WO2016112903A1 - Method and measurement signal processing unit for generating a multi-channel measurement signal for a rotational speed measurement and sensor unit - Google Patents

Method and measurement signal processing unit for generating a multi-channel measurement signal for a rotational speed measurement and sensor unit Download PDF

Info

Publication number
WO2016112903A1
WO2016112903A1 PCT/DE2016/200005 DE2016200005W WO2016112903A1 WO 2016112903 A1 WO2016112903 A1 WO 2016112903A1 DE 2016200005 W DE2016200005 W DE 2016200005W WO 2016112903 A1 WO2016112903 A1 WO 2016112903A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
machine element
rotation angle
magnetic field
Prior art date
Application number
PCT/DE2016/200005
Other languages
German (de)
French (fr)
Inventor
Rupert Stitzinger
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2016112903A1 publication Critical patent/WO2016112903A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement

Definitions

  • Method and measuring signal processing unit for generating a multichannel measuring signal for a rotational speed measurement and sensor unit
  • the present invention initially relates to a method for generating a multi-channel measuring signal for measuring the rotational speed of a rotating machine element.
  • the multichannel measurement signal is a so-called AB signal which comprises two signal components which are phase-shifted by 90 ° and was originally obtained by means of two offset magnetic field sensors facing a magnetic multipole on the rotating machine element.
  • the invention relates to a measurement signal processing unit for generating said multichannel measurement signal and to a sensor unit which is equipped with the measurement signal processing unit according to the invention.
  • Fig. 2 illustrates a prior art solution for measuring the rotational speed of a rotating machine element.
  • a magnetic multipole also referred to as multipole encoder, rotatably connected to the machine element.
  • this magnetic multiple pole two magnetic field sensors 01, 02 are arranged offset, wherein the offset must be equal to 90 ° of the determined magnetic poles 03 period of the Mehrfachpoles, which is illustrated in the upper part of Fig. 2.
  • curves 04, 06 of the magnetic field strength acting on the two magnetic field sensors 01, 02 are shown.
  • the two curves 04, 06 are phase-shifted by 90 °.
  • two signals 07, 08 are obtained, which are shown in the lower part of FIG.
  • FIG. 3 illustrates another prior art solution for measuring the rotational speed of a rotating machine element.
  • a magnetic Mehrfachpol is rotatably connected to the machine element. Opposite this magnetic multiple pole becomes a magnetic field sensor (not shown) arranged, which allows the measurement of a rotation angle of the machine element.
  • a rotation angle signal 11 of the angle of rotation measuring magnetic field sensor is shown. With this magnetic field sensor, the rotation angle between 0 ° and 180 ° can be clearly measured. From the rotation angle signal 11, in turn, a square wave signal 12 is obtained, which is shown in the lower part of FIG. The square wave signal 12 is comparable to the first signal 07 of the AB signal 09 (shown in FIG. 2).
  • the object of the present invention starting from the prior art is to reduce the effort for obtaining an AB signal for the measurement of the rotational speed of a rotating machine element.
  • the above object is achieved by a method according to the appended claim 1 and by a measuring signal processing unit according to the appended independent claim 9.
  • the object is achieved by a sensor unit according to the appended independent claim 10.
  • the inventive method is used to generate a multi-channel measurement signal for the measurement of the rotational speed of a rotating machine element.
  • the machine element may be, for example, a shaft or a
  • the machine element is a ring of a rotary bearing; in particular about one of the two rings of a so-called speed bearing, which is designed for example as a bottom bracket.
  • a rotation angle signal is first provided, which the
  • Rotation angle of the machine element represents.
  • the rotation angle signal changes functionally unambiguously upon rotation of the machine element and preferably bijectively. It can be repeated several times over a revolution of the machine element.
  • the rotation angle signal can be provided directly as an output signal of a sensor, which allows a measurement of the rotation angle.
  • the rotation angle signal may be provided by determining the rotation angle signal from the signals of mutually offset sensors.
  • a multi-channel measurement signal from the provided rotation angle signal is determined.
  • the multi-channel measuring signal comprises at least a first channel and a second channel, ie at least two independent sub-signals.
  • the first channel and the second channel each contain a periodic signal which is synchronous to the rotation angle of the machine element and thus also synchronous to the rotation angle signal.
  • the periodic signal of the first channel and the periodic signal of the second channel have a phase shift relative to each other. It is therefore a
  • the AB signal which was determined in contrast to the prior art from a rotational angle signal.
  • the speed of the machine element can be determined with little effort from the AB signal.
  • the AB signal also allows the direction of rotation to be determined and can be quadrupled by applying an exclusive OR operation to the A signal and to the B signal.
  • the multi-channel measurement signal is preferably a digital signal.
  • a particular advantage of the method according to the invention is that the generation of the AB signal does not require the arrangement of two magnetic field sensors which must have such an offset to each other, which is equal to 90 ° of the period of the magnetic poles of a multipole encoder.
  • magnetic field-sensitive sensors are used to provide the rotational angle signal, which requires magnetization of the machine element. Therefore, at least one magnetic field sensor, which faces a magnetization region on the rotating machine element, is preferably used for providing the rotational angle signal.
  • the rotating magnetization region is an encoder which is scanned or read by the at least one magnetic field sensor.
  • the magnetization region is preferably formed by a permanent magnet having a plurality of magnetic poles.
  • the permanent magnet preferably has at least four of the magnetic poles.
  • the permanent magnet may preferably also be a multipole.
  • the permanent magnet is preferably ring-shaped and arranged coaxially with the axis of rotation of the rotating machine element.
  • exactly one magnetic field sensor is used for providing the rotational angle signal, which faces the magnetization region on the rotating machine element and outputs the rotational angle signal directly.
  • the magnetic field sensor is preferably formed by an AMR bridge circuit having four individual AMR resistors.
  • two of the magnetic field sensors are used for providing the rotational angle signal. The two magnetic field sensors are spatially spaced from each other with respect to the magnetization region.
  • the step of providing the rotation angle signal comprises a sub-step in which the rotation angle signal is determined from the signals of the two magnetic field sensors.
  • the two magnetic field sensors preferably have an offset with respect to the revolution of the machine element, which is preferably not 90 ° of the period formed by the magnetic poles. It is namely a particular advantage of the method according to the invention that the offset between the two magnetic field sensors can be selected independently of the period formed by the magnetic poles. However, the offset must be known in order to be able to determine the rotational angle signal from the signals.
