WO2016113881A1 - Elevator device and control method therefor - Google Patents

Elevator device and control method therefor Download PDF

Info

Publication number
WO2016113881A1
WO2016113881A1 PCT/JP2015/050959 JP2015050959W WO2016113881A1 WO 2016113881 A1 WO2016113881 A1 WO 2016113881A1 JP 2015050959 W JP2015050959 W JP 2015050959W WO 2016113881 A1 WO2016113881 A1 WO 2016113881A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
reference position
power supply
self
safety monitoring
Prior art date
Application number
PCT/JP2015/050959
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 益誠
大樹 福井
琢夫 釘谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/050959 priority Critical patent/WO2016113881A1/en
Publication of WO2016113881A1 publication Critical patent/WO2016113881A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions

Definitions

  • the present invention relates to an elevator apparatus that performs a car position recognition operation when power supply is resumed after power supply is cut off, and a control method therefor.
  • a standby signal is output from the elevator control device to a device such as a drive device, and power supply to the device such as the drive device is cut off. At this time, power supply to the destination floor registration device and the hall call registration device is maintained.
  • the power supply to some devices is stopped by the elevator control device when it is not in use. At this time, the power supply to the safety monitoring device is also stopped. When the power supply is cut off, the safety monitoring device stops functioning without following the procedure for storing the position information. For this reason, when the power supply is resumed, the elevator control device performs a car position recognition operation in which the safety monitoring device moves the car to a position where the car position is recognized (see, for example, Patent Document 2).
  • the elevator control apparatus performs the car position recognition operation when the power supply is resumed, but the car speed in the car position recognition operation is limited to a low value. Since it is not known whether the car position can be recognized efficiently if the car is driven in the direction, the car position recognition driving time may be increased, and it is required to further reduce the time required for preparation for service resumption. Yes. In particular, in an elevator apparatus with a high head, when an inefficient car position recognition operation is performed, it takes a long time to restart the service.
  • the present invention has been made to solve the above-described problems, and has sufficiently reduced the time required for preparation for service resumption when the power supply is resumed after stopping the power supply. It is an object of the present invention to obtain an elevator apparatus and a control method thereof that can suppress the decrease.
  • An elevator apparatus includes a car that moves up and down in a hoistway, a car position detection device that generates a signal corresponding to the movement of the car, and a reference position detection device that detects that the car is located at a reference position in the hoistway , A car position storage unit for detecting the moving distance of the car from the reference position based on signals from the car position detecting device and the reference position detecting device and storing it as car position information, and a reference position memory for storing information on the reference position And an elevator control device that controls the operation of the car, and a safety monitoring device that monitors the presence or absence of an abnormality, and after the power supply to the elevator control device and the safety monitoring device is cut off, the power supply When the vehicle is restarted, the safety monitoring device issues a command for limiting the speed of the car and a command for performing a car position recognition operation for moving the car to the reference position in order to recognize the car position.
  • the elevator control device When the elevator control device performs the car position recognition operation, the elevator control device stores the car position information immediately before the power supply stored in the car position storage unit stops and the reference position storage unit. The car is moved to the shortest destination in order to detect the reference position by comparing the information with the reference position information.
  • the elevator apparatus according to the present invention includes a car that moves up and down in the hoistway, a car position detection device that generates a signal corresponding to the movement of the car, and a reference position that detects that the car is located at a reference position in the hoistway.
  • a car position storage unit that detects the movement distance of the car from the reference position based on signals from the detection device, the car position detection device, and the reference position detection device, and stores it as car position information, and a reference for storing reference position information
  • an elevator control device that controls the operation of the car
  • a safety monitoring device that monitors the presence or absence of an abnormality
  • the reference position detection device is a self-diagnosis device that diagnoses the presence or absence of its own failure.
  • the elevator apparatus control method further includes a car position for moving the car to a reference position in the hoistway in order to recognize the car position when the power supply is resumed after the power supply is cut off.
  • a car position for moving the car to a reference position in the hoistway in order to recognize the car position when the power supply is resumed after the power supply is cut off.
  • the elevator apparatus and its control method of the present invention it is possible to sufficiently shorten the time required for preparation for service restart when the power supply is restarted after stopping the power supply, and to suppress the deterioration of serviceability.
  • FIG. 1 It is a graph which shows an example of the specific driving
  • FIG. It is a block diagram which shows the elevator apparatus by Embodiment 2 of this invention. It is a block diagram which shows the modification which added the reference position detection apparatus and detected body of Embodiment 1 to the elevator apparatus of Embodiment 2.
  • FIG. 1 is a block diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
  • a machine room 2 is provided in the upper part of the hoistway 1.
  • a drive device 3 is installed in the machine room 2.
  • the drive device 3 includes a drive sheave 4, a motor (not shown) that rotates the drive sheave 4, and a brake (not shown) that brakes the rotation of the drive sheave 4.
  • a suspension 5 is wound around the drive sheave 4.
  • a car 6 is connected to the first end of the suspension body 5.
  • a counterweight 7 is connected to the second end of the suspension body 5.
  • the car 6 and the counterweight 7 are suspended in the hoistway 1 by the suspension body 5 and are moved up and down in the hoistway 1 by the driving force of the driving device 3.
  • a pair of car guide rails (not shown) for guiding the raising and lowering of the car 6 and a pair of counterweight guide rails (not shown) for guiding the raising and lowering of the counterweight 7 are installed. Has been.
  • an elevator control device 8 and a safety monitoring device (electronic safety device) 9 are installed.
  • the elevator control device 8 controls the operation of the car 6 by controlling the drive device 3.
  • the elevator control device 8 performs operation management of the car 6, control of the power source, and the like.
  • the safety monitoring device 9 monitors the state of the elevator device (whether there is an abnormality).
  • Each of the elevator control device 8 and the safety monitoring device 9 has an independent computer. Thereby, the safety monitoring device 9 monitors the state of the elevator device independently of the elevator control device 8.
  • a governor 10 is installed in the machine room 2.
  • the governor 10 includes a governor sheave 11.
  • a governor rope 12 is wound around the governor sheave 11.
  • the governor rope 12 is laid annularly in the hoistway 1 and connected to the car 6. Further, the governor rope 12 is wound around a tension wheel 13 disposed at the lower part of the hoistway 1.
  • the governor sheave 11 rotates as the car 6 moves up and down. That is, when the car 6 moves up and down, the governor rope 12 circulates and the governor sheave 11 rotates at a rotational speed corresponding to the traveling speed of the car 6.
  • the governor sheave 11 is provided with a car position detecting device 14 for detecting a relative car position.
  • the car position detection device 14 generates a signal corresponding to the movement of the car 6.
  • an encoder that generates a pulse signal corresponding to the rotation of the governor sheave 11 or a resolver is used.
  • a detected object 15 is installed at a reference position in the hoistway 1.
  • a reference position detection device 16 is mounted on the car 6. The reference position detection device 16 detects that the car 6 is located at the reference position in the hoistway 1 by detecting the detected object 15.
  • the reference position is a predetermined position in an area through which the car 6 in the hoistway 1 passes.
  • the reference position is set to one position within the range from the lowest floor to the position where the car 6 stopped on the lowest floor rises at the acceleration of normal operation and reaches the rated speed.
  • the detected object 15 for example, a plate having unique information such as ID information is used.
  • the reference position detection device 16 for example, a sensor that reads information on the plate when the car 6 passes the reference position is used.
  • a car shock absorber 17 and a counterweight shock absorber 18 are installed at the bottom (pit) of the hoistway 1.
  • FIG. 2 is a block diagram showing a control system of the elevator apparatus of FIG.
  • the elevator control device 8 includes a car position storage unit 21, a first reference position storage unit 22, and a destination determination unit 23.
  • the car position storage unit 21 stores the latest car position information.
  • the first reference position storage unit 22 stores a reference position in the hoistway 1.
  • the destination determination unit 23 determines the destination of the car position recognition operation that is performed when the power supply is resumed.
  • the functions of the first reference position storage unit 22 and the destination determination unit 23 are realized by a computer of the elevator apparatus.
  • the safety monitoring device 9 has a second reference position storage unit 24 and a self-diagnosis command unit 25.
  • the second reference position storage unit 24 stores a reference position in the hoistway 1.
  • the self-diagnosis command unit 25 outputs a self-diagnosis command to the reference position detection device 16.
  • the functions of the second reference position storage unit 24 and the self-diagnosis command unit 25 are realized by the computer of the safety monitoring device 9.
  • the reference position detection device 16 has a self-diagnosis unit 26 for diagnosing the presence or absence of a self-failure in response to a self-diagnosis command from the self-diagnosis command unit 25.
  • the reference position where the detected object 15 is installed is stored in advance at the time of factory shipment.
  • the car position storage unit 21 receives a signal from the car position detection device 14 and a signal from the reference position detection device 16.
  • the car position storage unit 21 detects the movement distance of the car 6 from the reference position based on the signals from the car position detection device 14 and the reference position detection device 16, and stores it as car position information. Further, the car position storage unit 21 always stores the latest car position information while updating it.
  • the car position storage unit 21 As the car position storage unit 21, the first reference position storage unit 22, and the second reference position storage unit 24, a memory that continues to store information even during a power failure is used.
  • the signal from the car position detection device 14 and the signal from the reference position detection device 16 are directly input to the safety monitoring device 9 without passing through the elevator control device 8.
  • the safety monitoring device 9 is set with an overspeed monitoring reference V ⁇ b> 1 during normal operation that changes according to the car position.
  • the overspeed monitoring reference V1 is set so as to continuously decrease toward the final floor (the lowermost floor and the uppermost floor) in the car deceleration section of the hoistway terminal.
  • a traveling curve V0 is a curve depicting a trajectory of speed when the car 6 normally travels from the upper terminal floor (or the lower terminal floor) to the lower terminal floor (or the upper terminal floor).
  • the overspeed monitoring reference V1 is set higher than the travel curve V0, and is set so as not to detect the overspeed as long as the car 6 travels normally.
  • the safety monitoring device 9 monitors the car speed using the overspeed monitoring reference V1 that changes according to the position of the car 6, the reference position is determined based on the signals from the car position detection device 14 and the reference position detection device 16.
  • the moving distance of the car 6 from (for example, P1 in FIG. 3) is detected and stored as car position information.
  • the shock absorbers 17 and 18 installed at the bottom of the hoistway 1 are used. Instead of the shock absorber corresponding to the reference value V11, a small shock absorber corresponding to the reference value V10 can be applied.
  • the safety monitoring device 9 Is output to the elevator control device 8.
  • a command for limiting the vehicle (speed limit command) and a command for executing the car position recognition operation for moving the car 6 for recognizing the car position to the reference position (car position recognition command) are output to the elevator control device 8.
  • the car position information immediately before the power supply stored in the car position storage unit 21 is stopped and the first reference position storage unit 22 are stored.
  • the car 6 is moved to the shortest destination in order to detect the reference position by comparing the information with the reference position information.
  • the safety monitoring device 9 is also set with an overspeed monitoring reference V1 'during the car position recognition operation as shown in FIG.
  • the overspeed monitoring reference V ⁇ b> 1 ′ is constant regardless of the position of the car 6. If the power supply is resumed after the power supply to the elevator control device 8 and the safety monitoring device 9 is cut off, the car 6 may be moving during the power cut-off. For this reason, the safety monitoring device 9 cannot use the signal from the car position detecting device 14 until the detected object 15 is detected by the reference position detecting device 16.
  • an overspeed monitoring reference V1 ′ that is a constant reference value (V10 in this example) is applied regardless of the car position.
