WO2016113942A1 - Flexible printed circuit board and method for manufacturing flexible printed circuit board - Google Patents

Flexible printed circuit board and method for manufacturing flexible printed circuit board Download PDF

Info

Publication number
WO2016113942A1
WO2016113942A1 PCT/JP2015/073869 JP2015073869W WO2016113942A1 WO 2016113942 A1 WO2016113942 A1 WO 2016113942A1 JP 2015073869 W JP2015073869 W JP 2015073869W WO 2016113942 A1 WO2016113942 A1 WO 2016113942A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible printed
circuit board
printed circuit
layer
ground layer
Prior art date
Application number
PCT/JP2015/073869
Other languages
French (fr)
Japanese (ja)
Inventor
松田 文彦
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to CN201580002381.XA priority Critical patent/CN106031309B/en
Publication of WO2016113942A1 publication Critical patent/WO2016113942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB

Definitions

  • the present invention relates to a flexible printed circuit board and a method for manufacturing the flexible printed circuit board.
  • wires for moving the terminal motor via multi-degree-of-freedom joints and terminals are arranged.
  • Many wires for transmitting electrical signals from various sensors are wired.
  • requirement with respect to the electric wire comprised so that expansion-contraction is possible is increasing.
  • arm robots are often used as industrial robots.
  • this type of arm robot depending on the end effector attached to the tip side of the robot arm (equivalent to a hand in the human body) or the driving method of the joint part of the robot arm, from the base side to the tip side of the robot arm
  • the cables and hoses are wired to the joints, the cables may be bent or disconnected.
  • the cables and hoses are temporarily extended outward at positions closer to the base end than the joints of the robot arms, and the cables are arranged in the outer space of the joints, and again inside the arm at positions closer to the tip than the joints.
  • a wiring method such as introduction into the network is adopted.
  • a space for loosening the cable is required around the joint portion of the robot arm.
  • a support rod is provided at the joint rotation center position in the joint portion of the robot arm, a cable is wound around the support rod, and the support rod on which the cable is wound is stored in the robot arm.
  • a structure that prevents the cable from being bent or disconnected is disclosed.
  • functional deterioration operation speed, accuracy, etc.
  • a high-spec motor or the like is used in order to compensate for the deterioration of the function or the number of necessary members increases. In this case, the manufacturing cost increases.
  • Patent Document 2 there is a technique disclosed in Patent Document 2 as a response to the demand for such an electric transmission member.
  • a plurality of pins formed with a desired R are arranged in a jig at intervals that allow the flexible printed circuit board to pass, and heating is performed by passing the flexible printed circuit board while applying a constant tension to the jig.
  • a method of molding is described.
  • Patent Document 2 also discloses a three-layer flexible printed board having three conductor layers in addition to a single-sided flexible printed board having a conductor layer only on one side with respect to the structure of the flexible printed board.
  • a three-layer flexible printed circuit board there is generally a so-called stripline transmission line in which a signal line whose characteristic impedance is matched is arranged on the inner layer and the outer layer is GND (ground).
  • GND ground
  • an image sensor is attached to the tip of the movable part described above, and is required when transmitting large-capacity data such as high-definition video data via a flexible printed circuit board that can be expanded and contracted. The aim is to cut off and achieve both high-quality signal transmission and elasticity.
  • Patent Document 3 discloses a configuration in which a shield layer using a conductive adhesive or metal foil is disposed on the outer layers of the front and back surfaces in a stripline transmission line using a three-layer flexible printed circuit board.
  • a shield layer using a conductive adhesive or metal foil may be disposed on the outer layer side of the flexible printed circuit board. Conceivable.
  • the configuration disclosed in Patent Document 3 does not have high shielding performance as compared to solid GND, it has been found that high-frequency current is less likely to flow, and transmission loss increases compared to solid GND.
  • the signal lines are close to each other in the pleated shape, so that electrical interference is likely to occur and transmission loss increases. End up.
  • the present invention has been made on the basis of the above circumstances, and the object of the present invention is to provide a flexible printed circuit board capable of high-quality signal transmission with little transmission loss while the pleat portion has stretch resistance, and flexible printing.
  • An object is to provide a method for manufacturing a substrate.
  • a signal line an insulating layer that covers the signal line from both sides and is made of a thermoplastic resin, and a signal line sandwiching each insulating layer And a pair of ground layers facing each other, a flexible printed circuit board having at least one pair of stripline transmission lines, wherein a curved portion curved at a plurality of locations is formed, and the curved portion opens.
  • the ground layer has a pleated portion that curves so as to be closed, and the ground layer is provided with a metal surface and has a shielding property against electromagnetic waves, and is more flexible than the hard ground layer and more electromagnetic than the hard ground layer.
  • a soft ground layer inferior in shielding property, and the soft ground layer is disposed on at least one of the outer peripheral side and the inner peripheral side of the curved portion. That, the flexible printed circuit board is provided, characterized in that.
  • the soft ground layer includes a conductive paste obtained by mixing a conductive filler in a binder resin composition, and a thin film conductive film including a metal thin film layer formed by vapor deposition. It is preferable to have at least one of them.
  • the soft ground layer is disposed on the outer peripheral side of the curved portion and the hard ground layer is disposed on the inner peripheral side of the curved portion.
  • the pleat portion is provided in a bellows shape by alternately switching the direction of the curve of the curved portion, and the soft ground layer is provided on the surface side of the signal line. It is preferable that they are arranged on the outer peripheral side of the bending portion in a state where they alternately exist on the back side.
  • the pleat portion is provided in a bellows shape by alternately switching the direction of the curve of the curved portion, and the soft ground layer is provided on the surface side of the signal line. It is preferable that it is arranged on the outer peripheral side of the bending portion in a state of being present on either one of the back side.
  • the ground layer is provided with an overlapping portion in which the one end side of the hard ground layer and the other end side of the soft ground layer are electrically connected. It is preferable that
  • the insulating layer is preferably formed using LCP (Liquid Crystal Polymer) which is a thermoplastic resin as a material.
  • a plating film for interlayer connection is not formed on the ground layer located in the curved portion.
  • a signal line an insulating layer that covers the signal line from both sides and is made of a thermoplastic resin, and a pair of grounds that face the signal line with each insulating layer interposed therebetween
  • a flexible printed circuit board having at least one set of stripline transmission lines, wherein at least one of the double-sided copper-clad laminates having base copper foil layers on both sides of the insulating layer.
  • the sixth step is to cover the soft ground layer which is rich in properties and inferior to electromagnetic shielding than the hard ground layer.
  • the flexible printed circuit board formed in the seventh step before the heat forming is subjected to heat forming in a state where a plurality of portions are curved, and after the heat forming, the soft ground layer is placed on the outer peripheral side.
  • the flexible printed circuit board enables high-quality signal transmission with little transmission loss while the pleat portion has stretch resistance.
  • FIG. 2 is a cross-sectional view of the flexible printed circuit board before and after molding, and shows a state cut along line AA in FIG.
  • FIG. 2 is a cross-sectional view of the flexible printed circuit board before and after molding, showing a state cut along the line BB in FIG.
  • FIG. 2 is a cross-sectional view of the flexible printed circuit board before and after molding, and shows a state cut along line DD in FIG.
  • FIG. 9 is a diagram showing a state in which signal lines and receiving lands are formed in the AA cross section of FIGS. 1 and 8 in the first step.
  • FIG. 9 is a diagram showing a state in which signal lines are formed in the BB, CC, and DD sections of FIGS. 1 and 8 in the first step.
  • FIG. 9 is a diagram showing a state where a single-sided copper-clad laminate is laminated on a double-sided copper-clad laminate in the AA cross section of FIGS. 1 and 8 in the second step.
  • FIG. 9 is a diagram showing a state in which signal lines and receiving lands are formed in the AA cross section of FIGS. 1 and 8 in the first step.
  • FIG. 9 is a diagram showing a state in which a single-sided copper-clad laminate is laminated on a double-sided copper-clad laminate in the BB cross section, CC cross-section, and DD cross-section of FIGS. 1 and 8 in the second step.
  • FIG. 9 is a diagram showing a state in which through holes are formed in the AA cross section of FIGS. 1 and 8 in the third step.
  • FIG. 9 is a side sectional view showing a configuration in a BB section, a CC section, and a DD section in FIGS. 1 and 8 in the third step.
  • FIG. 9 is a diagram showing a state in which a conductive coating layer for forming a conductive coating is formed in the through hole in the AA cross section of FIGS.
  • FIG. 9 is a diagram showing a state in which patterning is performed in the AA cross section of FIGS. 1 and 8 in the fifth step.
  • FIG. 9 is a diagram showing a state in which patterning is performed in the BB cross section of FIGS. 1 and 8 in the fifth step.
  • FIG. 10 is a diagram showing a state in which patterning is performed in the CC section of FIG. 1 in the fifth step.
  • FIG. 9 is a diagram showing a state in which patterning is performed in the DD section of FIGS. 1 and 8 in the fifth step.
  • FIG. 10 is a diagram showing a state in which patterning is performed in the EE cross section of FIG. 1 in the fifth step.
  • FIG. 10 is a diagram showing a configuration in a CC section of FIG. 1 when a soft ground layer is formed in the sixth step.
  • FIG. 10 is a diagram showing a state in which a soft ground layer is formed in the DD cross section of FIGS. 1 and 8 according to a sixth step.
  • FIG. 10 is a diagram showing a state in which a soft ground layer is formed in the EE cross section of FIG. 1 in connection with a sixth step.
  • FIG. 9 is a diagram showing a configuration in the AA cross section of FIGS. 1 and 8 when a cover layer is formed in the seventh step.
  • FIG. 9 is a diagram showing a state in which a cover layer is formed in the BB cross section of FIGS. 1 and 8 according to a seventh step.
  • FIG. 10 is a diagram showing a configuration in a CC section of FIG. 1 when a soft ground layer is formed in the sixth step.
  • FIG. 10 is a diagram showing a state in which a soft ground layer is formed in
  • FIG. 10 is a diagram showing a state in which a cover layer is formed in the CC section of FIG. 1 in the seventh step.
  • FIG. 10 is a diagram showing a state in which a cover layer is formed in the DD cross section of FIGS. 1 and 8 according to a seventh step. It is a figure which shows the state which concerns on the 8th process and set the flexible printed circuit board before shaping
  • FIG. 29 is a cross-sectional view of a conventional flexible printed circuit board, showing a state cut along the line AA in FIG. 28. It is sectional drawing of the flexible printed circuit board of a conventional structure, and is a figure which shows the state cut
  • the flexible printed circuit board 10 according to an embodiment of the present invention will be described below.
  • an XYZ orthogonal coordinate system may be used for explanation.
  • the X direction is the longitudinal direction of the flexible printed circuit board 10, the X1 side is the right side of FIG. 1, and the X2 side is the left side.
  • the Y direction is the width direction of the flexible printed circuit board 10, the Y1 side is the front side of the paper in FIG. 1, and the Y2 side is the back side of the paper.
  • the Z direction is the thickness direction of the flexible printed circuit board 10, Z1 is the back side of the paper in FIG. 2, and Z2 is the front side of the paper.
  • FIG. 1 is a plan view showing the configuration of the flexible printed circuit board 10 before molding.
  • FIG. 2 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line AA in FIG. 3 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line BB of FIG.
  • the flexible printed circuit board 10 in the present embodiment is a three-layer flexible printed circuit board that is a kind of multilayer flexible printed circuit board, and has a structure in which three conductor portions exist.
  • the flexible printed circuit board 10 has a signal line 20 on the inner layer side.
  • the signal line 20 is a portion formed by removing a copper foil portion that transmits a signal by etching or the like so that the characteristic impedance is matched for high-speed transmission by a manufacturing method as described later.
  • the flexible printed circuit board 10 is provided in the elongate shape.
  • the flexible printed circuit board 10 has a width (dimension in the Y direction) of 5 mm and a length before molding (dimension in the X direction) of 200 mm.
  • the length is, for example, about 75 mm when formed into a pleated shape (bellows shape) so that the radius of the curved portion PL2 is 1 mm.
  • the dimension example is not limited to this, and various dimensions can be set (the same applies to the dimension examples described later).
  • the flexible printed circuit board 10 is provided with signal pads 11 exposed on the front and back sides. That is, the signal pad 11 is not covered with cover layers 80 and 90 described later, and is exposed to the outside on the front surface side and the back surface side.
  • the signal pad 11 is a part that is electrically connected to the signal line 20 with respect to the signal line 20 and inputs or outputs a signal to the signal line 20. Therefore, the conductive through hole 12 is electrically connected to the signal pad 11.
  • the conductive through hole 12 has a through hole 12a penetrating the flexible printed board 10 and a conductive film 12b such as plating formed on the inner wall side of the through hole 12a.
  • the signal pad 11 is electrically connected to the signal line 20.
  • the flexible printed circuit board 10 is also provided with a GND pad 13 that is exposed without being covered with cover layers 80 and 90 described later on the front and back surfaces of the flexible printed circuit board 10 in the same manner as the signal pad 11 described above. .
  • the GND pad 13 is also electrically connected to the two ground layers 60 and 70 on the front and back sides through the conductive through holes 14.
  • the conductive through hole 14 also includes a through hole 14a penetrating the flexible printed circuit board 10 and a conductive coating 14b such as plating formed on the inner wall side of the through hole 14a.
  • the GND pad 13 and the ground layers 60 and 70 are electrically connected through the conductive film 14b.
  • the diameter of the conductive through holes 12 and 14 is, for example, 25 ⁇ m.
  • the signal line 20 is laminated on the insulating layer 30. Furthermore, an insulating layer 40 is laminated on the upper surfaces of the signal line 20 and the insulating layer 30 with an adhesive layer 50 interposed therebetween.
  • the insulating layers 30 and 40 are made of thermoplastic resin such as LCP (Liquid Crystal Polymer: LCP).
  • the adhesive layer 50 is a portion having adhesiveness and electrical insulation.
  • the thickness of the insulating layers 30 and 40 is, for example, 25 ⁇ m.
  • the thickness of the adhesive layer 50 is, for example, 15 ⁇ m.
  • a solid ground layer 61 (corresponding to a hard ground layer) constituting a part of the ground layer 60 is provided on the upper surface side of the insulating layer 40. Further, a solid ground layer 71 constituting a part of the ground layer 70 is also provided on the lower surface side of the insulating layer 30.
  • the solid ground layers 61 and 71 are conductive portions made of, for example, copper foil, and are a so-called solid GND (a solid portion (solid coating; planar shape with a large copper foil area)).
  • the solid ground layers 61 and 71 are portions having a uniform thickness in the width direction (Y direction).
  • the solid ground layers 61 and 71 are present on both the upper and lower surfaces of the signal line 20, and the signal line 20 can be shielded from external electromagnetic waves by covering the signal line 20 with an insulator such as the insulating layers 30 and 40. . That is, a strip transmission path that propagates electromagnetic waves with a small transmission loss while suppressing interference from external electromagnetic waves is configured.
  • the thickness of the signal line 20 and the solid ground layers 61 and 71 is, for example, 12 ⁇ m.
  • the ground layers 60 and 70 have soft ground layers 62 and 72 in addition to the solid ground layers 61 and 71. That is, in the configuration shown in FIG. 4, the soft ground layer 62 constituting a part of the ground layer 60 is provided on the upper surface side of the insulating layer 40. In the configuration shown in FIG. 4, a solid ground layer 71 is provided on the lower surface side of the insulating layer 30. In the configuration shown in FIG. 5, a soft ground layer 72 constituting a part of the ground layer 70 is provided on the lower surface side of the insulating layer 30. In the configuration shown in FIG. 5, a solid ground layer 61 is provided on the upper surface side of the insulating layer 40.
  • the solid ground layers 61 and 71 are provided with metal surfaces and have electromagnetic wave shielding properties, and the soft ground layers 62 and 72 are possible than the solid ground layers 61 and 71. It is a portion that is excellent in flexibility and inferior in electromagnetic wave shielding properties than the solid ground layers 61 and 71. Details of the soft ground layers 62 and 72 will be described later.
  • cover layers 80 and 90 are arranged so as to cover the ground layers 60 and 70 having the solid ground layers 61 and 71 and the soft ground layers 62 and 72, respectively (see FIGS. 3 to 5). . That is, the cover layer 80 is provided on the upper surface side of the ground layer 60, and the cover layer 80 covers the ground layer 60. A cover layer 90 is provided on the lower surface side of the ground layer 70, and the cover layer 90 covers the ground layer 70.
  • the cover layers 80 and 90 include insulating resin layers 81 and 91 made of a thermoplastic resin such as LCP (Liquid Crystal Polymer: LCP), for example, and an adhesive layer 82 having adhesiveness and electrical insulation. 92.
  • the insulating resin layers 81 and 91 have a thickness of, for example, 25 ⁇ m with respect to the ground layers 60 and 70 having a thickness of 12 ⁇ m, for example, and the adhesive layers 82 and 92 have a thickness of, for example, 15 ⁇ m. There is something. In this case, there is no problem of delamination or the like, so that the bonding can be performed.
  • FIG. 7 is a side view showing the shape of the flexible printed circuit board 10 after molding.
  • the flexible printed circuit board 10 after molding has a pleat portion PL formed in a pleat shape (bellows shape).
  • the pleat portion PL is provided with a straight portion PL1 and a curved portion PL2.
  • transforming the curved part PL2 in the flexible printed circuit board 10 after a shaping
  • the entire length of the flexible printed circuit board 10 is provided so as to be expandable and contractible due to the presence of the pleat portion PL. Further, the flexible printed circuit board 10 after molding can be easily deformed to bend in each direction due to the presence of the pleat portion PL.
  • the above-mentioned soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2 among the curved portions PL2 of the pleat portion PL.
  • the soft ground layers 62 and 72 are provided on the outer peripheral side of the curve drawn by the curved portion PL2 as shown in FIG. It is not done.
  • the direction of the curve drawn by the curved portion PL2 is alternately switched when proceeding along the molded flexible printed board 10 shown in FIG. Therefore, as shown in FIG. 1, the soft ground layers 62 and 72 are provided alternately on the front surface side and the back surface side of the flexible printed circuit board 10.
  • the solid ground layers 61 and 71 are present on both sides in the straight line portion PL1 as shown in FIG. 3, but in the curved portion PL2 of the pleat portion PL, Located on the circumferential side.
  • the soft ground layers 62 and 72 are shield layers having a function of shielding the signal line 20 from external electromagnetic waves while having flexibility. As the soft ground layers 62 and 72 having such flexibility, a conductive paste and / or a thin film conductive film can be used.
  • a typical example of the conductive paste is a silver paste containing silver as a conductive filler, such as SW1600C manufactured by Asahi Kaken.
  • the silver paste is not limited to such products, and various materials can be used as long as they contain silver as a conductive filler.
  • the conductive filler of the conductive paste may be any conductive particles other than silver, but examples of conductive fillers other than silver include copper, nickel, solder, aluminum, and copper powder. Examples thereof include a silver-coated copper filler subjected to silver plating, a filler obtained by performing metal plating on a resin ball or glass bead, or a mixture of these fillers.
  • the diameter of the conductive filler particles is, for example, in the range of 10 nm to 5 ⁇ m. However, any diameter may be used as long as the loss when transmitting a high-frequency signal is lower than a specified value. .
  • the thickness of the silver paste is, for example, 10 ⁇ m to 15 ⁇ m, but the thickness of the conductive paste containing conductive particles other than silver can also be made equal.
  • the binder resin composition of the conductive paste can use various resins, and the material is not particularly limited.
  • acrylic, polystyrene, vinyl acetate, polyester, polyethylene, polypropylene , Polyamide-based, rubber-based, and other thermoplastic resins can be used, and epoxy-based, urethane-based, phenol-based, melamine-based, alkyd-based thermosetting resins can also be used. Mixtures can be used.
  • epoxy-based, urethane-based, and acrylic-based resins are preferable in that they have a small coefficient of thermal expansion.
  • the thin film conductive film for example, SF-PC5500 manufactured by Tatsuta Electric Co., Ltd.
  • one side of the metal thin film layer is covered with a protective layer and the other side is covered with a conductive adhesive layer.
  • the metal thin film layer is a portion where the metal is formed in a thin film, and the thickness thereof is very thin, for example, 0.1 ⁇ m.
  • the thickness of the metal thin film layer is not limited to 0.1 ⁇ m, and various thicknesses can be used as long as the electromagnetic wave shielding property is maintained while maintaining flexibility. Practically, it can be appropriately selected within the range of 0.05 ⁇ m to 2 ⁇ m, for example.
  • Such thin metal thin film layers are generally formed by physical vapor deposition (PVD), such as vacuum deposition, sputtering, ion plating, or chemical vapor deposition (CVD). ) And the like.
  • PVD physical vapor deposition
  • the overall thickness of the conductive film is set to a thickness of, for example, 5 to 20 ⁇ m.
  • various metal materials such as silver, aluminum, copper, gold, nickel, chromium and zinc can be used. Among these, it is preferable to form the metal thin film layer using inexpensive aluminum or highly reliable silver.
  • the conductive adhesive layer of the thin film conductive film the conductive filler having conductivity as described above is dispersed inside the adhesive made of resin, and the conductive fillers are brought into contact with each other by applying pressure.
  • the anisotropic conductive adhesive layer which expresses the electroconductivity to a pressurization direction is mentioned.
  • it may be configured to have anisotropic conductivity, for example, by self-condensing conductive fillers without applying pressure.
  • the adhesive for the anisotropic conductive adhesive layer may be an adhesive layer formed of the same material as the conductive paste as described above.
  • the thing which does not express the anisotropy (directionality) in electroconductivity may be sufficient.
  • the soft ground layers 62 and 72 may be formed using a method other than using the above-described conductive paste and / or thin film conductive film.
  • a metal thin film layer is formed in a gap portion between the solid ground layers 61 and 71 by, for example, a physical vapor deposition method (PVD) such as a vacuum deposition method, a sputtering method, or an ion plating method. ), Chemical vapor deposition (CVD) or the like.
  • PVD physical vapor deposition method
  • CVD Chemical vapor deposition
  • the end portions of the solid ground layers 61 and 71 and the end portions of the soft ground layers 62 and 72 are provided so as to overlap each other.
  • this portion will be referred to as overlapping portions 64 and 74 (only the overlapping portion 64 is shown in FIG. 6; the overlapping portion 74 is not shown but is present).
  • the overlapping portions 64 and 74 are, for example, in a range of about 0.5 mm to 1 mm in length, and conduction between the solid ground layers 61 and 71 and the soft ground layers 62 and 72 is secured by the overlapping portions 64 and 74. Yes.
  • the solid ground layers 61 and 71 and the soft ground layers 62 and 72 constitute an integral ground layer.
  • the distance between the signal line 20 and the soft ground layer 62 can be set to be equal to the signal line 20 and the solid ground layer 62. It does not change with the distance of the layer 61. Therefore, the line width of the signal line 20 matched so that the characteristic impedance is 50 ⁇ can be constant between the solid ground layers 61 and 71 and the soft ground layers 62 and 72 without change.
  • Such a line width is, for example, 35 ⁇ m, but various line widths can be set.
  • the soft ground layers 62 and 72 are provided in the curved portion PL2 of the pleat portion PL, and are provided in the minimum necessary portion, and the soft ground layers 62 and 72 are provided on the outer peripheral side of the curve drawn by the curved portion PL2. positioned. For this reason, there is little influence on characteristics such as transmission loss.
  • the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2, and are so provided that the signal lines 20 do not directly face each other. The influence of general interference can be reduced.
  • the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2, the bending stress at the time of molding can be reduced. In addition, since the bending stress is reduced, it is possible to ensure durability when the flexible printed circuit board 10 is repeatedly expanded and contracted.
  • the soft ground layers 62, 72 are present on the outer peripheral side of the curved portion PL2, and the solid ground layers 61, 71 are present on the inner peripheral side of the curved portion PL2, There are no portions where the soft ground layers 62 and 72 are in a positional relationship facing each other. Therefore, electrical interference between the signal lines 20 can be prevented, and fluctuations in characteristic impedance in the flexible printed circuit board 10 can also be prevented.
  • FIG. 8 is a plan view showing a second configuration example of the flexible printed circuit board 10 before molding corresponding to the modification of FIG. In the description of the flexible printed circuit board 10 in the second configuration example below, the description of the portions common to the flexible printed circuit board 10 in the first configuration example is omitted.
  • the flexible printed circuit board 10 in the second configuration example has the same configuration in most parts as the flexible printed circuit board 10 in the first configuration example as shown in FIG. However, in the flexible printed circuit board 10 of the second configuration example, the arrangement of the soft ground layer 62 (soft ground layer 72) is different from the flexible printed circuit board 10 of the first configuration example.
  • FIG. 9 is a side view showing the shape of the flexible printed circuit board 10 after molding in the second configuration example.
  • Soft ground layers 62 and 72 are disposed on the outer peripheral side. Therefore, every other soft ground layer 62 (soft ground layer 72) is provided in a certain curved portion PL2, but not provided in the adjacent curved portion PL2. Is provided on the outer peripheral side of the bending portion PL2.
  • the flexible printed circuit board 10 of the second configuration example is significantly different from the configuration in which the soft ground layers 62 and 72 are alternately present on the front surface side and the back surface side of the flexible printed circuit board 10 as in the first configuration example. Is different. That is, in the flexible printed circuit board 10 of the second configuration example, the soft ground layer 62 exists only on the front surface side (upper surface side) of the flexible printed circuit board 10 or is soft only on the back surface side (lower surface side) of the flexible printed circuit board 10. Either the ground layer 72 is present.
  • the soft ground layer 72 (or the soft ground layer 62 in the configuration other than FIG. 9; the same applies hereinafter) is a curve drawn by the curved portion PL2. It exists on the outer peripheral side. Therefore, there is no portion in which the opening 72b (opening 72b) of the soft ground layer 72 (soft ground layer 62) is in a positional relationship facing each other. Thereby, electrical interference between the signal lines 20 can be prevented, and fluctuations in characteristic impedance in the flexible printed circuit board 10 can also be prevented.
  • the soft ground layer 72 (soft ground layer 62) is located on the outer peripheral side of the curve drawn by the curved portion PL2 as in the first configuration example, but the number of soft ground layers 72 (soft ground layer 62) provided in comparison with the first configuration example is smaller. It is halved. For this reason, the influence on characteristics such as transmission loss is further reduced.
  • the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2, and are so provided that the signal lines 20 do not directly face each other. The influence of general interference can be reduced.
  • the soft ground layer 72 (soft ground layer 62) is still located on the outer peripheral side of the curve drawn by the curved portion PL2, so the bending stress during molding is reduced. be able to. In addition, since the bending stress is reduced, it is possible to ensure durability when the flexible printed circuit board 10 is repeatedly expanded and contracted.
  • FIG. 10 is a diagram showing an image in which the flexible printed circuit board 10 according to the second configuration example is applied to a rotating portion of an external device such as a joint of an arm of a robot or the like, and the two arms maintain a horizontal state.
  • FIG. FIG. 11 is a diagram illustrating a state in which the two arms in FIG. 10 are rotated.
  • the soft ground layer 72 is located in the curved portion PL ⁇ b> 2 on the inner diameter side of the rotating portion. That is, the soft ground layer 62 located in the curved portion PL2 on the outer diameter side of the rotating portion does not exist.
  • the flexible printed circuit board 10 of the second configuration example when the flexible printed circuit board 10 of the second configuration example is placed along the rotating portion, the flexible printed circuit board 10 is deformed so that the curved portion PL ⁇ b> 2 positioned on the inner diameter side (inner side) is greatly opened. Therefore, by disposing the soft ground layer 72 on the outer peripheral side (that is, the side located closest to the inner diameter) of the inner diameter side (inner side) bending part PL2, the bending part PL2 positioned on the inner diameter side (inner side) It deforms so that it can be easily opened wide.
  • the soft ground layer 72 on the outer peripheral side is greatly deformed by the action of compressive stress, but the tensile ground acts on the solid ground layer 61 on the inner peripheral side.
  • the circumferential solid ground layer 61 is more difficult to deform than the outer circumferential soft ground layer 72. Therefore, the neutral axis of the stress moves to the outer peripheral side and moves away from the inner peripheral side. Thereby, compressive stress acts on the signal line 20 instead of tensile stress.
  • transforms so that it may close.
  • the solid ground layer 61 is provided on both the inner peripheral side and the outer peripheral side. Therefore, in the curved portion PL ⁇ b> 2 located on the outer diameter side (outer side), the deformation in the closing direction is smaller than the deformation that opens in the soft ground layer 72. That is, as shown in FIG.
  • the curved portion PL ⁇ b> 2 positioned on the inner diameter side (inner side) is selectively deformed so as to open widely, but the outer diameter side (outer side)
  • the bending portion PL2 located at () is deformed only small.
  • the stress that acts on the signal line 20 during operation is reduced by using the flexible printed circuit board 10 of the second configuration example at the rotation part of the external device such as the joint of an arm of a robot or the like. And can withstand repeated operations.
  • FIG. 12 is a diagram showing a state in which the signal line 20 and the receiving land 21 are formed in the AA cross section of FIGS. 1 and 8 in the first step.
  • . 13 is a diagram showing a state in which the signal line 20 is formed in the BB cross section, the CC cross section (existing only in FIG. 1), and the DD cross section of FIGS. 1 and 8 in the first step.
  • a double-sided copper clad laminate 100 having base copper foil layers 101 and 102 on both sides of an insulating layer 30 is prepared.
  • the signal line 20 that will be positioned later on the inner layer side and the receiving lands 21 of the conductive through holes 12 and 14 are formed using a normal photofabrication technique such as etching. Thereby, an intermediate product C1 as shown in FIGS. 12 and 13 is formed.
  • FIG. 14 relates to the second step, and in FIG. 1 and FIG. It is a figure which shows a mode that is laminated
  • FIG. 15 relates to the second step, and the single-sided copper-clad laminate is added to the double-sided copper-clad laminate 100 in the BB cross section, CC cross-section (only FIG. 1 exists), and DD cross-section of FIG. It is a figure which shows a mode that 200 is laminated
  • a single-sided copper-clad laminate 200 and a laminate adhesive 300 are prepared. Then, the laminated adhesive 300 is attached so as to cover the upper surface side of the insulating layer 30, and then the single-sided copper clad laminate 200 is attached to the upper surface side of the laminated adhesive 300.
  • the single-sided copper clad laminate 200 includes an insulating layer 40, and a base copper foil layer 201 is provided on one surface (upper surface) thereof. In addition, let the product after sticking be the intermediate product C2.
  • the laminated adhesive 300 is a portion that becomes the adhesive layer 50 after being stuck.
  • a laminated adhesive 300 is preferably a low-elasticity material so as not to hinder subsequent molding.
  • the elastic coefficient of the LCP film is about 3 to 4 GPa
  • molding it heats at about 200 degreeC for about 30 minutes. Therefore, as the laminated adhesive 300, an adhesive whose adhesiveness and electrical insulation characteristics are not significantly deteriorated by such a heat history is preferable.
  • FIG. 16 is a diagram showing a state in which the through holes 12a and 14a are formed in the AA cross section of FIGS. 1 and 8 according to the third step.
  • FIG. 17 is a side cross-sectional view showing a configuration in the BB cross section, CC cross section (existing only in FIG. 1), and DD cross section of FIGS. 1 and 8 in the third step.
  • through-holes 12a and 14a for interlayer connection with the signal pad 11 and the GND pad 13 later are formed in the intermediate product C2.
  • Such drilling may be performed by NC drilling, or may be interlayer connection at a non-through bottomed via hole by a laser or the like.
  • the product after this drilling process be the intermediate product C3.
  • FIG. 18 relates to the fourth step and forms conductive coatings 12b and 14b in the through holes 12a and 14a in the AA cross section of FIGS. It is a figure which shows the state in which the conductive film layer 15 for this was formed.
  • the portion corresponding to the AA cross section is subjected to partial plating to form the conductive coating layer 15 that is the basis of the conductive coatings 12b and 14b. .
  • interlayer conduction in which the three layers are electrically connected is obtained.
  • the product by partial plating be the intermediate product C4.
  • FIG. 19 is a diagram showing a state in which patterning is performed in the AA section of FIGS. 1 and 8 in the fifth step.
  • FIG. 20 is a diagram showing a state in which patterning is performed in the BB cross section of FIGS. 1 and 8 in the fifth step.
  • FIG. 21 is a diagram showing a state in which patterning is performed in the CC section of FIG. 1 in the fifth step.
  • FIG. 22 is a diagram showing a state in which patterning is performed in the DD section of FIGS. 1 and 8 in the fifth step.
  • FIG. 23 is a diagram showing a state in which patterning is performed in the EE cross section of FIG. 1 in the fifth step.
  • the conductive coating layer 15 and the base copper foil layers 101 and 102 are patterned by using a normal photofabrication technique such as etching to form a necessary pattern.
  • a normal photofabrication technique such as etching to form a necessary pattern.
  • what is formed by such patterning is a pattern necessary for the flexible printed circuit board 10, such as the signal pad 11, the GND pad 13, the solid ground layers 61 and 71, and the like. .
  • a removal portion 63 is formed by removing the solid ground layer 61 on the upper surface side of the insulating layer 40 by patterning.
  • the removal portion 63 is provided with a soft ground layer 62 later.
  • a removal portion 73 is formed by removing the solid ground layer 71 on the lower surface side of the insulating layer 30 by patterning.
  • the removal portion 73 is provided with a soft ground layer 72 later.
  • a boundary portion between the solid ground layer 61 and the removal portion 63 is shown on the upper surface side of the insulating layer 40 by patterning.
  • the solid ground layer 61 remains on the X2 side, but on the X1 side, the solid ground layer 61 is removed, which is a removed portion 63.
  • the removed portion 63 has a soft ground layer 62 later. Is provided.
  • a product obtained by patterning is referred to as an intermediate product C5.
  • FIG. 24 is a diagram showing a configuration in the CC section of FIG. 1 when the soft ground layer 62 is formed in the sixth step.
  • FIG. 25 is a diagram showing a state in which the soft ground layer 72 is formed in the DD section of FIGS. 1 and 8 in the sixth step.
  • FIG. 26 is a diagram showing a state in which the soft ground layer 62 is formed in the section EE of FIG. 1 in connection with the sixth step.
  • soft ground layers 62 and 72 are formed for the intermediate product C5.
  • the soft ground layers 62 and 72 are formed of a conductive paste such as silver paste, for example, the conductive paste is printed so as to cover the removal portions 63 and 73, and the printed portions are heated or irradiated with ultraviolet rays. Cured by etc.
  • the solid ground layer 61 and the conductive paste (soft ground layer 62) are partially overlapped with each other, and the conduction between the solid ground layer 61 and the conductive paste (soft ground layer 62) is achieved. Secure.
  • a similar overlapping portion is provided between the solid ground layer 71 and the conductive paste (soft ground layer 72), so that the solid ground layer 71 and the conductive paste (soft ground layer 72) Ensure continuity between.
  • the thin film conductive film is formed in a strip shape by cutting or the like so as to have a length that can cover the removal portions 63 and 73. To do. Thereafter, the strip-shaped thin film conductive film is pasted so as to cover the removal portions 63 and 73. Even in such affixing, the solid ground layer 61 and the thin-film conductive film (soft ground layer 62) are partially overlapped to ensure conduction between the solid ground layer 61 and the thin-film conductive film (soft ground layer 62). To do. Similarly, although not shown, a similar overlapping portion is provided between the solid ground layer 71 and the thin film conductive film (soft ground layer 72), and the solid ground layer 71 and the thin film conductive film (soft ground layer) are provided. 72) is ensured.
  • the solid ground layers 61 and 71 and the portions that become the contact points of the soft ground layers 62 and 72 are partially plated such as electroless gold plating. You may make it surface-treat by a process. In such a partial plating treatment, a portion not subjected to the plating treatment may be masked using a photosensitive dry film resist having resistance to the plating solution used.
  • the intermediate product in which the soft ground layers 62 and 72 are formed is referred to as an intermediate product C6.
  • FIG. 27 is a diagram showing a configuration in the AA cross section of FIGS. 1 and 8 when the cover layers 80 and 90 are formed in the seventh step. It is.
  • FIG. 28 is a diagram showing a state in which cover layers 80 and 90 are formed in the BB cross section of FIGS. 1 and 8 in the seventh step.
  • FIG. 29 is a diagram showing a state in which cover layers 80 and 90 are formed in the CC section of FIG. 18 in connection with the seventh step.
  • FIG. 30 is a diagram showing a state in which cover layers 80 and 90 are formed in the DD section of FIGS. 1 and 8 in the seventh step.
  • cover layers 80 and 90 including insulating resin layers 81 and 91 and adhesive layers 82 and 92 are formed on the intermediate product C6.
  • the cover layers 80 and 90 are formed by attaching the adhesive layers 82 and 92 to the intermediate product C6. It is necessary to prevent the signal pad 11 and the GND pad 13 from being covered with the cover layers 80 and 90. Therefore, in the cover layers 80 and 90, portions corresponding to the signal pad 11 and the GND pad 13 can be provided with fine openings by a technique such as a photo solder resist. However, the other solid ground layers 61 and 71 and the soft ground layers 62 and 72 are covered with the cover layers 80 and 90.
  • soft ground layers 62 and 72 formed using a conductive paste such as a silver paste and a thin film conductive film are also covered with cover layers 80 and 90, respectively.
  • cover layers 80 and 90 Protected. That is, the curved portion (curved portion PL2) of the flexible printed circuit board 10 is also covered with the cover layers 80 and 90. For this reason, the top coat which protects a curved part and becomes a surface protective layer is unnecessary.
  • FIG. 31 is a diagram showing a state in which the flexible printed circuit board 10 before molding is set on the jig 400 in the eighth process.
  • the flexible printed circuit board 10 before molding is set on the jig 400 in a state in which it is aligned.
  • the jig 400 is provided with a tip fixing member 410.
  • the front end fixing member 410 is provided with a front end receiving portion 411 for mounting the front end side of the flexible printed circuit board 10 and a latch pin 412 to be inserted into a hole portion on the front end side of the flexible printed circuit board 10 (not shown). Is provided.
  • a hole on the distal end side of the flexible printed circuit board 10 is inserted into the latch pin 412, and the flexible printed circuit board 10 is meandered along the jig pin 420 disposed at a predetermined position of the jig 400 in that state.
  • the setting of the flexible printed circuit board 10 to the jig 400 is completed.
  • a certain tension is applied to the rear end side of the flexible printed circuit board 10.
  • the flexible printed circuit board 10 having a three-layer structure containing the LCP material that is thermoplastic is formed in a pleated shape (bellows shape). It will be in the state which has pleat part PL as shown in these.
  • thermoforming in an oven or the like is performed by heating at 200 ° C. for 30 minutes, for example.
  • thermoforming is performed in a state where the setting position of the flexible printed circuit board 10 and the tension at the time of setting on the jig 400 are stable. Therefore, in the flexible printed circuit board 10 after molding, the product shape is stable, and the soft ground layers 62 and 72 are arranged on the outer peripheral side of the desired portion of the curved portion PL2 as intended. .
  • unnecessary parts such as the front end side positioned by the front end fixing member 410 or the like are cut out of the flexible printed circuit board 10 as necessary to complete the final product.
  • a hole portion into which the latch pin 412 is inserted is diverted in the flexible printed circuit board 10, the starting point side is positioned, and the opposite side is positioned by abutment or the like. Then, it can be cut using a cutting jig such as a pinnacle or a mold.
  • a cutting jig such as a pinnacle or a mold.
  • methods other than those described above may be used for cutting unnecessary portions. Examples of such methods include laser cutting using a laser and router cutting using a router bit.
  • Table 1 shows the result of the expansion / contraction test performed on the flexible printed circuit board 10 having the pleated portion PL formed as described above.
  • the flexible printed circuit board 10 is repeatedly expanded and contracted, whether or not the signal line 20 is disconnected during the test, the amount of extension of the flexible printed circuit board 10 before and after the test, and the flexible printed circuit board 10 before and after the test.
  • DC resistance fluctuation, transmission loss before test, and change in transmission loss before and after the test were evaluated.
  • FIG. 32 is a plan view showing a configuration of a flexible printed circuit board 10F having a conventional configuration.
  • FIG. 33 is a cross-sectional view of a conventional flexible printed circuit board 10F, and shows a state cut along the line AA in FIG.
  • FIG. 34 is a cross-sectional view of a flexible printed circuit board 10F having a conventional configuration, showing a state cut along line BB in FIG.
  • the comparative example corresponds to a configuration in which the ground layers 60 and 70 are all soft ground layers 62 and 72. That is, the configuration in which the soft ground layers 62 and 72 are provided over the entire length of both surfaces sandwiching the signal line 20 corresponds to the comparative example (not shown).
  • the length of the flexible printed circuit board 10 and 10F was increased by 50%, and the test was performed up to 5 million times. Also, after this test, if the elongation was within 10%, the test for elongation was accepted. In addition, the test was performed using 10 of each structure.
  • the flexible printed circuit board 10 of the first configuration example and the flexible printed circuit board 10 of the second configuration example have high stretch test resistance, and the elongation rate after 5 million stretch tests is 5 %, And no disconnection was observed. In addition, the rate of change in DC resistance and transmission loss was 3% or less, and it was confirmed that the change in electrical characteristics was not seen so much.
  • the first and second flexible printed circuit boards 10 and 10 are provided with solid ground layers 61 and 71 over the entire length of both surfaces having the lowest loss. It was confirmed that there was only a loss of 5% or less compared to the conventional configuration, and that there was only a loss within a range not causing any problem in signal transmission.
  • the signal line 20 was disconnected for all of the 10 tested in 1000 times.
  • the elongation is 5% or less
  • the resistance value is OPEN, and therefore the transmission loss is 0.22 dB / 10 mm, which is the lowest, and the change in transmission loss.
  • the measurement was impossible due to the disconnection.
  • the signal line 20 was not disconnected, the DC resistance change rate was 3% or less, and the transmission loss change rate was 3% or less.
  • the transmission loss was large, and in particular, there was about twice the transmission loss with respect to the flexible printed circuit board 10 of the first configuration example. From the above results, it was confirmed that the conventional configuration could not be used due to disconnection, and the comparative example also had a large transmission loss, and the performance was inferior to the flexible printed circuit board 10 of the first configuration example and the second configuration example. .
  • the flexible printed circuit board 10 of the first configuration example and the flexible printed circuit board 10 of the second configuration example in the present embodiment can achieve both high-quality signal transmission and elasticity. did.
  • the curved portions PL2 at a plurality of places in the pleated portion PL of the flexible printed circuit board 10 having the stripline transmission line are deformed so as to open or close.
  • the ground layers 60 and 70 are provided with metal surfaces and have a solid ground layer 61 and 71 (hard ground layer) having electromagnetic wave shielding properties, and are more flexible than the solid ground layers 61 and 71.
  • it has soft ground layers 62 and 72 which are inferior in electromagnetic wave shielding properties than the solid ground layers 61 and 71.
  • the soft ground layers 62 and 72 are disposed on the outer peripheral side of the curved portion PL2, and the solid ground layers 61 and 71 are disposed on the inner peripheral side of the curved portion PL2.
  • the flexible printed circuit board 10 is formed by adopting a configuration in which the soft ground layers 62 and 72 are disposed on the outer peripheral side of the curved portion PL2 and the solid ground layers 61 and 71 are disposed on the inner peripheral side of the curved portion PL2. Later, the soft ground layers 62 and 72 are easily deformed to be compressed. Thereby, compressive stress can be generated in the signal line 20, and the signal line 20 is difficult to be disconnected.
  • the flexible printed circuit board 10 is configured with a strip transmission path for propagating electromagnetic waves, so that the function of blocking external noise is not impaired.
  • the bending portion PL2 when the solid ground layers 61 and 71 are present on the inner peripheral side of the bending portion PL2, it is possible to prevent the soft ground layers 62 and 72 from being in a positional relationship facing each other. Therefore, even if the straight portions PL1 are close to each other in the pleat portion PL, the electrical interference between the signal lines 20 can be prevented.
  • the soft ground layers 62 and 72 are provided over the entire length of the flexible printed circuit board 10, transmission loss during high-frequency transmission tends to increase.
  • the soft ground layers 62 and 72 are provided in a minimum necessary portion such as the curved portion PL2 of the pleat portion PL. Moreover, the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2. Therefore, it is possible to reduce the influence on characteristics such as transmission loss. Moreover, since the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the bending portion PL2, the influence of electrical interference between the signal lines 20 can be reduced.
  • the soft ground layers 62 and 72 include at least one of a thin film conductive film including a conductive paste obtained by mixing a conductive filler in a binder resin composition and a metal thin film layer formed by vapor deposition.
  • the soft ground layers 62 and 72 in the pleat portion PL are alternately provided on the front surface side and the back surface side of the signal line 20 in the curved portion PL2. It is arranged on the outer peripheral side. Therefore, the flexible printed circuit board 10 can easily expand and contract. That is, in the flexible printed circuit board 10 of the first configuration example, the stretchability can be improved.
  • the soft ground layers 62 and 72 are curved portions in a state where they are present on either the front surface side or the back surface side of the signal line 20. It arrange
  • the ground layers 60 and 70 are electrically connected to one end side of the solid ground layers 61 and 71 (hard ground layer) and the other end side of the soft ground layers 62 and 72.
  • An overlapped portion 64 is provided. Due to the presence of the overlapping portions 64 and 74, the solid ground layers 61 and 71 and the soft ground layers 62 and 72 can form an integral ground layer.
  • the insulating layers 30 and 40 and the insulating resin layers 81 and 91 are made of LCP (Liquid Crystal Polymer) which is a thermoplastic resin. For this reason, when heat forming is performed on the flexible printed circuit board 10 before heat forming, a pleated portion PL having a plurality of curved portions PL2 can be easily formed.
  • LCP Liquid Crystal Polymer
  • the ground layers 60 and 70 located in the curved portion PL2 are configured such that a plating film for interlayer connection is not formed. For this reason, the bending part PL2 is in a state where it is easy to bend.
  • the flexible printed circuit board 10 before heat forming is heat formed using the jig 400.
  • the flexible printed board 10 is positioned with the tip fixing member 410, and further, the flexible printed board 10 is heat-molded in a state where a tension is applied to the flexible printed board 10 so that a flexible print having a good pleated portion PL without misalignment is obtained.
  • the substrate 10 can be formed.
  • signal line 20 only one signal line 20 is shown.
  • the number of signal lines 20 is not limited to one, and two or more signal lines 20 may exist as long as they constitute a stripline transmission line.
  • the soft ground layer 72 is provided on the curved portion PL2 on the inner diameter side of the rotation portion with respect to the rotation portion of the external device such as an arm joint of a robot or the like. Is located. That is, the soft ground layer 62 located in the curved portion PL2 on the outer diameter side of the rotating portion does not exist. However, a configuration in which the soft ground layer 62 is disposed on the curved portion PL2 on the outer diameter side of the rotating portion may be employed. When configured in this manner, the outer diameter side curved portion PL2 is deformed so as to be largely closed, but even in that case, it can be configured to be easier to bend than the conventional configuration and to prevent the signal line 20 from being broken. .
  • the soft ground layers 62 and 72 are disposed on the inner peripheral side of the curved portion PL2 and the solid ground layers 61 and 71 are disposed on the outer peripheral side of the curved portion PL2 is adopted. You may do it. Also in this case, the signal line 20 can be bent more easily than the conventional structure, and the signal line 20 is less likely to be disconnected.
  • the soft ground layers 62 and 72 are disposed on both the inner peripheral side and the outer peripheral side of the curved portion PL2 is adopted, and the straight portion PL1 is a solid ground layer 61, A configuration in which 71 is arranged may be adopted.
  • the flexible printed board 10 has the pleat portion PL in which the curved portions PL2 having the same size are arranged at the same pitch.
  • the pitches at which the curved portions PL2 are arranged may not be the same, and the curved portions PL2 may be arranged so that the pitches are different from each other or partially different.
  • the size (radius etc.) of a certain curved portion PL2 may be different from the size (radius etc.) of another curved portion PL2.
  • SYMBOLS 10,10F Flexible printed circuit board, 11 ... Signal pad, 12 ... Conductive through-hole, 12a ... Through-hole, 12b ... Conductive film, 13 ... GND pad, 14 ... Conductive through-hole, 14a ... Through-hole, 14b ... Conductive film, DESCRIPTION OF SYMBOLS 15 ... Conductive film layer, 20 ... Signal line, 21 ... Receiving land, 30, 40 ... Insulating layer, 50 ... Adhesive layer, 60, 70 ... Ground layer, 61, 71 ... Solid ground layer (corresponding to hard ground layer) 62, 72 ... soft ground layer, 63 ... removal part, 64 ... overlapping part, 80, 90 ...
  • cover layer 81, 91 ... insulating resin layer, 82, 92 ... adhesive layer, 100 ... double-sided copper-clad laminate, DESCRIPTION OF SYMBOLS 101 ... Base copper foil layer, 200 ... Single-sided copper clad laminated board, 201 ... Base copper foil layer, 300 ... Laminate adhesive, 400 ... Jig, 410 ... Tip fixing member, 411 ... Tip receiving part, 412 ... Latch Down, 420 ... jig pins, C1 ⁇ C6 ... intermediate product, PL ... pleated portion, PL1 ... straight portion, PL2 ... curved portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

