, and the upper muffler 2.
  • the low pressure cylinder 5 communicates with the second-order intermediate chamber 924 of the intermediate chamber structure 9.
  • the inlet chamber 940 is provided in the intermediate chamber structure 9, the low pressure cylinder 5 communicates with the second-order intermediate chamber 924 through the intake port 940.
  • the exhaust pipe 16 is welded to the upper cover 15, and the upper cover 15 and the lower cover 7 are welded to the casing 14.
  • the high pressure cylinder 4 includes an intake port 410, a venting port 420, and an exhaust port 430.
  • the suction port 410 is in communication with the second-order intermediate cavity 924 of the intermediate cavity structure 9.
  • the gargle 420 is in communication with the enthalpy assembly 17, and the first intermediate cavity 922 of the intermediate cavity structure 9 It is connected to the augmentation assembly 17 through the gargle 420.
  • the exhaust port 430 is in communication with the exhaust pipe 16.
  • the garter 420 is interference fit with the augmentation assembly 17 through a conduit.
  • the two-stage enhanced rotor compressor of the present invention further includes an upper partition 10 which is disposed between the intermediate chamber structure 9 and the high pressure cylinder 4 and is fitted through the second fitting hole 110.
  • the upper partition 10 is also provided with a medium pressure flow passage 120 and an air supply boring hole 130.
  • the intake port 410 communicates with the second-order intermediate cavity 924 of the intermediate cavity structure 9 through the intermediate pressure flow passage 120.
  • the supplemental air supply opening 130 is in communication with the sputum opening 420, and the first-order intermediate chamber 922 of the intermediate chamber structure 9 is in communication with the augmentation assembly 17 through the garter opening 420 and the qi-filling venting hole 130.
  • the enthalpy assembly 17 discharges the medium pressure gas into the first-order intermediate chamber 922 through the boring port 420 and the qi-enhanced boring hole 130, and the low-pressure cylinder 5 discharges the compressed medium-pressure gas into In the second-order intermediate cavity 924, at this time, the pressure in the first-order intermediate cavity 922 is greater than the pressure in the second-order intermediate cavity 924, and the gas-filling component 934 at the gas-filling through-hole 932 is opened, and the first-order intermediate cavity 922 and the second-order intermediate The chamber 924 is in communication, and the first-order intermediate chamber 922 is mixed with the medium-pressure gas in the second-order intermediate chamber 924, and the mixed medium-pressure gas enters the high-pressure cylinder 4 through the intermediate pressure passage 120.
  • the intermediate gas is not filled in the first-order intermediate chamber 922, and the low-pressure cylinder 5 discharges the compressed medium-pressure gas into the second-order intermediate chamber 924.
  • the gas-filling through-hole 932 is The gas supply assembly 934 is closed, and the medium pressure gas in the second stage intermediate chamber 924 enters the high pressure cylinder 4 through the intermediate pressure flow passage 120.
  • the cross-sectional area of the air entraining bore 130 is S1
  • the cross-sectional area of the supplemental through hole 932 is S2, preferably, S2 ⁇ S1. More preferably, S2/S1 ⁇ 1.2, the method is easy to implement, ensures the continuity of the compressor operation, and improves the working efficiency of the compressor.
  • the intermediate cavity structure 9 is provided with a plurality of screw holes 960
  • the upper partition plate 10 is provided with a plurality of screw holes 140.
  • the intermediate cavity The structure 9 and the upper partition 10 are fixedly connected by screws to other components of the two-stage enhanced rotor compressor. This approach increases the robustness of the assembly and thus increases the mechanical stability of the compressor.
  • the compressor Under the rotation of the motor 13, the compressor operates, the refrigerant is divided into two parts, one part enters the liquid separator 1 and the other part enters the augmentation assembly 17.
  • the refrigerant entering the liquid separator 1 flows into the low pressure cylinder 5 through the suction pipe for compression, the air intake assembly 950 on the intermediate chamber structure 9 is opened under the action of the pressure difference, and the medium pressure gas enters the second-order intermediate chamber 924;
  • the refrigerant of the enthalpy assembly 17 enters the first-order intermediate chamber 922 through the boring port 420 of the high-pressure cylinder 4 and the qi-enhancement boring hole 130.