  • the traveling curve V0 ′ is also limited to be lower than the overspeed monitoring reference V1 ′.
  • the reference position detection device 16 is duplicated to ensure reliability because there is a possibility that the reference position detection device 16 is broken while the power supply is stopped. Further, the reference position detection device 16 has a self-diagnosis function by the self-diagnosis unit 26 in order to detect a failure that cannot be prevented even by duplication.
  • the self-diagnosis unit 26 outputs a normal diagnosis signal to the self-diagnosis command unit 25 if the duplicated reference position detection device 16 is normal with respect to the self-diagnosis command from the safety monitoring device 9.
  • FIG. 5 is a flowchart showing the operation of the car monitoring operation of the safety monitoring device 9 of FIG.
  • a stop command is first output to the elevator control device 8 (step S1). This is because it is inappropriate if the car 6 is moving at the time of resumption of power supply, so that the stopped state of the car 6 can be obtained more reliably.
  • a speed limit command corresponding to the low excessive speed monitoring reference V1 'is output to the elevator control device 8 (step S2).
  • a self-diagnosis command is output to the self-diagnosis unit 26 (step S3).
  • it is determined whether or not the reference position detection device 16 is normal (step S4).
  • a car position recognition command is output to the elevator control device 8 (step S5).
  • step S3 the process returns to step S3, the self-diagnosis command is output again, and it is determined again whether the reference position detection device 16 is normal. If it is not possible to determine that the reference position detection device 16 is normal even if the output and determination of the self-diagnosis command is repeated a set number of times, the control room is informed that the reference position detection device 16 has failed, and the elevator apparatus is suspended.
  • the self-diagnosis command may not be output again, and the notification to the control room and the suspension of the elevator device may be performed as they are.
  • step S6 After outputting the car position recognition command, it is confirmed whether or not the reference position has been confirmed (step S6).
  • a speed limit release command is output to the elevator control device 8 and the process proceeds to a monitoring operation during normal operation.
  • FIG. 6 is a flowchart showing the operation of the elevator control device 8 of FIG. 2 during the car position recognition operation.
  • the elevator control device 8 receives a car position recognition command from the safety monitoring device 9 (step S11)
  • the car position information immediately before the power supply stored in the car position storage unit 21 stops and the first reference position
  • the reference position information stored in the storage unit 22 is compared with the destination determination unit 23, and one of the stop floors of the car 6 is selected and determined as the destination of the car position recognition operation (step S12).
  • the car position recognition operation is started (step S13).
  • the driving device 3 is controlled to cause the car 6 to travel to the destination stop floor at a low speed.
  • the detected object 15 is detected by the reference position detection device 16
  • the reference position is fixed, and the car 6 arrives at the destination stop floor, the car position recognition operation is terminated, and the control is shifted to the control during the normal operation.
  • FIG. 7 is a graph showing an example of a specific traveling pattern of the car 6 in the car position recognition operation, and shows the relationship between the time and the position of the car 6.
  • the car position recognition operation starts at time T1, arrives at the reference position P1 at time T2, and the reference position is determined.
  • the reference position is determined by reaching the reference position P1 at time T3, and the time until the elevator apparatus resumes normal service increases. In particular, in an elevator with a long ascending / descending stroke, the time until resumption significantly increases.
  • the car position is moving during the power interruption, and in this case, the reference position P1 may not be reached in the shortest time.
  • the elevator system as a whole has enough time to prepare for service resumption by using the car position information immediately before the power supply stops. To reduce the serviceability.
  • the reference position detection device 16 is provided with a self-diagnosis unit 26 for diagnosing the presence or absence of a self-failure.
  • the safety monitoring device 9 After the power supply to the elevator control device 8 and the safety monitoring device 9 is cut off, When the supply is resumed, the safety monitoring device 9 outputs a self-diagnosis command to the self-diagnosis unit 26 and determines whether or not the reference position detection device 16 is normal. For this reason, it is possible to sufficiently shorten the time required for preparation for service restart when the power supply is restarted after the power supply is stopped, and to suppress deterioration in serviceability.
  • the car position recognition operation is performed at a low speed until the reference position is detected. Continue.
  • FIG. 8 is a circuit diagram showing an example of the configuration of the reference position detection device 16 of FIG.
  • the reference position detection device 16 includes an excitation coil 31, a detection coil 32, a first test coil 33, a second test coil 34, a first test switch 35, a second test switch 36, and a pair of third tests. Switches 37a and 37b are provided.
  • the excitation coil 31 and the detection coil 32 are opposed to each other across a region where the detection target 15 is extended in the vertical direction. By passing a current through the exciting coil 31, a magnetic flux is generated in the exciting coil 31. At this time, if the detection target 15 does not exist between the excitation coil 31 and the detection coil 32, a current flows through the detection coil 32 due to the magnetic flux generated in the excitation coil 31.
  • the detection target 15 exists between the excitation coil 31 and the detection coil 32
  • the eddy current generated in the detection target 15 generates a magnetic flux that cancels the magnetic flux from the excitation coil 31, and the detection coil 32 has a current. Does not flow. Based on the output from the detection coil 32, the presence or absence of the detection target 15 is detected.
  • the excitation coil 31, the detection coil 32, the first test coil 33, and the second test coil 34 are arranged on the same axis.
  • the first test coil 33 is disposed to face the end of the excitation coil 31 opposite to the detection coil 32.
  • the second test coil 34 is disposed to face the end of the detection coil 32 opposite to the excitation coil 31.
  • the first test switch 35 is normally open, but is closed during the self-diagnosis of the reference position detection device 16. By closing the first test switch 35, a closed circuit is formed in which both ends of the first test coil 34 are short-circuited.
  • the second test switch 36 is normally open, but is closed during the self-diagnosis of the reference position detection device 16. By closing the second test switch 36, a closed circuit is formed in which both ends of the second test coil 35 are short-circuited.
  • the third test switches 37a and 37b are normally open, but are closed during the self-diagnosis of the reference position detection device 16. By closing the third test switches 37a and 37b, a closed circuit in which the first test coil 33 and the second test coil 34 are connected in series is formed.
  • the self-diagnosis unit 26 includes a circuit including test coils 33 and 34 and test switches 35, 36, 37a, and 37b.
  • first and second diagnosis command signals that are two different types of signals are sequentially output as self-diagnosis commands.
  • a first diagnosis command signal for example, a high signal
  • the self-diagnosis unit 26 closes the first and second test switches 35 and 36. Thereby, an electromotive force in a direction to cancel the magnetic field of the exciting coil 31 is generated in the first test coil 33 regardless of the presence or absence of the detection target 15.
  • the output from the self-diagnosis unit 26 in response to the self-diagnosis command is always the output when the detected object 15 is present. Therefore, when a signal at the time of non-detection of the detected object is output, it can be diagnosed that a fixing failure that continues to hold the output at the time of non-detection of the detected object has occurred.
  • the self-diagnosis unit 26 closes the third test switches 37a and 37b.
  • the first and second test coils 33 and 34 and the detection coil 32 resonate due to the electromotive force and the magnetic field regardless of the presence or absence of the detection target 15.
  • the output from the self-diagnosis unit 26 in response to the self-diagnosis command is always an output when there is no detected object 15. Accordingly, when a signal at the time of detection of the detected object is output, it can be diagnosed that a fixing failure that continues to hold the output at the time of detection of the detected object has occurred.
  • FIG. 9 is a graph showing an example of a traveling pattern of the car position recognition operation when two reference positions P1 and P2 are set in the hoistway 1.
  • the reference position P1 is set at the same position as in FIG. 7, and the reference position P2 is set near the top floor.
  • the car position information Ps stored in the car position storage unit 21 immediately before the power supply is stopped is used as the reference position information P1, stored in the first reference position storage unit 22.
  • the stop floor of the shortest route capable of detecting the reference position closer to Ps is selected and determined as the destination.
  • the car position information Ps stored in the car position storage unit 21 immediately before the power supply is stopped is stored in all the first reference position storage units 22.
  • the car position recognition operation may be started so as to detect the closest reference position.
  • one reference position may be installed on the intermediate floor in the hoistway 1 and the car 6 may always be driven toward the intermediate floor in the car position recognition operation.
  • the safety monitoring device 9 may be provided with a function for checking whether or not it is installed.
  • the distance from the landing level on the lowest floor to the detected object 15 is stored in the second reference position storage unit 24, and the inspection operation from the lowest floor is performed after installation. Then, the distance from the landing level on the lowest floor to the detected object 15 is detected as an integrated value of the signal from the car position detection device 14, and the detected value is compared with the stored value. It may be determined whether it is installed within an error range.
  • the distance from the landing level on the lowest floor to the detected object 15 has been described as an example, but a dedicated switch is separately provided at the end of the hoistway 1 to detect the distance from the switch to the detected object 15. May be.
  • the distance to the detected object 15 during the inspection operation may be stored in the first and second reference position storage units 22 and 24 as a learning value. Further, the learning value may be updated by periodically performing a check operation.
  • FIG. 10 is a block diagram showing an elevator apparatus according to Embodiment 2 of the present invention.
  • a reference position detection apparatus a lower reference position switch 41 operated when the car 6 moves to the lowermost floor and an upper part operated when the car 6 moves to the uppermost floor.
  • a reference position switch 42 is used.
  • Each of the reference position switches 41 and 42 has a forcible separation mechanism (a mechanism for forcibly opening the contact when not in operation).
  • a cam 43 as an operation member for operating the reference position switches 41 and 42 is attached to the car 6.
  • the lower reference position switch 41 is installed at a position where the off state is maintained until the car 6 stops at the lowest floor after the car 6 travels downward and the lower reference position switch 41 is operated. Yes.
  • the upper reference position switch 42 is installed at a position where the off state is maintained until the car 6 stops on the top floor after the car 6 travels upward and the upper reference position switch 42 is operated. ing. Other configurations and operations are the same as those in the first embodiment.
  • the car position recognition operation is performed using the car position information immediately before the power supply is stopped, thereby sufficiently shortening the time required for service resumption and reducing the serviceability. Can be suppressed.
  • each of the reference position switches 41 and 42 has a forced separation mechanism, an on-failure in which the contact remains closed does not occur.
  • the reference position switches 41 and 42 are installed at the positions as described above, even if an off failure occurs in the reference position switches 41 and 42, the positions of the reference position switches 41 and 42 can be mistaken toward the terminal floor. The overspeed monitoring by the safety monitoring device 9 is possible.
  • the configuration can be simplified by using the reference position switches 41 and 42.
  • the reference position switches 41 and 42 generate a contact sound when operated by the cam 43, but are arranged on the lowest floor and the top floor where the traveling speed of the car 6 is low, so that the contact sound can be kept small.
  • the detection body 15 may be installed on the intermediate floor, and the reference position detection device 16 may be provided on the car 6. That is, Embodiments 1 and 2 can be combined as appropriate. Therefore, for example, the inspection operation may be performed also in the configuration of the second embodiment.
  • the destination of the car position recognition operation does not necessarily have to be a stop floor, but may be between floors.
  • the car position detecting device 14 is provided in the speed governor 10. However, if the signal corresponding to the movement of the car 6 can be generated, the car position detecting device 14 may be provided in another position such as the driving device 3. Good.
  • the configuration of the reference position detection device 16 is not limited to the first and second embodiments. In the above example, the safety monitoring device 9 that monitors the car speed is shown. However, the monitoring target is not limited to the car speed.
  • the layout of the entire elevator apparatus is not limited to the layouts shown in FIGS.
  • the present invention can be applied to an elevator apparatus of a 2: 1 roping method, an elevator apparatus in which a hoisting machine is installed in a lower part of a hoistway, and the like.
  • the present invention can be applied to all types of elevator devices such as machine room-less elevators, double deck elevators, and one-shaft multi-car elevators in which a plurality of cars are arranged in a common hoistway.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