The present invention provides a flexible printed circuit board that is not easily subjected to line breakage while still retaining the electrical characteristics thereof and a method for manufacturing such a flexible printed circuit board. Provided is a flexible printed circuit board 10 having at least one set of strip-line transmission paths by providing a signal line 20 and a pair of ground layers 60 and 70 facing the signal line 20 with insulating layers 30 and 40 interposed therebetween, the insulating layers 30 and 40 covering the signal line 20 from both sides and being formed of a thermoplastic resin. The flexible printed circuit board 10 is provided with a pleat portion PL that bends so as to open or close a plurality of bending sections PL2. The ground layers 60 and 70 have hard ground layers 61 and 71 that have a metal surface and that have electromagnetic-wave shielding performance and soft ground layers 62 and 72 that have a higher flexibility and a lower electromagnetic-wave shielding performance than the hard ground layers 61 and 71. The soft ground layers 62 and 72 are disposed on at least one of an outer circumferential side and an inner circumferential side of the bending section PL2.

Description

フレキシブルプリント基板およびフレキシブルプリント基板の製造方法Flexible printed circuit board and method for manufacturing flexible printed circuit board
 本発明は、フレキシブルプリント基板およびフレキシブルプリント基板の製造方法に関する。 The present invention relates to a flexible printed circuit board and a method for manufacturing the flexible printed circuit board.
 近年、多彩な動きをするロボットが登場する等、ロボットの発展が著しくなっている。また、人体や衣服に装着可能なウエアラブル電子機器も、様々な機器で開発、実用化が進んできている。これらのロボットやウエアラブル電子機器には、電力供給用や電気信号伝送用の電線が多数使用されているが、一般的に電線は銅線を芯とし、その外周を絶縁体で被覆した構造になっているため、電線自体に伸縮性はほとんどない。このため、たとえばロボット等においては、その関節の動き等を妨げないように、電線長に余裕を持たせる必要があり、このことが小型、軽量化等に向けた設計上、実用上の支障となる。 In recent years, the development of robots has become remarkable, such as the appearance of robots with various movements. In addition, wearable electronic devices that can be worn on the human body and clothes have been developed and put into practical use with various devices. These robots and wearable electronic devices use a large number of electric wires for power supply and electric signal transmission. Generally, the electric wires have a structure in which a copper wire is the core and the outer periphery is covered with an insulator. Therefore, there is almost no elasticity in the electric wire itself. For this reason, for example, in a robot or the like, it is necessary to allow a sufficient wire length so as not to hinder the movement of the joints, and this is a practical problem in designing for miniaturization and weight reduction. Become.
 特に、最先端のヒューマノイド型ロボットや、人体に装着して筋力を補助するパワーアシスト装置等の用途においては、多自由度関節を経由して末端のモーターを動かすための電線や、末端に配置された各種センサーからの電気信号を伝送するための電線が多数配線されている。そして、多自由度関節におけるこれらの配線の自由度を高めるために、伸縮可能に構成された電線に対する要求が高まっている。 Especially in applications such as state-of-the-art humanoid robots and power assist devices that are attached to the human body to assist muscle strength, wires for moving the terminal motor via multi-degree-of-freedom joints and terminals are arranged. Many wires for transmitting electrical signals from various sensors are wired. And in order to raise the freedom degree of these wiring in a multi-degree-of-freedom joint, the request | requirement with respect to the electric wire comprised so that expansion-contraction is possible is increasing.
 一方、近年、産業用ロボットとしてアームロボットが多く使用されている。この種のアームロボットでは、ロボットアームの先端側に取り付けられているエンドエフェクタ(人体で言うところの手に相当)やロボットアームの関節部の駆動方式によっては、ロボットアームの根本側から先端側へかけて、電気ケーブル以外に、空圧印加用のエアホースや油圧ホースを配線する必要が生じることがある。かかるケーブルやホース類を関節部に配線した場合、ケーブルの折れ曲がりや断線を生じるおそれがある。そのため、ケーブルやホース類をロボットアーム類の関節部よりも基端寄りの位置で一旦外側に出し、関節部の外側空間にケーブルを配置し、関節部よりも先端寄りとなる位置で再びアーム内に導入するといった配線手法が採用されている。しかしながら、ロボットアームの外側空間にケーブルを配置する手法では、ロボットアームの関節部周囲にケーブルを弛ませるための空間が必要になる。 On the other hand, in recent years, arm robots are often used as industrial robots. In this type of arm robot, depending on the end effector attached to the tip side of the robot arm (equivalent to a hand in the human body) or the driving method of the joint part of the robot arm, from the base side to the tip side of the robot arm In addition to the electric cable, it may be necessary to wire an air hose or a hydraulic hose for applying air pressure. When such cables and hoses are wired to the joints, the cables may be bent or disconnected. For this reason, the cables and hoses are temporarily extended outward at positions closer to the base end than the joints of the robot arms, and the cables are arranged in the outer space of the joints, and again inside the arm at positions closer to the tip than the joints. A wiring method such as introduction into the network is adopted. However, in the method of arranging the cable in the outer space of the robot arm, a space for loosening the cable is required around the joint portion of the robot arm.
 また、たとえば特許文献1には、ロボットアームの関節部における関節回転中心位置に支持棒を設け、その支持棒にケーブルを巻回し、そのケーブルが予め巻かれた支持棒をロボットアームの内部に収納することで、ケーブルの折れ曲がりや断線を防止する構造が開示されている。しかしながら、支持棒を別途設けることによる重量増加による機能低下(動作速度・精度等)が生じるおそれがある。その機能低下を補うためにスペックの高いモーター等を用いたり、必要部材が増える場合もあるが、その場合には、製造コストが増加してしまう。さらにはケーブルの収納部の構造が複雑になるため、ロボットアーム組み立て時のケーブルの配線、メンテナンス等で分解し、ケーブルを取り出し、交換する際に非常に煩雑になるという問題がある。このことから、ロボットアームにおいても、このような問題を回避できる伸縮可能な電気伝送部材に対する要求が高まっている。 Further, for example, in Patent Document 1, a support rod is provided at the joint rotation center position in the joint portion of the robot arm, a cable is wound around the support rod, and the support rod on which the cable is wound is stored in the robot arm. Thus, a structure that prevents the cable from being bent or disconnected is disclosed. However, there is a possibility that functional deterioration (operation speed, accuracy, etc.) due to weight increase due to the separate provision of the support rod may occur. In some cases, a high-spec motor or the like is used in order to compensate for the deterioration of the function or the number of necessary members increases. In this case, the manufacturing cost increases. Furthermore, since the structure of the cable storage portion becomes complicated, there is a problem that it becomes very complicated when the cable is taken out and replaced when it is disassembled during wiring and maintenance of the robot arm during assembly. For this reason, even in the robot arm, there is an increasing demand for a telescopic electric transmission member that can avoid such a problem.
 そのような電気伝送部材に対する要求に対応するものとしては、たとえば特許文献2に開示の技術がある。かかる特許文献2には、治具に所望のRで形成されたピンをフレキシブルプリント基板が通せる間隔で複数本配置し、その治具へ一定テンションを加えながらフレキシブルプリント基板を通すことで、加熱成形する方法が記載されている。 For example, there is a technique disclosed in Patent Document 2 as a response to the demand for such an electric transmission member. In Patent Document 2, a plurality of pins formed with a desired R are arranged in a jig at intervals that allow the flexible printed circuit board to pass, and heating is performed by passing the flexible printed circuit board while applying a constant tension to the jig. A method of molding is described.
 また、特許文献2には、フレキシブルプリント基板の構造に関して、片面側のみに導体層を有する片面フレキシブルプリント基板の他に、導体層が3層となっている3層フレキシブルプリント基板についても開示している。3層フレキシブルプリント基板を用いる用途としては、一般的に、内層に特性インピーダンス整合された信号線を配置し、外層をGND(グランド)とした、いわゆるストリップライン伝送路がある。たとえば、上述した可動部の先端側にイメージセンサを取り付け、高精細な動画データ等の大容量データを伸縮可能なフレキシブルプリント基板を介して伝送する際に必要とされていて、外部からのノイズを遮断し、高品位な信号伝送と伸縮性を両立することを狙ったものである。 Patent Document 2 also discloses a three-layer flexible printed board having three conductor layers in addition to a single-sided flexible printed board having a conductor layer only on one side with respect to the structure of the flexible printed board. Yes. As an application using a three-layer flexible printed circuit board, there is generally a so-called stripline transmission line in which a signal line whose characteristic impedance is matched is arranged on the inner layer and the outer layer is GND (ground). For example, an image sensor is attached to the tip of the movable part described above, and is required when transmitting large-capacity data such as high-definition video data via a flexible printed circuit board that can be expanded and contracted. The aim is to cut off and achieve both high-quality signal transmission and elasticity.
 また、特許文献3には、3層フレキシブルプリント基板を用いたストリップライン伝送路において、表裏の外層に、それぞれ導電性接着剤や金属箔を用いたシールド層を配置した構成について開示されている。 Further, Patent Document 3 discloses a configuration in which a shield layer using a conductive adhesive or metal foil is disposed on the outer layers of the front and back surfaces in a stripline transmission line using a three-layer flexible printed circuit board.
特開平8-57792号公報Japanese Patent Laid-Open No. 8-57772 特開2011-233822号公報JP 2011-233822 A 特開2010-177472号公報JP 2010-177472 A
 ところで、特許文献2に開示のようなストリップライン伝送路では、外層がベタGNDであるため、さらにその外層にはめっき被膜も存在している。そのため、フレキシブルプリント基板としては固い。そのため、治具に対する追従性も悪く、複数の曲げ部分が存在するプリーツ形状に成形することが困難となっている。特に、外層側はプリーツ形状への成形時の曲げ応力が大きく、またプリーツ形状における曲げ部分においては1000回以内の伸縮で断線してしまう可能性が高い。そのため、断線したフレキシブルプリント基板を頻繁に交換する必要があり、メンテナンスコストが掛かるものとなっている。また、上記のフレキシブルプリント基板を生産設備に用いている場合には、断線によって生産が中断してしまうという問題もある。 By the way, in the stripline transmission line as disclosed in Patent Document 2, since the outer layer is solid GND, a plating film is also present on the outer layer. Therefore, it is hard as a flexible printed circuit board. Therefore, the followability with respect to a jig | tool is also bad, and it is difficult to shape | mold into the pleat shape in which a some bending part exists. In particular, the outer layer side has a large bending stress during molding into a pleated shape, and the bent portion in the pleated shape is highly likely to be disconnected by expansion and contraction within 1000 times. For this reason, it is necessary to frequently replace the disconnected flexible printed circuit board, which increases maintenance costs. Moreover, when using said flexible printed circuit board for production facilities, there also exists a problem that production will be interrupted by disconnection.
 そこで、特許文献2に開示のようなストリップライン伝送路において、特許文献3に開示のように、フレキシブルプリント基板の外層側に、導電性接着剤や金属箔を用いたシールド層を配置することが考えられる。しかしながら、特許文献3に開示の構成は、ベタGNDと比較してシールド性が高くはないので、高周波電流が流れにくく、ベタGNDと比較して伝送損失が増加することが判明している。特に、特許文献2の構成に、特許文献3の構成を適用した場合、プリーツ形状となっている部分で信号線同士が近接してしまうので、電気的な干渉が生じやすく、伝送損失が増加してしまう。 Therefore, in a stripline transmission line as disclosed in Patent Document 2, as disclosed in Patent Document 3, a shield layer using a conductive adhesive or metal foil may be disposed on the outer layer side of the flexible printed circuit board. Conceivable. However, since the configuration disclosed in Patent Document 3 does not have high shielding performance as compared to solid GND, it has been found that high-frequency current is less likely to flow, and transmission loss increases compared to solid GND. In particular, when the configuration of Patent Document 3 is applied to the configuration of Patent Document 2, the signal lines are close to each other in the pleated shape, so that electrical interference is likely to occur and transmission loss increases. End up.
 本発明は上記の事情にもとづきなされたもので、その目的とするところは、プリーツ部分が伸縮耐性を有しつつも、伝送損失が少なく高品位な信号伝送が可能なフレキシブルプリント基板、およびフレキシブルプリント基板の製造方法を提供することを目的とする。 The present invention has been made on the basis of the above circumstances, and the object of the present invention is to provide a flexible printed circuit board capable of high-quality signal transmission with little transmission loss while the pleat portion has stretch resistance, and flexible printing. An object is to provide a method for manufacturing a substrate.
 上記課題を解決するために、本発明の第1の観点によると、信号ラインと、この信号ラインを両側から覆うと共に熱可塑性樹脂を材質とする絶縁層と、それぞれの絶縁層を挟んで信号ラインと対向する一対のグランド層とを備えることで、少なくとも1組のストリップライン伝送路を有するフレキシブルプリント基板であって、複数個所に湾曲している湾曲部が成形されており、その湾曲部が開くまたは閉じるように湾曲するプリーツ部分を備え、グランド層は、金属面が設けられて電磁波の遮蔽性を備える硬質グランド層と、この硬質グランド層よりも可撓性に優れると共に硬質グランド層よりも電磁波の遮蔽性に劣る軟質グランド層と、を有していて、軟質グランド層は湾曲部の外周側と内周側のうちの少なくとも一方側に配置されている、ことを特徴とするフレキシブルプリント基板が提供される。 In order to solve the above problems, according to a first aspect of the present invention, a signal line, an insulating layer that covers the signal line from both sides and is made of a thermoplastic resin, and a signal line sandwiching each insulating layer And a pair of ground layers facing each other, a flexible printed circuit board having at least one pair of stripline transmission lines, wherein a curved portion curved at a plurality of locations is formed, and the curved portion opens. Alternatively, the ground layer has a pleated portion that curves so as to be closed, and the ground layer is provided with a metal surface and has a shielding property against electromagnetic waves, and is more flexible than the hard ground layer and more electromagnetic than the hard ground layer. A soft ground layer inferior in shielding property, and the soft ground layer is disposed on at least one of the outer peripheral side and the inner peripheral side of the curved portion. That, the flexible printed circuit board is provided, characterized in that.
 また、本発明の他の側面は、上述の発明において、軟質グランド層は、バインダ樹脂組成物に導電性フィラーを混合した導電性ペーストと、蒸着により形成された金属薄膜層を備える薄膜導電性フィルムのうちの少なくとも一方を有している、ことが好ましい。 According to another aspect of the present invention, in the above-described invention, the soft ground layer includes a conductive paste obtained by mixing a conductive filler in a binder resin composition, and a thin film conductive film including a metal thin film layer formed by vapor deposition. It is preferable to have at least one of them.
 さらに、本発明の他の側面は、上述の発明において、軟質グランド層は湾曲部の外周側に配置されていると共に、硬質グランド層は湾曲部の内周側に配置されている、ことが好ましい。 Furthermore, in another aspect of the present invention, in the above-described invention, it is preferable that the soft ground layer is disposed on the outer peripheral side of the curved portion and the hard ground layer is disposed on the inner peripheral side of the curved portion. .
 また、本発明の他の側面は、上述の発明において、プリーツ部分は、湾曲部のカーブの向きが交互に切り替わることで蛇腹状に設けられていて、軟質グランド層は、信号ラインの表面側と裏面側に交互に存在する状態で湾曲部の外周側に配置されている、ことが好ましい。 Further, according to another aspect of the present invention, in the above-described invention, the pleat portion is provided in a bellows shape by alternately switching the direction of the curve of the curved portion, and the soft ground layer is provided on the surface side of the signal line. It is preferable that they are arranged on the outer peripheral side of the bending portion in a state where they alternately exist on the back side.
 また、本発明の他の側面は、上述の発明において、プリーツ部分は、湾曲部のカーブの向きが交互に切り替わることで蛇腹状に設けられていて、軟質グランド層は、信号ラインの表面側か裏面側のいずれか一方に存在する状態で湾曲部の外周側に配置されている、ことが好ましい。 Further, according to another aspect of the present invention, in the above-described invention, the pleat portion is provided in a bellows shape by alternately switching the direction of the curve of the curved portion, and the soft ground layer is provided on the surface side of the signal line. It is preferable that it is arranged on the outer peripheral side of the bending portion in a state of being present on either one of the back side.
 さらに、本発明の他の側面は、上述の発明において、グランド層には、硬質グランド層の一端側と軟質グランド層の他端側とが電気的に導通する状態で重ねられた重なり部分が設けられている、ことが好ましい。 Further, according to another aspect of the present invention, in the above-described invention, the ground layer is provided with an overlapping portion in which the one end side of the hard ground layer and the other end side of the soft ground layer are electrically connected. It is preferable that
 また、本発明の他の側面は、上述の発明において、絶縁層は、熱可塑性樹脂であるLCP(Liquid Crystal Polymer)を材質として形成されている、ことが好ましい。 Further, according to another aspect of the present invention, in the above-described invention, the insulating layer is preferably formed using LCP (Liquid Crystal Polymer) which is a thermoplastic resin as a material.
 また、本発明の他の側面は、上述の発明において、湾曲部に位置するグランド層には、層間接続用のめっき被膜が形成されていない、ことが好ましい。 Further, in another aspect of the present invention, in the above-described invention, it is preferable that a plating film for interlayer connection is not formed on the ground layer located in the curved portion.
 また、本発明の第2の観点によると、信号ラインと、この信号ラインを両側から覆うと共に熱可塑性樹脂を材質とする絶縁層と、それぞれの絶縁層を挟んで信号ラインと対向する一対のグランド層とを備えることで、少なくとも1組のストリップライン伝送路を有するフレキシブルプリント基板の製造方法であって、絶縁層の両面にベース銅箔層を有する両面銅張積層板のうち、少なくとも1本の信号ラインを一方の面側のベース銅箔層に形成する第1工程と、前記絶縁層の片面にベース銅張積層板を有する片面銅張積層板を、積層接着材を介して積層する第2工程と、第2工程により形成された中間生成物の所定部位に対して、貫通孔を形成する第3工程と、貫通孔およびその開口周囲に導電被膜を形成して、導電スルーホールを形成する第4工程と、第4工程で形成された中間生成物のうち、信号ラインと対向するベース銅箔層に対してパターニングを行うことで、いずれか一方の面側の所定部位から当該ベース銅箔層を除去した除去部を形成し、その反対の面側に導電部分が面状に設けられている硬質グランド層を形成する第5工程と、除去部に対して、硬質グランド層よりも可撓性に富むと共に硬質グランド層よりも電磁波の遮蔽性に劣る軟質グランド層を覆うように形成する第6工程と、軟質グランド層および硬質グランド層に対し、接着材層を介して絶縁樹脂層で被覆させる第7工程と、第7工程で形成された加熱成形前のフレキシブルプリント基板に対し、複数の部位を湾曲させた状態で加熱成形を行い、その加熱成形の後に、軟質グランド層が外周側に位置する複数の湾曲部が存在するプリーツ部分を形成する第8工程と、を備えることを特徴とするフレキシブルプリント基板の製造方法が提供される。 According to a second aspect of the present invention, a signal line, an insulating layer that covers the signal line from both sides and is made of a thermoplastic resin, and a pair of grounds that face the signal line with each insulating layer interposed therebetween A flexible printed circuit board having at least one set of stripline transmission lines, wherein at least one of the double-sided copper-clad laminates having base copper foil layers on both sides of the insulating layer. A first step of forming a signal line on a base copper foil layer on one surface side; and a second step of laminating a single-sided copper-clad laminate having a base copper-clad laminate on one side of the insulating layer via a laminated adhesive. A third step of forming a through-hole for a predetermined portion of the intermediate product formed by the step and the second step, and forming a conductive film around the through-hole and its opening to form a conductive through-hole Of the intermediate product formed in the fourth step and the fourth step, by patterning the base copper foil layer facing the signal line, the base copper foil from a predetermined part on either surface side 5th process of forming the removal part which removed the layer, and forming the hard ground layer in which the conductive part is provided in the shape of the surface on the opposite surface side, and the removal part is more flexible than the hard ground layer And covering the soft ground layer and the hard ground layer with an insulating resin layer via an adhesive layer. The sixth step is to cover the soft ground layer which is rich in properties and inferior to electromagnetic shielding than the hard ground layer. And the flexible printed circuit board formed in the seventh step before the heat forming is subjected to heat forming in a state where a plurality of portions are curved, and after the heat forming, the soft ground layer is placed on the outer peripheral side. To position Method of manufacturing a flexible printed circuit board, characterized in that it comprises an eighth step of forming a pleated portion curved portion of the number is present, is provided.
 本発明によると、フレキシブルプリント基板は、プリーツ部分が伸縮耐性を有しつつも、伝送損失が少なく高品位な信号伝送が可能となる。 According to the present invention, the flexible printed circuit board enables high-quality signal transmission with little transmission loss while the pleat portion has stretch resistance.
