WO2015064911A1 - 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치 - Google Patents

나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치 Download PDF

Info

Publication number
WO2015064911A1
WO2015064911A1 PCT/KR2014/008686 KR2014008686W WO2015064911A1 WO 2015064911 A1 WO2015064911 A1 WO 2015064911A1 KR 2014008686 W KR2014008686 W KR 2014008686W WO 2015064911 A1 WO2015064911 A1 WO 2015064911A1
Authority
WO
WIPO (PCT)
Prior art keywords
neodymium magnet
magnet
neodymium
pole
insertion groove
Prior art date
Application number
PCT/KR2014/008686
Other languages
English (en)
French (fr)
Inventor
소문섭
Original Assignee
소문섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소문섭 filed Critical 소문섭
Priority to CN201480059931.7A priority Critical patent/CN105706337B/zh
Priority to US15/033,114 priority patent/US9966806B2/en
Publication of WO2015064911A1 publication Critical patent/WO2015064911A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1861Rotary generators driven by animals or vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/279Magnets embedded in the magnetic core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to an electric generator using a neodymium magnet, and more particularly, a magnet by a neodymium magnet that rotates by rotating the neodymium magnet having a strength of 10 times higher than that of a general magnet in a spiral arrangement inside the winding coil body.
  • the generated magnetic field is transmitted to the winding coil body while causing the vortex phenomenon to greatly improve the power generation performance.
  • the present invention relates to an electric generator using a neodymium magnet having a spiral structure.
  • electricity is one of the indispensable things in daily life, and in order to operate the necessary means in daily life such as electric appliances, luminaires, various office supplies such as computers, and various business electric devices such as lifts.
  • electric appliances such as electric appliances, luminaires, various office supplies such as computers, and various business electric devices such as lifts.
  • office supplies such as computers
  • business electric devices such as lifts.
  • the problem caused by the thermal power generation is a situation that is emerging as a major problem in the global environment by causing the global warming phenomenon caused by the air pollution in recent years.
  • Representative examples include solar power generation using solar power or wind power generation using wind power.
  • a power generation unit in which a coil winding unit of Korea Patent Publication No. 10-2009-0038532 rotates along a gap between an N pole permanent magnet and an S pole permanent magnet to generate electricity
  • the device has been designed, and it is a rotating member through a bearing on the central axis perpendicular to the center of the symmetrically arranged circular magnet group stator, in which a plurality of N pole permanent magnets and S pole permanent magnets maintain mutually constant voids.
  • the coil winding unit is positioned on the air gap between the N pole permanent magnet and the S pole permanent magnet of the circular magnet group stator, and is fixedly fixed to the rotating member, and is driven to the end of the rotating member or to the central rotating shaft.
  • the rotary member rotates in accordance with the driving of the driving source, it is located between the N pole permanent magnet and the S pole permanent magnet of the circular magnet group stator. Electricity is generated in the coil winding unit, and the wire winding drawn out from the coil winding unit is grounded to the central axis along the rotating member so that the coil winding unit which transfers electricity to the commutator piece and the brush on the central axis is the N pole permanent magnet and the S pole permanent. It rotates along the gaps between the magnets to produce electricity.
  • the permanent magnets of the north pole and the permanent magnets of the south pole are arranged in a circumferential shape, so that the electrical productivity is lowered and the electrical productivity is increased. In order to rotate the coil winding unit quickly there is a problem.
  • the electric generator using the conventional permanent magnet and the winding coil body because the array of the permanent magnet is arranged horizontally with respect to the winding coil body, the generation of electricity as the strength of the magnetic field generated by the permanent magnets is not large There is a problem that greatly falls.
  • Such a conventional electric generator provides an advantage to increase the efficiency of the electricity, but due to the occurrence of the technical idea that it is possible to increase the power generation performance by producing electricity more efficiently without compromising on the above-mentioned power generator
  • the present invention has been devised, and since the conventional electric generator does not consider impact resistance or durability in addition to the component that generates electricity when generating electricity, a countermeasure for this is also required.
  • the present invention solves the problem of the electricity generating device for producing electricity using a conventional magnet and can produce electricity with higher efficiency than the electricity generating device for producing electricity using a conventional neodymium magnet, it can improve the impact resistance and durability
  • the purpose is to provide an electric generator using a neodymium magnet having a spiral structure.
  • Electric generator using the neodymium magnet having a spiral structure of the present invention for this purpose is formed in a cylindrical shape having a first mounting hole is open at both ends, the neodymium magnets are arranged on the outer surface of the body in a spiral in the longitudinal direction It is arranged and formed, the first space of the first neodymium magnet in which the inner space of the cylinder forms the first pole and the outer surface of the second pole is opened to form a cylindrical shape having a second mounting hole, the neodymium magnet on the outer surface of the body Are arranged to form a spiral in the longitudinal direction, the inner space of the cylinder forms a second pole and the outer surface of the first pole, the second neodymium is disposed in the inner space of the cylindrical body The both ends of the magnet are opened to form a cylindrical shape having a third mounting hole.
  • Neodymium magnets are arranged on the outer surface of the body, and are spiraled in the longitudinal direction.
  • a third neodymium magnet in which the inner space of the cylinder forms a first pole and the outer surface forms a second pole, and the second neodymium magnet is disposed in the inner space of the cylindrical body.
  • a first side magnet part disposed at one side and having a first insertion groove into which one end of the second neodymium magnet can be inserted, and a first recess hole having a diameter smaller than that of the first insertion groove in a central portion thereof;
  • a second insertion groove is formed on the other side of the third neodymium magnet, the second insertion groove into which the other end of the second neodymium magnet can be inserted is formed, and a second recess hole having a diameter smaller than the second insertion groove is formed in the center.
  • a second side magnet part which is mounted in a first mounting hole of the first neodymium magnet, one end of which passes through the first mounting hole and the other end of which passes through the second mounting hole; and a winding wound around the shaft Including coil body, phase
  • the first neodymium magnet and the third neodymium magnet are fixed, the second neodymium magnet is rotated between the first neodymium magnet and the third neodymium magnet to form an electric field in the winding coil body, in the winding coil body It is characterized in that the electricity is generated.
  • One end of the second neodymium magnet inserted into the first insertion groove forms a first pole
  • the first side magnet part includes the first insertion groove of the first pole
  • the second neodymium magnet is the second insertion.
  • the other end inserted into the groove forms a second pole
  • the second side magnet portion may form the second pole of the second insertion groove.
  • the electric generator using a neodymium magnet having a spiral structure of the present invention the shaft, the winding coil body, the first neodymium magnet, the second neodymium magnet, the third neodymium magnet, the first side magnet portion, and the second side magnet
  • a mounting space for accommodating a portion is formed, and a case having a cylindrical shape having open ends is coupled to the opening at one end to close one end of the case, and one end of the shaft and one end of the winding coil body can pass therethrough.
