WO2016114076A1 - Pump device for use in automatic transmission, or pump device - Google Patents

Pump device for use in automatic transmission, or pump device Download PDF

Info

Publication number
WO2016114076A1
WO2016114076A1 PCT/JP2015/085738 JP2015085738W WO2016114076A1 WO 2016114076 A1 WO2016114076 A1 WO 2016114076A1 JP 2015085738 W JP2015085738 W JP 2015085738W WO 2016114076 A1 WO2016114076 A1 WO 2016114076A1
Authority
WO
WIPO (PCT)
Prior art keywords
venturi
pump
automatic transmission
pump device
inner diameter
Prior art date
Application number
PCT/JP2015/085738
Other languages
French (fr)
Japanese (ja)
Inventor
悟多 熊坂
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/540,868 priority Critical patent/US20180023563A1/en
Priority to CN201580071328.5A priority patent/CN107110155A/en
Priority to DE112015005940.7T priority patent/DE112015005940T5/en
Publication of WO2016114076A1 publication Critical patent/WO2016114076A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/10Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/21Pressure difference
    • F04C2270/215Controlled or regulated

Definitions

  • the present invention relates to a pump device.
  • a pump device having a control valve is known.
  • the control valve controls the flow rate of the hydraulic fluid that the pump device supplies to the device.
  • the pump device described in Patent Document 1 generates a differential pressure according to the flow rate to be discharged.
  • the control valve controls the flow rate by switching the flow path of the hydraulic fluid based on the differential pressure.
  • a venturi portion is provided in the middle of the discharge passage and the inner diameter gradually increases from the small diameter portion toward the downstream side of the discharge passage in order to generate a differential pressure.
  • FIG. 1 shows an outline of a configuration of a pump device according to a first embodiment.
  • the partial cross section which cut the pump housing of Example 1 with the plane orthogonal to the axial center of a drive shaft is shown.
  • Fig. 4 shows a cross-sectional view taken along line AA in Fig. 3. It is the figure which looked at the venturi formation block of Example 1 from the axial direction one side.
  • the upper part schematically shows the discharge passage in the vicinity of the venturi part of the first embodiment.
  • the lower row shows changes in pressure associated with each part in the upper row.
  • the upper stage schematically shows the discharge passage in the vicinity of the orifice of the comparative example.
  • the lower row shows changes in pressure associated with each part in the upper row.
  • Example 1 is indicated by a solid line, and a comparative example is indicated by an alternate long and short dash line. The relationship between the narrow angle of Example 1 and a pressure loss ratio is shown.
  • the upper row schematically shows a discharge passage in which the large diameter portion is provided upstream of the venturi portion in the first embodiment.
  • the lower row shows changes in pressure associated with each part in the upper row.
  • the upper part schematically shows a discharge passage having a step part (rear part) on the downstream side of the inner diameter gradually increasing part in the first embodiment.
  • the lower row shows changes in pressure associated with each part in the upper row.
  • 11 shows the relationship between the ratio L / L0 of L to L0 in FIG.
  • FIG. 15 shows a cross section taken along the line BB of FIG. The outline of the structure of the pump apparatus of Example 6 is shown.
  • the partial cross section which cut the pump housing of Example 6 with the plane containing the axial center of a drive shaft is shown.
  • FIG. 1 shows a configuration of a hydraulic system to which the pump device 1 is applied.
  • the pump device 1 is mounted on an automobile vehicle.
  • the pump device 1 is a hydraulic fluid supply source that supplies hydraulic fluid to other devices (vehicle mounted devices) mounted on the vehicle.
  • the vehicle-mounted device to which the pump device 1 supplies hydraulic fluid is an automatic transmission.
  • the automatic transmission is a continuously variable transmission, specifically a belt-type continuously variable transmission (hereinafter referred to as CVT) 10.
  • the hydraulic fluid is ATF (Automatic Transmission Fluid).
  • the pump device 1 is driven by an internal combustion engine as a prime mover, and sucks and discharges hydraulic fluid from the oil pan 100.
  • a CVT10 oil pan 100 can be used.
  • Various valves controlled by the CVT control unit are provided in the control valve of the CVT10.
  • the hydraulic fluid discharged from the pump device 1 is supplied to each part (primary pulley, secondary pulley, forward clutch, reverse brake, torque converter, lubrication / cooling system, etc.) of the CVT 10 via the control valve.
  • the pump device 1 has a pump housing 2, a pump element 4, a venturi part 50, and a control valve 8.
  • the pump housing 2 houses the pump element 4, the control valve 8, and the venturi part 50.
  • the pump housing 2 is provided with a suction passage 3, a discharge passage 5, a high pressure passage 6, an intermediate pressure passage 7, and a return passage 9 as passages through which hydraulic fluid flows.
  • the suction passage 3 connects the oil pan 100 and the pump element 4.
  • the discharge passage 5 connects the pump element 4 and the CVT 10.
  • a venturi 50 is provided on the discharge passage 5.
  • the venturi section 50 is a throttle section provided in the middle of the discharge passage 5.
  • the high-pressure passage 6 connects the control valve 8 to the pump element 4 side (hereinafter referred to as the upstream side) with respect to the venturi section 50 in the discharge passage 5.
  • the intermediate pressure passage 7 connects the venturi unit 50 and the control valve 8.
  • the return passage 9 connects the control valve 8 and the suction passage 3 (oil pan 100).
  • a drive shaft 40 is pivotally supported on the pump housing 2. The drive shaft 40 is driven by a crankshaft of the internal combustion engine.
  • the pump element 4 is rotationally driven by a drive shaft 40.
  • the pump element 4 sucks hydraulic fluid from the oil pan 100 through the suction passage 3.
  • the pump element 4 discharges hydraulic fluid to the discharge passage 5 and supplies it to the CVT 10 via the discharge passage 5.
  • a relatively high pressure (hereinafter referred to as “high pressure”) upstream of the venturi section 50 is introduced into the control valve 8 via the high pressure passage 6.
  • a relatively low pressure (medium pressure, hereinafter referred to as intermediate pressure) in the venturi section 50 is introduced into the control valve 8 through the intermediate pressure passage 7.
  • the control valve 8 switches the flow path of the hydraulic fluid based on the difference (differential pressure) between the pressure upstream of the venturi unit 50 and the pressure in the venturi unit 50. Thereby, the flow volume of the hydraulic fluid which the pump element 4 supplies to CVT10 is controlled.
  • the x axis is provided in the left-right direction in FIG. 3, and the right side is positive.
  • the y-axis is provided in the vertical direction in the plane of FIG. 3, and the upper side is positive.
  • the z axis is provided in a direction perpendicular to the paper surface of FIG. 3, and the front side of the paper surface is positive.
  • the drive shaft 40 (axial center O) extends in the z-axis direction.
  • the pump housing 2 has a pump housing body 20 and a venturi forming block 21.
  • the pump housing body 20 is made of a metal material.
  • a suction port 230 and a discharge port 231 are formed in the pump housing body 20.
  • the venturi forming block 21 is formed of a resin material.
  • the venturi forming block 21 is a member different from the pump housing body 20.
  • the pump housing body 20 has a rear body 22, a side plate 23, and a front body.
  • the rear body 22 includes an accommodation recess 220, a first hole 221, a second hole 222, a third hole 223, a fourth hole 224, a fifth hole 225, a discharge pressure chamber 226, a valve accommodation hole 227, and a venturi forming block accommodation hole 228. , And a bearing holding hole is formed.
  • the housing recess 220 has a bottomed cylindrical shape. The housing recess 220 extends in the z-axis direction and opens on the z-axis positive direction side of the rear body 22.
  • a semi-cylindrical first groove (not shown) and a second groove (not shown) are provided on the inner peripheral surface of the housing recess 220 so as to extend in the z-axis direction.
  • the second groove is provided on the opposite side of the first groove with the axis of the housing recess 220 interposed therebetween.
  • the bearing holding hole (not shown) has a bottomed cylindrical shape.
  • the bearing holding hole extends in the z-axis direction and opens at the bottom of the housing recess 220 on the z-axis negative direction side.
  • a bearing is installed on the inner periphery of the bearing holding hole.
  • the end of the drive shaft 40 in the negative z-axis direction is inserted on the inner peripheral side of the bearing, and is rotatably installed.
  • the discharge pressure chamber 226 is a bottomed recess provided at the bottom of the housing recess 220 and opens to the bottom.
  • the first hole 221 extends in the y-axis direction on the x-axis negative direction side and the z-axis negative direction side of the rear body 22.
  • the opening of the first hole 221 on the y-axis negative direction side of the rear body 22 is sealed with a plug member 221a.
  • the first hole 221 is formed so as to partially overlap the discharge pressure chamber 226 when viewed from the y-axis direction and the z-axis direction, and is connected to the discharge pressure chamber 226.
  • the valve housing hole 227 is substantially cylindrical, and extends in the x-axis direction on the y-axis positive direction side and the z-axis negative direction side of the rear body 22.
  • the longitudinal direction (x-axis direction) of the valve housing hole 227 is orthogonal to the direction of the axis O (z-axis direction).
  • the x-axis positive direction end of the valve housing hole 227 opens to the outer surface of the rear body 22. This opening is sealed by a plug member 227a.
  • the x-axis negative direction end of the valve housing hole 227 is connected to the y-axis positive direction end of the first hole 221.
  • One end of the fifth hole 225 opens near the valve housing hole 227 in the negative x-axis direction.
  • the other end of the fifth hole 225 opens to the outer surface of the rear body 22.
  • the venturi forming block accommodation hole 228 is substantially cylindrical, and extends in the x-axis direction on the negative side of the rear body 22 in the z-axis direction. That is, the longitudinal direction (x-axis direction) of the venturi forming block accommodation hole 228 is substantially parallel to the longitudinal direction of the valve accommodation hole 227 and is orthogonal to the direction of the axis O (z-axis direction).
  • the x-axis negative direction side of the venturi forming block accommodation hole 228 is formed so as to intersect the first hole 221 and is connected to the first hole 221.
  • the x-axis negative direction side of the venturi forming block accommodating hole 228 is formed so as to partially overlap the discharge pressure chamber 226 when viewed from the y-axis direction and the z-axis direction, and is connected to the discharge pressure chamber 226.
  • the x-axis negative direction end of the venturi forming block accommodation hole 228 opens to the outer surface of the rear body 22. This opening is sealed by a plug member 228a.
  • the second hole 222 is provided on substantially the same axis as the venturi forming block accommodating hole 228, and extends in the x-axis direction on the x-axis positive direction side and the z-axis negative direction side of the rear body 22.
  • the side plate 23 has a disk shape.
  • the side plate 23 is provided with a shaft receiving hole (not shown).
  • the shaft accommodating hole passes through the center portion of the side plate 23.
  • a pair of suction ports 230a and 230b and a pair of discharge ports 231a and 231b are provided on the surface of one side of the side plate 23 in the axial direction.
  • the pair of suction ports 230a and 230b are grooves extending in a substantially arc shape around the shaft housing hole (hereinafter referred to as a circumferential direction), and are provided at positions facing each other across the shaft housing hole.
  • the pair of discharge ports 231a and 231b are grooves extending in a substantially arc shape in the circumferential direction, and are provided at positions facing each other across the shaft housing hole.
  • the first communication passage of the side plate 23 is connected to the suction passage 3 of the rear body 22.
  • Each suction port 230 is connected to the suction passage 3 via the first communication passage.
  • the second communication path of the side plate 23 is connected to the discharge pressure chamber 226 of the rear body 22.
  • Each discharge port 231 is connected to the discharge pressure chamber 226 via the second communication path.
  • the venturi forming block 21 is substantially cylindrical.
  • the diameter (outer diameter) of the outer peripheral surface of the venturi forming block 21 is substantially equal to the diameter (inner diameter) of the inner peripheral surface of the venturi forming block accommodation hole 228.
  • a venturi portion 50 is formed in the venturi forming block 21.
  • the venturi portion 50 is a throttle portion formed on the venturi forming block 21 by molding.
  • the venturi forming block 21 is joined to the pump housing body 20 after the venturi portion 50 is formed. 3 and 4, a cross section of the venturi forming block 21 taken along a plane passing through an axis (axial center) along the longitudinal direction of the venturi 50 is shown.
  • the venturi forming block 21 includes an inner diameter gradually decreasing portion 210, a venturi portion 50, a communication hole 213, a first communication groove 214, and a second communication groove 215.
  • the venturi part 50 has a small diameter part 51 and an inner diameter gradually increasing part 52.
  • the inner diameter gradually decreasing portion 210 is provided on the inner peripheral side of the venturi forming block 21 so as to extend in the axial direction, and opens to the end surface on one side of the venturi forming block 21 in the axial direction.
  • the inner diameter gradually decreasing portion 210 is a tapered portion that tapers from one side in the axial direction toward the other side in the axial direction (downstream of the discharge passage 5), and is formed so that the inner diameter gradually decreases toward the other side in the axial direction.
  • the inner diameter of one end in the axial direction of the inner diameter gradually decreasing portion 210 is smaller than the inner diameter of the venturi forming block accommodation hole 228.
  • the small diameter portion 51 is provided on the inner peripheral side of the venturi forming block 21 and extends in the axial direction.
  • One end in the axial direction of the small diameter portion 51 is connected to the other end in the axial direction of the inner diameter gradually decreasing portion 210.
  • the inner diameter of the small diameter portion 51 is substantially equal to the inner diameter of the other end in the axial direction of the inner diameter gradually decreasing portion 210 and is constant in the axial direction.
  • the inner diameter gradually increasing portion 52 is provided on the inner peripheral side of the venturi forming block 21 so as to extend in the axial direction. One end in the axial direction of the inner diameter gradually increasing portion 52 is connected to the other end in the axial direction of the small diameter portion 51, and the other end in the axial direction of the inner diameter gradually increasing portion 52 is open to the end surface on the other axial side of the venturi forming block 21.
  • the gradually increasing inner diameter portion 52 is a tapered portion that tapers from the other side in the axial direction toward one side in the axial direction (upstream side of the discharge passage 5), and from one side in the axial direction to the other side in the axial direction (downstream side of the discharge passage 5). ) So that the inner diameter gradually increases.
  • the inner diameter of the other end in the axial direction of the inner diameter gradually increasing portion 52 is slightly smaller than the inner diameter of the second hole 222.
  • the venturi forming block 21 has a narrow angle ⁇ sandwiched between the inner walls of the inner diameter gradually increasing portion 52 (the angle between the inner walls viewed from the direction orthogonal to the axis of the venturi portion 50 is 180 degrees or less). It is formed so as to be less than 15 degrees, specifically about 15 degrees.
  • the communication hole 213 is a radial hole formed inside the venturi forming block 21 and extending in the radial direction of the venturi forming block 21.
  • a plurality (four) of communication holes 213 are provided and are arranged at substantially equal intervals in the circumferential direction.
  • the communication hole 213 is provided at a position overlapping the small diameter portion 51 in the axial direction.
  • the radially inner end of the communication hole 213 opens to the small diameter portion 51.
  • the first communication groove 214 is a circumferential groove formed on the outer peripheral surface of the venturi forming block 21 and extending in the circumferential direction.
  • the first communication groove 214 is provided at a position overlapping the small diameter portion 51 and the communication hole 213 in the axial direction.
  • the radially outer end of the communication hole 213 opens in the first communication groove 214 (the bottom thereof).
  • the second communication groove 215 is an axial groove formed on the outer peripheral surface of the venturi forming block 21 and extending in the axial direction. One axial end of the second communication groove 215 is connected to the first communication groove 214. The other end in the axial direction of the second communication groove 215 is located in the vicinity of the end surface on the other axial side of the venturi forming block 21.
  • the venturi forming block 21 is joined to the pump housing body 20 (the venturi forming block accommodation hole 228 of the rear body 22) as shown in FIGS. 3 and 4 after the venturi portion 50 is formed.
  • the axis of the venturi forming block 21 (the venturi portion 50) extends in the x-axis direction.
  • the one axial side of the venturi forming block 21 is the x-axis negative direction side, and the other axial side of the venturi forming block 21 is the x-axis positive direction side.
  • the end surface on the other axial side of the venturi forming block 21 (where the inner diameter gradually increasing portion 52 opens) abuts on the end surface on the positive x-axis side of the venturi forming block accommodation hole 228 (where the second hole 222 opens).
  • the other axial end of the second communication groove 215 in the venturi forming block 21 is connected to the opening of the fourth hole 224 in the venturi forming block accommodation hole 228.
  • a third communication extending in the circumferential direction and connected to the other axial end of the second communication groove 215 at an axial position opposed to the opening of the fourth hole 224 in the radial direction.
  • a groove may be provided.
  • the pump element 4 is housed in a space surrounded by the inner periphery of the housing recess 220 in the rear body 22, the surface on the z-axis positive direction side of the side plate 23, and the surface on the z-axis negative direction side of the front body. That is, the space functions as a pump element housing portion.
  • a drive shaft 40 is installed in the space, and the pump element 4 forms a plurality of pump chambers 400 around the drive shaft 40.
  • the pump element 4 is a vane pump type and has a set of a rotor 41 and a vane 42.
  • the rotor 41 is provided in the pump element accommodating portion and is connected to the drive shaft 40 by serration.
  • the rotor 41 is rotationally driven by the drive shaft 40 and rotates as the drive shaft 40 rotates.
  • the rotor 41 is provided with a plurality of (ten) slits 410 (grooves extending in the radial direction) radially.
  • the slit 410 opens on the outer peripheral surface of the rotor 41.
  • the plurality of slits 410 are provided at substantially equal intervals in the circumferential direction of the rotor 41.
  • a vane 42 is installed in each slit 410.
  • the vane 42 is a substantially rectangular plate member (blade).
  • the vane 42 is provided so as to be able to come out of the slit 410 or to enter the inside of the slit 410 (can be moved in and out).
  • the cam ring 43 has an annular shape.
  • the outer periphery of the cam ring 43 is fitted to the inner periphery of the housing recess 220.
  • the center (axial center) of the cam ring 43 substantially coincides with the axial center O.
  • the inner peripheral surface of the cam ring 43 has a cylindrical shape extending in the z-axis direction, and is substantially elliptical when viewed from the z-axis direction.
  • a semi-cylindrical first groove portion 431 and a second groove portion 432 are provided on the outer peripheral surface of the cam ring 43.
  • the second groove portion 432 is provided on the opposite side of the first groove portion 431 across the axis O of the cam ring 43.
  • a first pin 451 is fitted and installed between the first groove portion of the housing recess 220 and the first groove portion 431 of the cam ring 43.
  • a second pin 452 is fitted and installed between the second groove portion of the housing recess 220 and the second groove portion 432 of the cam ring 43.
  • the pins 451 and 452 are fixed to the pump housing body 20.
  • the pins 451 and 452 suppress the rotation of the cam ring 43 with respect to the pump housing 2.
  • the cam ring 43 is disposed so as to surround the rotor 41 in the pump element housing portion.
  • the cam ring 43 forms a plurality of pump chambers 400 together with the rotor 41 and the vanes 42.
  • the side plate 23 and the front body 24 are disposed on the axial side surfaces of the cam ring 43 and the rotor 41.
  • the space between the inner peripheral surface of the cam ring 43 and the outer peripheral surface of the rotor 41 is sealed on both sides in the axial direction by the side plate 23 and the front body 24, while a plurality of (10 pieces) are provided by the plural vanes 42. It is divided into a pump chamber (volume chamber) 400.
  • the X axis is taken in the major axis direction and the Y axis is taken in the minor axis direction of the inner peripheral surface of the cam ring 43 which is substantially elliptical.
  • the rotor 41 rotates counterclockwise in FIG.
  • the radial distance between the outer peripheral surface of the rotor 41 and the inner peripheral surface of the cam ring 43 as it goes from the axial center O of the cam ring 43 toward the negative X-axis direction and from the axial center O toward the positive X-axis direction. The radial dimension of the pump chamber 400) increases. As the distance changes, the vanes 42 appear and disappear from the slits 410 to separate the pump chambers 400.
  • the volume of the pump chamber 400 increases as it goes from the axis O toward the X axis negative direction side and from the axis O toward the X axis positive direction side. Due to the difference in volume of the pump chamber 400, the rotor 41 rotates on the Y axis positive direction side with respect to the axis O (the pump chamber 400 moves toward the X axis negative direction side). While the volume of the pump chamber 400 decreases on the side, the volume of the pump chamber 400 increases on the X axis negative direction side from the axis O.
  • the volume of the pump chamber 400 decreases on the X axis negative direction side of the axis O.
  • the volume of the pump chamber 400 increases on the X axis positive direction side from the axis O.
  • the pump chamber 400 periodically expands and contracts while rotating around the axis O in the counterclockwise direction.
  • the suction port 230 opens in a region on the X axis negative direction side and the Y axis positive direction side, and a region on the X axis positive direction side and the Y axis negative direction side. That is, the volume of the pump chamber 400 increases with the rotation of the drive shaft 40 in the suction port 230 (in other words, the pump chamber 400 whose volume increases with the rotation of the drive shaft 40 among the plurality of pump chambers 400 is positioned. Open) in the inhalation area.
  • the discharge port 231 opens in a region on the X axis positive direction side and the Y axis positive direction side, and a region on the X axis negative direction side and the Y axis negative direction side. That is, the volume of the pump chamber 400 decreases with the rotation of the drive shaft 40 in the discharge port 231 (in other words, the pump chamber 400 whose volume decreases with the rotation of the drive shaft 40 among the plurality of pump chambers 400 is positioned. Open) in the discharge area.
  • the pump chamber 400 sucks the working fluid from the suction port 230 in the suction region, and discharges the above-mentioned sucked working fluid to the discharge port 231 in the discharge region.
  • the pump element 4 is a fixed capacity type in which the discharge amount per one rotation of the drive shaft 40 (hereinafter referred to as pump capacity) is constant.
  • the pump element 4 may be a trochoid pump type inner rotor or outer rotor set, or other pump type.
  • the control valve 8 is a spool valve body and is accommodated in the valve accommodation hole 227.
  • the control valve 8 can be displaced (stroked) in the x-axis direction within the valve housing hole 227.
  • the control valve 8 includes a first land portion 81, a second land portion 82, a connection portion 83, a spacer portion 84, and a recess 85.
  • the land portions 81 and 82 are columnar and have substantially the same diameter. The diameter of the outer peripheral surface of each land portion 81, 82 is slightly smaller than the diameter of the inner peripheral surface of the valve housing hole 227.
  • the first land portion 81 is provided on the x-axis negative direction side, and the second land portion 82 is provided on the x-axis positive direction side end.
  • a circumferential groove 810 extending in the direction around the axis of the control valve 8 (hereinafter referred to as the circumferential direction) is provided on the outer peripheral surface of the first land portion 81.
  • a plurality of circumferential grooves 820 extending in the circumferential direction are provided on the outer peripheral surface of the second land portion 82.
  • the connecting portion 83 has a cylindrical shape extending between the land portions 81 and 82 and extending in the x-axis direction. The diameter of the outer peripheral surface of the connecting portion 83 is smaller than the land portions 81 and 82.
  • the spacer portion 84 has a rod shape extending from the first land portion 81 toward the negative x-axis direction.
  • the recess 85 has a bottomed cylindrical shape, and extends inside the second land portion 82 in the x-axis direction.
  • the recess 85 opens at the end surface of the second land portion 82 in the positive x-axis direction.
  • a high pressure chamber 86 is defined by being surrounded by the end surface of the first land 81 in the negative x-axis direction and the inner peripheral surface of the valve housing hole 227.
  • An intermediate pressure chamber 88 is defined by being surrounded by the x-axis positive direction end surface of the second land portion 82, the inner peripheral surface of the valve housing hole 227, and the x-axis negative direction end surface of the plug member 227a.
  • a drain chamber 89 is defined between the first land portion 81 and the second land portion 82 and on the outer periphery of the connection portion 83.
  • a spring 88 is installed in the intermediate pressure chamber 88.
  • the spring 88 is a coil spring.
  • the positive end of the spring 88 in the x-axis direction is held by a plug member 227a.
  • the x-axis negative direction side of the spring 88 is held inside the recess 85 of the control valve 8.
  • the spring 88 is installed in a compressed state.
  • the spring 88 is a return spring that constantly biases the control valve 8 toward the negative x-axis direction.
  • the movement of the control valve 8 in the valve housing hole 227 in the x-axis negative direction side is restricted by the x-axis negative direction end of the spacer 84 coming into contact with the x-axis negative direction end surface of the valve housing hole 227. Regardless of the movement of the control valve 8 in the valve accommodating hole 227, the first hole 221 opens in the high pressure chamber 86 and the fourth hole 224 opens in the intermediate pressure chamber 88.
  • Each discharge port 231 of the side plate 23 communicates with the first hole 221 or the venturi forming block accommodation hole 228 via the discharge pressure chamber 226 of the rear body 22.
  • 210 functions as a discharge passage 5 from the discharge port 231 (discharge pressure chamber 226) to the venturi portion 50 (small diameter portion 51 and gradually increasing inner diameter portion 52), in other words, the discharge passage 5 upstream of the venturi portion 50.
  • the inner diameter of the small diameter portion 51 is formed smaller than the inner diameter of the discharge passage 5.
  • the inner diameter gradually increasing portion 52 of the venturi portion 50 communicates with the outside of the rear body 22 through the second hole 222 and the third hole 223.
  • the second hole 222 and the third hole 223 function as the discharge passage 5 from the venturi portion 50 toward the CVT 10, in other words, the discharge passage 5 on the downstream side of the venturi portion 50.
  • the inner diameter of the discharge passage 5 is larger than the inner diameter of the inner diameter gradually increasing portion 52 at the x-axis positive direction end.
  • connection (intersection) part of the first hole 221 with the venturi forming block accommodation hole 228 and the connection part of the valve accommodation hole 227 branch from the discharge passage 5 upstream of the venturi part 50 and the control valve 8 It functions as a high-pressure passage 6 connected to the high-pressure chamber 86.
  • the communication hole 213, the first communication groove 214, the second communication groove 215, and the fourth hole 224 of the rear body 22 of the venturi forming block 21 branch from the venturi section 50 (small diameter section 51) in the discharge passage 5 to control valves. 8 functions as an intermediate pressure passage 7 (venturi pressure introduction passage) connected to the intermediate pressure chamber 88.
  • the communication hole 213 functions as a venturi pressure introducing hole.
  • the fifth hole 225 in the rear body 22 functions as a return passage 9 from the drain chamber 89 of the control valve 8 toward the oil pan 100.
  • the longitudinal direction (x-axis direction) of the venturi portion 50 is substantially orthogonal to the direction (z-axis direction) in which the axis O of the drive shaft 40 extends, and the longitudinal direction of the control valve 8. It is substantially parallel to the direction (x-axis direction).
  • the venturi unit 50 is disposed so that the upstream side thereof faces the high pressure chamber 86 of the control valve 8. In other words, the discharge passage 5 on the upstream side of the venturi section 50 and the high-pressure chamber 86 at least partially overlap in the x-axis direction.
  • the x-axis negative direction side of the venturi forming block accommodating hole 228 with respect to the x-axis negative direction side and the high-pressure chamber 86 (when the control valve 8 is most displaced to the x-axis negative direction side) are y It overlaps at least partially when viewed from the axial direction.
  • FIG. 6 schematically shows the discharge passage 5 in the vicinity of the venturi section 50.
  • the arrow indicates the direction in which the hydraulic fluid flows.
  • the flow rate of hydraulic fluid in the discharge passage 5 upstream from the venturi section 50 is u 1 and the pressure is p 1 .
  • the flow velocity in the small diameter portion 51 is u 2 and the pressure is p 2 .
  • the flow velocity in the discharge passage 5 downstream from the venturi 50 is u 3 and the pressure is p 3 .
  • the lower part of FIG. 6 shows changes in the pressure p associated with each part in the upper part.
  • the inner diameter (cross-sectional area) of the small-diameter portion 51 is smaller than the inner diameter (cross-sectional area) of the discharge passage 5 upstream from the venturi portion 50. Therefore, u 2 increases from u 1 .
  • This increase in flow velocity is proportional to the flow rate and inversely proportional to the difference in cross-sectional area. According to Bernoulli's theorem, the pressure decreases in a quadratic function as the flow velocity increases. Thus, p 2 is lower than p 1.
  • This pressure drop corresponds to the increase in flow rate, that is, the flow rate.
  • the inner diameter of the inner diameter gradually increasing section 52 gradually increases toward the downstream side. Therefore, the flow velocity of the inner diameter gradually increasing portion 52 gradually decreases toward the downstream side. Since the decrease in flow velocity is gradual, energy loss is not large. Therefore, the pressure in the inner diameter gradually increasing portion 52 gradually increases toward the downstream side in accordance with the decrease in the flow velocity.
  • the hydraulic fluid (p 1 ) on the upstream side of the venturi section 50 is introduced into the high pressure chamber 86 via the high pressure passage 6.
  • the hydraulic fluid (p 2 ) in the venturi portion 50 (small diameter portion 51) is introduced into the intermediate pressure chamber 88 through the intermediate pressure passage 7.
  • the drain chamber 89 is kept at a low pressure (same as the suction passage 3 and is opened to the atmospheric pressure).
  • a force F1 in the positive x-axis direction due to p 1 of the high-pressure chamber 86 and a force F2 in the negative x-axis direction due to p 2 in the intermediate pressure chamber 88 act on the control valve 8.
  • the force F3 in the negative x-axis direction by the spring 88 acts on the control valve 8.
  • the venturi section 50, the high pressure passage 6, the intermediate pressure passage 7, the control valve 8, and the return passage 9 function as a control section that controls the discharge flow rate of the pump element 4.
  • an orifice has been used as a means for generating a differential pressure.
  • the orifice can be formed by a simple structure in which, for example, a thin plate throttle is provided in the flow path.
  • a pressure difference corresponding to the flow rate is generated between upstream and downstream of the orifice.
  • the flow is disturbed at the outlet of the restrictor, and the pressure downstream of the orifice is reduced by losing energy.
  • the lost energy becomes heat or sound and diffuses to the outside. For this reason, the efficiency of a pump will fall.
  • the greater the differential pressure the lower the pump efficiency.
  • a pump device similar to the present embodiment using the orifice 500 instead of the venturi unit 50 is referred to as a comparative example.
  • FIG. 7 is a view similar to FIG. 6 in the comparative example.
  • the upper stage shows the discharge passage 5 in the vicinity of the orifice 500.
  • the flow rate of the hydraulic fluid in the discharge passage 5 upstream from the orifice 500 is u 1 and the pressure is p 1 .
  • the flow velocity in the discharge passage 5 downstream from the orifice 500 is u 2 and the pressure is p 2 .
  • the inner diameter of the orifice 500 is smaller than the inner diameter of the discharge passage 5 upstream of the orifice 500.
  • a venturi pipe is used instead of the orifice as means for generating the differential pressure.
  • a venturi pipe is used instead of the orifice as means for generating the differential pressure.
  • the venturi section 50 a large loss of energy is suppressed by gently increasing the inner diameter of the downstream side (inner diameter gradually increasing section 52) in the throttle section. For this reason, the pressure recovers as the flow rate decreases. That is, pressure loss in the differential pressure generating means is suppressed. Therefore, it is possible to generate a differential pressure while suppressing a decrease in pump efficiency.
  • an automatic transmission such as a continuously variable transmission uses a larger flow rate than a power steering device or the like, a large pressure loss suppression effect can be obtained.
  • the diameter of the inner diameter gradually decreasing portion 210 is gradually reduced, so that it is possible to suppress the occurrence of turbulence in the flow.
  • This increases the flow velocity and reduces the pressure without a significant loss of energy. Therefore, the pressure can be reduced more efficiently (the pressure loss as a whole is suppressed). Therefore, the efficiency of the pump can be further improved.
  • the change rate of ⁇ p with respect to Q is larger in the present example than in the comparative example.
  • the Q required to generate the same ⁇ p is less in this example than in the comparative example. That is, even with the same Q, this embodiment can generate a larger ⁇ p (corresponding force F1-F2) than the comparative example. For this reason, the behavior of the control valve 8 can be stabilized and variations in the control flow rate can be suppressed.
  • an external load may act on the control valve 8.
  • the control flow rate may deviate from the original amount.
  • a relatively large amount of contamination is present in the hydraulic fluid under the usage environment of the automatic transmission (CVT10). If a load is generated in the control valve 8 due to contamination or the like in the gap between the outer peripheral surface of the control valve 8 and the inner peripheral surface of the valve housing hole 227, the control valve 8 becomes difficult to move, and the flow rate corresponding to this load Therefore, the control flow rate deviates from the original amount.
  • a small change in the flow rate Q can cause a large change in the differential pressure ⁇ p (the corresponding force F1-F2).
  • a value obtained by converting the load into ⁇ p is represented by ⁇ p
  • a deviation of Q corresponding to ⁇ p is represented by ⁇ Q. That is, when a predetermined Q corresponds to an arbitrary ⁇ p, if the arbitrary ⁇ p is shifted by ⁇ P, Q is shifted from the predetermined Q by ⁇ Q.
  • the rate of change of Q with respect to ⁇ p is smaller in this example than in the comparative example. Therefore, ⁇ Q corresponding to the same ⁇ P is smaller in this example than in the comparative example ( ⁇ Q 2 ⁇ Q 1 ). That is, even if the same load acts on the control valve 8, the change in the flow rate is smaller in the present embodiment than in the comparative example. For this reason, the deviation of the control flow rate can be reduced.
  • the narrow angle ⁇ sandwiched between the inner walls of the inner diameter gradually increasing portion 52 is the spread angle of the outlet in the venturi portion 50 as the throttle portion.
  • is a ratio when the pressure loss in the comparative example is 1.
  • is 60 degrees or less
  • the pressure loss ratio is less than 1. That is, the pressure loss is smaller than that of the comparative example.
  • the venturi portion 50 inner diameter gradually increasing portion 52
  • the venturi portion 50 is formed so that ⁇ is 60 degrees or less. Therefore, pressure loss is suppressed as compared with the comparative example.
  • the efficiency fall of a pump can be suppressed more reliably.
  • For example, by setting ⁇ to about 15 degrees, an excessive increase in the longitudinal length (axial dimension) of the venturi 50 can be suppressed while obtaining a sufficient pressure loss suppressing effect.
  • the space on the x-axis negative direction side of the venturi forming block 21 functions as the discharge passage 5 on the upstream side of the venturi portion 50.
  • the second hole 222 functions as the discharge passage 5 on the downstream side of the venturi portion 50.
  • the inner diameter of the venturi forming block receiving hole 228 is larger than the inner diameter of the second hole 222. That is, the space on the upstream side of the venturi portion 50 in the discharge passage 5 is a large-diameter portion 53 having an inner diameter larger than that on the downstream side (second hole 222).
  • the pressure in the large-diameter portion 53 is introduced into the high-pressure chamber 86 of the control valve 8 as the pressure (high pressure) upstream of the venturi portion 50.
  • FIG. 6 can be redrawn as shown in FIG.
  • the flow velocity in the large-diameter portion 53 is u 1 *
  • the pressure is p 1 *.
  • Other reference numerals are the same as those in FIG. If the inner diameter (cross-sectional area) of the large-diameter portion 53 is larger than the inner diameter (cross-sectional area) of the discharge passage 5 upstream of the large-diameter portion 53, u 1 * will be smaller than u 1 ( ⁇ u 3 ). Along with this, p 1 * rises above p 1 ( ⁇ p 3 ). Others are the same as FIG.
  • the inner diameter at the other end in the axial direction of the inner diameter gradually increasing portion 52 that opens to the end surface on the other axial side of the venturi forming block 21 is slightly smaller than the inner diameter of the second hole 222. Therefore, FIG. 6 can be redrawn as shown in FIG.
  • the inner diameter gradually increasing portion 52 has an upstream tapered portion formed with a constant ⁇ at 60 degrees or less (specifically, approximately 15 degrees), and the discharge passage 5 downstream from the venturi section 50 at 60 degrees or more. And a step portion on the downstream side continuous with a large ⁇ .
  • the tapered portion on the upstream side is referred to as a front portion 520
  • the step portion on the downstream side is referred to as a rear portion 521.
  • the inner diameter gradually increasing portion 52 has a front portion 520 and a rear portion 521.
  • ⁇ of the rear portion 521 is approximately 180 degrees. That is, the rear portion 521 extends so as to be substantially orthogonal to the inner wall of the discharge passage 5 on the downstream side of the venturi portion 50. It is assumed that the inner diameter gradually increasing portion 52 is formed until ⁇ is equal to or smaller than the inner diameter of the discharge passage 5 on the downstream side of the venturi portion 50 while being constant at 60 degrees or less.
  • the longitudinal length of 52 is L0.
  • the length of the front portion 520 in the longitudinal direction is L.
  • the front portion 520 is formed to a position where L is 65% or less of L0, so that L / L0 is greater than 0 and 0.65 or less.
  • a rear portion 521 having ⁇ larger than 60 degrees is provided on the downstream side of the front portion 520. As described above, the rear portion 521 does not maintain ⁇ of 60 degrees or less, so that the venturi 50 is connected to the downstream discharge passage 5 with a relatively short length (less than L0) (based on the inner diameter of the venturi 50). You can return to Thereby, the longitudinal direction length of the venturi part 50 can be suppressed.
  • the above-described length suppressing effect can be improved.
  • L / L0 is greater than 0 and less than or equal to 0.65
  • the amount of decrease (decrease rate) in the pressure loss ratio relative to the increase in L / L0 increases as L / L0 approaches 0.
  • L / L0 is in the range of 0.4 or more
  • a sufficiently small pressure loss ratio (sufficiently close to the pressure loss ratio when L / L0 is 0.65) can be obtained. Therefore, it is preferable to form the front portion 520 so that L / L0 is 0.4 or more, in other words, to a position where L is 40% or more of L0.
  • the length suppression effect can be improved by bringing L close to 40% of L0 while obtaining a sufficient pressure loss suppression effect.
  • venturi 50 is longer than the orifice (large dimension in the axial direction). For this reason, processing is relatively difficult.
  • the venturi portion 50 is formed in the venturi forming block 21.
  • This venturi forming block 21 is joined to the pump housing body 20.
  • the venturi 50 is realized in the pump housing body 20.
  • the venturi section 50 is formed in the venturi forming block 21 which is a separate member from the pump housing body 20, the workability of the venturi section 50 can be improved.
  • what is formed in the venturi forming block 21 may be at least the small diameter portion 51 and the inner diameter gradually increasing portion 52 constituting the venturi portion 50.
  • the throttle part and the inner diameter gradually decreasing part 210 having the same diameter as the small diameter part 51 and having a predetermined length may be provided on the pump housing body 20 side, or may be provided on the venturi forming block 21 side.
  • the venturi forming block 21 is formed of a resin material.
  • the venturi portion 50 including the inner diameter gradually increasing portion 52 is formed by molding. Therefore, the inner diameter gradually increasing portion 52 can be formed more easily than when the inner diameter gradually increasing portion 52 is formed by machining.
  • the venturi section 50 requires a longer dimension (space in the longitudinal direction) than the orifice.
  • the venturi portion 50 is arranged such that the longitudinal direction (x-axis direction) of the venturi portion 50 and the direction of the rotation axis (axis O) of the drive shaft 40 (z-axis direction) are substantially orthogonal. Is placed. Therefore, an increase in the size of the pump device in the direction of the rotation axis of the drive shaft 40 (axial direction) can be suppressed.
  • the pump housing 2 originally has dimensions for accommodating the control valve 8.
  • the venturi portion 50 is arranged so that the longitudinal direction of the venturi portion 50 and the longitudinal direction of the control valve 8 are substantially parallel.
  • venturi portion 50 By arranging the venturi portion 50 so as to utilize the originally existing space extending in the longitudinal direction of the control valve 8, an increase in the outer shape of the pump device (in the radial direction of the control valve 8) is suppressed. be able to.
  • venturi section 50 is arranged so that the discharge passage 5 upstream from the venturi section 50 faces the high pressure chamber 86 of the control valve 8. Therefore, it is possible to shorten the high-pressure passage 6 (first hole 221) that communicates the upstream side of the venturi section 50 with the high-pressure chamber 86.
  • the venturi forming block accommodation hole 228 and the valve accommodation hole 227 both extend in the x-axis direction and are arranged substantially parallel to each other.
  • the first hole 221 linearly extends in the y-axis direction, and is connected to the x-axis negative direction side of the venturi forming block accommodating hole 228 in the x axis negative direction and the high pressure chamber 86 in the valve accommodating hole 227,
  • the upstream side of the venturi section 50 and the high pressure chamber 86 are connected with the shortest distance.
  • the venturi portion 50 may be arranged so that the second communication groove 215 (at least a part thereof) in the venturi forming block 21 faces the intermediate pressure chamber 88 of the control valve 8. In this case, it is possible to shorten the intermediate pressure passage 7 (fourth hole 224) that communicates the second communication groove 215 and the intermediate pressure chamber 88.
  • the communication hole 213 of the venturi forming block 21 opens on the inner peripheral surface of the venturi section 50 on the radially inner side.
  • the communication hole 213 is provided in the venturi section 50 and functions as an opening for introducing the pressure in the venturi section 50 into the control valve 8 (intermediate pressure chamber 88).
  • the discharge passage 5 on the upstream side of the venturi section 50 has a bend or the like, the flow velocity distribution in the direction around the axis along the longitudinal direction (hereinafter referred to as the circumferential direction) in the passage 5 is obtained. Bias may occur. In this case, the pressure distribution in the circumferential direction in the venturi 50 is also biased. This bias changes depending on the flow rate and temperature conditions.
  • the number of communication holes 213 may be two or more and is arbitrary. In the present embodiment, since the openings of the communication holes 213 are arranged at substantially equal intervals in the circumferential direction, variations in pressure taken out from the venturi 50 can be more stably reduced.
  • the communication hole 213 is provided at a position overlapping the small diameter part 51 in the axial direction (longitudinal direction) of the venturi part 50. That is, the opening of the communication hole 213 is provided in the small diameter portion 51. Therefore, the pressure is extracted from the smallest diameter portion of the venturi portion 50, that is, the portion where the pressure is lowest, and is introduced into the intermediate pressure chamber 88. Thereby, the differential pressure generated in the venturi portion 50 can be utilized most efficiently.
  • the communication hole 213 is provided at a position overlapping with one axial side of the inner diameter gradually increasing portion 52 (the small diameter portion 51 side).
  • the radially inner end of the communication hole 213 opens on one axial side of the inner diameter gradually increasing portion 52 (the small diameter portion 51 side).
  • the communication hole 213 constitutes a part of the intermediate pressure passage 7.
  • the communication hole 213 introduces the pressure on the one side in the axial direction of the inner diameter gradually increasing portion 52 (the small diameter portion 51 side) out of the pressure in the venturi portion 50 into the intermediate pressure chamber 88 of the control valve 8.
  • the pressure in the venturi portion 50 introduced into the intermediate pressure chamber 88 is not limited to the pressure in the small diameter portion 51 but may be the pressure in the gradually increasing inner diameter portion 52.
  • the pressure on one side in the axial direction of the gradually increasing inner diameter portion 52 (the smaller diameter portion 51 side) is introduced into the intermediate pressure chamber 88. Therefore, a lower pressure can be used among the pressures in the inner diameter gradually increasing portion 52. For this reason, a sufficiently large differential pressure can be applied to the control valve 8.
  • the pump housing body 20 is formed of a metal material as in the first embodiment.
  • the venturi forming block 21 is also formed of a metal material. Specifically, the venturi forming block 21 is formed of a sintered material. When the metal powder is compacted in the compacting process, the venturi 50 is formed by a mold. By sintering this molded body, the venturi forming block 21 is formed.
  • the venturi forming block 21 When the venturi forming block 21 is joined to the pump housing body 20 (the venturi forming block receiving hole 228 of the rear body 22), distortion occurs between the venturi forming block 21 and the pump housing body 20 after joining, etc. Problems can arise.
  • the venturi forming block 21 is made of a metal material. For this reason, the linear expansion coefficient is close to that of the pump housing body 20. Therefore, the occurrence of the above problems can be suppressed.
  • the venturi part 50 inner diameter gradually increasing part 52, etc.
  • the venturi part 50 is formed by a mold. Therefore, compared to the case where the venturi portion 50 (inner diameter gradually increasing portion 52 or the like) is formed by machining, the formation becomes easier.
  • FIG. 14 is a view of the pump housing 2 as viewed from the direction in which the drive shaft 40 (axial center O) extends (z-axis negative direction), and the internal structure and part of the housing components are indicated by broken lines.
  • FIG. 15 shows a cross section taken along the line BB of FIG. The setting of the orthogonal coordinate system is the same as in the first embodiment (FIG. 3 and the like).
  • the pump housing 2 does not have the venturi forming block 21 as in the first embodiment.
  • the pump housing body 20 does not have the venturi forming block accommodation hole 228 as in the first embodiment.
  • the inner diameter gradually decreasing portion 210 and the venturi portion 50 are formed directly inside the rear body 22.
  • the end of the third hole 223 on the x-axis negative direction side bends to the z-axis negative direction side, opens on the surface of the front body 24 on the z-axis negative direction side, and extends to the z-axis positive direction end of the second hole 222.
  • the end of the third hole 223 on the x-axis positive direction side bends in the z-axis negative direction side, opens on the surface of the front body 24 on the z-axis negative direction side, and the z-axis positive direction of the first inner diameter gradually decreasing portion 210a.
  • the inner diameter of the end portion on the positive z-axis direction side of the first inner diameter gradually decreasing portion 210a is substantially equal to the inner diameter of the third hole 223.
  • the fourth hole 224 connects the positive end of the valve housing hole 227 in the x-axis direction and the small diameter part 51 of the venturi part 50.
  • the pump housing 2 does not have the venturi forming block 21, and the inner diameter gradually decreasing portion 210 and the venturi portion 50 are formed directly inside the pump housing 2 (rear body 22). Therefore, the number of parts can be reduced.
  • the venturi unit 50 requires a longer dimension (longitudinal space) than the orifice.
  • the pump housing 2 originally has dimensions in the direction of the rotation axis of the drive shaft 40 for housing the pump element 4.
  • the pump element accommodating portion (accommodating recess 220) overlaps with the pump element accommodating portion (accommodating recess 220) in the radial direction outside the pump element accommodating portion (accommodating recess 220) in the direction of the rotation axis (axial center O) of the drive shaft 40.
  • the venturi part 50 is arranged.
  • the venturi unit 50 by arranging the venturi unit 50 so as to utilize the space that originally exists in the direction of the rotation axis of the drive shaft 40, the outer shape of the pump device 1 (in the direction of the rotation axis of the drive shaft 40) is large. Can be suppressed. Further, the venturi section 50 is arranged so that the longitudinal direction of the venturi section 50 and the direction of the rotation axis (axis O) of the drive shaft 40 are substantially parallel. Therefore, an increase in the size of the pump device 1 in the radial direction with respect to the rotation shaft of the drive shaft 40 can be suppressed. Note that the effect of the above arrangement can also be obtained when the venturi portion 50 is formed in the venturi forming block 21.
  • the pump device 1 of the fifth embodiment is different from the first embodiment in the housing in which the venturi unit 50 and the control valve 8 are installed. Only differences from the first embodiment will be described below.
  • the transmission housing 10 a is a CVT unit housing and is a separate member from the pump housing 2.
  • the pump housing 2 may be disposed integrally with the transmission housing 10a or may be disposed apart from the transmission housing 10a.
  • the pump element 4 is provided in the pump housing 2, while the venturi 50 and the control valve 8 are provided in a transmission housing (for example, a control valve housing) 10a, as indicated by the broken line in FIG.
  • Example 6 The pump element 4 of Example 6 is a variable displacement type in which the pump displacement is variably controlled. Only the configuration different from the first embodiment will be described below. The components common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.
  • FIG. 16 is a diagram similar to FIG. 2, showing the schematic configuration of the pump device 1.
  • FIG. 17 shows a partial cross section of the pump housing 2 taken along a plane including the axis O. The z axis is provided in the left-right direction in FIG. 17, and the right side is positive.
  • valve housing hole 227 in the negative x-axis direction opens on the outer surface of the rear body 22.
  • a solenoid 80 is fitted into the opening via a seal member 253.
  • a rod 800 protrudes from the solenoid 80 in the positive x-axis direction.
  • the suction-side back pressure port 232 is a groove that extends in a substantially arc shape in the circumferential direction on the side of the shaft accommodation hole 234 from the suction port 230 (inside in the radial direction), and is provided in a range that overlaps the suction port 230 in the circumferential direction.
  • the discharge-side back pressure port 233 is a groove extending in a substantially arc shape in the circumferential direction on the radially inner side of the discharge port 231 and is provided in a range overlapping the discharge port 231 in the circumferential direction.
  • the suction port 230 and the suction side back pressure port 232 are connected to the suction pressure chamber 220a of the rear body 22 via the communication path in the side plate 23.
  • the discharge port 231 and the discharge side back pressure port 233 are connected to the discharge pressure chamber 226 via a communication path in the side plate 23.
  • An annular seal groove is formed on the surface of the side plate 23 in the negative z-axis direction so as to surround the outer edge of the side plate 23.
  • An annular seal member 250 is installed in the seal groove.
  • An annular seal groove is formed on the bottom surface of the housing recess 220 on the z-axis positive direction side so as to surround the opening of the bearing holding hole 229.
  • An annular seal member 251 is installed in the seal groove.
  • an adapter ring 44 is installed on the side plate 23 in the positive z-axis direction.
  • the adapter ring 44 has an annular shape, and the outer periphery of the adapter ring 44 is fitted to the inner periphery of the housing recess 220.
  • the inner peripheral surface of the adapter ring 44 has a substantially cylindrical shape extending in the z-axis direction, and is substantially elliptical when viewed from the z-axis direction.
  • a first groove portion 441, a second groove portion 442, a first plane portion 443, a second plane portion 444, and a recess 445 are provided on the inner peripheral surface.
  • the first groove portion 441 has a semicylindrical shape extending in the z-axis direction, and is provided in the first plane portion 443. On both sides of the first groove 441, there are provided first and second control passages 60, 70 penetrating the adapter ring 44 in the radial direction.
  • the second groove portion 442 is provided on the opposite side of the first groove portion 441 across the center (axial center) of the adapter ring 44 and extends in the z-axis direction.
  • the second plane portion 444 is provided between the first and second groove portions 441 and 442 (substantially intermediate position) in the circumferential direction of the adapter ring 44.
  • the concave portion 445 is provided on the opposite side of the second flat portion 444 across the center of the adapter ring 44.
  • the pump element 4 is accommodated in a space surrounded by the inner peripheral surface of the adapter ring 44, the surface of the side plate 23 on the z-axis positive direction side, and the surface of the front body 24 on the z-axis negative direction side. That is, the space functions as a pump element housing portion.
  • the rotor 41 is provided with eleven slits 410.
  • the cam ring 43 is formed in an annular shape, and its inner peripheral surface is substantially cylindrical.
  • a semi-cylindrical groove 433 extending in the z-axis direction is provided on the outer peripheral surface of the cam ring 43.
  • the cam ring 43 is disposed so as to surround the rotor 41 in the pump element housing portion.
  • the cam ring 43 forms a plurality of pump chambers 400 together with the rotor 41 and the vanes 42. That is, the side plate 23 and the front body 24 are disposed on the axial side surfaces of the cam ring 43 and the rotor 41. The space between the inner peripheral surface of the cam ring 43 and the outer peripheral surface of the rotor 41 is sealed on both sides in the axial direction by the side plate 23 and the front body 24, while the plurality of vanes 42 provide eleven pump chambers 400. It is divided into.
  • the cam ring 43 is movably provided in the pump element housing.
  • a pin 453 is fitted and installed between the first groove portion 441 of the adapter ring 44 and the groove portion 433 of the cam ring 43.
  • the pin 453 is fixed to the pump housing 2.
  • the pin 453 suppresses rotation of the adapter ring 44 with respect to the pump housing 2 and suppresses rotation of the cam ring 43 with respect to the adapter ring 44.
  • the cam ring 43 is accommodated on the inner peripheral side of the adapter ring 44 so as to be swingable with respect to the pump housing 2.
  • the cam ring 43 is supported by the first flat portion 443 with respect to the adapter ring 44.
  • the cam ring 43 rolls on the first flat surface portion 443 and swings about the first flat surface portion 443 as a fulcrum.
  • the amount of deviation of the center (axial center) of the inner peripheral surface of the cam ring 43 with respect to the center (axial center O) of the rotor 41 (drive shaft 40) is hereinafter referred to as an eccentricity ⁇ .
  • the seal member 46 is installed in the second groove portion 442 of the adapter ring 44.
  • the first flat portion 443 of the adapter ring 44 contacts the outer peripheral surface of the cam ring 43 and the seal member 46 contacts the outer peripheral surface of the cam ring 43.
  • the space between the inner peripheral surface of the adapter ring 44 and the outer peripheral surface of the cam ring 43 is liquid-tight by a first flat portion 443 (a contact portion with the outer peripheral surface of the cam ring 43) and the seal member 46.
  • two fluid pressure chambers 61 and 71 are formed as a pair of spaces between the cam ring 43 and the pump element accommodating portion.
  • the X axis is taken in the major axis direction and the Y axis is taken in the minor axis direction of the inner peripheral surface of the adapter ring 44 which is substantially elliptical.
  • the first fluid pressure chamber 61 is formed on the X axis negative direction side where the eccentric amount ⁇ increases, and the second axis is formed on the X axis positive direction side where ⁇ decreases.
  • a fluid pressure chamber 71 is formed. When ⁇ increases, the volume of the first fluid pressure chamber 61 decreases and the volume of the second fluid pressure chamber 71 increases.
  • one end of the spring 47 is installed in the recess 445 of the adapter ring 44.
  • the other end of the spring 47 is installed on the outer peripheral side of the cam ring 43.
  • the spring 47 is installed in a compressed state, and always biases the cam ring 43 toward the X axis negative direction side (the first fluid pressure chamber 61 side) with respect to the adapter ring 44.
  • the movement of the cam ring 43 in the negative X-axis direction is restricted by the outer peripheral surface of the cam ring 43 abutting against the second flat surface portion 444 of the adapter ring 44 inside the first fluid pressure chamber 61.
  • Rotator 41 rotates in the clockwise direction in FIG.
  • the outer peripheral surface of the rotor 41 and the inner periphery of the cam ring 43 move from the X axis positive direction side to the X axis negative direction side.
  • the radial distance between the surfaces increases.
  • the vanes 42 appear and disappear from the slits 410 to separate the pump chambers 400.
  • the pump chamber 400 on the X axis negative direction side has a larger volume than the pump chamber 400 on the X axis positive direction side.
  • the volume of the pump chamber 400 Due to the difference in the volume of the pump chamber 400, the volume of the pump chamber 400 is reduced as the rotor 41 rotates (the pump chamber 400 moves toward the X axis positive direction) on the Y axis positive direction side of the axis O. On the Y axis negative direction side of the axis O, the volume of the pump chamber 400 increases as the rotor 41 rotates (the pump chamber 400 moves toward the X axis negative direction side). The pump chamber 400 periodically expands and contracts while rotating around the axis O in the clockwise direction.
  • the suction port 230 opens to a suction region where the volume of the pump chamber 400 increases as the drive shaft 40 rotates.
  • the discharge port 231 opens to a discharge region where the volume of the pump chamber 400 decreases as the drive shaft 40 rotates.
  • the suction passage 3 connects the oil pan 100 and the suction pressure chamber 220a.
  • the discharge passage 5 connects the discharge pressure chamber 226 and the CVT 10.
  • the high-pressure passage 6 branches from the discharge passage 5 on the upstream side of the venturi portion 50 in the discharge passage 5 and is connected to the x-axis positive direction side of the valve housing hole 227.
  • the intermediate pressure passage 7 branches off from the venturi portion 50 (small diameter portion 51) in the discharge passage 5 and is connected to the x-axis negative direction side of the valve housing hole 227.
  • the first control passage 60 and the second control passage 70 connect the control valve 8 and the pump element 4.
  • the first control passage 60 is connected to the positive side of the x-axis with respect to the high-pressure passage 6 in the valve housing hole 227 and is connected to the first fluid pressure chamber 61 through the adapter ring 44.
  • the second control passage 70 is connected to the x-axis negative direction side with respect to the intermediate pressure passage 7 in the valve housing hole 227 and is connected to the second fluid pressure chamber 71 through the adapter ring 44.
  • the return passage 9 is connected between the first control passage 60 and the second control passage 70 in the valve housing hole 227. Regardless of the movement of the control valve 8 inside the valve housing hole 227, the high pressure passage 6 opens in the high pressure chamber 86, the intermediate pressure passage 7 opens in the intermediate pressure chamber 88, and the return passage 9 passes through the drain chamber 89. Opens.
  • the control valve 8 switches the flow path of the hydraulic fluid between the first control passage 60 and the second control passage 70.
  • the opening of the first control passage 60 in the valve housing hole 227 is disconnected from the high pressure chamber 86 by the first land portion 81, Communicates with drain chamber 89.
  • the opening of the second control passage 70 is communicated with the intermediate pressure chamber 88 while the communication with the drain chamber 89 is blocked by the second land portion 82.
  • the hydraulic fluid in the intermediate pressure chamber 88 flows into the second fluid pressure chamber 71.
  • the cam ring 43 Since the high pressure is not supplied to the first fluid pressure chamber 61 and the intermediate pressure is supplied to the second fluid pressure chamber 71, the cam ring 43 is in an eccentric state. Therefore, the pump discharge flow rate increases according to the rotation speed.
  • the opening of the first control passage 60 is disconnected from the drain chamber 89 by the first land portion 81, while the high-pressure chamber 86 Communicate.
  • the opening of the second control passage 70 is communicated with the drain chamber 89 while the communication with the intermediate pressure chamber 88 is blocked by the second land portion 82.
  • the venturi section 50, the high pressure passage 6, the intermediate pressure passage 7, the control valve 8, the first control passage 60, the second control passage 70, the first fluid pressure chamber 61, and the second fluid pressure chamber 71 are pumps. It functions as a control unit that controls the discharge flow rate of the element 4.
  • the operation of the control valve 8 is controlled by a differential pressure ⁇ p acting on both sides in the axial direction of the control valve 8 according to the discharge flow rate of the pump element 4, and is also controlled by a thrust acting on the control valve 8 from the solenoid 80. . That is, the tip of the rod 800 of the solenoid 80 abuts on the end surface of the control valve 8 in the negative x-axis direction. The rod 800 can be moved in the x-axis direction by the electromagnetic force generated by the solenoid 80. A force F4 from the solenoid 80 to the x-axis positive direction side acts on the control valve 8 via the rod 800. The thrust F4 of the solenoid 80 is controlled based on a command from the CVT control unit.
  • the control valve 8 moves with a relatively small differential pressure ⁇ p (that is, F1-F2), and the flow path is switched. Therefore, a constant flow rate is maintained after a relatively low discharge flow rate is achieved.
  • the discharge flow rate can be controlled by the magnetic attractive force (thrust F4) generated by the solenoid 80.
  • the CVT control unit appropriately controls the line pressure of the CVT 10 according to the driving situation such as the engine speed, the accelerator opening (throttle valve opening), and the vehicle speed.
  • the CVT control unit supplies current to the solenoid 80 based on the engine speed, the accelerator opening, etc., and controls the magnetic attractive force (thrust force F4), so that the discharge flow rate (pump of the pump element 4) Change the capacity.
  • the solenoid 80 may be omitted.
  • the same effects as those of the venturi unit 50 can be obtained in the variable displacement pump as in the first embodiment.
  • the pump apparatus of this invention was demonstrated based on the Example, the concrete structure of this invention is not limited to an Example, Even if there is a design change etc. of the range which does not deviate from the summary of invention. It is included in the present invention.
  • the continuously variable transmission to which the pump device supplies the hydraulic fluid is not limited to the CVT, and may be a toroidal type, for example.
  • the automatic transmission to which the pump device supplies hydraulic fluid is not limited to a continuously variable transmission, but may be a stepped transmission.
  • the on-vehicle equipment to which the pump device supplies the hydraulic fluid is not limited to the automatic transmission, but may be a power steering device or the like. Moreover, it is possible to combine the structure of each Example suitably.
  • 1 pump device 10 CVT (automatic transmission), 2 pump housing, 20 pump housing body, 21 venturi forming block, 213 communication hole (opening), 230 intake port, 231 discharge port, 4 pump element, 40 drive shaft, 400 Pump chamber, 41 rotor, 410 slit, 42 vane, 43 cam ring, 5 discharge passage, 50 venturi section, 51 small diameter section, 52 inner diameter gradually increasing section, 520 front section, 521 rear section, 53 large diameter section, 61 first fluid pressure Chamber, 71 second fluid pressure chamber, 8 control valve, 86 high pressure chamber, 87 medium pressure chamber

Abstract

Provided is a pump device capable of minimizing a decline in pump efficiency. A pump device equipped with: a venturi section provided partway along a discharge channel, and having a small-diameter section having a smaller inner diameter than the inner diameter of the discharge channel from the discharge port to the venturi section, and a gradually increasing inner-diameter section formed in a manner such that the inner diameter thereof gradually increases from the small-diameter section toward the downstream side of the discharge channel; and a control valve to which the pressure inside the venturi section and on the upstream side of the venturi section is introduced, and which controls the flow of a working fluid supplied to an automatic transmission by switching the working fluid channel on the basis of the difference in the pressure inside the venturi section (50) and on the upstream side of the venturi section.