  • the first-order intermediate chamber 922 is a qi-compensated medium-pressure gas, and the pressure thereof Greater than the pressure within the second-order intermediate cavity 924.
  • the air supply unit 934 is opened, and the first-order intermediate chamber 922 and the second-order intermediate chamber 924 are in communication.
  • the medium-pressure gas supplemented in the first-order intermediate chamber 922 is mixed with the medium-pressure gas in the second-order intermediate chamber 924 through the plenum through-hole 932.
  • the mixed medium-pressure gas is compressed into the high-pressure cylinder 4 through the intermediate-pressure flow passage 120 of the upper partition 10 to be compressed into a high-pressure gas, and then discharged through the upper flange 3 to a space composed of the casing 14, the upper cover 15, and the lower cover 7.
  • the compressor Under the rotation of the motor 13, the compressor operates, and the system refrigerant enters the low pressure cylinder 5 through the dispenser 1 for compression.
  • the air intake assembly 950 on the intermediate chamber structure 9 is opened by the pressure difference, and the medium pressure gas enters the second-order intermediate chamber 924.
  • the supplemental air assembly 934 is in a closed state, and the first-order intermediate chamber 922 and the second-order intermediate chamber 924 are spaced apart.
  • the medium-pressure gas in the second-stage intermediate chamber 924 enters the high-pressure cylinder 4 through the medium-pressure flow passage 120 of the upper partition plate 10 and is compressed into a high-pressure gas, and is discharged through the upper flange 3 through the casing 14, the upper cover 15, and the lower cover 7
  • the space formed by the components is finally discharged from the exhaust pipe 16 to the system (evaporator or condenser), that is, a two-stage completion is completed. Guan Zengqi compression.
  • the intermediate chamber structure 9 is a partition plate. It should be noted that in the two-stage reinforced rotor type compressor of other embodiments, the partition plate may not be included.