  • the electric generator using a neodymium magnet having a helical structure of the present invention the first stage is coupled to one end of the shaft, the second stage is coupled to the other end of the shaft, and coupled between the first and second And it may further include a seating portion including a support provided with a seating plate is seated.
  • one side surface of the second neodymium magnet is formed with a side gear of the shape of the tooth arrangement is further formed, the electric generating device using a neodymium magnet having a spiral structure is the first gear and the first gear interlocking with the side gear
  • the case may further include a receiving portion for protruding in one direction to accommodate the first gear.
  • Each of the first pole and the second pole of the first neodymium magnet, the second neodymium magnet, and the third neodymium magnet may be composed of any one pole of the N pole or the S pole, respectively.
  • the first neodymium magnet, the second neodymium magnet, and the third neodymium magnet are characterized in that the inner and outer surfaces thereof are assembled to be in contact with each other.
  • the first neodymium magnet and the third neodymium magnet which are arranged obliquely in a spiral are characterized in that they are configured to be inclined in the same direction.
  • the first neodymium magnet and the third neodymium magnet which are arranged obliquely in a spiral manner, are each configured to be inclined in a spirally opposite direction to the second neodymium magnet.
  • the present invention solves the problem of the electricity generating device for producing electricity by using a conventional magnet, and can produce electricity with higher efficiency than the electricity generating device for producing electricity using a conventional neodymium magnet, and improved impact resistance and durability There is an effect that can provide a generator.
  • FIG. 1 is an exploded perspective view of an electric generator using a neodymium magnet having a spiral structure according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a state in which an electric generator using a neodymium magnet having a spiral structure shown in FIG.
  • FIG. 3 is a cross-sectional view of a state cut into one side of the electric generator using a neodymium magnet having a spiral structure shown in FIG.
  • FIG. 4 is a perspective view showing the polarity of each of the first neodymium magnet, the second neodymium magnet and the third neodymium magnet shown in FIG.
  • FIG. 5 is a perspective view showing the polarity of the first side magnet shown in FIG.
  • FIG. 6 is a perspective view showing the polarity of the second side magnet portion shown in FIG.
  • FIG. 7 is a cross-sectional view of an electric generator using a neodymium magnet having a spiral structure according to another embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of an electric generator using a neodymium magnet having a spiral structure according to an embodiment of the present invention.
  • 2 is a perspective view of a state in which an electric generator using a neodymium magnet having a spiral structure shown in FIG. 1 is coupled.
  • 3 is a cross-sectional view of the electric generator using the neodymium magnet having a spiral structure shown in FIG. 4 is a perspective view showing polarities of each of the first neodymium magnet, the second neodymium magnet, and the third neodymium magnet shown in FIG. 1.
  • 5 is a perspective view showing the polarity of the first side magnet shown in FIG. 6 is a perspective view showing the polarity of the second side magnet shown in FIG.
  • the electric generator using a neodymium magnet having a spiral structure As shown in Figures 1 to 6, the electric generator using a neodymium magnet having a spiral structure according to an embodiment of the present invention, the first neodymium magnet 10, the second neodymium magnet 20, the third The neodymium magnet 30, the first side magnet part 40, the second side magnet part 50, the shaft 60, and the winding coil body 70 are included.
  • the first neodymium magnet 10 is open at both ends to have a cylindrical shape having a first mounting hole 11.
  • Neodymium magnets are arranged on the outer surface of the body, and are formed spirally in a longitudinal direction.
  • the inner space of the sieve forms the first pole and the outer surface forms the second pole.
  • the first and second poles refer to the anode and the cathode of the magnet, respectively, and the magnet is composed of two poles having opposite polarities to each other. That is, in the case of the positive electrode, which is the first electrode, the second electrode becomes the cathode, and in the case of the second electrode, the first electrode becomes the anode.
  • the second neodymium magnet 20 is formed in a cylindrical shape having both ends of the second mounting hole 21, the neodymium magnets are arranged on the outer surface of the body is formed spirally arranged in the longitudinal direction, the cylinder An inner space of the sieve forms a second pole and an outer surface forms a first pole, and the first neodymium magnet 10 is disposed in the inner space of the cylindrical body. In this case, the second neodymium magnet 20 is disposed in a rotatable state.
  • the second neodymium magnet 20 is rotated in a state arranged outside the first neodymium magnet 10, in this case, the inner surface of the first neodymium magnet 10 and the outer surface of the second neodymium magnet 20 The same polarity is achieved with each other.
  • the third neodymium magnet 30 is open at both ends to have a cylindrical shape having a third mounting hole 31. Neodymium magnets are arranged on the outer surface of the body and are formed spirally in the longitudinal direction. The inner space of the sieve forms the first pole and the outer surface forms the second pole, and the second neodymium magnet 20 is disposed in the inner space of the cylindrical body. That is, the third neodymium magnet 30 is disposed outside the second neodymium magnet 20.
  • the first side magnet part 40 is disposed on one side of the third neodymium magnet 30, and a first insertion groove 41 into which one end of the second neodymium magnet 20 is inserted is formed.
  • the first side magnet part 40 may be coupled to one surface of the third neodymium magnet 30.
  • the first side magnet portion 40 is formed in the central portion of the first mounting hole 42 having a diameter smaller than the first insertion groove (41).
  • the first insertion groove 41 has an outer surface of the first neodymium magnet 10 and an outer surface of the third neodymium magnet 30 in the state where one end of the second neodymium magnet 20 is inserted. It serves to restrain one end of the second neodymium magnet 20 so as not to contact.
  • the second side magnet part 50 is disposed on the other side of the third neodymium magnet 30 and a second insertion groove 51 into which the other end of the second neodymium magnet 20 can be inserted is formed.
  • the second side magnet part 50 may be coupled to the other surface of the third neodymium magnet 30.
  • the second side magnet portion 50 is formed in the central portion of the second mounting hole 52 having a diameter smaller than the second insertion groove (51).
  • the second insertion groove 51 has an outer surface of the first neodymium magnet 10 and an outer surface of the third neodymium magnet 30 in the state where the other end of the second neodymium magnet 20 is inserted. It serves to restrain the other end of the second neodymium magnet 20 so as not to contact.
  • Both ends of the shaft 60 are inserted into the first mounting holes 11 of the first neodymium magnet 10, and one end thereof is exposed while passing through the first mounting holes 11 so that the first side magnet part 40 is closed. ) Passes through the first mounting hole 42, and the other end passes through the first mounting hole 11 to pass through the second mounting hole 52 of the second side magnet part 50.
  • the shaft 60 seats the first neodymium magnet 10 and both ends of the shaft 60 pass through the first side magnet part 40 and the second side magnet part 50, thereby providing the first side magnet part 40. It serves to restrain the second side magnet part 50 from flowing in the up and down direction so that the components coupled to or inserted into the second side magnet part 50 and the second side magnet part 50 do not flow.
  • the winding coil body 70 is wound around the shaft 60.
  • one end of the winding coil body 70 is wound around the shaft 60 to pass through the first mounting hole 42 of the first side magnet part 40, and the other end thereof is exposed to the outside. Passing through the second mounting hole 52 of the portion 50 is exposed to the outside.