In this elevator device, after the power supply to an elevator control device and a safety monitoring device is interrupted, if the power supply is resumed, the safety monitoring device outputs, to the elevator control device, a command that limits the speed of the car, and a command that implements car position recognition operation, which moves the car to a reference position in order to recognize the position of the car. When the elevator control device implements car position recognition operation, the car position information from the moment before the power supply stopped, said information being stored in a car position storage unit, is compared with reference position information stored in a reference position storage unit, and the car is moved to the closest destination in order to detect a reference position.

Description

エレベータ装置及びその制御方法Elevator apparatus and control method thereof
 この発明は、電力供給が遮断された後、電力供給が再開された際に、かご位置認識運転を実施するエレベータ装置及びその制御方法に関するものである。 The present invention relates to an elevator apparatus that performs a car position recognition operation when power supply is resumed after power supply is cut off, and a control method therefor.
 従来のエレベータ装置では、かごが戸閉待機した状態で一定時間が経過すると、エレベータ制御装置から駆動装置等の機器にスタンバイ信号が出力され、駆動装置等の機器への電力供給が遮断される。このとき、行先階登録装置及び乗場呼び登録装置への電力供給は維持される。 In a conventional elevator apparatus, when a certain period of time elapses in a state in which the car is in a door-open standby state, a standby signal is output from the elevator control device to a device such as a drive device, and power supply to the device such as the drive device is cut off. At this time, power supply to the destination floor registration device and the hall call registration device is maintained.
 この後、乗場呼び登録装置の操作釦が操作されると、操作された操作釦に対応する呼び方向表示灯が点灯し、呼び登録信号がエレベータ制御装置に入力される。呼び登録信号が入力されると、エレベータ制御装置から駆動装置等の機器にスタンバイ解除信号が出力され、駆動装置等の機器への電力供給が再開される(例えば、特許文献1参照)。 Thereafter, when the operation button of the hall call registration device is operated, the call direction indicator lamp corresponding to the operated operation button is turned on, and a call registration signal is input to the elevator control device. When the call registration signal is input, a standby release signal is output from the elevator control device to a device such as a drive device, and power supply to the device such as the drive device is resumed (see, for example, Patent Document 1).
 また、従来の他のエレベータ装置では、利用閑散時に、エレベータ制御装置により、一部の機器への電力供給が停止される。このとき、安全監視装置への電力供給も停止される。安全監視装置は、電力供給が断たれると、位置情報を記憶する手順を踏むことなく機能を停止する。このため、電力供給を再開したとき、エレベータ制御装置は、安全監視装置がかごの位置を認識する位置にかごを移動させるかご位置認識運転を実施する(例えば、特許文献2参照)。 Also, in other conventional elevator devices, the power supply to some devices is stopped by the elevator control device when it is not in use. At this time, the power supply to the safety monitoring device is also stopped. When the power supply is cut off, the safety monitoring device stops functioning without following the procedure for storing the position information. For this reason, when the power supply is resumed, the elevator control device performs a car position recognition operation in which the safety monitoring device moves the car to a position where the car position is recognized (see, for example, Patent Document 2).
特開2009-91132号公報JP 2009-91132 A 特開2013-119467号公報JP 2013-119467 A
 特許文献1に示された従来のエレベータ装置では、異常の有無を監視する安全監視装置への電力供給が再開されたときに、安全監視装置にエレベータの状態を認識させるための運転が必要となる。これは、待機電力の電力供給を遮断している状態からサービスを再開するまでの時間の増大の原因となり、エレベータ装置のサービス性の低下を招く。 In the conventional elevator apparatus shown in Patent Document 1, when the power supply to the safety monitoring apparatus that monitors whether there is an abnormality is resumed, an operation for causing the safety monitoring apparatus to recognize the state of the elevator is required. . This causes an increase in time until the service is restarted from the state where the power supply of standby power is cut off, resulting in a decrease in serviceability of the elevator apparatus.
 一方、特許文献2に示された従来のエレベータ装置では、電力供給再開時に、エレベータ制御装置がかご位置認識運転を実施するが、かご位置認識運転におけるかご速度は低く制限されており、また、どの方向へかごを走行させれば効率的にかご位置を認識できるかがわからないため、かご位置認識運転の時間が長くなる場合があり、サービス再開の準備にかかる時間をさらに短縮することが求められている。特に、高揚程のエレベータ装置では、非効率なかご位置認識運転を行った場合、サービス再開までに長時間を要することになる。 On the other hand, in the conventional elevator apparatus shown in Patent Document 2, the elevator control apparatus performs the car position recognition operation when the power supply is resumed, but the car speed in the car position recognition operation is limited to a low value. Since it is not known whether the car position can be recognized efficiently if the car is driven in the direction, the car position recognition driving time may be increased, and it is required to further reduce the time required for preparation for service resumption. Yes. In particular, in an elevator apparatus with a high head, when an inefficient car position recognition operation is performed, it takes a long time to restart the service.
 この発明は、上記のような課題を解決するためになされたものであり、電力供給を停止した後、電力供給を再開した際のサービス再開の準備にかかる時間を十分に短縮し、サービス性の低下を抑えることができるエレベータ装置及びその制御方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and has sufficiently reduced the time required for preparation for service resumption when the power supply is resumed after stopping the power supply. It is an object of the present invention to obtain an elevator apparatus and a control method thereof that can suppress the decrease.
 この発明に係るエレベータ装置は、昇降路内を昇降するかご、かごの移動に応じた信号を発生するかご位置検出装置、かごが昇降路内の基準位置に位置することを検出する基準位置検出装置、かご位置検出装置及び基準位置検出装置からの信号に基づいて基準位置からのかごの移動距離を検出し、かご位置情報として記憶するかご位置記憶部と、基準位置の情報を記憶する基準位置記憶部とを有しており、かごの運転を制御するエレベータ制御装置、及び異常の有無を監視する安全監視装置を備え、エレベータ制御装置及び安全監視装置への電力供給が遮断された後、電力供給が再開された場合、安全監視装置は、かごの速度を制限する指令と、かご位置を認識するためにかごを基準位置に移動させるかご位置認識運転を実施する指令とを、エレベータ制御装置に出力し、エレベータ制御装置は、かご位置認識運転を実施する場合、かご位置記憶部に記憶されている電力供給が停止する直前のかご位置情報と、基準位置記憶部に記憶されている基準位置の情報とを比較して、基準位置を検出するために最短となる行き先にかごを移動させる。
 また、この発明に係るエレベータ装置は、昇降路内を昇降するかご、かごの移動に応じた信号を発生するかご位置検出装置、かごが昇降路内の基準位置に位置することを検出する基準位置検出装置、かご位置検出装置及び基準位置検出装置からの信号に基づいて基準位置からのかごの移動距離を検出し、かご位置情報として記憶するかご位置記憶部と、基準位置の情報を記憶する基準位置記憶部とを有しており、かごの運転を制御するエレベータ制御装置、及び異常の有無を監視する安全監視装置を備え、基準位置検出装置は、自己の故障の有無を診断するための自己診断部を有しており、エレベータ制御装置及び安全監視装置への電力供給が遮断された後、電力供給が再開された場合、安全監視装置は、自己診断部に自己診断指令を出力し、基準位置検出装置が正常であるかどうかを判定する。
 さらに、この発明に係るエレベータ装置の制御方法は、電力供給が遮断された後、電力供給が再開された際に、かご位置を認識するために昇降路内の基準位置にかごを移動させるかご位置認識運転を実施する制御方法であって、かご位置認識運転を実施する場合、記憶されている電力供給が停止する直前のかご位置情報と、記憶されている基準位置の情報とを比較して、基準位置を検出するために最短となる行き先へかごを移動させる。
An elevator apparatus according to the present invention includes a car that moves up and down in a hoistway, a car position detection device that generates a signal corresponding to the movement of the car, and a reference position detection device that detects that the car is located at a reference position in the hoistway , A car position storage unit for detecting the moving distance of the car from the reference position based on signals from the car position detecting device and the reference position detecting device and storing it as car position information, and a reference position memory for storing information on the reference position And an elevator control device that controls the operation of the car, and a safety monitoring device that monitors the presence or absence of an abnormality, and after the power supply to the elevator control device and the safety monitoring device is cut off, the power supply When the vehicle is restarted, the safety monitoring device issues a command for limiting the speed of the car and a command for performing a car position recognition operation for moving the car to the reference position in order to recognize the car position. When the elevator control device performs the car position recognition operation, the elevator control device stores the car position information immediately before the power supply stored in the car position storage unit stops and the reference position storage unit. The car is moved to the shortest destination in order to detect the reference position by comparing the information with the reference position information.
The elevator apparatus according to the present invention includes a car that moves up and down in the hoistway, a car position detection device that generates a signal corresponding to the movement of the car, and a reference position that detects that the car is located at a reference position in the hoistway. A car position storage unit that detects the movement distance of the car from the reference position based on signals from the detection device, the car position detection device, and the reference position detection device, and stores it as car position information, and a reference for storing reference position information And an elevator control device that controls the operation of the car, and a safety monitoring device that monitors the presence or absence of an abnormality, and the reference position detection device is a self-diagnosis device that diagnoses the presence or absence of its own failure. When the power supply is restarted after the power supply to the elevator control device and the safety monitoring device is shut off, the safety monitoring device outputs a self-diagnosis command to the self-diagnosis unit. Reference position detecting device determines whether the normal.
The elevator apparatus control method according to the present invention further includes a car position for moving the car to a reference position in the hoistway in order to recognize the car position when the power supply is resumed after the power supply is cut off. When the car position recognition operation is performed, the car position information immediately before the stored power supply is stopped is compared with the stored reference position information. The car is moved to the shortest destination to detect the reference position.
 この発明のエレベータ装置及びその制御方法によれば、電力供給を停止した後、電力供給を再開した際のサービス再開の準備にかかる時間を十分に短縮し、サービス性の低下を抑えることができる。 According to the elevator apparatus and its control method of the present invention, it is possible to sufficiently shorten the time required for preparation for service restart when the power supply is restarted after stopping the power supply, and to suppress the deterioration of serviceability.
この発明の実施の形態1によるエレベータ装置を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the elevator apparatus by Embodiment 1 of this invention. 図1のエレベータ装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the elevator apparatus of FIG. 図2の安全監視装置に設定されている通常運転時の過大速度監視基準を示すグラフである。It is a graph which shows the overspeed monitoring standard at the time of the normal driving | operation set to the safety monitoring apparatus of FIG. 図2の安全監視装置に設定されているかご位置認識運転時の過大速度監視基準を示すグラフである。It is a graph which shows the overspeed monitoring reference | standard at the time of the cage position recognition driving | operation set to the safety monitoring apparatus of FIG. 図2の安全監視装置のかご位置認識運転時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the car position recognition driving | operation of the safety monitoring apparatus of FIG. 図2のエレベータ制御装置のかご位置認識運転時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the car position recognition driving | operation of the elevator control apparatus of FIG. かご位置認識運転における具体的な走行パターンの一例を示すグラフである。It is a graph which shows an example of the specific driving | running | working pattern in a cage position recognition driving | operation. 図1の基準位置検出装置の構成の一例を示す回路図である。It is a circuit diagram which shows an example of a structure of the reference | standard position detection apparatus of FIG. 昇降路1内に2つの基準位置を設定した場合のかご位置認識運転の走行パターンの一例を示すグラフである。It is a graph which shows an example of the driving | running | working pattern of the cage position recognition driving | operation when two reference positions are set in the hoistway 1. FIG. この発明の実施の形態2によるエレベータ装置を示す構成図である。It is a block diagram which shows the elevator apparatus by Embodiment 2 of this invention. 実施の形態2のエレベータ装置に実施の形態1の基準位置検出装置及び被検出体を追加した変形例を示す構成図である。It is a block diagram which shows the modification which added the reference position detection apparatus and detected body of Embodiment 1 to the elevator apparatus of Embodiment 2. FIG.
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1によるエレベータ装置を示す構成図である。図において、昇降路1の上部には、機械室2が設けられている。機械室2には、駆動装置3が設置されている。駆動装置3としては、巻上機が用いられている。駆動装置3は、駆動シーブ4、駆動シーブ4を回転させるモータ(図示せず)、及び駆動シーブ4の回転を制動するブレーキ(図示せず)を有している。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing an elevator apparatus according to Embodiment 1 of the present invention. In the figure, a machine room 2 is provided in the upper part of the hoistway 1. A drive device 3 is installed in the machine room 2. As the driving device 3, a hoisting machine is used. The drive device 3 includes a drive sheave 4, a motor (not shown) that rotates the drive sheave 4, and a brake (not shown) that brakes the rotation of the drive sheave 4.