  • the two magnetic field sensors are preferably each formed by a Hall sensor with which a directional component of the magnetic field can be measured.
  • the magnetic field sensors to be used are preferably AMR measuring bridges or Hall sensors. Basically, those to be used Magnetic sensors but also be formed by other sensors with which magnetic properties can be detected.
  • the two magnetic field sensors preferably output a periodic signal in each case. Because of the staggered arrangement of the two magnetic field sensors, the periodic signal of the first magnetic field sensor and the periodic signal of the second magnetic field sensor have a phase shift. This phase shift is preferably not equal to 90 °.
  • the periodic signal of the first magnetic field sensor and the periodic signal of the second magnetic field sensor are preferably each sinusoidal. Consequently, these signals can be considered as a sine / cosine signal.
  • the rotation angle signal preferably has a period which corresponds to half a rotation of the machine element. Consequently, the rotation angle signal represents a rotation angle interval of 0 ° to 180 °. Alternatively, preferably, the rotation angle signal has a period corresponding to a complete revolution of the machine element. In this case, the rotation angle signal represents a rotation angle interval of 0 ° to 360 °. Alternatively, preferably, the rotation angle signal has a period corresponding to an n-th fraction of a whole rotation of the machine element, where n is equal to 64, for example. In this case, the rotation angle signal represents a rotation angle interval of the machine element from 0 ° to 360 ° / n
  • the rotation angle signal is preferably linear to the rotation angle. This linearity is preferably formed between 0 ° and 360 ° or at least in a whole fraction of 360 °. Particularly preferably, the rotation angle signal between 0 ° and 180 ° is linear to the rotation angle.
  • the rotational angle signal is preferably formed by a sawtooth signal, wherein the ramps of the sawtooth signal preferably each represent a rotational angle between 0 ° and 180 ° or a period thereof.
  • the rotation angle signal can also be formed by other unambiguously reversible signal forms.
  • the periodic signal of the first channel and the periodic signal of the second channel preferably have the same period.
  • the periodic signal of the first channel and the periodic signal of the second channel preferably have a same maximum amplitude. Consequently, the periodic signal of the first channel and the periodic signal of the second channel differ only in their phase.
  • the periodic signal of the first channel and the periodic signal of the second channel preferably each have a period corresponding to one revolution or a whole fraction of a revolution of the machine element. [Preferably, the periodic signal of the first channel and the periodic signal of the second channel each have a period corresponding to one-half revolution of the machine element.
  • the multi-channel measurement signal to be generated is multiplied.
  • the periodic signal of the first channel and the periodic signal of the second channel each have a period corresponding to an n-th fraction of a revolution of the machine element, where n is a natural number which is at least four and preferably greater than 10.
  • phase shift between the periodic signal of the first channel and the periodic signal of the second channel is particularly preferably equal to 90 °, as is the case with known AB signals. In principle, however, other phase shifts can be realized.
  • the periodic signal of the first channel and the periodic signal of the second channel are preferably each formed by a square wave signal.
  • the speed of the machine element can be determined with little effort from the square-wave signals.
  • the determination of the multi-channel measurement signal is preferably carried out by applying a calculation rule to the rotation angle signal.
  • the calculation rule is formed, in particular, by one or more formulas, which are based on the current measured angle of rotation can be applied and deliver in the result the two current values of the multi-channel measuring signal.
  • the determination of the multi-channel measurement signal is preferably carried out by reading out an assignment table for the rotation angle signal.
  • the allocation table which can also be referred to as a look-up table, comprises value triplets, each with one value for the rotation angle and two values for the multichannel measurement signal.
  • mapping tables requires little computing power.
  • the measuring signal processing unit according to the invention serves to generate a multi-channel measuring signal for measuring the rotational speed of a rotating machine element.
  • the measuring signal processing unit is configured to carry out the method according to the invention.
  • the measuring signal processing unit is preferably configured to carry out preferred embodiments of the method according to the invention. Otherwise, the measurement signal processing unit preferably also has such features that are designed in conjunction with the method according to the invention.
  • the measurement signal processing unit preferably comprises a microprocessor or an ASIC which is configured for the step of determining the multi-channel measurement signal in accordance with the method according to the invention.
  • the microprocessor or the ASIC can also be configured for sub-steps of the step for providing the rotational-angle signal in accordance with the method according to the invention.
  • the sensor unit according to the invention is used to measure the rotational speed of a machine element and initially comprises at least one magnetic field sensor, which faces a magnetization region of the rotating machine element. Furthermore, the sensor unit comprises the measuring signal processing unit according to the invention.
  • the sensor unit preferably comprises preferred embodiments of the measurement signal processing unit according to the invention. Moreover, the sensor unit preferably also has such features which are described in connection with the method according to the invention. Further details, advantages and developments of the invention will become apparent from the following description of a preferred embodiment of the invention, with reference to the drawing. Show it:
  • Fig. 2 shows a magnetic multipole and signals generated according to a solution of the prior art
  • Fig. 3 shows a magnetic multipole and signals according to another
  • a magnetic multipole which has a plurality of magnetic poles 21, which on an annular
  • Magnetization of a rotating machine element (not shown) are arranged. This multipole is inventively used to measure the
  • a rotation angle signal 22 (not shown) of a rotation angle sensor (not shown) provided according to the invention is shown, which faces the magnetic multiple pole.
  • the rotation angle signal 22 is
  • a sawtooth signal whose period corresponds to a rotation angle of 180 °.
  • Measuring signal 23 shown which can also be referred to as AB signal 23.
  • the multi-channel measurement signal 23 was calculated directly from the rotation angle signal 22. It comprises a first channel 24 and a second channel 26.
  • the two channels 24, 26 are each formed by a rectangular signal which is synchronous to the rotational angle signal 22.
  • the two channels 24, 26 have a phase shift of 90 °. LIST OF REFERENCE NUMBERS