  • the second neodymium magnet (20) rotates between the first neodymium magnet 10 and the third neodymium magnet 30 to form an electric field in the winding coil body 70 to generate electricity in the winding coil body 70, the maximum energy It is made of the highest neodymium magnet among commercially available magnets, and has good processability, relatively low price compared to magnetic force, and strong oxidation power, so it is suitable for automobiles, sensors, speakers, servomotors, handbags, accessories, health products and various switches. It is widely used in the back, and can generate a greater amount of electricity than the electric generator using a normal permanent magnet.
  • the second neodymium magnet 20 has a pole having an outer surface that is the same as the inner surface of the third neodymium magnet 30, and the pole of the inner surface forms a pole that is the same as the outer surface of the first neodymium magnet 10.
  • the vortex type of the vortex generated between the third neodymium magnet (30) and the second neodymium magnet (20) Since the second magnetic field in the form of a vortex generated between the first magnetic field and the first neodymium magnet 10 and the second neodymium magnet 20 is transmitted to the winding coil body 70, the strength of the magnetic field is amplified and compared with the same time. When the same rotational force is applied, it is possible to produce a larger amount of electricity than conventional.
  • one end of the second neodymium magnet 20 inserted into the first insertion groove 41 forms a first pole, and the first side surface.
  • the magnet part 40 has a first insertion groove 41 forming a first pole, and a second neodymium magnet 20 having a second end inserted into the second insertion groove 51 forming a second pole, and a second side magnet.
  • the part 50 has a second insertion groove 51 forming a second pole.
  • the same first pole is formed between the second neodymium magnet 20 and the first insertion groove 41 and the same first pole is formed between the second neodymium magnet 20 and the second insertion groove 51.
  • a third magnetic field in the form of a vortex is generated between the second neodymium magnet 20 and the first insertion groove 41 to be transferred to the winding coil body 70, and the second neodymium magnet 20 Since the fourth magnetic field of the vortex type is generated between the second insertion grooves 51 and is transmitted to the winding coil body 70, when the strength of the magnetic field is amplified and the same rotational force is applied to the same time, a larger amount of electricity Will be able to produce.
  • the electric generator using a neodymium magnet having a spiral structure may further include a case 80, the first cover 90, and the second cover 100.
  • the case 80 includes a shaft 60, a winding coil body 70, a first neodymium magnet 10, a second neodymium magnet 20, a third neodymium magnet 30, and a first side magnet part 40. And a mounting space accommodating the second side magnet part 50, and has a cylindrical shape with both ends opened.
  • the first cover 90 couples the case 80 to an opening to close one end of the case 80, and the first cover 90 may pass through one end of the shaft 60 and one end of the winding coil body 70.
  • the passage hole 91 is formed.
  • the second cover 100 couples the case 80 to the other end opening to close the other end of the case 80, and the other end of the shaft 60 and the other end of the winding coil body 70 to pass through.
  • a second through hole 101 can be formed.
  • the case 80, the first cover 90 and the second cover 100 is the first neodymium magnet (10), the second neodymium magnet (20), the third neodymium magnet (30) in a state of being integrally coupled to each other ),
  • the first side magnet portion 40 and the second side magnet portion 50 are protected from external impact to improve durability.
  • the first cover 90 and the second cover 100 may prevent the first side magnet part 40 and the second side magnet part 50 from flowing in the lateral direction so that the first side magnet part 40 And restraining the first neodymium magnet 10, the second neodymium magnet 20, the third neodymium magnet 30, and the shaft 60, which are engaged with and constrained by the second side magnet part 50.
  • the first neodymium magnet 10, the second neodymium magnet 20, the third neodymium magnet 30, and the shaft 60 are prevented from being engaged with each other.
  • the electric generator using a neodymium magnet having a spiral structure may further include a seating portion (110).
  • the seating part 110 includes a first cradle 111, a second cradle 112, and a pedestal 113.
  • the first mounting base 111 is configured in a frame shape, one end of the shaft 60 is coupled.
  • the first mounting base 111 may be further formed with a hole for coupling the shaft 60 in order to be coupled to one end of the shaft 60.
  • the second mounting base 112 is configured in a frame shape, one end of the shaft 60 is coupled.
  • the second cradle 112 may be further formed with a hole for coupling the shaft 60 in order to be coupled to one end of the shaft 60.
  • the pedestal 113 is coupled between the first cradle 111 and the second cradle 112, and is provided with a seating plate 113a on which the case 80 is mounted.
  • the mounting plate 113a may be implemented to be in close contact with the outer surface of the case 80 to be in close contact with the shape contacting the case 80.
  • the case 80 is formed in a cylindrical shape, the seating plate 113a may be in close contact with the case 80 having a concave groove.
  • the first cradle 111, the second cradle 112, and the pedestal 113 provide a seating space in which the case 80 and the shaft 60 may be seated, thereby providing a case 80 when driving for power generation. ) To prevent flow.
  • FIG. 7 is a cross-sectional view of an electric generator using a neodymium magnet having a spiral structure according to another embodiment of the present invention.
  • the electric generator using the neodymium magnet having a spiral structure according to another embodiment of the present invention further includes a first gear 120 and a handle 130 in the above-described embodiment.
  • one side surface of the second neodymium magnet 20 is further formed with a side gear 22 in the form of a sawtooth arrangement.
  • the first gear 120 meshes with the side gear 22 to interlock with each other.
  • the side gear 22 and the first gear 120 of the second neodymium magnet 20 may be driven in the same principle as the bevel gear to rotate in a state where the rotation direction is 90 degrees between each other.
  • the first gear 120 may further include a shaft inserted near the central axis in a state of being fixed to the case 80 for rotation.
  • the handle 130 is coupled to the first gear 120 at the central axis of the first gear 120.
  • the middle portion of the body may be deformed into a form that can be rotated more easily by bending at least two times at an angle.
  • the case 80 is further provided with a receiving portion that can accommodate the first gear (120).
  • the electric generator using the neodymium magnet having a spiral structure having such an additional configuration is to rotate the handle 130, the first gear 120 is rotated, the first gear 120 is a second neodymium magnet ( 20) is rotated.
  • the second neodymium magnet 20 has a vortex in the space between the first neodymium magnet 10, the third neodymium magnet 30, the first side magnet part 40, and the second side magnet part 50.
  • a current is produced in the winding coil body 70.
  • the first gear 120 in the receiving portion of the case 80 can be driven in conjunction with a gear (not shown) to drive on the same principle as the bevel gear.
  • the electric generator using the neodymium magnet having a spiral structure by turning the handle 130 to produce electricity, in this case, the second neodymium magnet 20 is rotated to
  • the winding coil body 70 generates an eddy current electric field between each of the first neodymium magnet 10, the third neodymium magnet 30, the first side magnet part 40, and the second side magnet part 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 자력이 세기가 일반자석보다 월등히 높은 네오디뮴자석을 권선 코일체의 내측에 나선형으로 배열하여 회전하는 네오디뮴 자석에 의해 자석을 이용한 일반 전기발생장치보다 동일 시간대 동일 회전력 대비 전기발생 효율성을 높이고, 생성되는 자기장이 와류현상을 일으키면서 권선 코일체에 전달되도록 하여 전기발생 성능을 크게 향상시킬 수 있도록 한 것이다. 본 발명은, 양단이 개구되어 제1실장홀을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루는 제1네오디뮴자석; 양단이 개구되어 제2실장홀을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제2극을 이루고 외면이 제1극을 이루며, 원통체의 내측공간에 상기 제1네오디뮴자석이 배치되는 제2네오디뮴자석; 양단이 개구되어 제3실장홀을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루며, 원통체의 내측공간에 제2네오디뮴자석이 배치되는 제3네오디뮴자석; 상기 제3네오디뮴자석의 일측부에 배치되며, 제2네오디뮴자석의 일단이 삽입될 수 있는 제1삽입홈이 형성되고, 중심부에 제1삽입홈보다 작은 직경을 가지는 제1거치홀이 형성되는 제1측면 자석부; 제3네오디뮴자석의 타측부에 배치되며, 제2네오디뮴자석의 타단이 삽입될 수 있는 제2삽입홈이 형성되고, 중심부에 제2삽입홈보다 작은 직경을 가지는 제2거치홀이 형성되는 제2측면 자석부; 제1네오디뮴자석의 제1실장홀에 실장되며, 일단이 제1거치홀을 통과하고, 타단이 제2거치홀을 통과하는 축대; 및, 축대에 감기는 권선코일체를 포함하고, 제1네오디뮴자석과 상기 제3네오디뮴자석은 고정되며, 제2네오디뮴자석은 제1네오디뮴자석과 제3네오디뮴자석 사이에서 회전하여 권선코일체에 전기장을 형성함으로써 권선코일체에서 전기가 발생된다.