  • the intermediate chamber 920 is placed in the upper or lower flange, at which point the upper or lower flange acts as the intermediate chamber structure 9.
  • the two-stage enthalpy rotor type compressor of the invention realizes the automatic switching of the large effective working volume of the intermediate cavity 920 under the open-increased working condition by setting the intermediate cavity structure 9, and the intermediate cavity 920 under the condition of the closed-increased working condition.
  • the automatic switching of the smaller effective working volume enables the intermediate chamber 920 to match the optimal effective working volume under different working conditions, thereby effectively improving the suction saturation of the high pressure cylinder 4, thereby improving the two-stage enhanced rotor compressor. APF energy efficiency value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种中间腔结构,其中所述中间腔结构(9)上开设有第一装配孔(910)和中间腔(920),所述中间腔(920)内设置有挡板(930),所述挡板(930)将所述中间腔(920)分隔为一阶中间腔(922)和二阶中间腔(924),所述挡板(930)上开设有补气通孔(932),所述补气通孔(932)处设置有补气组件(934)。一种具有所述中间腔结构(9)的双级增焓转子式压缩机。该中间腔结构实现了在开增焓工况下较大有效作用容积的自动切换,和关增焓工况下较小有效作用容积的自动切换,使得中间腔在不同的工况下能够匹配最佳的有效作用容积,从而提升了高压气缸的吸气饱和度,进而提高了双级增焓转子式压缩机的APF能效值。

Description

中间腔结构及双级增焓转子式压缩机 技术领域
本发明涉及压缩机领域,特别是涉及一种中间腔结构以及一种具有该中间腔结构的双级增焓转子式压缩机。
背景技术
双级增焓转子式压缩机的工作原理为:冷媒进入低压气缸进行一级压缩,排出后的气体在中间腔中与中压补气混合,然后进入高压气缸进行二级压缩,完成整个压缩周期。目前的双级增焓转子式压缩机中,在关增焓的工况下,由于中间腔的容积过大,高压气缸的吸气饱和度降低,从而影响了压缩机的制冷功能,降低了APF(Annual Performance Factor,全年能源消耗率)能效等级。
发明内容
本发明提供了一种中间腔结构,能够有效提高高压气缸的吸气饱和度及压缩机的APF能效等级。同时,本发明还提供了一种双级增焓转子式压缩机。
为达到上述目的,本发明采用如下技术方案:
一种中间腔结构,用于双级增焓转子式压缩机,所述中间腔结构上开设有第一装配孔和中间腔,所述中间腔内设置有挡板,所述挡板将所述中间腔分隔为一阶中间腔和二阶中间腔,所述挡板上开设有补气通孔,所述补气通孔处设置有补气组件。
在其中一个实施例中,所述一阶中间腔的容积小于等于所述二阶中间腔的容积。
在其中一个实施例中,所述一阶中间腔的容积与所述二阶中间腔的容积之比大于等于0.5并小于等于1。
在其中一个实施例中,所述中间腔结构上还开设有进气孔,所述进气孔上设置有进气组件。
在其中一个实施例中,所述中间腔结构为隔板或法兰。
一种双级增焓转子式压缩机,包括增焓组件、排气管、低压气缸和高压气缸,还包括所述的中间腔结构;
所述中间腔结构的一阶中间腔与所述增焓组件连通,所述中间腔结构的二阶中间腔分别与所述高压气缸和所述低压气缸连通。
在其中一个实施例中,所述高压气缸上开设有吸气口、增焓口和排气口;
所述吸气口与所述中间腔结构的二阶中间腔连通;所述增焓口与所述增焓组件连通,所述中间腔结构的一阶中间腔通过所述增焓口与所述增焓组件连通;所述排气口与所述排气管连通。
在其中一个实施例中,所述双级增焓转子式压缩机还包括上隔板,所述上隔板设置在所述中间腔结构和所述高压气缸之间,所述上隔板上开设有第二装配孔,中压流道和补气增焓孔;
所述吸气口通过所述中压流道与所述中间腔结构的二阶中间腔连通;
所述补气增焓孔与所述增焓口连通,所述中间腔结构的一阶中间腔通过所述增焓口和所述补气增焓孔与所述增焓组件连通。
在其中一个实施例中,所述中间腔结构的补气通孔的横截面积大于所述补气增焓孔的横截面积。