 駆動シーブ4には、懸架体5が巻き掛けられている。懸架体5としては、複数本のロープ又は複数本のベルトが用いられている。懸架体5の第1の端部には、かご6が接続されている。懸架体5の第2の端部には、釣合おもり7が接続されている。 A suspension 5 is wound around the drive sheave 4. As the suspension body 5, a plurality of ropes or a plurality of belts are used. A car 6 is connected to the first end of the suspension body 5. A counterweight 7 is connected to the second end of the suspension body 5.
 かご6及び釣合おもり7は、懸架体5により昇降路1内に吊り下げられており、駆動装置3の駆動力により昇降路1内を昇降する。昇降路1内には、かご6の昇降を案内する一対のかごガイドレール(図示せず)と、釣合おもり7の昇降を案内する一対の釣合おもりガイドレール(図示せず)とが設置されている。 The car 6 and the counterweight 7 are suspended in the hoistway 1 by the suspension body 5 and are moved up and down in the hoistway 1 by the driving force of the driving device 3. In the hoistway 1, a pair of car guide rails (not shown) for guiding the raising and lowering of the car 6 and a pair of counterweight guide rails (not shown) for guiding the raising and lowering of the counterweight 7 are installed. Has been.
 機械室2には、エレベータ制御装置8及び安全監視装置(電子安全装置)9が設置されている。エレベータ制御装置8は、駆動装置3を制御することにより、かご6の運転を制御する。また、エレベータ制御装置8は、かご6の運行管理及び電源の制御等を行う。 In the machine room 2, an elevator control device 8 and a safety monitoring device (electronic safety device) 9 are installed. The elevator control device 8 controls the operation of the car 6 by controlling the drive device 3. The elevator control device 8 performs operation management of the car 6, control of the power source, and the like.
 安全監視装置9は、エレベータ装置の状態(異常の有無)を監視する。エレベータ制御装置8及び安全監視装置9は、それぞれ独立したコンピュータを有している。これにより、安全監視装置9は、エレベータ制御装置8から独立して、エレベータ装置の状態を監視する。 The safety monitoring device 9 monitors the state of the elevator device (whether there is an abnormality). Each of the elevator control device 8 and the safety monitoring device 9 has an independent computer. Thereby, the safety monitoring device 9 monitors the state of the elevator device independently of the elevator control device 8.
 機械室2には、調速機10が設置されている。調速機10は、調速機シーブ11を有している。調速機シーブ11には、調速機ロープ12が巻き掛けられている。調速機ロープ12は、昇降路1内に環状に敷設され、かご6に接続されている。また、調速機ロープ12は、昇降路1の下部に配置された張り車13に巻き掛けられている。 In the machine room 2, a governor 10 is installed. The governor 10 includes a governor sheave 11. A governor rope 12 is wound around the governor sheave 11. The governor rope 12 is laid annularly in the hoistway 1 and connected to the car 6. Further, the governor rope 12 is wound around a tension wheel 13 disposed at the lower part of the hoistway 1.
 調速機シーブ11は、かご6の昇降に伴って回転する。即ち、かご6が昇降すると、調速機ロープ12が循環移動し、かご6の走行速度に応じた回転速度で調速機シーブ11が回転する。 The governor sheave 11 rotates as the car 6 moves up and down. That is, when the car 6 moves up and down, the governor rope 12 circulates and the governor sheave 11 rotates at a rotational speed corresponding to the traveling speed of the car 6.
 調速機シーブ11には、相対的なかご位置を検出するためのかご位置検出装置14が設けられている。かご位置検出装置14は、かご6の移動に応じた信号を発生する。また、かご位置検出装置14としては、例えば、調速機シーブ11の回転に応じたパルス信号を発生するエンコーダ、又はレゾルバ等が用いられている。 The governor sheave 11 is provided with a car position detecting device 14 for detecting a relative car position. The car position detection device 14 generates a signal corresponding to the movement of the car 6. In addition, as the car position detection device 14, for example, an encoder that generates a pulse signal corresponding to the rotation of the governor sheave 11 or a resolver is used.
 昇降路1内の基準位置には、被検出体15が設置されている。かご6には、基準位置検出装置16が搭載されている。基準位置検出装置16は、被検出体15を検出することにより、かご6が昇降路1内の基準位置に位置することを検出する。 A detected object 15 is installed at a reference position in the hoistway 1. A reference position detection device 16 is mounted on the car 6. The reference position detection device 16 detects that the car 6 is located at the reference position in the hoistway 1 by detecting the detected object 15.
 基準位置は、昇降路1内のかご6が通過する領域内の予め決められた位置である。この例では、基準位置は、最下階から、最下階に停止したかご6が通常運転の加速度で上昇して定格速度に到達する位置までの範囲内の1箇所に設定されている。 The reference position is a predetermined position in an area through which the car 6 in the hoistway 1 passes. In this example, the reference position is set to one position within the range from the lowest floor to the position where the car 6 stopped on the lowest floor rises at the acceleration of normal operation and reaches the rated speed.
 被検出体15としては、例えばID情報などの固有の情報を有するプレートが用いられている。基準位置検出装置16としては、例えば、かご6が基準位置を通過する際に、プレート上の情報を読み取るセンサが用いられている。 As the detected object 15, for example, a plate having unique information such as ID information is used. As the reference position detection device 16, for example, a sensor that reads information on the plate when the car 6 passes the reference position is used.
 昇降路1の底部(ピット)には、かご緩衝器17及び釣合おもり緩衝器18が設置されている。 A car shock absorber 17 and a counterweight shock absorber 18 are installed at the bottom (pit) of the hoistway 1.
 図2は図1のエレベータ装置の制御系を示すブロック図である。エレベータ制御装置8は、かご位置記憶部21、第1の基準位置記憶部22、及び行き先決定部23を有している。かご位置記憶部21は、最新のかご位置情報を記憶する。第1の基準位置記憶部22は、昇降路1内の基準位置を記憶する。行き先決定部23は、電力供給が再開した際に行うかご位置認識運転の行き先を決定する。第1の基準位置記憶部22、及び行き先決定部23の機能は、エレベータ装置のコンピュータにより実現される。 FIG. 2 is a block diagram showing a control system of the elevator apparatus of FIG. The elevator control device 8 includes a car position storage unit 21, a first reference position storage unit 22, and a destination determination unit 23. The car position storage unit 21 stores the latest car position information. The first reference position storage unit 22 stores a reference position in the hoistway 1. The destination determination unit 23 determines the destination of the car position recognition operation that is performed when the power supply is resumed. The functions of the first reference position storage unit 22 and the destination determination unit 23 are realized by a computer of the elevator apparatus.
 安全監視装置9は、第2の基準位置記憶部24、及び自己診断指令部25を有している。第2の基準位置記憶部24は、昇降路1内の基準位置を記憶する。自己診断指令部25は、基準位置検出装置16に対して自己診断指令を出力する。第2の基準位置記憶部24及び自己診断指令部25の機能は、安全監視装置9のコンピュータにより実現される。 The safety monitoring device 9 has a second reference position storage unit 24 and a self-diagnosis command unit 25. The second reference position storage unit 24 stores a reference position in the hoistway 1. The self-diagnosis command unit 25 outputs a self-diagnosis command to the reference position detection device 16. The functions of the second reference position storage unit 24 and the self-diagnosis command unit 25 are realized by the computer of the safety monitoring device 9.
 基準位置検出装置16は、自己診断指令部25からの自己診断指令に応じて自己の故障の有無を診断するための自己診断部26を有している。第1及び第2の基準位置記憶部22,24には、被検出体15が設置される基準位置が工場出荷時に予め記憶させてある。 The reference position detection device 16 has a self-diagnosis unit 26 for diagnosing the presence or absence of a self-failure in response to a self-diagnosis command from the self-diagnosis command unit 25. In the first and second reference position storage units 22 and 24, the reference position where the detected object 15 is installed is stored in advance at the time of factory shipment.
 かご位置記憶部21には、かご位置検出装置14からの信号と基準位置検出装置16からの信号とが入力される。かご位置記憶部21は、かご位置検出装置14及び基準位置検出装置16からの信号に基づいて、基準位置からのかご6の移動距離を検出し、かご位置情報として記憶する。また、かご位置記憶部21は、常に最新のかご位置情報を更新しながら記憶する。 The car position storage unit 21 receives a signal from the car position detection device 14 and a signal from the reference position detection device 16. The car position storage unit 21 detects the movement distance of the car 6 from the reference position based on the signals from the car position detection device 14 and the reference position detection device 16, and stores it as car position information. Further, the car position storage unit 21 always stores the latest car position information while updating it.
 かご位置記憶部21、第1の基準位置記憶部22、及び第2の基準位置記憶部24としては、停電時にも情報を記憶し続けるメモリが用いられている。 As the car position storage unit 21, the first reference position storage unit 22, and the second reference position storage unit 24, a memory that continues to store information even during a power failure is used.
 安全監視装置9には、かご位置検出装置14からの信号と基準位置検出装置16からの信号とが、エレベータ制御装置8を経ずに直接入力される。安全監視装置9には、図3に示すように、かご位置に応じて変化する通常運転時の過大速度監視基準V1が設定されている。過大速度監視基準V1は、昇降路終端部のかご減速区間内では、終端階(最下階及び最上階)へ向けて連続して低くなるように設定されている。 The signal from the car position detection device 14 and the signal from the reference position detection device 16 are directly input to the safety monitoring device 9 without passing through the elevator control device 8. As shown in FIG. 3, the safety monitoring device 9 is set with an overspeed monitoring reference V <b> 1 during normal operation that changes according to the car position. The overspeed monitoring reference V1 is set so as to continuously decrease toward the final floor (the lowermost floor and the uppermost floor) in the car deceleration section of the hoistway terminal.
 図3において、走行曲線V0は、かご6が上部終端階(又は下部終端階)から下部終端階(又は上部終端階)まで正常に走行するときの速度の軌跡を描いた曲線である。過大速度監視基準V1は、走行曲線V0よりも高く設定され、かご6が正常に走行する限りは、過大速度を検出しないように設定されている。 In FIG. 3, a traveling curve V0 is a curve depicting a trajectory of speed when the car 6 normally travels from the upper terminal floor (or the lower terminal floor) to the lower terminal floor (or the upper terminal floor). The overspeed monitoring reference V1 is set higher than the travel curve V0, and is set so as not to detect the overspeed as long as the car 6 travels normally.
 安全監視装置9は、かご6の位置に応じて変化する過大速度監視基準V1を用いてかご速度を監視するため、かご位置検出装置14及び基準位置検出装置16からの信号に基づいて、基準位置(例えば図3ではP1)からのかご6の移動距離を検出し、かご位置情報として記憶する。 Since the safety monitoring device 9 monitors the car speed using the overspeed monitoring reference V1 that changes according to the position of the car 6, the reference position is determined based on the signals from the car position detection device 14 and the reference position detection device 16. The moving distance of the car 6 from (for example, P1 in FIG. 3) is detected and stored as car position information.
 図3に示すように、過大速度監視基準V1では、中間階における基準値V11よりも終端階における基準値V10が低くなっているため、昇降路1の底部に設置される緩衝器17,18として、基準値V11に対応する緩衝器ではなく、基準値V10に対応する小さな緩衝器を適用することができる。 As shown in FIG. 3, in the overspeed monitoring reference V1, since the reference value V10 at the terminal floor is lower than the reference value V11 at the intermediate floor, the shock absorbers 17 and 18 installed at the bottom of the hoistway 1 are used. Instead of the shock absorber corresponding to the reference value V11, a small shock absorber corresponding to the reference value V10 can be applied.
 例えば利用閑散時の電源の遮断又は停電などにより、エレベータ制御装置8及び安全監視装置9への電力供給が遮断された後、電力供給が再開された場合、安全監視装置9は、かご6の速度を制限する指令(速度制限指令)と、かご位置を認識するかご6を基準位置に移動させるかご位置認識運転を実施する指令(かご位置認識指令)とを、エレベータ制御装置8に出力する。 For example, when the power supply is resumed after the power supply to the elevator control device 8 and the safety monitoring device 9 is cut off due to power interruption or power failure when the use is not in use, the safety monitoring device 9 Is output to the elevator control device 8. A command for limiting the vehicle (speed limit command) and a command for executing the car position recognition operation for moving the car 6 for recognizing the car position to the reference position (car position recognition command) are output to the elevator control device 8.
 エレベータ制御装置8は、かご位置認識運転を実施する場合、かご位置記憶部21に記憶されている電力供給が停止する直前のかご位置情報と、第1の基準位置記憶部22に記憶されている基準位置の情報とを比較して、基準位置を検出するために最短となる行き先にかご6を移動させる。 When the elevator control device 8 performs the car position recognition operation, the car position information immediately before the power supply stored in the car position storage unit 21 is stopped and the first reference position storage unit 22 are stored. The car 6 is moved to the shortest destination in order to detect the reference position by comparing the information with the reference position information.
 また、安全監視装置9には、図4に示すようなかご位置認識運転時の過大速度監視基準V1’も設定されている。過大速度監視基準V1’は、かご6の位置によらず一定である。エレベータ制御装置8及び安全監視装置9への電力供給が遮断された後、電力供給が再開された場合、電力遮断中にかご6が移動している可能性がある。このため、基準位置検出装置16により被検出体15が検出されるまでは、安全監視装置9はかご位置検出装置14からの信号は使うことができない。 Also, the safety monitoring device 9 is also set with an overspeed monitoring reference V1 'during the car position recognition operation as shown in FIG. The overspeed monitoring reference V <b> 1 ′ is constant regardless of the position of the car 6. If the power supply is resumed after the power supply to the elevator control device 8 and the safety monitoring device 9 is cut off, the car 6 may be moving during the power cut-off. For this reason, the safety monitoring device 9 cannot use the signal from the car position detecting device 14 until the detected object 15 is detected by the reference position detecting device 16.
 従って、かご位置認識運転時には、図4に示すように、かご位置に関係なく一定の基準値(この例ではV10)となる過大速度監視基準V1'が適用される。このとき、走行曲線V0'も、過大速度監視基準V1'よりも低く制限される。 Therefore, during the car position recognition operation, as shown in FIG. 4, an overspeed monitoring reference V1 ′ that is a constant reference value (V10 in this example) is applied regardless of the car position. At this time, the traveling curve V0 ′ is also limited to be lower than the overspeed monitoring reference V1 ′.
