WO2016114435A1 - 소형 자석 보일러{small size magnet boiler} - Google Patents

소형 자석 보일러{small size magnet boiler} Download PDF

Info

Publication number
WO2016114435A1
WO2016114435A1 PCT/KR2015/000546 KR2015000546W WO2016114435A1 WO 2016114435 A1 WO2016114435 A1 WO 2016114435A1 KR 2015000546 W KR2015000546 W KR 2015000546W WO 2016114435 A1 WO2016114435 A1 WO 2016114435A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
magnet
stator coil
motor stator
Prior art date
Application number
PCT/KR2015/000546
Other languages
English (en)
French (fr)
Inventor
서인혁
Original Assignee
서인혁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서인혁 filed Critical 서인혁
Publication of WO2016114435A1 publication Critical patent/WO2016114435A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet

Definitions

  • the present invention relates to a boiler using a magnet, and more particularly to a boiler using a magnet to generate heat by using the magnetic force of the magnet, and to heat the fluid using the generated heat.
  • Fluid heating by combustion has long been known. Fluid heating by combustion essentially produces flame and heats the fluid in close proximity. Specifically, air is introduced into the gas furnace, and the flame is directly supplied to the fluid.
  • This conventional method of heating a fluid is inherently dangerous because it uses a flame to heat the fluid.
  • Combustibles should be kept at a distance from the flames to prevent the spread of the flames, flame heaters should be made of water combustibles, and facilities should be installed in the vicinity of the flames to prevent any flammable substances from entering.
  • the fuel as a flame source must be supplied stably, and for this purpose, a fuel line, a tank, or a similar structure for supplying fuel is required, and the fuel line and the tank have a fire or explosion risk.
  • the flame requires a stable supply of oxygen.
  • Oxygen is supplied through a blower that provides a flow of air to the flame. In some cases, however, it is difficult to reliably supply air when heating the fluid.
  • the flame produces a variety of combustion products.
  • soot is generated and such systems require regular cleaning.
  • flames are notorious for producing potentially toxic gases such as carbon monoxide. Care must be taken in the design of flame-based heating systems to avoid the generation of such gases or to vent them away from humans and animals.
  • the problem to be solved by the present invention is to propose a boiler using a magnet.
  • Another object of the present invention is to propose a boiler using a magnet having high thermal efficiency.
  • Another problem to be solved by the present invention is to propose a boiler using a magnet that reduces installation costs, maintenance costs are reduced.
  • Another problem to be solved by the present invention is to propose a boiler using a magnet that can be used semi-permanently.
  • the problem to be solved by the present invention is to propose a boiler using a magnet that is easy to manufacture in various sizes.
  • the problem to be solved by the present invention is to propose a boiler using a magnet that can produce a coefficient of performance (COP) thermal efficiency of more than 300% in any environment.
  • COP coefficient of performance
  • the boiler using the magnet of the present invention has a bar-shaped shaft having a predetermined length and a circular columnar shape, and is fixedly coupled to the shaft while the shaft penetrates the inside and rotates integrally with the shaft.
  • a rotating body having a first magnet attached to an inner side of the circular column, positioned outside of the rotating body, having an empty cylindrical shape, having an inlet through which a fluid flows in and an outlet through which the fluid flows out;
  • a first motor that rotates a heating element, a motor part outer rotor fixedly coupled to the rotating body, a second magnet attached to the motor part outer rotor, and the motor part outer rotor to which the second magnet is attached by the provided electric power.
  • a stator coil having a predetermined length and a circular columnar shape, and is fixedly coupled to the shaft while the shaft penetrates the inside and rotates integrally with the shaft.
  • Boiler using a magnet according to the present invention is reduced installation cost, maintenance cost is reduced, easy to manufacture in a variety of sizes from small to large capacity, in particular can be used semi-permanently.
  • the unstable water molecular structure is rearranged into a hexagon by a magnetic field and converted into a magnetized hexagonal water, no rust or debris is generated inside the hot water pipe, and general water is a bioactive functional water due to the magnetic field. It is converted into, and in sterilizing action, it can maintain the cleanliness and extend the life of not only boilers but also piping facilities.
  • the water converted to magnetized hexagonal water is reduced calorie loss is reduced energy to save 15 to 20% slower than ordinary hot water.
  • the boiler of the present invention has the advantage that the thermal efficiency can be generated more than 300% compared to other boilers.
  • FIG. 1 illustrates a structure of a boiler using a magnet according to an embodiment of the present invention.
  • FIG. 2 is a view showing a cross-section of the rotor and the heating element in the boiler using a magnet according to an embodiment of the present invention.
  • FIG 3 illustrates a rotating unit motor including a neodymium magnet and a motor stator coil formed in a motor unit outer rotor according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an internal arrangement state of a power generation unit motor (or a power unit motor) according to an embodiment of the present invention.
  • FIG. 5 illustrates a motor housing according to an embodiment of the present invention.
  • FIG. 1 illustrates a structure of a boiler using a magnet according to an embodiment of the present invention.
  • the structure of a boiler using a magnet according to an embodiment of the present invention will be described in detail with reference to FIG. 1.
  • a boiler using a magnet includes a shaft, a bracket, a bearing, a frame, a heating element, a heating element cover, a heating element bracket, a heat conductive insulation, a motor out rotor, a motor housing, a neodymium magnet, and a motor stator coil. And a power generator motor, a power motor, a power generator motor-power motor fixed sprocket, a rotor, a rotor fixed sprocket, and a rotor cover.
  • a power generator motor a power motor, a power generator motor-power motor fixed sprocket, a rotor, a rotor fixed sprocket, and a rotor cover.
  • the shaft 102 is formed in a bar type, particularly preferably in a circular columnar shape.
  • the shaft 102 is rotated by the rotation of the motor unit outer rotor 126.
  • the shaft 102 rotates the power generator motor (the housing in which the neodymium magnets constituting the power generator motor are built in) and rotates by the rotation of the power generator motor (the housing in which the neodymium magnets constituting the power generator motor is embedded). do.
  • the rotating body 104 is formed in a cylindrical shape and is fixedly fastened to the shaft 102. That is, the rotor 104 rotates in the same manner by the rotation of the shaft 102.
  • the rotating body fixing sprocket 106 fastens the shaft 102 and the rotating body 104. That is, the rotating body 104 fixedly fastened to the shaft 102 by the rotating body fixing sprocket 106 rotates in the same manner by the rotation of the shaft 102.
  • the rotor cover 108 blocks foreign substances or other substances from entering into the front or rear of the rotor 104 having a through shape. That is, the rotor cover 108 serves to protect the first neodymium magnet 110 formed in the rotor 104 from the outside.
  • the rotor cover 108 is made of a metal material, and preferably made of aluminum (Al).
  • the first neodymium magnet 110 is disposed in the rotor 104 at regular intervals. An arrangement structure of the first neodymium magnet 110 disposed inside the rotor 104 will be described later.
  • a heating element 112 to which the fluid moves.
  • the rotating body 104 is formed in a circular columnar shape, and thus the heating element 112 is also formed in a circular columnar shape having a hole therein.
  • the heating element 112 is formed in a double structure having an outer wall (outer shell) and an inner wall (inner shell) to have a structure in which fluid can move.
  • An inlet 112-1 through which fluid flows is formed at a lower end of the heat generator 112, and an outlet 112-2 through which fluid flows out is formed at an upper end of the heat generator. That is, the fluid flows into the inlet 112-1 formed in the heating element 112, is heated inside the heating element 112, and then flows out of the outlet 112-2.
  • the heating element 112 is preferably made of copper to increase the thermal conductivity efficiency.
  • the outlet 112-2 is formed at a position relatively higher than the inlet 112-1.
  • the heating element 112 may be manufactured in various structures. That is, the heating element cover 114 may be formed at the front and rear ends of the heating element 112, and the inside of the heating element 112 may be managed using the heating element cover 114.
  • the heating element cover 114 is also preferably made of copper in the same way as the heating element 112.
  • Frame 116 is fixed to the bottom, and supports the boiler using a magnet proposed in the present invention.
  • the bracket 118 is composed of at least two, one at the front of the frame 116, one at the rear of the frame 116.
  • At least two brackets 118 serve to support the shaft 102. That is, one side of the bracket 118 is fixed to the frame 116, the other side of the bracket 118 is fastened to the shaft 102. Of course, the bracket 118 forms a bearing therein to support the rotating shaft 102 in a fixed state. In detail, a bearing is formed between the bracket 118 and the shaft 102, whereby the shaft 102 rotates freely while being inserted into a through hole formed in the bracket 118.
  • Heating element bracket 120 is also composed of at least two, one heating element bracket 120 is formed in the front of the heating element 112, the other heating element bracket 120 is formed in the rear end of the heating element (112). Since the heating element 112 does not rotate unlike the rotating body 104, the heating element bracket 120 is fixedly fastened to the heating element 112. Of course, the heating element bracket 120 is fixedly fastened to the heating element 112 and also fixedly fastened to the frame 116.
  • the material of the heating element bracket 120 is preferably made of acetal (acetal).
  • FIG. 2 is a view showing a cross-section of the rotor and the heating element in the boiler using a magnet according to an embodiment of the present invention.
