DE102016103518A1 - Method and device for rotor position diagnosis in an electric motor drive - Google Patents
Method and device for rotor position diagnosis in an electric motor drive Download PDFInfo
- Publication number
- DE102016103518A1 DE102016103518A1 DE102016103518.1A DE102016103518A DE102016103518A1 DE 102016103518 A1 DE102016103518 A1 DE 102016103518A1 DE 102016103518 A DE102016103518 A DE 102016103518A DE 102016103518 A1 DE102016103518 A1 DE 102016103518A1
- Authority
- DE
- Germany
- Prior art keywords
- bridge
- signals
- cosp
- cosn
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000003745 diagnosis Methods 0.000 title claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims description 6
- 101150118300 cos gene Proteins 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 4
- 101100234408 Danio rerio kif7 gene Proteins 0.000 description 3
- 101100221620 Drosophila melanogaster cos gene Proteins 0.000 description 3
- 101100398237 Xenopus tropicalis kif11 gene Proteins 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/145—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/08—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24457—Failure detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24471—Error correction
- G01D5/2448—Correction of gain, threshold, offset or phase control
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Rotorlagediagnose in einem elektromotorischen Antrieb, der zur Bestimmung der Rotorlage eine an dem Rotor oder an einer damit verbundenen Welle angeordnete Sensoreinheit (S) aufweist, die mehrere magnetoresistive Sensorelemente (TMR) aufweist, die miteinander verschalten sind, um mindestens zwei als Vollbrücken (VB, VB‘) dienende Messbrückenschaltungen zu bilden, die mindestens zwei zueinander phasenverschobene Messsignale (cos, sin) für eine Signalverarbeitung zu liefern. Zur Erkennung von in den Messignalen auftretenden Fehlern werden zwei Halbbrückensignale (cosP, cosN), die von den Halbbrücken (HB1, HB2) derselben Vollbrücke (VB) geliefert werden, in der Signalverarbeitung miteinander kombiniert und ausgewertet.The invention relates to a method and a device for rotor position diagnosis in an electromotive drive which has a sensor unit (S) arranged on the rotor or on a shaft connected to it for determining the rotor position, which has a plurality of magnetoresistive sensor elements (TMR) which are interconnected in order to form at least two measuring bridge circuits serving as full bridges (VB, VB '), which supply at least two measuring signals (cos, sin) which are phase-shifted relative to one another for signal processing. To detect errors occurring in the measurement signals, two half-bridge signals (cosP, cosN), which are supplied by the half bridges (HB1, HB2) of the same full bridge (VB), are combined and evaluated in the signal processing.
Description
Die Erfindung betrifft ein Verfahren zur Rotorlagediagnose in einem elektro-motorischen Antrieb gemäß dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens gemäß dem Oberbegriff des nebengeordneten Anspruchs. The invention relates to a method for rotor position diagnosis in an electro-motor drive according to the preamble of claim 1 and to an apparatus for carrying out the method according to the preamble of the independent claim.
Zur Messung und Steuerung, insbesondere zur elektronischen Kommutierung, elektromotorischer Antriebe, ist die Kenntnis der absoluten Winkellage des Rotors, die Rotorlage, erforderlich. Die Rotorlage kann mithilfe geeigneter Sensoren, wie z. B. absolut oder inkremental auflösende Drehgeber, erfasst werden. For measurement and control, in particular for electronic commutation, electric motor drives, the knowledge of the absolute angular position of the rotor, the rotor position, is required. The rotor position can by means of suitable sensors, such as. B. absolute or incremental resolution encoders are detected.
Aus der
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren und Vorrichtung zur Rotorlagediagnose bereitzustellen, die eine eindeutige und rechtzeitige Fehlererkennung ermöglicht. The invention is based on the object to provide a method and apparatus for rotor position diagnosis, which allows a clear and timely error detection.
Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Vorrichtung mit den Merkmalen des nebengeordneten Anspruchs. The object is achieved by a method having the features of claim 1 and by a device having the features of the independent claim.