 基準位置検出装置16は、電力供給の停止中に故障している可能性があるため、二重化され信頼性が確保されている。また、基準位置検出装置16は、二重化でも防ぐことができない故障を検出するために、自己診断部26による自己診断機能を有している。 The reference position detection device 16 is duplicated to ensure reliability because there is a possibility that the reference position detection device 16 is broken while the power supply is stopped. Further, the reference position detection device 16 has a self-diagnosis function by the self-diagnosis unit 26 in order to detect a failure that cannot be prevented even by duplication.
 自己診断部26は、安全監視装置9からの自己診断指令に対して、二重化された基準位置検出装置16が正常であれば、自己診断指令部25に正常診断信号を出力する。 The self-diagnosis unit 26 outputs a normal diagnosis signal to the self-diagnosis command unit 25 if the duplicated reference position detection device 16 is normal with respect to the self-diagnosis command from the safety monitoring device 9.
 図5は図2の安全監視装置9のかご位置認識運転時の動作を示すフローチャートである。電力供給の停止後に電力供給が再開されると、まずエレベータ制御装置8に対して停止指令を出力する(ステップS1)。これは、電力供給の再開時に万一かご6が動いていると不適当であるため、かご6の停止状態をより確実に得るためである。 FIG. 5 is a flowchart showing the operation of the car monitoring operation of the safety monitoring device 9 of FIG. When power supply is resumed after the power supply is stopped, a stop command is first output to the elevator control device 8 (step S1). This is because it is inappropriate if the car 6 is moving at the time of resumption of power supply, so that the stopped state of the car 6 can be obtained more reliably.
 続いて、低い過大速度監視基準V1’に対応した速度制限指令をエレベータ制御装置8に出力する(ステップS2)。この後、自己診断部26に自己診断指令を出力する(ステップS3)。そして、自己診断部26からの出力により、基準位置検出装置16が正常かどうかを判定する(ステップS4)。基準位置検出装置16が正常であると判定した場合、エレベータ制御装置8にかご位置認識指令を出力する(ステップS5)。 Subsequently, a speed limit command corresponding to the low excessive speed monitoring reference V1 'is output to the elevator control device 8 (step S2). Thereafter, a self-diagnosis command is output to the self-diagnosis unit 26 (step S3). Then, based on the output from the self-diagnosis unit 26, it is determined whether or not the reference position detection device 16 is normal (step S4). When it is determined that the reference position detection device 16 is normal, a car position recognition command is output to the elevator control device 8 (step S5).
 一方、基準位置検出装置16が正常であると判定できない場合、ステップS3に戻り、自己診断指令を再度出力し、基準位置検出装置16が正常であるかどうかを再度判定する。自己診断指令の出力と判定とを設定回数繰り返しても基準位置検出装置16が正常であると判定できない場合、基準位置検出装置16が故障していることを管理室に通報し、エレベータ装置を休止させる。 On the other hand, when it cannot be determined that the reference position detection device 16 is normal, the process returns to step S3, the self-diagnosis command is output again, and it is determined again whether the reference position detection device 16 is normal. If it is not possible to determine that the reference position detection device 16 is normal even if the output and determination of the self-diagnosis command is repeated a set number of times, the control room is informed that the reference position detection device 16 has failed, and the elevator apparatus is suspended. Let
 なお、一度目の判定で基準位置検出装置16の故障が検出された場合に、自己診断指令を再度出力せず、そのまま管理室への通報及びエレベータ装置の休止を行ってもよい。 In addition, when a failure of the reference position detection device 16 is detected by the first determination, the self-diagnosis command may not be output again, and the notification to the control room and the suspension of the elevator device may be performed as they are.
 かご位置認識指令を出力した後は、基準位置が確定できたかどうかを確認する(ステップS6)。基準位置検出装置16により被検出体15が検出され、基準位置が確定すると、エレベータ制御装置8に速度制限解除指令を出力し、通常運転時の監視動作に移行する。 After outputting the car position recognition command, it is confirmed whether or not the reference position has been confirmed (step S6). When the detected object 15 is detected by the reference position detection device 16 and the reference position is determined, a speed limit release command is output to the elevator control device 8 and the process proceeds to a monitoring operation during normal operation.
 図6は図2のエレベータ制御装置8のかご位置認識運転時の動作を示すフローチャートである。エレベータ制御装置8は、安全監視装置9からかご位置認識指令を受けると(ステップS11)、かご位置記憶部21に記憶されている電力供給が停止する直前のかご位置情報と、第1の基準位置記憶部22に記憶されている基準位置情報とを、行き先決定部23で比較し、かご位置認識運転の行き先として、かご6の停止階のうちの1つを選択し決定する(ステップS12)。 FIG. 6 is a flowchart showing the operation of the elevator control device 8 of FIG. 2 during the car position recognition operation. When the elevator control device 8 receives a car position recognition command from the safety monitoring device 9 (step S11), the car position information immediately before the power supply stored in the car position storage unit 21 stops and the first reference position The reference position information stored in the storage unit 22 is compared with the destination determination unit 23, and one of the stop floors of the car 6 is selected and determined as the destination of the car position recognition operation (step S12).
 行き先が決定すると、かご位置認識運転を開始する(ステップS13)。かご位置認識運転では、駆動装置3を制御してかご6を低速で行き先の停止階まで走行させる。かご位置認識運転中には、基準位置が確定できたかどうかを確認する(ステップS14)。基準位置検出装置16により被検出体15が検出され、基準位置が確定し、かご6が行き先の停止階に到着すると、かご位置認識運転を終了し、通常運転時の制御に移行する。 When the destination is determined, the car position recognition operation is started (step S13). In the car position recognition operation, the driving device 3 is controlled to cause the car 6 to travel to the destination stop floor at a low speed. During the car position recognition operation, it is confirmed whether or not the reference position has been confirmed (step S14). When the detected object 15 is detected by the reference position detection device 16, the reference position is fixed, and the car 6 arrives at the destination stop floor, the car position recognition operation is terminated, and the control is shifted to the control during the normal operation.
 図7はかご位置認識運転におけるかご6の具体的な走行パターンの一例を示すグラフであり、時間とかご6の位置との関係を示している。時刻T0で電力供給が再開されると、電力供給が停止する直前にかご位置記憶部21に記憶されたかご位置情報Psを、第1の基準位置記憶部22に記憶されている基準位置情報P1と比較する。そして、基準位置P1を検出可能な最短の経路の停止階が選択され、行き先として決定される。 FIG. 7 is a graph showing an example of a specific traveling pattern of the car 6 in the car position recognition operation, and shows the relationship between the time and the position of the car 6. When the power supply is resumed at time T0, the car position information Ps stored in the car position storage unit 21 immediately before the power supply is stopped is used as the reference position information P1 stored in the first reference position storage unit 22. Compare with Then, the stop floor of the shortest route that can detect the reference position P1 is selected and determined as the destination.
 この後、時刻T1にかご位置認識運転が開始され、時刻T2に基準位置P1に到着し基準位置が確定する。 Thereafter, the car position recognition operation starts at time T1, arrives at the reference position P1 at time T2, and the reference position is determined.
 一方、電力供給が停止する直前のかご位置情報を利用しない場合、図7の破線のように、基準値P1とは逆方向へかご6を走行させる可能性がある。この場合、時刻T3に基準位置P1に到達して基準位置が確定することになり、エレベータ装置が通常サービスを再開するまでの時間が増大してしまう。特に、昇降行程が長いエレベータでは、再開までの時間が大幅に増大してしまう。 On the other hand, when the car position information immediately before the power supply is stopped is not used, there is a possibility that the car 6 may run in the direction opposite to the reference value P1, as indicated by the broken line in FIG. In this case, the reference position is determined by reaching the reference position P1 at time T3, and the time until the elevator apparatus resumes normal service increases. In particular, in an elevator with a long ascending / descending stroke, the time until resumption significantly increases.
 また、上述したように、電力遮断中にかご位置が移動している可能性もあり、その場合は、最短で基準位置P1に到達できないこともある。しかし、電力遮断中にかご位置が移動しているケースは比較的少なく、エレベータ装置全体としては、電力供給が停止する直前のかご位置情報を利用することにより、サービス再開の準備にかかる時間を十分に短縮し、サービス性の低下を抑えることができる。 Also, as described above, there is a possibility that the car position is moving during the power interruption, and in this case, the reference position P1 may not be reached in the shortest time. However, there are relatively few cases where the car position is moving during power interruption, and the elevator system as a whole has enough time to prepare for service resumption by using the car position information immediately before the power supply stops. To reduce the serviceability.
 さらに、基準位置検出装置16には、自己の故障の有無を診断するための自己診断部26が設けられており、エレベータ制御装置8及び安全監視装置9への電力供給が遮断された後、電力供給が再開された場合、安全監視装置9は、自己診断部26に自己診断指令を出力し、基準位置検出装置16が正常であるかどうかを判定する。このため、電力供給を停止した後、電力供給を再開した際のサービス再開の準備にかかる時間を十分に短縮し、サービス性の低下を抑えることができる。 Further, the reference position detection device 16 is provided with a self-diagnosis unit 26 for diagnosing the presence or absence of a self-failure. After the power supply to the elevator control device 8 and the safety monitoring device 9 is cut off, When the supply is resumed, the safety monitoring device 9 outputs a self-diagnosis command to the self-diagnosis unit 26 and determines whether or not the reference position detection device 16 is normal. For this reason, it is possible to sufficiently shorten the time required for preparation for service restart when the power supply is restarted after the power supply is stopped, and to suppress deterioration in serviceability.
 なお、電力遮断中にかご位置が移動しており、基準位置と予想された位置までかご6を移動させても基準位置が検出されない場合、基準位置が検出されるまで低速でのかご位置認識運転を継続する。 If the car position is moving during power interruption and the reference position is not detected even if the car 6 is moved to the expected position, the car position recognition operation is performed at a low speed until the reference position is detected. Continue.
 ここで、図8は図1の基準位置検出装置16の構成の一例を示す回路図である。基準位置検出装置16は、励磁コイル31、検出コイル32、第1のテストコイル33、第2のテストコイル34、第1のテストスイッチ35、第2のテストスイッチ36、及び一対の第3のテストスイッチ37a,37bを有している。 Here, FIG. 8 is a circuit diagram showing an example of the configuration of the reference position detection device 16 of FIG. The reference position detection device 16 includes an excitation coil 31, a detection coil 32, a first test coil 33, a second test coil 34, a first test switch 35, a second test switch 36, and a pair of third tests. Switches 37a and 37b are provided.
 励磁コイル31及び検出コイル32は、被検出体15を上下方向へ延長した領域を挟んで互いに対向している。励磁コイル31に電流を流すことにより、励磁コイル31に磁束が発生する。このとき、励磁コイル31と検出コイル32との間に被検出体15が存在していなければ、励磁コイル31で発生した磁束により検出コイル32に電流が流れる。 The excitation coil 31 and the detection coil 32 are opposed to each other across a region where the detection target 15 is extended in the vertical direction. By passing a current through the exciting coil 31, a magnetic flux is generated in the exciting coil 31. At this time, if the detection target 15 does not exist between the excitation coil 31 and the detection coil 32, a current flows through the detection coil 32 due to the magnetic flux generated in the excitation coil 31.
 また、励磁コイル31と検出コイル32との間に被検出体15が存在すると、被検出体15に発生する渦電流により、励磁コイル31からの磁束を打ち消す磁束が発生し、検出コイル32に電流が流れない。このような検出コイル32からの出力によって、被検出体15の有無が検出される。 Further, when the detection target 15 exists between the excitation coil 31 and the detection coil 32, the eddy current generated in the detection target 15 generates a magnetic flux that cancels the magnetic flux from the excitation coil 31, and the detection coil 32 has a current. Does not flow. Based on the output from the detection coil 32, the presence or absence of the detection target 15 is detected.
 また、被検出体15を構成するプレートに、かご6の昇降方向に互いに間隔をおいて複数のスリット、開口又は切欠等を設けることにより、被検出体15に個別の情報を持たせることができる。さらに、図8のような構成を2組用いることにより、二重化による故障検出を行うことができる。 In addition, by providing a plurality of slits, openings, or notches, etc., spaced apart from each other in the ascending / descending direction of the car 6 on the plate constituting the detected object 15, individual information can be given to the detected object 15. . Further, by using two sets of the configuration as shown in FIG. 8, it is possible to detect a failure by duplication.
 励磁コイル31、検出コイル32、第1のテストコイル33及び第2のテストコイル34は、同一軸線上に配置されている。第1のテストコイル33は、励磁コイル31の検出コイル32とは反対側の端部に対向して配置されている。第2のテストコイル34は、検出コイル32の励磁コイル31とは反対側の端部に対向して配置されている。 The excitation coil 31, the detection coil 32, the first test coil 33, and the second test coil 34 are arranged on the same axis. The first test coil 33 is disposed to face the end of the excitation coil 31 opposite to the detection coil 32. The second test coil 34 is disposed to face the end of the detection coil 32 opposite to the excitation coil 31.
 第1のテストスイッチ35は、通常は開いているが、基準位置検出装置16の自己診断時に閉じられる。第1のテストスイッチ35を閉じることにより、第1のテストコイル34の両端部間を短絡した閉回路が形成される。 The first test switch 35 is normally open, but is closed during the self-diagnosis of the reference position detection device 16. By closing the first test switch 35, a closed circuit is formed in which both ends of the first test coil 34 are short-circuited.
 第2のテストスイッチ36は、通常は開いているが、基準位置検出装置16の自己診断時に閉じられる。第2のテストスイッチ36を閉じることにより、第2のテストコイル35の両端部間を短絡した閉回路が形成される。 The second test switch 36 is normally open, but is closed during the self-diagnosis of the reference position detection device 16. By closing the second test switch 36, a closed circuit is formed in which both ends of the second test coil 35 are short-circuited.