  • a cross-sectional view of the rotating body and the heating element according to an embodiment of the present invention will be described in detail with reference to FIG. 2.
  • the cross section of the rotor and the heating element shows a frame, a heater bracket, and a shaft for convenience of description in addition to the rotor and the heating element.
  • a plurality of first neodymium magnets 110 are disposed in the rotating body 104 having a circular shape at regular intervals.
  • the first neodymium magnet 110 is located on the outer wall of the double-rotating rotor 104, and in particular, the same polarity is not arranged to face a specific direction, but instead alternately faces the N and S poles in a specific direction. To place. That is, the first neodymium magnet 110 is disposed on the rotating body such that the N pole and the S pole are in close contact with the inside (or outside) of the outer wall of the rotating body 104.
  • an eddy current is generated in the rotating body 104 which rotates by alternately arranging polarities of the plurality of first neodymium magnets 1110, and the fluid inside the heating element 112 is heated by the generated eddy current.
  • a heat generating element 112 On the outside of the rotating body 104 formed of a circular shape is a heat generating element 112 having an empty through-hole.
  • the shape of the heat generating element 112 is also configured as a hollow inside, and maintains a state spaced apart from the rotating rotor 104.
  • An inlet through which fluid is introduced is formed at the lower end of the heating element 112, and an outlet through which the heated fluid is discharged is formed at the upper end of the heating element 112.
  • the inlet is formed at one end, and the outlet is formed at the upper end to increase the time that the inflowed fluid penetrates the heating element 112.
  • FIG. 2 illustrates a heating element bracket 120 for fixing the heating element 112 to the frame.
  • the motor housing 122 is fixed to the frame and functions to protect the power generator motor and the power motor from the outside.
  • the motor housing 122 has a shaft 102 penetrated at the center thereof, and a bearing is formed between the motor housing 122 and the shaft 102 to rotate the shaft 102 while the motor housing 122 is fixed. .
  • the motor housing 122 is composed of a first member 122-1 through which a shaft penetrates in the center, and a second member 122-2 extending in both directions in the vertical direction from the end of the first member 122-1. .
  • the first motor stator coil 124 is fixedly fastened to the first member 122-1 of the motor housing 122. That is, the plurality of first motor stator coils 124 is positioned at a distance from the center of the first member 122-1 through which the shaft 102 penetrates in the center of the first member 122 of the motor housing 122. Fixed to -1).
  • the rotating unit motor 128 includes a first motor stator coil 128-1 and a second neodymium magnet 128-2.
  • the first motor stator coil 128-1 is powered from the outside.
  • the first motor stator coil 128-1 is fastened to the motor housing 122 by using a fastening member.
  • the first motor stator coil 128-1 rotates the motor unit rotor 126 using electric power supplied from the outside in a state fixed to the motor housing 122.
  • the second neodymium magnet 128-2 is disposed at one side of the motor outer rotor 126, and the other side is fixedly fastened to the rotor 104. That is, the rotating body 104 which is fixedly fastened by the rotating motor part outer rotor 126 rotates.
  • the motor unit rotor 126 may include a second member extending vertically from one end of the first member 126-1 and the first member 126-1 through which the shaft 102 penetrates in the center thereof. It consists of the member 126-2.
  • a second neodymium magnet 128-1 is disposed in the second member 126-2 of the motor unit rotor 126.
  • the motor unit outer rotor 126 on which the second neodymium magnet 128-1 is disposed rotates by the first motor stator coil 128-1 fixedly fastened to the motor housing 122.
  • a heat conduction prevention heat insulator 130 having a heat resistant silicon material is disposed between the motor unit rotor 16 and the rotor 104. That is, the heat conduction prevention heat insulator 130 prevents heat generated from the rotor 104 from being transferred to the motor unit outer rotor 126.
  • FIG. 3 illustrates a rotating unit motor including a second neodymium magnet and a first motor stator coil formed in a motor unit outer rotor according to an embodiment of the present invention.
  • the arrangement structure of the second neodymium magnet and the first motor stator coil formed in the motor unit outer rotor according to an embodiment of the present invention will be described in detail with reference to FIG. 3.
  • the shaft 102 is located inside and the first motor stator coil 128-1 is located outside the shaft 102.
  • the second neodymium magnet 128-2 is disposed outside the first motor stator coil 128-1 at regular intervals.
  • the second neodymium magnet 128-2 is not disposed so that the same polarity faces a specific direction, but alternately faces the N pole and the S pole in a specific direction. That is, the second neodymium magnet 128-2 is disposed in the motor unit outer rotor 126 such that the N pole and the S pole alternately contact each other.
  • the motor unit outer rotor 126 is configured to include a first motor stator coil ( Rotation by the induced power generated in 128-1).
  • the rear end of the motor housing 122, the generator motor 132 and the power unit motor 136 is located.
  • the generator motor 132 includes a second motor stator coil 132-1 and a third neodymium magnet 132-2, and the power unit motor 136 is connected to the third motor stator coil 136-1. And a fourth neodymium magnet 136-2.
  • the generator motor 132 and the power motor 136 are fixedly fastened by the generator motor-power motor fixed sprocket 140.
  • the power generation unit motor-power unit motor fixed sprocket 140 fastens the housing in which the third neodymium magnet 132-2 is embedded and the housing in which the fourth neodymium magnet 136-2 is embedded.
  • the housing in which the third neodymium magnet 132-2 is embedded is fixedly fastened to the shaft 102, and the housing in which the fourth neodium magnet 136-6 is embedded is also fixedly fastened to the shaft 102.
  • the second motor stator coil 132-1 is fixedly fastened to the motor housing 122 at a point where the housing in which the third neodymium magnet 132-2 is embedded is spaced a predetermined distance in a radial direction from the rotation axis of the housing. Is formed.
  • the third motor stator coil 136-1 is fixedly fastened to the motor housing 122 at a point where the housing in which the fourth neodymium magnet 136-2 is embedded is spaced a predetermined distance in a radial direction from the rotation axis of the housing. It is formed.
  • FIG. 4 illustrates an arrangement state of a neodymium magnet and a motor stator coil constituting a power generation unit motor (or a power unit motor) according to an embodiment of the present invention.
  • the arrangement state of the neodymium magnet and the motor stator coil constituting the power generation unit motor (or the power unit motor) according to an embodiment of the present invention will be described with reference to FIG. 4.
  • the shaft 102 is located inside, and the neodymium magnets are arranged at a predetermined interval outside the shaft 102.
  • the neodymium magnets 132-2 or 136-2 are not arranged so that the same polarity faces a specific direction, but are arranged so as to alternately face the N pole and the S pole in a specific direction. That is, the present invention arranges the neodymium magnets 132-2 or 136-2 so that the N pole and the S pole are alternately in close contact with the housing 102 fixedly fastened to the shaft 102 from the outside of the shaft 102.
  • a motor stator coil 132-1 or 136-1 is disposed inside the motor housing 122.
  • the housing having the neodymium magnets 132-2 or 136-2 is disposed on the shaft 102, and the motor stator coils 132-1 or 136-1 are rotated by the motor housing 122. Power is generated in the motor stator coils 132-1 of the power generation unit motor 132 by the shaft 102, and the generated power is provided to the motor stator coils 136-1 of the power unit motor 136.
  • the housing in which the neodymium magnet 136-2 of the power unit motor 136 is embedded rotates by being supplied with electric power induced by the motor stator coil 132-1 of the power generation unit motor 132.
  • the shaft 102 fixedly fastened to the housing in which the neodymium magnet 132-2 is embedded also rotates.
  • the present invention rotates the shaft 102 by using a plurality of motor stator coils and neodymium magnets, and the rotor 104 is rotated by the rotation of the shaft 102.
  • the material of the second motor stator in which the second motor stator coil 132-1 is wound and the third motor stator in which the third motor stator coil 136-1 is wound may be made of plastic to offset the electromotive force load.
  • the number of turns of the coil wound on the second motor stator coil 132-1 is twice as many as the number of turns of the coil wound on the third motor stator coil 136-1, and the coil thickness is 1/2.
  • the number of poles is also twice as high.
  • the thickness of the third motor stator coil 136-1 is twice as thick as the thickness of the second motor stator coil 132-1 and the number of turns is formed at 1/2 level, which is the thickness of the coil and the number of turns.
  • the inverse relationship between the rotational speed and the rotational speed is applied, and thus, the driving unit motor 136 generates a faster rotational force than the motor unit rotor 126 and the generator unit 132, thereby adding rotational force to the motor unit rotor 126. Efficiency is maximized.
  • FIG. 5 illustrates a motor housing according to an embodiment of the present invention.
  • the structure of the motor housing according to an embodiment of the present invention will be described in detail with reference to FIG. 5.
  • the motor housing 122 has a hollow circular column shape and is fixedly fastened to the frame 116.
  • the shaft 102 penetrates inside the motor housing 122, and motor stator coils 132-1 or 136-1 are disposed at regular intervals inside the motor housing 122.
  • the neodymium magnets 132-2 or 136-2 are disposed at positions corresponding to the positions of the motor stator coils 132-1 or 136-1 formed inside the motor housing 122 on the outer side of the shaft 102.
  • the present invention relates to a boiler using a magnet. More particularly, the present invention is applied to a boiler using a magnet that generates heat by using magnetic force of a magnet and heats a fluid by using the generated heat.