Description

나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치
본 발명은 네오디뮴자석을 이용한 전기발생장치에 관한 것으로서, 더욱 상세하게는, 자력이 세기가 일반자석보다 10배 이상 높은 네오디뮴자석을 권선 코일체의 내측에 나선형으로 배열하여 회전하는 네오디뮴 자석에 의해 자석을 이용한 일반 전기발생장치보다 같은 시간대 동일한 회전력 대비 전기발생에 따른 효율성을 높일 수 있도록 할 뿐만 아니라, 생성되는 자기장이 와류현상을 일으키면서 권선 코일체에 전달되도록 하여 전기발생 성능을 크게 향상시킬 수 있도록 한, 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치에 관한 것이다.
일반적으로, 전기는 일상생활에서 없어서는 안되는 매우 중요한 것 중 하나인 것으로, 전기를 이용한 가전제품이나 등기구, 컴퓨터와 같은 각종 사무용품, 승강기와 같은 각종 업무용 전기장치 등 일상생활에서 꼭 필요한 수단을 작동시키기 위해 반드시 필요한 물질 중 하나이다.
이와 같이 일상생활에서 반드시 존재하여야 하는 전기는, 수력을 이용한 수력발전이나 또는 화력을 이용한 화력발전, 원자력을 이용한 원자력발전 등에 의해 생산되고 있다.
그러나 수력발전의 경우에는 여름철과 같이 강수량이 많은 계절과 봄이나 가을 또는 겨울과 같이 비교적 강수량이 적은 계절에 따라 수량 차이가 심하기 때문에 지속적으로 전기 생산이 어려워 전기발생 효율성이 떨어지는 문제점이 있다.
또한, 화력발전의 경우에는 석유나 석탄과 같은 화석연료를 이용하여 지속적으로 연소해야 하기 때문에, 연소과정에서 발생되는 유해가스로 인해 환경오염 및 공해가 발생되는 문제점이 있다.
특히, 이러한 화력발전에 의한 문제점은 근래 대기오염에 따른 지구의 온난화 현상을 유발시킴으로써 지구환경에 큰 문제점으로 대두되고 있는 실정이다.
또한, 원자력발전의 경우에도 발전량에 대비하여 생산단가가 저렴하고 이산화탄소의 배출저하에 따른 환경오염을 줄일 수 있는 효과가 있는 반면에, 방사능 유출 등의 오염 염려에 따른 지속적인 민원 발생이 문제점으로 발생하고 있다.
이와 같은 문제점들에 의해 친환경적인 발전 설비가 그 대안으로 연구 개발되고 있는 실정이며, 대표적인 예로 태양열을 이용한 태양열발전이나 풍력을 이용한 풍력발전이 있다.
그러나 태양열 발전의 경우에는 야간이나 흐린 날씨에는 발전이 어려워 생산성이 낮은 문제점이 있으며, 태양열 발전장치에 사용되는 태양열 집열판의 가격이 고가이기 때문에 일반 가정에서 설치하기에 용이하지 못하며, 특히 아파트가 많은 대도시의 경우에는 아파트에 태양열 집열판을 설치할 만큼의 여유 공간이 없어 태양열 발전장치의 좋은 성능에도 불구하고 대도시에는 거의 설치되지 못하는 문제점이 있다.
또한, 풍력발전의 경우에는 지속적으로 바람이 불어야 하는 입지 조건이 반드시 갖추어져 있어야 하기 때문에, 대개 산꼭대기나 또는 바닷가에 주로 설치되고 있으나, 이와 같이 산꼭대기나 바닷가 근처에 설치된 풍력발전기의 교체 및 수리작업이 어려워 관리하기에 용이하지 못한 문제점이 있으며, 바람이 지속적으로 불어주지 않으면 안정적으로 전기에너지를 생산할 수 없는 또 다른 문제점이 있다.
이에 따라 자석을 이용한 다양한 전기발생장치들이 안출되고 있으며, 일예로 한국공개특허 10-2009-0038532호인 코일권선 단위체가 N극 영구자석과 S극 영구자석 사이의 공극을 따라 회전하며 전기를 생성하는 발전장치가 안출된 바 있으며, 이는 다수개의 N극 영구자석과 S극 영구자석이 상호 일정한 공극을 유지하며 대칭으로 배열된 원형 자석군고정자의 중심부에 수직으로 입설된 중심축에 베어링을 매개로 회전부재의 중심부를 지지하며 결속되고, 원형 자석군 고정자의 N극 영구자석과 S극 영구자석 사이의 공극면에 코일권선단위체가 위치하여 회전부재에 고정 결착되고, 회전부재의 끝단부 또는 중심회전축에 구동원이 치합되어 그 구동원의 구동에 따라 회전부재가 회전하면, 원형 자석군고정자의 N극 영구자석과 S극 영구자석의 공극 사이에 위치한 코일권선단위체에 전기가 발생하고, 코일권선단위체에서 인출된 전선부가 회전부재를 따라 중심축에 접지되어 중심축에 정류자편과 브러쉬에 전기를 전달하는 코일권선단위체가 N극 영구자석과 S극 영구자석 사이의 공극을 따라 회전하며 전기를 생성하도록 하고 있다.
그러나 이러한 종래 기술에 사용되는 영구자석은 자력의 세기가 약하기 때문에, 생산하는 전기의 세기가 높지 않아 전기의 생산에 따른 효율성이 크게 떨어지는 문제점이 있다.
더욱이, N극의 영구자석과 S극의 영구자석이 서로 마주보는 형태로 원주형으로 배열되어 있기 때문에, 이들 영구자석들에 의해 발생되는 자기장의 세기가 약함으로써 전기생산성이 떨어지고, 전기생산성을 높이기 위해서는 코일권선단위체를 빠르게 회전시켜야 하는 문제점이 있다.
더불어, 종래 영구자석과 권선 코일체를 이용한 전기발생장치들은, 영구자석의 배열이 권선 코일체에 대해 수평으로 배열되어 있기 때문에 영구자석들에 의해 생성되는 자기장의 세기가 크지 못함에 따라 전기발생성능이 크게 떨어지는 문제점이 있다.
이러한 문제점을 해결하기 위하여 대한민국 등록특허 제10-1223825호인 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치가 안출되었으며, 중앙에 회전축이 돌출 구비되고 제1자석결합구와 제2자석결합구가 형성되는 원형의 회전체와 상기 회전체의 외측 둘레부를 따라 위치 구성되는 권선 코일체와 상기 회전체의 제1자석결합구에 끼움 결합되어 나선형으로 배열되며, 제1극과 제2극이 형성되는 제1네오디뮴자석들과 상기 회전체의 제2자석결합구에 끼움 결합되어 나선형으로 배열되며 제3극과 제4극이 형성되는 제2네오디뮴자석들과 상기 회전축과 제1네오디뮴자석들 및 제2네오디뮴자석들 사이에 각각 형성되는 제1자기장부와, 제2자기장부 및 제3자기장부가 포함되어 이루어지는 것을 특징으로 하고 있다.
이러한 종래 전기발생장치는 전기의 효율성을 높일 수 있는 이점을 제공하고 있으나, 상기한 전기발생장치에 안주하지 않고 보다 더 효율적으로 전기를 생산하여 전기발생성능을 높일 수 있다는 기술적 사상의 발생으로 인해 본 발명이 안출되었으며, 종래 전기발생장치는 전기를 발생시키는 경우에 전기를 발생하는 구성요소이외에, 내충격성이나 내구성들을 고려하고 있지 않기 때문에 이를 위한 대책도 필요하다.
본 발명은 종래 자석을 이용하여 전기를 생산하는 전기발생장치의 문제점을 해결하고 종래 네오디뮴자석을 이용하여 전기를 생산하는 전기발생장치보다 높은 효율의 전기를 생산할 수 있으며, 내충격성과 내구성을 향상시킬 수 있는, 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치를 제공하는 데 그 목적이 있다.
이를 위한 본 발명의 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는, 양단이 개구되어 제1실장홀을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루는 제1네오디뮴자석 양단이 개구되어 제2실장홀을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제2극을 이루고 외면이 제1극을 이루며, 원통체의 내측 공간에 상기 제1네오디뮴자석이 배치되는 제2네오디뮴자석 양단이 개구되어 제3실장홀을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루며, 원통체의 내측공간에 상기 제2네오디뮴자석이 배치되는 제3네오디뮴자석 상기 제3네오디뮴자석의 일측부에 배치되며, 상기 제2네오디뮴자석의 일단이 삽입될 수 있는 제1삽입홈이 형성되고, 중심부에 상기 제1삽입홈보다 적은 직경을 가지는 제1거치홀이 형성되는 제1측면 자석부 상기 제3네오디뮴자석의 타측부에 배치되며, 상기 제2네오디뮴자석의 타단이 삽입될 수 있는 제2삽입홈이 형성되고, 중심부에 상기 제2삽입홈보다 적은 직경을 가지는 제2거치홀이 형성되는 제2측면 자석부 상기 제1네오디뮴자석의 제1실장홀에 실장되며, 일단이 상기 제1거치홀을 통과하고, 타단이 상기 제2거치홀을 통과하는 축대 및, 상기 축대에 감기는 권선코일체 를 포함하고, 상기 제1네오디뮴자석과 상기 제3네오디뮴자석은 고정되며, 상기 제2네오디뮴자석은 상기 제1네오디뮴자석과 상기 제3네오디뮴자석 사이에서 회전하여 상기 권선코일체에 전기장을 형성함으로써, 상기 권선코일체에서 전기가 발생되도록 하는 것을 특징으로 한다.
상기 제2네오디뮴자석은 상기 제1삽입홈에 삽입되는 일단이 제1극을 이루고, 상기 제1측면 자석부는 상기 제1삽입홈이 제1극을 이루며, 상기 제2네오디뮴자석은 상기 제2삽입홈에 삽입되는 타단이 제2극을 이루고, 상기 제2측면 자석부는 상기 제2삽입홈이 제2극을 이룰 수 있다.