Abstract

The invention first of all relates to a method for generating a multi-channel measurement signal (23) for measuring the rotational speed of a rotating machine element. The multi-channel measurement signal (23) is in particular a so-called AB signal, which comprises two signal components (24, 26) which are phase-shifted by 90° and which were originally acquired by means of two offset magnetic field sensors which are opposite a magnetic multi-pole on the rotating machine element. The invention further relates to a measurement signal processing unit for generating said multi-channel measurement signal (23) and to a sensor unit which is equipped with the measurement signal processing unit according to the invention. According to the invention, a rotation angle signal (22) is first provided which represents the rotation angle of the machine element. In an additional step of the method according to the invention, the multi-channel measurement signal (23) is determined from the provided rotation angle signal (22). The multi-channel measurement signal (23) comprises at least one first channel (24) and one second channel (26). The first channel (24) and the second channel (26) each include a periodic signal which is synchronized to the rotation angle of the machine element. The periodic signal of the first channel (24) and the periodic signal of the second channel (26) have a phase shift relative to each other which preferably equals 90 degrees. According to the invention, the rotation angle signal can be provided by a plurality of magnetic field sensors, the sensors of which do not, however, have to have a phase shift of 90 degrees.

Description

Verfahren und Messsiqnalverarbeitungseinheit zur Generierung eines mehrka- naliqen Messsignals für eine Drehzahlmessung sowie Sensoreinheit  Method and measuring signal processing unit for generating a multichannel measuring signal for a rotational speed measurement and sensor unit
Die vorliegende Erfindung betrifft zunächst ein Verfahren zur Generierung eines mehrkanaligen Messsignals für die Messung der Drehzahl eines sich drehenden Maschinenelementes. Bei dem mehrkanaligen Messsignal handelt es sich insbesondere um ein so genanntes AB-Signal, welches zwei um 90° phasenverschobene Signalanteile umfasst und ursprünglich mithilfe von zwei versetzten Magnetfeldsensoren ge- wonnen wurde, die einem magnetischen Mehrfachpol an dem sich drehenden Maschinenelement gegenüberstehen. Im Weiteren betrifft die Erfindung eine Messsignal- verarbeitungseinheit zur Generierung des genannten mehrkanaligen Messsignals sowie eine Sensoreinheit, die mit der erfindungsgemäßen Messsignalverarbeitungsein- heit ausgestattet ist. The present invention initially relates to a method for generating a multi-channel measuring signal for measuring the rotational speed of a rotating machine element. In particular, the multichannel measurement signal is a so-called AB signal which comprises two signal components which are phase-shifted by 90 ° and was originally obtained by means of two offset magnetic field sensors facing a magnetic multipole on the rotating machine element. In addition, the invention relates to a measurement signal processing unit for generating said multichannel measurement signal and to a sensor unit which is equipped with the measurement signal processing unit according to the invention.
Fig. 2 veranschaulicht eine aus dem Stand der Technik bekannte Lösung zur Messung der Drehzahl eines sich drehenden Maschinenelementes. Gemäß dieser Lösung wird ein magnetischer Mehrfachpol, auch als Multipolenkoder bezeichnet, drehfest mit dem Maschinenelement verbunden. Gegenüber diesem magnetischen Mehrfachpol werden zwei Magnetfeldsensoren 01 , 02 versetzt angeordnet, wobei der Versatz gleich 90° der von magnetischen Polen 03 bestimmten Periode des Mehrfachpoles betragen muss, was im oberen Teil der Fig. 2 veranschaulicht ist. Im mittleren Teil der Fig. 2 sind Verläufe 04, 06 der auf die beiden Magnetfeldsensoren 01 , 02 wirkenden magnetischen Feldstärke dargestellt. Die beiden Verläufe 04, 06 sind um 90° phasen- verschoben. Mit den beiden Magnetfeldsensoren 01 , 02 werden zwei Signale 07, 08 gewonnen, die im unteren Teil der Fig. 2 dargestellt sind und ein AB-Signal 09 bilden. Aus dem AB-Signal 09 lässt sich aufwandsarm die Drehzahl des Maschinenelementes bestimmen. Fig. 3 veranschaulicht eine weitere aus dem Stand der Technik bekannte Lösung zur Messung der Drehzahl eines sich drehenden Maschinenelementes. Auch bei dieser Lösung wird ein magnetischer Mehrfachpol drehfest mit dem Maschinenelement verbunden. Gegenüber diesem magnetischen Mehrfachpol wird ein Magnetfeldsensor (nicht dargestellt) angeordnet, welcher die Messung eines Drehwinkels des Maschinenelementes ermöglicht. Im mittleren Teil der Fig. 3 ist ein Drehwinkelsignal 11 des den Drehwinkel messenden Magnetfeldsensors dargestellt. Mit diesem Magnetfeldsensor lässt sich der Drehwinkel zwischen 0° und 180° eindeutig messen. Aus dem Drehwinkelsignal 11 wird wiederum ein Rechtecksignal 12 gewonnen, welches im unteren Teil der Fig. 3 dargestellt. Das Rechtecksignal 12 ist mit dem ersten Signal 07 des AB-Signals 09 (gezeigt in Fig. 2) vergleichbar. Fig. 2 illustrates a prior art solution for measuring the rotational speed of a rotating machine element. According to this solution, a magnetic multipole, also referred to as multipole encoder, rotatably connected to the machine element. Opposite this magnetic multiple pole two magnetic field sensors 01, 02 are arranged offset, wherein the offset must be equal to 90 ° of the determined magnetic poles 03 period of the Mehrfachpoles, which is illustrated in the upper part of Fig. 2. In the middle part of FIG. 2, curves 04, 06 of the magnetic field strength acting on the two magnetic field sensors 01, 02 are shown. The two curves 04, 06 are phase-shifted by 90 °. With the two magnetic field sensors 01, 02, two signals 07, 08 are obtained, which are shown in the lower part of FIG. 2 and form an AB signal 09. The speed of the machine element can be determined with little effort from the AB signal 09. Fig. 3 illustrates another prior art solution for measuring the rotational speed of a rotating machine element. Also in this solution, a magnetic Mehrfachpol is rotatably connected to the machine element. Opposite this magnetic multiple pole becomes a magnetic field sensor (not shown) arranged, which allows the measurement of a rotation angle of the machine element. In the middle part of Fig. 3, a rotation angle signal 11 of the angle of rotation measuring magnetic field sensor is shown. With this magnetic field sensor, the rotation angle between 0 ° and 180 ° can be clearly measured. From the rotation angle signal 11, in turn, a square wave signal 12 is obtained, which is shown in the lower part of FIG. The square wave signal 12 is comparable to the first signal 07 of the AB signal 09 (shown in FIG. 2).
Die Aufgabe der vorliegenden Erfindung besteht ausgehend vom Stand der Technik darin, den Aufwand zur Gewinnung eines AB-Signals für die Messung der Drehzahl eines sich drehenden Maschinenelementes zu verringern. The object of the present invention, starting from the prior art is to reduce the effort for obtaining an AB signal for the measurement of the rotational speed of a rotating machine element.
Die genannte Aufgabe wird gelöst durch ein Verfahren gemäß dem beigefügten Anspruch 1 sowie durch eine Messsignalverarbeitungseinheit gemäß dem beigefügten nebengeordneten Anspruch 9. Im Weiteren wird die Aufgabe durch eine Sensoreinheit gemäß dem beigefügten nebengeordneten Anspruch 10 gelöst. The above object is achieved by a method according to the appended claim 1 and by a measuring signal processing unit according to the appended independent claim 9. In addition, the object is achieved by a sensor unit according to the appended independent claim 10.
Das erfindungsgemäße Verfahren dient zur Generierung eines mehrkanaligen Messsignals für die Messung der Drehzahl eines sich drehenden Maschinenelementes. Bei dem Maschinenelement kann es sich beispielsweise um eine Welle oder um eineThe inventive method is used to generate a multi-channel measurement signal for the measurement of the rotational speed of a rotating machine element. The machine element may be, for example, a shaft or a
Achse handeln. Bevorzugt handelt es sich bei dem Maschinenelement um einen Ring eines rotativen Lagers; insbesondere um einen der beiden Ringe eines so genannten Drehzahllagers, welches beispielsweise als Tretlager ausgebildet ist. Erfindungsgemäß wird zunächst ein Drehwinkelsignal bereitgestellt, welches denAct axis. Preferably, the machine element is a ring of a rotary bearing; in particular about one of the two rings of a so-called speed bearing, which is designed for example as a bottom bracket. According to the invention, a rotation angle signal is first provided, which the