Abstract

본 발명은 자석을 이용한 보일러에 관한 것으로, 더욱 상세하게는 자석을 이용하여 열을 생성하고, 생성한 열을 이용하여 유체를 가열하는 자석을 이용한 보일러에 관한 것이다. 이를 위해 본 발명의 자석을 이용한 보일러는 일정 길이를 갖는 바 타입의 형상을 갖는 샤프트, 원 기둥 형상을 가지며, 상기 샤프트가 내부를 관통한 상태에서 상기 샤프트와 고정 체결되어 상기 샤프트와 일체로 회전하며, 상기 원 기둥의 형상의 내측에 제1 자석이 부착되는 회전체, 상기 회전체의 외측에 위치하며, 내부가 빈 원기둥 형상을 가지며, 유체가 유입되는 유입구와 유입된 유체가 유출하는 유출구를 갖는 발열체, 상기 회전체와 고정 체결되는 모터부 아웃로터, 상기 모터부 아웃로터에 부착되는 제2 자석, 제공받은 전력에 의해 상기 제2 자석이 부착되어 있는 상기 모터부 아웃로터를 회전시키는 제1 모터 고정자 코일을 포함한다.

Description

[규칙 제26조에 의한 보정 31.03.2015] 소형 자석 보일러
본 발명은 자석을 이용한 보일러에 관한 것으로, 더욱 상세하게는 자석의 자력 이용하여 열을 생성하고, 생성한 열을 이용하여 유체를 가열하는 자석을 이용한 보일러에 관한 것이다.
유체를 가열하는 방법은 다양하게 개시되어 있다. 유체를 가열하기 위한 종래의 방법은 연소 또는 저항 가열을 이용한다. 그러나 이들 방법에 의한 유체 가열은 만족스럽지 않다.
연소에 의한 유체 가열은 오래전부터 공지되어 왔다. 연소에 의한 유체 가열은 본질적으로 화염이 생산되고, 유체를 가까이 위치시켜 가열한다. 이에 대해 구체적으로 살펴보면, 가스 노내에 공기가 유입되며, 화염이 유체에 직접 공급된다.
이와 종래 유체를 가열하는 방법은 화염을 이용하여 유체를 가열하므로 본질적으로 위험에 노출되어 있다. 가연성 물질은 화염이 확산되는 것을 방지하기 위해 화염으로부터 일정 거리 떨어져 있어야 하며, 화염가열장치는 물가연성 물질로 제조되어야 하며, 화염 부근에는 어떠한 가연성 물질이라도 침입할 수 없도록 방지하는 시설이 설치되어야 한다.
또한, 화염 공급원인 연료는 안정적으로 공급되어야 하며, 이를 위해 연료를 공급하는 연료라인, 탱크 또는 유사한 구조체를 필요로 하며, 연료라인과 탱크는 화재나 폭발 위험이 내재하고 있다.
부가하여 화염은 안정적인 산소의 공급을 요구한다. 산소는 화염에 공기의 흐름을 제공하는 블로어(blower)를 통해 공급된다. 그러나 어떤 경우에는 유체를 가열할 때 공기를 신뢰성 있게 공급하는 것이 어렵다.
더욱이, 화염은 다양한 연소 생성물을 생산한다. 종래의 화염-기반 가열 시스템에서는 매연이 발생하고 이러한 시스템은 정기적인 세척을 요구한다. 특히, 화염은 일산화탄소와 같은 잠재적 유독성 가스 생산으로 악명이 높다. 화염-기반 가열 시스템의 설계에 있어서 이러한 가스의 생성을 피하거나 또는 사람과 동물로부터 떨어져 배출시키기 위한 주의가 필요하다.
본 발명이 해결하려는 과제는 자석을 이용한 보일러를 제안함에 있다.
본 발명이 해결하려는 다른 과제는 열효율이 높은 자석을 이용한 보일러를 제안함에 있다.
본 발명이 해결하려는 또 다른 과제는 설치비용이 절감되며, 유지비용이 절감되는 자석을 이용한 보일러를 제안함에 있다.
본 발명이 해결하려는 또 다른 과제는 반영구적으로 사용이 가능한 자석을 이용한 보일러를 제안함에 있다.
본 발명이 해결하려는 과제는 다양한 크기로 제작이 용이한 자석을 이용한 보일러를 제안함에 있다.
본 발명이 해결하려는 과제는 어떠한 환경에서도 성능계수(COP) 열효율을 300% 이상 낼 수 있는 자석을 이용한 보일러를 제안함에 있다.
이를 위해 본 발명의 자석을 이용한 보일러는 일정 길이를 갖는 바 타입의 형상을 갖는 샤프트, 원 기둥 형상을 가지며, 상기 샤프트가 내부를 관통한 상태에서 상기 샤프트와 고정 체결되어 상기 샤프트와 일체로 회전하며, 상기 원 기둥의 형상의 내측에 제1 자석이 부착되는 회전체, 상기 회전체의 외측에 위치하며, 내부가 빈 원기둥 형상을 가지며, 유체가 유입되는 유입구와 유입된 유체가 유출하는 유출구를 갖는 발열체, 상기 회전체와 고정 체결되는 모터부 아웃로터, 상기 모터부 아웃로터에 부착되는 제2 자석, 제공받은 전력에 의해 상기 제2 자석이 부착되어 있는 상기 모터부 아웃로터를 회전시키는 제1 모터 고정자 코일을 포함한다.
본 발명에 따른 자석을 이용한 보일러는 설치비용이 절감되며, 유지비용이 절감되며, 소용량부터 대용량까지 다양한 크기로 제작이 용이하고, 특히 반영구적으로 사용이 가능하다. 또한, 본 발명에 따른 자석을 이용한 보일러는 불안정한 물 분자 구조가 자기장에 의해 육각형으로 재배열되어 자화육각수로 변환 되므로 온수관 내부에 녹이나 찌꺼기가 생기지 않으며, 자기장으로 인해 일반적인 물이 생체활성 기능수로 변환되며, 살균 작용을 함에 있어 보일러뿐만 아니라 배관 시설물까지 청결을 유지, 수명을 연장 시킬 수 있다.
또한, 자화육각수로 변환된 물은 열량 손실이 줄어들어 일반 온수에 비해 15 내지 20% 정도 식는 속도가 느려 에너지가 절약된다. 부가하여 본 발명의 보일러는 기존 다른 보일러에 비해 열효율이 300% 이상 발생 시킬 수 있다는 장점이 있다.
도 1은 본 발명의 일실시 예에 따른 자석을 이용한 보일러의 구조를 도시하고 있다.
도 2는 본 발명의 일실시 예에 따른 자석을 이용한 보일러 중에서 회전체와 발열체의 단면을 도시한 도면이다.
도 3은 본 발명의 일실시 예에 따른 모터부 아웃로터에 형성된 네오디움 자석과 모터 고정자 코일로 구성되는 회전부 모터를 도시하고 있다.