Description

自動変速機用ポンプ装置またはポンプ装置Pump device or pump device for automatic transmission
 本発明は、ポンプ装置に関する。 The present invention relates to a pump device.
 従来、制御バルブを有するポンプ装置が知られている。制御バルブは、ポンプ装置が機器に供給する作動液の流量を制御する。例えば特許文献1に記載のポンプ装置は、吐出する流量に応じて差圧を発生させる。制御バルブは、上記差圧に基づき作動液の流路を切り替えることで、上記流量を制御する。 Conventionally, a pump device having a control valve is known. The control valve controls the flow rate of the hydraulic fluid that the pump device supplies to the device. For example, the pump device described in Patent Document 1 generates a differential pressure according to the flow rate to be discharged. The control valve controls the flow rate by switching the flow path of the hydraulic fluid based on the differential pressure.
特開2010-14074号公報JP 2010-14074 A
 しかし、従来のポンプ装置は、差圧を発生させるためにオリフィスを用いている。このため、ポンプの効率が低下するおそれがあった。本発明の目的は、ポンプの効率の低下を抑制できるポンプ装置を提供することにある。 However, the conventional pump device uses an orifice to generate a differential pressure. For this reason, there existed a possibility that the efficiency of a pump might fall. The objective of this invention is providing the pump apparatus which can suppress the fall of the efficiency of a pump.
 上記目的を達成するため、本発明の一実施形態では、差圧を発生させるために、吐出通路の途中に設けられ、小径部から吐出通路の下流側に向かって内径が徐々に増大するベンチュリ部を有する。 In order to achieve the above object, in one embodiment of the present invention, a venturi portion is provided in the middle of the discharge passage and the inner diameter gradually increases from the small diameter portion toward the downstream side of the discharge passage in order to generate a differential pressure. Have
 よって、ポンプの効率の低下を抑制できる。 Therefore, a decrease in pump efficiency can be suppressed.
実施例1のポンプ装置が適用される液圧系統の構成を示す。The structure of the hydraulic system to which the pump apparatus of Example 1 is applied is shown. 実施例1のポンプ装置の構成の概略を示す。1 shows an outline of a configuration of a pump device according to a first embodiment. 実施例1のポンプハウジングを駆動軸の軸心に対して直交する平面で切った部分断面を示す。The partial cross section which cut the pump housing of Example 1 with the plane orthogonal to the axial center of a drive shaft is shown. 図3のA-A視断面を示す。Fig. 4 shows a cross-sectional view taken along line AA in Fig. 3. 実施例1のベンチュリ形成ブロックを軸方向一方側から見た図である。It is the figure which looked at the venturi formation block of Example 1 from the axial direction one side. 上段は、実施例1のベンチュリ部の近傍における吐出通路を模式的に示す。下段は、上段における各部位と対応付けた圧力の変化を示す。The upper part schematically shows the discharge passage in the vicinity of the venturi part of the first embodiment. The lower row shows changes in pressure associated with each part in the upper row. 上段は、比較例のオリフィスの近傍における吐出通路を模式的に示す。下段は、上段における各部位と対応付けた圧力の変化を示す。The upper stage schematically shows the discharge passage in the vicinity of the orifice of the comparative example. The lower row shows changes in pressure associated with each part in the upper row. 実施例1の流量と差圧との関係を示すグラフである。実線で実施例1を示し、一点鎖線で比較例を示す。It is a graph which shows the relationship between the flow volume of Example 1, and a differential pressure | voltage. Example 1 is indicated by a solid line, and a comparative example is indicated by an alternate long and short dash line. 実施例1の狭角と圧力損失比との関係を示す。The relationship between the narrow angle of Example 1 and a pressure loss ratio is shown. 上段は、実施例1において大径部をベンチュリ部の上流に設けた吐出通路を模式的に示す。下段は、上段における各部位と対応付けた圧力の変化を示す。The upper row schematically shows a discharge passage in which the large diameter portion is provided upstream of the venturi portion in the first embodiment. The lower row shows changes in pressure associated with each part in the upper row. 上段は、実施例1において内径漸増部の下流側に段差部分(後方部)を有する吐出通路を模式的に示す。下段は、上段における各部位と対応付けた圧力の変化を示す。The upper part schematically shows a discharge passage having a step part (rear part) on the downstream side of the inner diameter gradually increasing part in the first embodiment. The lower row shows changes in pressure associated with each part in the upper row. 図11のL0に対するLの割合L/L0と、圧力損失比との関係を示す。11 shows the relationship between the ratio L / L0 of L to L0 in FIG. 11 and the pressure loss ratio. 実施例2のベンチュリ形成ブロックをベンチュリ部の軸心を通る平面で切った断面を示す。The cross section which cut the venturi formation block of Example 2 with the plane which passes along the axial center of a venturi part is shown. 実施例4のポンプハウジングを駆動軸の軸心が延びる方向からみた図である。It is the figure which looked at the pump housing of Example 4 from the direction where the axial center of a drive shaft extends. 図14のB-B視断面を示す。FIG. 15 shows a cross section taken along the line BB of FIG. 実施例6のポンプ装置の構成の概略を示す。The outline of the structure of the pump apparatus of Example 6 is shown. 実施例6のポンプハウジングを駆動軸の軸心を含む平面で切った部分断面を示す。The partial cross section which cut the pump housing of Example 6 with the plane containing the axial center of a drive shaft is shown.
 以下、本発明のポンプ装置を実施するための形態を、図面に示す実施例に基づいて説明する。 Hereinafter, modes for carrying out the pump device of the present invention will be described based on the embodiments shown in the drawings.
 [実施例1]
  まず、構成を説明する。図1は、ポンプ装置1が適用される液圧系統の構成を示す。ポンプ装置1は、自動車の車両へ搭載される。ポンプ装置1は、車両へ搭載される他の機器(車両搭載機器)に作動液を供給する作動液供給源である。ポンプ装置1が作動液を供給する車両搭載機器は、自動変速機である。自動変速機は、無段変速機、具体的にはベルト式の連続可変トランスミッション(以下、CVTという。)10である。作動液はATF(オートマチック・トランスミッション・フルード)である。ポンプ装置1は、原動機としての内燃機関により駆動され、オイルパン100から作動液を吸入し、吐出する。オイルパン100として例えばCVT10のものを利用できる。CVT10のコントロールバルブ内には、CVTコントロールユニットにより制御される各種のバルブが設けられている。ポンプ装置1から吐出された作動液は、コントロールバルブを介してCVT10の各部(プライマリプーリ、セカンダリプーリ、フォワードクラッチ、リバースブレーキ、トルクコンバータ、潤滑・冷却系等)に供給される。
[Example 1]
First, the configuration will be described. FIG. 1 shows a configuration of a hydraulic system to which the pump device 1 is applied. The pump device 1 is mounted on an automobile vehicle. The pump device 1 is a hydraulic fluid supply source that supplies hydraulic fluid to other devices (vehicle mounted devices) mounted on the vehicle. The vehicle-mounted device to which the pump device 1 supplies hydraulic fluid is an automatic transmission. The automatic transmission is a continuously variable transmission, specifically a belt-type continuously variable transmission (hereinafter referred to as CVT) 10. The hydraulic fluid is ATF (Automatic Transmission Fluid). The pump device 1 is driven by an internal combustion engine as a prime mover, and sucks and discharges hydraulic fluid from the oil pan 100. For example, a CVT10 oil pan 100 can be used. Various valves controlled by the CVT control unit are provided in the control valve of the CVT10. The hydraulic fluid discharged from the pump device 1 is supplied to each part (primary pulley, secondary pulley, forward clutch, reverse brake, torque converter, lubrication / cooling system, etc.) of the CVT 10 via the control valve.
 ポンプ装置1は、ポンプハウジング2、ポンプ要素4、ベンチュリ部50、および制御バルブ8を有する。ポンプハウジング2は、ポンプ要素4と、制御バルブ8と、ベンチュリ部50とを収容する。ポンプハウジング2には、作動液が流通する通路として、吸入通路3と、吐出通路5と、高圧通路6と、中圧通路7と、戻り通路9とが設けられている。吸入通路3は、オイルパン100とポンプ要素4とを接続する。吐出通路5は、ポンプ要素4とCVT10とを接続する。吐出通路5上にはベンチュリ部50が設けられている。ベンチュリ部50は、吐出通路5の途中に設けられた絞り部である。高圧通路6は、吐出通路5におけるベンチュリ部50よりもポンプ要素4の側(以下、上流側という。)と制御バルブ8とを接続する。中圧通路7は、ベンチュリ部50と制御バルブ8とを接続する。戻り通路9は、制御バルブ8と吸入通路3(オイルパン100)とを接続する。ポンプハウジング2には駆動軸40が軸支される。駆動軸40は内燃機関のクランクシャフトにより駆動される。ポンプ要素4は、駆動軸40によって回転駆動される。ポンプ要素4は、オイルパン100から吸入通路3を介して作動液を吸入する。ポンプ要素4は、作動液を吐出通路5へ吐出し、吐出通路5を介してCVT10へ供給する。制御バルブ8には、高圧通路6を介して、ベンチュリ部50よりも上流側の比較的高い圧力(以下、高圧という。)が導入される。また、制御バルブ8には、中圧通路7を介して、ベンチュリ部50の中の比較的低い圧力(中程度の圧力。以下、中圧という。)が導入される。制御バルブ8は、ベンチュリ部50よりも上流側の圧力とベンチュリ部50の中の圧力との差(差圧)に基づき、作動液の流路を切り替える。これにより、ポンプ要素4がCVT10に供給する作動液の流量を制御する。 The pump device 1 has a pump housing 2, a pump element 4, a venturi part 50, and a control valve 8. The pump housing 2 houses the pump element 4, the control valve 8, and the venturi part 50. The pump housing 2 is provided with a suction passage 3, a discharge passage 5, a high pressure passage 6, an intermediate pressure passage 7, and a return passage 9 as passages through which hydraulic fluid flows. The suction passage 3 connects the oil pan 100 and the pump element 4. The discharge passage 5 connects the pump element 4 and the CVT 10. A venturi 50 is provided on the discharge passage 5. The venturi section 50 is a throttle section provided in the middle of the discharge passage 5. The high-pressure passage 6 connects the control valve 8 to the pump element 4 side (hereinafter referred to as the upstream side) with respect to the venturi section 50 in the discharge passage 5. The intermediate pressure passage 7 connects the venturi unit 50 and the control valve 8. The return passage 9 connects the control valve 8 and the suction passage 3 (oil pan 100). A drive shaft 40 is pivotally supported on the pump housing 2. The drive shaft 40 is driven by a crankshaft of the internal combustion engine. The pump element 4 is rotationally driven by a drive shaft 40. The pump element 4 sucks hydraulic fluid from the oil pan 100 through the suction passage 3. The pump element 4 discharges hydraulic fluid to the discharge passage 5 and supplies it to the CVT 10 via the discharge passage 5. A relatively high pressure (hereinafter referred to as “high pressure”) upstream of the venturi section 50 is introduced into the control valve 8 via the high pressure passage 6. A relatively low pressure (medium pressure, hereinafter referred to as intermediate pressure) in the venturi section 50 is introduced into the control valve 8 through the intermediate pressure passage 7. The control valve 8 switches the flow path of the hydraulic fluid based on the difference (differential pressure) between the pressure upstream of the venturi unit 50 and the pressure in the venturi unit 50. Thereby, the flow volume of the hydraulic fluid which the pump element 4 supplies to CVT10 is controlled.
 図2は、ポンプ装置1の構成の概略を示す。ポンプハウジング2から取り出した状態のポンプ要素4を、駆動軸40の軸心(回転軸)Oに対して直交する平面で切った断面を示す。制御バルブ8をその軸心を通る平面で切った部分断面を示す。各通路3等を模式的に描く。作動液の流れる方向を一点鎖線の矢印で示す。図3は、ポンプハウジング2を、軸心Oに対して直交する平面で切った部分断面を示す。図4は、図3のA-A視断面を示す。以下、説明の便宜上、直交座標系を設定する。図3の左右方向にx軸を設け、右側を正とする。図3の紙面内の上下方向にy軸を設け、上側を正とする。図3の紙面に垂直な方向にz軸を設け、紙面の手前側を正とする。駆動軸40(軸心O)はz軸方向に延びる。ポンプハウジング2は、ポンプハウジング本体20とベンチュリ形成ブロック21を有する。ポンプハウジング本体20は、金属材料で形成される。ポンプハウジング本体20には、上記各通路3等のほか、吸入口230と吐出口231が形成される。ベンチュリ形成ブロック21は、樹脂材料で形成される。ベンチュリ形成ブロック21は、ポンプハウジング本体20とは別の部材である。 FIG. 2 shows an outline of the configuration of the pump device 1. The cross section which cut the pump element 4 of the state taken out from the pump housing 2 with the plane orthogonal to the axial center (rotating shaft) O of the drive shaft 40 is shown. The partial cross section which cut | disconnected the control valve 8 by the plane which passes along the axial center is shown. Each passage 3 and the like are schematically drawn. The direction in which the hydraulic fluid flows is indicated by a dashed line arrow. FIG. 3 shows a partial cross section of the pump housing 2 taken along a plane orthogonal to the axis O. FIG. 4 shows a cross section taken along line AA of FIG. Hereinafter, for convenience of explanation, an orthogonal coordinate system is set. The x axis is provided in the left-right direction in FIG. 3, and the right side is positive. The y-axis is provided in the vertical direction in the plane of FIG. 3, and the upper side is positive. The z axis is provided in a direction perpendicular to the paper surface of FIG. 3, and the front side of the paper surface is positive. The drive shaft 40 (axial center O) extends in the z-axis direction. The pump housing 2 has a pump housing body 20 and a venturi forming block 21. The pump housing body 20 is made of a metal material. In addition to the passages 3 and the like, a suction port 230 and a discharge port 231 are formed in the pump housing body 20. The venturi forming block 21 is formed of a resin material. The venturi forming block 21 is a member different from the pump housing body 20.
 ポンプハウジング本体20は、リアボディ22とサイドプレート23とフロントボディを有する。リアボディ22には、収容凹部220、第1孔221、第2孔222、第3孔223、第4孔224、第5孔225、吐出圧室226、バルブ収容孔227、ベンチュリ形成ブロック収容孔228、および軸受保持孔が形成される。収容凹部220は有底円筒状である。収容凹部220はz軸方向に延びてリアボディ22のz軸正方向側に開口する。収容凹部220の内周面には、半円筒状の第1溝部(図外)と第2溝部(図外)が、z軸方向に延びるように設けられている。第2溝部は収容凹部220の軸心を挟んで第1溝部と反対側に設けられる。軸受保持孔(図外)は、有底円筒状である。軸受保持孔はz軸方向に延びて収容凹部220のz軸負方向側の底部に開口する。軸受保持孔の内周には、軸受が設置される。軸受の内周側には駆動軸40のz軸負方向端部が挿入され、回転自在に設置される。吐出圧室226は、収容凹部220の上記底部に設けられた有底の凹部であり、上記底部に開口する。 The pump housing body 20 has a rear body 22, a side plate 23, and a front body. The rear body 22 includes an accommodation recess 220, a first hole 221, a second hole 222, a third hole 223, a fourth hole 224, a fifth hole 225, a discharge pressure chamber 226, a valve accommodation hole 227, and a venturi forming block accommodation hole 228. , And a bearing holding hole is formed. The housing recess 220 has a bottomed cylindrical shape. The housing recess 220 extends in the z-axis direction and opens on the z-axis positive direction side of the rear body 22. A semi-cylindrical first groove (not shown) and a second groove (not shown) are provided on the inner peripheral surface of the housing recess 220 so as to extend in the z-axis direction. The second groove is provided on the opposite side of the first groove with the axis of the housing recess 220 interposed therebetween. The bearing holding hole (not shown) has a bottomed cylindrical shape. The bearing holding hole extends in the z-axis direction and opens at the bottom of the housing recess 220 on the z-axis negative direction side. A bearing is installed on the inner periphery of the bearing holding hole. The end of the drive shaft 40 in the negative z-axis direction is inserted on the inner peripheral side of the bearing, and is rotatably installed. The discharge pressure chamber 226 is a bottomed recess provided at the bottom of the housing recess 220 and opens to the bottom.
 第1孔221は、リアボディ22のx軸負方向側かつz軸負方向側をy軸方向に延びる。リアボディ22のy軸負方向側における第1孔221の開口は、栓部材221aにより封止される。第1孔221はy軸方向およびz軸方向から見て吐出圧室226と部分的に重なるように形成され、吐出圧室226に接続する。バルブ収容孔227は略円筒状であり、リアボディ22のy軸正方向側かつz軸負方向側をx軸方向に延びる。すなわちバルブ収容孔227の長手方向(x軸方向)は、軸心Oの方向(z軸方向)に対し直交する。バルブ収容孔227のx軸正方向端は、リアボディ22の外表面に開口する。この開口は栓部材227aにより封止される。バルブ収容孔227のx軸負方向端は、第1孔221のy軸正方向端に接続する。バルブ収容孔227のx軸負方向寄りには、第5孔225の一端が開口する。第5孔225の他端はリアボディ22の外表面に開口する。 The first hole 221 extends in the y-axis direction on the x-axis negative direction side and the z-axis negative direction side of the rear body 22. The opening of the first hole 221 on the y-axis negative direction side of the rear body 22 is sealed with a plug member 221a. The first hole 221 is formed so as to partially overlap the discharge pressure chamber 226 when viewed from the y-axis direction and the z-axis direction, and is connected to the discharge pressure chamber 226. The valve housing hole 227 is substantially cylindrical, and extends in the x-axis direction on the y-axis positive direction side and the z-axis negative direction side of the rear body 22. That is, the longitudinal direction (x-axis direction) of the valve housing hole 227 is orthogonal to the direction of the axis O (z-axis direction). The x-axis positive direction end of the valve housing hole 227 opens to the outer surface of the rear body 22. This opening is sealed by a plug member 227a. The x-axis negative direction end of the valve housing hole 227 is connected to the y-axis positive direction end of the first hole 221. One end of the fifth hole 225 opens near the valve housing hole 227 in the negative x-axis direction. The other end of the fifth hole 225 opens to the outer surface of the rear body 22.
 ベンチュリ形成ブロック収容孔228は略円筒状であり、リアボディ22のz軸負方向側をx軸方向に延びる。すなわちベンチュリ形成ブロック収容孔228の長手方向(x軸方向)は、バルブ収容孔227の長手方向に対し略平行であると共に、軸心Oの方向(z軸方向)に対し直交する。ベンチュリ形成ブロック収容孔228のx軸負方向側は、第1孔221と交差するように形成され、第1孔221に接続する。また、ベンチュリ形成ブロック収容孔228のx軸負方向側は、y軸方向およびz軸方向から見て吐出圧室226と部分的に重なるように形成され、吐出圧室226に接続する。ベンチュリ形成ブロック収容孔228のx軸負方向端は、リアボディ22の外表面に開口する。この開口は栓部材228aにより封止される。第2孔222は、ベンチュリ形成ブロック収容孔228と略同じ軸心上に設けられ、リアボディ22のx軸正方向側かつz軸負方向側をx軸方向に延びる。第2孔222のx軸負方向端は、ベンチュリ形成ブロック収容孔228のx軸正方向端に接続する。第2孔222の内径はベンチュリ形成ブロック収容孔228の内径よりも小さい。第3孔223は、リアボディ22のx軸正方向側かつz軸負方向側をz軸方向に延びる。第3孔223のz軸正方向端は、第2孔222のx軸正方向端に接続する。第3孔223のz軸負方向端は、リアボディ22の外表面に開口する。第4孔224は、バルブ収容孔227のx軸正方向側とベンチュリ形成ブロック収容孔228のx軸正方向側とを接続する。 The venturi forming block accommodation hole 228 is substantially cylindrical, and extends in the x-axis direction on the negative side of the rear body 22 in the z-axis direction. That is, the longitudinal direction (x-axis direction) of the venturi forming block accommodation hole 228 is substantially parallel to the longitudinal direction of the valve accommodation hole 227 and is orthogonal to the direction of the axis O (z-axis direction). The x-axis negative direction side of the venturi forming block accommodation hole 228 is formed so as to intersect the first hole 221 and is connected to the first hole 221. Further, the x-axis negative direction side of the venturi forming block accommodating hole 228 is formed so as to partially overlap the discharge pressure chamber 226 when viewed from the y-axis direction and the z-axis direction, and is connected to the discharge pressure chamber 226. The x-axis negative direction end of the venturi forming block accommodation hole 228 opens to the outer surface of the rear body 22. This opening is sealed by a plug member 228a. The second hole 222 is provided on substantially the same axis as the venturi forming block accommodating hole 228, and extends in the x-axis direction on the x-axis positive direction side and the z-axis negative direction side of the rear body 22. The x-axis negative direction end of the second hole 222 is connected to the x-axis positive direction end of the venturi forming block accommodation hole 228. The inner diameter of the second hole 222 is smaller than the inner diameter of the venturi forming block accommodation hole 228. The third hole 223 extends in the z-axis direction on the x-axis positive direction side and the z-axis negative direction side of the rear body 22. The z-axis positive direction end of the third hole 223 is connected to the x-axis positive direction end of the second hole 222. The z-axis negative direction end of the third hole 223 opens to the outer surface of the rear body 22. The fourth hole 224 connects the x-axis positive direction side of the valve accommodation hole 227 and the x-axis positive direction side of the venturi forming block accommodation hole 228.
 サイドプレート23は円板状である。サイドプレート23には、軸収容孔(図外)が設けられる。軸収容孔は、サイドプレート23の中心部を貫通する。サイドプレート23の軸方向一方側の面には、1対の吸入口230a,230bと、1対の吐出口231a,231bが設けられる。1対の吸入口230a,230bは、軸収容孔の周り方向(以下、周方向という)に略円弧状に延びる溝であり、軸収容孔を挟んで互いに対向する位置に設けられる。1対の吐出口231a,231bは、周方向に略円弧状に延びる溝であり、軸収容孔を挟んで互いに対向する位置に設けられる。吸入口230と吐出口231は、周方向で互い違いに並ぶ。サイドプレート23には、連通路(図外)が設けられている。連通路は、サイドプレート23を軸方向に貫通してその両側面を連通させる。第1連通路は吸入口230に開口する。第2連通路は吐出口231に開口する。サイドプレート23はリアボディ22の収容凹部220に設置される。サイドプレート23の上記一方側の面が収容凹部220の開口側(z軸正方向側)に面する。サイドプレート23の他方側の面が収容凹部220の底部に対向する。サイドプレート23の軸収容孔は、リアボディ22の軸受保持孔に対向する。サイドプレート23の第1連通路はリアボディ22の吸入通路3に接続する。各吸入口230は、第1連通路を介して吸入通路3に接続する。サイドプレート23の第2連通路はリアボディ22の吐出圧室226に接続する。各吐出口231は、第2連通路を介して吐出圧室226に接続する。 The side plate 23 has a disk shape. The side plate 23 is provided with a shaft receiving hole (not shown). The shaft accommodating hole passes through the center portion of the side plate 23. A pair of suction ports 230a and 230b and a pair of discharge ports 231a and 231b are provided on the surface of one side of the side plate 23 in the axial direction. The pair of suction ports 230a and 230b are grooves extending in a substantially arc shape around the shaft housing hole (hereinafter referred to as a circumferential direction), and are provided at positions facing each other across the shaft housing hole. The pair of discharge ports 231a and 231b are grooves extending in a substantially arc shape in the circumferential direction, and are provided at positions facing each other across the shaft housing hole. The suction port 230 and the discharge port 231 are alternately arranged in the circumferential direction. The side plate 23 is provided with a communication path (not shown). The communication passage penetrates the side plate 23 in the axial direction and communicates both side surfaces thereof. The first communication path opens to the suction port 230. The second communication path opens at the discharge port 231. The side plate 23 is installed in the housing recess 220 of the rear body 22. The one surface of the side plate 23 faces the opening side (z-axis positive direction side) of the housing recess 220. The other side surface of the side plate 23 faces the bottom of the housing recess 220. The shaft receiving hole of the side plate 23 faces the bearing holding hole of the rear body 22. The first communication passage of the side plate 23 is connected to the suction passage 3 of the rear body 22. Each suction port 230 is connected to the suction passage 3 via the first communication passage. The second communication path of the side plate 23 is connected to the discharge pressure chamber 226 of the rear body 22. Each discharge port 231 is connected to the discharge pressure chamber 226 via the second communication path.
 フロントボディ(図外)はポンプカバーである。フロントボディは、収容凹部220を封止するように、リアボディ22のz軸正方向側に固定される。フロントボディ24には、軸受保持孔が設けられる。軸受保持孔はz軸方向に延びる。軸受保持孔の内周には、軸受が設置される。軸受の内周側には駆動軸40のz軸正方向端部が挿入され、回転自在に設置される。 The front body (not shown) is a pump cover. The front body is fixed to the positive side of the rear body 22 in the z-axis direction so as to seal the housing recess 220. The front body 24 is provided with a bearing holding hole. The bearing holding hole extends in the z-axis direction. A bearing is installed on the inner periphery of the bearing holding hole. A z-axis positive direction end portion of the drive shaft 40 is inserted on the inner peripheral side of the bearing, and is rotatably installed.
 ベンチュリ形成ブロック21は、略円筒状である。ベンチュリ形成ブロック21の外周面の径(外径)は、ベンチュリ形成ブロック収容孔228の内周面の径(内径)と略等しい。ベンチュリ形成ブロック21には、ベンチュリ部50が形成される。ベンチュリ部50は、ベンチュリ形成ブロック21に型成形によって形成される絞り部である。ベンチュリ形成ブロック21は、ベンチュリ部50が形成された後、ポンプハウジング本体20に接合される。図3および図4では、ベンチュリ部50の長手方向に沿った軸線(軸心)を通る平面でベンチュリ形成ブロック21を切った断面が示される。図5は、ベンチュリ形成ブロック21を、ベンチュリ部50の軸心が延びる方向から(x軸負方向側から)見た図である。以下、ベンチュリ部50の軸心が延びる方向を軸方向といい、軸心の周り方向を周方向という。ベンチュリ形成ブロック21は、内径漸減部210と、ベンチュリ部50と、連通孔213と、第1連通溝214と、第2連通溝215とを有する。ベンチュリ部50は、小径部51と、内径漸増部52とを有する。 The venturi forming block 21 is substantially cylindrical. The diameter (outer diameter) of the outer peripheral surface of the venturi forming block 21 is substantially equal to the diameter (inner diameter) of the inner peripheral surface of the venturi forming block accommodation hole 228. A venturi portion 50 is formed in the venturi forming block 21. The venturi portion 50 is a throttle portion formed on the venturi forming block 21 by molding. The venturi forming block 21 is joined to the pump housing body 20 after the venturi portion 50 is formed. 3 and 4, a cross section of the venturi forming block 21 taken along a plane passing through an axis (axial center) along the longitudinal direction of the venturi 50 is shown. FIG. 5 is a view of the venturi forming block 21 as seen from the direction in which the axis of the venturi portion 50 extends (from the x-axis negative direction side). Hereinafter, the direction in which the axis of the venturi 50 extends is referred to as the axial direction, and the direction around the axis is referred to as the circumferential direction. The venturi forming block 21 includes an inner diameter gradually decreasing portion 210, a venturi portion 50, a communication hole 213, a first communication groove 214, and a second communication groove 215. The venturi part 50 has a small diameter part 51 and an inner diameter gradually increasing part 52.
 内径漸減部210は、ベンチュリ形成ブロック21の内周側に軸方向に延びるように設けられ、ベンチュリ形成ブロック21の軸方向一方側の端面に開口する。内径漸減部210は、軸方向一方側から軸方向他方側(吐出通路5の下流側)に向って先細りとなるテーパ部であり、軸方向他方側に向かって内径が徐々に減少するように形成されている。内径漸減部210の軸方向一方側端の内径は、ベンチュリ形成ブロック収容孔228の内径よりも小さい。小径部51は、ベンチュリ形成ブロック21の内周側に設けられ、軸方向に延びる。小径部51の軸方向一方側端は内径漸減部210の軸方向他方側端に接続する。小径部51の内径は、内径漸減部210の軸方向他方側端の内径と略等しく、軸方向で一定である。 The inner diameter gradually decreasing portion 210 is provided on the inner peripheral side of the venturi forming block 21 so as to extend in the axial direction, and opens to the end surface on one side of the venturi forming block 21 in the axial direction. The inner diameter gradually decreasing portion 210 is a tapered portion that tapers from one side in the axial direction toward the other side in the axial direction (downstream of the discharge passage 5), and is formed so that the inner diameter gradually decreases toward the other side in the axial direction. Has been. The inner diameter of one end in the axial direction of the inner diameter gradually decreasing portion 210 is smaller than the inner diameter of the venturi forming block accommodation hole 228. The small diameter portion 51 is provided on the inner peripheral side of the venturi forming block 21 and extends in the axial direction. One end in the axial direction of the small diameter portion 51 is connected to the other end in the axial direction of the inner diameter gradually decreasing portion 210. The inner diameter of the small diameter portion 51 is substantially equal to the inner diameter of the other end in the axial direction of the inner diameter gradually decreasing portion 210 and is constant in the axial direction.