한편, 본 발명의 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는, 축대, 권선 코일체, 제1네오디뮴자석, 제2네오디뮴자석, 제3네오디뮴자석, 제1측면 자석부 및, 제2측면 자석부를 수용하는 실장공간이 형성되며, 양단이 개구된 원통체 형상의 케이스 상기 케이스를 일단 개구부에 결합하여 상기 케이스의 일단을 마감하며, 축대의 일단과 권선 코일체의 일단이 통과될 수 있는 제1통과홀이 형성되는 제1커버 및, 케이스를 타단 개구부에 결합하여 케이스의 타단을 마감하며, 축대의 타단과 권선 코일체의 타단이 통과될 수 있는 제2통과홀이 형성되는 제2커버를 포함할 수 있다.
또한, 본 발명의 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는, 축대의 일단이 결합되는 제1거치대와, 축대의 타단이 결합되는 제2거치대 및, 제1거치대와 제2거치대 사이에 결합되며 케이스가 안착되는 안착판이 마련되는 받침대를 포함하는 안착부를 더 포함할 수 있다.
한편, 제2네오디뮴자석의 일측면에는 톱니형상이 배열된 형태의 측면기어가 더 형성되고, 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는 측면기어와 맞물려 연동하는 제1기어 및, 제1기어의 중심축에서 편향되게 제1기어에 결합되는 손잡이를 더 포함하여 구성될 수 있고, 이 경우, 케이스는 일방으로 돌출되어 제1기어가 수용될 수 있는 수용부를 더 구비할 수 있다.
제1네오디뮴자석, 제2네오디뮴자석, 제3네오디뮴자석의 각각의 제1극 또는 제2극은 각각 N극 또는 S극 중 어느 하나의 극으로 이루어지는 것을 특징으로 한다.
제1네오디뮴자석, 제2네오디뮴자석, 제3네오디뮴자석은 각각의 내외부면이 서로 접촉 차단되도록 조립되는 것을 특징으로 한다.
경사지게 나선형으로 배열되는 제1네오디뮴자석과 제3네오디뮴자석은 서로 동일방향으로 경사지게 배열 구성되어 이루어지는 것을 특징으로 한다.
경사지게 나선형으로 배열되는 제1네오디뮴자석 및 제3네오디뮴자석은 각각 제2네오디뮴자석과 반대 방향으로 경사지게 나선형으로 배열 구성되어 이루어지는 것을 특징으로 한다.
본 발명은 종래 자석을 이용하여 전기를 생산하는 전기발생장치의 문제점을 해결하고, 종래 네오디뮴자석을 이용하여 전기를 생산하는 전기발생장치보다 높은 효율의 전기를 생산할 수 있으며, 내충격성과 내구성이 향상된 전기발생장치를 제공할 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치의 분해사시도.
도 2는 도 1에 도시된 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치가 결합된 상태의 사시도.
도 3은 2에 도시된 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치의 일측으로 절개한 상태의 단면도.
도 4는 도 1에 도시된 제1네오디뮴자석, 제2네오디뮴자석 및, 제3네오디뮴자석 각각의 극성을 표시한 사시도.
도 5는 도 1에 도시된 제1측면 자석부의 극성을 표시한 사시도.
도 6은 도 1에 도시된 제2측면 자석부의 극성을 표시한 사시도.
도 7은 본 발명의 다른 실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치의 단면도.
이하, 상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시 예에 대한 설명을 통하여 명백히 드러나게 될 것이다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서는, 본 발명의 실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치를 첨부된 도 1 내지 도 6을 참조하여 상세히 설명한다.
도 1은 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치의 분해사시도이다. 도 2는 도 1에 도시된 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치가 결합된 상태의 사시도이다. 도 3은 2에 도시된 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치의 일측으로 절개한 상태의 단면도이다. 도 4는 도 1에 도시된 제1네오디뮴자석, 제2네오디뮴자석 및, 제3네오디뮴자석 각각의 극성을 표시한 사시도이다. 도 5는 도 1에 도시된 제1측면 자석부의 극성을 표시한 사시도이다. 도 6은 도 1에 도시된 제2측면 자석부의 극성을 표시한 사시도이다.
도 1 내지 도 6에 도시된 바와 같이, 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는, 제1네오디뮴자석(10), 제2네오디뮴자석(20), 제3네오디뮴자석(30), 제1측면 자석부(40), 제2측면 자석부(50), 축대(60) 및, 권선코일체(70)를 포함한다.
상기 제1네오디뮴자석(10)은 양단이 개구되어 제1실장홀(11)을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이룬다. 본 설명에서 제1극과 제2극은 자석의 양극과 음극 각각을 지칭하는 용어로써, 자석은 서로 간에 반대 극성을 가지는 두 극으로 이루어진다. 즉, 제1극인 양극인 경우 제2극이 음극이 되며, 제2극이 음극인 경우 제1극이 양극이 된다.
상기 제2네오디뮴자석(20)은 양단이 개구되어 제2실장홀(21)을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제2극을 이루고 외면이 제1극을 이루며, 원통체의 내측공간에 상기 제1네오디뮴자석(10)이 배치된다. 이 경우, 제2네오디뮴자석(20)은 회전 가능한 상태로 배치된다. 이러한 제2네오디뮴자석(20)은 제1네오디뮴자석(10)의 외측에 배치된 상태에서 회전하게 되는데, 이 경우, 제1네오디뮴자석(10)의 내면과 제2네오디뮴자석(20)의 외면은 서로 간에 동일한 극성을 이루게 된다.
상기 제3네오디뮴자석(30)은 양단이 개구되어 제3실장홀(31)을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루며, 원통체의 내측공간에 제2네오디뮴자석(20)이 배치된다. 즉, 제3네오디뮴자석(30)은 제2네오디뮴자석(20)의 외측에 배치된다.
상기 제1측면 자석부(40)는 제3네오디뮴자석(30)의 일측부에 배치되며, 제2네오디뮴자석(20)의 일단이 삽입될 수 있는 제1삽입홈(41)이 형성된다. 이 경우, 제1측면 자석부(40)는 제3네오디뮴자석(30)의 일면에 결합될 수 있다. 또한, 제1측면 자석부(40)는 중앙부에 제1삽입홈(41)보다 작은 직경을 가지는 제1거치홀(42)이 형성된다.
이러한 제1삽입홈(41)은 제2네오디뮴자석(20)의 일단이 삽입된 상태에서 제2네오디뮴자석(20)이 제1네오디뮴자석(10)의 외면과 제3네오디뮴자석(30)의 외면에 닿지 않도록 제2네오디뮴자석(20)의 일단을 구속시키는 역할을 한다.
상기 제2측면 자석부(50)는 제3네오디뮴자석(30)의 타측부에 배치되며, 제2네오디뮴자석(20)의 타단이 삽입될 수 있는 제2삽입홈(51)이 형성된다. 이 경우, 제2측면 자석부(50)는 제3네오디뮴자석(30)의 타면에 결합될 수 있다. 또한, 제2측면 자석부(50)는 중앙부에 제2삽입홈(51)보다 작은 직경을 가지는 제2거치홀(52)이 형성된다.
이러한 제2삽입홈(51)은 제2네오디뮴자석(20)의 타단이 삽입된 상태에서 제2네오디뮴자석(20)이 제1네오디뮴자석(10)의 외면과 제3네오디뮴자석(30)의 외면에 닿지 않도록 제2네오디뮴자석(20)의 타단을 구속시키는 역할을 한다.
상기 축대(60)는 양단이 제1네오디뮴자석(10)의 제1실장홀(11)에 삽입되며, 일단부가 제1실장홀(11)을 통과한 상태로 노출되어 제1측면 자석부(40)의 제1거치홀(42)을 통과하고, 타단부가 제1실장홀(11)을 통과한 상태로 노출되어 제2측면 자석부(50)의 제2거치홀(52)을 통과한다. 이러한 축대(60)는 제1네오디뮴자석(10)을 안착시킴과 동시에 양단부가 제1측면 자석부(40)와 제2측면 자석부(50)를 통과함으로써, 제1측면 자석부(40)와 제2측면 자석부(50)가 상하부 방향으로 유동되지 않도록 구속시키는 역할을 하여 제2측면 자석부(50)와 제2측면 자석부(50)들과 결합되거나 삽입되는 구성들이 유동되지 않도록 하는 역할을 하게 된다.
상기 권선코일체(70)는 축대(60)에 감긴다. 이 경우, 권선코일체(70)는 축대(60)에 감긴상태에서 일단이 제1측면 자석부(40)의 제1거치홀(42)을 통과하여 외부로 노출되고, 타단이 제2측면 자석부(50)의 제2거치홀(52)을 통과하여 외부로 노출된다.