도 4는 본 발명의 일실시 예에 따른 발전부 모터(또는 동력부 모터)의 내부 배치 상태를 도시하고 있다.
도 5는 본 발명의 일실시 예에 따른 모터 하우징을 도시하고 있다.
전술한, 그리고 추가적인 본 발명의 양상들은 첨부된 도면을 참조하여 설명되는 바람직한 실시 예들을 통하여 더욱 명백해질 것이다. 이하에서는 본 발명의 이러한 실시 예를 통해 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 설명하기로 한다.
도 1은 본 발명의 일실시 예에 따른 자석을 이용한 보일러의 구조를 도시하고 있다. 이하 도 1을 이용하여 본 발명의 일실시 예에 따른 자석을 이용한 보일러의 구조에 대해 상세하게 알아보기로 한다.
도 1에 의하면, 자석을 이용한 보일러는 샤프트, 브라켓, 베어링, 프레임, 발열체, 발열체 커버, 발열체 브라켓, 열전도방지 단열제, 모터부 아웃로터(out rotor), 모터 하우징, 네오디움 자석, 모터 고정자 코일, 발전부 모터, 동력부 모터, 발전부 모터-동력부 모터 고정 스프로킷, 회전체, 회전체 고정 스프로킷, 회전체 커버를 포함한다. 물론 상술한 구성 이외에 다른 구성이 본 발명에서 제안하는 자석을 이용한 보일러에 포함될 수 있다.
이하에서는 먼저 유체를 가열하는 부분인 샤프트, 회전체 및 발열체를 중심으로 알아보기로 하며, 이후 샤프트를 회전시키는 모터부 아웃로터, 발전부 모터, 동력부 모터, 모터 하우징에 대해 알아보기로 한다.
샤프트(102)는 바 타입으로 형성되며, 특히 원 기둥 형상으로 형성되는 것이 바람직하다. 샤프트(102)는 모터부 아웃로터(126)의 회전에 의해 회전한다. 샤프트(102)는 발전부 모터(발전부 모터를 구성하는 네오디움 자석이 내장된 하우징)를 회전시키며, 동력부 모터(동력부 모터를 구성하는 네오디움 자석이 내장된 하우징)의 회전에 의해 회전한다.
회전체(104)는 원통 형상으로 형성되며, 샤프트(102)에 고정 체결된다. 즉, 회전체(104)는 샤프트(102)의 회전에 의해 동일하게 회전한다.
회전체 고정 스프로킷(106)은 샤프트(102)와 회전체(104)를 고정 체결한다. 즉, 회전체 고정 스프로킷(106)에 의해 샤프트(102)에 고정 체결된 회전체(104)는 샤프트(102)의 회전에 의해 동일하게 회전한다.
회전체 커버(108)는 통공 형상을 갖는 회전체(104)의 전면 또는 후면 내부로 이물질이나 다른 물질이 유입되지 않도록 차단한다. 즉, 회전체 커버(108)는 회전체(104) 내부에 형성되어 있는 제1 네오디움 자석(110)을 외부로부터 보호하는 기능을 수행한다. 회전체 커버(108)는 금속 재질로 구성되며, 바람직하게는 알루미늄(Al) 재질로 제조되는 것이 바람직하다.
회전체(104) 내부는 일정 간격으로 제1 네오디움 자석(110)이 배치된다. 회전체(104) 내부에 배치되는 제1 네오디움 자석(110)의 배치 구조에 대해서는 후술하기로 한다.
회전체(104) 외부는 유체가 이동하는 발열체(112)가 위치한다. 상술한 바와 같이 회전체(104)는 원 기둥 형상으로 형성되며, 이에 따라 발열체(112) 역시 내부가 통공을 갖는 원 기둥 형상으로 형성된다.
발열체(112)는 외벽(외피)과 내벽(내피)를 갖는 이중 구조로 형성되어 내부에 유체가 이동할 수 있는 구조를 갖는다. 발열체(112)의 하단에는 유체가 유입되는 유입구(112-1)가 형성되며, 발열체의 상단에는 유체가 유출되는 유출구(112-2)가 형성된다. 즉, 유체는 발열체(112)에 형성된 유입구(112-1)로 유입되어 발열체(112) 내부에서 가열된 후 유출구(112-2)로 유출된다. 발열체(112)는 열전도 효율을 높이기 위해 구리로 제조되는 것이 바람직하다. 부연하여 설명하면, 유출구(112-2)는 유입구(112-1)에 비해 상대적으로 높은 위치에 형성된다.
발열체(112)는 다양한 구조로 제조될 수 있다. 즉, 발열체(112)의 전단부와 후단부에 발열체 커버(114)를 형성할 수 있으며, 발열체 커버(114)를 이용하여 발열체(112) 내부를 관리할 수 있다. 발열체 커버(114) 역시 발열체(112)와 동일하게 구리로 제조되는 것이 바람직하다.
프레임(116)은 바닥에 고정되며, 본 발명에서 제안하는 자석을 이용한 보일러를 지지한다.
브라켓(118)은 적어도 두 개로 구성되며, 프레임(116)의 전단에 하나, 프레임(116)의 후단에 하나 구성된다.
적어도 두 개로 구성되는 브라켓(118)은 샤프트(102)를 지지하는 기능을 수행한다. 즉, 브라켓(118)의 일측은 프레임(116)에 고정되며, 브라켓(118)의 타측은 샤프트(102)에 체결된다. 물론 브라켓(118)은 고정된 상태에서 회전하는 샤프트(102)를 지지하기 위해 내부에 베어링을 형성한다. 부연하여 설명하면, 브라켓(118)과 샤프트(102) 사이에 베어링을 형성하며, 이로 인해 샤프트(102)는 브라켓(118)에 형성된 통공에 인입된 상태에서 자유롭게 회전한다.
발열체 브라켓(120) 역시 적어도 두 개로 구성되며, 하나의 발열체 브라켓(120)은 발열체(112)의 전단에 형성되며, 다른 하나의 발열체 브라켓(120)은 발열체(112)의 후단에 형성된다. 발열체(112)는 회전체(104)와 달리 회전하지 않으므로 발열체 브라켓(120)은 발열체(112)에 고정 체결된다. 물론 발열체 브라켓(120)은 발열체(112)에 고정 체결되는 동시에 프레임(116)에도 고정 체결된다. 발열체 브라켓(120)의 재질은 아세탈(acetal)로 제조되는 것이 바람직하다.