 内径漸増部52は、ベンチュリ形成ブロック21の内周側に軸方向に延びるように設けられる。内径漸増部52の軸方向一方側端は小径部51の軸方向他方側端に接続し、内径漸増部52の軸方向他方側端はベンチュリ形成ブロック21の軸方向他方側の端面に開口する。内径漸増部52は、軸方向他方側から軸方向一方側(吐出通路5の上流側)に向かって先細りとなるテーパ部であり、軸方向一方側から軸方向他方側(吐出通路5の下流側)に向かって内径が徐々に増大するように形成されている。内径漸増部52の軸方向他方側端の内径は、第2孔222の内径よりも若干小さい。ベンチュリ形成ブロック21は、内径漸増部52の内壁で挟まれた狭角θ(ベンチュリ部50の軸心に対し直交する方向から見て内壁で挟まれる角度のうち180度以下であるほう)が60度以下、具体的には略15度となるように形成される。 The inner diameter gradually increasing portion 52 is provided on the inner peripheral side of the venturi forming block 21 so as to extend in the axial direction. One end in the axial direction of the inner diameter gradually increasing portion 52 is connected to the other end in the axial direction of the small diameter portion 51, and the other end in the axial direction of the inner diameter gradually increasing portion 52 is open to the end surface on the other axial side of the venturi forming block 21. The gradually increasing inner diameter portion 52 is a tapered portion that tapers from the other side in the axial direction toward one side in the axial direction (upstream side of the discharge passage 5), and from one side in the axial direction to the other side in the axial direction (downstream side of the discharge passage 5). ) So that the inner diameter gradually increases. The inner diameter of the other end in the axial direction of the inner diameter gradually increasing portion 52 is slightly smaller than the inner diameter of the second hole 222. The venturi forming block 21 has a narrow angle θ sandwiched between the inner walls of the inner diameter gradually increasing portion 52 (the angle between the inner walls viewed from the direction orthogonal to the axis of the venturi portion 50 is 180 degrees or less). It is formed so as to be less than 15 degrees, specifically about 15 degrees.
 連通孔213は、ベンチュリ形成ブロック21の内部に形成され、ベンチュリ形成ブロック21の径方向に延びる径方向孔である。連通孔213は複数(4つ)設けられており、周方向で互いに略等間隔に並ぶ。連通孔213は、軸方向において小径部51と重なる位置に設けられる。連通孔213の径方向内側端は小径部51に開口する。第1連通溝214は、ベンチュリ形成ブロック21の外周面に形成され、周方向に延びる周方向溝である。第1連通溝214は、軸方向において小径部51および連通孔213と重なる位置に設けられる。第1連通溝214(の底部)には連通孔213の径方向外側端が開口する。第2連通溝215は、ベンチュリ形成ブロック21の外周面に形成され、軸方向に延びる軸方向溝である。第2連通溝215の軸方向一方側端は、第1連通溝214に接続する。第2連通溝215の軸方向他方側端は、ベンチュリ形成ブロック21の軸方向他方側の端面の近傍に位置する。 The communication hole 213 is a radial hole formed inside the venturi forming block 21 and extending in the radial direction of the venturi forming block 21. A plurality (four) of communication holes 213 are provided and are arranged at substantially equal intervals in the circumferential direction. The communication hole 213 is provided at a position overlapping the small diameter portion 51 in the axial direction. The radially inner end of the communication hole 213 opens to the small diameter portion 51. The first communication groove 214 is a circumferential groove formed on the outer peripheral surface of the venturi forming block 21 and extending in the circumferential direction. The first communication groove 214 is provided at a position overlapping the small diameter portion 51 and the communication hole 213 in the axial direction. The radially outer end of the communication hole 213 opens in the first communication groove 214 (the bottom thereof). The second communication groove 215 is an axial groove formed on the outer peripheral surface of the venturi forming block 21 and extending in the axial direction. One axial end of the second communication groove 215 is connected to the first communication groove 214. The other end in the axial direction of the second communication groove 215 is located in the vicinity of the end surface on the other axial side of the venturi forming block 21.
 ベンチュリ形成ブロック21は、ベンチュリ部50が形成された後、図3および図4に示すように、ポンプハウジング本体20(リアボディ22のベンチュリ形成ブロック収容孔228)に接合される。ベンチュリ形成ブロック21(ベンチュリ部50)の軸心はx軸方向に延びる。ベンチュリ形成ブロック21の上記軸方向一方側がx軸負方向側となり、ベンチュリ形成ブロック21の上記軸方向他方側がx軸正方向側となる。ベンチュリ形成ブロック21の軸方向他方側の(内径漸増部52が開口する)端面は、ベンチュリ形成ブロック収容孔228のx軸正方向側の(第2孔222が開口する)端面に当接する。ベンチュリ形成ブロック21における第2連通溝215の上記軸方向他方側端は、ベンチュリ形成ブロック収容孔228における第4孔224の開口に接続する。なお、ベンチュリ形成ブロック21の外周面において、第4孔224の開口に径方向で対向する軸方向位置に、第2連通溝215の軸方向他方側端に接続すると共に周方向に延びる第3連通溝を設けてもよい。この場合、第2連通溝215の軸方向他方側端と第4孔224の開口とが第3連通溝を介して接続するため、ベンチュリ形成ブロック収容孔228の軸心の周りにおけるベンチュリ形成ブロック21の回転方向位置を調節する必要がなくなる。 The venturi forming block 21 is joined to the pump housing body 20 (the venturi forming block accommodation hole 228 of the rear body 22) as shown in FIGS. 3 and 4 after the venturi portion 50 is formed. The axis of the venturi forming block 21 (the venturi portion 50) extends in the x-axis direction. The one axial side of the venturi forming block 21 is the x-axis negative direction side, and the other axial side of the venturi forming block 21 is the x-axis positive direction side. The end surface on the other axial side of the venturi forming block 21 (where the inner diameter gradually increasing portion 52 opens) abuts on the end surface on the positive x-axis side of the venturi forming block accommodation hole 228 (where the second hole 222 opens). The other axial end of the second communication groove 215 in the venturi forming block 21 is connected to the opening of the fourth hole 224 in the venturi forming block accommodation hole 228. Note that, on the outer peripheral surface of the venturi forming block 21, a third communication extending in the circumferential direction and connected to the other axial end of the second communication groove 215 at an axial position opposed to the opening of the fourth hole 224 in the radial direction. A groove may be provided. In this case, since the other end in the axial direction of the second communication groove 215 and the opening of the fourth hole 224 are connected via the third communication groove, the venturi formation block 21 around the axis of the venturi formation block accommodation hole 228 is connected. There is no need to adjust the position of the rotation direction.
 ポンプ要素4は、リアボディ22における収容凹部220の内周と、サイドプレート23のz軸正方向側の面と、フロントボディのz軸負方向側の面とにより囲まれる空間内に収容される。すなわち、上記空間がポンプ要素収容部として機能する。上記空間には駆動軸40が設置され、ポンプ要素4は、駆動軸40の周りに複数個のポンプ室400を形成する。図2に示すように、ポンプ要素4はベーンポンプ式であり、ロータ41とベーン42のセットを有する。ロータ41は、ポンプ要素収容部内に設けられ、セレーションにより駆動軸40に連結される。ロータ41は駆動軸40により回転駆動され、駆動軸40の回転に伴い回転する。ロータ41には複数(10個)のスリット410(径方向に延びる溝)が放射状に設けられる。スリット410はロータ41の外周面に開口する。複数のスリット410はロータ41の周方向に略等間隔に設けられる。各スリット410にはベーン42が設置される。ベーン42は略矩形状の板部材(羽根)である。ベーン42は、スリット410から出たりスリット410の内側に入ったりすることが可能(出没自在)に設けられている。 The pump element 4 is housed in a space surrounded by the inner periphery of the housing recess 220 in the rear body 22, the surface on the z-axis positive direction side of the side plate 23, and the surface on the z-axis negative direction side of the front body. That is, the space functions as a pump element housing portion. A drive shaft 40 is installed in the space, and the pump element 4 forms a plurality of pump chambers 400 around the drive shaft 40. As shown in FIG. 2, the pump element 4 is a vane pump type and has a set of a rotor 41 and a vane 42. The rotor 41 is provided in the pump element accommodating portion and is connected to the drive shaft 40 by serration. The rotor 41 is rotationally driven by the drive shaft 40 and rotates as the drive shaft 40 rotates. The rotor 41 is provided with a plurality of (ten) slits 410 (grooves extending in the radial direction) radially. The slit 410 opens on the outer peripheral surface of the rotor 41. The plurality of slits 410 are provided at substantially equal intervals in the circumferential direction of the rotor 41. A vane 42 is installed in each slit 410. The vane 42 is a substantially rectangular plate member (blade). The vane 42 is provided so as to be able to come out of the slit 410 or to enter the inside of the slit 410 (can be moved in and out).
 カムリング43は円環状である。カムリング43の外周は収容凹部220の内周に嵌合する。カムリング43の中心(軸心)は軸心Oと略一致する。カムリング43の内周面は、z軸方向に延びる筒状であり、z軸方向から見て略楕円形である。カムリング43の外周面には、半円筒状の第1溝部431と第2溝部432が設けられる。第2溝部432はカムリング43の軸心Oを挟んで第1溝部431と反対側に設けられる。収容凹部220の上記第1溝部とカムリング43の第1溝部431との間に、第1ピン451が嵌合して設置される。収容凹部220の上記第2溝部とカムリング43の第2溝部432との間に、第2ピン452が嵌合して設置される。各ピン451,452はポンプハウジング本体20に固定される。ピン451,452はポンプハウジング2に対するカムリング43の回転を抑制する。カムリング43は、ポンプ要素収容部内にロータ41を囲んで配置される。カムリング43は、ロータ41およびベーン42と共に、複数のポンプ室400を形成する。すなわち、サイドプレート23およびフロントボディ24は、カムリング43およびロータ41の軸方向側面に配置される。カムリング43の内周面とロータ41の外周面との間の空間は、その軸方向両側がサイドプレート23およびフロントボディ24により封止される一方、複数のベーン42によって、複数(10個)のポンプ室(容積室)400に区画される。 The cam ring 43 has an annular shape. The outer periphery of the cam ring 43 is fitted to the inner periphery of the housing recess 220. The center (axial center) of the cam ring 43 substantially coincides with the axial center O. The inner peripheral surface of the cam ring 43 has a cylindrical shape extending in the z-axis direction, and is substantially elliptical when viewed from the z-axis direction. A semi-cylindrical first groove portion 431 and a second groove portion 432 are provided on the outer peripheral surface of the cam ring 43. The second groove portion 432 is provided on the opposite side of the first groove portion 431 across the axis O of the cam ring 43. A first pin 451 is fitted and installed between the first groove portion of the housing recess 220 and the first groove portion 431 of the cam ring 43. A second pin 452 is fitted and installed between the second groove portion of the housing recess 220 and the second groove portion 432 of the cam ring 43. The pins 451 and 452 are fixed to the pump housing body 20. The pins 451 and 452 suppress the rotation of the cam ring 43 with respect to the pump housing 2. The cam ring 43 is disposed so as to surround the rotor 41 in the pump element housing portion. The cam ring 43 forms a plurality of pump chambers 400 together with the rotor 41 and the vanes 42. That is, the side plate 23 and the front body 24 are disposed on the axial side surfaces of the cam ring 43 and the rotor 41. The space between the inner peripheral surface of the cam ring 43 and the outer peripheral surface of the rotor 41 is sealed on both sides in the axial direction by the side plate 23 and the front body 24, while a plurality of (10 pieces) are provided by the plural vanes 42. It is divided into a pump chamber (volume chamber) 400.
 説明の便宜上、図2に示すように、カムリング43の略楕円形である内周面の長軸方向にX軸をとり、短軸方向にY軸をとる。ロータ41は図2の反時計回り方向に回転する。カムリング43の軸心OからX軸負方向側に向かうにつれて、また、軸心OからX軸正方向側に向かうにつれて、ロータ41の外周面とカムリング43の内周面との間の径方向距離(ポンプ室400の径方向寸法)が大きくなる。この距離の変化に応じ、ベーン42がスリット410から出没することで、各ポンプ室400が隔成される。軸心OからX軸負方向側に向かうに応じて、また、軸心OからX軸正方向側に向かうに応じて、ポンプ室400の容積が大きくなる。このポンプ室400の容積の差異により、軸心OよりもY軸正方向側では、ロータ41が回転する(ポンプ室400がX軸負方向側に向かう)につれて、軸心OよりX軸正方向側でポンプ室400の容積が縮小する一方、軸心OよりX軸負方向側でポンプ室400の容積が増大する。軸心OよりもY軸負方向側では、ロータ41が回転する(ポンプ室400がX軸正方向側に向かう)につれて、軸心OよりX軸負方向側でポンプ室400の容積が縮小する一方、軸心OよりX軸正方向側でポンプ室400の容積が増大する。 For convenience of explanation, as shown in FIG. 2, the X axis is taken in the major axis direction and the Y axis is taken in the minor axis direction of the inner peripheral surface of the cam ring 43 which is substantially elliptical. The rotor 41 rotates counterclockwise in FIG. The radial distance between the outer peripheral surface of the rotor 41 and the inner peripheral surface of the cam ring 43 as it goes from the axial center O of the cam ring 43 toward the negative X-axis direction and from the axial center O toward the positive X-axis direction. (The radial dimension of the pump chamber 400) increases. As the distance changes, the vanes 42 appear and disappear from the slits 410 to separate the pump chambers 400. The volume of the pump chamber 400 increases as it goes from the axis O toward the X axis negative direction side and from the axis O toward the X axis positive direction side. Due to the difference in volume of the pump chamber 400, the rotor 41 rotates on the Y axis positive direction side with respect to the axis O (the pump chamber 400 moves toward the X axis negative direction side). While the volume of the pump chamber 400 decreases on the side, the volume of the pump chamber 400 increases on the X axis negative direction side from the axis O. As the rotor 41 rotates on the Y axis negative direction side of the axis O (the pump chamber 400 moves toward the X axis positive direction side), the volume of the pump chamber 400 decreases on the X axis negative direction side of the axis O. On the other hand, the volume of the pump chamber 400 increases on the X axis positive direction side from the axis O.
 このように、ポンプ室400は軸心Oの周りを反時計回り方向に回転しつつ周期的に拡縮する。吸入口230は、X軸負方向側かつY軸正方向側の領域、および、X軸正方向側かつY軸負方向側の領域に開口する。すなわち、吸入口230は、駆動軸40の回転に伴いポンプ室400の容積が増大する(言換えると、複数のポンプ室400のうち駆動軸40の回転に伴い容積が増大するポンプ室400が位置する)吸入領域に開口する。吐出口231は、X軸正方向側かつY軸正方向側の領域、および、X軸負方向側かつY軸負方向側の領域に開口する。すなわち、吐出口231は、駆動軸40の回転に伴いポンプ室400の容積が減少する(言換えると、複数のポンプ室400のうち駆動軸40の回転に伴い容積が減少するポンプ室400が位置する)吐出領域に開口する。ポンプ室400は、吸入領域で吸入口230から作動液を吸入し、吐出領域で吐出口231へ(上記吸入した)作動液を吐出する。1対の吸入口230a,230bと1対の吐出口231a,231bに対応して、駆動軸40の1回転当たりに吸入と吐出がそれぞれ2回行われる。両吐出口231の作動液は1箇所に集められる。カムリング43はポンプ要素収容部内で移動不可能に設けられる。すなわち、ポンプ要素4は、駆動軸40の1回転当たりの吐出量(以下、ポンプ容量という。)が一定である固定容量形である。なお、ポンプ要素4は、トロコイドポンプ式のインナロータ、アウタロータのセットでもよいし、その他のポンプ形式でもよい。 Thus, the pump chamber 400 periodically expands and contracts while rotating around the axis O in the counterclockwise direction. The suction port 230 opens in a region on the X axis negative direction side and the Y axis positive direction side, and a region on the X axis positive direction side and the Y axis negative direction side. That is, the volume of the pump chamber 400 increases with the rotation of the drive shaft 40 in the suction port 230 (in other words, the pump chamber 400 whose volume increases with the rotation of the drive shaft 40 among the plurality of pump chambers 400 is positioned. Open) in the inhalation area. The discharge port 231 opens in a region on the X axis positive direction side and the Y axis positive direction side, and a region on the X axis negative direction side and the Y axis negative direction side. That is, the volume of the pump chamber 400 decreases with the rotation of the drive shaft 40 in the discharge port 231 (in other words, the pump chamber 400 whose volume decreases with the rotation of the drive shaft 40 among the plurality of pump chambers 400 is positioned. Open) in the discharge area. The pump chamber 400 sucks the working fluid from the suction port 230 in the suction region, and discharges the above-mentioned sucked working fluid to the discharge port 231 in the discharge region. Corresponding to the pair of suction ports 230a and 230b and the pair of discharge ports 231a and 231b, suction and discharge are performed twice per rotation of the drive shaft 40, respectively. The hydraulic fluid at both outlets 231 is collected in one place. The cam ring 43 is provided so as not to move within the pump element housing. That is, the pump element 4 is a fixed capacity type in which the discharge amount per one rotation of the drive shaft 40 (hereinafter referred to as pump capacity) is constant. The pump element 4 may be a trochoid pump type inner rotor or outer rotor set, or other pump type.
 制御バルブ8は、スプール弁体であり、バルブ収容孔227に収容される。制御バルブ8は、バルブ収容孔227内でx軸方向に変位(ストローク)可能である。制御バルブ8は、第1ランド部81、第2ランド部82、接続部83、スペーサ部84、および凹部85を有する。各ランド部81,82は円柱状であり、その径は互いに略等しい。各ランド部81,82の外周面の径は、バルブ収容孔227の内周面の径よりも僅かに小さい。制御バルブ8において、第1ランド部81はx軸負方向側に設けられ、第2ランド部82はx軸正方向側端に設けられる。第1ランド部81の外周面には、制御バルブ8の軸心の周り方向(以下、周方向という。)に延びる周方向溝810が設けられる。第2ランド部82の外周面には周方向に延びる周方向溝820が複数設けられる。接続部83は、両ランド部81,82に挟まれてx軸方向に延びる円柱状である。接続部83の外周面の径は各ランド部81,82よりも小さい。スペーサ部84は、第1ランド部81からx軸負方向側に延びる棒状である。凹部85は有底円筒状であり、第2ランド部82の内部をx軸方向に延びる。凹部85は第2ランド部82のx軸正方向端面に開口する。 The control valve 8 is a spool valve body and is accommodated in the valve accommodation hole 227. The control valve 8 can be displaced (stroked) in the x-axis direction within the valve housing hole 227. The control valve 8 includes a first land portion 81, a second land portion 82, a connection portion 83, a spacer portion 84, and a recess 85. The land portions 81 and 82 are columnar and have substantially the same diameter. The diameter of the outer peripheral surface of each land portion 81, 82 is slightly smaller than the diameter of the inner peripheral surface of the valve housing hole 227. In the control valve 8, the first land portion 81 is provided on the x-axis negative direction side, and the second land portion 82 is provided on the x-axis positive direction side end. A circumferential groove 810 extending in the direction around the axis of the control valve 8 (hereinafter referred to as the circumferential direction) is provided on the outer peripheral surface of the first land portion 81. A plurality of circumferential grooves 820 extending in the circumferential direction are provided on the outer peripheral surface of the second land portion 82. The connecting portion 83 has a cylindrical shape extending between the land portions 81 and 82 and extending in the x-axis direction. The diameter of the outer peripheral surface of the connecting portion 83 is smaller than the land portions 81 and 82. The spacer portion 84 has a rod shape extending from the first land portion 81 toward the negative x-axis direction. The recess 85 has a bottomed cylindrical shape, and extends inside the second land portion 82 in the x-axis direction. The recess 85 opens at the end surface of the second land portion 82 in the positive x-axis direction.
 バルブ収容孔227の内部には、第1ランド部81のx軸負方向端面とバルブ収容孔227の内周面とに囲まれて、高圧室86が画成される。第2ランド部82のx軸正方向端面とバルブ収容孔227の内周面と栓部材227aのx軸負方向端面とに囲まれて、中圧室88が画成される。第1ランド部81と第2ランド部82との間であって接続部83の外周にドレン室89が画成される。中圧室88内には、スプリング88が設置される。スプリング88はコイルスプリングである。スプリング88のx軸正方向端は栓部材227aにより保持される。スプリング88のx軸負方向側は制御バルブ8の凹部85の内側に保持される。スプリング88は、圧縮状態で設置される。スプリング88は、制御バルブ8をx軸負方向側に常時付勢する戻しばねである。バルブ収容孔227内における制御バルブ8のx軸負方向側への移動は、スペーサ部84のx軸負方向端がバルブ収容孔227のx軸負方向端面に当接することで、規制される。バルブ収容孔227内における制御バルブ8の移動に関わらず、高圧室86に第1孔221が開口し、中圧室88に第4孔224が開口する。 Inside the valve housing hole 227, a high pressure chamber 86 is defined by being surrounded by the end surface of the first land 81 in the negative x-axis direction and the inner peripheral surface of the valve housing hole 227. An intermediate pressure chamber 88 is defined by being surrounded by the x-axis positive direction end surface of the second land portion 82, the inner peripheral surface of the valve housing hole 227, and the x-axis negative direction end surface of the plug member 227a. A drain chamber 89 is defined between the first land portion 81 and the second land portion 82 and on the outer periphery of the connection portion 83. A spring 88 is installed in the intermediate pressure chamber 88. The spring 88 is a coil spring. The positive end of the spring 88 in the x-axis direction is held by a plug member 227a. The x-axis negative direction side of the spring 88 is held inside the recess 85 of the control valve 8. The spring 88 is installed in a compressed state. The spring 88 is a return spring that constantly biases the control valve 8 toward the negative x-axis direction. The movement of the control valve 8 in the valve housing hole 227 in the x-axis negative direction side is restricted by the x-axis negative direction end of the spacer 84 coming into contact with the x-axis negative direction end surface of the valve housing hole 227. Regardless of the movement of the control valve 8 in the valve accommodating hole 227, the first hole 221 opens in the high pressure chamber 86 and the fourth hole 224 opens in the intermediate pressure chamber 88.
 次に、複数の通路3等の構成について説明する。サイドプレート23の各吐出口231は、リアボディ22の吐出圧室226を介して、第1孔221またはベンチュリ形成ブロック収容孔228に連通する。吐出圧室226と第1孔221またはベンチュリ形成ブロック収容孔228との接続部位、ベンチュリ形成ブロック収容孔228におけるベンチュリ形成ブロック21(内径漸減部210)よりもx軸負方向側、および内径漸減部210は、吐出口231(吐出圧室226)からベンチュリ部50(小径部51および内径漸増部52)までの吐出通路5、言換えるとベンチュリ部50の上流側の吐出通路5として機能する。小径部51の内径は、上記吐出通路5の内径よりも小さく形成されている。ベンチュリ部50の内径漸増部52は、第2孔222および第3孔223を介して、リアボディ22の外部に連通する。第2孔222および第3孔223は、ベンチュリ部50からCVT10へ向う吐出通路5、言換えるとベンチュリ部50の下流側の吐出通路5として機能する。上記吐出通路5の内径は、内径漸増部52のx軸正方向端の内径よりも大きい。第1孔221におけるベンチュリ形成ブロック収容孔228との接続(交差)部位とバルブ収容孔227との接続部位との間は、ベンチュリ部50の上流側で吐出通路5から分岐して制御バルブ8の高圧室86に接続する、高圧通路6として機能する。ベンチュリ形成ブロック21の連通孔213、第1連通溝214、および第2連通溝215、並びにリアボディ22の第4孔224は、吐出通路5においてベンチュリ部50(小径部51)から分岐して制御バルブ8の中圧室88に接続する、中圧通路7(ベンチュリ部圧導入通路)として機能する。連通孔213は、ベンチュリ部圧導入孔として機能する。リアボディ22における第5孔225は、制御バルブ8のドレン室89からオイルパン100へ向う戻り通路9として機能する。 Next, the configuration of the plurality of passages 3 will be described. Each discharge port 231 of the side plate 23 communicates with the first hole 221 or the venturi forming block accommodation hole 228 via the discharge pressure chamber 226 of the rear body 22. A connecting portion between the discharge pressure chamber 226 and the first hole 221 or the venturi forming block accommodating hole 228, the x axis negative direction side from the venturi forming block 21 (inner diameter gradually decreasing portion 210) in the venturi forming block accommodating hole 228, and an inner diameter gradually decreasing portion. 210 functions as a discharge passage 5 from the discharge port 231 (discharge pressure chamber 226) to the venturi portion 50 (small diameter portion 51 and gradually increasing inner diameter portion 52), in other words, the discharge passage 5 upstream of the venturi portion 50. The inner diameter of the small diameter portion 51 is formed smaller than the inner diameter of the discharge passage 5. The inner diameter gradually increasing portion 52 of the venturi portion 50 communicates with the outside of the rear body 22 through the second hole 222 and the third hole 223. The second hole 222 and the third hole 223 function as the discharge passage 5 from the venturi portion 50 toward the CVT 10, in other words, the discharge passage 5 on the downstream side of the venturi portion 50. The inner diameter of the discharge passage 5 is larger than the inner diameter of the inner diameter gradually increasing portion 52 at the x-axis positive direction end. The connection (intersection) part of the first hole 221 with the venturi forming block accommodation hole 228 and the connection part of the valve accommodation hole 227 branch from the discharge passage 5 upstream of the venturi part 50 and the control valve 8 It functions as a high-pressure passage 6 connected to the high-pressure chamber 86. The communication hole 213, the first communication groove 214, the second communication groove 215, and the fourth hole 224 of the rear body 22 of the venturi forming block 21 branch from the venturi section 50 (small diameter section 51) in the discharge passage 5 to control valves. 8 functions as an intermediate pressure passage 7 (venturi pressure introduction passage) connected to the intermediate pressure chamber 88. The communication hole 213 functions as a venturi pressure introducing hole. The fifth hole 225 in the rear body 22 functions as a return passage 9 from the drain chamber 89 of the control valve 8 toward the oil pan 100.
 図3,図4に示すように、ベンチュリ部50の長手方向(x軸方向)は、駆動軸40の軸心Oが延びる方向(z軸方向)に対し略直交すると共に、制御バルブ8の長手方向(x軸方向)に対し略平行である。ベンチュリ部50は、その上流側が制御バルブ8の高圧室86と対向するように配置される。言換えると、ベンチュリ部50の上流側の吐出通路5と高圧室86とが、x軸方向で少なくとも部分的に重なる。より具体的には、ベンチュリ形成ブロック収容孔228におけるベンチュリ形成ブロック21よりもx軸負方向側と、(制御バルブ8がx軸負方向側に最も変位したときの)高圧室86とが、y軸方向から見て少なくとも部分的に重なる。 As shown in FIGS. 3 and 4, the longitudinal direction (x-axis direction) of the venturi portion 50 is substantially orthogonal to the direction (z-axis direction) in which the axis O of the drive shaft 40 extends, and the longitudinal direction of the control valve 8. It is substantially parallel to the direction (x-axis direction). The venturi unit 50 is disposed so that the upstream side thereof faces the high pressure chamber 86 of the control valve 8. In other words, the discharge passage 5 on the upstream side of the venturi section 50 and the high-pressure chamber 86 at least partially overlap in the x-axis direction. More specifically, the x-axis negative direction side of the venturi forming block accommodating hole 228 with respect to the x-axis negative direction side and the high-pressure chamber 86 (when the control valve 8 is most displaced to the x-axis negative direction side) are y It overlaps at least partially when viewed from the axial direction.
 [作用]
  次に、作用効果を説明する。図6の上段は、ベンチュリ部50の近傍における吐出通路5を模式的に示す。矢印は作動液の流れる方向を示す。ベンチュリ部50より上流側の吐出通路5における作動液の流速をu1とし、圧力をp1とする。小径部51における流速をu2とし、圧力をp2とする。ベンチュリ部50より下流側の吐出通路5における流速をu3とし、圧力をp3とする。図6の下段は、上段における各部位と対応付けた圧力pの変化を示す。小径部51の内径(断面積)は、ベンチュリ部50より上流側の吐出通路5の内径(断面積)よりも小さい。よって、u2はu1よりも増加する。この流速の増加分は、流量に比例し、断面積の差に反比例する。ベルヌーイの定理により、流速の増加に応じて圧力が2次関数的に低下する。よって、p2はp1よりも低下する。この圧力低下分は、流速の増加分、すなわち流量に応じたものとなる。このように、絞り部としてのベンチュリ部50(小径部51)は、流量に応じた差圧Δp=p1-p2を発生する。ベンチュリ部50において、内径漸増部52の内径は、下流側に向うにつれて徐々に大きくなる。よって、内径漸増部52の流速は、下流側に向うにつれて徐々に減少する。流速の減少が緩やかであるため、エネルギーの損失が大きくない。よって、内径漸増部52の圧力は、流速の減少に応じて、下流側に向うにつれて徐々に上昇する。ベンチュリ部50における下流側の内径がベンチュリ部50より上流側の吐出通路5の内径の近傍まで拡大すれば、流速はu1の近傍まで減少し、圧力はp1の近傍まで上昇(回復)する。このように、絞り部における下流側(内径漸増部52)の内径がなだらかに拡大することにより、エネルギーの大きな損失が抑制される。このため、絞り部の下流側において、絞り部より上流側と同程度まで流速が減少すると共に、絞り部より上流側と同程度まで圧力が回復する。
[Action]
Next, the function and effect will be described. The upper part of FIG. 6 schematically shows the discharge passage 5 in the vicinity of the venturi section 50. The arrow indicates the direction in which the hydraulic fluid flows. The flow rate of hydraulic fluid in the discharge passage 5 upstream from the venturi section 50 is u 1 and the pressure is p 1 . The flow velocity in the small diameter portion 51 is u 2 and the pressure is p 2 . The flow velocity in the discharge passage 5 downstream from the venturi 50 is u 3 and the pressure is p 3 . The lower part of FIG. 6 shows changes in the pressure p associated with each part in the upper part. The inner diameter (cross-sectional area) of the small-diameter portion 51 is smaller than the inner diameter (cross-sectional area) of the discharge passage 5 upstream from the venturi portion 50. Therefore, u 2 increases from u 1 . This increase in flow velocity is proportional to the flow rate and inversely proportional to the difference in cross-sectional area. According to Bernoulli's theorem, the pressure decreases in a quadratic function as the flow velocity increases. Thus, p 2 is lower than p 1. This pressure drop corresponds to the increase in flow rate, that is, the flow rate. As described above, the venturi section 50 (small diameter section 51) as the throttle section generates a differential pressure Δp = p 1 −p 2 corresponding to the flow rate. In the venturi section 50, the inner diameter of the inner diameter gradually increasing section 52 gradually increases toward the downstream side. Therefore, the flow velocity of the inner diameter gradually increasing portion 52 gradually decreases toward the downstream side. Since the decrease in flow velocity is gradual, energy loss is not large. Therefore, the pressure in the inner diameter gradually increasing portion 52 gradually increases toward the downstream side in accordance with the decrease in the flow velocity. By extension from the venturi section 50 is an inner diameter of the downstream side of the venturi 50 to the vicinity of the inner diameter of the discharge passage 5 on the upstream side, the flow rate was reduced to the vicinity of u 1, the pressure is raised to the vicinity of the p 1 (Recovery) . In this way, a large loss of energy is suppressed by gradually increasing the inner diameter of the downstream side (inner diameter gradually increasing portion 52) in the throttle portion. For this reason, on the downstream side of the throttle part, the flow velocity decreases to the same level as that upstream from the throttle part, and the pressure recovers to the same level as the upstream side from the throttle part.