이와 같은 구성을 가지는 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴을 이용한 전기발생장치는, 제1네오디뮴자석(10)과 제3네오디뮴자석(30)이 고정된 상태에서, 제2네오디뮴자석(20)이 제1네오디뮴자석(10)과 제3네오디뮴자석(30) 사이에서 회전하여 권선코일체(70)에 전기장을 형성함으로써 권선코일체(70)에서 전기가 발생되도록 하는데, 최대 에너지적 상용적인 자석 중 가장 높은 네오디뮴자석에 의해 이루어지는 것으로, 가공성이 양호하고 자력에 비해 비교적 가격이 저렴할 뿐만 아니라, 산화력이 강하기 때문에, 자동차, 센서, 스피커, 서보모터, 핸드백, 액세서리, 건강용품 및 각종 스위치 등에 많이 사용되고 있으며, 일반 영구자석을 이용한 전기발생장치보다 더욱 많은 양의 전기를 생산할 수 있다.
이 경우, 제2네오디뮴자석(20)은 외면의 극이 제3네오디뮴자석(30)의 내면과 동일한 극을 형성하며, 내면의 극이 제1네오디뮴자석(10)의 외면과 동일한 극을 형성한 상태에서 나선형의 배열구조를 가지는 제1네오디뮴자석(10)과 제3네오디뮴자석(30) 사이에서 회전함으로써, 제3네오디뮴자석(30)과 제2네오디뮴자석(20) 사이에서 발생하는 와류형태의 제1자기장과, 제1네오디뮴자석(10)과 제2네오디뮴자석(20) 사이에서 발생하는 와류형태의 제2자기장이 권선코일체(70)로 전달되기 때문에 자기장의 세기가 증폭되어 동일 시간대비 동일한 회전력이 가해진 경우, 종래보다 많은 양의 전기를 생산할 수 있게 된다.
더불어, 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴을 이용한 전기발생장치에서 제2네오디뮴자석(20)은 제1삽입홈(41)에 삽입되는 일단이 제1극을 이루고, 제1측면 자석부(40)는 제1삽입홈(41)이 제1극을 이루며, 제2네오디뮴자석(20)은 제2삽입홈(51)에 삽입되는 타단이 제2극을 이루고, 제2측면 자석부(50)는 제2삽입홈(51)이 제2극을 이룬다. 즉, 제2네오디뮴자석(20)과 제1삽입홈(41) 사이에는 서로 간에 동일한 제1극을 형성하고, 제2네오디뮴자석(20)과 제2삽입홈(51) 사이에는 서로 간에 동일한 제2극을 형성함으로써, 제2네오디뮴자석(20)과 제1삽입홈(41) 사이에는 와류형태의 제3자기장이 발생하여 권선코일체(70)로 전달되고, 제2네오디뮴자석(20)과 제2삽입홈(51) 사이에는 와류형태의 제4자기장이 발생하여 권선코일체(70)로 전달되기 때문에, 자기장의 세기가 증폭되어 동일 시간대비 동일한 회전력이 가해진 경우, 종래보다 많은 양의 전기를 생산할 수 있게 된다.
한편, 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는 케이스(80), 제1커버(90) 및, 제2커버(100)를 더 포함할 수 있다.
상기 케이스(80)는 축대(60), 권선코일체(70), 제1네오디뮴자석(10), 제2네오디뮴자석(20), 제3네오디뮴자석(30), 제1측면 자석부(40) 및, 제2측면 자석부(50)를 수용하는 실장공간이 형성되며, 양단이 개구된 원통체 형상으로 이루어진다.
상기 제1커버(90)는 케이스(80)를 일단 개구부에 결합하여 케이스(80)의 일단을 마감하며, 축대(60)의 일단과 권선코일체(70)의 일단이 통과될 수 있는 제1통과홀(91)이 형성된다.
상기 제2커버(100)는 상기 케이스(80)를 타단 개구부에 결합하여 상기 케이스(80)의 타단을 마감하며, 상기 축대(60)의 타단과 상기 권선코일체(70)의 타단이 통과될 수 있는 제2통과홀(101)이 형성된다.
이러한 케이스(80)와 제1커버(90) 및 제2커버(100)는 서로 간에 일체형으로 결합된 상태에서 제1네오디뮴자석(10), 제2네오디뮴자석(20), 제3네오디뮴자석(30), 제1측면 자석부(40) 및, 제2측면 자석부(50)를 외부 충격으로부터 보호하여 내구성을 향상시키게 된다. 특히, 제1커버(90)와 제2커버(100)는 제1측면 자석부(40) 및 제2측면 자석부(50)가 측방향으로 유동되는 것을 방지하여 제1측면 자석부(40) 및 제2측면 자석부(50)에 맞물려 구속되어 있는 제1네오디뮴자석(10), 제2네오디뮴자석(20), 제3네오디뮴자석(30) 및, 축대(60)를 구속시킴으로써 충격에 의해 제1네오디뮴자석(10), 제2네오디뮴자석(20), 제3네오디뮴자석(30) 및, 축대(60)들의 서로 간에 맞물린 위치가 틀어지는 등의 현상을 방지하게 된다.
또한, 본 발명의 일실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는 안착부(110)를 더 포함할 수 있다.
상기 안착부(110)는 제1거치대(111)와 제2거치대(112) 및 받침대(113)를 포함한다.
상기 제1거치대(111)는 프레임형상으로 구성되며, 축대(60)의 일단이 결합된다. 이러한 제1거치대(111)는 축대(60)의 일단과 결합되기 위하여 축대(60)의 결합을 위한 홀이 더 형성될 수 있다.
상기 제2거치대(112)는 프레임형상으로 구성되며, 축대(60)의 일단이 결합된다. 이러한 제2거치대(112)는 축대(60)의 일단과 결합되기 위하여 축대(60)의 결합을 위한 홀이 더 형성될 수 있다.
상기 받침대(113)는 제1거치대(111)와 제2거치대(112) 사이에 결합되며, 케이스(80)가 안착되는 안착판(113a)이 마련된다. 이 경우, 안착판(113a)은 케이스(80)와 맞닿는 형상에 밀착되도록 케이스(80)의 외면에 밀착되는 형태로 구현될 수 있다. 본 실시예의 경우, 케이스(80)는 원통형으로 이루어지며, 안착판(113a)은 오목한 홈을 구비하여 케이스(80)에 밀착될 수 있다.
상기한 제1거치대(111)와 제2거치대(112) 및 받침대(113)는 케이스(80)와 축대(60)가 안착될 수 있는 안착공간을 마련함으로써, 전력 발생을 위한 구동시에 케이스(80)의 유동을 방지하게 된다.
도 7은 본 발명의 다른 실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치의 단면도이다.
도 7을 참조하면, 본 발명의 다른 실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는 전술한 실시예의 구성에 제1기어(120) 및, 손잡이(130)를 더 구성한 것이다.
본 실시예에서, 전술한 실시예와 동일한 구성은 동일한 도면부호로 명기하며, 이에 대한 중복되는 설명을 하지 않고, 본 실시예에서 변경된 구성의 특징만을 중점적으로 설명하기로 한다.
본 실시예의 경우, 제2네오디뮴자석(20)의 일측면에는 톱니형상이 배열된 형태의 측면기어(22)가 더 형성된다.
상기 제1기어(120)는 측면기어(22)와 맞물려 연동하게 된다. 여기서, 제2네오디뮴자석(20)의 측면기어(22)와 제1기어(120)는 베벨기어와 같은 원리로 구동하여 서로 간에 회전방향이 90도 된 상태로 회전하는 구동을 할 수 있다. 이 경우, 제1기어(120)는 회전을 위하여 케이스(80)에 고정된 상태에서 중심축 부근에 삽입된 샤프트를 더 구비할 수 있다.
상기 손잡이(130)는 제1기어(120)의 중심축에서 제1기어(120)에 결합된다. 이 경우, 손잡이(130)는 편향되게 결합된 후, 몸체의 중간 일부가 일정각도를 이루며 두 번 이상 구부러짐으로써 더욱 용이하게 회전될 수 있는 형태로 변형될 수 있음은 물론이다.
여기서, 케이스(80)는 제1기어(120)가 수용될 수 있는 수용부가 더 구비된다.
이러한 추가구성을 갖는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는 손잡이(130)를 회전시키게 되는 경우, 제1기어(120)를 회전시키게 되고, 제1기어(120)는 제2네오디뮴자석(20)을 회전시키게 된다.
그러면, 제2네오디뮴자석(20)은 제1네오디뮴자석(10), 제3네오디뮴자석(30), 제1측면 자석부(40) 및, 제2측면 자석부(50) 사이 공간에 와류 형태의 전기장을 발생시킴으로써, 권선코일체(70)에 전류가 생산되도록 한다. 물론, 이 경우, 케이스(80)의 수용부에는 제1기어(120)에는 베벨기어와 같은 원리로 구동하는 기어(미도시)를 더 설치하여 연동되게 구동할 수 있음은 물론이다.
이와 같이, 본 발명의 다른 실시예에 따른 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치는, 손잡이(130)를 돌려 전기를 생산하게 되는데, 이 경우, 제2네오디뮴자석(20)이 회전하여 제1네오디뮴자석(10), 제3네오디뮴자석(30), 제1측면 자석부(40) 및, 제2측면 자석부(50)들 각각의 사이에서 와류형태의 전기장을 발생시켜 권선코일체(70)에서 전류가 생산되도록 함으로써, 별도의 동력없이 사람의 인력만으로 종래의 전기발생장치보다 동시간 동일회전 대비 더욱 많은 양의 전기를 생산할 수 있게 된다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위 뿐만 아니라, 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (7)