在其中一个实施例中,所述中间腔结构的补气通孔的横截面积与所述补气增焓孔的横截面积之比大于等于1.2。
本发明的有益效果如下:
本发明的中间腔结构及双级增焓转子式压缩机,通过在中间腔内设置挡板,实现了中间腔在开增焓工况下较大有效作用容积的自动切换,以及关增焓工况下较小有效作用容积的自动切换,使得不同工况下能够匹配最佳的中间腔有效作用容积,从而有效提升了高压气缸的吸气饱和度,进而提高了双级增焓转子式压缩机的APF能效值。
附图说明
图1为本发明的中间腔结构一实施例的俯视图;
图2为本发明的中间腔结构中挡板一实施例的俯视图;
图3为图2所示挡板的仰视图;
图4为本发明的双级增焓转子式压缩机一实施例的剖视图;
图5为图4所示的双级增焓转子式压缩机中高压气缸的俯视图;
图6为图4所示的双级增焓转子式压缩机中上隔板的俯视图。
具体实施方式
下面将结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参见图1至图3,本发明提供了一种用于双级增焓转子式压缩机的中间腔结构9,该中间腔结构9上开设有第一装配孔910和中间腔920。较佳地,作为一种可实施方式,第一装配孔910设置在中间腔结构9的中央区域,中间腔920设置在第一装配孔910的周侧。
其中,第一装配孔910用于将该中间腔结构9装配到双级增焓转子式压缩机中。中间腔920内设置有挡板930,挡板930将中间腔920分隔为一阶中间腔922和二阶中间腔924;同时,挡板930上开设有补气通孔932,补气通孔932处设置有补气组件934。当一阶中间腔922中的压力大于二 阶中间腔924中的压力时,补气组件934在压力差的作用下打开,此时,一阶中间腔922和二阶中间腔924通过补气通孔932连通,一阶中间腔922中的气体和二阶中间腔924中的气体混合;当一阶中间腔922中的压力小于二阶中间腔924中的压力时,补气组件934在压力差的作用下关闭,此时,一阶中间腔922和二阶中间腔924互不连通。
需要说明的是,本发明中,中间腔920并非是位于中间的腔体,而是指用于低压气体到高压气体的过渡以及与增焓气体混合的腔体。
如图1和图3所示,补气组件934设置在挡板930的朝向所述二阶中间腔924的一侧。当一阶中间腔922中的压力大于二阶中间腔924中的压力时,补气组件934能够打开,使得一阶中间腔922和二阶中间腔924通过补气通孔932连通。当一阶中间腔922中的压力小于二阶中间腔924中的压力时,补气组件934在压力差的作用下关闭,此时,一阶中间腔922和二阶中间腔924互不连通。
如图1和图3所示,补气组件934为一端固定在所述挡板930上的片状结构。优选地,补气组件934为一端通过紧固件,比如螺钉固定在挡板930上。片状结构能够在压力差的作用下产生变形,这样能够避让补气通孔932。上述结构简单,容易实现。
下面结合双级增焓转子式压缩机来说明本发明的中间腔结构9的使用原理。如图4所示,本发明的中间腔结构9安装在高压气缸4和低压气缸5之间,并通过第一装配孔910套装在曲轴12上。较佳地,为了增强安装的牢固性,第一装配孔910的直径与曲轴12的直径相匹配。装配完毕后,一阶中间腔922与增焓组件17相连通;二阶中间腔924分别与高压气缸4和低压气缸5连通。该双级增焓转子式压缩机的具体工作过程如下:
在开增焓的工况下,一阶中间腔922内为增焓组件17补入的中压气体,二阶中间腔924内为低压气缸5压缩后排出的中压气体。此时,一阶 中间腔922内的压力大于二阶中间腔924内的压力,在该压力差和高压气缸4吸气产生的动力作用下,补气通孔932处的补气组件934打开,一阶中间腔922与二阶中间腔924连通,实现了开增焓工况下中间腔920的较大有效作用容积的切换。在关增焓的工况下,一阶中间腔922内无补入中压气体,二阶中间腔924内为低压气缸5压缩后排出的中压气体,此时,一阶中间腔922内的压力小于二阶中间腔924内的压力,在压差作用下,补气通孔932处的补气组件934关闭,实现了关增焓工况下中间腔920的较小有效作用容积的切换。
假设一阶中间腔922的容积为V1,二阶中间腔924的容积为V2。较优地,作为一种可实施方式,V1≤V2。在开增焓的工况下,需要一阶中间腔922中的压力大于二阶中间腔924中的压力,才能使挡板930上的补气组件934打开,当同等质量的制冷剂分别进入一阶中间腔922和二阶中间腔924时,由于V1≤V2,因此,一阶中间腔922中的压力大于二阶中间腔924中的压力,有利于补气组件934的打开,使一阶中间腔922和二阶中间腔924连通。
更优地,一阶中间腔922的容积V1与二阶中间腔924的容积V2之比大于等于0.5并小于等于1,即0.5≤V1/V2≤1。该方式既有利于补气组件934的打开,同时又能使二阶中间腔924中充分容纳增焓组件17补入的中压气体,增强了压缩机的工作效率。
较佳地,作为一种可实施方式,本发明的中间腔结构9上还开设有进气孔940,进气孔940上设置有进气组件950。在该实施方式中,二阶中间腔924通过进气孔940与低压气缸5连通。当低压气缸5中的压缩的制冷剂被压缩至一定压力时,进气组件950在压缩后的制冷剂的作用下打开,压缩后的制冷剂进入二阶中间腔924中。