도 2는 본 발명의 일실시 예에 따른 자석을 이용한 보일러 중에서 회전체와 발열체의 단면을 도시한 도면이다. 이하 도 2를 이용하여 본 발명의 일실시 예에 따른 회전체와 발열체의 단면에 대해 상세하게 알아보기로 한다.
도 2에 의하면, 회전체와 발열체의 단면은 회전체와 발열체 이외에 설명의 편의를 위해 프레임, 발열체 브라켓, 샤프트를 도시하고 있다.
프레임, 샤프트 및 발열체 브라켓의 기능은 상술한 바와 같다. 이하에서 회전체와 발열체의 중심으로 설명하기로 한다.
원형으로 구성된 회전체(104) 내부는 일정 간격으로 다수의 제1 네오디움 자석(110)이 배치된다. 제1 네오디움 자석(110)은 이중 구조로 된 회전체(104)의 외벽에 위치하며, 특히 동일한 극성이 특정 방향을 향하도록 배치되는 것이 아니라 특정 방향으로 N극과 S극을 교대로 향하도록 배치한다. 즉, 회전체(104)의 외벽의 내측(또는 외측)에 N극과 S극이 교대로 밀착되도록 제1 네오디움 자석(110)을 회전체에 배치한다. 이와 같이 다수의 제1 네오디움 자석(1110)의 극성을 교대로 배치하여 회전하는 회전체(104)에서는 와전류가 생성되고, 생성된 와전류에 의해 발열체(112) 내부의 유체는 가열된다.
원형으로 구성된 회전체(104)의 외부에는 내부가 빈 통공을 갖는 발열체(112)가 위치한다. 발열체(112)의 형상 역시 내부가 빈 원형으로 구성되며, 회전하는 회전체(104)와 일정 거리 이격된 상태를 유지한다.
발열체(112)의 하단에는 유체가 유입되는 유입구가 형성되며, 발열체(112)의 상단에 가열된 유체가 유출되는 유출구가 형성된다. 이와 같이 유입구를 한단에 형성하고, 유출구를 상단에 형성하여 유입된 유체가 발열체(112)를 관통하는 시간을 증가되도록 한다.
이외에도 도 2는 발열체(112)를 프레임에 고정하는 발열체 브라켓(120)을 도시하고 있다.
이하에서는 다시 도 1을 이용하여 샤프트를 회전시키는 모터부 아웃로터, 발전부 모터, 동력부 모터, 모터 하우징에 대해 알아보기로 한다.
모터 하우징(122)은 프레임에 고정되며, 발전부 모터와 동력부 모터를 외부로부터 보호하는 기능을 수행한다. 모터 하우징(122)은 중앙에 샤프트(102)가 관통되며, 모터 하우징(122)이 고정된 상태에서 샤프트(102)가 회전하기 위해 모터 하우징(122)과 샤프트(102) 사이에는 베어링이 형성된다.
모터 하우징(122)은 중앙에 샤프트가 관통되는 제1 부재(122-1)와 제1 부재(122-1)의 종단으로부터 수직방향으로 양측으로 연장된 제2 부재(122-2)로 구성된다.
모터 하우징(122)의 제1 부재(122-1)에는 제1 모터 고정자 코일(124)이 고정 체결된다. 즉, 중앙에 샤프트(102)가 관통되는 제1 부재(122-1)의 중앙으로부터 일정 거리 이격된 지점에 다수의 제1 모터 고정자 코일(124)이 모터 하우징(122)의 제1 부재(122-1)에 고정 체결된다.
회전부 모터(128)는 제1 모터 고정자 코일(128-1)과 제2 네오디움 자석(128-2)을 포함한다.
제1 모터 고정자 코일(128-1)은 외부로부터 전력을 공급받는다. 제1 모터 고정자 코일(128-1)은 체결 부재를 이용하여 모터 하우징(122)에 체결된다. 제1 모터 고정자 코일(128-1)은 모터 하우징(122)에 고정된 상태에서 외부로부터 공급받은 전력을 이용하여 모터부 아웃로터(126)를 회전시킨다.
모터부 아웃로터(126)의 일측은 제2 네오디움 자석(128-2)이 배치되어 있으며, 타측은 회전체(104)와 고정 체결된다. 즉, 회전하는 모터부 아웃로터(126)에 의해 고정 체결되어 있는 회전체(104)는 회전한다.
구체적으로 살펴보면, 모터부 아웃로터(126)는 중앙에 샤프트(102)가 관통되는 제1 부재(126-1)와 제1 부재(126-1)의 종단으로부터 수직방향으로 일측으로 연장된 제2 부재(126-2)로 구성된다. 모터부 아웃로터(126)의 제2 부재(126-2)에서는 제2 네오디움 자석(128-1)이 배치된다. 제2 네오디움 자석(128-1)이 배치된 모터부 아웃로터(126)는 모터 하우징(122)에 고정 체결되어 있는 제1 모터 고정자 코일(128-1)에 의해 회전한다.
모터부 아웃로터(16)와 회전체(104) 사이에는 내열 실리콘 재질을 갖는 열전도 방지 단열체(130)가 배치된다. 즉, 열전도 방지 단열체(130)는 회전체(104)에서 발생한 열이 모터부 아웃로터(126)로 전달되는 것을 차단한다.
도 3은 본 발명의 일실시 예에 따른 모터부 아웃로터에 형성된 제2 네오디움 자석과 제1 모터 고정자 코일로 구성되는 회전부 모터를 도시하고 있다. 이하 도 3을 이용하여 본 발명의 일실시 예에 따른 모터부 아웃로터에 형성된 제2 네오디움 자석과 제1 모터 고정자 코일의 배치 구조에 대해 상세하게 알아보기로 한다.
도 3에 의하면, 내측에 샤프트(102)가 위치하며, 샤프트(102)를 중심으로 외부에 제1 모터 고정자 코일(128-1)이 위치한다. 제1 모터 고정자 코일(128-1)의 외부에는 제2 네오디움 자석(128-2)이 일정 간격으로 배치된다. 제2 네오디움 자석(128-2)은 동일한 극성이 특정 방향을 향하도록 배치되는 것이 아니라 특정 방향으로 N극과 S극을 교대로 향하도록 배치한다. 즉, 모터부 아웃로터(126)의 내측에 N극과 S극이 교대로 밀착되도록 제2 네오디움 자석(128-2)을 배치한다. 이와 같이 모터부 아웃로터(126)의 내측에 N극과 S극이 교대로 밀착되도록 제2 네오디움 자석(128-2)을 배치함으로써, 모터부 아웃로터(126)는 제1 모터 고정자 코일(128-1)에 발생된 유도 전력에 의해 회전하게 된다.