Dabei geht die Erfindung von der Erkenntnis aus, dass durch die Differenzierung eine eindeutige und rechtzeitige Fehlerdiagnose, z.B. mittels Radius-Diagnose, erschwert oder gar unmöglich gemacht wird, was anhand der beiliegenden
Die
The
Der Erfindung liegt die Erkenntnis zu Grunde, dass somit jeweils zwei Halbbrücken-Signale verloren gehen und dies wiederum eine eindeutige und rechtzeitige Fehlererkennung über eine Radiusdiagnose erschwert. Denn in herkömmlichen Systemen können bestimmte Fehlerfälle nur mit Hilfe zusätzlicher Hardware-(HW)Patterns und/oder Software-(SW)Patterns erkannt werden. Die HW-Patterns erhält man z.B. durch Kurzschließen eines Halbbrückensignals gegen Masse (GND) oder gegen die Versorgungsspannung mittels Transistoren. Die SW-Patterns erhält man etwa im Fall von RPS (Rotor Position Sensor) durch z.B. eine Motormomenten-Reduktion nach einer bestimmten Vergleichslogik mit anschließender RPS-Signalbewertung. The invention is based on the finding that in each case two half-bridge signals are lost and this in turn makes it more difficult to identify errors clearly and in good time via a radius diagnosis. Because in traditional systems, certain errors can only be detected using additional hardware (HW) patterns and / or software (SW) patterns. The HW patterns are obtained e.g. by shorting a half-bridge signal to ground (GND) or to the supply voltage by means of transistors. The SW patterns are obtained, for example, in the case of RPS (Rotor Position Sensor) by e.g. an engine torque reduction according to a specific comparison logic with subsequent RPS signal evaluation.
Anhand der
Da sich jedoch die analogen Signale aufgrund der Sensoren, des Systems und durch Umgebungsbedingungen (Temperatur, Feuchte, Alterung...) sich leicht ändern, befindet sich der Radius R nicht immer auf der idealen Kreisbahn (gestrichelte Linie), sondern weicht etwas davon ab. Deshalb werden in der praktischen Anwendung Toleranzgrenzen vorgegeben, nämlich eine untere Grenze LL (low level) für den inneren Grenzkreis und eine obere Grenze HL (high level) für den äußeren Grenzkreis. Der Radius R sollte sich möglichst immer in diesem Toleranzbereich (Band) bewegen. However, since the analog signals change slightly due to the sensors, the system and environmental conditions (temperature, humidity, aging ...), the radius R is not always on the ideal circular path (dashed line), but deviates somewhat from it , Therefore, in practice, tolerance limits are set, namely, a lower limit LL for the inner limit circle and an upper limit HL for the outer limit circle. The radius R should always be within this tolerance range (band).
Mit der vorliegenden Erfindung wird nun ausgehend von der eingangs erläuterten Erkenntnis, ein Verfahren zur Rotorlagediagnose in einem elektromotorischen Antrieb bereitgestellt, das effektiv und kostengünstig realisiert werden kann. Insbesondere wird eine Rotorlagediagnose ermöglicht, ohne auf die Hilfe von HW-Pattern und/oder SW-Pattern angewiesen zu sein. Des Weiteren wirdl eine Vorrichtung zur Durchführung des Verfahrens vorgeschlagen. Die Erfindung ist in allen Bereich der elektromotorischen Antriebe einsetzbar, insbesondere aber in elektromotorisch angetriebenen Lenksystemen für Fahrzeuge, d.h. in sogenannten elektrischen Hilfskraftlenksystemen. With the present invention, based on the above-explained realization, a method for rotor position diagnosis in an electromotive drive is now provided, which can be realized effectively and inexpensively. In particular, a rotor position diagnosis is made possible without relying on the help of HW pattern and / or SW pattern. Furthermore, an apparatus for carrying out the method is proposed. The invention can be used in all areas of electric motor drives, but especially in electric motor driven steering systems for vehicles, i. in so-called electric power steering systems.
Die Erfindung wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Vorrichtung mit den Merkmalen des nebengeordneten Anspruchs definiert. The invention is defined by a method having the features of claim 1 and by a device having the features of the independent claim.
Demnach werden ein Verfahren und eine Vorrichtung zur Rotorlagediagnose in einem elektromotorischen Antrieb so weiter entwickelt bzw. ergänzt, dass zur Erkennung von in den Messsignalen auftretenden Fehlern diejenigen zwei Halbbrückensignale, die von den beiden Halbbrücken derselben Vollbrücke (Sinus-Brücke oder Kosinus-Brücke) geliefert werden, in der Signalverarbeitung miteinander kombiniert und ausgewertet werden. Insbesondere werden die zwei Halbbrückensignale durch Summenbildung zu einem Summensignal kombiniert, vorzugsweise anhand einer der folgenden Formeln, um einen Offset-Wert zu bestimmen:
- (I) Für die Kosinus-Brücke:
cosOFF = X· (cosP + cosN) / Y - (II) Für die Sinus-Brücke:
sinOFF = X· (sinP + sinN) / Y
- (I) For the cosine bridge:
cosOFF = X · (cosP + cosN) / Y - (II) For the sinus bridge:
sinOFF = X * (sinP + sinN) / Y
Vorzugsweise werden für beide Brücken die Offset-Werte cosOFF und sinOFF berechnet, wodurch dann eine komplexe Fehlererkennung durchgeführt werden kann, welche es ermöglicht, die Verschiebungen sowohl bezüglich der cos-Komponente wie auch der sin-Komponete, z.B. in der Kreisdarstellung, sofort zu erkennen. Preferably, the offset values cosOFF and sinOFF are calculated for both bridges, whereby a complex error detection can then be carried out, which makes it possible to determine the displacements both with respect to the cos component and to the sin component, e.g. in the circle, to recognize immediately.