 第3のテストスイッチ37a,37bは、通常は開いているが、基準位置検出装置16の自己診断時に閉じられる。第3のテストスイッチ37a,37bを閉じることにより、第1のテストコイル33と第2のテストコイル34とを直列に接続した閉回路が形成される。自己診断部26は、テストコイル33,34及びテストスイッチ35,36,37a,37bを含む回路を有している。 The third test switches 37a and 37b are normally open, but are closed during the self-diagnosis of the reference position detection device 16. By closing the third test switches 37a and 37b, a closed circuit in which the first test coil 33 and the second test coil 34 are connected in series is formed. The self-diagnosis unit 26 includes a circuit including test coils 33 and 34 and test switches 35, 36, 37a, and 37b.
 自己診断指令部25からは、自己診断指令として、異なる2種類の信号である第1及び第2の診断指令信号が順次出力される。自己診断指令として第1の診断指令信号(例えばハイ信号)が入力されると、自己診断部26は、第1及び第2のテストスイッチ35,36を閉じる。これにより、被検出体15の有無によらず、第1のテストコイル33に励磁コイル31の磁界を打ち消す方向の起電力が発生する。 From the self-diagnosis command unit 25, first and second diagnosis command signals that are two different types of signals are sequentially output as self-diagnosis commands. When a first diagnosis command signal (for example, a high signal) is input as a self-diagnosis command, the self-diagnosis unit 26 closes the first and second test switches 35 and 36. Thereby, an electromotive force in a direction to cancel the magnetic field of the exciting coil 31 is generated in the first test coil 33 regardless of the presence or absence of the detection target 15.
 このため、基準位置検出装置16が正常であれば、自己診断指令に対する自己診断部26からの出力は、常に被検出体15があるときの出力となる。従って、被検出体非検出時の信号が出力された場合は、被検出体非検出時の出力を保持し続ける固着故障が発生していると診断することができる。 Therefore, if the reference position detection device 16 is normal, the output from the self-diagnosis unit 26 in response to the self-diagnosis command is always the output when the detected object 15 is present. Therefore, when a signal at the time of non-detection of the detected object is output, it can be diagnosed that a fixing failure that continues to hold the output at the time of non-detection of the detected object has occurred.
 また、自己診断指令として第2の診断指令信号(例えば矩形波信号)が入力されると、自己診断部26は、第3のテストスイッチ37a,37bを閉じる。これにより、被検出体15の有無によらず、第1及び第2のテストコイル33,34及び検出コイル32に起電力及び磁界による共振が発生する。 Further, when a second diagnosis command signal (for example, a rectangular wave signal) is input as the self-diagnosis command, the self-diagnosis unit 26 closes the third test switches 37a and 37b. As a result, the first and second test coils 33 and 34 and the detection coil 32 resonate due to the electromotive force and the magnetic field regardless of the presence or absence of the detection target 15.
 このため、基準位置検出装置16が正常であれば、自己診断指令に対する自己診断部26からの出力は、常に被検出体15がないときの出力となる。従って、被検出体検出時の信号が出力された場合、被検出体検出時の出力を保持し続ける固着故障が発生していると診断することができる。 Therefore, if the reference position detection device 16 is normal, the output from the self-diagnosis unit 26 in response to the self-diagnosis command is always an output when there is no detected object 15. Accordingly, when a signal at the time of detection of the detected object is output, it can be diagnosed that a fixing failure that continues to hold the output at the time of detection of the detected object has occurred.
 なお、昇降路1内における基準位置の位置及び数は上記の例に限定されものではない。例えば、図9は昇降路1内に2つの基準位置P1,P2を設定した場合のかご位置認識運転の走行パターンの一例を示すグラフである。基準位置P1は、図7と同じ位置に設定されており、基準位置P2は、最上階付近に設定されている。 In addition, the position and number of the reference positions in the hoistway 1 are not limited to the above example. For example, FIG. 9 is a graph showing an example of a traveling pattern of the car position recognition operation when two reference positions P1 and P2 are set in the hoistway 1. The reference position P1 is set at the same position as in FIG. 7, and the reference position P2 is set near the top floor.
 電力供給が再開された際には、電力供給が停止する直前にかご位置記憶部21に記憶されたかご位置情報Psを、第1の基準位置記憶部22に記憶されている基準位置情報P1,P2と比較し、Psに近い方の基準位置を検出可能な最短の経路の停止階が選択され、行き先として決定される。 When the power supply is resumed, the car position information Ps stored in the car position storage unit 21 immediately before the power supply is stopped is used as the reference position information P1, stored in the first reference position storage unit 22. Compared with P2, the stop floor of the shortest route capable of detecting the reference position closer to Ps is selected and determined as the destination.
 このように、基準位置が2つ以上ある場合、電力供給が停止する直前にかご位置記憶部21に記憶されたかご位置情報Psを、第1の基準位置記憶部22に記憶されている全ての基準位置情報と比較し、最も近い基準位置を検出するようにかご位置認識運転を開始すればよい。 In this way, when there are two or more reference positions, the car position information Ps stored in the car position storage unit 21 immediately before the power supply is stopped is stored in all the first reference position storage units 22. Compared with the reference position information, the car position recognition operation may be started so as to detect the closest reference position.
 また、例えば昇降路1内の中間階に1つの基準位置を設置し、かご位置認識運転では常に中間階方向へかご6を走行させるようにしてもよい。 Further, for example, one reference position may be installed on the intermediate floor in the hoistway 1 and the car 6 may always be driven toward the intermediate floor in the car position recognition operation.
 さらに、上記の例では、昇降路1内のかご6が通過する予め決められた位置に被検出体15が誤差なく設置されていることを前提としたが、被検出体15が許容誤差範囲内で据え付けられているかどうかを点検する機能を安全監視装置9に設けてもよい。 Further, in the above example, it is assumed that the detected object 15 is installed without error at a predetermined position through which the car 6 in the hoistway 1 passes. However, the detected object 15 is within an allowable error range. The safety monitoring device 9 may be provided with a function for checking whether or not it is installed.
 具体的には、例えば、最下階の着床レベルから被検出体15までの距離を第2の基準位置記憶部24に記憶しておき、据え付け後に最下階からの点検運転を行う。そして、最下階の着床レベルから被検出体15までの距離を、かご位置検出装置14からの信号の積算値として検出し、検出値と記憶されている値とを比較することにより、許容誤差範囲内に据え付けられているかどうかを判定してもよい。 Specifically, for example, the distance from the landing level on the lowest floor to the detected object 15 is stored in the second reference position storage unit 24, and the inspection operation from the lowest floor is performed after installation. Then, the distance from the landing level on the lowest floor to the detected object 15 is detected as an integrated value of the signal from the car position detection device 14, and the detected value is compared with the stored value. It may be determined whether it is installed within an error range.
 ここでは最下階の着床レベルから被検出体15までの距離を例に説明したが、昇降路1の終端部に専用のスイッチを別に設けて、スイッチから被検出体15までの距離を検出してもよい。 Here, the distance from the landing level on the lowest floor to the detected object 15 has been described as an example, but a dedicated switch is separately provided at the end of the hoistway 1 to detect the distance from the switch to the detected object 15. May be.
 また、点検運転時の被検出体15までの距離を、学習値として第1及び第2の基準位置記憶部22,24に記憶するようにしてもよい。さらに、点検運転を定期的に行うことによって、学習値を更新するようにしてもよい。 Further, the distance to the detected object 15 during the inspection operation may be stored in the first and second reference position storage units 22 and 24 as a learning value. Further, the learning value may be updated by periodically performing a check operation.
 実施の形態2.
 次に、図10はこの発明の実施の形態2によるエレベータ装置を示す構成図である。実施の形態2のエレベータ装置では、基準位置検出装置として、かご6が最下階に移動したときに操作される下部基準位置スイッチ41と、かご6が最上階に移動したときに操作される上部基準位置スイッチ42とが用いられている。基準位置スイッチ41,42は、それぞれ強制開離機構(非操作状態のときに接点が強制的に開く機構)を有している。かご6には、基準位置スイッチ41,42を操作する操作部材としてのカム43が取り付けられている。
Embodiment 2. FIG.
Next, FIG. 10 is a block diagram showing an elevator apparatus according to Embodiment 2 of the present invention. In the elevator apparatus according to the second embodiment, as a reference position detection apparatus, a lower reference position switch 41 operated when the car 6 moves to the lowermost floor and an upper part operated when the car 6 moves to the uppermost floor. A reference position switch 42 is used. Each of the reference position switches 41 and 42 has a forcible separation mechanism (a mechanism for forcibly opening the contact when not in operation). A cam 43 as an operation member for operating the reference position switches 41 and 42 is attached to the car 6.
 下部基準位置スイッチ41は、かご6が下方向へ走行して下部基準位置スイッチ41が操作されてからかご6が最下階に停止するまでの間、オフ状態が維持される位置に設置されている。また、上部基準位置スイッチ42は、かご6が上方向へ走行して上部基準位置スイッチ42が操作されてからかご6が最上階に停止するまでの間、オフ状態が維持される位置に設置されている。他の構成及び動作は、実施の形態1と同様である。 The lower reference position switch 41 is installed at a position where the off state is maintained until the car 6 stops at the lowest floor after the car 6 travels downward and the lower reference position switch 41 is operated. Yes. The upper reference position switch 42 is installed at a position where the off state is maintained until the car 6 stops on the top floor after the car 6 travels upward and the upper reference position switch 42 is operated. ing. Other configurations and operations are the same as those in the first embodiment.
 このようなエレベータ装置によっても、電力供給が停止する直前のかご位置情報を利用してかご位置認識運転を実施することにより、サービス再開の準備にかかる時間を十分に短縮し、サービス性の低下を抑えることができる。 Even with such an elevator device, the car position recognition operation is performed using the car position information immediately before the power supply is stopped, thereby sufficiently shortening the time required for service resumption and reducing the serviceability. Can be suppressed.
 また、基準位置スイッチ41,42がそれぞれ強制開離機構を有しているため、接点が閉じたままとなるオン故障が発生することはない。また、上記のような位置に基準位置スイッチ41,42を設置したので、基準位置スイッチ41,42にオフ故障が発生した場合でも、基準位置スイッチ41,42の位置を終端階寄りに間違えることがなく、安全監視装置9による過大速度監視が可能である。 In addition, since each of the reference position switches 41 and 42 has a forced separation mechanism, an on-failure in which the contact remains closed does not occur. In addition, since the reference position switches 41 and 42 are installed at the positions as described above, even if an off failure occurs in the reference position switches 41 and 42, the positions of the reference position switches 41 and 42 can be mistaken toward the terminal floor. The overspeed monitoring by the safety monitoring device 9 is possible.
 さらに、基準位置スイッチ41,42を用いることにより、構成を簡単にすることができる。 Furthermore, the configuration can be simplified by using the reference position switches 41 and 42.
 さらにまた、基準位置スイッチ41,42は、カム43による操作時に接触音が発生するが、かご6の走行速度が低い最下階及び最上階に配置したので、接触音を小さく抑えることができる。 Furthermore, the reference position switches 41 and 42 generate a contact sound when operated by the cam 43, but are arranged on the lowest floor and the top floor where the traveling speed of the car 6 is low, so that the contact sound can be kept small.
 なお、かご6が高速で通過する可能性のある中間階付近にも基準位置を設定したい場合には、実施の形態2の構成に加えて、図11に示すように、実施の形態1の被検出体15を中間階に設置するとともに、基準位置検出装置16をかご6に設けてもよい。即ち、実施の形態1、2は適宜組み合わせ可能である。従って、例えば、実施の形態2の構成においても、点検運転を行ってもよい。 If it is desired to set the reference position near the intermediate floor where the car 6 may pass at high speed, in addition to the configuration of the second embodiment, as shown in FIG. The detection body 15 may be installed on the intermediate floor, and the reference position detection device 16 may be provided on the car 6. That is, Embodiments 1 and 2 can be combined as appropriate. Therefore, for example, the inspection operation may be performed also in the configuration of the second embodiment.
 また、かご位置認識運転の行き先は必ずしも停止階でなくてもよく、階間であってもよい。
 さらに、上記の例では、かご位置検出装置14を調速機10に設けたが、かご6の移動に応じた信号を発生させることができれば、例えば駆動装置3など、他の位置に設けてもよい。
 さらにまた、基準位置検出装置16の構成も、実施の形態1、2に限定されるものではない。
 また、上記の例では、かご速度を監視する安全監視装置9を示したが、監視対象はかご速度に限定されるものではない。
Further, the destination of the car position recognition operation does not necessarily have to be a stop floor, but may be between floors.
Furthermore, in the above example, the car position detecting device 14 is provided in the speed governor 10. However, if the signal corresponding to the movement of the car 6 can be generated, the car position detecting device 14 may be provided in another position such as the driving device 3. Good.
Furthermore, the configuration of the reference position detection device 16 is not limited to the first and second embodiments.
In the above example, the safety monitoring device 9 that monitors the car speed is shown. However, the monitoring target is not limited to the car speed.
 さらに、エレベータ装置全体のレイアウトは、図1、10、11のレイアウトに限定されるものではない。例えば、2:1ローピング方式のエレベータ装置、巻上機が昇降路の下部に設置されているエレベータ装置等にもこの発明は適用できる。
 さらにまた、この発明は、機械室レスエレベータ、ダブルデッキエレベータ、共通の昇降路内に複数のかごが配置されているワンシャフトマルチカー方式のエレベータなど、あらゆるタイプのエレベータ装置に適用できる。
Furthermore, the layout of the entire elevator apparatus is not limited to the layouts shown in FIGS. For example, the present invention can be applied to an elevator apparatus of a 2: 1 roping method, an elevator apparatus in which a hoisting machine is installed in a lower part of a hoistway, and the like.
Furthermore, the present invention can be applied to all types of elevator devices such as machine room-less elevators, double deck elevators, and one-shaft multi-car elevators in which a plurality of cars are arranged in a common hoistway.