  1. 양단이 개구되어 제1실장홀(11)을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루는 제1네오디뮴자석(10);
    양단이 개구되어 제2실장홀(21)을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제2극을 이루고 외면이 제1극을 이루며, 원통체의 내측공간에 상기 제1네오디뮴자석(10)이 배치되는 제2네오디뮴자석(20);
    양단이 개구되어 제3실장홀(31)을 가지는 원통체 형상으로 이루어지며, 몸체의 외면에 네오디뮴자석들이 배열되되 길이방향에 대해 나선형으로 배열되어 형성되며, 원통체의 내측공간이 제1극을 이루고 외면이 제2극을 이루며, 원통체의 내측공간에 상기 제2네오디뮴자석(20)이 배치되는 제3네오디뮴자석(30);
    상기 제3네오디뮴자석(30)의 일측부에 배치되며, 상기 제2네오디뮴자석(20)의 일단이 삽입될 수 있는 제1삽입홈(41)이 형성되고, 중심부에 상기 제1삽입홈(41)보다 적은 직경을 가지는 제1거치홀(42)이 형성되는 제1측면 자석부(40);
    상기 제3네오디뮴자석(30)의 타측부에 배치되며, 상기 제2네오디뮴자석(20)의 타단이 삽입될 수 있는 제2삽입홈(51)이 형성되고, 중심부에 상기 제2삽입홈(51)보다 작은 직경을 가지는 제2거치홀(52)이 형성되는 제2측면 자석부(50);
    상기 제1네오디뮴자석(10)의 제1실장홀(11)에 실장되며, 일단이 상기 제1거치홀(42)을 통과하고, 타단이 상기 제2거치홀(52)을 통과하는 축대(60); 및
    상기 축대(60)에 감기는 권선코일체(70)를 포함하며,
    상기 제1네오디뮴자석(10)과 상기 제3네오디뮴자석(30)은 고정되며, 상기 제2네오디뮴자석(20)은 상기 제1네오디뮴자석(10)과 상기 제3네오디뮴자석(30) 사이에서 회전하여 상기 권선코일체(70)에 전기장을 형성함으로써 상기 권선코일체(70)에서 전기가 발생되도록 하고,
    상기 축대(60), 상기 권선코일체(70), 상기 제1네오디뮴자석(10), 상기 제2네오디뮴자석(20), 상기 제3네오디뮴자석(30), 상기 제1측면 자석부(40) 및 상기 제2측면 자석부(50)를 수용하는 실장공간이 형성되며, 양단이 개구된 원통체 형상의 케이스(80);
    상기 케이스(80)를 일단 개구부에 결합하여 상기 케이스(80)의 일단을 마감하며, 상기 축대(60)의 일단과 상기 권선코일체(70)의 일단이 통과될 수 있는 제1통과홀이 형성되는 제1커버(90);
    상기 케이스(80)를 타단 개구부에 결합하여 상기 케이스(80)의 타단을 마감하며, 상기 축대(60)의 타단과 상기 권선코일체(70)의 타단이 통과될 수 있는 제2통과홀이 형성되는 제2커버(100);
    상기 축대(60)의 일단이 결합되는 제1거치대(111)와, 상기 축대(60)의 타단이 결합되는 제2거치대(112) 및, 상기 제1거치대(111)와 상기 제2거치대(112) 사이에 결합되며 상기 케이스(80)가 안착되는 안착판(113a)이 마련되는 받침대(113)를 포함하는 안착부(110);
    톱니형상이 배열된 형태로 구성되며, 상기 제2네오디뮴자석(20)의 일측면에 형성되는 측면기어(22);
    상기 측면기어(22)와 맞물려 연동하는 제1기어(120); 및
    상기 제1기어(120)의 중심축에서 상기 제1기어(120)에 결합되어 회전시 상기 제1기어(120)를 회전시킴으로써 상기 제2네오디뮴자석(20)를 회전시키는 손잡이(130)를 더 포함하고,
    상기 케이스(80)는 일방으로 돌출되어 상기 제1기어(120)가 수용될 수 있는 수용부를 더 구비하는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
  2. 제1항에 있어서,
    상기 제2네오디뮴자석(20)은, 상기 제1삽입홈(41)에 삽입되는 일단이 제1극을 이루고, 상기 제2삽입홈(51)에 삽입되는 타단이 제2극을 이루는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
  3. 제1항에 있어서,
    상기 제1측면 자석부(40)는, 제2네오디뮴자석(20)의 단부 극성에 대응하여 제1삽입홈(41)이 제1극을 이루며, 제2삽입홈(51)이 제2극을 이루는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
  4. 제1항에 있어서,
    상기 제1네오디뮴자석(20), 제2네오디뮴자석(20), 제3네오디뮴자석(30)의 각각의 제1극 또는 제2극은, 각각 N극 또는 S극 중 어느 하나의 극으로 이루어지는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
  5. 제1항에 있어서,
    상기 제1네오디뮴자석(20), 제2네오디뮴자석(20), 제3네오디뮴자석(30)은, 각각의 내외부면이 서로 접촉 차단되도록 조립되는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
  6. 제1항에 있어서,
    상기 경사지게 나선형으로 배열되는 제1네오디뮴자석(10)과 제3네오디뮴자석(30)은, 서로 동일방향으로 경사지게 배열 구성되어 이루어지는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
  7. 제1항에 있어서,
    상기 경사지게 나선형으로 배열되는 제1네오디뮴자석(10) 및 제3네오디뮴자석(30)은, 각각 제2네오디뮴자석(20)과 반대 방향으로 경사지게 나선형으로 배열 구성되어 이루어지는 것을 특징으로 하는 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치.
PCT/KR2014/008686 2013-10-29 2014-09-18 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치 WO2015064911A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480059931.7A CN105706337B (zh) 2013-10-29 2014-09-18 利用具备螺旋形结构的钕磁铁的发电装置
US15/033,114 US9966806B2 (en) 2013-10-29 2014-09-18 Electricity generation device using neodymium magnet having helical structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130129073A KR101388825B1 (ko) 2013-10-29 2013-10-29 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치
KR10-2013-0129073 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064911A1 true WO2015064911A1 (ko) 2015-05-07