在图1中,中间腔结构9为隔板,即在隔板上开设中间腔920。需要 说明的是,在其他实施例中,中间腔结构9也可为法兰,即可在上法兰或下法兰上开设中间腔920。
本发明中的中间腔结构9用于双级增焓转子式压缩机,通过挡板930将中间腔920分隔为一阶中间腔922和二阶中间腔924,其中,一阶中间腔922和二阶中间腔924在开增焓的状况下连通,在关增焓的状况下相互隔离,从而实现了中间腔920的有效作用容积的改变,提高了高压气缸4在关增焓工况下的吸气饱和度,进而提高了压缩机的APF能效值。
本发明还提供了一种双级增焓转子式压缩机,如图4所示,本发明的双级增焓转子式压缩机包括分液器1、上消音器2、上法兰3、高压气缸4、低压气缸5、下法兰6、下盖7、下滚子8、中间腔结构9、上滚子11、曲轴12、电机13、壳体14、上盖15、排气管16和增焓组件17。
其中,分液器1固定在壳体14的外侧,低压气缸5与下法兰6固定,同时低压气缸5的上端与中间腔结构邻接。分液器1通过吸气管与低压气缸5的吸气腔连通。增焓组件17与中间腔结构9的一阶中间腔922连通。高压气缸4与上法兰3和上消音器2固定连接,同时高压气缸4与中间腔结构9的二阶中间腔924连通。上法兰3固定在壳体14内。曲轴12贯穿下法兰6、低压气缸5、下滚子8、中间腔结构9、高压气缸4、上滚子11、上法兰3和上消音器2等组件。同时,低压气缸5与中间腔结构9的二阶中间腔924连通,当中间腔结构9中设置有进气孔940时,低压气缸5通过进气孔940与二阶中间腔924连通。排气管16焊接在上盖15上,上盖15与下盖7焊接在壳体14上。
参见图5,作为一种可实施方式,高压气缸4包括吸气口410、增焓口420和排气口430。其中,吸气口410与中间腔结构9的二阶中间腔924连通。增焓口420与增焓组件17连通,中间腔结构9的一阶中间腔922 通过增焓口420与增焓组件17连通。排气口430与排气管16连通。较佳地,增焓口420通过管道与增焓组件17过盈配合。
如图6所示,本发明的双级增焓转子式压缩机还包括上隔板10,上隔板10设置在中间腔结构9和高压气缸4之间,并通过第二装配孔110套装在曲轴12上。上隔板10上还开设有中压流道120和补气增焓孔130。其中,吸气口410通过中压流道120与中间腔结构9的二阶中间腔924连通。补气增焓孔130与增焓口420连通,中间腔结构9的一阶中间腔922通过增焓口420和补气增焓孔130与增焓组件17连通。在开增焓的工况下,增焓组件17通过增焓口420和补气增焓孔130将中压气体排入一阶中间腔922中,低压气缸5将压缩后的中压气体排入二阶中间腔924中,此时,一阶中间腔922内的压力大于二阶中间腔924内的压力,补气通孔932处的补气组件934打开,一阶中间腔922与二阶中间腔924连通,一阶中间腔922与二阶中间腔924中的中压气体混合,混合后的中压气体通过中压流道120进入到高压气缸4中。在关增焓的工况下,一阶中间腔922内无补入中压气体,低压气缸5将压缩后的中压气体排入二阶中间腔924中,此时,补气通孔932处的补气组件934关闭,二阶中间腔924中的中压气体通过中压流道120进入到高压气缸4中。
假设补气增焓孔130的横截面积为S1,补气通孔932的横截面积为S2,较佳地,S2≥S1。更佳地,S2/S1≥1.2,该方式容易实现,保证了压缩机工作的连续性,提高了压缩机的工作效率。
较佳地,参见图1和图6,作为一种可实施方式,中间腔结构9上设置有多个螺钉孔960,上隔板10上设置有多个螺钉孔140,在装配时,中间腔结构9和上隔板10通过螺钉与双级增焓转子式压缩机的其他组件固定连接。该方式增加了组件的安装牢固性,进而提高了压缩机的机械稳固性。
以下结合图1至图6,来说明本发明的双级增焓转子式压缩机的工作原理:
(1)开增焓的工况:
在电机13的转动下,压缩机运转,制冷剂分为两部分,一部分进入分液器1,另一部分进入增焓组件17。进入分液器1的制冷剂通过吸气管流入低压气缸5中进行压缩,中间腔结构9上的进气组件950在压差的作用下打开,中压气体进入二阶中间腔924内;进入增焓组件17的制冷剂通过高压气缸4的增焓口420和补气增焓孔130进入到一阶中间腔922中,此时,一阶中间腔922内为补气中压气体,其压力大于二阶中间腔924内的压力。在一阶中间腔922和二阶中间腔924的压差以及高压气缸4的吸气产生的动力下,补气组件934打开,一阶中间腔922和二阶中间腔924连通。一阶中间腔922中补入的中压气体通过补气通孔932与二阶中间腔924中的中压气体混合。混合后的中压气体经上隔板10的中压流道120进入高压气缸4压缩为高压气体,再经上法兰3排出由壳体14、上盖15和下盖7组件构成的空间,最终从排气管16排到系统(蒸发器或冷凝器),即完成一次双级增焓压缩。
(2)关增焓的工况:
在电机13的转动下,压缩机运转,系统制冷剂通过分液器1进入到低压气缸5中进行压缩。中间腔结构9上的进气组件950在压差的作用下打开,中压气体进入二阶中间腔924内,此时一阶中间腔922内无补气,一阶中间腔922内的压力低于二阶中间腔924内的压力,因此,补气组件934处于关闭状态,一阶中间腔922和二阶中间腔924被隔开。二阶中间腔924内的中压气体通过上隔板10的中压流道120进入高压气缸4内压缩为高压气体,再经上法兰3排出由壳体14、上盖15和下盖7组件构成的空间,最终从排气管16排到系统(蒸发器或冷凝器),即完成一次双级 关增焓压缩。