 ベンチュリ部50の上流側の作動液(p1)は、高圧通路6を介して高圧室86に導入される。ベンチュリ部50の中(小径部51)の作動液(p2)は、中圧通路7を介して中圧室88に導入される。なお、ドレン室89は低圧に保たれる(吸入通路3と同じく大気圧に開放される)。制御バルブ8には、高圧室86のp1によるx軸正方向側への力F1と、中圧室88のp2によるx軸負方向側への力F2が作用する。また、制御バルブ8には、スプリング88によるx軸負方向側への力F3が作用する。F1とF2との差F1-F2(差圧Δpに対応する力)がF3を上回ると、制御バルブ8がx軸正方向側へ移動する。これにより高圧室86と戻り通路9とが連通すると、ベンチュリ部50の上流側の吐出通路5から高圧通路6(高圧室86)へ導入される作動液が、戻り通路9を介して、吸入通路3(吸入口230の側)へ戻されるようになる。すなわち、制御バルブ8は、ベンチュリ部50の上流側と小径部51との差圧Δpに基づき、作動液が吸入側へ還流するように流路を切り替える。作動液が吸入側へ還流するようになると、吐出通路5を介してCVT10へ供給される流量が必要な量に制限される。このように、ベンチュリ部50、高圧通路6、中圧通路7、制御バルブ8、戻り通路9は、ポンプ要素4の吐出流量を制御する制御部として機能する。 The hydraulic fluid (p 1 ) on the upstream side of the venturi section 50 is introduced into the high pressure chamber 86 via the high pressure passage 6. The hydraulic fluid (p 2 ) in the venturi portion 50 (small diameter portion 51) is introduced into the intermediate pressure chamber 88 through the intermediate pressure passage 7. In addition, the drain chamber 89 is kept at a low pressure (same as the suction passage 3 and is opened to the atmospheric pressure). A force F1 in the positive x-axis direction due to p 1 of the high-pressure chamber 86 and a force F2 in the negative x-axis direction due to p 2 in the intermediate pressure chamber 88 act on the control valve 8. Further, the force F3 in the negative x-axis direction by the spring 88 acts on the control valve 8. When the difference F1-F2 between F1 and F2 (the force corresponding to the differential pressure Δp) exceeds F3, the control valve 8 moves to the x-axis positive direction side. Thus, when the high pressure chamber 86 and the return passage 9 communicate with each other, the hydraulic fluid introduced from the discharge passage 5 upstream of the venturi section 50 to the high pressure passage 6 (high pressure chamber 86) passes through the return passage 9 and the suction passage. 3 (suction port 230 side). That is, the control valve 8 switches the flow path so that the working fluid recirculates to the suction side based on the differential pressure Δp between the upstream side of the venturi portion 50 and the small diameter portion 51. When the working fluid returns to the suction side, the flow rate supplied to the CVT 10 via the discharge passage 5 is limited to a necessary amount. Thus, the venturi section 50, the high pressure passage 6, the intermediate pressure passage 7, the control valve 8, and the return passage 9 function as a control section that controls the discharge flow rate of the pump element 4.
 従来のポンプ装置では、差圧を発生させる手段として、オリフィスが用いられてきた。オリフィスは、流路に例えば薄板の絞りを設けるだけという簡単な構造により形成することができる。オリフィスの上流と下流とで、流量に応じた圧力差が発生する。しかし、オリフィスでは絞りの出口で流れに乱れが生じ、エネルギーを損失することによってオリフィス下流の圧力が低下する。損失したエネルギーは熱や音等になって外部へ拡散してしまう。このため、ポンプの効率が低下してしまう。差圧を大きくすればするほど、ポンプの効率が低下する。以下、本実施例と同様のポンプ装置においてベンチュリ部50の代わりにオリフィス500を用いたものを比較例という。オリフィス500の出口における狭角θは、120~180度である。図7は、比較例における、図6と同様の図である。上段は、オリフィス500の近傍における吐出通路5を示す。オリフィス500より上流側の吐出通路5における作動液の流速をu1とし、圧力をp1とする。オリフィス500より下流側の吐出通路5における流速をu2とし、圧力をp2とする。オリフィス500の内径は、オリフィス500より上流側の吐出通路5の内径よりも小さい。よって、オリフィス500における流速はu1よりも増加し、オリフィス500における圧力はp1よりも低下する。オリフィス500の出口の内径は、下流側に向うにつれて急に大きくなる。よって、オリフィス500の出口で渦流が発生し、エネルギーが大きく損失する。このため、u2はu1まで減少するものの、p2はp1まで上昇(回復)しない。すなわち、圧力が低下してしまう(圧力損失)。このように低下した後の圧力p2がCVT10へ供給されることになる。 In a conventional pump device, an orifice has been used as a means for generating a differential pressure. The orifice can be formed by a simple structure in which, for example, a thin plate throttle is provided in the flow path. A pressure difference corresponding to the flow rate is generated between upstream and downstream of the orifice. However, in the orifice, the flow is disturbed at the outlet of the restrictor, and the pressure downstream of the orifice is reduced by losing energy. The lost energy becomes heat or sound and diffuses to the outside. For this reason, the efficiency of a pump will fall. The greater the differential pressure, the lower the pump efficiency. Hereinafter, a pump device similar to the present embodiment using the orifice 500 instead of the venturi unit 50 is referred to as a comparative example. The narrow angle θ at the outlet of the orifice 500 is 120 to 180 degrees. FIG. 7 is a view similar to FIG. 6 in the comparative example. The upper stage shows the discharge passage 5 in the vicinity of the orifice 500. The flow rate of the hydraulic fluid in the discharge passage 5 upstream from the orifice 500 is u 1 and the pressure is p 1 . The flow velocity in the discharge passage 5 downstream from the orifice 500 is u 2 and the pressure is p 2 . The inner diameter of the orifice 500 is smaller than the inner diameter of the discharge passage 5 upstream of the orifice 500. Thus, the flow velocity at the orifice 500 increases above u 1 and the pressure at the orifice 500 decreases below p 1 . The inner diameter of the outlet of the orifice 500 increases suddenly toward the downstream side. Therefore, a vortex is generated at the outlet of the orifice 500, and energy is greatly lost. Therefore, although u 2 decreases to u 1 , p 2 does not increase (recover) to p 1 . That is, the pressure decreases (pressure loss). The pressure p 2 after such a decrease is supplied to the CVT 10.
 これに対し、本実施例のポンプ装置1では、差圧を発生させる手段として、オリフィスに代え、ベンチュリ管を用いる。ベンチュリ部50では、絞り部における下流側(内径漸増部52)の内径がなだらかに拡大することにより、エネルギーの大きな損失が抑制される。このため、流速が減少すると共に圧力が回復する。つまり、差圧発生手段における圧力損失が抑制される。よって、ポンプの効率低下を抑制しつつ、差圧を発生させることができる。特に、無段変速機等の自動変速機は、パワーステアリング装置等に比べ使用する流量が多いため、大きな圧力損失抑制効果を得ることができる。なお、ベンチュリ部50の絞り部における入り口(小径部51よりも上流側)でも、内径漸減部210の径がなだらかに縮小するようにしたことで、流れに乱れが生じることを抑制できる。これにより、エネルギーが大きく損失することなく、流速が増加すると共に圧力が低下する。よって、圧力をより効率的に低下させることができる(全体としての圧力損失が抑制される)。したがって、ポンプの効率をより向上できる。 On the other hand, in the pump device 1 of this embodiment, a venturi pipe is used instead of the orifice as means for generating the differential pressure. In the venturi section 50, a large loss of energy is suppressed by gently increasing the inner diameter of the downstream side (inner diameter gradually increasing section 52) in the throttle section. For this reason, the pressure recovers as the flow rate decreases. That is, pressure loss in the differential pressure generating means is suppressed. Therefore, it is possible to generate a differential pressure while suppressing a decrease in pump efficiency. In particular, since an automatic transmission such as a continuously variable transmission uses a larger flow rate than a power steering device or the like, a large pressure loss suppression effect can be obtained. In addition, at the entrance (upstream side of the small-diameter portion 51) of the throttle portion of the venturi portion 50, the diameter of the inner diameter gradually decreasing portion 210 is gradually reduced, so that it is possible to suppress the occurrence of turbulence in the flow. This increases the flow velocity and reduces the pressure without a significant loss of energy. Therefore, the pressure can be reduced more efficiently (the pressure loss as a whole is suppressed). Therefore, the efficiency of the pump can be further improved.
 比較例では、ポンプの効率低下を抑制するために、オリフィス500でのエネルギー損失を小さくしようとすると、差圧Δp(に対応する力F1-F2)が小さくなってしまう。小さいΔpで制御バルブ8を作動させようとすると、制御バルブ8の挙動が不安定になる。これにより、制御対象とするポンプ要素4の吐出流量(以下、制御流量という。)のばらつきが大きくなってしまう。これに対し、本実施例では、ポンプの効率低下を抑制しつつ、差圧(に対応する力F1-F2)を増加させることができる。よって、制御流量の上記ばらつきも抑制することができる。図8は、ポンプ要素4の吐出流量(差圧発生手段を通過する流量)Qと、制御バルブ8の軸方向両側に作用する圧力の差(差圧発生手段が発生する差圧)Δpとの関係を示すグラフである。本実施例と比較例とでポンプの効率(差圧発生手段での圧力損失)が同じであるとした場合に、実線で本実施例の特性を示し、一点鎖線で比較例の特性を示す。Qに応じてΔpは2次曲線的に変化する。制御バルブ84の作動(変位)は、Δpにより、言換えるとQにより、制御される。Qに対するΔpの変化率は、比較例よりも本実施例のほうが大きい。同じΔpを発生させるために必要なQは、比較例よりも本実施例のほうが少ない。すなわち、同じQでも、比較例よりも本実施例のほうが大きなΔp(に対応する力F1-F2)を発生させることができる。このため、制御バルブ8の挙動を安定化し、制御流量のばらつきを抑制することができる。 In the comparative example, if an attempt is made to reduce the energy loss at the orifice 500 in order to suppress a reduction in pump efficiency, the differential pressure Δp (corresponding force F1-F2) becomes small. When trying to operate the control valve 8 with a small Δp, the behavior of the control valve 8 becomes unstable. Thereby, the dispersion | variation in the discharge flow volume (henceforth a control flow volume) of the pump element 4 made into a control object will become large. On the other hand, in the present embodiment, the differential pressure (corresponding force F1-F2) can be increased while suppressing a decrease in the efficiency of the pump. Therefore, the above variation in the control flow rate can also be suppressed. FIG. 8 shows the difference between the discharge flow rate (flow rate passing through the differential pressure generating means) Q of the pump element 4 and the pressure acting on both axial sides of the control valve 8 (differential pressure generated by the differential pressure generating means) Δp. It is a graph which shows a relationship. When the pump efficiency (pressure loss at the differential pressure generating means) is the same in this embodiment and the comparative example, the characteristics of the present embodiment are indicated by a solid line, and the characteristics of the comparative example are indicated by an alternate long and short dash line. Δp changes in a quadratic curve according to Q. The operation (displacement) of the control valve 84 is controlled by Δp, in other words, by Q. The change rate of Δp with respect to Q is larger in the present example than in the comparative example. The Q required to generate the same Δp is less in this example than in the comparative example. That is, even with the same Q, this embodiment can generate a larger Δp (corresponding force F1-F2) than the comparative example. For this reason, the behavior of the control valve 8 can be stabilized and variations in the control flow rate can be suppressed.
 また、制御バルブ8には、F1~F3の他、外部からの荷重(外力)が作用する場合がある。この場合、制御流量が本来の量からずれるおそれがある。例えば、自動変速機(CVT10)での使用環境下では、作動液中にコンタミが比較的多く存在する。制御バルブ8の外周面とバルブ収容孔227の内周面との間の隙間にコンタミが介在する等により制御バルブ8に荷重が発生すると、制御バルブ8が動きにくくなり、この荷重に相当する流量の分だけ、制御流量が本来の量からずれてしまう。これに対し、本実施例では、流量Qの小さな変化により、差圧Δp(に対応する力F1-F2)の大きな変化を発生させることができる。よって、制御流量のずれが低減される。図8で、上記荷重をΔpに換算したものをδpとし、このδpに対応するQのずれ分をδQで示す。すなわち、任意のΔpに対し所定のQが対応するところ、上記任意のΔpがδPの分だけずれると、Qが上記所定のQからδQの分だけずれる。Δpに対するQの変化率は、比較例よりも本実施例のほうが小さい。よって、同じδPに対応するδQは、比較例よりも本実施例のほうが少ない(δQ2<δQ1)。すなわち、同じ荷重が制御バルブ8に作用しても、比較例よりも本実施例のほうが、流量の変化が少ない。このため、制御流量のずれを低減することができる。 In addition to F1 to F3, an external load (external force) may act on the control valve 8. In this case, the control flow rate may deviate from the original amount. For example, a relatively large amount of contamination is present in the hydraulic fluid under the usage environment of the automatic transmission (CVT10). If a load is generated in the control valve 8 due to contamination or the like in the gap between the outer peripheral surface of the control valve 8 and the inner peripheral surface of the valve housing hole 227, the control valve 8 becomes difficult to move, and the flow rate corresponding to this load Therefore, the control flow rate deviates from the original amount. On the other hand, in this embodiment, a small change in the flow rate Q can cause a large change in the differential pressure Δp (the corresponding force F1-F2). Therefore, the deviation of the control flow rate is reduced. In FIG. 8, a value obtained by converting the load into Δp is represented by δp, and a deviation of Q corresponding to δp is represented by δQ. That is, when a predetermined Q corresponds to an arbitrary Δp, if the arbitrary Δp is shifted by ΔP, Q is shifted from the predetermined Q by ΔQ. The rate of change of Q with respect to Δp is smaller in this example than in the comparative example. Therefore, ΔQ corresponding to the same ΔP is smaller in this example than in the comparative example (ΔQ 2 <ΔQ 1 ). That is, even if the same load acts on the control valve 8, the change in the flow rate is smaller in the present embodiment than in the comparative example. For this reason, the deviation of the control flow rate can be reduced.
 なお、コンタミによる制御バルブ8のロックを防ぐため、制御バルブ8の周りにおけるバルブ収容孔227との間のクリアランス部の隙間面積を大きくすることも考えられる。しかし、クリアランス部の隙間面積を大きくすると、制御バルブ8の周りの(クリアランス部を介した)漏れ量が増加する。これにより、ポンプの効率が低下してしまう。これに対し、本実施例では、絞り部でのエネルギー損失を抑制しつつ、比較的少ない流量Qで大きな差圧Δpを発生させることができる。このため、制御バルブ8に作用する力F1-F2を大きく低減させることなく、制御バルブ8の径を縮小することができる。制御バルブ8の径を縮小することで、併せて、上記クリアランス部の隙間面積を小さくすることができる。これにより、制御バルブ8の周りの漏れ量が減少するため、ポンプの効率低下を抑制できる。 In order to prevent the control valve 8 from being locked due to contamination, it is conceivable to increase the clearance area between the control valve 8 and the valve housing hole 227 around the control valve 8. However, increasing the clearance area of the clearance portion increases the amount of leakage around the control valve 8 (via the clearance portion). Thereby, the efficiency of a pump will fall. On the other hand, in this embodiment, it is possible to generate a large differential pressure Δp with a relatively small flow rate Q while suppressing energy loss in the throttle portion. Therefore, the diameter of the control valve 8 can be reduced without greatly reducing the force F1-F2 acting on the control valve 8. By reducing the diameter of the control valve 8, the clearance area of the clearance portion can be reduced. Thereby, since the leakage amount around the control valve 8 is reduced, it is possible to suppress a reduction in pump efficiency.
 内径漸増部52の内壁で挟まれた狭角θは、絞り部としてのベンチュリ部50における出口の広がり角度である。θを60度以下とすることで、充分な圧力損失抑制効果を得ることができる。図9は、θと圧力損失比との関係を示す。圧力損失比は、比較例における圧力損失を1としたときの割合である。θが60度以下のとき、圧力損失比が1未満となる。すなわち、比較例よりも圧力損失が小さくなる。本実施例では、θが60度以下となるようにベンチュリ部50(内径漸増部52)が形成される。よって、比較例よりも圧力損失が抑制される。このため、ポンプの効率低下をより確実に抑制することができる。例えば、θを略15度とすることで、充分な圧力損失抑制効果を得つつ、ベンチュリ部50の長手方向長さ(軸方向寸法)の過度な増大を抑制できる。 The narrow angle θ sandwiched between the inner walls of the inner diameter gradually increasing portion 52 is the spread angle of the outlet in the venturi portion 50 as the throttle portion. By setting θ to 60 degrees or less, a sufficient pressure loss suppressing effect can be obtained. FIG. 9 shows the relationship between θ and the pressure loss ratio. The pressure loss ratio is a ratio when the pressure loss in the comparative example is 1. When θ is 60 degrees or less, the pressure loss ratio is less than 1. That is, the pressure loss is smaller than that of the comparative example. In this embodiment, the venturi portion 50 (inner diameter gradually increasing portion 52) is formed so that θ is 60 degrees or less. Therefore, pressure loss is suppressed as compared with the comparative example. For this reason, the efficiency fall of a pump can be suppressed more reliably. For example, by setting θ to about 15 degrees, an excessive increase in the longitudinal length (axial dimension) of the venturi 50 can be suppressed while obtaining a sufficient pressure loss suppressing effect.
 ベンチュリ形成ブロック収容孔228においてベンチュリ形成ブロック21よりもx軸負方向側の空間は、ベンチュリ部50よりも上流側における吐出通路5として機能する。第2孔222は、ベンチュリ部50よりも下流側における吐出通路5として機能する。ベンチュリ形成ブロック収容孔228の内径は第2孔222の内径よりも大きい。すなわち、吐出通路5におけるベンチュリ部50よりも上流側の上記空間は、下流側(第2孔222)よりも大きな内径を有する大径部53である。ベンチュリ部50の上流側の圧力(高圧)として、この大径部53の圧力が、制御バルブ8の高圧室86に導入される。よって、図6を、図10のように描き直すことができる。図10において、大径部53における流速をu1*とし、圧力をp1*とする。他の符号は図6と同様である。大径部53の内径(断面積)が、大径部53より上流側の吐出通路5の内径(断面積)よりも大きければ、u1*はu1(≒u3)よりも減少する。これに伴い、p1*はp1(≒p3)よりも上昇する。他は図6と同様である。よって、ベンチュリ部50(小径部51)が発生する差圧をΔp*とすると、Δp*(=p1*-p2)>Δp(=p1-p2)となり、大径部53を設けない場合(図6)よりも差圧が大きくなる。これにより、制御バルブ8に作用する力の差F1-F2が大きくなるため、より効果的に上記作用効果を得ることができる。 In the venturi forming block accommodation hole 228, the space on the x-axis negative direction side of the venturi forming block 21 functions as the discharge passage 5 on the upstream side of the venturi portion 50. The second hole 222 functions as the discharge passage 5 on the downstream side of the venturi portion 50. The inner diameter of the venturi forming block receiving hole 228 is larger than the inner diameter of the second hole 222. That is, the space on the upstream side of the venturi portion 50 in the discharge passage 5 is a large-diameter portion 53 having an inner diameter larger than that on the downstream side (second hole 222). The pressure in the large-diameter portion 53 is introduced into the high-pressure chamber 86 of the control valve 8 as the pressure (high pressure) upstream of the venturi portion 50. Therefore, FIG. 6 can be redrawn as shown in FIG. In FIG. 10, the flow velocity in the large-diameter portion 53 is u 1 *, and the pressure is p 1 *. Other reference numerals are the same as those in FIG. If the inner diameter (cross-sectional area) of the large-diameter portion 53 is larger than the inner diameter (cross-sectional area) of the discharge passage 5 upstream of the large-diameter portion 53, u 1 * will be smaller than u 1 (≈u 3 ). Along with this, p 1 * rises above p 1 (≈p 3 ). Others are the same as FIG. Therefore, if the differential pressure generated by the venturi portion 50 (small diameter portion 51) is Δp *, Δp * (= p 1 * −p 2 )> Δp (= p 1 −p 2 ), and the large diameter portion 53 is provided. The differential pressure becomes larger than that in the case where there is not (FIG. 6). As a result, the force difference F1-F2 acting on the control valve 8 is increased, so that the above-described operational effect can be obtained more effectively.
 ベンチュリ形成ブロック21の軸方向他方側の端面に開口する内径漸増部52の軸方向他方側端の内径は、第2孔222の内径よりも若干小さい。よって、図6を、図11のように描き直すことができる。内径漸増部52は、θが60度以下(具体的には略15度)で一定のまま形成された上流側のテーパ部分と、ベンチュリ部50よりも下流側の吐出通路5に60度よりも大きいθで連続する下流側の段差部分とを有する。以下、上記上流側のテーパ部分を前方部520といい、上記下流側の段差部分を後方部521という。内径漸増部52は、前方部520と後方部521を有する。本実施例では、後方部521のθは略180度である。すなわち、後方部521は、ベンチュリ部50よりも下流側の吐出通路5の内壁に対して略直交するように広がる。内径漸増部52が、θが60度以下で一定のまま、ベンチュリ部50の下流側における吐出通路5の内径と同径になるまで形成されたと仮定したときの、当該(仮想の)内径漸増部52の長手方向長さをL0とする。前方部520の長手方向長さをLとする。 The inner diameter at the other end in the axial direction of the inner diameter gradually increasing portion 52 that opens to the end surface on the other axial side of the venturi forming block 21 is slightly smaller than the inner diameter of the second hole 222. Therefore, FIG. 6 can be redrawn as shown in FIG. The inner diameter gradually increasing portion 52 has an upstream tapered portion formed with a constant θ at 60 degrees or less (specifically, approximately 15 degrees), and the discharge passage 5 downstream from the venturi section 50 at 60 degrees or more. And a step portion on the downstream side continuous with a large θ. Hereinafter, the tapered portion on the upstream side is referred to as a front portion 520, and the step portion on the downstream side is referred to as a rear portion 521. The inner diameter gradually increasing portion 52 has a front portion 520 and a rear portion 521. In this embodiment, θ of the rear portion 521 is approximately 180 degrees. That is, the rear portion 521 extends so as to be substantially orthogonal to the inner wall of the discharge passage 5 on the downstream side of the venturi portion 50. It is assumed that the inner diameter gradually increasing portion 52 is formed until θ is equal to or smaller than the inner diameter of the discharge passage 5 on the downstream side of the venturi portion 50 while being constant at 60 degrees or less. The longitudinal length of 52 is L0. The length of the front portion 520 in the longitudinal direction is L.
 図12は、L0に対するLの割合L/L0と、圧力損失比との関係を示す。圧力損失比は、L/L0が0であるときの圧力損失、言換えると比較例における圧力損失を1としたときの割合である。L/L0が0より大きく0.65以下の範囲では、L/L0が増大するのに応じて圧力損失比が小さくなる。L/L0が0.65より大きい範囲では、L/L0が増大しても圧力損失比はそれ以上小さくならない。よって、θが60度以下である領域(前方部520)が一定程度確保されていれば、比較例よりも圧力損失を抑制できる。しかし、前方部520の長さLをL0の65%より長くしても、それ以上の圧力損失抑制効果を得ることができない。よって、L/L0が0より大きく0.65以下となるように、言換えると、LがL0の65%以下となる位置まで、前方部520を形成することが好ましい。この場合、前方部520の下流側に、θが60度より大きくなる後方部521を設ける。このように後方部521では60度以下のθを維持しないことで、比較的(L0より)短い長さで、下流側の吐出通路5にベンチュリ部50を連続させる(ベンチュリ部50の内径を元に戻す)ことができる。これにより、ベンチュリ部50の長手方向長さを抑制することができる。後方部521のθを図11のように略180度に近づければ、上記長さ抑制効果を向上できる。L/L0が0より大きく0.65以下の範囲では、L/L0が0に近いほど、L/L0の増大分に対する圧力損失比の減少量(減少率)が大きい。そして、L/L0が0.4以上の範囲であれば、十分に小さい(L/L0が0.65であるときの圧力損失比に十分に近い)圧力損失比を得ることができる。よって、L/L0が0.4以上となるように、言換えると、LがL0の40%以上となる位置まで、前方部520を形成することが好ましい。この場合、充分な圧力損失抑制効果を得ながら、LをL0の40%に近づけることで上記長さ抑制効果を向上できる。 Fig. 12 shows the relationship between the ratio L / L0 of L to L0 and the pressure loss ratio. The pressure loss ratio is a ratio when the pressure loss when L / L0 is 0, in other words, the pressure loss in the comparative example is 1. When L / L0 is greater than 0 and less than or equal to 0.65, the pressure loss ratio decreases as L / L0 increases. In the range where L / L0 is larger than 0.65, even if L / L0 increases, the pressure loss ratio does not decrease any more. Therefore, pressure loss can be suppressed as compared with the comparative example if a certain region (the front portion 520) in which θ is 60 degrees or less is secured. However, even if the length L of the front portion 520 is longer than 65% of L0, no further pressure loss suppression effect can be obtained. Therefore, it is preferable to form the front portion 520 to a position where L is 65% or less of L0, so that L / L0 is greater than 0 and 0.65 or less. In this case, a rear portion 521 having θ larger than 60 degrees is provided on the downstream side of the front portion 520. As described above, the rear portion 521 does not maintain θ of 60 degrees or less, so that the venturi 50 is connected to the downstream discharge passage 5 with a relatively short length (less than L0) (based on the inner diameter of the venturi 50). You can return to Thereby, the longitudinal direction length of the venturi part 50 can be suppressed. If the θ of the rear portion 521 is close to approximately 180 degrees as shown in FIG. 11, the above-described length suppressing effect can be improved. In a range where L / L0 is greater than 0 and less than or equal to 0.65, the amount of decrease (decrease rate) in the pressure loss ratio relative to the increase in L / L0 increases as L / L0 approaches 0. If L / L0 is in the range of 0.4 or more, a sufficiently small pressure loss ratio (sufficiently close to the pressure loss ratio when L / L0 is 0.65) can be obtained. Therefore, it is preferable to form the front portion 520 so that L / L0 is 0.4 or more, in other words, to a position where L is 40% or more of L0. In this case, the length suppression effect can be improved by bringing L close to 40% of L0 while obtaining a sufficient pressure loss suppression effect.
 ベンチュリ部50はオリフィスに比べ長尺である(軸方向寸法が大きい)。このため、加工が比較的困難である。これに対し、本実施例では、ベンチュリ部50はベンチュリ形成ブロック21に形成される。このベンチュリ形成ブロック21が、ポンプハウジング本体20に接合される。これにより、ポンプハウジング本体20の内部にベンチュリ部50が実現される。このように、ベンチュリ部50をポンプハウジング本体20とは別部材のベンチュリ形成ブロック21に形成することにより、ベンチュリ部50の加工性を向上できる。なお、ベンチュリ形成ブロック21に形成されるのは、少なくとも、ベンチュリ部50を構成する小径部51と内径漸増部52であればよい。言換えると、小径部51と同径であって所定長さを有する絞り部や内径漸減部210を、ポンプハウジング本体20の側に設けてもよいし、ベンチュリ形成ブロック21の側に設けてもよい。ベンチュリ形成ブロック21は、樹脂材料で形成される。内径漸増部52を含むベンチュリ部50は、型成形によって形成される。よって、内径漸増部52を機械加工で形成する場合に比べ、内径漸増部52の形成が容易となる。 The venturi 50 is longer than the orifice (large dimension in the axial direction). For this reason, processing is relatively difficult. In contrast, in the present embodiment, the venturi portion 50 is formed in the venturi forming block 21. This venturi forming block 21 is joined to the pump housing body 20. As a result, the venturi 50 is realized in the pump housing body 20. Thus, by forming the venturi section 50 in the venturi forming block 21 which is a separate member from the pump housing body 20, the workability of the venturi section 50 can be improved. Note that what is formed in the venturi forming block 21 may be at least the small diameter portion 51 and the inner diameter gradually increasing portion 52 constituting the venturi portion 50. In other words, the throttle part and the inner diameter gradually decreasing part 210 having the same diameter as the small diameter part 51 and having a predetermined length may be provided on the pump housing body 20 side, or may be provided on the venturi forming block 21 side. Good. The venturi forming block 21 is formed of a resin material. The venturi portion 50 including the inner diameter gradually increasing portion 52 is formed by molding. Therefore, the inner diameter gradually increasing portion 52 can be formed more easily than when the inner diameter gradually increasing portion 52 is formed by machining.