Family

ID=50658622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008686 WO2015064911A1 (ko) 2013-10-29 2014-09-18 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치

Country Status (4)

Country Link
US (1) US9966806B2 (ko)
KR (1) KR101388825B1 (ko)
CN (1) CN105706337B (ko)
WO (1) WO2015064911A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448524B2 (en) * 2016-04-07 2022-09-20 Phoenix America Inc. Multipole magnet for use with a pitched magnetic sensor
WO2020243335A1 (en) * 2019-05-31 2020-12-03 Chubby Gorilla, Inc. Manually powered vaporizing device and methods of using same
US20240186873A1 (en) * 2022-10-25 2024-06-06 Chien-Kuo Liu Generator with minimal to non-existent rotation resistance through controlled attractions among all magnets and iron cores

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163132A (ja) * 1993-11-30 1995-06-23 Shunichi Matsutani 永久磁石対向吸引式回転動力発生装置
JP2010004716A (ja) * 2008-06-23 2010-01-07 Fuji Electric Systems Co Ltd 永久磁石形回転電機の回転子構造
KR20110010852A (ko) * 2009-07-27 2011-02-08 강칠호 자력을 이용한 동력 발생장치
KR101223825B1 (ko) * 2012-04-04 2013-01-17 소문섭 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426224A (en) * 1966-08-26 1969-02-04 Ernie Byron Esters Dynamoelectric machine with plural split permanent magnet stators
KR100288246B1 (ko) * 1999-03-12 2001-04-16 정형 Nd(네오디뮴) 자석을 이용한 자력 흡착기
US6304017B1 (en) * 2000-02-18 2001-10-16 The United States Of America As Represented By The Secretary Of The Army Counter rotating nested cylinders in electrical machinery
US7791242B2 (en) * 2004-08-20 2010-09-07 Clearwater Holdings, Ltd. DC induction electric motor-generator
US8159104B1 (en) * 2005-08-22 2012-04-17 Clearwater Holdings, Ltd DC induction electric motor-generator with magnetic gap self commutating laminated ferromagnetic rotating core
KR20090038532A (ko) 2007-10-16 2009-04-21 기승철 코일권선단위체가 n극영구자석 과 s극영구자석 사이의공극을 따라 회전하며 전기를 생성하는 발전장치 및 그발전방법
KR101195709B1 (ko) 2012-03-26 2012-10-29 소문섭 네오디뮴자석을 이용한 전기발생장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163132A (ja) * 1993-11-30 1995-06-23 Shunichi Matsutani 永久磁石対向吸引式回転動力発生装置
JP2010004716A (ja) * 2008-06-23 2010-01-07 Fuji Electric Systems Co Ltd 永久磁石形回転電機の回転子構造
KR20110010852A (ko) * 2009-07-27 2011-02-08 강칠호 자력을 이용한 동력 발생장치
KR101223825B1 (ko) * 2012-04-04 2013-01-17 소문섭 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치

Also Published As

Publication number Publication date
KR101388825B1 (ko) 2014-04-25
CN105706337B (zh) 2018-10-12
CN105706337A (zh) 2016-06-22
US20160254708A1 (en) 2016-09-01
US9966806B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
US8299659B1 (en) Electric power generator apparatus
WO2011059129A1 (ko) 압전세라믹 및 자석을 이용한 에너지 하비스팅 장치
WO2012060493A1 (ko) 개량된 형태의 저속발전기
WO2010085044A2 (ko) 발전 효율과 회전력 향상이 이루어진 발전장치
KR20180002291A (ko) 마그넷 발전기
WO2015064911A1 (ko) 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치
US6153959A (en) Axle-less electromagnetic rotating assembly
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
KR101872262B1 (ko) 마그넷 발전기
WO2013002487A1 (ko) 발전량 가변형 발전기
CN104319975A (zh) 单槽单极圆筒动磁直线交流发电机
WO2011030977A1 (ko) 풍력발전용 편심 이중 회전자 구조체
KR101101549B1 (ko) 자가발전모터
KR20190090755A (ko) 모터와 알터네이터를 융합한 구동기계
KR101195709B1 (ko) 네오디뮴자석을 이용한 전기발생장치
WO2019240407A1 (ko) 풍력과 자성체를 이용한 발전 장치
KR101223825B1 (ko) 나선형 구조를 갖는 네오디뮴자석을 이용한 전기발생장치
KR20120124157A (ko) 자석을 이용한 발전장치
WO2015115762A1 (ko) 복합 발전기능을 갖는 전동기
US20140070650A1 (en) Electric Motor Turbine
RU2316881C2 (ru) Электрический мотор на постоянных магнитах
KR101727214B1 (ko) 발전장치
KR20120032112A (ko) 자력발동기
KR102597241B1 (ko) 베어링을 이용한 발전기
CN201113849Y (zh) 磁力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15033114

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14857643

Country of ref document: EP

Kind code of ref document: A1