在上述实施例的双级增焓转子式压缩机中,采用的中间腔结构9为隔板,需要说明的是,在其他实施例的双级增焓转子式压缩机中,可以不包含隔板,而将中间腔920设置在上法兰或下法兰中,此时,上法兰或下法兰便充当了中间腔结构9。
本发明的双级增焓转子式压缩机,通过设置中间腔结构9,实现了开增焓工况下中间腔920的较大有效作用容积的自动切换,以及关增焓工况下中间腔920的较小有效作用容积的自动切换,使得不同工况下中间腔920能够匹配最佳的有效作用容积,可有效提升高压气缸4的吸气饱和度,进而提高双级增焓转子式压缩机的APF能效值。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种中间腔结构(9),用于双级增焓转子式压缩机,其特征在于,
    所述中间腔结构(9)上开设有第一装配孔(910)和中间腔(920),所述中间腔(920)内设置有挡板(930),所述挡板(930)将所述中间腔(920)分隔为一阶中间腔(922)和二阶中间腔(924),所述挡板(930)上开设有补气通孔(932),所述补气通孔(932)处设置有补气组件(934)。
  2. 根据权利要求1所述的中间腔结构(9),其特征在于,所述一阶中间腔(922)的容积小于等于所述二阶中间腔(924)的容积。
  3. 根据权利要求1所述的中间腔结构(9),其特征在于,所述一阶中间腔(922)的容积与所述二阶中间腔(924)的容积之比大于等于0.5并小于等于1。
  4. 根据权利要求1所述的中间腔结构(9),其特征在于,所述中间腔结构(9)上还开设有进气孔(940),所述进气孔(940)上设置有进气组件(950)。
  5. 根据权利要求1至4中任一项所述的中间腔结构(9),其特征在于,所述中间腔结构(9)为隔板或法兰。
  6. 根据权利要求1所述的中间腔结构(9),其特征在于,当所述一阶中间腔(922)中的压力大于所述二阶中间腔(924)中的压力时,所述补气组件(934)在压力差的作用下打开,所述一阶中间腔(922)和二阶中间腔(924)通过所述补气通孔(932)连通;当所述一阶中间腔(922)中的压力小于所述二阶中间腔(924)中的压力时,所述补气组件(934)在压力差的作用下关闭,所述一阶中间腔(922)和所述二阶中间腔(924)互不连通。
  7. 根据权利要求1所述的中间腔结构(9),其特征在于,所述补气组件(934)设置在所述挡板(930)的朝向所述二阶中间腔(924)的一侧。
  8. 根据权利要求7所述的中间腔结构(9),其特征在于,所述补气组件(934)为一端固定在所述挡板(930)上的片状结构。
  9. 一种双级增焓转子式压缩机,包括增焓组件(17)、排气管(16)、低压气缸(5)和高压气缸(4),其特征在于,还包括权利要求1至8中任一项所述的中间腔结构(9);
    所述中间腔结构(9)的一阶中间腔(922)与所述增焓组件(17)连通,所述中间腔结构(9)的二阶中间腔(924)分别与所述高压气缸(4)和所述低压气缸(5)连通。
  10. 根据权利要求9所述的双级增焓转子式压缩机,其特征在于,所述高压气缸(4)上开设有吸气口(410)、增焓口(420)和排气口(430);
    所述吸气口(410)与所述中间腔结构(9)的二阶中间腔(924)连通;所述增焓口(420)与所述增焓组件(17)连通,所述中间腔结构(9)的一阶中间腔(922)通过所述增焓口(420)与所述增焓组件(17)连通;所述排气口(430)与所述排气管(16)连通。
  11. 根据权利要求10所述的双级增焓转子式压缩机,其特征在于,所述双级增焓转子式压缩机还包括上隔板(10),所述上隔板(10)设置在所述中间腔结构(9)和所述高压气缸(4)之间,所述上隔板(10)上开设有第二装配孔(110),中压流道(120)和补气增焓孔(130);
    所述吸气口(410)通过所述中压流道(120)与所述中间腔结构(9)的二阶中间腔(924)连通;
    所述补气增焓孔(130)与所述增焓口(420)连通,所述中间腔结构(9)的一阶中间腔(922)通过所述增焓口(420)和所述补气增焓孔(130)与所述增焓组件(17)连通。
  12. 根据权利要求11所述的双级增焓转子式压缩机,其特征在于,所述中间腔结构(9)的补气通孔(932)的横截面积大于所述补气增焓孔 (130)的横截面积。
  13. 根据权利要求11所述的双级增焓转子式压缩机,其特征在于,所述中间腔结构(9)的补气通孔(932)的横截面积与所述补气增焓孔(130)的横截面积之比大于等于1.2。
PCT/CN2015/088184 2015-01-23 2015-08-26 中间腔结构及双级增焓转子式压缩机 WO2016115901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510036296.7 2015-01-23