 また、ベンチュリ部50は、オリフィスに比べ長い寸法(長手方向のスペース)が必要となる。これに対し、本実施例では、ベンチュリ部50の長手方向(x軸方向)と駆動軸40の回転軸(軸心O)の方向(z軸方向)とが略直交するように、ベンチュリ部50が配置される。よって、駆動軸40の回転軸の方向(軸方向)におけるポンプ装置の寸法の大型化を抑制することができる。一方、ポンプハウジング2は、元々、制御バルブ8を収容するための寸法を有している。これに対し、本実施例では、ベンチュリ部50の長手方向と制御バルブ8の長手方向が略平行となるように、ベンチュリ部50が配置される。このように、元々存在する、制御バルブ8の長手方向に延びるスペースを活用するようにベンチュリ部50を配置することで、ポンプ装置の外形の(制御バルブ8の径方向における)大型化を抑制することができる。 Also, the venturi section 50 requires a longer dimension (space in the longitudinal direction) than the orifice. On the other hand, in the present embodiment, the venturi portion 50 is arranged such that the longitudinal direction (x-axis direction) of the venturi portion 50 and the direction of the rotation axis (axis O) of the drive shaft 40 (z-axis direction) are substantially orthogonal. Is placed. Therefore, an increase in the size of the pump device in the direction of the rotation axis of the drive shaft 40 (axial direction) can be suppressed. On the other hand, the pump housing 2 originally has dimensions for accommodating the control valve 8. On the other hand, in this embodiment, the venturi portion 50 is arranged so that the longitudinal direction of the venturi portion 50 and the longitudinal direction of the control valve 8 are substantially parallel. In this way, by arranging the venturi portion 50 so as to utilize the originally existing space extending in the longitudinal direction of the control valve 8, an increase in the outer shape of the pump device (in the radial direction of the control valve 8) is suppressed. be able to.
 また、ベンチュリ部50より上流側の吐出通路5が制御バルブ8の高圧室86と対向するように、ベンチュリ部50が配置される。よって、ベンチュリ部50の上流側と高圧室86とを連通する高圧通路6(第1孔221)の短縮化を図ることができる。具体的には、ベンチュリ形成ブロック収容孔228とバルブ収容孔227は共にx軸方向に延び、互いに略平行に配置される。第1孔221は、y軸方向に直線的に延び、ベンチュリ形成ブロック収容孔228におけるベンチュリ形成ブロック21よりもx軸負方向側と、バルブ収容孔227における高圧室86とに接続することにより、ベンチュリ部50の上流側と高圧室86とを最短距離で結ぶ。なお、ベンチュリ形成ブロック21における第2連通溝215(の少なくとも一部)が制御バルブ8の中圧室88と対向するように、ベンチュリ部50を配置してもよい。この場合、第2連通溝215と中圧室88とを連通する中圧通路7(第4孔224)の短縮化を図ることができる。 Also, the venturi section 50 is arranged so that the discharge passage 5 upstream from the venturi section 50 faces the high pressure chamber 86 of the control valve 8. Therefore, it is possible to shorten the high-pressure passage 6 (first hole 221) that communicates the upstream side of the venturi section 50 with the high-pressure chamber 86. Specifically, the venturi forming block accommodation hole 228 and the valve accommodation hole 227 both extend in the x-axis direction and are arranged substantially parallel to each other. The first hole 221 linearly extends in the y-axis direction, and is connected to the x-axis negative direction side of the venturi forming block accommodating hole 228 in the x axis negative direction and the high pressure chamber 86 in the valve accommodating hole 227, The upstream side of the venturi section 50 and the high pressure chamber 86 are connected with the shortest distance. The venturi portion 50 may be arranged so that the second communication groove 215 (at least a part thereof) in the venturi forming block 21 faces the intermediate pressure chamber 88 of the control valve 8. In this case, it is possible to shorten the intermediate pressure passage 7 (fourth hole 224) that communicates the second communication groove 215 and the intermediate pressure chamber 88.
 ベンチュリ形成ブロック21の連通孔213は、径方向内側でベンチュリ部50の内周面に開口する。連通孔213は、ベンチュリ部50に備えられ、制御バルブ8(中圧室88)にベンチュリ部50の中の圧力を導入する開口として機能する。ここで、ベンチュリ部50の上流側の吐出通路5に曲り等があることで、当該通路5において、その長手方向に沿った軸線の周りの方向(以下、周方向という。)での流速分布に偏りが生じる場合がある。この場合、ベンチュリ部50の中の周方向での圧力分布にも偏りが発生することになる。この偏りは、流量や温度条件により変化してしまう。これに対し、本実施例では、連通孔213の上記開口は、ベンチュリ部50の周方向において複数個(4つ)設けられる。このように、ベンチュリ部50の中における周方向の複数個所から圧力を取り出すことで、上記圧力分布の偏りにも関わらず、ベンチュリ部50の中の圧力を安定して中圧室88に導入することができる。すなわち、複数の連通孔213の上記開口から取り出された圧力(作動液)は、第1、第2連通溝214,215を介して1本の中圧通路7(第4孔224)に集められ、その後、中圧室88に導入される。その際、上記圧力分布の偏りは互いに相殺され、ベンチュリ部50の中の周方向での平均的な圧力が中圧室88に導入されることになる。よって、ベンチュリ部50の中から取り出す圧力のばらつきが低減される。したがって、制御バルブ8の作動が安定化し、制御流量のずれが低減される。なお、連通孔213の数は、2以上であればよく、任意である。本実施例では、連通孔213の上記開口を周方向で略等間隔に配置したため、ベンチュリ部50の中から取り出す圧力のばらつきをより安定的に低減できる。 The communication hole 213 of the venturi forming block 21 opens on the inner peripheral surface of the venturi section 50 on the radially inner side. The communication hole 213 is provided in the venturi section 50 and functions as an opening for introducing the pressure in the venturi section 50 into the control valve 8 (intermediate pressure chamber 88). Here, since the discharge passage 5 on the upstream side of the venturi section 50 has a bend or the like, the flow velocity distribution in the direction around the axis along the longitudinal direction (hereinafter referred to as the circumferential direction) in the passage 5 is obtained. Bias may occur. In this case, the pressure distribution in the circumferential direction in the venturi 50 is also biased. This bias changes depending on the flow rate and temperature conditions. On the other hand, in this embodiment, a plurality (four) of the openings of the communication hole 213 are provided in the circumferential direction of the venturi portion 50. As described above, by extracting the pressure from a plurality of locations in the circumferential direction in the venturi section 50, the pressure in the venturi section 50 is stably introduced into the intermediate pressure chamber 88 in spite of the uneven pressure distribution. be able to. That is, the pressure (working fluid) taken out from the openings of the plurality of communication holes 213 is collected in one intermediate pressure passage 7 (fourth hole 224) via the first and second communication grooves 214 and 215, and thereafter The medium pressure chamber 88 is introduced. At this time, the pressure distribution bias is canceled out, and the average pressure in the circumferential direction in the venturi 50 is introduced into the intermediate pressure chamber 88. Therefore, variation in pressure taken out from the venturi 50 is reduced. Therefore, the operation of the control valve 8 is stabilized, and the deviation of the control flow rate is reduced. The number of communication holes 213 may be two or more and is arbitrary. In the present embodiment, since the openings of the communication holes 213 are arranged at substantially equal intervals in the circumferential direction, variations in pressure taken out from the venturi 50 can be more stably reduced.
 連通孔213は、ベンチュリ部50の軸方向(長手方向)において小径部51と重なる位置に設けられている。すなわち、連通孔213の上記開口は、小径部51に設けられる。よって、ベンチュリ部50の中でも最小径の部分、すなわち圧力が最も低くなる部分から圧力が取り出され、中圧室88に導入されることになる。これにより、ベンチュリ部50に生じる差圧を最も効率的に利用することができる。 The communication hole 213 is provided at a position overlapping the small diameter part 51 in the axial direction (longitudinal direction) of the venturi part 50. That is, the opening of the communication hole 213 is provided in the small diameter portion 51. Therefore, the pressure is extracted from the smallest diameter portion of the venturi portion 50, that is, the portion where the pressure is lowest, and is introduced into the intermediate pressure chamber 88. Thereby, the differential pressure generated in the venturi portion 50 can be utilized most efficiently.
 [実施例2]
  実施例2のポンプ装置1は、ベンチュリ形成ブロック21の構成が実施例1と異なる。以下、実施例1と異なる構成のみについて説明する。実施例1と共通する構成については実施例1と同じ符号を付して説明を省略する。図13は、ベンチュリ形成ブロック21をベンチュリ部50の軸心を通る平面で切った断面を示す。ベンチュリ形成ブロック21には、実施例1のような内径漸減部210が設けられていない。小径部51は、ベンチュリ形成ブロック21の軸方向一方側の端面(ベンチュリ形成ブロック21の外表面)に開口する。連通孔213は、内径漸増部52における軸方向一方側(小径部51の側)と重なる位置に設けられる。連通孔213の径方向内側端は、内径漸増部52における軸方向一方側(小径部51の側)に開口する。連通孔213は、中圧通路7の一部を構成する。連通孔213は、ベンチュリ部50の中の圧力のうち、内径漸増部52における軸方向一方側(小径部51の側)の圧力を、制御バルブ8の中圧室88に導入する。
[Example 2]
The pump device 1 of the second embodiment is different from the first embodiment in the configuration of the venturi forming block 21. Only the configuration different from the first embodiment will be described below. The components common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted. FIG. 13 shows a cross section of the venturi forming block 21 taken along a plane passing through the axis of the venturi section 50. The venturi forming block 21 is not provided with the inner diameter gradually decreasing portion 210 as in the first embodiment. The small diameter portion 51 opens on the end surface on the one axial side of the venturi forming block 21 (the outer surface of the venturi forming block 21). The communication hole 213 is provided at a position overlapping with one axial side of the inner diameter gradually increasing portion 52 (the small diameter portion 51 side). The radially inner end of the communication hole 213 opens on one axial side of the inner diameter gradually increasing portion 52 (the small diameter portion 51 side). The communication hole 213 constitutes a part of the intermediate pressure passage 7. The communication hole 213 introduces the pressure on the one side in the axial direction of the inner diameter gradually increasing portion 52 (the small diameter portion 51 side) out of the pressure in the venturi portion 50 into the intermediate pressure chamber 88 of the control valve 8.
 次に、作用を説明する。本実施例のように、中圧室88に導入されるベンチュリ部50の中の圧力は、小径部51の圧力に限らず、内径漸増部52中の圧力であってもよい。内径漸増部52における軸方向一方側(小径部51の側)の圧力が中圧室88に導入される。よって、内径漸増部52中の圧力のうちでも、より低い圧力を利用できる。このため、十分に大きな差圧を制御バルブ8に作用させることができる。 Next, the operation will be described. As in the present embodiment, the pressure in the venturi portion 50 introduced into the intermediate pressure chamber 88 is not limited to the pressure in the small diameter portion 51 but may be the pressure in the gradually increasing inner diameter portion 52. The pressure on one side in the axial direction of the gradually increasing inner diameter portion 52 (the smaller diameter portion 51 side) is introduced into the intermediate pressure chamber 88. Therefore, a lower pressure can be used among the pressures in the inner diameter gradually increasing portion 52. For this reason, a sufficiently large differential pressure can be applied to the control valve 8.
 仮に、小径部51がベンチュリ形成ブロック21の外表面に開口せず、ベンチュリ形成ブロック21の内部に設けられる場合、ベンチュリ部50を型成形するときは、ベンチュリ形成ブロック21の軸方向両側から型を挿入することが必要となる。ベンチュリ部50を機械加工するときは、ベンチュリ形成ブロック21の軸方向両側から機械加工することが必要となる。これに対し、本実施例では、小径部51はベンチュリ形成ブロック21の外表面に開口する。よって、ベンチュリ部50を型成形するときは、ベンチュリ形成ブロック21の軸方向における内径漸増部52の開口側からのみ型を挿入すれば足りる。ベンチュリ部50を機械加工するときは、ベンチュリ形成ブロック21の軸方向における内径漸増部52の開口側からのみ機械加工すれば足りる。したがって、ベンチュリ部50(ベンチュリ形成ブロック21)の製造性が向上する。 If the small-diameter portion 51 does not open to the outer surface of the venturi forming block 21 and is provided inside the venturi forming block 21, when molding the venturi portion 50, molds are formed from both axial sides of the venturi forming block 21. It is necessary to insert. When machining the venturi section 50, it is necessary to machine the venturi forming block 21 from both axial sides. On the other hand, in the present embodiment, the small diameter portion 51 opens on the outer surface of the venturi forming block 21. Therefore, when molding the venturi portion 50, it is sufficient to insert the die only from the opening side of the inner diameter gradually increasing portion 52 in the axial direction of the venturi forming block 21. When machining the venturi 50, it is sufficient to machine only from the opening side of the inner diameter gradually increasing portion 52 in the axial direction of the venturi forming block 21. Therefore, the manufacturability of the venturi portion 50 (the venturi forming block 21) is improved.
 [実施例3]
  実施例3のポンプ装置1では、ポンプハウジング本体20は、実施例1と同様、金属材料で形成される。一方、実施例1とは異なり、ベンチュリ形成ブロック21も、金属材料で形成される。具体的には、ベンチュリ形成ブロック21は、焼結材料で形成される。圧粉工程において金属の粉末を圧粉成形する際に、ベンチュリ部50を型により形成する。この成形体を焼結することで、ベンチュリ形成ブロック21が形成される。
[Example 3]
In the pump device 1 according to the third embodiment, the pump housing body 20 is formed of a metal material as in the first embodiment. On the other hand, unlike the first embodiment, the venturi forming block 21 is also formed of a metal material. Specifically, the venturi forming block 21 is formed of a sintered material. When the metal powder is compacted in the compacting process, the venturi 50 is formed by a mold. By sintering this molded body, the venturi forming block 21 is formed.
 ベンチュリ形成ブロック21をポンプハウジング本体20(リアボディ22のベンチュリ形成ブロック収容孔228)に接合するようにした場合、接合後にベンチュリ形成ブロック21とポンプハウジング本体20との間に歪が発生する、等の問題が生じうる。これに対し、本実施例では、ベンチュリ形成ブロック21は、金属材料で形成される。このため、ポンプハウジング本体20と線膨張係数が近い。よって、上記のような問題の発生を抑制することができる。また、ベンチュリ部50(内径漸増部52等)は型により形成される。よって、ベンチュリ部50(内径漸増部52等)を機械加工で形成する場合に比べ、形成が容易となる。 When the venturi forming block 21 is joined to the pump housing body 20 (the venturi forming block receiving hole 228 of the rear body 22), distortion occurs between the venturi forming block 21 and the pump housing body 20 after joining, etc. Problems can arise. On the other hand, in the present embodiment, the venturi forming block 21 is made of a metal material. For this reason, the linear expansion coefficient is close to that of the pump housing body 20. Therefore, the occurrence of the above problems can be suppressed. Further, the venturi part 50 (inner diameter gradually increasing part 52, etc.) is formed by a mold. Therefore, compared to the case where the venturi portion 50 (inner diameter gradually increasing portion 52 or the like) is formed by machining, the formation becomes easier.
 [実施例4]
  実施例4のポンプ装置1は、ベンチュリ部50等の配置が実施例1と異なる。以下、実施例1と異なる構成のみについて説明する。実施例1と共通する構成については実施例1と同じ符号を付して説明を省略する。図14は、ポンプハウジング2を、駆動軸40(軸心O)が延びる方向(z軸負方向)からみた図であり、内部の構造や収容部品の一部を破線で示す。図15は、図14のB-B視断面を示す。直交座標系の設定は実施例1(図3等)と同様である。ポンプハウジング2は、実施例1のようなベンチュリ形成ブロック21を有しない。ポンプハウジング本体20(リアボディ22)は、実施例1のようなベンチュリ形成ブロック収容孔228を有しない。内径漸減部210とベンチュリ部50は、リアボディ22の内部に直接形成される。
[Example 4]
The pump device 1 of the fourth embodiment is different from the first embodiment in the arrangement of the venturi portion 50 and the like. Only the configuration different from the first embodiment will be described below. The components common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted. FIG. 14 is a view of the pump housing 2 as viewed from the direction in which the drive shaft 40 (axial center O) extends (z-axis negative direction), and the internal structure and part of the housing components are indicated by broken lines. FIG. 15 shows a cross section taken along the line BB of FIG. The setting of the orthogonal coordinate system is the same as in the first embodiment (FIG. 3 and the like). The pump housing 2 does not have the venturi forming block 21 as in the first embodiment. The pump housing body 20 (rear body 22) does not have the venturi forming block accommodation hole 228 as in the first embodiment. The inner diameter gradually decreasing portion 210 and the venturi portion 50 are formed directly inside the rear body 22.
 内径漸減部210とベンチュリ部50は、リアボディ22のx軸正方向側かつy軸負方向側をz軸方向に延びる。すなわちベンチュリ部50の長手方向は、軸心Oの方向(z軸方向)に対し略平行であると共に、バルブ収容孔227の長手方向(x軸方向)に対し直交する。ベンチュリ部50は、z軸に対し直交する方向(駆動軸40の回転軸に対する径方向)において収容凹部220とオーバーラップせず(収容凹部220よりも径方向外側であって)、z軸方向において収容凹部220とオーバーラップする。内径漸減部210は、その内壁で挟まれた狭角が比較的大きい第1内径漸減部210aと、狭角が比較的小さい第2内径漸減部210bとを有する。第1内径漸減部210aのz軸正方向端は、リアボディ22のz軸正方向側の面に開口する。第1内径漸減部210aの内径は、z軸正方向側からz軸負方向側に向かって徐々に減少する。第2内径漸減部210bのz軸正方向端は、第1内径漸減部210aのz軸負方向端に接続する。第2内径漸減部210bの内径は、z軸正方向側からz軸負方向側に向かって徐々に減少する。小径部51のz軸正方向端は、第2内径漸減部210bのz軸負方向端に接続する。小径部51のz軸負方向端は内径漸増部52のz軸正方向端に接続する。内径漸増部52の内径は、z軸正方向側からz軸負方向側に向かって徐々に増加する。内径漸増部52のz軸負方向端は、リアボディ22のz軸負方向側の面に開口する。 The inner diameter gradually decreasing portion 210 and the venturi portion 50 extend in the z-axis direction on the x-axis positive direction side and the y-axis negative direction side of the rear body 22. That is, the longitudinal direction of the venturi 50 is substantially parallel to the direction of the axis O (z-axis direction) and is orthogonal to the longitudinal direction (x-axis direction) of the valve housing hole 227. The venturi 50 does not overlap with the housing recess 220 in the direction orthogonal to the z-axis (the radial direction with respect to the rotation axis of the drive shaft 40) (outside in the radial direction from the housing recess 220). It overlaps with the housing recess 220. The inner diameter gradually decreasing portion 210 has a first inner diameter gradually decreasing portion 210a sandwiched between the inner walls and having a relatively small narrow angle, and a second inner diameter gradually decreasing portion 210b having a relatively small narrow angle. The z axis positive direction end of the first inner diameter gradually decreasing portion 210a opens on the surface of the rear body 22 on the z axis positive direction side. The inner diameter of the first inner diameter gradually decreasing portion 210a gradually decreases from the z-axis positive direction side toward the z-axis negative direction side. The z axis positive direction end of the second inner diameter gradually decreasing portion 210b is connected to the z axis negative direction end of the first inner diameter gradually decreasing portion 210a. The inner diameter of the second inner diameter gradually decreasing portion 210b gradually decreases from the z-axis positive direction side toward the z-axis negative direction side. The z axis positive direction end of the small diameter portion 51 is connected to the z axis negative direction end of the second inner diameter gradually decreasing portion 210b. The z axis negative direction end of the small diameter portion 51 is connected to the z axis positive direction end of the inner diameter gradually increasing portion 52. The inner diameter of the inner diameter gradually increasing portion 52 gradually increases from the z-axis positive direction side toward the z-axis negative direction side. The z axis negative direction end of the inner diameter gradually increasing portion 52 opens on the surface of the rear body 22 on the z axis negative direction side.
 第2孔222は、リアボディ22のx軸負方向側かつy軸負方向側をz軸方向に延びる。第2孔222のz軸負方向端は、第1孔221のy軸負方向端に接続する。第2孔222のz軸正方向端は、リアボディ22のz軸正方向側の面に開口する。第3孔223は、フロントボディ24の内部に形成され、x軸方向に延びるように配置される。第3孔223のx軸負方向側の端部は、z軸負方向側に曲がり、フロントボディ24のz軸負方向側の面に開口すると共に、第2孔222のz軸正方向端に接続する。第3孔223のx軸正方向側の端部は、z軸負方向側に曲がり、フロントボディ24のz軸負方向側の面に開口すると共に、第1内径漸減部210aのz軸正方向端に接続する。第1内径漸減部210aのz軸正方向側の端部の内径は、第3孔223の内径に略等しい。第4孔224は、バルブ収容孔227のx軸正方向端とベンチュリ部50の小径部51とを接続する。 The second hole 222 extends in the z-axis direction on the x-axis negative direction side and the y-axis negative direction side of the rear body 22. The z-axis negative direction end of the second hole 222 is connected to the y-axis negative direction end of the first hole 221. The z-axis positive direction end of the second hole 222 opens on the surface of the rear body 22 on the z-axis positive direction side. The third hole 223 is formed inside the front body 24 and is disposed so as to extend in the x-axis direction. The end of the third hole 223 on the x-axis negative direction side bends to the z-axis negative direction side, opens on the surface of the front body 24 on the z-axis negative direction side, and extends to the z-axis positive direction end of the second hole 222. Connecting. The end of the third hole 223 on the x-axis positive direction side bends in the z-axis negative direction side, opens on the surface of the front body 24 on the z-axis negative direction side, and the z-axis positive direction of the first inner diameter gradually decreasing portion 210a. Connect to the end. The inner diameter of the end portion on the positive z-axis direction side of the first inner diameter gradually decreasing portion 210a is substantially equal to the inner diameter of the third hole 223. The fourth hole 224 connects the positive end of the valve housing hole 227 in the x-axis direction and the small diameter part 51 of the venturi part 50.
 次に、作用効果を説明する。ポンプハウジング2はベンチュリ形成ブロック21を有せず、内径漸減部210とベンチュリ部50はポンプハウジング2(リアボディ22)の内部に直接形成される。よって、部品点数を削減できる。 Next, the function and effect will be described. The pump housing 2 does not have the venturi forming block 21, and the inner diameter gradually decreasing portion 210 and the venturi portion 50 are formed directly inside the pump housing 2 (rear body 22). Therefore, the number of parts can be reduced.
 ベンチュリ部50は、オリフィスに比べ、長い寸法(長手方向のスペース)が必要となる。一方、ポンプハウジング2は、元々、ポンプ要素4を収容するための、駆動軸40の回転軸方向の寸法を有している。本実施例では、ポンプ要素収容部(収容凹部220)よりも径方向外側であって、駆動軸40の回転軸(軸心O)の方向においてポンプ要素収容部(収容凹部220)とオーバーラップするように、ベンチュリ部50が配置される。このように、元々存在する、駆動軸40の回転軸方向に延びるスペースを活用するようにベンチュリ部50を配置することで、ポンプ装置1の外形の(駆動軸40の回転軸の方向における)大型化を抑制することができる。また、ベンチュリ部50の長手方向と駆動軸40の回転軸(軸心O)の方向とが略平行となるように、ベンチュリ部50が配置される。よって、駆動軸40の回転軸に対する径方向におけるポンプ装置1の寸法の大型化を抑制することができる。なお、上記配置による作用効果は、ベンチュリ部50をベンチュリ形成ブロック21に形成した場合にも得ることができる。 The venturi unit 50 requires a longer dimension (longitudinal space) than the orifice. On the other hand, the pump housing 2 originally has dimensions in the direction of the rotation axis of the drive shaft 40 for housing the pump element 4. In the present embodiment, the pump element accommodating portion (accommodating recess 220) overlaps with the pump element accommodating portion (accommodating recess 220) in the radial direction outside the pump element accommodating portion (accommodating recess 220) in the direction of the rotation axis (axial center O) of the drive shaft 40. Thus, the venturi part 50 is arranged. Thus, by arranging the venturi unit 50 so as to utilize the space that originally exists in the direction of the rotation axis of the drive shaft 40, the outer shape of the pump device 1 (in the direction of the rotation axis of the drive shaft 40) is large. Can be suppressed. Further, the venturi section 50 is arranged so that the longitudinal direction of the venturi section 50 and the direction of the rotation axis (axis O) of the drive shaft 40 are substantially parallel. Therefore, an increase in the size of the pump device 1 in the radial direction with respect to the rotation shaft of the drive shaft 40 can be suppressed. Note that the effect of the above arrangement can also be obtained when the venturi portion 50 is formed in the venturi forming block 21.
 [実施例5]
  実施例5のポンプ装置1は、ベンチュリ部50や制御バルブ8が設置されるハウジングが実施例1と異なる。以下、実施例1と異なる点のみについて説明する。変速機ハウジング10aは、CVTユニットのハウジングであり、ポンプハウジング2とは別部材である。ポンプハウジング2は、変速機ハウジング10aと一体的に配置されてもよいし、変速機ハウジング10aから離間して配置されてもよい。ポンプ要素4はポンプハウジング2に設けられる一方、図1の破線で示すように、ベンチュリ部50と制御バルブ8は変速機ハウジング(例えばコントロールバルブのハウジング)10aに設けられる。
[Example 5]
The pump device 1 of the fifth embodiment is different from the first embodiment in the housing in which the venturi unit 50 and the control valve 8 are installed. Only differences from the first embodiment will be described below. The transmission housing 10 a is a CVT unit housing and is a separate member from the pump housing 2. The pump housing 2 may be disposed integrally with the transmission housing 10a or may be disposed apart from the transmission housing 10a. The pump element 4 is provided in the pump housing 2, while the venturi 50 and the control valve 8 are provided in a transmission housing (for example, a control valve housing) 10a, as indicated by the broken line in FIG.
 このようにベンチュリ部50または制御バルブ8をポンプハウジング2の側ではなく、変速機ハウジング10aの側に設けることで、ポンプ要素4を含むユニットを小型化し、そのレイアウト性を向上できる。変速機ハウジング10aの側に制御バルブ8が設けられる場合、ポンプ要素4(ポンプハウジング2)から変速機ハウジング10aに供給される作動液は、制御バルブ8で制御される前の流量である。制御バルブ8は、ポンプ要素4からCVT10に供給される作動液の流量を制御する。上記「ポンプ要素4からCVT10に供給される作動液の流量」とは、変速機ハウジング10aの内部に存在するCVT10に実際に供給される流量を意味する。なお、図1の一点鎖線で示すように、ベンチュリ部50を変速機ハウジング10aに設け、ポンプ要素4と制御バルブ8をポンプハウジング2に設けてもよい。また、変速機ハウジング10a以外の他のハウジングに、ベンチュリ部50や制御バルブ8を設けてもよい。 Thus, by providing the venturi unit 50 or the control valve 8 not on the pump housing 2 side but on the transmission housing 10a side, the unit including the pump element 4 can be downsized and its layout can be improved. When the control valve 8 is provided on the transmission housing 10a side, the hydraulic fluid supplied from the pump element 4 (pump housing 2) to the transmission housing 10a is a flow rate before being controlled by the control valve 8. The control valve 8 controls the flow rate of the hydraulic fluid supplied from the pump element 4 to the CVT 10. The “flow rate of hydraulic fluid supplied from the pump element 4 to the CVT 10” means a flow rate actually supplied to the CVT 10 existing inside the transmission housing 10a. 1, the venturi 50 may be provided in the transmission housing 10a, and the pump element 4 and the control valve 8 may be provided in the pump housing 2. Further, the venturi unit 50 and the control valve 8 may be provided in a housing other than the transmission housing 10a.
 [実施例6]
  実施例6のポンプ要素4は、ポンプ容量が可変に制御される可変容量形である。以下、実施例1と異なる構成のみについて説明する。実施例1と共通する構成については実施例1と同じ符号を付して説明を省略する。図16は、ポンプ装置1の構成の概略を示す、図2と同様の図である。図17は、ポンプハウジング2を、軸心Oを含む平面で切った部分断面を示す。図17の左右方向にz軸を設け、右側を正とする。リアボディ22には、収容凹部220、吸入圧室220a、吐出圧室226、バルブ収容孔227、ベンチュリ形成ブロック収容孔(図外)、軸受保持孔229、および複数の通路3等が形成される。複数の通路3等は、吸入通路3、吐出通路5、高圧通路6、中圧通路7、第1制御通路60、第2制御通路70、および戻り通路9を有する。収容凹部220の底部には、吸入圧室220aと吐出圧室226が開口する。軸受保持孔229の内周には、軸受としてのブッシュ401が設置される。バルブ収容孔227のx軸負方向端はリアボディ22の外表面に開口する。この開口部には、ソレノイド80がシール部材253を介して嵌合する。ソレノイド80からロッド800がx軸正方向側へ突出する。
[Example 6]
The pump element 4 of Example 6 is a variable displacement type in which the pump displacement is variably controlled. Only the configuration different from the first embodiment will be described below. The components common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted. FIG. 16 is a diagram similar to FIG. 2, showing the schematic configuration of the pump device 1. FIG. 17 shows a partial cross section of the pump housing 2 taken along a plane including the axis O. The z axis is provided in the left-right direction in FIG. 17, and the right side is positive. The rear body 22 includes a housing recess 220, a suction pressure chamber 220a, a discharge pressure chamber 226, a valve housing hole 227, a venturi forming block housing hole (not shown), a bearing holding hole 229, a plurality of passages 3, and the like. The plurality of passages 3 and the like have a suction passage 3, a discharge passage 5, a high pressure passage 6, an intermediate pressure passage 7, a first control passage 60, a second control passage 70, and a return passage 9. A suction pressure chamber 220a and a discharge pressure chamber 226 are opened at the bottom of the housing recess 220. A bush 401 as a bearing is installed on the inner periphery of the bearing holding hole 229. The end of the valve housing hole 227 in the negative x-axis direction opens on the outer surface of the rear body 22. A solenoid 80 is fitted into the opening via a seal member 253. A rod 800 protrudes from the solenoid 80 in the positive x-axis direction.