本発明の一実施の形態に係り、成形前の第1構成例のフレキシブルプリント基板の構成を示す平面図である。It is a top view which shows the structure of the flexible printed circuit board of the 1st structural example before shaping | molding concerning one embodiment of this invention. 成形前後におけるフレキシブルプリント基板の断面図であり、図1のA-A線に沿って切断した状態を示す図である。FIG. 2 is a cross-sectional view of the flexible printed circuit board before and after molding, and shows a state cut along line AA in FIG. 成形前後におけるフレキシブルプリント基板の断面図であり、図1のB-B線に沿って切断した状態を示す図である。FIG. 2 is a cross-sectional view of the flexible printed circuit board before and after molding, showing a state cut along the line BB in FIG. 成形前後におけるフレキシブルプリント基板の断面図であり、図1のC-C線に沿って切断した状態を示す図である。It is sectional drawing of the flexible printed circuit board before and behind shaping | molding, and is a figure which shows the state cut | disconnected along CC line of FIG. 成形前後におけるフレキシブルプリント基板の断面図であり、図1のD-D線に沿って切断した状態を示す図である。FIG. 2 is a cross-sectional view of the flexible printed circuit board before and after molding, and shows a state cut along line DD in FIG. 成形前後におけるフレキシブルプリント基板の断面図であり、図1のE-E線に沿って切断した状態を示す図である。It is sectional drawing of the flexible printed circuit board before and behind shaping | molding, and is a figure which shows the state cut | disconnected along the EE line | wire of FIG. 成形後のフレキシブルプリント基板の形状を示す側面図である。It is a side view which shows the shape of the flexible printed circuit board after shaping | molding. 図1の変形例に対応する、成形前のフレキシブルプリント基板の第2構成例を示す平面図である。It is a top view which shows the 2nd structural example of the flexible printed circuit board before shaping | molding corresponding to the modification of FIG. 第2構成例における成形後のフレキシブルプリント基板の形状を示す側面図である。It is a side view which shows the shape of the flexible printed circuit board after shaping | molding in the 2nd structural example. 第2構成例に係るフレキシブルプリント基板を、ロボット等のアームの関節等のような外部装置の回動部位に適用したイメージを示す図であり、2つのアームが水平状態を保っている状態を示す図である。It is a figure which shows the image which applied the flexible printed circuit board which concerns on a 2nd structural example to the rotation site | parts of external devices, such as a joint of arms, such as a robot, and shows the state where two arms are maintaining a horizontal state FIG. 図10における2つのアームが回動した状態を示す図である。It is a figure which shows the state which the two arms in FIG. 10 rotated. 第1工程に係り、図1および図8のA-A断面において信号ラインや受けランドが形成された状態を示す図である。FIG. 9 is a diagram showing a state in which signal lines and receiving lands are formed in the AA cross section of FIGS. 1 and 8 in the first step. 第1工程に係り、図1および図8のB-B断面、C-C断面、D-D断面において信号ラインが形成された状態を示す図である。FIG. 9 is a diagram showing a state in which signal lines are formed in the BB, CC, and DD sections of FIGS. 1 and 8 in the first step. 第2工程に係り、図1および図8のA-A断面において、両面銅張積層板に片面銅張積層板が積層される様子を示す図である。FIG. 9 is a diagram showing a state where a single-sided copper-clad laminate is laminated on a double-sided copper-clad laminate in the AA cross section of FIGS. 1 and 8 in the second step. 第2工程に係り、図1および図8のB-B断面、C-C断面、D-D断面において、両面銅張積層板に片面銅張積層板が積層される様子を示す図である。FIG. 9 is a diagram showing a state in which a single-sided copper-clad laminate is laminated on a double-sided copper-clad laminate in the BB cross section, CC cross-section, and DD cross-section of FIGS. 1 and 8 in the second step. 第3工程に係り、図1および図8のA-A断面において、貫通孔を形成した状態を示す図である。FIG. 9 is a diagram showing a state in which through holes are formed in the AA cross section of FIGS. 1 and 8 in the third step. 第3工程に係り、図1および図8のB-B断面、C-C断面、D-D断面における構成を示す側断面図である。FIG. 9 is a side sectional view showing a configuration in a BB section, a CC section, and a DD section in FIGS. 1 and 8 in the third step. 第4工程に係り、図1および図8のA-A断面において、貫通孔に導電被膜を形成するための導電被膜層を形成した状態を示す図である。FIG. 9 is a diagram showing a state in which a conductive coating layer for forming a conductive coating is formed in the through hole in the AA cross section of FIGS. 1 and 8 according to the fourth step. 第5工程に係り、図1および図8のA-A断面においてパターニングがなされた状態を示す図である。FIG. 9 is a diagram showing a state in which patterning is performed in the AA cross section of FIGS. 1 and 8 in the fifth step. 第5工程に係り、図1および図8のB-B断面においてパターニングがなされた状態を示す図である。FIG. 9 is a diagram showing a state in which patterning is performed in the BB cross section of FIGS. 1 and 8 in the fifth step. 第5工程に係り、図1のC-C断面においてパターニングがなされた状態を示す図である。FIG. 10 is a diagram showing a state in which patterning is performed in the CC section of FIG. 1 in the fifth step. 第5工程に係り、図1および図8のD-D断面においてパターニングがなされた状態を示す図である。FIG. 9 is a diagram showing a state in which patterning is performed in the DD section of FIGS. 1 and 8 in the fifth step. 第5工程に係り、図1のE-E断面においてパターニングがなされた状態を示す図である。FIG. 10 is a diagram showing a state in which patterning is performed in the EE cross section of FIG. 1 in the fifth step. 第6工程に係り、軟質グランド層が形成されたときの図1のC-C断面における構成を示す図である。FIG. 10 is a diagram showing a configuration in a CC section of FIG. 1 when a soft ground layer is formed in the sixth step. 第6工程に係り、図1および図8のD-D断面において軟質グランド層が形成された状態を示す図である。FIG. 10 is a diagram showing a state in which a soft ground layer is formed in the DD cross section of FIGS. 1 and 8 according to a sixth step. 第6工程に係り、図1のE-E断面において軟質グランド層が形成された状態を示す図である。FIG. 10 is a diagram showing a state in which a soft ground layer is formed in the EE cross section of FIG. 1 in connection with a sixth step. 第7工程に係り、カバー層が形成されたときの図1および図8のA-A断面における構成を示す図である。FIG. 9 is a diagram showing a configuration in the AA cross section of FIGS. 1 and 8 when a cover layer is formed in the seventh step. 第7工程に係り、図1および図8のB-B断面においてカバー層が形成された状態を示す図である。FIG. 9 is a diagram showing a state in which a cover layer is formed in the BB cross section of FIGS. 1 and 8 according to a seventh step. 第7工程に係り、図1のC-C断面においてカバー層が形成された状態を示す図である。FIG. 10 is a diagram showing a state in which a cover layer is formed in the CC section of FIG. 1 in the seventh step. 第7工程に係り、図1および図8のD-D断面においてカバー層が形成された状態を示す図である。FIG. 10 is a diagram showing a state in which a cover layer is formed in the DD cross section of FIGS. 1 and 8 according to a seventh step. 第8工程に係り、治具に成形前のフレキシブルプリント基板をセットした状態を示す図である。It is a figure which shows the state which concerns on the 8th process and set the flexible printed circuit board before shaping | molding to the jig | tool. 従来構成のフレキシブルプリント基板の構成を示す平面図である。It is a top view which shows the structure of the flexible printed circuit board of a conventional structure. 従来構成のフレキシブルプリント基板の断面図であり、図28のA-A線に沿って切断した状態を示す図である。FIG. 29 is a cross-sectional view of a conventional flexible printed circuit board, showing a state cut along the line AA in FIG. 28. 従来構成のフレキシブルプリント基板の断面図であり、図28のB-B線に沿って切断した状態を示す図である。It is sectional drawing of the flexible printed circuit board of a conventional structure, and is a figure which shows the state cut | disconnected along the BB line of FIG.
 以下、本発明の一実施の形態に係るフレキシブルプリント基板10について、以下に説明する。以下の説明においては、XYZ直交座標系を用いて説明することがある。そのうち、X方向はフレキシブルプリント基板10の長手方向とし、X1側は図1の右側、X2側は左側とする。また、Y方向はフレキシブルプリント基板10の幅方向とし、Y1側は図1における紙面手前側、Y2側は紙面奥側とする。また、Z方向はフレキシブルプリント基板10の厚み方向とし、Z1は図2における紙面奥側、Z2は紙面手前側とする。 Hereinafter, the flexible printed circuit board 10 according to an embodiment of the present invention will be described below. In the following description, an XYZ orthogonal coordinate system may be used for explanation. Of these, the X direction is the longitudinal direction of the flexible printed circuit board 10, the X1 side is the right side of FIG. 1, and the X2 side is the left side. The Y direction is the width direction of the flexible printed circuit board 10, the Y1 side is the front side of the paper in FIG. 1, and the Y2 side is the back side of the paper. The Z direction is the thickness direction of the flexible printed circuit board 10, Z1 is the back side of the paper in FIG. 2, and Z2 is the front side of the paper.
<フレキシブルプリント基板の第1構成例について>
 図1は、成形前のフレキシブルプリント基板10の構成を示す平面図である。図2は、成形前後におけるフレキシブルプリント基板10の断面図であり、図1のA-A線に沿って切断した状態を示す図である。図3は、成形前後におけるフレキシブルプリント基板10の断面図であり、図1のB-B線に沿って切断した状態を示す図である。図4は、成形前後におけるフレキシブルプリント基板10の断面図であり、図1のC-C線に沿って切断した状態を示す図である。図5は、成形前後におけるフレキシブルプリント基板10の断面図であり、図1のD-D線に沿って切断した状態を示す図である。図6は、成形前後におけるフレキシブルプリント基板10の断面図であり、図1のE-E線に沿って切断した状態を示す図である。
<Regarding the first configuration example of the flexible printed circuit board>
FIG. 1 is a plan view showing the configuration of the flexible printed circuit board 10 before molding. FIG. 2 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line AA in FIG. 3 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line BB of FIG. FIG. 4 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line CC in FIG. 5 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line DD in FIG. 6 is a cross-sectional view of the flexible printed circuit board 10 before and after molding, and shows a state cut along the line EE of FIG.
 図1から図6に示すように、本実施の形態におけるフレキシブルプリント基板10は、多層フレキシブルプリント基板の一種である3層フレキシブルプリント基板であり、導体部分が3層存在する構成となっている。具体的には、フレキシブルプリント基板10は、内層側に信号ライン20を有している。信号ライン20は、後述するような製造方法により、高速伝送用に特性インピーダンスが整合されるように、信号を伝達する銅箔部分をエッチング等で除去することで形成された部分である。 As shown in FIGS. 1 to 6, the flexible printed circuit board 10 in the present embodiment is a three-layer flexible printed circuit board that is a kind of multilayer flexible printed circuit board, and has a structure in which three conductor portions exist. Specifically, the flexible printed circuit board 10 has a signal line 20 on the inner layer side. The signal line 20 is a portion formed by removing a copper foil portion that transmits a signal by etching or the like so that the characteristic impedance is matched for high-speed transmission by a manufacturing method as described later.
 なお、図1に示すように、フレキシブルプリント基板10は、細長い形状に設けられている。本実施の形態では、フレキシブルプリント基板10は、たとえば幅(Y方向の寸法)が5mm、成形前の長さ(X方向の寸法)が200mmとなっている。ただし、後述する図7に示すように、湾曲部PL2の半径が1mmとなるようにプリーツ状(蛇腹状)に成形すると、長さがたとえば約75mmとなっている。しかしながら、寸法例は、これに限られるものではなく、種々の寸法に設定することが可能である(後述の寸法例においても同様)。 In addition, as shown in FIG. 1, the flexible printed circuit board 10 is provided in the elongate shape. In the present embodiment, for example, the flexible printed circuit board 10 has a width (dimension in the Y direction) of 5 mm and a length before molding (dimension in the X direction) of 200 mm. However, as shown in FIG. 7 to be described later, the length is, for example, about 75 mm when formed into a pleated shape (bellows shape) so that the radius of the curved portion PL2 is 1 mm. However, the dimension example is not limited to this, and various dimensions can be set (the same applies to the dimension examples described later).
 また、図1に示すように、フレキシブルプリント基板10には、その表裏に露出している信号パッド11が設けられている。すなわち、信号パッド11は、後述するカバー層80,90で覆われずに、表面側および裏面側でそれぞれ外部に露出している。信号パッド11は、信号ライン20に対して電気的に層間接続されて、信号ライン20に信号を入力または出力するための部分である。そのため、この信号パッド11には、導電スルーホール12が電気的に接続されている。導電スルーホール12は、フレキシブルプリント基板10を貫通する貫通孔12aと、その貫通孔12aの内壁側に形成されているめっき等の導電被膜12bとを有していて、この導電被膜12bを介して信号パッド11が信号ライン20と電気的に接続されている。 Further, as shown in FIG. 1, the flexible printed circuit board 10 is provided with signal pads 11 exposed on the front and back sides. That is, the signal pad 11 is not covered with cover layers 80 and 90 described later, and is exposed to the outside on the front surface side and the back surface side. The signal pad 11 is a part that is electrically connected to the signal line 20 with respect to the signal line 20 and inputs or outputs a signal to the signal line 20. Therefore, the conductive through hole 12 is electrically connected to the signal pad 11. The conductive through hole 12 has a through hole 12a penetrating the flexible printed board 10 and a conductive film 12b such as plating formed on the inner wall side of the through hole 12a. The signal pad 11 is electrically connected to the signal line 20.
 また、フレキシブルプリント基板10には、上述の信号パッド11と同様に、フレキシブルプリント基板10の表裏において、後述するカバー層80,90で覆われずに露出しているGNDパッド13も設けられている。GNDパッド13も、表裏側の2つのグランド層60,70に対して導電スルーホール14を介して電気的に層間接続されている。なお、導電スルーホール14も、上述の導電スルーホール12と同様に、フレキシブルプリント基板10を貫通する貫通孔14aと、その貫通孔14aの内壁側に形成されているめっき等の導電被膜14bとを有していて、この導電被膜14bを介してGNDパッド13とグランド層60,70とが電気的に接続されている。 The flexible printed circuit board 10 is also provided with a GND pad 13 that is exposed without being covered with cover layers 80 and 90 described later on the front and back surfaces of the flexible printed circuit board 10 in the same manner as the signal pad 11 described above. . The GND pad 13 is also electrically connected to the two ground layers 60 and 70 on the front and back sides through the conductive through holes 14. As with the conductive through hole 12, the conductive through hole 14 also includes a through hole 14a penetrating the flexible printed circuit board 10 and a conductive coating 14b such as plating formed on the inner wall side of the through hole 14a. In addition, the GND pad 13 and the ground layers 60 and 70 are electrically connected through the conductive film 14b.
 なお、導電スルーホール12,14の直径としては、たとえば25μmとするものがある。 The diameter of the conductive through holes 12 and 14 is, for example, 25 μm.
 図3に示すように、信号ライン20は、絶縁層30に積層されている。さらに、信号ライン20および絶縁層30の上面側には、接着材層50を介して絶縁層40が積層されている。本実施の形態では、絶縁層30,40は、たとえばLCP(Liquid Crystal Polymer:LCP)等の熱可塑性樹脂を材質としている。また、接着材層50は、接着性を有すると共に、電気的な絶縁性を有する部分である。なお、絶縁層30,40の厚みとしては、たとえば25μmとするものがある。また、接着材層50の厚みとしては、たとえば15μmとするものがある。 As shown in FIG. 3, the signal line 20 is laminated on the insulating layer 30. Furthermore, an insulating layer 40 is laminated on the upper surfaces of the signal line 20 and the insulating layer 30 with an adhesive layer 50 interposed therebetween. In the present embodiment, the insulating layers 30 and 40 are made of thermoplastic resin such as LCP (Liquid Crystal Polymer: LCP). The adhesive layer 50 is a portion having adhesiveness and electrical insulation. The thickness of the insulating layers 30 and 40 is, for example, 25 μm. The thickness of the adhesive layer 50 is, for example, 15 μm.
 また、図3に示すように、絶縁層40の上面側には、グランド層60の一部を構成するベタグランド層61(硬質グランド層に対応)が設けられている。さらに、絶縁層30の下面側にも、グランド層70の一部を構成するベタグランド層71が設けられている。ベタグランド層61,71は、たとえば銅箔を材質とした導電部分であり、いわゆるベタGND(ベタ状(ベタ塗状;銅箔の面積が広い面状)のグランド部分)となっている。 Further, as shown in FIG. 3, a solid ground layer 61 (corresponding to a hard ground layer) constituting a part of the ground layer 60 is provided on the upper surface side of the insulating layer 40. Further, a solid ground layer 71 constituting a part of the ground layer 70 is also provided on the lower surface side of the insulating layer 30. The solid ground layers 61 and 71 are conductive portions made of, for example, copper foil, and are a so-called solid GND (a solid portion (solid coating; planar shape with a large copper foil area)).
 ベタグランド層61,71は、図3に示すように、幅方向(Y方向)において一様な厚みを有する部分である。かかるベタグランド層61,71が信号ライン20の上下両面に存在し、さらにこの信号ライン20を絶縁層30,40といった絶縁体が覆うことにより、外部の電磁波から信号ライン20をシールドすることができる。すなわち、外部の電磁波からの干渉が抑えられて伝送損失の小さな状態で電磁波を伝播するストリップ伝送路が構成される。 As shown in FIG. 3, the solid ground layers 61 and 71 are portions having a uniform thickness in the width direction (Y direction). The solid ground layers 61 and 71 are present on both the upper and lower surfaces of the signal line 20, and the signal line 20 can be shielded from external electromagnetic waves by covering the signal line 20 with an insulator such as the insulating layers 30 and 40. . That is, a strip transmission path that propagates electromagnetic waves with a small transmission loss while suppressing interference from external electromagnetic waves is configured.
 なお、信号ライン20、およびベタグランド層61,71の厚みとしては、たとえば12μmとするものがある。 The thickness of the signal line 20 and the solid ground layers 61 and 71 is, for example, 12 μm.
 ここで、グランド層60,70は、ベタグランド層61,71以外に、軟質グランド層62,72を有している。すなわち、図4に示す構成では、絶縁層40の上面側には、グランド層60の一部を構成する軟質グランド層62が設けられている。なお、図4に示す構成では、絶縁層30の下面側には、ベタグランド層71が設けられている。また、図5に示す構成では、絶縁層30の下面側には、グランド層70の一部を構成する軟質グランド層72が設けられている。なお、図5に示す構成では、絶縁層40の上面側には、ベタグランド層61が設けられている。 Here, the ground layers 60 and 70 have soft ground layers 62 and 72 in addition to the solid ground layers 61 and 71. That is, in the configuration shown in FIG. 4, the soft ground layer 62 constituting a part of the ground layer 60 is provided on the upper surface side of the insulating layer 40. In the configuration shown in FIG. 4, a solid ground layer 71 is provided on the lower surface side of the insulating layer 30. In the configuration shown in FIG. 5, a soft ground layer 72 constituting a part of the ground layer 70 is provided on the lower surface side of the insulating layer 30. In the configuration shown in FIG. 5, a solid ground layer 61 is provided on the upper surface side of the insulating layer 40.
 なお、ベタグランド層61,71(硬質グランド層)は、金属面が設けられて電磁波の遮蔽性を備えている部分であり、軟質グランド層62,72は、ベタグランド層61,71よりも可撓性に優れると共にベタグランド層61,71よりも電磁波の遮蔽性に劣る部分である。かかる軟質グランド層62,72の詳細については、後述する。 The solid ground layers 61 and 71 (hard ground layers) are provided with metal surfaces and have electromagnetic wave shielding properties, and the soft ground layers 62 and 72 are possible than the solid ground layers 61 and 71. It is a portion that is excellent in flexibility and inferior in electromagnetic wave shielding properties than the solid ground layers 61 and 71. Details of the soft ground layers 62 and 72 will be described later.
 また、ベタグランド層61,71と軟質グランド層62,72を有するグランド層60,70層に対して、それぞれカバー層80,90が覆うように配置されている(図3から図5を参照)。すなわち、グランド層60の上面側には、カバー層80が設けられていて、このカバー層80がグランド層60を覆っている。また、グランド層70の下面側には、カバー層90が設けられていて、このカバー層90がグランド層70を覆っている。 Further, the cover layers 80 and 90 are arranged so as to cover the ground layers 60 and 70 having the solid ground layers 61 and 71 and the soft ground layers 62 and 72, respectively (see FIGS. 3 to 5). . That is, the cover layer 80 is provided on the upper surface side of the ground layer 60, and the cover layer 80 covers the ground layer 60. A cover layer 90 is provided on the lower surface side of the ground layer 70, and the cover layer 90 covers the ground layer 70.
 カバー層80,90は、たとえばLCP(Liquid Crystal Polymer:LCP)等の熱可塑性樹脂を材質とする絶縁樹脂層81,91を有すると共に、接着性および電気的な絶縁性を有する接着材層82,92を有している。なお、絶縁樹脂層81,91の厚みとしては、たとえば12μmの厚みのグランド層60,70に対して、たとえば25μmとするものがあり、接着材層82,92の厚みとしては、たとえば15μmとするものがある。この場合、層間剥離(デラミネーション)等の問題がなく貼り合わせが行える状態となっている。 The cover layers 80 and 90 include insulating resin layers 81 and 91 made of a thermoplastic resin such as LCP (Liquid Crystal Polymer: LCP), for example, and an adhesive layer 82 having adhesiveness and electrical insulation. 92. The insulating resin layers 81 and 91 have a thickness of, for example, 25 μm with respect to the ground layers 60 and 70 having a thickness of 12 μm, for example, and the adhesive layers 82 and 92 have a thickness of, for example, 15 μm. There is something. In this case, there is no problem of delamination or the like, so that the bonding can be performed.
<軟質グランド層62,72の構成(第1構成例)の詳細について>
 次に、上述した軟質グランド層62,72の配置および構成の詳細について説明する。図7は、成形後のフレキシブルプリント基板10の形状を示す側面図である。図7に示すように、成形後のフレキシブルプリント基板10は、プリーツ状(蛇腹状)に形成されたプリーツ部分PLを有している。プリーツ部分PLには、直線部PL1と湾曲部PL2とが設けられている。そして、湾曲部PL2が変形することにより、成形後のフレキシブルプリント基板10においては、プリーツ部分PLにて、短く畳んだり長く展開することが可能となっている。すなわち、成形後のフレキシブルプリント基板10においては、プリーツ部分PLの存在により、その全長が伸縮可能に設けられている。また、成形後のフレキシブルプリント基板10は、プリーツ部分PLの存在により、各方向へ曲がるような変形も容易に行える。
<Details of Configuration of Soft Ground Layers 62 and 72 (First Configuration Example)>
Next, the details of the arrangement and configuration of the soft ground layers 62 and 72 described above will be described. FIG. 7 is a side view showing the shape of the flexible printed circuit board 10 after molding. As shown in FIG. 7, the flexible printed circuit board 10 after molding has a pleat portion PL formed in a pleat shape (bellows shape). The pleat portion PL is provided with a straight portion PL1 and a curved portion PL2. And by deform | transforming the curved part PL2, in the flexible printed circuit board 10 after a shaping | molding, it is possible to fold short and to expand | deploy long in the pleat part PL. That is, in the flexible printed circuit board 10 after molding, the entire length of the flexible printed circuit board 10 is provided so as to be expandable and contractible due to the presence of the pleat portion PL. Further, the flexible printed circuit board 10 after molding can be easily deformed to bend in each direction due to the presence of the pleat portion PL.
 上述の軟質グランド層62,72は、プリーツ部分PLの湾曲部PL2のうち、湾曲部PL2が描くカーブの外周側に位置している。換言すると、軟質グランド層62,72は、図7に示すような湾曲部PL2が描くカーブの外周側に設けられているが、直線部PL1および湾曲部PL2が描くカーブの内周側には設けられていない。しかも、図7に示す成形後のフレキシブルプリント基板10に沿って進行すると、湾曲部PL2の描くカーブの向きは、交互に切り替わるように設けられている。そのため、軟質グランド層62,72は、図1に示すように、フレキシブルプリント基板10の表面側と、裏面側に、交互に存在するように設けられている。 The above-mentioned soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2 among the curved portions PL2 of the pleat portion PL. In other words, the soft ground layers 62 and 72 are provided on the outer peripheral side of the curve drawn by the curved portion PL2 as shown in FIG. It is not done. In addition, the direction of the curve drawn by the curved portion PL2 is alternately switched when proceeding along the molded flexible printed board 10 shown in FIG. Therefore, as shown in FIG. 1, the soft ground layers 62 and 72 are provided alternately on the front surface side and the back surface side of the flexible printed circuit board 10.
 一方、ベタグランド層61,71は、直線部PL1においては、図3に示すように両面側に存在しているが、プリーツ部分PLの湾曲部PL2においては、その湾曲部PL2が描くカーブの内周側に位置している。 On the other hand, the solid ground layers 61 and 71 are present on both sides in the straight line portion PL1 as shown in FIG. 3, but in the curved portion PL2 of the pleat portion PL, Located on the circumferential side.
 なお、図7におけるB-B線の部位が図3に対応し、C-C線の部位が図4に対応し、D-D線の部位が図5に対応している。 7 corresponds to FIG. 3, the CC line corresponds to FIG. 4, and the DD line corresponds to FIG.
 かかる軟質グランド層62,72は、可撓性を有しつつも、外部の電磁波から信号ライン20をシールドする機能を備えたシールド層である。このような可撓性を備える軟質グランド層62,72としては、導電性ペーストおよび/または薄膜導電性フィルムを用いることが可能である。 The soft ground layers 62 and 72 are shield layers having a function of shielding the signal line 20 from external electromagnetic waves while having flexibility. As the soft ground layers 62 and 72 having such flexibility, a conductive paste and / or a thin film conductive film can be used.