모터 하우징(122)의 후단에는 발전부 모터(132)와 동력부 모터(136)가 위치한다.
발전부 모터(132)는 제2 모터 고정자 코일(132-1)과 제3 네오디움 자석(132-2)을 포함하며, 동력부 모터(136)는 제3 모터 고정자 코일(136-1)과 제4 네오디움 자석(136-2)을 포함한다. 발전부 모터(132)와 동력부 모터(136)는 발전부 모터-동력부 모터 고정 스프로켓(140)으로 고정 체결된다. 특히 발전부 모터-동력부 모터 고정 스프로켓(140)은 제3 네오디움 자석(132-2)이 내장된 하우징과 제4 네오디움 자석(136-2)이 내장된 하우징을 고정 체결한다.
제3 네오디움 자석(132-2)이 내장된 하우징은 샤프트(102)와 고정 체결되며, 제4 네오디움 자석(136-6)이 내장된 하우징 역시 샤프트(102)와 고정 체결된다.
제3 네오디움 자석(132-2)이 내장된 하우징이 회전하는 회전축을 중심으로 지름 방향으로 일정 거리 이격된 지점에 제2 모터 고정자 코일(132-1)이 모터 하우징(122)에 고정 체결되어 형성된다. 또한 제4 네오디움 자석(136-2)이 내장된 하우징이 회전하는 회전축을 중심으로 지름 방향으로 일정 거리 이격된 지점에 제3 모터 고정자 코일(136-1)이 모터 하우징(122)에 고정 체결되어 형성된다.
도 4는 본 발명의 일실시 예에 따른 발전부 모터(또는 동력부 모터)를 구성하는 네오디움 자석과 모터 고정자 코일의 배치 상태를 도시하고 있다. 이하 도 4를 이용하여 본 발명의 일실시 예에 따른 발전부 모터(또는 동력부 모터)를 구성하는 네오디움 자석과 모터 고정자 코일의 배치 상태에 대해 알아보기로 한다.
도 4에 의하면, 내측에 샤프트(102)가 위치하며, 샤프트(102)의 외부에는 네오디움 자석이 일정 간격으로 배치된다. 네오디움 자석(132-2 또는 136-2)은 동일한 극성이 특정 방향을 향하도록 배치되는 것이 아니라 특정 방향으로 N극과 S극을 교대로 향하도록 배치한다. 즉, 본 발명은 샤프트(102)의 외측에서 샤프트(102)와 고정 체결된 하우징에 N극과 S극이 교대로 밀착되도록 네오디움 자석(132-2 또는 136-2)을 배치한다. 또한, 모터 하우징(122) 내측에는 모터 고정자 코일(132-1 또는 136-1)을 배치한다.
이와 같이 샤프트(102)에 네오디움 자석(132-2 또는 136-2)이 내장된 하우징을 배치하고, 모터 하우징(122)에 모터 고정자 코일(132-1 또는 136-1)을 배치함으로써 회전하는 샤프트(102)에 의해 발전부 모터(132)의 모터 고정자 코일(132-1)에서 전력이 생성되며, 생성된 전력은 동력부 모터(136)의 모터 고정자 코일(136-1)로 제공된다.
동력부 모터(136)의 네오디움 자석(136-2)이 내장된 하우징은 발전부 모터(132)의 모터 고정자 코일(132-1)에 의해 유도된 전력을 공급받아 회전하며, 네오디움 자석(132-2)이 내장된 하우징의 회전에 의해 네오디움 자석(132-2)이 내장된 하우징과 고정 체결되어 있는 샤프트(102) 역시 회전하게 된다.
이와 같이 본 발명은 다수 개 배치된 모터 고정자 코일과 네오디움 자석을 이용하여 샤프트(102)를 회전시키며, 샤프트(102)의 회전에 의해 회전체(104)가 회전된다. 또한, 제 2모터 고정자 코일(132-1)이 감겨있는 제2 모터 고정자와 제 3모터 고정자 코일(136-1)이 감겨있는 제3 모터 고정자의 재질은 플라스틱 재질로 제작하여 기전력 부하를 상쇄시키되, 제 2 모터 고정자 코일(132-1)에 권선된 코일의 권선수는 제3 모터 고정자 코일(136-1)에 권선된 코일의 권선수의 2배 많고 코일두께는 1/2 수준이며 자석의 극수 또한 2배 많다.
더하여 제 3 모터 고정자 코일(136-1)의 두께는 제 2모터 고정자 코일(132-1)의 두께에 비해 2배 두꺼우며 권선수는 1/2 수준으로 형성하며, 이는 코일의 두께, 권선수와 회전수의 반비례 관계식을 적용한 것으로, 이로 인해 구동부 모터(136)는 모터부 아웃로터(126)와 발전부 모터(132) 보다 더 빠른 회전력이 발생하여 모터부 아웃로터(126)에 회전력을 부가하여 효율이 극대화된다.
도 5는 본 발명의 일실시 예에 따른 모터 하우징을 도시하고 있다. 이하 도 5를 이용하여 본 발명의 일실시 예에 따른 모터 하우징의 구조에 대해 상세하게 알아보기로 한다.
도 5에 의하면, 모터 하우징(122)은 내부가 빈 원 기둥 형상을 가지며, 프레임(116)과 고정 체결된다. 도 5에 도시되어 있지 않지만, 모터 하우징(122)의 내부에는 샤프트(102)가 관통되며, 모터 하우징(122)의 내측에는 모터 고정자 코일(132-1 또는 136-1)이 일정 간격으로 배치된다. 또한, 샤프트(102)의 외측에는 모터 하우징(122)의 내측에 형성된 모터 고정자 코일(132-1 또는 136-1)이 위치와 대응되는 위치에 네오디움 자석(132-2 또는 136-2)이 배치된다.
본 발명은 도면에 도시된 일실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
본 발명은 자석을 이용한 보일러에 관한 것으로, 더욱 상세하게는 자석의 자력 이용하여 열을 생성하고, 생성한 열을 이용하여 유체를 가열하는 자석을 이용한 보일러에 적용된다.