Drehwinkel des Maschinenelementes repräsentiert. Das Drehwinkelsignal ändert sich bei Drehung des Maschinenelements funktional eindeutig und bevorzugt bijektiv. Es kann über eine Umdrehung des Maschinenelementes mehrfach wiederholt sein. Das Drehwinkelsignal kann unmittelbar als Ausgangssignal eines Sensors bereitgestellt werden, der eine Messung des Drehwinkels ermöglicht. Alternativ kann das Drehwinkelsignal dadurch bereitgestellt werden, dass das Drehwinkelsignal aus den Signalen versetzt zueinander angeordneter Sensoren bestimmt wird. ln einem wetteren Schritt des erfindungsgemäßen Verfahrens wird ein mehrkanaliges Messsignal aus dem bereitgestellten Drehwinkelsignal bestimmt. Das mehrkanalige Messsignal umfasst mindestens einen ersten Kanal und einen zweiten Kanal, d. h. mindestens zwei eigenständige Teilsignale. Der erste Kanal und der zweite Kanal enthalten jeweils ein periodisches Signal, welches synchron zum Drehwinkel des Maschinenelementes und somit auch synchron zum Drehwinkelsignal ist. Das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales weisen eine Phasenverschiebung zueinander auf. Es handelt sich somit um ein Rotation angle of the machine element represents. The rotation angle signal changes functionally unambiguously upon rotation of the machine element and preferably bijectively. It can be repeated several times over a revolution of the machine element. The rotation angle signal can be provided directly as an output signal of a sensor, which allows a measurement of the rotation angle. Alternatively, the rotation angle signal may be provided by determining the rotation angle signal from the signals of mutually offset sensors. In a wetteren step of the method according to the invention, a multi-channel measurement signal from the provided rotation angle signal is determined. The multi-channel measuring signal comprises at least a first channel and a second channel, ie at least two independent sub-signals. The first channel and the second channel each contain a periodic signal which is synchronous to the rotation angle of the machine element and thus also synchronous to the rotation angle signal. The periodic signal of the first channel and the periodic signal of the second channel have a phase shift relative to each other. It is therefore a
AB-Signal, welches im Gegensatz zum Stand der Technik aus einem Drehwinkelsignal bestimmt wurde. Aus dem AB-Signal lässt sich aufwandsarm die Drehzahl des Maschinenelementes bestimmen. Das AB-Signal erlaubt auch die Bestimmung der Drehrichtung und kann vervierfacht werden kann, indem eine Exklusiv-Oder-Operation auf das A-Signal und auf das B-Signal angewendet wird. Bei dem mehrkanaligen Messsignal handelt es sich bevorzugt um ein digitales Signal. AB signal, which was determined in contrast to the prior art from a rotational angle signal. The speed of the machine element can be determined with little effort from the AB signal. The AB signal also allows the direction of rotation to be determined and can be quadrupled by applying an exclusive OR operation to the A signal and to the B signal. The multi-channel measurement signal is preferably a digital signal.
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass die Generierung des AB-Signals nicht die Anordnung zweier Magnetfeldsensoren erfordert, die einen solchen Versatz zueinander aufweisen müssen, welcher gleich 90° der Periode der magnetischen Pole eines Multipolenkoders beträgt. Es kann beispielsweise ein einzelner Sensor zur Drehwinkelmessung genutzt werden oder es können zwei Magnetfeldsensoren mit einem anderen Versatz zueinander verwendet werden. Hierdurch können u. a. auch Standardkomponenten flexibler für eine Drehzahlmessung eingesetzt werden. A particular advantage of the method according to the invention is that the generation of the AB signal does not require the arrangement of two magnetic field sensors which must have such an offset to each other, which is equal to 90 ° of the period of the magnetic poles of a multipole encoder. For example, it is possible to use a single sensor for measuring the angle of rotation, or two magnetic field sensors with a different offset to one another can be used. This can u. a. Even standard components can be used more flexibly for speed measurement.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden zum Bereitstellen des Drehwinkelsignals magnetfeldsensitive Sensoren genutzt, was eine Magnetisierung des Maschinenelementes voraussetzt. Daher wird für das Bereitstellen des Drehwinkelsignals bevorzugt mindestens ein Magnetfeldsensor genutzt, welcher einem Magnetisierungsbereich an dem sich drehenden Maschinenelement gegenübersteht. Der sich drehende Magnetisierungsbereich stellt einen Enkoder dar, der durch den mindestens einen Magnetfeldsensor abgetastet bzw. gelesen wird. Der Magnetisierungsbereich ist bevorzugt durch einen Permanentmagneten gebildet, der eine Mehrzahl an magnetischen Polen aufweist. Der Permanentmagnet weist bevorzugt mindestens vier der magnetischen Pole auf. Bei dem Permanentmagnet kann es sich bevorzugt auch um einen Multipol handeln. Der Permanentmagnet ist bevor- zugt ringförmig ausgebildet und koaxial zur Drehachse des sich drehenden Maschinenelementes angeordnet. In preferred embodiments of the method according to the invention, magnetic field-sensitive sensors are used to provide the rotational angle signal, which requires magnetization of the machine element. Therefore, at least one magnetic field sensor, which faces a magnetization region on the rotating machine element, is preferably used for providing the rotational angle signal. The rotating magnetization region is an encoder which is scanned or read by the at least one magnetic field sensor. The magnetization region is preferably formed by a permanent magnet having a plurality of magnetic poles. The permanent magnet preferably has at least four of the magnetic poles. The permanent magnet may preferably also be a multipole. The permanent magnet is preferably ring-shaped and arranged coaxially with the axis of rotation of the rotating machine element.
Bei besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird für das Bereitstellen des Drehwinkelsignals genau ein Magnetfeldsensor genutzt, welcher dem Magnetisierungsbereich an dem sich drehenden Maschinenelement gegenübersteht und das Drehwinkelsignal unmittelbar ausgibt. Bei diesen Ausführungsformen ist der Magnetfeldsensor bevorzugt durch eine AMR-Brückenschaltung mit vier einzelnen AMR-Widerständen gebildet. Bei alternativ bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden für das Bereitstellen des Drehwinkelsignals zwei der Magnetfeldsensoren genutzt. Die beiden Magnetfeldsensoren sind räumlich zueinander beabstandet gegenüber dem Magnetisierungsbereich angeordnet. Bei diesen Ausführungsformen des erfindungsgemäßen Verfahrens umfasst der Schritt des Bereitstellens des Drehwinkel- Signals einen Teilschritt, bei welchem das Drehwinkelsignal aus den Signalen der beiden Magnetfeldsensoren bestimmt wird. Die beiden Magnetfeldsensoren weisen bevorzugt bezogen auf die Umdrehung des Maschinenelementes einen Versatz auf, der bevorzugt nicht 90° der durch die magnetischen Pole gebildeten Periode beträgt. Es ist nämlich ein besonderer Vorteil des erfindungsmäßen Verfahrens, dass der Versatz zwischen den beiden Magnetfeldsensoren unabhängig von der durch die magnetischen Pole gebildeten Periode gewählt werden kann. Der Versatz muss aber bekannt sein, um aus den Signalen das Drehwinkelsignal bestimmen zu können. Bei diesen Ausführungsformen sind die beiden Magnetfeldsensoren bevorzugt jeweils durch einen Hall-Sensor gebildet, mit dem eine Richtungskomponente des Magnetfeldes messbar ist. In particularly preferred embodiments of the method according to the invention exactly one magnetic field sensor is used for providing the rotational angle signal, which faces the magnetization region on the rotating machine element and outputs the rotational angle signal directly. In these embodiments, the magnetic field sensor is preferably formed by an AMR bridge circuit having four individual AMR resistors. In alternatively preferred embodiments of the method according to the invention, two of the magnetic field sensors are used for providing the rotational angle signal. The two magnetic field sensors are spatially spaced from each other with respect to the magnetization region. In these embodiments of the method according to the invention, the step of providing the rotation angle signal comprises a sub-step in which the rotation angle signal is determined from the signals of the two magnetic field sensors. The two magnetic field sensors preferably have an offset with respect to the revolution of the machine element, which is preferably not 90 ° of the period formed by the magnetic poles. It is namely a particular advantage of the method according to the invention that the offset between the two magnetic field sensors can be selected independently of the period formed by the magnetic poles. However, the offset must be known in order to be able to determine the rotational angle signal from the signals. In these embodiments, the two magnetic field sensors are preferably each formed by a Hall sensor with which a directional component of the magnetic field can be measured.