 サイドプレート23には、軸収容孔234が設けられる。サイドプレート23の軸方向一方側の面には、吸入口230と、吐出口231と、吸入側背圧ポート232と、吐出側背圧ポート233とが設けられる。吸入口230と吐出口231は、周方向に略円弧状に延びる溝であり、軸収容孔234を挟んで互いに対向する位置に設けられる。吸入側背圧ポート232は、吸入口230よりも軸収容孔234の側(径方向内側)で周方向に略円弧状に延びる溝であり、周方向で吸入口230と重なる範囲に設けられる。吐出側背圧ポート233は、吐出口231よりも径方向内側で周方向に略円弧状に延びる溝であり、周方向で吐出口231と重なる範囲に設けられる。吸入口230および吸入側背圧ポート232は、サイドプレート23の中の連通路を介してリアボディ22の吸入圧室220aに接続する。吐出口231および吐出側背圧ポート233は、サイドプレート23中の連通路を介して吐出圧室226に接続する。サイドプレート23のz軸負方向側の面には、サイドプレート23の外縁を取り囲むように、環状のシール溝が形成されている。このシール溝には環状のシール部材250が設置される。収容凹部220の底部のz軸正方向側の面には、軸受保持孔229の開口を取り囲むように、環状のシール溝が形成されている。このシール溝には環状のシール部材251が設置される。収容凹部220の底部のz軸正方向側の面には、吐出圧室226の開口の外周を取り囲むように、環状のシール溝が形成されている。このシール溝には環状のシール部材252が設置される。シール部材252によって、シール部材252の内周側の高圧領域と外周側の低圧領域とが画成される。 The side plate 23 is provided with a shaft receiving hole 234. A suction port 230, a discharge port 231, a suction side back pressure port 232, and a discharge side back pressure port 233 are provided on the surface on one side in the axial direction of the side plate 23. The suction port 230 and the discharge port 231 are grooves extending in a substantially arc shape in the circumferential direction, and are provided at positions facing each other across the shaft housing hole 234. The suction-side back pressure port 232 is a groove that extends in a substantially arc shape in the circumferential direction on the side of the shaft accommodation hole 234 from the suction port 230 (inside in the radial direction), and is provided in a range that overlaps the suction port 230 in the circumferential direction. The discharge-side back pressure port 233 is a groove extending in a substantially arc shape in the circumferential direction on the radially inner side of the discharge port 231 and is provided in a range overlapping the discharge port 231 in the circumferential direction. The suction port 230 and the suction side back pressure port 232 are connected to the suction pressure chamber 220a of the rear body 22 via the communication path in the side plate 23. The discharge port 231 and the discharge side back pressure port 233 are connected to the discharge pressure chamber 226 via a communication path in the side plate 23. An annular seal groove is formed on the surface of the side plate 23 in the negative z-axis direction so as to surround the outer edge of the side plate 23. An annular seal member 250 is installed in the seal groove. An annular seal groove is formed on the bottom surface of the housing recess 220 on the z-axis positive direction side so as to surround the opening of the bearing holding hole 229. An annular seal member 251 is installed in the seal groove. An annular seal groove is formed on the surface of the bottom portion of the housing recess 220 on the z-axis positive direction side so as to surround the outer periphery of the opening of the discharge pressure chamber 226. An annular seal member 252 is installed in the seal groove. The seal member 252 defines a high pressure region on the inner peripheral side of the seal member 252 and a low pressure region on the outer peripheral side.
 フロントボディ24の軸受保持孔244の内周には、軸受としてのブッシュ402が設置される。フロントボディ24のz軸負方向端面には、吸入口240および吐出口241と、吸入側背圧ポート242および吐出側背圧ポート243とが、サイドプレート23に形成された各口230,231および各ポート232,233にそれぞれz軸方向で略対応する位置および同様の形状で、形成される。フロントボディ24はボルト26によりリアボディ22に締結固定される。 A bush 402 serving as a bearing is installed on the inner periphery of the bearing holding hole 244 of the front body 24. A suction port 240 and a discharge port 241, a suction-side back pressure port 242 and a discharge-side back pressure port 243 are formed on the end surface in the negative z-axis direction of the front body 24. 232 and 233 are formed at positions substantially corresponding to the z-axis direction and in the same shape. The front body 24 is fastened and fixed to the rear body 22 by bolts 26.
 リアボディ22の収容凹部220には、サイドプレート23のz軸正方向側に、アダプタリング44が設置される。アダプタリング44は円環状であり、アダプタリング44の外周は収容凹部220の内周に嵌合する。アダプタリング44の内周面は、z軸方向に延びる略筒状であり、z軸方向から見て略楕円形である。この内周面には、第1溝部441、第2溝部442、第1平面部443、第2平面部444、および凹部445が設けられている。第1溝部441はz軸方向に延びる半円筒状であり、第1平面部443に設けられる。第1溝部441を挟んだ両側には、アダプタリング44を径方向に貫通する第1,第2制御通路60,70が設けられている。第2溝部442はアダプタリング44の中心(軸心)を挟んで第1溝部441と反対側に設けられ、z軸方向に延びる。第2平面部444はアダプタリング44の周方向で第1,第2溝部441,442の間(略中間位置)に設けられる。凹部445はアダプタリング44の中心を挟んで第2平面部444と反対側に設けられる。 In the housing recess 220 of the rear body 22, an adapter ring 44 is installed on the side plate 23 in the positive z-axis direction. The adapter ring 44 has an annular shape, and the outer periphery of the adapter ring 44 is fitted to the inner periphery of the housing recess 220. The inner peripheral surface of the adapter ring 44 has a substantially cylindrical shape extending in the z-axis direction, and is substantially elliptical when viewed from the z-axis direction. A first groove portion 441, a second groove portion 442, a first plane portion 443, a second plane portion 444, and a recess 445 are provided on the inner peripheral surface. The first groove portion 441 has a semicylindrical shape extending in the z-axis direction, and is provided in the first plane portion 443. On both sides of the first groove 441, there are provided first and second control passages 60, 70 penetrating the adapter ring 44 in the radial direction. The second groove portion 442 is provided on the opposite side of the first groove portion 441 across the center (axial center) of the adapter ring 44 and extends in the z-axis direction. The second plane portion 444 is provided between the first and second groove portions 441 and 442 (substantially intermediate position) in the circumferential direction of the adapter ring 44. The concave portion 445 is provided on the opposite side of the second flat portion 444 across the center of the adapter ring 44.
 ポンプ要素4は、アダプタリング44の内周面と、サイドプレート23のz軸正方向側の面と、フロントボディ24のz軸負方向側の面とにより囲まれる空間内に収容される。すなわち、上記空間がポンプ要素収容部として機能する。ロータ41には11個のスリット410が設けられる。カムリング43は、環状に形成されており、その内周面は略円筒状である。カムリング43の外周面には、z軸方向に延びる半円筒状の溝部433が設けられる。カムリング43は、ポンプ要素収容部内にロータ41を囲んで配置される。カムリング43は、ロータ41およびベーン42と共に複数のポンプ室400を形成する。すなわち、サイドプレート23およびフロントボディ24は、カムリング43およびロータ41の軸方向側面に配置される。カムリング43の内周面とロータ41の外周面との間の空間は、その軸方向両側がサイドプレート23およびフロントボディ24により封止される一方、複数のベーン42によって、11個のポンプ室400に区画される。 The pump element 4 is accommodated in a space surrounded by the inner peripheral surface of the adapter ring 44, the surface of the side plate 23 on the z-axis positive direction side, and the surface of the front body 24 on the z-axis negative direction side. That is, the space functions as a pump element housing portion. The rotor 41 is provided with eleven slits 410. The cam ring 43 is formed in an annular shape, and its inner peripheral surface is substantially cylindrical. A semi-cylindrical groove 433 extending in the z-axis direction is provided on the outer peripheral surface of the cam ring 43. The cam ring 43 is disposed so as to surround the rotor 41 in the pump element housing portion. The cam ring 43 forms a plurality of pump chambers 400 together with the rotor 41 and the vanes 42. That is, the side plate 23 and the front body 24 are disposed on the axial side surfaces of the cam ring 43 and the rotor 41. The space between the inner peripheral surface of the cam ring 43 and the outer peripheral surface of the rotor 41 is sealed on both sides in the axial direction by the side plate 23 and the front body 24, while the plurality of vanes 42 provide eleven pump chambers 400. It is divided into.
 カムリング43はポンプ要素収容部内で移動可能に設けられる。アダプタリング44の第1溝部441とカムリング43の溝部433との間には、ピン453が嵌合して設置される。ピン453はポンプハウジング2に固定される。ピン453はポンプハウジング2に対するアダプタリング44の回転を抑制すると共に、アダプタリング44に対するカムリング43の回転を抑制する。カムリング43は、アダプタリング44の内周側に、ポンプハウジング2に対して揺動自在に収容される。カムリング43は、アダプタリング44に対して、第1平面部443で支持される。カムリング43は、第1平面部443の上を転がって移動することで、第1平面部443を支点に揺動する。ロータ41(駆動軸40)の中心(軸心O)に対してカムリング43の内周面の中心(軸心)がずれる量を、以下、偏心量δという。 The cam ring 43 is movably provided in the pump element housing. A pin 453 is fitted and installed between the first groove portion 441 of the adapter ring 44 and the groove portion 433 of the cam ring 43. The pin 453 is fixed to the pump housing 2. The pin 453 suppresses rotation of the adapter ring 44 with respect to the pump housing 2 and suppresses rotation of the cam ring 43 with respect to the adapter ring 44. The cam ring 43 is accommodated on the inner peripheral side of the adapter ring 44 so as to be swingable with respect to the pump housing 2. The cam ring 43 is supported by the first flat portion 443 with respect to the adapter ring 44. The cam ring 43 rolls on the first flat surface portion 443 and swings about the first flat surface portion 443 as a fulcrum. The amount of deviation of the center (axial center) of the inner peripheral surface of the cam ring 43 with respect to the center (axial center O) of the rotor 41 (drive shaft 40) is hereinafter referred to as an eccentricity δ.
 アダプタリング44の第2溝部442にはシール部材46が設置される。カムリング43が揺動する際には、アダプタリング44の第1平面部443がカムリング43の外周面に接するとともに、シール部材46がカムリング43の外周面に接する。アダプタリング44の内周面とカムリング43の外周面との間の上記空間は、第1平面部443(とカムリング43の外周面との当接部)とシール部材46とにより、液密に1対の空間に隔成される。すなわち、カムリング43とポンプ要素収容部の間に、1対の空間として2つの流体圧室61,71が形成される。説明の便宜上、図16に示すように、アダプタリング44の略楕円形である内周面の長軸方向にX軸をとり、短軸方向にY軸をとる。カムリング43の外周側において、偏心量δが増大する側であるX軸負方向側には第1流体圧室61が隔成され、δが減少する側であるX軸正方向側には第2流体圧室71が隔成される。δが増大するとき、第1流体圧室61の容積が減少し、第2流体圧室71の容積が増大する。第2流体圧室71の内部において、アダプタリング44の凹部445には、スプリング47の一端が設置される。スプリング47の他端はカムリング43の外周側に設置される。スプリング47は圧縮状態で設置され、アダプタリング44に対してカムリング43をX軸負方向側(第1流体圧室61の側)に常時付勢する。カムリング43のX軸負方向側への移動は、第1流体圧室61の内部においてカムリング43の外周面がアダプタリング44の第2平面部444に当接することで、規制される。 The seal member 46 is installed in the second groove portion 442 of the adapter ring 44. When the cam ring 43 swings, the first flat portion 443 of the adapter ring 44 contacts the outer peripheral surface of the cam ring 43 and the seal member 46 contacts the outer peripheral surface of the cam ring 43. The space between the inner peripheral surface of the adapter ring 44 and the outer peripheral surface of the cam ring 43 is liquid-tight by a first flat portion 443 (a contact portion with the outer peripheral surface of the cam ring 43) and the seal member 46. Separated into pairs of spaces. That is, two fluid pressure chambers 61 and 71 are formed as a pair of spaces between the cam ring 43 and the pump element accommodating portion. For convenience of explanation, as shown in FIG. 16, the X axis is taken in the major axis direction and the Y axis is taken in the minor axis direction of the inner peripheral surface of the adapter ring 44 which is substantially elliptical. On the outer peripheral side of the cam ring 43, the first fluid pressure chamber 61 is formed on the X axis negative direction side where the eccentric amount δ increases, and the second axis is formed on the X axis positive direction side where δ decreases. A fluid pressure chamber 71 is formed. When δ increases, the volume of the first fluid pressure chamber 61 decreases and the volume of the second fluid pressure chamber 71 increases. Inside the second fluid pressure chamber 71, one end of the spring 47 is installed in the recess 445 of the adapter ring 44. The other end of the spring 47 is installed on the outer peripheral side of the cam ring 43. The spring 47 is installed in a compressed state, and always biases the cam ring 43 toward the X axis negative direction side (the first fluid pressure chamber 61 side) with respect to the adapter ring 44. The movement of the cam ring 43 in the negative X-axis direction is restricted by the outer peripheral surface of the cam ring 43 abutting against the second flat surface portion 444 of the adapter ring 44 inside the first fluid pressure chamber 61.
 ロータ41は図16の時計回り方向に回転する。カムリング43の中心が軸心Oに対して(X軸負方向側に)偏心した状態では、X軸正方向側からX軸負方向側に向かうにつれて、ロータ41の外周面とカムリング43の内周面との間の径方向距離(ポンプ室400の径方向寸法)が大きくなる。この距離の変化に応じ、ベーン42がスリット410から出没することで、各ポンプ室400が隔成される。X軸負方向側のポンプ室400のほうが、X軸正方向側のポンプ室400よりも、容積が大きくなる。このポンプ室400の容積の差異により、軸心OよりもY軸正方向側では、ロータ41が回転する(ポンプ室400がX軸正方向側に向かう)につれてポンプ室400の容積が縮小する一方、軸心OよりもY軸負方向側では、ロータ41が回転する(ポンプ室400がX軸負方向側に向かう)につれて、ポンプ室400の容積が拡大する。ポンプ室400は軸心Oの周りを時計回り方向に回転しつつ周期的に拡縮する。吸入口230は、駆動軸40の回転に伴いポンプ室400の容積が増大する吸入領域に開口する。吐出口231は、駆動軸40の回転に伴いポンプ室400の容積が減少する吐出領域に開口する。 Rotator 41 rotates in the clockwise direction in FIG. In a state where the center of the cam ring 43 is decentered with respect to the axis O (to the X axis negative direction side), the outer peripheral surface of the rotor 41 and the inner periphery of the cam ring 43 move from the X axis positive direction side to the X axis negative direction side. The radial distance between the surfaces (the radial dimension of the pump chamber 400) increases. As the distance changes, the vanes 42 appear and disappear from the slits 410 to separate the pump chambers 400. The pump chamber 400 on the X axis negative direction side has a larger volume than the pump chamber 400 on the X axis positive direction side. Due to the difference in the volume of the pump chamber 400, the volume of the pump chamber 400 is reduced as the rotor 41 rotates (the pump chamber 400 moves toward the X axis positive direction) on the Y axis positive direction side of the axis O. On the Y axis negative direction side of the axis O, the volume of the pump chamber 400 increases as the rotor 41 rotates (the pump chamber 400 moves toward the X axis negative direction side). The pump chamber 400 periodically expands and contracts while rotating around the axis O in the clockwise direction. The suction port 230 opens to a suction region where the volume of the pump chamber 400 increases as the drive shaft 40 rotates. The discharge port 231 opens to a discharge region where the volume of the pump chamber 400 decreases as the drive shaft 40 rotates.
 吸入通路3は、オイルパン100と吸入圧室220aを接続する。吐出通路5は、吐出圧室226とCVT10を接続する。高圧通路6は、吐出通路5におけるベンチュリ部50よりも上流側で吐出通路5から分岐し、バルブ収容孔227のx軸正方向側に接続する。中圧通路7は、吐出通路5におけるベンチュリ部50(小径部51)から分岐し、バルブ収容孔227のx軸負方向側に接続する。第1制御通路60および第2制御通路70は、制御バルブ8とポンプ要素4とを接続する。第1制御通路60は、バルブ収容孔227において高圧通路6よりもx軸正方向側に接続すると共に、アダプタリング44を貫通して第1流体圧室61に接続する。第2制御通路70は、バルブ収容孔227において中圧通路7よりもx軸負方向側に接続すると共に、アダプタリング44を貫通して第2流体圧室71に接続する。戻り通路9は、バルブ収容孔227において第1制御通路60と第2制御通路70との間に接続する。バルブ収容孔227の内部における制御バルブ8の移動に関わらず、高圧室86には高圧通路6が開口し、中圧室88には中圧通路7が開口し、ドレン室89には戻り通路9が開口する。 The suction passage 3 connects the oil pan 100 and the suction pressure chamber 220a. The discharge passage 5 connects the discharge pressure chamber 226 and the CVT 10. The high-pressure passage 6 branches from the discharge passage 5 on the upstream side of the venturi portion 50 in the discharge passage 5 and is connected to the x-axis positive direction side of the valve housing hole 227. The intermediate pressure passage 7 branches off from the venturi portion 50 (small diameter portion 51) in the discharge passage 5 and is connected to the x-axis negative direction side of the valve housing hole 227. The first control passage 60 and the second control passage 70 connect the control valve 8 and the pump element 4. The first control passage 60 is connected to the positive side of the x-axis with respect to the high-pressure passage 6 in the valve housing hole 227 and is connected to the first fluid pressure chamber 61 through the adapter ring 44. The second control passage 70 is connected to the x-axis negative direction side with respect to the intermediate pressure passage 7 in the valve housing hole 227 and is connected to the second fluid pressure chamber 71 through the adapter ring 44. The return passage 9 is connected between the first control passage 60 and the second control passage 70 in the valve housing hole 227. Regardless of the movement of the control valve 8 inside the valve housing hole 227, the high pressure passage 6 opens in the high pressure chamber 86, the intermediate pressure passage 7 opens in the intermediate pressure chamber 88, and the return passage 9 passes through the drain chamber 89. Opens.
 制御バルブ8は、第1制御通路60と第2制御通路70との間で、作動液の流路を切り替える。制御バルブ8がx軸負方向側へ最大変位した初期状態では、バルブ収容孔227における第1制御通路60の開口部は、第1ランド部81により高圧室86との連通が遮断される一方、ドレン室89と連通する。同じ初期状態で、第2制御通路70の開口部は、第2ランド部82によりドレン室89との連通が遮断される一方、中圧室88と連通する。これにより、中圧室88の作動液が第2流体圧室71へ流入する。第1流体圧室61に高圧は供給されず、第2流体圧室71に中圧が供給されるため、カムリング43は偏心状態となる。よって、ポンプ吐出流量は回転数に応じて増大する。制御バルブ8がx軸正方向側に所定量以上移動した状態で、第1制御通路60の開口部は、第1ランド部81によりドレン室89との連通が遮断される一方、高圧室86と連通する。同じ状態で、第2制御通路70の開口部は、第2ランド部82により中圧室88との連通が遮断される一方、ドレン室89と連通する。これにより流路が切り替えられ、高圧室86の作動液が第1制御通路60を介して第1流体圧室61へ流入するようになる。第1流体圧室61に高圧が供給され、第2流体圧室71には中圧が供給されない。よって、カムリング43の偏心量δが小さくなり、ポンプ容量が小さくなることから、ポンプ回転数が上昇してもポンプ吐出流量は増大しない。すなわち、制御バルブ8は、ベンチュリ部50の上流側と小径部51との差圧Δpに基づき、高圧通路6を介して導入される作動液が第1流体圧室61に導入されるように、流路を切り替える。作動液が第1流体圧室61に導入されるようになると、吐出通路5を介してCVT10へ供給される流量が必要な量に制限される。このように、ベンチュリ部50、高圧通路6、中圧通路7、制御バルブ8、第1制御通路60、第2制御通路70、第1流体圧室61、および第2流体圧室71は、ポンプ要素4の吐出流量を制御する制御部として機能する。 The control valve 8 switches the flow path of the hydraulic fluid between the first control passage 60 and the second control passage 70. In the initial state where the control valve 8 is displaced to the maximum in the negative direction of the x-axis, the opening of the first control passage 60 in the valve housing hole 227 is disconnected from the high pressure chamber 86 by the first land portion 81, Communicates with drain chamber 89. In the same initial state, the opening of the second control passage 70 is communicated with the intermediate pressure chamber 88 while the communication with the drain chamber 89 is blocked by the second land portion 82. As a result, the hydraulic fluid in the intermediate pressure chamber 88 flows into the second fluid pressure chamber 71. Since the high pressure is not supplied to the first fluid pressure chamber 61 and the intermediate pressure is supplied to the second fluid pressure chamber 71, the cam ring 43 is in an eccentric state. Therefore, the pump discharge flow rate increases according to the rotation speed. In a state where the control valve 8 has moved to the x-axis positive direction side by a predetermined amount or more, the opening of the first control passage 60 is disconnected from the drain chamber 89 by the first land portion 81, while the high-pressure chamber 86 Communicate. In the same state, the opening of the second control passage 70 is communicated with the drain chamber 89 while the communication with the intermediate pressure chamber 88 is blocked by the second land portion 82. As a result, the flow path is switched, and the hydraulic fluid in the high pressure chamber 86 flows into the first fluid pressure chamber 61 via the first control passage 60. High pressure is supplied to the first fluid pressure chamber 61, and medium pressure is not supplied to the second fluid pressure chamber 71. Therefore, the amount of eccentricity δ of the cam ring 43 is reduced and the pump capacity is reduced, so that the pump discharge flow rate does not increase even if the pump rotational speed is increased. That is, the control valve 8 is configured so that the hydraulic fluid introduced through the high pressure passage 6 is introduced into the first fluid pressure chamber 61 based on the differential pressure Δp between the upstream side of the venturi portion 50 and the small diameter portion 51. Switch the flow path. When the hydraulic fluid is introduced into the first fluid pressure chamber 61, the flow rate supplied to the CVT 10 via the discharge passage 5 is limited to a necessary amount. Thus, the venturi section 50, the high pressure passage 6, the intermediate pressure passage 7, the control valve 8, the first control passage 60, the second control passage 70, the first fluid pressure chamber 61, and the second fluid pressure chamber 71 are pumps. It functions as a control unit that controls the discharge flow rate of the element 4.
 制御バルブ8の作動は、ポンプ要素4の吐出流量に応じて制御バルブ8の軸方向両側に作用する差圧Δpにより制御されると共に、ソレノイド80から制御バルブ8に作用する推力によっても制御される。すなわち、制御バルブ8のx軸負方向端面には、ソレノイド80のロッド800の先端が当接する。ロッド800はソレノイド80が発生する電磁力によりx軸方向に移動可能である。制御バルブ8には、ロッド800を介してソレノイド80からx軸正方向側への力F4が作用する。ソレノイド80の推力F4は、CVTコントロールユニットからの指令に基づき制御される。F1とF2との差F1-F2(差圧Δpに対応する力)とF4との合計(F1-F2+F4)がF3を上回ると、制御バルブ8がx軸正方向側へ移動する。ソレノイド80が非作動状態にあっては、スプリング88の初期セット荷重F3に対向する力は、差圧Δpによる力F1-F2のみである。一方、吐出流量がある程度大きくならないと、十分な差圧Δp(すなわちF1-F2)が確保されない。よって、比較的高い吐出流量を達成した後、一定の流量を維持することになる。ソレノイド80に通電してF4を発生させると、スプリング88の初期セット荷重F3を小さく変更したのと同じ作用が得られる。すなわち、比較的小さな差圧Δp(すなわちF1-F2)で制御バルブ8が移動し、流路を切り替えるようになる。よって、比較的低い吐出流量を達成した後、一定の流量を維持することになる。このように、ソレノイド80が発生する磁気吸引力(推力F4)によって、吐出流量を制御することができる。CVTコントロールユニットは、エンジン回転数、アクセル開度(スロットルバルブ開度)、車速といった走行状況に応じてCVT10のライン圧を適宜制御する。これに応じて、CVTコントロールユニットは、エンジン回転数やアクセル開度等に基づいてソレノイド80に電流を供給し、磁気吸引力(推力F4)を制御することにより、ポンプ要素4の吐出流量(ポンプ容量)を変更する。なお、ソレノイド80を省略するようにしてもよい。 The operation of the control valve 8 is controlled by a differential pressure Δp acting on both sides in the axial direction of the control valve 8 according to the discharge flow rate of the pump element 4, and is also controlled by a thrust acting on the control valve 8 from the solenoid 80. . That is, the tip of the rod 800 of the solenoid 80 abuts on the end surface of the control valve 8 in the negative x-axis direction. The rod 800 can be moved in the x-axis direction by the electromagnetic force generated by the solenoid 80. A force F4 from the solenoid 80 to the x-axis positive direction side acts on the control valve 8 via the rod 800. The thrust F4 of the solenoid 80 is controlled based on a command from the CVT control unit. When the sum (F1−F2 + F4) of the difference F1-F2 between F1 and F2 (the force corresponding to the differential pressure Δp) and F4 exceeds F3, the control valve 8 moves to the x-axis positive direction side. When the solenoid 80 is inactive, the force facing the initial set load F3 of the spring 88 is only the force F1-F2 due to the differential pressure Δp. On the other hand, if the discharge flow rate does not increase to some extent, a sufficient differential pressure Δp (that is, F1-F2) cannot be ensured. Therefore, after achieving a relatively high discharge flow rate, a constant flow rate is maintained. When the solenoid 80 is energized to generate F4, the same effect as that obtained by changing the initial set load F3 of the spring 88 small can be obtained. That is, the control valve 8 moves with a relatively small differential pressure Δp (that is, F1-F2), and the flow path is switched. Therefore, a constant flow rate is maintained after a relatively low discharge flow rate is achieved. Thus, the discharge flow rate can be controlled by the magnetic attractive force (thrust F4) generated by the solenoid 80. The CVT control unit appropriately controls the line pressure of the CVT 10 according to the driving situation such as the engine speed, the accelerator opening (throttle valve opening), and the vehicle speed. In response to this, the CVT control unit supplies current to the solenoid 80 based on the engine speed, the accelerator opening, etc., and controls the magnetic attractive force (thrust force F4), so that the discharge flow rate (pump of the pump element 4) Change the capacity. The solenoid 80 may be omitted.
 本実施例では、可変容量形ポンプにおいても、実施例1と同様の、ベンチュリ部50に係る各作用効果を得ることができる。 In the present embodiment, the same effects as those of the venturi unit 50 can be obtained in the variable displacement pump as in the first embodiment.
 [他の実施例]
  以上、本発明のポンプ装置を実施例に基づいて説明したが、本発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、ポンプ装置が作動液を供給する無段変速機は、CVTに限らず、例えばトロイダル式であってもよい。ポンプ装置が作動液を供給する自動変速機は、無段変速機に限らず、有段変速機であってもよい。ポンプ装置が作動液を供給する車両搭載機器は、自動変速機に限らず、パワーステアリング装置等であってもよい。また、各実施例の構成を適宜組み合わせることが可能である。
[Other embodiments]
As mentioned above, although the pump apparatus of this invention was demonstrated based on the Example, the concrete structure of this invention is not limited to an Example, Even if there is a design change etc. of the range which does not deviate from the summary of invention. It is included in the present invention. For example, the continuously variable transmission to which the pump device supplies the hydraulic fluid is not limited to the CVT, and may be a toroidal type, for example. The automatic transmission to which the pump device supplies hydraulic fluid is not limited to a continuously variable transmission, but may be a stepped transmission. The on-vehicle equipment to which the pump device supplies the hydraulic fluid is not limited to the automatic transmission, but may be a power steering device or the like. Moreover, it is possible to combine the structure of each Example suitably.
 本願は、2015年1月13日出願の日本特許出願番号2015-004311号に基づく優先権を主張する。2015年1月13日出願の日本特許出願番号2015-004311号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2015-004311 filed on January 13, 2015. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-004311 filed on January 13, 2015 is incorporated herein by reference in its entirety.
1   ポンプ装置、10  CVT(自動変速機)、2   ポンプハウジング、20  ポンプハウジング本体、21  ベンチュリ形成ブロック、213 連通孔(開口)、230 吸入口、231 吐出口、4   ポンプ要素、40  駆動軸、400 ポンプ室、41  ロータ、410 スリット、42  ベーン、43  カムリング、5   吐出通路、50  ベンチュリ部、51  小径部、52  内径漸増部、520 前方部、521 後方部、53  大径部、61  第1流体圧室、71  第2流体圧室、8   制御バルブ、86  高圧室、87  中圧室 1 pump device, 10 CVT (automatic transmission), 2 pump housing, 20 pump housing body, 21 venturi forming block, 213 communication hole (opening), 230 intake port, 231 discharge port, 4 pump element, 40 drive shaft, 400 Pump chamber, 41 rotor, 410 slit, 42 vane, 43 cam ring, 5 discharge passage, 50 venturi section, 51 small diameter section, 52 inner diameter gradually increasing section, 520 front section, 521 rear section, 53 large diameter section, 61 first fluid pressure Chamber, 71 second fluid pressure chamber, 8 control valve, 86 high pressure chamber, 87 medium pressure chamber