CN201510036296.7A CN105864038A (zh) 2015-01-23 2015-01-23 中间腔结构及双级增焓转子式压缩机

Publications (1)

Publication Number Publication Date
WO2016115901A1 true WO2016115901A1 (zh) 2016-07-28

Family

ID=56416378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088184 WO2016115901A1 (zh) 2015-01-23 2015-08-26 中间腔结构及双级增焓转子式压缩机

Country Status (2)

Country Link
CN (1) CN105864038A (zh)
WO (1) WO2016115901A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985005A (zh) * 2016-10-26 2018-05-04 珠海格力节能环保制冷技术研究中心有限公司 一种汽车及其空调系统
CN109098972A (zh) * 2018-11-07 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 转子压缩机及空调器
US20210102714A1 (en) * 2018-06-22 2021-04-08 Gree Electric Appliances, Inc. Of Zhuhai Compressor and air conditioner system
CN115111164A (zh) * 2021-03-23 2022-09-27 广东普盛新能源科技有限公司 一种一体式增焓盖

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438362B (zh) * 2016-10-17 2019-01-04 珠海格力节能环保制冷技术研究中心有限公司 车用旋转式压缩机及具有该压缩机的车用空调系统
CN110056507B (zh) * 2019-05-28 2023-08-01 西安交通大学 一种带顶部中间腔的多级旋转压缩机及工作方法
CN110043466B (zh) * 2019-05-28 2023-07-18 西安交通大学 一种带底部中间腔的多级旋转压缩机及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398321B2 (ja) * 2004-08-02 2010-01-13 東芝キヤリア株式会社 冷凍サイクル装置
CN202187917U (zh) * 2011-08-31 2012-04-11 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机
CN202301035U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 中间隔板排气的双级压缩机
CN103939348A (zh) * 2014-04-15 2014-07-23 珠海格力节能环保制冷技术研究中心有限公司 增焓压缩机及其下法兰组件
CN203962404U (zh) * 2014-05-27 2014-11-26 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机及空调器
CN204476762U (zh) * 2015-01-23 2015-07-15 珠海格力节能环保制冷技术研究中心有限公司 中间腔结构及双级增焓转子式压缩机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087892A (ja) * 1998-09-08 2000-03-28 Daikin Ind Ltd 2段圧縮機及び空気調和装置
CN201436389U (zh) * 2009-05-27 2010-04-07 珠海格力电器股份有限公司 双转子两级增焓压缩机
CN102374167B (zh) * 2010-08-26 2015-07-22 珠海格力节能环保制冷技术研究中心有限公司 旋转式双转子压缩机
CN202082104U (zh) * 2011-05-11 2011-12-21 珠海格力节能环保制冷技术研究中心有限公司 一种双转子两级增焓压缩机
CN202301036U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 旋转式双级增焓压缩机
CN105443385B (zh) * 2014-05-27 2017-04-12 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398321B2 (ja) * 2004-08-02 2010-01-13 東芝キヤリア株式会社 冷凍サイクル装置
CN202187917U (zh) * 2011-08-31 2012-04-11 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机