Claims (10)

  1. 일정 길이를 갖는 바 타입의 형상을 갖는 샤프트;
    원 기둥 형상을 가지며, 상기 샤프트가 내부를 관통한 상태에서 상기 샤프트와 고정 체결되어 상기 샤프트와 일체로 회전하며, 상기 원 기둥의 형상의 내측에 제1 자석이 부착되는 회전체;
    상기 회전체의 외측에 위치하며, 내부가 빈 원기둥 형상을 가지며, 유체가 유입되는 유입구와 유입된 유체가 유출하는 유출구를 갖는 발열체;
    상기 회전체와 고정 체결되는 모터부 아웃로터;
    상기 모터부 아웃로터에 부착되는 제2 자석;
    제공받은 전력에 의해 상기 제2 자석이 부착되어 있는 상기 모터부 아웃로터를 회전시키는 제1 모터 고정자 코일을 포함함을 특징으로 하는 자석을 이용한 보일러.
  2. 제 1항에 있어서,
    프레임;
    일측은 상기 프레임과 고정 체결되며, 타측은 상기 샤프트에 체결되는 브라켓;
    상기 샤프트와 상기 브라켓 사이에 인입되는 제1 베어링을 포함함을 특징으로 하는 자석을 이용한 보일러.
  3. 제 1항에 있어서,
    상기 샤프트와 체결되는 모터 하우징;
    상기 샤프트와 상기 모터 하우징 사이에 인입되는 제2 베어링을 포함함을 특징으로 하는 자석을 이용한 보일러.
  4. 제 3항에 있어서,
    상기 제1 모터부 고정자 코일은 상기 모터 하우징에 고정 체결됨을 특징으로 하는 자석을 이용한 보일러.
  5. 제 4항에 있어서,
    상기 발열체와 상기 모터부 아웃로터 사이에 인입되며, 내열 실리콘 재질로 구성된 열전도 방지 단열제를 포함함을 특징으로 하는 자석을 이용한 보일러.
  6. 제 3항에 있어서,
    상기 모터 하우징에 고정 체결되는 제2 모터 고정자 코일;
    상기 샤프트에 고정 체결되며, 상기 샤프트의 회전에 의해 회전하며, 회전에 의해 상기 제2 모터 고정자 코일에 전력이 생성되도록 유도하는 제3 자석을 포함함을 특징으로 하는 자석을 이용한 보일러.
  7. 제 6항에 있어서,
    상기 모터 하우징에 고정 체결되며, 상기 제2 모터 고정자 코일에 유도된 전력을 제공받는 제3 모터 고정자 코일;
    상기 샤프트에 고정 체결되며, 상기 제3 모터 고정자 코일에 제공된 전력에 의해 회전하는 제4 자석을 포함함을 특징으로 하는 자석을 이용한 보일러.
  8. 제 7항에 있어서,
    상기 제3 자석을 내장하고 있는 하우징과 상기 제4 자석을 내장하고 있는 하우징을 체결하는 고정 스프로킷을 포함함을 특징으로 하는 자석을 이용한 보일러.
  9. 제 8항에 있어서,
    상기 모터 하우징은,
    상기 샤프트와 체결되며, 상기 제1 모터 고정자 코일이 고정 체결되며, 일정 길이 연장된 제1 부재;
    상기 제1 부재의 종단으로부터 수직 방향으로 일정 길이 연장되며, 상기 제2 모터 고정자 코일 및 상기 제3 모터 고정자 코일이 고정 체결되는 제2 부재를 포함함을 특징으로 하는 자석을 이용한 보일러.
  10. 제 9항에 있어서,
    상기 제 2 모터 고정자 코일에 권선된 코일의 권선수는 상기 제3 모터 고정자 코일에 권선된 코일의 권선수에 비해 상대적으로 많음을 특징으로 하는 자석을 이용한 보일러.
PCT/KR2015/000546 2015-01-13 2015-01-20 소형 자석 보일러{small size magnet boiler} WO2016114435A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150005430A KR101515486B1 (ko) 2015-01-13 2015-01-13 소형 자석 보일러
KR10-2015-0005430 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016114435A1 true WO2016114435A1 (ko) 2016-07-21