Claims (19)

  1.  車両の自動変速機に作動液を供給する自動変速機用ポンプ装置であって、
     ポンプ要素収容部を有するポンプハウジングと、
     前記ポンプハウジングに軸支される駆動軸と、
     前記ポンプ要素収容部内に設けられ、前記駆動軸によって回転駆動されると共に、前記駆動軸の周りに複数個のポンプ室を形成するポンプ要素と、
     前記ポンプハウジングに形成され、前記駆動軸の回転に伴い前記複数のポンプ室のうち容積が増大する吸入領域に開口する吸入口と、
     前記ポンプハウジングに形成され、前記駆動軸の回転に伴い前記複数のポンプ室のうち容積が減少する吐出領域に開口する吐出口と、
     前記吐出口と接続された吐出通路と、
     前記吐出通路の途中に設けられたベンチュリ部であって、前記吐出口から前記ベンチュリ部までの前記吐出通路の内径よりも小さい内径を有する小径部と、前記小径部から前記吐出通路の下流側に向かって内径が徐々に増大するように形成された内径漸増部と、を有するベンチュリ部と、
     前記ベンチュリ部の上流側およびベンチュリ部中の作動液が導入され、前記ベンチュリ部の上流側の作動液と前記ベンチュリ部中の作動液との差圧に基づき制御されるスプール弁体を備え、少なくとも前記ベンチュリ部の上流側から導入される作動液の流路を切り替えることにより、前記自動変速機に供給される作動液の流量を制御する制御バルブと、
     を備える自動変速機用ポンプ装置。
    A pump device for an automatic transmission for supplying hydraulic fluid to an automatic transmission of a vehicle,
    A pump housing having a pump element housing;
    A drive shaft pivotally supported by the pump housing;
    A pump element that is provided in the pump element housing and is rotationally driven by the drive shaft and forms a plurality of pump chambers around the drive shaft;
    A suction port formed in the pump housing and opening to a suction region in which the volume of the plurality of pump chambers increases with rotation of the drive shaft;
    A discharge port that is formed in the pump housing and opens to a discharge region in which the volume of the plurality of pump chambers decreases as the drive shaft rotates;
    A discharge passage connected to the discharge port;
    A venturi portion provided in the middle of the discharge passage, a small diameter portion having an inner diameter smaller than the inner diameter of the discharge passage from the discharge port to the venturi portion, and from the small diameter portion to the downstream side of the discharge passage A venturi section having an inner diameter gradually increasing portion formed so that the inner diameter gradually increases toward the inner surface,
    A hydraulic valve in the upstream of the venturi and in the venturi is introduced, and includes a spool valve body that is controlled based on a differential pressure between the hydraulic fluid in the upstream of the venturi and the hydraulic fluid in the venturi, and at least A control valve for controlling the flow rate of the hydraulic fluid supplied to the automatic transmission by switching the flow path of the hydraulic fluid introduced from the upstream side of the venturi unit;
    A pump device for an automatic transmission comprising:
  2.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ポンプハウジングは、前記ポンプ要素収容部を有するポンプハウジング本体と、前記ポンプハウジング本体とは別部材のベンチュリ形成ブロックであって、前記ポンプハウジング本体に接合されるベンチュリ形成ブロックと、を有し、
     前記ベンチュリ部は、前記ベンチュリ形成ブロックに形成され、
     前記ベンチュリ形成ブロックは、前記ベンチュリ部が形成された後、前記ポンプハウジング本体に接合される
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The pump housing has a pump housing main body having the pump element accommodating portion, and a venturi forming block which is a member different from the pump housing main body and joined to the pump housing main body,
    The venturi portion is formed in the venturi forming block,
    The venturi forming block is a pump device for an automatic transmission that is joined to the pump housing body after the venturi portion is formed.
  3.  請求項2に記載の自動変速機用ポンプ装置であって、
     前記ポンプハウジング本体は、金属材料で形成され、
     前記ベンチュリ形成ブロックは、樹脂材料で形成され、
     前記ベンチュリ部は、型成形によって形成される
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 2,
    The pump housing body is made of a metal material,
    The venturi forming block is formed of a resin material,
    The venturi section is a pump device for an automatic transmission formed by molding.
  4.  請求項2に記載の自動変速機用ポンプ装置であって、
     前記ポンプハウジング本体は、金属材料で形成され、
     前記ベンチュリ形成ブロックは、焼結材料で形成され、
     前記ベンチュリ部は、圧粉工程において型により形成される
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 2,
    The pump housing body is made of a metal material,
    The venturi forming block is formed of a sintered material;
    The venturi section is a pump device for an automatic transmission that is formed by a mold in a compacting process.
  5.  請求項2に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部の前記小径部は、前記ベンチュリ形成ブロックの外表面に開口するように形成される
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 2,
    The automatic transmission pump device, wherein the small-diameter portion of the venturi portion is formed to open on an outer surface of the venturi forming block.
  6.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記ベンチュリ部の長手方向と前記駆動軸の回転軸の方向とが略直交するように設けられる
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The venturi portion is a pump device for an automatic transmission provided so that a longitudinal direction of the venturi portion and a direction of a rotation shaft of the drive shaft are substantially orthogonal to each other.
  7.  請求項6に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記駆動軸の回転軸に直交する断面上において前記吸入口とオーバーラップしない位置であって、かつ前記駆動軸の回転軸の方向において前記吸入口とオーバーラップする位置に設けられる
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 6,
    The venturi portion is provided at a position that does not overlap the suction port on a cross section orthogonal to the rotation axis of the drive shaft and a position that overlaps the suction port in the direction of the rotation shaft of the drive shaft. Pump device for automatic transmission.
  8.  請求項6に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記ベンチュリ部の長手方向と前記制御バルブの長手方向とが略平行となるように設けられる
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 6,
    The venturi section is a pump device for an automatic transmission provided so that a longitudinal direction of the venturi section and a longitudinal direction of the control valve are substantially parallel to each other.
  9.  請求項8に記載の自動変速機用ポンプ装置であって、
     前記制御バルブは、前記ベンチュリ部の上流側圧力が導入される高圧室と、前記ベンチュリ部中の圧力が導入される中圧室と、を備え、
     前記ベンチュリ部は、前記ベンチュリ部の上流側が前記制御バルブの前記高圧室と対向するように配置される
     自動変速機用ポンプ装置。
    A pump device for an automatic transmission according to claim 8,
    The control valve includes a high pressure chamber into which upstream pressure of the venturi portion is introduced, and an intermediate pressure chamber into which pressure in the venturi portion is introduced,
    The venturi section is an automatic transmission pump device arranged such that an upstream side of the venturi section faces the high pressure chamber of the control valve.
  10.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記ベンチュリ部の長手方向と前記駆動軸の回転軸の方向とが略平行となるように設けられる
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The venturi unit is an automatic transmission pump device provided so that a longitudinal direction of the venturi unit and a direction of a rotation shaft of the drive shaft are substantially parallel to each other.
  11.  請求項10に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記駆動軸の回転軸に対する径方向において、前記ポンプ要素収容部よりも径方向外側の位置であって、前記駆動軸の回転軸の方向において前記ポンプ要素収容部とオーバーラップする位置に設けられる
     自動変速機用ポンプ装置。
    A pump device for an automatic transmission according to claim 10,
    The venturi portion is located radially outside the pump element housing portion in the radial direction with respect to the rotation shaft of the drive shaft, and overlaps the pump element housing portion in the direction of the rotation shaft of the drive shaft. A pump device for an automatic transmission provided at a position.
  12.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記小径部または前記ベンチュリ部の長手方向において前記内径漸増部の前記小径部側に設けられる開口であって、前記制御バルブに前記ベンチュリ部中の作動液を供給する開口を備え、
     前記開口は、前記ベンチュリ部の長手方向に沿った軸線周りの方向において複数個設けられる
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The venturi portion is an opening provided on the small diameter portion side of the inner diameter gradually increasing portion in the longitudinal direction of the small diameter portion or the venturi portion, and includes an opening for supplying hydraulic fluid in the venturi portion to the control valve. ,
    The automatic transmission pump device is provided with a plurality of openings in a direction around an axis along the longitudinal direction of the venturi.
  13.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記内径漸増部の内壁で挟まれた狭角が、60度以下となるように形成される
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The venturi section is a pump device for an automatic transmission formed such that a narrow angle sandwiched between inner walls of the inner diameter gradually increasing section is 60 degrees or less.
  14.  請求項13に記載の自動変速機用ポンプ装置であって、
     前記内径漸増部が前記内径漸増部の内壁で挟まれた狭角が一定のまま、その内径が前記吐出口から前記ベンチュリ部までの前記吐出通路の内径と同径になるまで形成されたときの前記内径漸増部の長手方向長さをLとしたとき、前記内径漸増部は、前記内径漸増部の内壁で挟まれた狭角が60度以下で一定のまま、前記長手方向長さが前記Lの65パーセント以上の位置まで形成された前方部と、前記前方部の下流側に設けられ前記狭角が60度より大きくなるように形成された後方部と、を有する
     自動変速機のポンプ装置。
    A pump device for an automatic transmission according to claim 13,
    When the inner diameter gradually increasing portion is formed so that the narrow angle between the inner walls of the inner diameter gradually increasing portion is constant and the inner diameter is the same as the inner diameter of the discharge passage from the discharge port to the venturi portion. When the length in the longitudinal direction of the inner diameter gradually increasing portion is L, the inner diameter gradually increasing portion has a narrow angle sandwiched between inner walls of the inner diameter gradually increasing portion that remains constant at 60 degrees or less, and the length in the longitudinal direction is the L And a rear portion provided downstream of the front portion and formed so that the narrow angle is greater than 60 degrees.
  15.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記制御バルブまたは前記ベンチュリ部は、前記ポンプハウジングとは別部材のハウジングに設けられる
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The control valve or the venturi section is a pump device for an automatic transmission provided in a housing separate from the pump housing.
  16.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ベンチュリ部は、前記小径部に設けられた開口であって、前記ベンチュリ部中の作動液を前記制御バルブに供給する開口を有する
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The venturi portion is an opening provided in the small-diameter portion, and has an opening for supplying hydraulic fluid in the venturi portion to the control valve.
  17.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ポンプ要素は、前記駆動軸1回転当たりの吐出量が一定の固定容量ポンプ用のポンプ要素であり、
     前記制御バルブは、前記ベンチュリ部の上流側から導入される作動液を前記吸入口側に戻すように作動液の流路を切り替える
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The pump element is a pump element for a fixed displacement pump having a constant discharge amount per one rotation of the drive shaft,
    The control valve is a pump device for an automatic transmission that switches a flow path of the hydraulic fluid so that the hydraulic fluid introduced from the upstream side of the venturi is returned to the suction port side.
  18.  請求項1に記載の自動変速機用ポンプ装置であって、
     前記ポンプ要素は、
      周方向に複数のスリットを有するロータと、
      前記ロータのスリットに出没自在に設けられたベーンと、
      前記前記ポンプ要素収容部内に移動可能に設けられ、環状に形成され、前記ロータおよび前記ベーンと共に複数のポンプ室を形成するカムリングと、
      前記カムリングと前記ポンプ要素収容部の間に形成される1対の空間であって、前記ロータに対する前記カムリングの偏心量が増大するときに容積が減少する側に設けられた第1流体圧室および容積が増大する側に設けられた第2流体圧室と、
      を備え、
      前記駆動軸1回転当たりの吐出量が可変に制御される可変容量形ポンプ用のポンプ要素であり、
     前記制御バルブは、前記ベンチュリ部の上流側から導入される作動液を前記第1流体圧室に導入するように作動液の流路を切り替える
     自動変速機用ポンプ装置。
    The automatic transmission pump device according to claim 1,
    The pump element is
    A rotor having a plurality of slits in the circumferential direction;
    A vane provided so as to freely appear and disappear in the slit of the rotor;
    A cam ring which is movably provided in the pump element accommodating portion, is formed in an annular shape, and forms a plurality of pump chambers together with the rotor and the vane;
    A pair of spaces formed between the cam ring and the pump element housing portion, the first fluid pressure chamber provided on the side where the volume decreases when the eccentric amount of the cam ring with respect to the rotor increases; and A second fluid pressure chamber provided on the side where the volume increases,
    With
    A pump element for a variable displacement pump in which a discharge amount per one rotation of the drive shaft is variably controlled;
    The control valve is a pump device for an automatic transmission that switches a flow path of hydraulic fluid so that hydraulic fluid introduced from an upstream side of the venturi section is introduced into the first fluid pressure chamber.
  19.  ポンプ装置であって、
     ポンプ要素収容部を有するポンプハウジングと、
     前記ポンプハウジングに軸支される駆動軸と、
     前記ポンプ要素収容部内に設けられ、前記駆動軸によって回転駆動されると共に、前記駆動軸の周りに複数個のポンプ室を形成するポンプ要素と、
     前記ポンプハウジングに形成され、前記駆動軸の回転に伴い前記複数のポンプ室のうち容積が増大する吸入領域に開口する吸入口と、
     前記ポンプハウジングに形成され、前記駆動軸の回転に伴い前記複数のポンプ室のうち容積が減少する吐出領域に開口する吐出口と、
     前記吐出口と接続された吐出通路と、
     前記吐出通路の途中に設けられたベンチュリ部であって、前記吐出口から前記ベンチュリ部までの前記吐出通路の内径よりも小さい内径を有する小径部と、前記小径部から前記吐出通路の下流側に向かって内径が徐々に増大するように形成された内径漸増部と、を有するベンチュリ部と、
     前記ベンチュリ部の上流側および前記小径部の作動液が導入され、前記ベンチュリ部の上流側の作動液と前記小径部の作動液との差圧に基づき制御されるスプール弁体を備え、少なくとも前記ベンチュリ部の上流側から導入される作動液の流路を切り替えることにより車両搭載機器に供給される作動液の流量を制御する制御バルブと、
     を備えるポンプ装置。
    A pump device,
    A pump housing having a pump element housing;
    A drive shaft pivotally supported by the pump housing;
    A pump element that is provided in the pump element housing and is rotationally driven by the drive shaft and forms a plurality of pump chambers around the drive shaft;
    A suction port formed in the pump housing and opening to a suction region in which the volume of the plurality of pump chambers increases with rotation of the drive shaft;
    A discharge port that is formed in the pump housing and opens to a discharge region in which the volume of the plurality of pump chambers decreases as the drive shaft rotates;
    A discharge passage connected to the discharge port;
    A venturi portion provided in the middle of the discharge passage, a small diameter portion having an inner diameter smaller than the inner diameter of the discharge passage from the discharge port to the venturi portion, and from the small diameter portion to the downstream side of the discharge passage A venturi section having an inner diameter gradually increasing portion formed so that the inner diameter gradually increases toward the inner surface,
    A spool valve body that is controlled based on a differential pressure between the hydraulic fluid upstream of the venturi portion and the hydraulic fluid upstream of the venturi portion and the hydraulic fluid in the small diameter portion; A control valve for controlling the flow rate of the hydraulic fluid supplied to the on-vehicle equipment by switching the flow path of the hydraulic fluid introduced from the upstream side of the venturi section;
    A pump device comprising:
PCT/JP2015/085738 2015-01-13 2015-12-22 Pump device for use in automatic transmission, or pump device WO2016114076A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/540,868 US20180023563A1 (en) 2015-01-13 2015-12-22 Automatic transmission pump apparatus or pump apparatus
CN201580071328.5A CN107110155A (en) 2015-01-13 2015-12-22 Automatic transmission pump installation or pump installation
DE112015005940.7T DE112015005940T5 (en) 2015-01-13 2015-12-22 Pump device for use in automatic transmission or pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004311 2015-01-13
JP2015004311A JP2016130462A (en) 2015-01-13 2015-01-13 Automatic transmission pump device or pump device