 導電性ペーストの代表的なものとしては、たとえばアサヒ化研社製のSW1600Cなどのような、導電性フィラーとして銀を含む銀ペーストが挙げられる。しかし、銀ペーストはかかる製品に限定されるものではなく、導電性フィラーとして銀を含むものであれば種々の物を用いることが可能である。また、導電性ペーストの導電性フィラーは、銀以外に導電性粒子であればどのようなものでもよいが、銀以外の導電性フィラーとしては、たとえば、銅、ニッケル、ハンダ、アルミニウム及び銅粉に銀メッキを施した銀コート銅フィラー、さらには樹脂ボールやガラスビーズ等に金属メッキを施したフィラー又はこれらのフィラーの混合体が挙げられる。なお、導電性フィラーの粒子の直径としては、たとえば10nm~5μmの範囲とするものがあるが、高周波信号を伝送する際の損失が規定値よりも低ければ、どのような直径であっても良い。 A typical example of the conductive paste is a silver paste containing silver as a conductive filler, such as SW1600C manufactured by Asahi Kaken. However, the silver paste is not limited to such products, and various materials can be used as long as they contain silver as a conductive filler. In addition, the conductive filler of the conductive paste may be any conductive particles other than silver, but examples of conductive fillers other than silver include copper, nickel, solder, aluminum, and copper powder. Examples thereof include a silver-coated copper filler subjected to silver plating, a filler obtained by performing metal plating on a resin ball or glass bead, or a mixture of these fillers. The diameter of the conductive filler particles is, for example, in the range of 10 nm to 5 μm. However, any diameter may be used as long as the loss when transmitting a high-frequency signal is lower than a specified value. .
 なお、銀ペーストの厚みは、たとえば10μm~15μmとするものがあるが、銀以外の導電性粒子を含む導電性ペーストの厚みも同等とすることができる。 Note that the thickness of the silver paste is, for example, 10 μm to 15 μm, but the thickness of the conductive paste containing conductive particles other than silver can also be made equal.
 また、導電性ペーストのバインダ樹脂組成物も種々の樹脂を用いることが可能であり、その材質は特に限定されないが、たとえば、アクリル系、ポリスチレン系、酢酸ビニル系、ポリエステル系、ポリエチレン系、ポリプロピレン系、ポリアミド系、ゴム系などの熱可塑性樹脂を用いることができ、また、エポキシ系、ウレタン系、フェノール系、メラミン系、アルキッド系などの熱硬化性樹脂を用いることも可能であり、またこれらの混合物を用いることができる。なお、各種の樹脂の中でも、エポキシ系、ウレタン系、アクリル系の樹脂が熱膨張係数が小さい点で好適である。 Also, the binder resin composition of the conductive paste can use various resins, and the material is not particularly limited. For example, acrylic, polystyrene, vinyl acetate, polyester, polyethylene, polypropylene , Polyamide-based, rubber-based, and other thermoplastic resins can be used, and epoxy-based, urethane-based, phenol-based, melamine-based, alkyd-based thermosetting resins can also be used. Mixtures can be used. Among various resins, epoxy-based, urethane-based, and acrylic-based resins are preferable in that they have a small coefficient of thermal expansion.
 また、薄膜導電性フィルムとしては、たとえばタツタ電線社製のSF-PC5500などのような、金属薄膜層の一方の面側を保護層等で覆いつつ、他方の面側を導電性接着剤層で覆ったものが挙げられる。なお、金属薄膜層は、金属が薄膜状に形成された部分であり、その厚みは、たとえば0.1μm等のように非常に薄く設けられている。なお、金属薄膜層の厚みは、0.1μmに限られるものではなく、電磁波のシールド性を維持しつつも、可撓性を損なわない範囲で、種々の厚みのものを用いることができるが、実用的には、たとえば0.05μm~2μmの範囲で適宜選択することができる。 As the thin film conductive film, for example, SF-PC5500 manufactured by Tatsuta Electric Co., Ltd., one side of the metal thin film layer is covered with a protective layer and the other side is covered with a conductive adhesive layer. Something covered. The metal thin film layer is a portion where the metal is formed in a thin film, and the thickness thereof is very thin, for example, 0.1 μm. In addition, the thickness of the metal thin film layer is not limited to 0.1 μm, and various thicknesses can be used as long as the electromagnetic wave shielding property is maintained while maintaining flexibility. Practically, it can be appropriately selected within the range of 0.05 μm to 2 μm, for example.
 このような薄さの金属薄膜層は、一般的には、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法のような物理的気相成長法(PVD)、または化学的気相成長法(CVD)等のような蒸着によって形成される。なお、導電性フィルムの全体的な厚みは、たとえば5~20μm等のような厚みに設けられている。金属薄膜層を構成する金属材質としては、たとえば銀、アルミニウム、銅、金、ニッケル、クロム、亜鉛等の各種の金属材質を用いることができる。その中でも、安価であるアルミニウムや、信頼性の高い銀を用いて金属薄膜層を形成することが好ましい。 Such thin metal thin film layers are generally formed by physical vapor deposition (PVD), such as vacuum deposition, sputtering, ion plating, or chemical vapor deposition (CVD). ) And the like. The overall thickness of the conductive film is set to a thickness of, for example, 5 to 20 μm. As a metal material constituting the metal thin film layer, various metal materials such as silver, aluminum, copper, gold, nickel, chromium and zinc can be used. Among these, it is preferable to form the metal thin film layer using inexpensive aluminum or highly reliable silver.
 また、薄膜導電性フィルムの導電性接着剤層としては、上述したような導電性を備える導電性フィラーが樹脂を材質とする接着剤の内部に分散され、加圧することで導電性フィラー同士が接触することで、加圧方向への導電性を発現させる、異方導電性接着剤層を用いるものが挙げられる。しかしながら、加圧せずに、導電性フィラー同士が自己凝縮する等によって、異方導電性を備える構成であっても良い。また、異方導電性接着剤層の接着剤としては、上述したような導電性ペーストと同様の材質から形成される接着剤層であっても良い。また、導電性接着剤層としては、導電における異方性(方向性)を発現しないものであっても良い。 In addition, as the conductive adhesive layer of the thin film conductive film, the conductive filler having conductivity as described above is dispersed inside the adhesive made of resin, and the conductive fillers are brought into contact with each other by applying pressure. By doing so, what uses the anisotropic conductive adhesive layer which expresses the electroconductivity to a pressurization direction is mentioned. However, it may be configured to have anisotropic conductivity, for example, by self-condensing conductive fillers without applying pressure. The adhesive for the anisotropic conductive adhesive layer may be an adhesive layer formed of the same material as the conductive paste as described above. Moreover, as a conductive adhesive layer, the thing which does not express the anisotropy (directionality) in electroconductivity may be sufficient.
 また、軟質グランド層62,72は、上述した導電性ペーストおよび/または薄膜導電性フィルムを用いる以外の手法を用いて形成しても良い。そのような手法としては、たとえば、ベタグランド層61,71の間の隙間部分に、金属薄膜層を、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法のような物理的気相成長法(PVD)、化学的気相成長法(CVD)等により形成しても良い。 Further, the soft ground layers 62 and 72 may be formed using a method other than using the above-described conductive paste and / or thin film conductive film. As such a method, for example, a metal thin film layer is formed in a gap portion between the solid ground layers 61 and 71 by, for example, a physical vapor deposition method (PVD) such as a vacuum deposition method, a sputtering method, or an ion plating method. ), Chemical vapor deposition (CVD) or the like.
 なお、フレキシブルプリント基板10における軟質グランド層62,72の配置については後述する。 The arrangement of the soft ground layers 62 and 72 in the flexible printed board 10 will be described later.
 また、図6に示すように、ベタグランド層61,71の端部と、軟質グランド層62,72の端部とは重なるように設けられている。以下、この部分を、重なり部分64,74(図6では重なり部分64のみ図示;重なり部分74は図示されないが存在するものとする)と称呼する。かかる重なり部分64,74は、たとえば長さ0.5mm~1mm程度の範囲であり、この重なり部分64,74によってベタグランド層61,71と軟質グランド層62,72の間の導通が確保されている。それによって、ベタグランド層61,71と軟質グランド層62,72とが一体的なグランド層を構成している。 Further, as shown in FIG. 6, the end portions of the solid ground layers 61 and 71 and the end portions of the soft ground layers 62 and 72 are provided so as to overlap each other. Hereinafter, this portion will be referred to as overlapping portions 64 and 74 (only the overlapping portion 64 is shown in FIG. 6; the overlapping portion 74 is not shown but is present). The overlapping portions 64 and 74 are, for example, in a range of about 0.5 mm to 1 mm in length, and conduction between the solid ground layers 61 and 71 and the soft ground layers 62 and 72 is secured by the overlapping portions 64 and 74. Yes. As a result, the solid ground layers 61 and 71 and the soft ground layers 62 and 72 constitute an integral ground layer.
 また、このようなベタグランド層61,71と軟質グランド層62,72の間で導通を確保した構成を採用することにより、信号ライン20と軟質グランド層62の距離は、信号ライン20とベタグランド層61の距離に対して変化しない。そのため、特性インピーダンスが50Ωとなるように整合している信号ライン20の線幅は、ベタグランド層61,71と軟質グランド層62,72とで変化なく一定とすることができる。なお、そのような線幅としては、たとえば35μmとするものがあるが、この線幅は、種々設定可能である。 Further, by adopting such a configuration in which conduction is ensured between the solid ground layers 61 and 71 and the soft ground layers 62 and 72, the distance between the signal line 20 and the soft ground layer 62 can be set to be equal to the signal line 20 and the solid ground layer 62. It does not change with the distance of the layer 61. Therefore, the line width of the signal line 20 matched so that the characteristic impedance is 50Ω can be constant between the solid ground layers 61 and 71 and the soft ground layers 62 and 72 without change. Such a line width is, for example, 35 μm, but various line widths can be set.
 なお、一般的には、軟質グランド層62,72を設ける場合には、高周波伝送時の伝送損失が大きくなる傾向がある。しかしながら、軟質グランド層62,72は、プリーツ部分PLの湾曲部PL2に設けており、必要最小の部分に設けられ、しかも、その軟質グランド層62,72は湾曲部PL2が描くカーブの外周側に位置している。そのため、伝送損失といった特性面での影響が少ないものとなっている。また、軟質グランド層62,72は、湾曲部PL2が描くカーブの外周側に位置しており、いわば信号ライン20同士が直接は向かい合わない位置に設けられているので、信号ライン20同士での電気的な干渉の影響を低減できる。 In general, when the soft ground layers 62 and 72 are provided, the transmission loss during high-frequency transmission tends to increase. However, the soft ground layers 62 and 72 are provided in the curved portion PL2 of the pleat portion PL, and are provided in the minimum necessary portion, and the soft ground layers 62 and 72 are provided on the outer peripheral side of the curve drawn by the curved portion PL2. positioned. For this reason, there is little influence on characteristics such as transmission loss. In addition, the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2, and are so provided that the signal lines 20 do not directly face each other. The influence of general interference can be reduced.
 また、軟質グランド層62,72は、湾曲部PL2が描くカーブの外周側に位置しているので、成形時の曲げ応力を小さくすることができる。しかも、曲げ応力が小さくなるので、フレキシブルプリント基板10を繰り返し伸縮させる場合の耐久性も確保することが可能となる。 Moreover, since the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2, the bending stress at the time of molding can be reduced. In addition, since the bending stress is reduced, it is possible to ensure durability when the flexible printed circuit board 10 is repeatedly expanded and contracted.
 これに対して、軟質グランド層62,72が、湾曲部PL2が描くカーブの内周側に存在している場合、プリーツ部分PLにおいて信号ライン20同士が対向する部位では、電気的な干渉が多少なりとも生じる場合がある。なぜなら、軟質グランド層62,72のシールド機能は、一般的にはベタグランド層61,71よりは劣る。そのため、かかるシールド機能がベタグランド層61,71よりは劣る軟質グランド層62,72が向かい合った状態で高周波電流が流れると、電気的な干渉が生じる虞がある。 On the other hand, when the soft ground layers 62 and 72 are present on the inner peripheral side of the curve drawn by the curved portion PL2, there is some electrical interference at the portion where the signal lines 20 face each other in the pleat portion PL. It may happen. This is because the shield functions of the soft ground layers 62 and 72 are generally inferior to the solid ground layers 61 and 71. Therefore, when a high-frequency current flows in the state where the soft ground layers 62 and 72 facing each other are inferior to the solid ground layers 61 and 71, there is a possibility that electrical interference occurs.
 しかしながら、本実施の形態のように、軟質グランド層62,72が、湾曲部PL2の外周側に存在し、湾曲部PL2の内周側にはベタグランド層61,71が存在している場合、軟質グランド層62,72が、互いに向かい合う位置関係となる部分が存在しない。そのため、信号ライン20同士の電気的な干渉を防ぐことができ、またフレキシブルプリント基板10における特性インピーダンスの変動も防止できる。 However, as in the present embodiment, when the soft ground layers 62, 72 are present on the outer peripheral side of the curved portion PL2, and the solid ground layers 61, 71 are present on the inner peripheral side of the curved portion PL2, There are no portions where the soft ground layers 62 and 72 are in a positional relationship facing each other. Therefore, electrical interference between the signal lines 20 can be prevented, and fluctuations in characteristic impedance in the flexible printed circuit board 10 can also be prevented.
<軟質グランド層62,72の構成(第2構成例)について>
 次に、フレキシブルプリント基板10における軟質グランド層62(軟質グランド層72)の配置における、第2構成例について説明する。図8は、図1の変形例に対応する、成形前のフレキシブルプリント基板10の第2構成例を示す平面図である。なお、以下の第2構成例におけるフレキシブルプリント基板10の説明においては、第1構成例におけるフレキシブルプリント基板10と共通する部分については、その説明を省略する。
<Configuration of Soft Ground Layers 62 and 72 (Second Configuration Example)>
Next, a second configuration example of the arrangement of the soft ground layer 62 (soft ground layer 72) in the flexible printed board 10 will be described. FIG. 8 is a plan view showing a second configuration example of the flexible printed circuit board 10 before molding corresponding to the modification of FIG. In the description of the flexible printed circuit board 10 in the second configuration example below, the description of the portions common to the flexible printed circuit board 10 in the first configuration example is omitted.
 図8に示すように、第2構成例におけるフレキシブルプリント基板10は、図1に示すような第1構成例におけるフレキシブルプリント基板10に対し、ほとんどの部分で構成が共通している。しかしながら、第2構成例のフレキシブルプリント基板10では、軟質グランド層62(軟質グランド層72)の配置が、第1構成例のフレキシブルプリント基板10に対して異なっている。 As shown in FIG. 8, the flexible printed circuit board 10 in the second configuration example has the same configuration in most parts as the flexible printed circuit board 10 in the first configuration example as shown in FIG. However, in the flexible printed circuit board 10 of the second configuration example, the arrangement of the soft ground layer 62 (soft ground layer 72) is different from the flexible printed circuit board 10 of the first configuration example.
 図9は、第2構成例における成形後のフレキシブルプリント基板10の形状を示す側面図である。図8および図9に示すように、第2構成例においては、成形後のフレキシブルプリント基板10のプリーツ部分PLのうち、右曲りの湾曲部PL2の外周側か、または左曲りの湾曲部PL2の外周側に、軟質グランド層62,72が配置されている。そのため、軟質グランド層62(軟質グランド層72)は、ある湾曲部PL2には設けられているが、その隣の湾曲部PL2には設けられていない、というような1つおき(1つ飛び)となる状態で、湾曲部PL2の外周側に設けられている。 FIG. 9 is a side view showing the shape of the flexible printed circuit board 10 after molding in the second configuration example. As shown in FIGS. 8 and 9, in the second configuration example, of the pleated portion PL of the flexible printed circuit board 10 after molding, the outer peripheral side of the curved portion PL2 bent to the right or the curved portion PL2 bent to the left. Soft ground layers 62 and 72 are disposed on the outer peripheral side. Therefore, every other soft ground layer 62 (soft ground layer 72) is provided in a certain curved portion PL2, but not provided in the adjacent curved portion PL2. Is provided on the outer peripheral side of the bending portion PL2.
 なお、図9から図11(後述)では、軟質グランド層72のみが存在し、軟質グランド層62は存在しない構成が示されているが、軟質グランド層62のみが存在し、軟質グランド層72が存在しない構成を採用しても良いのは勿論である。 9 to 11 (described later), only the soft ground layer 72 is present and the soft ground layer 62 is not present. However, only the soft ground layer 62 is present and the soft ground layer 72 is not present. Of course, a configuration that does not exist may be adopted.
 そのため、第2構成例のフレキシブルプリント基板10は、第1構成例のような、フレキシブルプリント基板10の表面側と、裏面側に、交互に軟質グランド層62,72が存在する構成とは大幅に異なっている。すなわち、第2構成例のフレキシブルプリント基板10では、フレキシブルプリント基板10の表面側(上面側)のみに軟質グランド層62が存在するか、またはフレキシブルプリント基板10の裏面側(下面側)のみに軟質グランド層72が存在するかのいずれか、となっている。 Therefore, the flexible printed circuit board 10 of the second configuration example is significantly different from the configuration in which the soft ground layers 62 and 72 are alternately present on the front surface side and the back surface side of the flexible printed circuit board 10 as in the first configuration example. Is different. That is, in the flexible printed circuit board 10 of the second configuration example, the soft ground layer 62 exists only on the front surface side (upper surface side) of the flexible printed circuit board 10 or is soft only on the back surface side (lower surface side) of the flexible printed circuit board 10. Either the ground layer 72 is present.
 かかる第2構成例のフレキシブルプリント基板10においても、図9から明らかなように、軟質グランド層72(または図9等以外の構成では軟質グランド層62;以下同様)は、湾曲部PL2が描くカーブの外周側に存在している。そのため、軟質グランド層72(軟質グランド層62)の開口部72b(開口部72b)が、互いに向かい合う位置関係となる部分が存在しない。それにより、信号ライン20同士の電気的な干渉を防ぐことができ、またフレキシブルプリント基板10における特性インピーダンスの変動も防止できる。 Also in the flexible printed circuit board 10 of the second configuration example, as is apparent from FIG. 9, the soft ground layer 72 (or the soft ground layer 62 in the configuration other than FIG. 9; the same applies hereinafter) is a curve drawn by the curved portion PL2. It exists on the outer peripheral side. Therefore, there is no portion in which the opening 72b (opening 72b) of the soft ground layer 72 (soft ground layer 62) is in a positional relationship facing each other. Thereby, electrical interference between the signal lines 20 can be prevented, and fluctuations in characteristic impedance in the flexible printed circuit board 10 can also be prevented.
 加えて、軟質グランド層72(軟質グランド層62)は、第1構成例と同様に、湾曲部PL2が描くカーブの外周側に位置しているが、第1構成例と比較して設ける個数が半減している。そのため、伝送損失といった特性面での影響が一層少ないものとなっている。また、軟質グランド層62,72は、湾曲部PL2が描くカーブの外周側に位置しており、いわば信号ライン20同士が直接は向かい合わない位置に設けられているので、信号ライン20同士での電気的な干渉の影響を低減できる。 In addition, the soft ground layer 72 (soft ground layer 62) is located on the outer peripheral side of the curve drawn by the curved portion PL2 as in the first configuration example, but the number of soft ground layers 72 (soft ground layer 62) provided in comparison with the first configuration example is smaller. It is halved. For this reason, the influence on characteristics such as transmission loss is further reduced. In addition, the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2, and are so provided that the signal lines 20 do not directly face each other. The influence of general interference can be reduced.
 また、第2構成例においても、軟質グランド層72(軟質グランド層62)は、湾曲部PL2が描くカーブの外周側に位置していることに変わりはないので、成形時の曲げ応力を小さくすることができる。しかも、曲げ応力が小さくなるので、フレキシブルプリント基板10を繰り返し伸縮させる場合の耐久性も確保することが可能となる。 Also in the second configuration example, the soft ground layer 72 (soft ground layer 62) is still located on the outer peripheral side of the curve drawn by the curved portion PL2, so the bending stress during molding is reduced. be able to. In addition, since the bending stress is reduced, it is possible to ensure durability when the flexible printed circuit board 10 is repeatedly expanded and contracted.
 図10は、第2構成例に係るフレキシブルプリント基板10を、ロボット等のアームの関節等のような外部装置の回動部位に適用したイメージを示す図であり、2つのアームが水平状態を保っている状態を示す図である。また、図11は、図10における2つのアームが回動した状態を示す図である。なお、図10および図11に示す適用例では、軟質グランド層72は、回動部位の内径側の湾曲部PL2に位置している。すなわち、回動部位の外径側の湾曲部PL2に位置する軟質グランド層62が存在しない構成となっている。 FIG. 10 is a diagram showing an image in which the flexible printed circuit board 10 according to the second configuration example is applied to a rotating portion of an external device such as a joint of an arm of a robot or the like, and the two arms maintain a horizontal state. FIG. FIG. 11 is a diagram illustrating a state in which the two arms in FIG. 10 are rotated. In the application example shown in FIGS. 10 and 11, the soft ground layer 72 is located in the curved portion PL <b> 2 on the inner diameter side of the rotating portion. That is, the soft ground layer 62 located in the curved portion PL2 on the outer diameter side of the rotating portion does not exist.
 図10に示すように、第2構成例のフレキシブルプリント基板10を、回動部位に沿わせる場合、内径側(内側)に位置している湾曲部PL2が大きく開くように変形する。そのため、内径側(内側)の湾曲部PL2の外周側(すなわち最も内径に位置する側)に軟質グランド層72を配置することで、この内径側(内側)に位置している湾曲部PL2は、容易に大きく開くように変形する。 As shown in FIG. 10, when the flexible printed circuit board 10 of the second configuration example is placed along the rotating portion, the flexible printed circuit board 10 is deformed so that the curved portion PL <b> 2 positioned on the inner diameter side (inner side) is greatly opened. Therefore, by disposing the soft ground layer 72 on the outer peripheral side (that is, the side located closest to the inner diameter) of the inner diameter side (inner side) bending part PL2, the bending part PL2 positioned on the inner diameter side (inner side) It deforms so that it can be easily opened wide.
 このとき、内径側における湾曲部PL2においては、外周側の軟質グランド層72は、圧縮応力の作用によって大きく変形するが、内周側のベタグランド層61には、引っ張り応力が作用するものの、内周側のベタグランド層61は、外周側の軟質グランド層72よりも変形し難い。そのため、応力の中立軸は、外周側に移動して内周側から離れる。それにより、信号ライン20には、引っ張り応力ではなく圧縮応力が作用する。 At this time, in the bending portion PL2 on the inner diameter side, the soft ground layer 72 on the outer peripheral side is greatly deformed by the action of compressive stress, but the tensile ground acts on the solid ground layer 61 on the inner peripheral side. The circumferential solid ground layer 61 is more difficult to deform than the outer circumferential soft ground layer 72. Therefore, the neutral axis of the stress moves to the outer peripheral side and moves away from the inner peripheral side. Thereby, compressive stress acts on the signal line 20 instead of tensile stress.
 なお、図11に示すように、外径側(外側)に位置している湾曲部PL2は、閉じるように変形する。しかし、外径側(外側)に位置している湾曲部PL2においては、その内周側および外周側の双方に、ベタグランド層61が設けられている。そのため、外径側(外側)に位置している湾曲部PL2においては、閉じる向きの変形は、軟質グランド層72における開くような変形と比較して、小さなものとなる。すなわち、図11に示すように、軟質グランド層72の有無の相違により、内径側(内側)に位置している湾曲部PL2は、選択的に大きく開くように変形するが、外径側(外側)に位置している湾曲部PL2は小さくしか変形しない。 In addition, as shown in FIG. 11, the bending part PL2 located in the outer diameter side (outer side) deform | transforms so that it may close. However, in the curved part PL2 located on the outer diameter side (outer side), the solid ground layer 61 is provided on both the inner peripheral side and the outer peripheral side. Therefore, in the curved portion PL <b> 2 located on the outer diameter side (outer side), the deformation in the closing direction is smaller than the deformation that opens in the soft ground layer 72. That is, as shown in FIG. 11, due to the presence or absence of the soft ground layer 72, the curved portion PL <b> 2 positioned on the inner diameter side (inner side) is selectively deformed so as to open widely, but the outer diameter side (outer side) The bending portion PL2 located at () is deformed only small.