Diese und weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. These and other advantageous embodiments will become apparent from the dependent claims.
Demnach werden als magnetoresistive Sensorelemente vorzugsweise TMR-Sensorelemente oder AMR-Sensorelemente verwendet. Insbesondere werden genau zwei als Vollbrücken dienende Messbrückenschaltungen gebildet, die mindestens zwei um 90 Grad zueinander phasenverschobene Messsignale (cos, sin) als Vollbrückensignale für die Signalverarbeitung liefern. Accordingly, TMR sensor elements or AMR sensor elements are preferably used as magnetoresistive sensor elements. In particular, exactly two measuring bridge circuits serving as full bridges are formed, which supply at least two measuring signals (cos, sin) phase-shifted by 90 degrees to one another as full-bridge signals for the signal processing.
Die erfindungsgemäße Vorrichtung weist die Sensoreinheit S auf sowie eine damit verbundene Signalverarbeitungseinheit, welche die Sensorsignale gemäß dem Verfahren verarbeitet. The device according to the invention has the sensor unit S and a signal processing unit connected thereto, which processes the sensor signals according to the method.
Die Erfindung und die sich daraus ergebenden Vorteile werden nachfolgend im Detail anhand eines Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Figuren beschrieben. Die Figuren zeigen folgende schematische Darstellungen: The invention and the resulting advantages will be described in detail below with reference to an embodiment with reference to the accompanying figures. The figures show the following schematic representations:
Ausgehend von den
In der
Das in der
That in the
Durch die Erfindung werden nun die jeweiligen Halbbrücken-Signale, z.B. von den Halbbrücken HB1 und HB2 der oberen Vollbrücke VB (also hier die Kosinus-Brücke in
Dabei entspricht cosOFF dem Offset-Wert ist. Und cosP ist das positive Halbbrückensignal; cosN ist das negative Halbbrückensignal. Die Werte X und Y können variabel sein und z.B. jeweils den Wert „1“ haben. Where cosOFF is the offset value. And cosP is the positive half-bridge signal; cosN is the negative half-bridge signal. The values X and Y may be variable and e.g. each have the value "1".
Wenn nun ein Offset-Fehler (s.
Die
Links in der Figur ist beispielhaft der Verlauf der beiden Halbbrücken-Signale cosP (= cos+) und cosN (= cos–) dargestellt. Die gestrichelte Linie soll anzeigen, dass ein Fehler OFF in Form eines Offsetdrifts auftritt. Durch die Kombination (hier Summierung) der beiden Halbbrücken-Signale cosP und cosN und evtl. Wichtung (X und Y) wird sofort der aktuelle Offset-Wert cosOFF berechnet. In der zweiten Darstellung der
On the left in the figure, the course of the two half-bridge signals cosP (= cos +) and cosN (= cos-) is shown by way of example. The dashed line indicates that an error OFF occurs in the form of offset drift. The combination (here summation) of the two half-bridge signals cosP and cosN and possibly weighting (X and Y) immediately calculates the current offset value cosOFF. In the second illustration of the
Mit Hilfe der hier vorgeschlagenen Erfindung kann die bislang übliche Radiusdiagnose um eine wie oben beschriebene Offsetdiagnose erweitert werden. Hierdurch können dann auch spezifische Fehlerfälle, wie oben dargelegt wurde, sofort und zuverlässig erkannt werden. Die Erfindung kann in Diagnose und Steuerungseinheiten für jede Art von elektrischen Antrieben eingesetzt werden, bei denen eine Sensorik, wie z.B. TRM-Sensorik, Sinus- und Kosinus-Signale als Messsignale für die Lage und Bewegung des Rotors ermittelt. Ein bevorzugtes Anwendungsgebiet der Erfindung ist der Automotive-Bereich und hier insbesondere die Ansteuerung von elektrischen Antrieben in Hilfskraftlenkungen (Elektrolenkungen). With the aid of the invention proposed here, the hitherto customary radius diagnosis can be extended by an offset diagnosis as described above. As a result, specific error cases, as set out above, can then be recognized immediately and reliably. The invention can be used in diagnostics and control units for any type of electrical drive, in which a sensor system, such as e.g. TRM sensors, sine and cosine signals are determined as measurement signals for the position and movement of the rotor. A preferred field of application of the invention is the automotive sector and in particular the control of electric drives in power steering systems (electric steering).