Bei den zu verwendenden Magnetfeldsensoren handelt es sich bevorzugt um AMR- Messbrücken oder um Hall-Sensoren. Grundsätzlich können die zu verwendenden Magnetfeldsensoren aber auch durch andere Sensoren gebildet sein, mit denen magnetische Eigenschaften detektierbar sind. The magnetic field sensors to be used are preferably AMR measuring bridges or Hall sensors. Basically, those to be used Magnetic sensors but also be formed by other sensors with which magnetic properties can be detected.
Die beiden Magnetfeldsensoren geben bevorzugt jeweils ein periodisches Signal aus. Wegen der versetzten Anordnung der beiden Magnetfeldsensoren weisen das periodische Signal des ersten Magnetfeldsensors und das periodische Signal des zweiten Magnetfeldsensors eine Phasenverschiebung auf. Diese Phasenverschiebung ist bevorzugt ungleich 90°. Das periodische Signal des ersten Magnetfeldsensors und das periodische Signal des zweiten Magnetfeldsensors sind bevorzugt jeweils sinusförmig. Folglich können diese Signale als Sinus-/Kosinussignal angesehen werden. The two magnetic field sensors preferably output a periodic signal in each case. Because of the staggered arrangement of the two magnetic field sensors, the periodic signal of the first magnetic field sensor and the periodic signal of the second magnetic field sensor have a phase shift. This phase shift is preferably not equal to 90 °. The periodic signal of the first magnetic field sensor and the periodic signal of the second magnetic field sensor are preferably each sinusoidal. Consequently, these signals can be considered as a sine / cosine signal.
Das Drehwinkelsignal besitzt bevorzugt eine Periode, die einer halben Umdrehung des Maschinenelementes entspricht. Folglich repräsentiert das Drehwinkelsignal ein Drehwinkelintervall von 0° bis 180°. Alternativ bevorzugt besitzt das Drehwinkelsignal eine Periode, die einer ganzen Umdrehung des Maschinenelementes entspricht. In diesem Fall repräsentiert das Drehwinkelsignal ein Drehwinkelintervall von 0° bis 360°. Alternativ bevorzugt besitzt das Drehwinkelsignal eine Periode, die einem n-ten Bruchteil einer ganzen Umdrehung des Maschinenelementes entspricht, wobei n beispielsweise gleich 64 ist. In diesem Fall repräsentiert das Drehwinkelsignal ein Drehwinkelintervall des Maschinenelementes von 0° bis 360°/n The rotation angle signal preferably has a period which corresponds to half a rotation of the machine element. Consequently, the rotation angle signal represents a rotation angle interval of 0 ° to 180 °. Alternatively, preferably, the rotation angle signal has a period corresponding to a complete revolution of the machine element. In this case, the rotation angle signal represents a rotation angle interval of 0 ° to 360 °. Alternatively, preferably, the rotation angle signal has a period corresponding to an n-th fraction of a whole rotation of the machine element, where n is equal to 64, for example. In this case, the rotation angle signal represents a rotation angle interval of the machine element from 0 ° to 360 ° / n
Das Drehwinkelsignal ist bevorzugt linear zum Drehwinkel. Diese Linearität ist bevor- zugt zwischen 0° und 360° oder zumindest in einem ganzen Bruchteil von 360° ausgebildet. Besonders bevorzugt ist das Drehwinkelsignal zwischen 0° und 180° linear zum Drehwinkel. The rotation angle signal is preferably linear to the rotation angle. This linearity is preferably formed between 0 ° and 360 ° or at least in a whole fraction of 360 °. Particularly preferably, the rotation angle signal between 0 ° and 180 ° is linear to the rotation angle.
Das Drehwinkelsignal ist bevorzugt durch ein Sägezahnsignal gebildet ist, wobei die Rampen des Sägezahnsignals bevorzugt jeweils einen Drehwinkel zwischen 0° und 180° bzw. einer Periode davon repräsentieren. Das Drehwinkelsignal kann aber auch durch andere eindeutig umkehrbare Signalformen gebildet sein. Das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales besitzen bevorzugt eine gleiche Periodendauer. Das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales besitzen bevorzugt eine gleiche maximale Amplitude. Folglich unterscheiden sich das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales nur in ihrer Phase. The rotational angle signal is preferably formed by a sawtooth signal, wherein the ramps of the sawtooth signal preferably each represent a rotational angle between 0 ° and 180 ° or a period thereof. However, the rotation angle signal can also be formed by other unambiguously reversible signal forms. The periodic signal of the first channel and the periodic signal of the second channel preferably have the same period. The periodic signal of the first channel and the periodic signal of the second channel preferably have a same maximum amplitude. Consequently, the periodic signal of the first channel and the periodic signal of the second channel differ only in their phase.
Das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales besitzen bevorzugt jeweils eine Periodendauer, die einer Umdrehung oder einem ganzen Bruchteil einer Umdrehung des Maschinenelementes entspricht. [Bevorzugt besitzen das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales jeweils eine Periodendauer, die einer halben Umdrehung des Maschinenelementes entspricht. The periodic signal of the first channel and the periodic signal of the second channel preferably each have a period corresponding to one revolution or a whole fraction of a revolution of the machine element. [Preferably, the periodic signal of the first channel and the periodic signal of the second channel each have a period corresponding to one-half revolution of the machine element.
Bei weiteren bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens ist das zu generierende mehrkanalige Messsignal vervielfacht. Hierfür besitzen das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales jeweils eine Periodendauer, die einem n-ten Bruchteil einer Umdrehung des Maschinenelementes entspricht, wobei n eine natürliche Zahl ist, die mindestens vier und bevorzugt größer als 10 ist. In further preferred embodiments of the method according to the invention, the multi-channel measurement signal to be generated is multiplied. For this purpose, the periodic signal of the first channel and the periodic signal of the second channel each have a period corresponding to an n-th fraction of a revolution of the machine element, where n is a natural number which is at least four and preferably greater than 10.
Die Phasenverschiebung zwischen dem periodischen Signal des ersten Kanales und dem periodischen Signal des zweiten Kanales beträgt besonders bevorzugt gleich 90°, so wie es auch bei bekannten AB-Signalen der Fall ist. Grundsätzlich können aber auch andere Phasenverschiebungen realisiert werden. The phase shift between the periodic signal of the first channel and the periodic signal of the second channel is particularly preferably equal to 90 °, as is the case with known AB signals. In principle, however, other phase shifts can be realized.
Das periodische Signal des ersten Kanales und das periodische Signal des zweiten Kanales sind bevorzugt jeweils durch ein Rechtecksignal gebildet. Aus den Rechtecksignalen lässt sich aufwandsarm die Drehzahl des Maschinenelementes bestimmen. The periodic signal of the first channel and the periodic signal of the second channel are preferably each formed by a square wave signal. The speed of the machine element can be determined with little effort from the square-wave signals.