Family

ID=53393257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000546 WO2016114435A1 (ko) 2015-01-13 2015-01-20 소형 자석 보일러{small size magnet boiler}

Country Status (2)

Country Link
KR (1) KR101515486B1 (ko)
WO (1) WO2016114435A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087945A (zh) * 2018-01-22 2018-05-29 刘凤德 一种多用途热水生产装置
CN111578503A (zh) * 2020-05-25 2020-08-25 山东华业电气有限公司 一种电磁热泵高压循环装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200063678A (ko) 2018-11-28 2020-06-05 김기성 다수의 전자석을 이용한 자기유도 보일러

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625599U (ja) * 1991-08-21 1994-04-08 トネックス株式会社 ファンモータ
KR20080028563A (ko) * 2006-09-27 2008-04-01 엘지전자 주식회사 영구자석 회전자 모터
JP2012002388A (ja) * 2010-06-14 2012-01-05 Crew Kenkyusho Co Ltd ヒートポンプ用熱交換器とそのヒートポンプ式給湯システム
KR101306165B1 (ko) * 2012-12-13 2013-09-09 정기영 마찰가열시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625599U (ja) * 1991-08-21 1994-04-08 トネックス株式会社 ファンモータ
KR20080028563A (ko) * 2006-09-27 2008-04-01 엘지전자 주식회사 영구자석 회전자 모터
JP2012002388A (ja) * 2010-06-14 2012-01-05 Crew Kenkyusho Co Ltd ヒートポンプ用熱交換器とそのヒートポンプ式給湯システム
KR101306165B1 (ko) * 2012-12-13 2013-09-09 정기영 마찰가열시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087945A (zh) * 2018-01-22 2018-05-29 刘凤德 一种多用途热水生产装置
CN111578503A (zh) * 2020-05-25 2020-08-25 山东华业电气有限公司 一种电磁热泵高压循环装置

Also Published As

Publication number Publication date
KR101515486B1 (ko) 2015-05-04

Similar Documents

Publication Publication Date Title
WO2016114435A1 (ko) 소형 자석 보일러{small size magnet boiler}
KR101489025B1 (ko) 전자기 유도식 발열 장치ㆍ열풍 발생 장치 및 발전 장치
US8408378B1 (en) Permanent magnet air heater
US20090223948A1 (en) Magnetic water heater
US3659416A (en) Vapor driven motors
WO2012060493A1 (ko) 개량된 형태의 저속발전기
WO2016006770A1 (ko) 회오리 수류를 이용한 전극보일러의 히터 장치
US4614853A (en) Permanent magnet steam generator
WO2022055175A1 (ko) 구이기 테이블용 집진장치
CN105599123A (zh) 一种水泥基混凝土电加热养护系统
CN114811941B (zh) 带直线轴承的卧式全浸没电极锅炉
WO2010024508A1 (ko) 가스레인지의 버너 장치
BR9915091A (pt) Sistema de geração de energia
WO2018052191A1 (ko) 영구자석을 이용한 발열장치
WO2011005039A2 (ko) 계자극 발생기와 회전하는 직류공급용 브러쉬에 의한 교류 발전장치 및 직류 발전장치
KR20200063678A (ko) 다수의 전자석을 이용한 자기유도 보일러
WO2014081069A1 (ko) 부유식 가습기
WO2014092379A2 (ko) 마찰가열시스템
WO2015064911A1 (ko) 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치
WO2020262753A1 (ko) 원심 탄소 자력 열 발생장치
EP1717526A1 (en) Heater for generating hot air and insulator for its electric heating wire
WO2011068312A2 (ko) 유량센서 및 이를 구비한 연소기기
CN205887184U (zh) 一种具有绝缘瓷轴加热功能的绝缘箱
KR200449021Y1 (ko) 건물 실내에 설치되는 한증막 구조
KR101674188B1 (ko) 보조 가열관이 결합된 와전류 보일러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878081

Country of ref document: EP

Kind code of ref document: A1