CN202301035U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 中间隔板排气的双级压缩机
CN103939348A (zh) * 2014-04-15 2014-07-23 珠海格力节能环保制冷技术研究中心有限公司 增焓压缩机及其下法兰组件
CN203962404U (zh) * 2014-05-27 2014-11-26 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机及空调器
CN204476762U (zh) * 2015-01-23 2015-07-15 珠海格力节能环保制冷技术研究中心有限公司 中间腔结构及双级增焓转子式压缩机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107985005A (zh) * 2016-10-26 2018-05-04 珠海格力节能环保制冷技术研究中心有限公司 一种汽车及其空调系统
CN107985005B (zh) * 2016-10-26 2024-02-09 珠海格力节能环保制冷技术研究中心有限公司 一种汽车及其空调系统
US20210102714A1 (en) * 2018-06-22 2021-04-08 Gree Electric Appliances, Inc. Of Zhuhai Compressor and air conditioner system
US11713888B2 (en) * 2018-06-22 2023-08-01 Gree Electric Appliances, Inc. Of Zhuhai Compressor and air conditioner system
CN109098972A (zh) * 2018-11-07 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 转子压缩机及空调器
CN115111164A (zh) * 2021-03-23 2022-09-27 广东普盛新能源科技有限公司 一种一体式增焓盖

Also Published As

Publication number Publication date
CN105864038A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2016115901A1 (zh) 中间腔结构及双级增焓转子式压缩机
AU2012376626B2 (en) Compressor, air conditioner system comprising the compressor and heat pump water heater system
CN203272136U (zh) 单缸多级压缩机
CN202883380U (zh) 中间隔板吸气的双缸压缩机
WO2017219669A1 (zh) 泵体组件及具有其的压缩机
WO2009062366A1 (fr) Dispositif de soupape d'évacuation d'un compresseur rotatif
CN103423164B (zh) 双级变容量压缩机及其控制方法
CN104632626B (zh) 双级增焓转子式压缩机及空调器
US20210041151A1 (en) Air-conditioning system and air conditioner having same
CN203248363U (zh) 双模压缩泵体及使用该压缩泵体的双缸压缩机
CN107061291B (zh) 一种卧式转子压缩机
CN111852858A (zh) 一种内容积比调节机构及内容积比可调的螺杆压缩机
CN204025052U (zh) 双级增焓转子式压缩机及空调器
CN110410294A (zh) 气缸座组件、泵体组件和冰箱
CN201772685U (zh) 两级转子式压缩机及带变容量除霜的热泵循环系统
CN103807175A (zh) 双转子两级增焓压缩机、空调器和热泵热水器
CN202900660U (zh) 双转子两级增焓压缩机、空调器和热泵热水器
CN105443385A (zh) 双级增焓压缩机及空调器
CN106352608B (zh) 经济器组件及具有其的制冷系统
CN104251206A (zh) 一种旋转式双级压缩机
WO2019047764A1 (zh) 排气组件及压缩机
CN111075721B (zh) 泵体组件及变容压缩机
CN204476762U (zh) 中间腔结构及双级增焓转子式压缩机
CN206738166U (zh) 一种卧式转子压缩机
CN107131112A (zh) 高压压缩机以及具备该高压压缩机的制冷循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878570

Country of ref document: EP

Kind code of ref document: A1