Publications (1)

Publication Number Publication Date
WO2016114076A1 true WO2016114076A1 (en) 2016-07-21

Family

ID=56405631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085738 WO2016114076A1 (en) 2015-01-13 2015-12-22 Pump device for use in automatic transmission, or pump device

Country Status (5)

Country Link
US (1) US20180023563A1 (en)
JP (1) JP2016130462A (en)
CN (1) CN107110155A (en)
DE (1) DE112015005940T5 (en)
WO (1) WO2016114076A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205207A1 (en) * 2017-04-19 2018-10-25 Zf Friedrichshafen Ag transmission device
CN110131162B (en) * 2019-06-29 2024-04-09 台州弘一液压伺服科技有限公司 Energy-saving vane pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500557A (en) * 1982-04-16 1984-04-05 フオ−ド モ−タ− カンパニ− power steering device
JPH02155876A (en) * 1988-12-05 1990-06-14 Jidosha Kiki Co Ltd Oil pump
JPH02212311A (en) * 1989-02-14 1990-08-23 Noritake Co Ltd Method and apparatus for dissolving carbon dioxide gas
US20020172610A1 (en) * 2000-06-29 2002-11-21 Carlos Jeronymo Constant flow vane pump
JP2008025423A (en) * 2006-07-20 2008-02-07 Hitachi Ltd Variable displacement pump
JP2010053693A (en) * 2008-08-26 2010-03-11 Toyota Industries Corp Variable displacement rotary pump
JP2014066178A (en) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd Variable capacity pump

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2592884A (en) * 1947-02-21 1952-04-15 Hobart Mfg Co Dishwasher
JP2840087B2 (en) * 1989-08-29 1998-12-24 株式会社ユニシアジェックス Liquid pump
DE4136151C2 (en) * 1991-11-02 2000-03-30 Zahnradfabrik Friedrichshafen Vane pump
JP2932236B2 (en) * 1994-02-28 1999-08-09 自動車機器株式会社 Variable displacement pump
JPH07238890A (en) * 1994-02-28 1995-09-12 Unisia Jecs Corp Variable displacement pump
US6623154B1 (en) * 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
JP2007170321A (en) * 2005-12-26 2007-07-05 Hitachi Ltd Variable displacement vane pump
JP5172289B2 (en) * 2007-11-21 2013-03-27 日立オートモティブシステムズ株式会社 Variable displacement pump
JP2011080430A (en) * 2009-10-08 2011-04-21 Hitachi Automotive Systems Ltd Control valve, variable displacement pump using control valve, and hydraulic circuit of internal combustion engine
DE102010038863B4 (en) * 2010-08-04 2023-02-16 Pump Technology Solutions PS GmbH hydraulic pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59500557A (en) * 1982-04-16 1984-04-05 フオ−ド モ−タ− カンパニ− power steering device
JPH02155876A (en) * 1988-12-05 1990-06-14 Jidosha Kiki Co Ltd Oil pump
JPH02212311A (en) * 1989-02-14 1990-08-23 Noritake Co Ltd Method and apparatus for dissolving carbon dioxide gas
US20020172610A1 (en) * 2000-06-29 2002-11-21 Carlos Jeronymo Constant flow vane pump
JP2008025423A (en) * 2006-07-20 2008-02-07 Hitachi Ltd Variable displacement pump
JP2010053693A (en) * 2008-08-26 2010-03-11 Toyota Industries Corp Variable displacement rotary pump
JP2014066178A (en) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd Variable capacity pump

Also Published As

Publication number Publication date
CN107110155A (en) 2017-08-29
JP2016130462A (en) 2016-07-21
US20180023563A1 (en) 2018-01-25
DE112015005940T5 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
CN107923393B (en) Variable displacement oil pump
JP2009264192A (en) Variable displacement vane pump
US9828991B2 (en) Variable displacement vane pump
KR100655361B1 (en) Variable Displacement Pump
KR20020020852A (en) Relief valve
WO2016114076A1 (en) Pump device for use in automatic transmission, or pump device
JP2014066178A (en) Variable capacity pump
US11268508B2 (en) Variable displacement pump
US8690557B2 (en) Variable displacement vane pump
CN106870357B (en) Variable displacement vane pump
WO1998005545A1 (en) Flow rate regulating valve of hydraulic pump
JP2016156367A (en) Variable capacity type vane pump
JP4969419B2 (en) Variable displacement vane pump
WO2018051673A1 (en) Variable capacity pump and hydraulic fluid supply system for internal combustion engine
JP2009275537A (en) Variable displacement vane pump
KR100325823B1 (en) Oil Pump
JP2016211523A (en) Pump unit
CN112576487A (en) In-line piston pump
JP5443427B2 (en) Variable displacement vane pump
JP2017020562A (en) Relief valve
WO2017154490A1 (en) Variable capacity vane pump
US11846284B1 (en) Sliding-pocket variable-displacement pump with compensation chambers
JP5261235B2 (en) Variable displacement vane pump
JP2011127556A (en) Variable displacement vane pump
KR102529520B1 (en) Vacuum Pump for Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15540868

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005940

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878027

Country of ref document: EP

Kind code of ref document: A1