Claims (4)

  1.  昇降路内を昇降するかご、
     前記かごの移動に応じた信号を発生するかご位置検出装置、
     前記かごが前記昇降路内の基準位置に位置することを検出する基準位置検出装置、
     前記かご位置検出装置及び前記基準位置検出装置からの信号に基づいて前記基準位置からの前記かごの移動距離を検出し、かご位置情報として記憶するかご位置記憶部と、前記基準位置の情報を記憶する基準位置記憶部とを有しており、前記かごの運転を制御するエレベータ制御装置、及び
     異常の有無を監視する安全監視装置
     を備え、
     前記エレベータ制御装置及び前記安全監視装置への電力供給が遮断された後、電力供給が再開された場合、前記安全監視装置は、前記かごの速度を制限する指令と、かご位置を認識するために前記かごを前記基準位置に移動させるかご位置認識運転を実施する指令とを、前記エレベータ制御装置に出力し、
     前記エレベータ制御装置は、前記かご位置認識運転を実施する場合、前記かご位置記憶部に記憶されている電力供給が停止する直前のかご位置情報と、前記基準位置記憶部に記憶されている前記基準位置の情報とを比較して、前記基準位置を検出するために最短となる行き先に前記かごを移動させるエレベータ装置。
    A car that goes up and down in the hoistway,
    A car position detecting device for generating a signal corresponding to the movement of the car;
    A reference position detecting device for detecting that the car is located at a reference position in the hoistway;
    Based on signals from the car position detecting device and the reference position detecting device, a moving distance of the car from the reference position is detected and stored as car position information, and information on the reference position is stored. An elevator control device that controls the operation of the car, and a safety monitoring device that monitors whether there is an abnormality,
    When power supply is resumed after power supply to the elevator control device and the safety monitoring device is interrupted, the safety monitoring device recognizes a command for limiting the speed of the car and a car position. A command for carrying out a car position recognition operation for moving the car to the reference position, is output to the elevator control device;
    When the elevator control device performs the car position recognition operation, the car position information immediately before the power supply stored in the car position storage unit stops and the reference stored in the reference position storage unit An elevator apparatus that compares the position information and moves the car to the shortest destination for detecting the reference position.
  2.  前記基準位置検出装置は、自己の故障の有無を診断するための自己診断部を有しており、
     前記安全監視装置は、前記かご位置認識運転を実施する指令を前記エレベータ制御装置に出力する前に、前記自己診断部に自己診断指令を出力し、前記基準位置検出装置が正常であると判定された場合に前記かご位置認識運転を実施する指令を前記エレベータ制御装置に出力する請求項1記載のエレベータ装置。
    The reference position detection device has a self-diagnosis unit for diagnosing the presence or absence of a self-failure,
    The safety monitoring device outputs a self-diagnosis command to the self-diagnosis unit before outputting a command to execute the car position recognition operation to the elevator control device, and it is determined that the reference position detection device is normal. 2. The elevator apparatus according to claim 1, wherein a command for performing the car position recognition operation is output to the elevator control apparatus in the event of a failure.
  3.  昇降路内を昇降するかご、
     前記かごの移動に応じた信号を発生するかご位置検出装置、
     前記かごが前記昇降路内の基準位置に位置することを検出する基準位置検出装置、
     前記かご位置検出装置及び前記基準位置検出装置からの信号に基づいて前記基準位置からの前記かごの移動距離を検出し、かご位置情報として記憶するかご位置記憶部と、前記基準位置の情報を記憶する基準位置記憶部とを有しており、前記かごの運転を制御するエレベータ制御装置、及び
     異常の有無を監視する安全監視装置
     を備え、
     前記基準位置検出装置は、自己の故障の有無を診断するための自己診断部を有しており、
     前記エレベータ制御装置及び前記安全監視装置への電力供給が遮断された後、電力供給が再開された場合、前記安全監視装置は、前記自己診断部に自己診断指令を出力し、前記基準位置検出装置が正常であるかどうかを判定するエレベータ装置。
    A car that goes up and down in the hoistway,
    A car position detecting device for generating a signal corresponding to the movement of the car;
    A reference position detecting device for detecting that the car is located at a reference position in the hoistway;
    Based on signals from the car position detecting device and the reference position detecting device, a moving distance of the car from the reference position is detected and stored as car position information, and information on the reference position is stored. An elevator control device that controls the operation of the car, and a safety monitoring device that monitors whether there is an abnormality,
    The reference position detection device has a self-diagnosis unit for diagnosing the presence or absence of a self-failure,
    When power supply is resumed after power supply to the elevator control device and the safety monitoring device is interrupted, the safety monitoring device outputs a self-diagnosis command to the self-diagnosis unit, and the reference position detection device Elevator device that determines whether or not is normal.
  4.  電力供給が遮断された後、電力供給が再開された際に、かご位置を認識するために昇降路内の基準位置にかごを移動させるかご位置認識運転を実施するエレベータ装置の制御方法であって、
     前記かご位置認識運転を実施する場合、記憶されている電力供給が停止する直前のかご位置情報と、記憶されている前記基準位置の情報とを比較して、前記基準位置を検出するために最短となる行き先へ前記かごを移動させるエレベータ装置の制御方法。
    A control method for an elevator apparatus that performs a car position recognition operation for moving a car to a reference position in a hoistway to recognize a car position when the power supply is resumed after the power supply is cut off. ,
    When carrying out the car position recognition operation, it is the shortest in order to detect the reference position by comparing the stored car position information immediately before the power supply stops and the stored reference position information. An elevator apparatus control method for moving the car to a destination.
PCT/JP2015/050959 2015-01-15 2015-01-15 Elevator device and control method therefor WO2016113881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050959 WO2016113881A1 (en) 2015-01-15 2015-01-15 Elevator device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050959 WO2016113881A1 (en) 2015-01-15 2015-01-15 Elevator device and control method therefor