 以上のような構成により、ロボット等のアームの関節等のような外部装置の回動部位に第2構成例のフレキシブルプリント基板10を用いることで、動作時に信号ライン20に作用する応力を小さくすることができ、また繰り返し動作に耐える構造となる。 With the configuration as described above, the stress that acts on the signal line 20 during operation is reduced by using the flexible printed circuit board 10 of the second configuration example at the rotation part of the external device such as the joint of an arm of a robot or the like. And can withstand repeated operations.
<フレキシブルプリント基板10の製造方法について>
 続いて、第1構成例および第2構成例におけるフレキシブルプリント基板10の製造方法について、以下に説明する。なお、以下の説明においては、第1工程から第8工程について順次記載するが、各実施の形態におけるフレキシブルプリント基板10の製造方法では、これ以外の種々の工程が存在していても良いのは勿論である。
<About the manufacturing method of the flexible printed circuit board 10>
Then, the manufacturing method of the flexible printed circuit board 10 in a 1st structural example and a 2nd structural example is demonstrated below. In the following description, the first step to the eighth step will be sequentially described. However, in the method for manufacturing the flexible printed circuit board 10 in each embodiment, various other steps may exist. Of course.
 (1)第1工程:信号ライン20の形成
 図12は、第1工程に係り、図1および図8のA-A断面において信号ライン20や受けランド21が形成された状態を示す図である。図13は、第1工程に係り、図1および図8のB-B断面、C-C断面(図1のみ存在)、D-D断面において信号ライン20が形成された状態を示す図である。図12および図13に示すように、絶縁層30の両面にベース銅箔層101,102を有する両面銅張積層板100を用意する。そして、後に内層側に位置することになる信号ライン20や、導電スルーホール12,14の受けランド21を、エッチング等の通常のフォトファブリケーション手法を用いて形成する。それにより、図12および図13に示すような中間生成物C1が形成される。
(1) First Step: Formation of Signal Line 20 FIG. 12 is a diagram showing a state in which the signal line 20 and the receiving land 21 are formed in the AA cross section of FIGS. 1 and 8 in the first step. . 13 is a diagram showing a state in which the signal line 20 is formed in the BB cross section, the CC cross section (existing only in FIG. 1), and the DD cross section of FIGS. 1 and 8 in the first step. . As shown in FIGS. 12 and 13, a double-sided copper clad laminate 100 having base copper foil layers 101 and 102 on both sides of an insulating layer 30 is prepared. Then, the signal line 20 that will be positioned later on the inner layer side and the receiving lands 21 of the conductive through holes 12 and 14 are formed using a normal photofabrication technique such as etching. Thereby, an intermediate product C1 as shown in FIGS. 12 and 13 is formed.
 (2)第2工程:片面銅張積層板200の積層
 図14は、第2工程に係り、図1および図8のA-A断面において、両面銅張積層板100に片面銅張積層板200が積層される様子を示す図である。図15は、第2工程に係り、図1および図8のB-B断面、C-C断面(図1のみ存在)、D-D断面において、両面銅張積層板100に片面銅張積層板200が積層される様子を示す図である。
(2) Second Step: Lamination of Single-sided Copper-Clad Laminate 200 FIG. 14 relates to the second step, and in FIG. 1 and FIG. It is a figure which shows a mode that is laminated | stacked. FIG. 15 relates to the second step, and the single-sided copper-clad laminate is added to the double-sided copper-clad laminate 100 in the BB cross section, CC cross-section (only FIG. 1 exists), and DD cross-section of FIG. It is a figure which shows a mode that 200 is laminated | stacked.
 図14および図15に示すように、片面銅張積層板200と積層接着材300を用意する。そして、積層接着材300を絶縁層30の上面側を覆うように貼り付け、その後に、積層接着材300の上面側に片面銅張積層板200を貼り付ける。片面銅張積層板200は、絶縁層40を備え、その一方側の面(上面)にはベース銅箔層201が設けられている。なお、貼り付け後の生成物を、中間生成物C2とする。 As shown in FIGS. 14 and 15, a single-sided copper-clad laminate 200 and a laminate adhesive 300 are prepared. Then, the laminated adhesive 300 is attached so as to cover the upper surface side of the insulating layer 30, and then the single-sided copper clad laminate 200 is attached to the upper surface side of the laminated adhesive 300. The single-sided copper clad laminate 200 includes an insulating layer 40, and a base copper foil layer 201 is provided on one surface (upper surface) thereof. In addition, let the product after sticking be the intermediate product C2.
 積層接着材300は、貼付後に接着材層50となる部分である。かかる積層接着材300としては、後に成形する際の妨げにならないよう、低弾性のものが好ましい。具体的には、LCPフィルムの弾性係数が3~4GPa程度であるので、この半分以下の2GPa以下の弾性係数である積層接着材300を用いることで、成形性への影響なく、貼り合わせることが可能である。また、成形時には、200℃程度で、30分程度加熱する。そのため、積層接着材300としては、かかる熱履歴で接着性や電気絶縁特性が著しく劣化しないものが好適である。 The laminated adhesive 300 is a portion that becomes the adhesive layer 50 after being stuck. Such a laminated adhesive 300 is preferably a low-elasticity material so as not to hinder subsequent molding. Specifically, since the elastic coefficient of the LCP film is about 3 to 4 GPa, the lamination adhesive 300 having an elastic coefficient of 2 GPa or less, which is less than half of this, can be used for bonding without affecting the formability. Is possible. Moreover, at the time of shaping | molding, it heats at about 200 degreeC for about 30 minutes. Therefore, as the laminated adhesive 300, an adhesive whose adhesiveness and electrical insulation characteristics are not significantly deteriorated by such a heat history is preferable.
 (3)第3工程:貫通孔12a,14aの形成
 図16は、第3工程に係り、図1および図8のA-A断面において、貫通孔12a,14aを形成した状態を示す図である。図17は、第3工程に係り、図1および図8のB-B断面、C-C断面(図1のみ存在)、D-D断面における構成を示す側断面図である。図16に示すように、中間生成物C2に対して、後に信号パッド11やGNDパッド13と層間接続を行うための貫通孔12a,14aを形成する。かかる孔開け加工は、NCドリルによる加工を行うものとしても良いが、レーザ等による非貫通の有底ビアホールでの層間接続としても良い。なお、かかる孔開け加工後の生成物を、中間生成物C3とする。
(3) Third Step: Formation of Through Holes 12a and 14a FIG. 16 is a diagram showing a state in which the through holes 12a and 14a are formed in the AA cross section of FIGS. 1 and 8 according to the third step. . FIG. 17 is a side cross-sectional view showing a configuration in the BB cross section, CC cross section (existing only in FIG. 1), and DD cross section of FIGS. 1 and 8 in the third step. As shown in FIG. 16, through- holes 12a and 14a for interlayer connection with the signal pad 11 and the GND pad 13 later are formed in the intermediate product C2. Such drilling may be performed by NC drilling, or may be interlayer connection at a non-through bottomed via hole by a laser or the like. In addition, let the product after this drilling process be the intermediate product C3.
 (4)第4工程:導電被膜12b,14bの形成
 図18は、第4工程に係り、図1および図8のA-A断面において、貫通孔12a,14aに導電被膜12b,14bを形成するための導電被膜層15を形成した状態を示す図である。図18に示すように、孔開け加工後の中間生成物C3において、A-A断面に相当する箇所に、部分めっきを施して、導電被膜12b,14bの元となる導電被膜層15を形成する。それにより、3層間が電気的に接続された層間導通が得られる。なお、部分めっきによる生成物を、中間生成物C4とする。
(4) Fourth Step: Formation of Conductive Coatings 12b and 14b FIG. 18 relates to the fourth step and forms conductive coatings 12b and 14b in the through holes 12a and 14a in the AA cross section of FIGS. It is a figure which shows the state in which the conductive film layer 15 for this was formed. As shown in FIG. 18, in the intermediate product C3 after the drilling process, the portion corresponding to the AA cross section is subjected to partial plating to form the conductive coating layer 15 that is the basis of the conductive coatings 12b and 14b. . Thereby, interlayer conduction in which the three layers are electrically connected is obtained. In addition, let the product by partial plating be the intermediate product C4.
 (5)第5工程:ベース銅箔層101,102のパターニング
 図19は、第5工程に係り、図1および図8のA-A断面においてパターニングがなされた状態を示す図である。図20は、第5工程に係り、図1および図8のB-B断面においてパターニングがなされた状態を示す図である。また、図21は、第5工程に係り、図1のC-C断面においてパターニングがなされた状態を示す図である。図22は、第5工程に係り、図1および図8のD-D断面においてパターニングがなされた状態を示す図である。図23は、第5工程に係り、図1のE-E断面においてパターニングがなされた状態を示す図である。
(5) Fifth Step: Patterning of Base Copper Foil Layers 101 and 102 FIG. 19 is a diagram showing a state in which patterning is performed in the AA section of FIGS. 1 and 8 in the fifth step. FIG. 20 is a diagram showing a state in which patterning is performed in the BB cross section of FIGS. 1 and 8 in the fifth step. FIG. 21 is a diagram showing a state in which patterning is performed in the CC section of FIG. 1 in the fifth step. FIG. 22 is a diagram showing a state in which patterning is performed in the DD section of FIGS. 1 and 8 in the fifth step. FIG. 23 is a diagram showing a state in which patterning is performed in the EE cross section of FIG. 1 in the fifth step.
 図19から図23に示すように、導電被膜層15やベース銅箔層101,102に対して、エッチング等の通常のフォトファブリケーション手法を用いて、パターニングがなされ、必要なパターンが形成される。図19~図23に示すように、かかるパターニングによって形成されるものは、信号パッド11、GNDパッド13、ベタグランド層61,71等のような、フレキシブルプリント基板10において必要なパターンとなっている。 As shown in FIGS. 19 to 23, the conductive coating layer 15 and the base copper foil layers 101 and 102 are patterned by using a normal photofabrication technique such as etching to form a necessary pattern. . As shown in FIGS. 19 to 23, what is formed by such patterning is a pattern necessary for the flexible printed circuit board 10, such as the signal pad 11, the GND pad 13, the solid ground layers 61 and 71, and the like. .
 なお、図21では、パターニングにより、絶縁層40の上面側のベタグランド層61が除去された除去部63が形成されているが、この除去部63には、後に軟質グランド層62が設けられる。また、図22では、パターニングにより、絶縁層30の下面側のベタグランド層71が除去された除去部73が形成されているが、この除去部73には、後に軟質グランド層72が設けられる。また、図23では、パターニングにより、絶縁層40の上面側において、ベタグランド層61と除去部63との境界部分を示している。この図23では、X2側にはベタグランド層61が残っているが、X1側ではベタグランド層61が除去された除去部63となっていて、その除去部63には、後に軟質グランド層62が設けられる。なお、パターニングにより得られた生成物を、中間生成物C5とする。 In FIG. 21, a removal portion 63 is formed by removing the solid ground layer 61 on the upper surface side of the insulating layer 40 by patterning. The removal portion 63 is provided with a soft ground layer 62 later. In FIG. 22, a removal portion 73 is formed by removing the solid ground layer 71 on the lower surface side of the insulating layer 30 by patterning. The removal portion 73 is provided with a soft ground layer 72 later. Further, in FIG. 23, a boundary portion between the solid ground layer 61 and the removal portion 63 is shown on the upper surface side of the insulating layer 40 by patterning. In FIG. 23, the solid ground layer 61 remains on the X2 side, but on the X1 side, the solid ground layer 61 is removed, which is a removed portion 63. The removed portion 63 has a soft ground layer 62 later. Is provided. A product obtained by patterning is referred to as an intermediate product C5.
 (6)第6工程:軟質グランド層62,72の形成
 図24は、第6工程に係り、軟質グランド層62が形成されたときの図1のC-C断面における構成を示す図である。図25は、第6工程に係り、図1および図8のD-D断面において軟質グランド層72が形成された状態を示す図である。また、図26は、第6工程に係り、図1のE-E断面において軟質グランド層62が形成された状態を示す図である。
(6) Sixth Step: Formation of Soft Ground Layers 62 and 72 FIG. 24 is a diagram showing a configuration in the CC section of FIG. 1 when the soft ground layer 62 is formed in the sixth step. FIG. 25 is a diagram showing a state in which the soft ground layer 72 is formed in the DD section of FIGS. 1 and 8 in the sixth step. FIG. 26 is a diagram showing a state in which the soft ground layer 62 is formed in the section EE of FIG. 1 in connection with the sixth step.
 図24から図26に示すように、中間生成物C5に対して、軟質グランド層62,72を形成する。かかる軟質グランド層62,72を、たとえば銀ペーストのような導電性ペーストによって形成する場合には、その導電性ペーストが除去部63,73を覆うように印刷し、その印刷部分を加熱や紫外線照射等によって硬化させる。このとき、図26に示すように、ベタグランド層61と導電性ペースト(軟質グランド層62)の一部が重なる状態として、ベタグランド層61と導電性ペースト(軟質グランド層62)の間の導通を確保する。なお、図示はしていないが、ベタグランド層71と導電性ペースト(軟質グランド層72)との間でも同様の重なり部分を設けて、ベタグランド層71と導電性ペースト(軟質グランド層72)の間の導通を確保する。 24 to 26, soft ground layers 62 and 72 are formed for the intermediate product C5. When the soft ground layers 62 and 72 are formed of a conductive paste such as silver paste, for example, the conductive paste is printed so as to cover the removal portions 63 and 73, and the printed portions are heated or irradiated with ultraviolet rays. Cured by etc. At this time, as shown in FIG. 26, the solid ground layer 61 and the conductive paste (soft ground layer 62) are partially overlapped with each other, and the conduction between the solid ground layer 61 and the conductive paste (soft ground layer 62) is achieved. Secure. Although not shown, a similar overlapping portion is provided between the solid ground layer 71 and the conductive paste (soft ground layer 72), so that the solid ground layer 71 and the conductive paste (soft ground layer 72) Ensure continuity between.
 また、軟質グランド層62,72を、薄膜導電性フィルムによって形成する場合には、除去部63,73を覆うことが可能な長さとなるように、薄膜導電性フィルムを切断等によって短冊状に形成する。その後に、短冊状の薄膜導電性フィルムが除去部63,73を覆うように貼り付ける。かかる貼り付けにおいても、ベタグランド層61と薄膜導電性フィルム(軟質グランド層62)の一部が重なる状態として、ベタグランド層61と薄膜導電性フィルム(軟質グランド層62)の間の導通を確保する。同様に、図示はしていないが、ベタグランド層71と薄膜導電性フィルム(軟質グランド層72)との間でも同様の重なり部分を設けて、ベタグランド層71と薄膜導電性フィルム(軟質グランド層72)の間の導通を確保する。 When the soft ground layers 62 and 72 are formed of a thin film conductive film, the thin film conductive film is formed in a strip shape by cutting or the like so as to have a length that can cover the removal portions 63 and 73. To do. Thereafter, the strip-shaped thin film conductive film is pasted so as to cover the removal portions 63 and 73. Even in such affixing, the solid ground layer 61 and the thin-film conductive film (soft ground layer 62) are partially overlapped to ensure conduction between the solid ground layer 61 and the thin-film conductive film (soft ground layer 62). To do. Similarly, although not shown, a similar overlapping portion is provided between the solid ground layer 71 and the thin film conductive film (soft ground layer 72), and the solid ground layer 71 and the thin film conductive film (soft ground layer) are provided. 72) is ensured.
 なお、上述した軟質グランド層62,72の形成においては、ベタグランド層61,71と、軟質グランド層62,72の接点となる部分に対して、部分的に無電解金めっき等のようなめっき処理にて、表面処理をするようにしても良い。このような部分的なめっき処理においては、用いられるめっき液に対して、耐性を有する感光性のドライフィルムレジスト等を用いて、めっき処理を行わない部分をマスキングするようにしても良い。なお、軟質グランド層62,72を形成した中間生成物を、中間生成物C6とする。 In the formation of the soft ground layers 62 and 72 described above, the solid ground layers 61 and 71 and the portions that become the contact points of the soft ground layers 62 and 72 are partially plated such as electroless gold plating. You may make it surface-treat by a process. In such a partial plating treatment, a portion not subjected to the plating treatment may be masked using a photosensitive dry film resist having resistance to the plating solution used. The intermediate product in which the soft ground layers 62 and 72 are formed is referred to as an intermediate product C6.
 (7)第7工程:カバー層80,90の形成
 図27は、第7工程に係り、カバー層80,90が形成されたときの図1および図8のA-A断面における構成を示す図である。図28は、第7工程に係り、図1および図8のB-B断面においてカバー層80,90が形成された状態を示す図である。また、図29は、第7工程に係り、図18のC-C断面においてカバー層80,90が形成された状態を示す図である。図30は、第7工程に係り、図1および図8のD-D断面においてカバー層80,90が形成された状態を示す図である。
(7) Seventh Step: Formation of Cover Layers 80 and 90 FIG. 27 is a diagram showing a configuration in the AA cross section of FIGS. 1 and 8 when the cover layers 80 and 90 are formed in the seventh step. It is. FIG. 28 is a diagram showing a state in which cover layers 80 and 90 are formed in the BB cross section of FIGS. 1 and 8 in the seventh step. FIG. 29 is a diagram showing a state in which cover layers 80 and 90 are formed in the CC section of FIG. 18 in connection with the seventh step. FIG. 30 is a diagram showing a state in which cover layers 80 and 90 are formed in the DD section of FIGS. 1 and 8 in the seventh step.
 図27から図30に示すように、中間生成物C6に対して、絶縁樹脂層81,91と接着材層82,92とを備えるカバー層80,90を形成する。かかるカバー層80,90の形成は、中間生成物C6に対して接着材層82,92を貼り付けることにより行う。なお、信号パッド11およびGNDパッド13がカバー層80,90で覆われないようにする必要がある。そのため、カバー層80,90のうち、信号パッド11およびGNDパッド13に対応する部位は、フォトソルダーレジスト等の手法によって微細な開口を設けることも可能である。しかし、それ以外のベタグランド層61,71および軟質グランド層62,72は、カバー層80,90で覆われた状態となる。 27 to 30, cover layers 80 and 90 including insulating resin layers 81 and 91 and adhesive layers 82 and 92 are formed on the intermediate product C6. The cover layers 80 and 90 are formed by attaching the adhesive layers 82 and 92 to the intermediate product C6. It is necessary to prevent the signal pad 11 and the GND pad 13 from being covered with the cover layers 80 and 90. Therefore, in the cover layers 80 and 90, portions corresponding to the signal pad 11 and the GND pad 13 can be provided with fine openings by a technique such as a photo solder resist. However, the other solid ground layers 61 and 71 and the soft ground layers 62 and 72 are covered with the cover layers 80 and 90.
 なお、図29および図30に示すように、たとえば銀ペーストのような導電性ペースト、および薄膜導電性フィルムを用いて形成された軟質グランド層62,72も、カバー層80,90で覆われて保護されている。すなわち、フレキシブルプリント基板10の湾曲部位(湾曲部PL2)も、カバー層80,90で覆われている。このため、湾曲部位を保護して表面保護層となる、トップコートが不要となっている。 29 and 30, soft ground layers 62 and 72 formed using a conductive paste such as a silver paste and a thin film conductive film are also covered with cover layers 80 and 90, respectively. Protected. That is, the curved portion (curved portion PL2) of the flexible printed circuit board 10 is also covered with the cover layers 80 and 90. For this reason, the top coat which protects a curved part and becomes a surface protective layer is unnecessary.
 なお、必要に応じて、カバー層80,90で被覆されていない箇所に無電解金めっき等の表面処理を行うことも可能である。以上のような工程を経て、成形前のフレキシブルプリント基板10が得られる。 It should be noted that surface treatment such as electroless gold plating can be performed on the portions not covered with the cover layers 80 and 90 as necessary. Through the steps as described above, the flexible printed circuit board 10 before molding is obtained.
 (8)第8工程:フレキシブルプリント基板10の加熱成形
 図31は、第8工程に係り、治具400に成形前のフレキシブルプリント基板10をセットした状態を示す図である。図31に示すように、治具400には、成形前のフレキシブルプリント基板10が位置合わせされた状態でセットされる。ここで、治具400には、先端固定部材410が設けられている。先端固定部材410には、フレキシブルプリント基板10の先端側を載置する先端受部411が設けられていると共に、図示を省略するフレキシブルプリント基板10の先端側の孔部に差し込まれる掛止ピン412が設けられている。
(8) Eighth Step: Heat Molding of Flexible Printed Circuit Board 10 FIG. 31 is a diagram showing a state in which the flexible printed circuit board 10 before molding is set on the jig 400 in the eighth process. As shown in FIG. 31, the flexible printed circuit board 10 before molding is set on the jig 400 in a state in which it is aligned. Here, the jig 400 is provided with a tip fixing member 410. The front end fixing member 410 is provided with a front end receiving portion 411 for mounting the front end side of the flexible printed circuit board 10 and a latch pin 412 to be inserted into a hole portion on the front end side of the flexible printed circuit board 10 (not shown). Is provided.
 かかる掛止ピン412に、フレキシブルプリント基板10の先端側の孔部を差し込み、その状態で、治具400の所定位置に配置された治具ピン420に沿うようにフレキシブルプリント基板10を蛇行させつつ、治具400へのフレキシブルプリント基板10のセットを完了する。そのセットの後に、フレキシブルプリント基板10の後端側に一定のテンションを加える。その状態で、オーブン等で加熱することにより、熱可塑性であるLCP材料を含む3層構成のフレキシブルプリント基板10がプリーツ状(蛇腹状)に形成され、フレキシブルプリント基板10は、図7および図9に示すようなプリーツ部分PLを有する状態となる。 A hole on the distal end side of the flexible printed circuit board 10 is inserted into the latch pin 412, and the flexible printed circuit board 10 is meandered along the jig pin 420 disposed at a predetermined position of the jig 400 in that state. The setting of the flexible printed circuit board 10 to the jig 400 is completed. After the setting, a certain tension is applied to the rear end side of the flexible printed circuit board 10. In this state, by heating in an oven or the like, the flexible printed circuit board 10 having a three-layer structure containing the LCP material that is thermoplastic is formed in a pleated shape (bellows shape). It will be in the state which has pleat part PL as shown in these.
 ここで、オーブン等での加熱成形は、たとえば200℃で、30分加熱することにより行う。このようにして加熱成形する場合、フレキシブルプリント基板10のセット位置、治具400へのセット時のテンションが安定している状態で加熱成形される。そのため、成形後のフレキシブルプリント基板10においては、製品形状が安定しており、狙い通りに、湾曲部PL2のうち所望する部位の外周側に、軟質グランド層62,72が配置された状態となる。 Here, thermoforming in an oven or the like is performed by heating at 200 ° C. for 30 minutes, for example. In the case of thermoforming in this way, thermoforming is performed in a state where the setting position of the flexible printed circuit board 10 and the tension at the time of setting on the jig 400 are stable. Therefore, in the flexible printed circuit board 10 after molding, the product shape is stable, and the soft ground layers 62 and 72 are arranged on the outer peripheral side of the desired portion of the curved portion PL2 as intended. .
 また、この成形の後に、必要に応じて、フレキシブルプリント基板10のうち、先端固定部材410等で位置決めされる先端側等の不要な部分をカットして、最終製品が完成する。かかる不要部分をカットする方法としては、フレキシブルプリント基板10のうち、掛止ピン412が差し込まれる孔部を流用し、始点側の位置決めを行い、反対側は突き当て等で位置決めする。そして、ピナクルや金型等のカット治具を用いてカットすることが可能である。しかしながら、不要部分のカットは、上述した手法以外の手法を用いても良い。そのような手法としては、たとえばレーザを用いたレーザカットや、ルータビットを用いたルータカット等が挙げられる。 Further, after this molding, unnecessary parts such as the front end side positioned by the front end fixing member 410 or the like are cut out of the flexible printed circuit board 10 as necessary to complete the final product. As a method for cutting such unnecessary portions, a hole portion into which the latch pin 412 is inserted is diverted in the flexible printed circuit board 10, the starting point side is positioned, and the opposite side is positioned by abutment or the like. Then, it can be cut using a cutting jig such as a pinnacle or a mold. However, methods other than those described above may be used for cutting unnecessary portions. Examples of such methods include laser cutting using a laser and router cutting using a router bit.