Das Bestimmen des mehrkanaligen Messsignals erfolgt bevorzugt durch ein Anwenden einer Rechenvorschrift auf das Drehwinkelsignal. Die Rechenvorschrift ist insbesondere durch eine oder mehrere Formeln gebildet, die auf den jeweils aktuell ge- messenen Drehwinkel angewendet werden und im Ergebnis die beiden aktuellen Werte des mehrkanaligen Messsignals liefern. The determination of the multi-channel measurement signal is preferably carried out by applying a calculation rule to the rotation angle signal. The calculation rule is formed, in particular, by one or more formulas, which are based on the current measured angle of rotation can be applied and deliver in the result the two current values of the multi-channel measuring signal.
Das Bestimmen des mehrkanaligen Messsignals erfolgt alternativ bevorzugt durch ein Auslesen einer Zuordnungstabelle für das Drehwinkelsignal. Die Zuordnungstabelle, welche auch als Look-Up-Table bezeichnet werden kann, umfasst Wertetripel mit jeweils einem Wert für den Drehwinkel und zwei Werten für das mehrkanalige Messsignal. Die Verwendung von Zuordnungstabellen erfordert wenig Rechenleistung. Die erfindungsgemäße Messsignalverarbeitungseinheit dient zur Generierung eines mehrkanaligen Messsignals für die Messung der Drehzahl eines sich drehenden Maschinenelementes. Die Messsignalverarbeitungseinheit ist zur Ausführung des erfindungsgemäßen Verfahrens konfiguriert. Die Messsignalverarbeitungseinheit ist bevorzugt zur Ausführung bevorzugter Ausführungsformen des erfindungsgemäßen Verfah- rens konfiguriert. Im Übrigen weist die Messsignalverarbeitungseinheit bevorzugt auch solche Merkmale auf, die im Zusammenhang mit dem erfindungsgemäßen Verfahren beschheben sind. Alternatively, the determination of the multi-channel measurement signal is preferably carried out by reading out an assignment table for the rotation angle signal. The allocation table, which can also be referred to as a look-up table, comprises value triplets, each with one value for the rotation angle and two values for the multichannel measurement signal. The use of mapping tables requires little computing power. The measuring signal processing unit according to the invention serves to generate a multi-channel measuring signal for measuring the rotational speed of a rotating machine element. The measuring signal processing unit is configured to carry out the method according to the invention. The measuring signal processing unit is preferably configured to carry out preferred embodiments of the method according to the invention. Otherwise, the measurement signal processing unit preferably also has such features that are designed in conjunction with the method according to the invention.
Die erfindungsgemäße Messsignalverarbeitungseinheit umfasst bevorzugt einen Mik- roprozessor oder einen ASIC, der für den Schritt des Bestimmens des mehrkanaligen Messsignals entsprechend dem erfindungsgemäßen Verfahren konfiguriert ist. Der Mikroprozessor bzw. der ASIC kann auch für Teilschritte des Schrittes zum Bereitstellen des Drehwinkelsignals entsprechend dem erfindungsgemäßen Verfahren konfiguriert sein. The measurement signal processing unit according to the invention preferably comprises a microprocessor or an ASIC which is configured for the step of determining the multi-channel measurement signal in accordance with the method according to the invention. The microprocessor or the ASIC can also be configured for sub-steps of the step for providing the rotational-angle signal in accordance with the method according to the invention.
Die erfindungsgemäße Sensoreinheit dient zur Messung der Drehzahl eines Maschinenelementes und umfasst zunächst mindestens einen Magnetfeldsensor, welcher einem Magnetisierungsbereich des sich drehenden Maschinenelementes gegenübersteht. Weiterhin umfasst die Sensoreinheit die erfindungsgemäße Messsignalverarbei- tungseinheit. Bevorzugt umfasst die Sensoreinheit bevorzugte Ausführungsformen der erfindungsgemäßen Messsignalverarbeitungseinheit. Im Übrigen weist die Sensoreinheit bevorzugt auch solche Merkmale auf, die im Zusammenhang mit dem erfindungsgemäßen Verfahren beschrieben sind. Weitere Einzelheiten, Vorteile und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer bevorzugten Ausführungsform der Erfindung, unter Bezugnahme auf die Zeichnung. Es zeigen: The sensor unit according to the invention is used to measure the rotational speed of a machine element and initially comprises at least one magnetic field sensor, which faces a magnetization region of the rotating machine element. Furthermore, the sensor unit comprises the measuring signal processing unit according to the invention. The sensor unit preferably comprises preferred embodiments of the measurement signal processing unit according to the invention. Moreover, the sensor unit preferably also has such features which are described in connection with the method according to the invention. Further details, advantages and developments of the invention will become apparent from the following description of a preferred embodiment of the invention, with reference to the drawing. Show it:
Fig. 1 einen magnetischen Mehrfachpol und erfindungsgemäß erzeugte Signale; 1 shows a magnetic multiple pole and signals generated according to the invention;
Fig. 2 einen magnetischen Mehrfachpol und Signale, die gemäß einer Lösung aus dem Stand der Technik erzeugt wurden; und Fig. 2 shows a magnetic multipole and signals generated according to a solution of the prior art; and
Fig. 3 einen magnetischen Mehrfachpol und Signale, die gemäß einer weiteren Fig. 3 shows a magnetic multipole and signals according to another
Lösung aus dem Stand der Technik erzeugt wurden.  Solution of the prior art were generated.
Im oberen Teil der Fig. 1 ist ein magnetischer Mehrfachpol veranschaulicht, der mehrere magnetische Pole 21 aufweist, die auf einem ringförmigen In the upper part of Fig. 1, a magnetic multipole is illustrated, which has a plurality of magnetic poles 21, which on an annular
Magnetisierungsbereich eines sich drehenden Maschinenelementes (nicht dargestellt) angeordnet sind. Dieser Mehrfachpol wird erfindungsgemäß zur Messung der Magnetization of a rotating machine element (not shown) are arranged. This multipole is inventively used to measure the
Drehzahl des Maschinenelementes genutzt. Speed of the machine element used.
Im mittleren Teil der Fig. 1 ist ein erfindungsgemäß bereitgestelltes Drehwinkelsignal 22 eines Drehwinkelsensors (nicht dargestellt) gezeigt, welcher dem magnetischen Mehrfachpol gegenübersteht. Bei dem Drehwinkelsignal 22 handelt es sich In the middle part of Fig. 1, a rotation angle signal 22 (not shown) of a rotation angle sensor (not shown) provided according to the invention is shown, which faces the magnetic multiple pole. The rotation angle signal 22 is
beispielhaft um ein Sägezahnsignal, dessen Periodenlänge einem Drehwinkel von 180° entspricht. for example, a sawtooth signal whose period corresponds to a rotation angle of 180 °.
Im unteren Teil der Fig. 1 ist ein erfindungsgemäß berechnetes mehrkanaliges In the lower part of Fig. 1 is a calculated according to the invention mehrkanaliges
Messsignal 23 dargestellt, welches auch als AB-Signal 23 bezeichnet werden kann. Das mehrkanalige Messsignal 23 wurde unmittelbar aus dem Drehwinkelsignal 22 berechnet. Es umfasst einen ersten Kanal 24 und einen zweiten Kanal 26. Die beiden Kanäle 24, 26 sind jeweils durch ein Rechtecksignal gebildet, welches synchron zum Drehwinkelsignal 22 ist. Die beiden Kanäle 24, 26 weisen eine Phasenverschiebung von 90° auf. Bezugszeichenliste Measuring signal 23 shown, which can also be referred to as AB signal 23. The multi-channel measurement signal 23 was calculated directly from the rotation angle signal 22. It comprises a first channel 24 and a second channel 26. The two channels 24, 26 are each formed by a rectangular signal which is synchronous to the rotational angle signal 22. The two channels 24, 26 have a phase shift of 90 °. LIST OF REFERENCE NUMBERS
01 erster Magnetfeldsensor 01 first magnetic field sensor
02 zweiter Magnetfeldsensor  02 second magnetic field sensor
03 magnetischer Pol  03 magnetic pole
04 Verlauf der magnetischen Feldstärke  04 Course of the magnetic field strength
05 05
06 Verlauf der magnetischen Feldstärke  06 Course of the magnetic field strength
07 erstes Signal  07 first signal
08 zweites Signal  08 second signal
09 AB-Signal  09 AB signal
10 10
1 1 Drehwinkelsignal  1 1 rotation angle signal
12 Rechtecksignal  12 square wave signal
13 13
14  14
15 15
16 16
17 17
18 18
19 19
20 20
21 magnetischer Pol  21 magnetic pole
22 Drehwinkelsignal  22 rotation angle signal
23 mehrkanaliges Messsignal (AB-Signal) 23 multi-channel measurement signal (AB signal)
24 erster Kanal 24 first channel
25 25
26 zweiter Kanal  26 second channel