Publications (1)

Publication Number Publication Date
WO2016113881A1 true WO2016113881A1 (en) 2016-07-21

Family

ID=56405442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050959 WO2016113881A1 (en) 2015-01-15 2015-01-15 Elevator device and control method therefor

Country Status (1)

Country Link
WO (1) WO2016113881A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118815A (en) * 2017-01-25 2018-08-02 株式会社日立製作所 Elevator
CN109626159A (en) * 2018-11-09 2019-04-16 日立电梯(中国)有限公司 The based reminding method of elevator car position, device and system
WO2020194826A1 (en) * 2019-03-28 2020-10-01 株式会社日立製作所 Elevator system
JP7292480B1 (en) 2022-08-04 2023-06-16 三菱電機ビルソリューションズ株式会社 elevator safety device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165874A (en) * 1979-06-07 1980-12-24 Hitachi Ltd Controller for elevator
JPH1121037A (en) * 1997-07-08 1999-01-26 Toshiba Corp Controller of elevator
JP2006298538A (en) * 2005-04-19 2006-11-02 Mitsubishi Electric Corp Elevator device
JP2009542548A (en) * 2006-07-11 2009-12-03 三菱電機株式会社 POSITION DETECTION DEVICE, ELEVATOR POSITION DETECTION DEVICE, AND ELEVATOR DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165874A (en) * 1979-06-07 1980-12-24 Hitachi Ltd Controller for elevator
JPH1121037A (en) * 1997-07-08 1999-01-26 Toshiba Corp Controller of elevator
JP2006298538A (en) * 2005-04-19 2006-11-02 Mitsubishi Electric Corp Elevator device
JP2009542548A (en) * 2006-07-11 2009-12-03 三菱電機株式会社 POSITION DETECTION DEVICE, ELEVATOR POSITION DETECTION DEVICE, AND ELEVATOR DEVICE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018118815A (en) * 2017-01-25 2018-08-02 株式会社日立製作所 Elevator
CN109626159A (en) * 2018-11-09 2019-04-16 日立电梯(中国)有限公司 The based reminding method of elevator car position, device and system
WO2020194826A1 (en) * 2019-03-28 2020-10-01 株式会社日立製作所 Elevator system
JPWO2020194826A1 (en) * 2019-03-28 2021-12-23 株式会社日立製作所 Elevator system
JP7138773B2 (en) 2019-03-28 2022-09-16 株式会社日立製作所 elevator system
JP7292480B1 (en) 2022-08-04 2023-06-16 三菱電機ビルソリューションズ株式会社 elevator safety device

Similar Documents

Publication Publication Date Title
JP6351854B2 (en) Elevator equipment
JP6120977B2 (en) Elevator equipment
JP5355597B2 (en) Elevator equipment
JP5516729B2 (en) Elevator system
JP5646047B2 (en) Multi-car elevator and control method thereof
JP4907097B2 (en) Elevator equipment
JP6263552B2 (en) Elevator safety system
WO2006103768A1 (en) Elevator apparatus
WO2005049468A1 (en) Elevator system
WO2016113881A1 (en) Elevator device and control method therefor
JP5790462B2 (en) Elevator equipment
US9580273B2 (en) Testing apparatus and safety arrangement
JP5741746B2 (en) Elevator system
JP5985686B1 (en) elevator
JP6299926B2 (en) Elevator control system
WO2014136200A1 (en) Elevator device and method for detecting position of elevator car
JP5143454B2 (en) Elevator control device
JP2011084355A (en) Control device of elevator
JP2012171771A (en) Double-deck elevator and control method of the same
JP2013193841A (en) Control device of elevator
JP2006096510A (en) Elevator device
JP4402407B2 (en) Elevator control device
JP5321693B2 (en) Elevator driving device
JP2008133091A (en) Terminal floor speed control system of elevator
KR100891234B1 (en) Elevator apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15877833

Country of ref document: EP

Kind code of ref document: A1