<試験結果について>
 以上のようにして形成される、プリーツ部分PLを有するフレキシブルプリント基板10について、伸縮試験を行った結果を、表1に示す。この伸縮試験においては、フレキシブルプリント基板10を繰り返して伸縮させて、その試験中における信号ライン20の断線の有無、試験前後でのフレキシブルプリント基板10の伸び量、試験前後でのフレキシブルプリント基板10の直流抵抗の変動、試験前の伝送損失、試験前後での伝送損失変化を評価した。
<About test results>
Table 1 shows the result of the expansion / contraction test performed on the flexible printed circuit board 10 having the pleated portion PL formed as described above. In this expansion / contraction test, the flexible printed circuit board 10 is repeatedly expanded and contracted, whether or not the signal line 20 is disconnected during the test, the amount of extension of the flexible printed circuit board 10 before and after the test, and the flexible printed circuit board 10 before and after the test. DC resistance fluctuation, transmission loss before test, and change in transmission loss before and after the test were evaluated.
 また、従来構成および評価のための比較例についても、同様の試験を行った。なお、従来構成とは、図32から図34に示すようなフレキシブルプリント基板10Fが対応する。このフレキシブルプリント基板10Fは、軟質グランド層62,72が存在しなく両面の全長に亘ってベタグランド層61,71が設けられた構成となっている。なお、図32は、従来構成のフレキシブルプリント基板10Fの構成を示す平面図である。図33は、従来構成のフレキシブルプリント基板10Fの断面図であり、図32のA-A線に沿って切断した状態を示す図である。図34は、従来構成のフレキシブルプリント基板10Fの断面図であり、図32のB-B線に沿って切断した状態を示す図である。 Also, the same test was conducted for the conventional configuration and comparative examples for evaluation. The conventional configuration corresponds to a flexible printed board 10F as shown in FIGS. This flexible printed circuit board 10F has a configuration in which the solid ground layers 61 and 71 are provided over the entire length of both surfaces without the soft ground layers 62 and 72 being present. FIG. 32 is a plan view showing a configuration of a flexible printed circuit board 10F having a conventional configuration. FIG. 33 is a cross-sectional view of a conventional flexible printed circuit board 10F, and shows a state cut along the line AA in FIG. FIG. 34 is a cross-sectional view of a flexible printed circuit board 10F having a conventional configuration, showing a state cut along line BB in FIG.
 また、比較例とは、グランド層60,70の全てを、軟質グランド層62,72とした構成が対応する。すなわち、信号ライン20を挟んだ両面の全長に亘り、軟質グランド層62,72が設けられている構成が比較例に対応する(図示省略)。 Also, the comparative example corresponds to a configuration in which the ground layers 60 and 70 are all soft ground layers 62 and 72. That is, the configuration in which the soft ground layers 62 and 72 are provided over the entire length of both surfaces sandwiching the signal line 20 corresponds to the comparative example (not shown).
 この伸縮試験においては、フレキシブルプリント基板10,10Fの全長に対し、50%伸ばすこととし、500万回まで行った。また、この試験後に、伸び率が10%以内であれば、伸びに関する試験は合格とした。また、各構造とも10個用いて試験を行った。 In this expansion / contraction test, the length of the flexible printed circuit board 10 and 10F was increased by 50%, and the test was performed up to 5 million times. Also, after this test, if the elongation was within 10%, the test for elongation was accepted. In addition, the test was performed using 10 of each structure.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から分かるように、第1構成例のフレキシブルプリント基板10と、第2構成例のフレキシブルプリント基板10とは、伸縮試験耐性が高く、500万回の伸縮試験後の伸び率は5%以下であり、また断線は見られなかった。また、直流抵抗および伝送損失の変化率は3%以下であり、電気的な特性の変化は、さほど見らないことが確認された。また、伝送損失については、第1構成例のフレキシブルプリント基板10と、第2構成例のフレキシブルプリント基板10とは、最も低損失である両面の全長に亘ってベタグランド層61,71が設けられた従来構成と比較して、5%以下の差しか存在しなく、信号伝送に問題ない範囲の損失しか存在しないことが確認された。 As can be seen from the results in Table 1, the flexible printed circuit board 10 of the first configuration example and the flexible printed circuit board 10 of the second configuration example have high stretch test resistance, and the elongation rate after 5 million stretch tests is 5 %, And no disconnection was observed. In addition, the rate of change in DC resistance and transmission loss was 3% or less, and it was confirmed that the change in electrical characteristics was not seen so much. Regarding the transmission loss, the first and second flexible printed circuit boards 10 and 10 are provided with solid ground layers 61 and 71 over the entire length of both surfaces having the lowest loss. It was confirmed that there was only a loss of 5% or less compared to the conventional configuration, and that there was only a loss within a range not causing any problem in signal transmission.
 一方、従来構成においては、1000回以内に、試験を行った10個のいずれについても信号ライン20が断線した。かかる従来構成の評価では、断線している状態ではあるが、伸び率5%以下、抵抗値は断線しているためにOPEN、伝送損失は最も低い0.22dB/10mmであり、伝送損失の変化は、断線が生じたために測定不能であった。比較例の構成では、信号ライン20の断線はなく、また直流抵抗の変化率3%以下であり、伝送損失の変化率も3%以下であった。しかし、伝送損失が大きく、特に第1構成例のフレキシブルプリント基板10に対して約2倍の伝送損失があることが確認された。以上の結果より、従来構成は断線により用いることができず、また比較例も伝送損失が大きく、第1構成例および第2構成例のフレキシブルプリント基板10と比べて性能が劣ることが確認された。 On the other hand, in the conventional configuration, the signal line 20 was disconnected for all of the 10 tested in 1000 times. In the evaluation of the conventional configuration, although it is in a disconnected state, the elongation is 5% or less, the resistance value is OPEN, and therefore the transmission loss is 0.22 dB / 10 mm, which is the lowest, and the change in transmission loss. The measurement was impossible due to the disconnection. In the configuration of the comparative example, the signal line 20 was not disconnected, the DC resistance change rate was 3% or less, and the transmission loss change rate was 3% or less. However, it was confirmed that the transmission loss was large, and in particular, there was about twice the transmission loss with respect to the flexible printed circuit board 10 of the first configuration example. From the above results, it was confirmed that the conventional configuration could not be used due to disconnection, and the comparative example also had a large transmission loss, and the performance was inferior to the flexible printed circuit board 10 of the first configuration example and the second configuration example. .
 以上の結果から、本実施の形態における、第1構成例のフレキシブルプリント基板10と、第2構成例のフレキシブルプリント基板10は、高品位な信号伝送と伸縮性の両立が可能であることが判明した。 From the above results, it is found that the flexible printed circuit board 10 of the first configuration example and the flexible printed circuit board 10 of the second configuration example in the present embodiment can achieve both high-quality signal transmission and elasticity. did.
<効果について>
 以上のような構成のフレキシブルプリント基板10およびフレキシブルプリント基板10の製造方法によると、次のような効果が生じる。
<About effect>
According to the flexible printed circuit board 10 and the method for manufacturing the flexible printed circuit board 10 configured as described above, the following effects are produced.
 すなわち、ストリップライン伝送路を備えるフレキシブルプリント基板10のプリーツ部分PLにおける複数個所の湾曲部PL2は、開くまたは閉じるように変形する。一方で、グランド層60,70には、金属面が設けられて電磁波の遮蔽性を備えるベタグランド層61,71(硬質グランド層)と、このベタグランド層61,71よりも可撓性に優れると共にベタグランド層61,71よりも電磁波の遮蔽性に劣る軟質グランド層62,72と、を有している。そして、軟質グランド層62,72は湾曲部PL2の外周側に配置されていると共に、ベタグランド層61,71は湾曲部PL2の内周側に配置されている。 That is, the curved portions PL2 at a plurality of places in the pleated portion PL of the flexible printed circuit board 10 having the stripline transmission line are deformed so as to open or close. On the other hand, the ground layers 60 and 70 are provided with metal surfaces and have a solid ground layer 61 and 71 (hard ground layer) having electromagnetic wave shielding properties, and are more flexible than the solid ground layers 61 and 71. In addition, it has soft ground layers 62 and 72 which are inferior in electromagnetic wave shielding properties than the solid ground layers 61 and 71. The soft ground layers 62 and 72 are disposed on the outer peripheral side of the curved portion PL2, and the solid ground layers 61 and 71 are disposed on the inner peripheral side of the curved portion PL2.
 このため、湾曲部PL2においては、軟質グランド層62,72が湾曲部PL2の外周側に存在しているので、フレキシブルプリント基板10をプリーツ状(蛇腹状)に成形する際の曲げ応力を小さくすることができる。しかも、曲げ応力が小さくなるので、フレキシブルプリント基板10を繰り返し伸縮する場合の耐久性も確保された構造となる。特に、湾曲部PL2の外周側に軟質グランド層62,72が配置され、かつ湾曲部PL2の内周側にベタグランド層61,71が配置される構成とすることで、フレキシブルプリント基板10の成形後には、軟質グランド層62,72は、圧縮されるように容易に変形する。それにより、信号ライン20には圧縮応力を生じさせることが可能となり、信号ライン20が断線し難くなる。 For this reason, in the bending part PL2, since the soft ground layers 62 and 72 exist in the outer peripheral side of the bending part PL2, the bending stress at the time of shape | molding the flexible printed circuit board 10 in a pleat shape (bellows shape) is made small. be able to. And since bending stress becomes small, it becomes a structure where durability in the case of extending and contracting the flexible printed circuit board 10 repeatedly was ensured. In particular, the flexible printed circuit board 10 is formed by adopting a configuration in which the soft ground layers 62 and 72 are disposed on the outer peripheral side of the curved portion PL2 and the solid ground layers 61 and 71 are disposed on the inner peripheral side of the curved portion PL2. Later, the soft ground layers 62 and 72 are easily deformed to be compressed. Thereby, compressive stress can be generated in the signal line 20, and the signal line 20 is difficult to be disconnected.
 さらに、本実施の形態では、フレキシブルプリント基板10においては、電磁波を伝播するストリップ伝送路が構成されているので、外部からのノイズを遮断する機能も損なわれていない。特に、湾曲部PL2では、湾曲部PL2の内周側にはベタグランド層61,71が存在している場合、軟質グランド層62,72同士が、互いに向かい合う位置関係となるのを防止できる。そのため、プリーツ部分PLにおいて直線部PL1同士が互いに近接しても、信号ライン20同士の電気的な干渉を防ぐことができる。また、一般的には、軟質グランド層62,72をフレキシブルプリント基板10の全長に亘って設ける場合には、高周波伝送時の伝送損失が大きくなる傾向がある。しかしながら、軟質グランド層62,72は、プリーツ部分PLの湾曲部PL2といった、必要最小の部分に設けられている。しかも、その軟質グランド層62,72は湾曲部PL2が描くカーブの外周側に位置している。そのため、伝送損失といった特性面での影響を少なくすることができる。また、軟質グランド層62,72は、湾曲部PL2が描くカーブの外周側に位置しているので、信号ライン20同士での電気的な干渉の影響を低減できる。 Furthermore, in the present embodiment, the flexible printed circuit board 10 is configured with a strip transmission path for propagating electromagnetic waves, so that the function of blocking external noise is not impaired. In particular, in the bending portion PL2, when the solid ground layers 61 and 71 are present on the inner peripheral side of the bending portion PL2, it is possible to prevent the soft ground layers 62 and 72 from being in a positional relationship facing each other. Therefore, even if the straight portions PL1 are close to each other in the pleat portion PL, the electrical interference between the signal lines 20 can be prevented. In general, when the soft ground layers 62 and 72 are provided over the entire length of the flexible printed circuit board 10, transmission loss during high-frequency transmission tends to increase. However, the soft ground layers 62 and 72 are provided in a minimum necessary portion such as the curved portion PL2 of the pleat portion PL. Moreover, the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the curved portion PL2. Therefore, it is possible to reduce the influence on characteristics such as transmission loss. Moreover, since the soft ground layers 62 and 72 are located on the outer peripheral side of the curve drawn by the bending portion PL2, the influence of electrical interference between the signal lines 20 can be reduced.
 また、本実施の形態では、軟質グランド層62,72は、バインダ樹脂組成物に導電性フィラーを混合した導電性ペーストと、蒸着により形成された金属薄膜層を備える薄膜導電性フィルムのうちの少なくとも一方を有している。ここで、導電性ペーストにおいては、導電性フィラーがバインダ樹脂組成物の内部で、他の導電性フィラーから分離された状態で移動できるので、十分な可撓性を備える構成とすることができる。また、蒸着された金属薄膜層を備える薄膜導電性フィルムにおいては、金属薄膜層が蒸着によって形成されることから、その厚みがベタグランド層61,71と比較して格段に薄くなり、それによって十分な可撓性を備える構成とすることができる。 In the present embodiment, the soft ground layers 62 and 72 include at least one of a thin film conductive film including a conductive paste obtained by mixing a conductive filler in a binder resin composition and a metal thin film layer formed by vapor deposition. Have one. Here, in an electrically conductive paste, since an electroconductive filler can move in the state isolate | separated from the other electroconductive filler inside the binder resin composition, it can be set as the structure provided with sufficient flexibility. In addition, in a thin film conductive film having a deposited metal thin film layer, the thickness of the metal thin film layer is significantly reduced compared to the solid ground layers 61 and 71 because the metal thin film layer is formed by vapor deposition. It can be set as the structure provided with flexible.
 また、本実施の形態では、第1構成例で説明したように、プリーツ部分PLにおいて軟質グランド層62,72は、信号ライン20の表面側と裏面側に交互に存在する状態で湾曲部PL2の外周側に配置されている。そのため、フレキシブルプリント基板10は、容易に伸縮することができる。すなわち、第1構成例のフレキシブルプリント基板10においては、伸縮性を向上させることが可能となる。 In the present embodiment, as described in the first configuration example, the soft ground layers 62 and 72 in the pleat portion PL are alternately provided on the front surface side and the back surface side of the signal line 20 in the curved portion PL2. It is arranged on the outer peripheral side. Therefore, the flexible printed circuit board 10 can easily expand and contract. That is, in the flexible printed circuit board 10 of the first configuration example, the stretchability can be improved.
 さらに、本実施の形態では、第2構成例で説明したように、プリーツ部分PLにおいて軟質グランド層62,72は、信号ライン20の表面側か裏面側のいずれか一方に存在する状態で湾曲部PL2の外周側に配置されている。そのため、ロボット等のアームの関節等のような外部装置の回動部位に第2構成例のフレキシブルプリント基板10を用いることで、動作時に信号ライン20に作用する応力を小さくすることができ、また繰り返し動作に耐える構造となる。 Further, in the present embodiment, as described in the second configuration example, in the pleated portion PL, the soft ground layers 62 and 72 are curved portions in a state where they are present on either the front surface side or the back surface side of the signal line 20. It arrange | positions at the outer peripheral side of PL2. Therefore, by using the flexible printed circuit board 10 of the second configuration example at the rotation part of an external device such as a joint of an arm such as a robot, the stress acting on the signal line 20 during operation can be reduced. The structure can withstand repeated operations.
 また、本実施の形態では、グランド層60,70には、ベタグランド層61,71(硬質グランド層)の一端側と軟質グランド層62,72の他端側とが電気的に導通する状態で重ねられた重なり部分64が設けられている。かかる重なり部分64,74の存在により、ベタグランド層61,71と軟質グランド層62,72とが一体的なグランド層を構成することができる。 In the present embodiment, the ground layers 60 and 70 are electrically connected to one end side of the solid ground layers 61 and 71 (hard ground layer) and the other end side of the soft ground layers 62 and 72. An overlapped portion 64 is provided. Due to the presence of the overlapping portions 64 and 74, the solid ground layers 61 and 71 and the soft ground layers 62 and 72 can form an integral ground layer.
 また、本実施の形態では、絶縁層30,40や絶縁樹脂層81,91は、熱可塑性樹脂であるLCP(Liquid Crystal Polymer)を材質として形成されている。このため、加熱成形前のフレキシブルプリント基板10に対して加熱成形を行うと、複数の湾曲部PL2を有するプリーツ部分PLを容易に形成することが可能となる。 In the present embodiment, the insulating layers 30 and 40 and the insulating resin layers 81 and 91 are made of LCP (Liquid Crystal Polymer) which is a thermoplastic resin. For this reason, when heat forming is performed on the flexible printed circuit board 10 before heat forming, a pleated portion PL having a plurality of curved portions PL2 can be easily formed.
 さらに、本実施の形態では、湾曲部PL2に位置するグランド層60,70には、層間接続用のめっき被膜が形成されていない構成となっている。このため、湾曲部PL2は曲がり易い状態となっている。 Furthermore, in the present embodiment, the ground layers 60 and 70 located in the curved portion PL2 are configured such that a plating film for interlayer connection is not formed. For this reason, the bending part PL2 is in a state where it is easy to bend.
 また、本実施の形態では、加熱成形前のフレキシブルプリント基板10を、治具400を用いて加熱成形している。このため、フレキシブルプリント基板10の先端側を先端固定部材410で位置決めし、さらにフレキシブルプリント基板10にテンションを加えた状態で加熱成形することで、位置ずれのない良好なプリーツ部分PLを有するフレキシブルプリント基板10を成形することができる。 In the present embodiment, the flexible printed circuit board 10 before heat forming is heat formed using the jig 400. For this reason, the flexible printed board 10 is positioned with the tip fixing member 410, and further, the flexible printed board 10 is heat-molded in a state where a tension is applied to the flexible printed board 10 so that a flexible print having a good pleated portion PL without misalignment is obtained. The substrate 10 can be formed.
<変形例>
 以上、本発明の一実施の形態について説明したが、本発明はこれ以外にも種々変形可能となっている。以下、それについて述べる。
<Modification>
Although one embodiment of the present invention has been described above, the present invention can be variously modified in addition to this. This will be described below.
 上述の実施の形態においては、信号ライン20は、1本のみが示されている。しかしながら、信号ライン20は、1本に限られるものではなく、ストリップライン伝送路を構成するものであれば、2本以上存在しても良い。 In the above-described embodiment, only one signal line 20 is shown. However, the number of signal lines 20 is not limited to one, and two or more signal lines 20 may exist as long as they constitute a stripline transmission line.
 また、上述の実施の形態における第2構成例では、ロボット等のアームの関節等のような外部装置の回動部位に対して、その回動部位の内径側の湾曲部PL2に軟質グランド層72が位置している。すなわち、回動部位の外径側の湾曲部PL2に位置する軟質グランド層62が存在しない構成となっている。しかしながら、回動部位の外径側の湾曲部PL2に、軟質グランド層62を配置する構成を採用しても良い。このように構成する場合、外径側の湾曲部PL2は、大きく閉じるように変形するが、その場合でも、従来構成よりは曲げ易く、また信号ライン20に断線が生じ難い構成とすることができる。 Further, in the second configuration example in the above-described embodiment, the soft ground layer 72 is provided on the curved portion PL2 on the inner diameter side of the rotation portion with respect to the rotation portion of the external device such as an arm joint of a robot or the like. Is located. That is, the soft ground layer 62 located in the curved portion PL2 on the outer diameter side of the rotating portion does not exist. However, a configuration in which the soft ground layer 62 is disposed on the curved portion PL2 on the outer diameter side of the rotating portion may be employed. When configured in this manner, the outer diameter side curved portion PL2 is deformed so as to be largely closed, but even in that case, it can be configured to be easier to bend than the conventional configuration and to prevent the signal line 20 from being broken. .
 なお、第1構成例および第2構成例において、湾曲部PL2の内周側に軟質グランド層62,72を配置し、湾曲部PL2の外周側にベタグランド層61,71を配置する構成を採用しても良い。この場合にも、従来構成よりは曲げ易く、また信号ライン20に断線が生じ難い構成とすることができる。 In the first configuration example and the second configuration example, a configuration in which the soft ground layers 62 and 72 are disposed on the inner peripheral side of the curved portion PL2 and the solid ground layers 61 and 71 are disposed on the outer peripheral side of the curved portion PL2 is adopted. You may do it. Also in this case, the signal line 20 can be bent more easily than the conventional structure, and the signal line 20 is less likely to be disconnected.
 また、第1構成例および第2構成例において、湾曲部PL2の内周側と外周側の双方に軟質グランド層62,72を配置する構成を採用すると共に、直線部PL1はベタグランド層61,71を配置する構成を採用しても良い。この場合、第1構成例および第2構成例よりも一層曲がり易くなり、また信号ライン20に断線が生じ難い構成とすることができる。また、このような構成を採用した場合でも、上述した比較例のようなグランド層60,70の全てを、軟質グランド層62,72とした構成よりも、伝送損失を低減することができる。 Further, in the first configuration example and the second configuration example, a configuration in which the soft ground layers 62 and 72 are disposed on both the inner peripheral side and the outer peripheral side of the curved portion PL2 is adopted, and the straight portion PL1 is a solid ground layer 61, A configuration in which 71 is arranged may be adopted. In this case, it is easier to bend than the first configuration example and the second configuration example, and the signal line 20 is less likely to be disconnected. Even when such a configuration is adopted, transmission loss can be reduced as compared with a configuration in which all of the ground layers 60 and 70 as in the comparative example described above are the soft ground layers 62 and 72.
 また、上述の実施の形態においては、フレキシブルプリント基板10は、同一のピッチで同一の大きさの湾曲部PL2が配置されたプリーツ部分PLを有している。しかしながら、湾曲部PL2が配置されるピッチは、同一でなくても良く、互いに異なるピッチまたは一部が異なるピッチとなるように湾曲部PL2が配置されていても良い。また、ある湾曲部PL2の大きさ(半径等)が、他の湾曲部PL2の大きさ(半径等)に対して、異なっていても良い。また、あるピッチや大きさで複数の湾曲部PL2が配置されているものに対して、別のピッチや大きさで複数の湾曲部PL2が配置されているものを組み合わせても良い。 Further, in the above-described embodiment, the flexible printed board 10 has the pleat portion PL in which the curved portions PL2 having the same size are arranged at the same pitch. However, the pitches at which the curved portions PL2 are arranged may not be the same, and the curved portions PL2 may be arranged so that the pitches are different from each other or partially different. Further, the size (radius etc.) of a certain curved portion PL2 may be different from the size (radius etc.) of another curved portion PL2. Moreover, you may combine what has several bending part PL2 arrange | positioned by another pitch and magnitude | size with respect to what has arranged several bending part PL2 with a certain pitch and magnitude | size.
 10,10F…フレキシブルプリント基板、11…信号パッド、12…導電スルーホール、12a…貫通孔、12b…導電被膜、13…GNDパッド、14…導電スルーホール、14a…貫通孔、14b…導電被膜、15…導電被膜層、20…信号ライン、21…受けランド、30,40…絶縁層、50…接着材層、60,70…グランド層、61,71…ベタグランド層(硬質グランド層に対応)、62,72…軟質グランド層、63…除去部、64…重なり部分、80,90…カバー層、81,91…絶縁樹脂層、82,92…接着材層、100…両面銅張積層板、101…ベース銅箔層、200…片面銅張積層板、201…ベース銅箔層、300…積層接着材、400…治具、410…先端固定部材、411…先端受部、412…掛止ピン、420…治具ピン、C1~C6…中間生成物、PL…プリーツ部分、PL1…直線部、PL2…湾曲部
 