Claims

Patentansprüche 1. Verfahren zur Generierung eines mehrkanaligen Messsignals (23) für die Messung der Drehzahl eines Maschinenelementes, folgende Schritte umfassend: 1. A method for generating a multi-channel measuring signal (23) for measuring the rotational speed of a machine element, comprising the following steps:
- Bereitstellen eines Drehwinkelsignals (22), welches den Drehwinkel des Maschinenelementes repräsentiert; und - Providing a rotation angle signal (22), which represents the rotation angle of the machine element; and
- Bestimmen eines mehrkanaligen Messsignals (23) aus dem bereitgestellten Drehwinkelsignal (22), wobei das mehrkanalige Messsignal (23) mindestens einen ersten Kanal (24) und einen zweiten Kanal (26) umfasst, wobei der erste Kanal (24) und der zweite Kanal (26) jeweils ein periodisches Signal enthalten, welches synchron zum Drehwinkel des Maschinenelementes ist, und wobei das periodische Signal des ersten Kanales (24) und das periodische Signal des zweiten Kanales (26) eine Phasenverschiebung zueinander aufweisen. 2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass für das Bereitstellen des Drehwinkelsignals (22) mindestens ein Magnetfeldsensor genutzt wird, welcher einem Magnetisierungsbereich an dem sich drehenden Maschinenelement gegenübersteht. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet dass für das Bereitstellen des Drehwinkelsignals (22) der einzige Magnetfeldsensor genutzt wird, welcher das Drehwinkelsignal (22) unmittelbar ausgibt. 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass für das Bereitstellen des Drehwinkelsignals (22) zwei der Magnetfeldsensoren genutzt werden, wobei die beiden Magnetfeldsensoren räumlich beabstandet gegenüber dem Magnetisierungsbereich angeordnet sind, und wobei das Drehwinkelsignal (22) aus den Signalen der beiden Magnetfeldsensoren bestimmt wird. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das periodische Signal des ersten Kanales (24) und das periodische Signal des zweiten Kanales (26) jeweils eine Periodendauer aufweisen, die einer halben Umdrehung des Maschinenelementes entspricht. 6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das periodische Signal des ersten Kanales (24) und das periodische Signal des zweiten Kanales (26) jeweils eine Periodendauer aufweisen, die einem n-ten Bruchteil einer Umdrehung des Maschinenelementes entspricht, wobei n £ 4 ist. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet dass die Phasenverschiebung zwischen dem periodischen Signal des ersten Kanales (24) und dem periodischen Signal des zweiten Kanales (26) gleich 90° beträgt. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das periodische Signal des ersten Kanales (24) und das periodische Signal des zweiten Kanales (26) jeweils durch ein Rechtecksignal gebildet sind. 9. Messsignalverarbeitungseinheit zur Generierung eines mehrkanaligen Messsignals (23) für die Messung der Drehzahl eines Maschinenelementes, dadurch gekennzeichnet, dass sie zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 8 konfiguriert ist. 10. Sensoreinheit zur Messung der Drehzahl eines Maschinenelementes, umfassend: - Determining a multi-channel measurement signal (23) from the provided rotation angle signal (22), wherein the multi-channel measurement signal (23) at least a first channel (24) and a second channel (26), wherein the first channel (24) and the second channel (26) each containing a periodic signal which is synchronous to the rotation angle of the machine element, and wherein the periodic signal of the first channel (24) and the periodic signal of the second channel (26) have a phase shift to each other. 2. The method according to claim 1, characterized in that for the provision of the rotation angle signal (22) at least one magnetic field sensor is used, which faces a magnetization region on the rotating machine element. 3. The method according to claim 2, characterized in that for the provision of the rotational angle signal (22) of the single magnetic field sensor is used, which outputs the rotational angle signal (22) directly. 4. The method according to claim 2, characterized in that for the provision of the rotational angle signal (22) two of the magnetic field sensors are used, wherein the two magnetic field sensors spatially spaced from the magnetization region are arranged, and wherein the rotational angle signal (22) from the signals of the two magnetic field sensors is determined. 5. The method according to any one of claims 1 to 4, characterized in that the periodic signal of the first channel (24) and the periodic signal of the second channel (26) each have a period corresponding to half a revolution of the machine element. 6. The method according to any one of claims 1 to 4, characterized in that the periodic signal of the first channel (24) and the periodic signal of the second channel (26) each have a period corresponding to an n-th fraction of a revolution of the machine element where n is £ 4. 7. The method according to any one of claims 1 to 6, characterized in that the phase shift between the periodic signal of the first channel (24) and the periodic signal of the second channel (26) is equal to 90 °. 8. The method according to any one of claims 1 to 7, characterized in that the periodic signal of the first channel (24) and the periodic signal of the second channel (26) are each formed by a rectangular signal. 9. measurement signal processing unit for generating a multi-channel measurement signal (23) for measuring the rotational speed of a machine element, characterized in that it is configured to carry out the method according to one of claims 1 to 8. 10. Sensor unit for measuring the rotational speed of a machine element, comprising:
- mindestens einen Magnetfeldsensor, welcher einem Magnetisierungsbereich des sich drehenden Maschinenelementes gegenübersteht; und - At least one magnetic field sensor which faces a magnetization region of the rotating machine element; and
- eine Messsignalverarbeitungseinheit nach Anspruch 9. - A measurement signal processing unit according to claim 9.
PCT/DE2016/200005 2015-01-14 2016-01-11 Method and measurement signal processing unit for generating a multi-channel measurement signal for a rotational speed measurement and sensor unit WO2016112903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015200475.9 2015-01-14
DE102015200475.9A DE102015200475A1 (en) 2015-01-14 2015-01-14 Method and measuring signal processing unit for generating a multi-channel measuring signal for a rotational speed measurement and sensor unit