 
DESCRIPTION OF SYMBOLS 10,10F ... Flexible printed circuit board, 11 ... Signal pad, 12 ... Conductive through-hole, 12a ... Through-hole, 12b ... Conductive film, 13 ... GND pad, 14 ... Conductive through-hole, 14a ... Through-hole, 14b ... Conductive film, DESCRIPTION OF SYMBOLS 15 ... Conductive film layer, 20 ... Signal line, 21 ... Receiving land, 30, 40 ... Insulating layer, 50 ... Adhesive layer, 60, 70 ... Ground layer, 61, 71 ... Solid ground layer (corresponding to hard ground layer) 62, 72 ... soft ground layer, 63 ... removal part, 64 ... overlapping part, 80, 90 ... cover layer, 81, 91 ... insulating resin layer, 82, 92 ... adhesive layer, 100 ... double-sided copper-clad laminate, DESCRIPTION OF SYMBOLS 101 ... Base copper foil layer, 200 ... Single-sided copper clad laminated board, 201 ... Base copper foil layer, 300 ... Laminate adhesive, 400 ... Jig, 410 ... Tip fixing member, 411 ... Tip receiving part, 412 ... Latch Down, 420 ... jig pins, C1 ~ C6 ... intermediate product, PL ... pleated portion, PL1 ... straight portion, PL2 ... curved portion