Publications (1)

Publication Number Publication Date
WO2016112903A1 true WO2016112903A1 (en) 2016-07-21

Family

ID=55442607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/200005 WO2016112903A1 (en) 2015-01-14 2016-01-11 Method and measurement signal processing unit for generating a multi-channel measurement signal for a rotational speed measurement and sensor unit

Country Status (2)

Country Link
DE (1) DE102015200475A1 (en)
WO (1) WO2016112903A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017100570A1 (en) 2017-01-13 2018-07-19 Schaeffler Technologies AG & Co. KG Sensor module for installation in a bearing and bearing arrangement
CN112665531B (en) * 2020-11-30 2023-07-14 天津津航技术物理研究所 Multi-pair-level rotation-transformation coordinate transformation angle solving method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10052035A1 (en) * 2000-04-22 2001-10-31 Secatec Electronic Gmbh Rotary position sensor for contactless detection of angular speed of rotating shaft monitors rotating field produced by shaft mounted permanent magnet
DE102006055305A1 (en) * 2005-12-01 2007-06-14 Ebm-Papst St. Georgen Gmbh & Co. Kg Electric motor for e.g. driving blower, has rotor position sensors that are arranged at distance in printed circuit board for producing sinusoidal signals, and signal generator produces pulsed signal for sinusoidal signals
US20080180090A1 (en) * 2007-01-29 2008-07-31 Stolfus Joel D Magnetic speed, direction, and/or movement extent sensor
US20100085038A1 (en) * 2003-06-25 2010-04-08 Michael Hinz Arrangement comprising a magnetic-field-dependent angle sensor
US20100097051A1 (en) * 2008-10-22 2010-04-22 Honeywell International Inc. Incremental position, speed and direction detection apparatus and method for rotating targets utilizing magnetoresistive sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138640C1 (en) * 2001-06-27 2003-01-09 Fraunhofer Ges Forschung Method and device for preparing an analog sensor signal from a position sensor for transmission to an evaluation unit
DE10313518A1 (en) * 2003-03-25 2004-10-14 Hübner Elektromaschinen AG Position measuring method and position measuring system for signal period multiplication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10052035A1 (en) * 2000-04-22 2001-10-31 Secatec Electronic Gmbh Rotary position sensor for contactless detection of angular speed of rotating shaft monitors rotating field produced by shaft mounted permanent magnet
US20100085038A1 (en) * 2003-06-25 2010-04-08 Michael Hinz Arrangement comprising a magnetic-field-dependent angle sensor
DE102006055305A1 (en) * 2005-12-01 2007-06-14 Ebm-Papst St. Georgen Gmbh & Co. Kg Electric motor for e.g. driving blower, has rotor position sensors that are arranged at distance in printed circuit board for producing sinusoidal signals, and signal generator produces pulsed signal for sinusoidal signals
US20080180090A1 (en) * 2007-01-29 2008-07-31 Stolfus Joel D Magnetic speed, direction, and/or movement extent sensor
US20100097051A1 (en) * 2008-10-22 2010-04-22 Honeywell International Inc. Incremental position, speed and direction detection apparatus and method for rotating targets utilizing magnetoresistive sensor

Also Published As

Publication number Publication date
DE102015200475A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
DE112008003911B4 (en) Magnetic encoder and actuator
DE102005014509B4 (en) Sensor arrangement and method for determining a rotation angle
EP0740776B1 (en) Arrangement for the contactless determination of the angle of rotation of a rotatable component
DE112007003469B4 (en) Magnetic encoder and method of detecting an absolute rotational position
AT510377B1 (en) METHOD AND EMBODIMENTS FOR THE ABSOLUTE POSITION DETERMINATION BY MEANS OF TWO HALL SENSORS
WO2010060607A2 (en) Semiconductor chip and method for generating pulse edges synchronously associated with the movement of a mechanical part
EP2225142A1 (en) Absolute measurement steering angle sensor arrangement
DE102010040584B4 (en) Method and device for interfering field compensation of magnetic angle sensors
DE4236420B4 (en) Reluktanzschwankungs resolver
DE102010045952A1 (en) Sensor system and method for incremental speed measurement
WO2016058731A1 (en) Sensor for determining at least one rotation characteristic of a rotating element
DE4021105A1 (en) Measuring position of movable body - using two sinusoidal signals with phase difference of 90 deg. derived from measuring elements
DE112012005322B4 (en) rotation angle detecting device
WO2016112903A1 (en) Method and measurement signal processing unit for generating a multi-channel measurement signal for a rotational speed measurement and sensor unit
EP3320613B1 (en) Operation of a rotating electric machine with two position sensors
DE10058623A1 (en) Method for determining the angular position of a rotating shaft for use in control of electrically switched motors in which digital and analogue signals are used to determine coarse and fine values that are then combined
DE102016103518A1 (en) Method and device for rotor position diagnosis in an electric motor drive
DE102009047633B4 (en) Method and devices for interference field compensation of sensor signals in an electric power steering system
DE10216635B4 (en) Motion detector according to the Ferraris principle
DE19835377A1 (en) Device for detecting the rotational position, speed and / or direction of rotation of the rotor of an electric motor
EP3679329B1 (en) Method for determining the position, in particular angular position, and arrangement for carrying out the method
DE10306127B4 (en) Method and circuit arrangement for determining the direction of a magnetic field
DE102016214497A1 (en) Control unit and method for controlling an electric machine
DE4211430C1 (en) Measuring signal processing circuit providing time variable output signal depending upon ratio of input signal amplitudes - has analogue comparator for comparing momentary values of periodic input signals during each signal period
DE102021208762A1 (en) Device and method for determining an angular position of a rotatably mounted object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16706518

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16706518

Country of ref document: EP

Kind code of ref document: A1