Claims (9)

  1.  信号ラインと、この信号ラインを両側から覆うと共に熱可塑性樹脂を材質とする絶縁層と、それぞれの前記絶縁層を挟んで前記信号ラインと対向する一対のグランド層とを備えることで、少なくとも1組のストリップライン伝送路を有するフレキシブルプリント基板であって、
     複数個所に湾曲している湾曲部が成形されており、その湾曲部が開くまたは閉じるように湾曲するプリーツ部分を備え、
     前記グランド層は、金属面が設けられて電磁波の遮蔽性を備える硬質グランド層と、この硬質グランド層よりも可撓性に優れると共に前記硬質グランド層よりも電磁波の遮蔽性に劣る軟質グランド層と、を有していて、
     前記軟質グランド層は前記湾曲部の外周側と内周側のうちの少なくとも一方側に配置されている、
     ことを特徴とするフレキシブルプリント基板。
    A signal line; an insulating layer that covers the signal line from both sides and is made of a thermoplastic resin; and a pair of ground layers that face the signal line across the insulating layer, so that at least one set is provided. A flexible printed circuit board having a stripline transmission line of
    A curved portion that is curved in a plurality of places is formed, and includes a pleat portion that curves so that the curved portion opens or closes,
    The ground layer includes a hard ground layer provided with a metal surface and having electromagnetic wave shielding properties, and a soft ground layer that is superior in flexibility than the hard ground layer and inferior in electromagnetic wave shielding properties than the hard ground layer, and Have
    The soft ground layer is disposed on at least one of the outer peripheral side and the inner peripheral side of the curved portion,
    A flexible printed circuit board characterized by that.
  2.  請求項1記載のフレキシブルプリント基板であって、
     前記軟質グランド層は、バインダ樹脂組成物に導電性フィラーを混合した導電性ペーストと、蒸着により形成された金属薄膜層を備える薄膜導電性フィルムのうちの少なくとも一方を有している、
     ことを特徴とするフレキシブルプリント基板。
    The flexible printed circuit board according to claim 1,
    The soft ground layer has at least one of a conductive paste obtained by mixing a conductive filler in a binder resin composition and a thin film conductive film including a metal thin film layer formed by vapor deposition.
    A flexible printed circuit board characterized by that.
  3.  請求項1または2記載のフレキシブルプリント基板であって、
     前記軟質グランド層は前記湾曲部の外周側に配置されていると共に、前記硬質グランド層は前記湾曲部の内周側に配置されている、
     ことを特徴とするフレキシブルプリント基板。
    A flexible printed circuit board according to claim 1 or 2,
    The soft ground layer is disposed on the outer peripheral side of the curved portion, and the hard ground layer is disposed on the inner peripheral side of the curved portion.
    A flexible printed circuit board characterized by that.
  4.  請求項3記載のフレキシブルプリント基板であって、
     前記プリーツ部分は、前記湾曲部のカーブの向きが交互に切り替わることで蛇腹状に設けられていて、
     前記軟質グランド層は、前記信号ラインの表面側と裏面側に交互に存在する状態で前記湾曲部の外周側に配置されている、
     ことを特徴とするフレキシブルプリント基板。
    The flexible printed circuit board according to claim 3,
    The pleat portion is provided in a bellows shape by alternately switching the direction of the curve of the curved portion,
    The soft ground layer is arranged on the outer peripheral side of the curved portion in a state alternately present on the front side and the back side of the signal line,
    A flexible printed circuit board characterized by that.
  5.  請求項3記載のフレキシブルプリント基板であって、
     前記プリーツ部分は、前記湾曲部のカーブの向きが交互に切り替わることで蛇腹状に設けられていて、
     前記軟質グランド層は、前記信号ラインの表面側か裏面側のいずれか一方に存在する状態で前記湾曲部の外周側に配置されている、
     ことを特徴とするフレキシブルプリント基板。
    The flexible printed circuit board according to claim 3,
    The pleat portion is provided in a bellows shape by alternately switching the direction of the curve of the curved portion,
    The soft ground layer is disposed on the outer peripheral side of the curved portion in a state of being present on either the front side or the back side of the signal line.
    A flexible printed circuit board characterized by that.
  6.  請求項1から5のいずれか1項に記載のフレキシブルプリント基板であって、
     前記グランド層には、前記硬質グランド層の一端側と前記軟質グランド層の他端側とが電気的に導通する状態で重ねられた重なり部分が設けられている、
     ことを特徴とするフレキシブルプリント基板。
    The flexible printed circuit board according to any one of claims 1 to 5,
    The ground layer is provided with an overlapping portion in which one end side of the hard ground layer and the other end side of the soft ground layer are electrically connected to each other.
    A flexible printed circuit board characterized by that.
  7.  請求項1から6のいずれか1項に記載のフレキシブルプリント基板であって、
     前記絶縁層は、熱可塑性樹脂であるLCP(Liquid Crystal Polymer)を材質として形成されている、
     ことを特徴とするフレキシブルプリント基板。
    The flexible printed circuit board according to any one of claims 1 to 6,
    The insulating layer is made of LCP (Liquid Crystal Polymer), which is a thermoplastic resin,
    A flexible printed circuit board characterized by that.
  8.  請求項1から7のいずれか1項に記載のフレキシブルプリント基板であって、
     前記湾曲部に位置する前記グランド層には、層間接続用のめっき被膜が形成されていない、
     ことを特徴とするフレキシブルプリント基板。
    The flexible printed circuit board according to any one of claims 1 to 7,
    In the ground layer located in the curved portion, a plating film for interlayer connection is not formed,
    A flexible printed circuit board characterized by that.
  9.  信号ラインと、この信号ラインを両側から覆うと共に熱可塑性樹脂を材質とする絶縁層と、それぞれの前記絶縁層を挟んで前記信号ラインと対向する一対のグランド層とを備えることで、少なくとも1組のストリップライン伝送路を有するフレキシブルプリント基板の製造方法であって、
     前記絶縁層の両面にベース銅箔層を有する両面銅張積層板のうち、少なくとも1本の前記信号ラインを一方の面側の前記ベース銅箔層に形成する第1工程と、
     前記前記絶縁層の片面にベース銅張積層板を有する片面銅張積層板を、積層接着材を介して積層する第2工程と、
     前記第2工程により形成された中間生成物の所定部位に対して、貫通孔を形成する第3工程と、
     前記貫通孔およびその開口周囲に導電被膜を形成して、導電スルーホールを形成する第4工程と、
     前記第4工程で形成された中間生成物のうち、前記信号ラインと対向する前記ベース銅箔層に対してパターニングを行うことで、いずれか一方の面側の所定部位から当該ベース銅箔層を除去した除去部を形成し、その反対の面側に導電部分が面状に設けられている硬質グランド層を形成する第5工程と、
     前記除去部に対して、前記硬質グランド層よりも可撓性に富むと共に前記硬質グランド層よりも電磁波の遮蔽性に劣る軟質グランド層を覆うように形成する第6工程と、
     前記軟質グランド層および前記硬質グランド層に対し、接着材層を介して絶縁樹脂層で被覆させる第7工程と、
     前記第7工程で形成された加熱成形前のフレキシブルプリント基板に対し、複数の部位を湾曲させた状態で加熱成形を行い、その加熱成形の後に、前記軟質グランド層が外周側に位置する複数の湾曲部が存在するプリーツ部分を形成する第8工程と、
     を備えることを特徴とするフレキシブルプリント基板の製造方法。
     
    A signal line; an insulating layer that covers the signal line from both sides and is made of a thermoplastic resin; and a pair of ground layers that face the signal line across the insulating layer, so that at least one set is provided. A method of manufacturing a flexible printed circuit board having a stripline transmission line of
    Of the double-sided copper clad laminate having a base copper foil layer on both sides of the insulating layer, a first step of forming at least one of the signal lines on the base copper foil layer on one side;
    A second step of laminating a single-sided copper-clad laminate having a base copper-clad laminate on one side of the insulating layer via a laminated adhesive;
    A third step of forming a through hole for a predetermined portion of the intermediate product formed by the second step;
    A fourth step of forming a conductive coating around the through hole and the opening thereof to form a conductive through hole;
    Of the intermediate product formed in the fourth step, by patterning the base copper foil layer facing the signal line, the base copper foil layer is removed from a predetermined portion on either side. Forming a removed removed portion, and forming a hard ground layer in which a conductive portion is provided in a planar shape on the opposite surface side; and
    A sixth step of forming a soft ground layer which is richer in flexibility than the hard ground layer and inferior to the hard ground layer in shielding electromagnetic waves with respect to the removal portion;
    A seventh step of covering the soft ground layer and the hard ground layer with an insulating resin layer via an adhesive layer;
    The flexible printed circuit board formed by the seventh step is subjected to heat forming in a state where a plurality of portions are curved, and after the heat forming, the plurality of soft ground layers positioned on the outer peripheral side. An eighth step of forming a pleated portion having a curved portion;
    The manufacturing method of the flexible printed circuit board characterized by the above-mentioned.
PCT/JP2015/073869 2015-01-16 2015-08-25 Flexible printed circuit board and method for manufacturing flexible printed circuit board WO2016113942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580002381.XA CN106031309B (en) 2015-01-16 2015-08-25 Flexible printed circuit board and method for manufacturing flexible printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-006926 2015-01-16
JP2015006926A JP6504828B2 (en) 2015-01-16 2015-01-16 Flexible printed circuit board and method of manufacturing flexible printed circuit board

Publications (1)

Publication Number Publication Date
WO2016113942A1 true WO2016113942A1 (en) 2016-07-21

Family

ID=56405500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073869 WO2016113942A1 (en) 2015-01-16 2015-08-25 Flexible printed circuit board and method for manufacturing flexible printed circuit board

Country Status (3)

Country Link
JP (1) JP6504828B2 (en)
CN (1) CN106031309B (en)
WO (1) WO2016113942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013449A1 (en) * 2018-07-09 2020-01-16 삼성전자 주식회사 Electronic device comprising flexible printed circuit board having arranged thereon plurality of ground wiring surrounding signal wiring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045882A (en) * 2015-08-27 2017-03-02 富士通株式会社 Flexible substrate, manufacturing method thereof and electronic apparatus
CN106851964B (en) * 2017-03-09 2019-08-20 浙江大学 A kind of manufacturing method of curved surface circuit production
CN114173495A (en) * 2021-12-06 2022-03-11 博罗县精汇电子科技有限公司 Method for manufacturing multilayer flexible circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176901A (en) * 2008-01-23 2009-08-06 Casio Hitachi Mobile Communications Co Ltd Flexible circuit board and electronic equipment
WO2012147412A1 (en) * 2011-04-26 2012-11-01 日本メクトロン株式会社 Flexible circuit and method for manufacturing same
JP5610110B1 (en) * 2012-12-12 2014-10-22 株式会社村田製作所 Flexible substrate and electronic device
WO2014174882A1 (en) * 2013-04-25 2014-10-30 日本メクトロン株式会社 Printed wire board and printed wire board manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212438A (en) * 2009-03-10 2010-09-24 Sumitomo Bakelite Co Ltd Circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176901A (en) * 2008-01-23 2009-08-06 Casio Hitachi Mobile Communications Co Ltd Flexible circuit board and electronic equipment
WO2012147412A1 (en) * 2011-04-26 2012-11-01 日本メクトロン株式会社 Flexible circuit and method for manufacturing same
JP5610110B1 (en) * 2012-12-12 2014-10-22 株式会社村田製作所 Flexible substrate and electronic device
WO2014174882A1 (en) * 2013-04-25 2014-10-30 日本メクトロン株式会社 Printed wire board and printed wire board manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013449A1 (en) * 2018-07-09 2020-01-16 삼성전자 주식회사 Electronic device comprising flexible printed circuit board having arranged thereon plurality of ground wiring surrounding signal wiring
KR20200005950A (en) * 2018-07-09 2020-01-17 삼성전자주식회사 Electronic device including a flexible circuit board on which a plurality of ground wirings surrounding signal wirings
US11202364B2 (en) 2018-07-09 2021-12-14 Samsung Electronics Co., Ltd. Electronic device comprising flexible printed circuit board having arranged thereon plurality of ground wiring surrounding signal wiring
KR102620548B1 (en) * 2018-07-09 2024-01-03 삼성전자주식회사 Electronic device including a flexible circuit board on which a plurality of ground wirings surrounding signal wirings

Also Published As

Publication number Publication date
CN106031309B (en) 2020-01-31
JP2016134438A (en) 2016-07-25
JP6504828B2 (en) 2019-04-24
CN106031309A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6362444B2 (en) Flexible printed circuit board and method for manufacturing flexible printed circuit board
JP6532409B2 (en) Shielded electrical cable
WO2016113942A1 (en) Flexible printed circuit board and method for manufacturing flexible printed circuit board
JP6190345B2 (en) Printed wiring board
TWI453768B (en) Composite flexible circuit cable
JP4414365B2 (en) High-speed transmission board
WO2011132343A1 (en) Flexible circuit board and production method therefor
WO2016024415A1 (en) Extensible flexible printed circuit board and method for manufacturing extensible flexible printed circuit board
US9445493B2 (en) Signal line and manufacturing method therefor
WO2017130473A1 (en) Flexible printed substrate and method of manufacturing flexible printed substrate
JP2007281145A (en) Flexible wiring member
JP2013051387A (en) Electronic circuit board
US20160247604A1 (en) Cable structure
WO2019160149A1 (en) Plug connector, connector system, and flying body
KR20160073860A (en) Flexible cable and method of manufacturing the same
JP6048719B2 (en) Printed wiring board and method for manufacturing the printed wiring board
TWI476788B (en) Flexible standard cable and circuit board integrated cable structure
CN104284529A (en) Rigid-flexible circuit board and manufacturing method thereof
CN212259433U (en) High-frequency high-speed circuit board
TWI737328B (en) Flexible circuit board
WO2014065172A1 (en) Flexible substrate
JP2018174248A (en) Wiring board, structure including the wiring board, and method for mounting wiring board
TWM587354U (en) Flexible flat cable structure
JP2008294151A (en) Flexible printed board
KR101408097B1 (en) Sheet for impedance matching and fabricating method Flexible Flat Cable using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877894

Country of ref document: EP

Kind code of ref document: A1