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- DE 10250319 A1 [0003] DE 10250319 A1 [0003]
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016103518.1A DE102016103518B4 (en) | 2016-02-29 | 2016-02-29 | Method and device for rotor position diagnosis in an electric motor drive |
PCT/EP2017/051532 WO2017148625A1 (en) | 2016-02-29 | 2017-01-25 | Method and device for rotor position diagnosis in an electric-motor drive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016103518.1A DE102016103518B4 (en) | 2016-02-29 | 2016-02-29 | Method and device for rotor position diagnosis in an electric motor drive |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102016103518A1 true DE102016103518A1 (en) | 2017-08-31 |
DE102016103518B4 DE102016103518B4 (en) | 2024-10-24 |
Family
ID=57890823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102016103518.1A Active DE102016103518B4 (en) | 2016-02-29 | 2016-02-29 | Method and device for rotor position diagnosis in an electric motor drive |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102016103518B4 (en) |
WO (1) | WO2017148625A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113295881A (en) * | 2021-06-17 | 2021-08-24 | 工业互联网创新中心(上海)有限公司 | High-precision wire feeding speed measuring device and method for general industrial welding machine |
US11231297B2 (en) | 2020-01-09 | 2022-01-25 | Robert Bosch Gmbh | Providing availability of rotary position sensor information after hardware failures |
DE102021205125A1 (en) | 2021-05-20 | 2022-11-24 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for monitoring a condition of a sensor magnet of a steering device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10250319A1 (en) | 2002-10-29 | 2003-10-30 | Bosch Gmbh Robert | Device for determining the rotation of a shaft comprises a shaft, a transmitting magnet arranged on the surface of a front side of the shaft or integrated in the region of the surface of the front side, and a GMR sensor element |
DE102004015893A1 (en) * | 2003-03-31 | 2004-10-21 | Denso Corp., Kariya | Magnetic field sensor matching method, magnetic field sensor matching device and magnetic field sensor |
US20100219822A1 (en) * | 2009-02-27 | 2010-09-02 | Hitachi, Ltd. | Magnetic Field Detection Apparatus and Measurement Apparatus |
DE102010037991A1 (en) * | 2009-10-09 | 2011-05-19 | Denso Corporation, Kariya-City | Rotation angle detection device and electric power steering system |
DE102011055000A1 (en) * | 2010-11-05 | 2012-05-10 | Denso Corporation | A rotation angle detecting device and an electric power steering device using the same |
DE112011104630T5 (en) * | 2010-12-28 | 2013-10-10 | Hitachi Automotive Systems, Ltd. | Magnetic field angle measurement device, rotation angle measurement device and rotation machine, system, vehicle and vehicle drive device, each using the same rotation angle measuring device |
DE102015121717A1 (en) * | 2014-12-16 | 2016-06-16 | Toyota Jidosha Kabushiki Kaisha | Electric power steering system for a vehicle |
DE102015122522A1 (en) * | 2014-12-23 | 2016-06-23 | Infineon Technologies Ag | Fail-safe operation of a mixed bridge angle sensor having separate power supplies |
DE102014119531A1 (en) * | 2014-12-23 | 2016-06-23 | Infineon Technologies Ag | A sensor circuit, a sensor device, and a method of forming a sensor circuit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10130988A1 (en) * | 2001-06-27 | 2003-01-16 | Philips Corp Intellectual Pty | Adjustment of a magnetoresistive angle sensor |
JP6056482B2 (en) | 2013-01-08 | 2017-01-11 | 株式会社ジェイテクト | Abnormality detection device for rotation angle sensor |
-
2016
- 2016-02-29 DE DE102016103518.1A patent/DE102016103518B4/en active Active
-
2017
- 2017-01-25 WO PCT/EP2017/051532 patent/WO2017148625A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10250319A1 (en) | 2002-10-29 | 2003-10-30 | Bosch Gmbh Robert | Device for determining the rotation of a shaft comprises a shaft, a transmitting magnet arranged on the surface of a front side of the shaft or integrated in the region of the surface of the front side, and a GMR sensor element |
DE102004015893A1 (en) * | 2003-03-31 | 2004-10-21 | Denso Corp., Kariya | Magnetic field sensor matching method, magnetic field sensor matching device and magnetic field sensor |
US20100219822A1 (en) * | 2009-02-27 | 2010-09-02 | Hitachi, Ltd. | Magnetic Field Detection Apparatus and Measurement Apparatus |
DE102010037991A1 (en) * | 2009-10-09 | 2011-05-19 | Denso Corporation, Kariya-City | Rotation angle detection device and electric power steering system |
DE102011055000A1 (en) * | 2010-11-05 | 2012-05-10 | Denso Corporation | A rotation angle detecting device and an electric power steering device using the same |
DE112011104630T5 (en) * | 2010-12-28 | 2013-10-10 | Hitachi Automotive Systems, Ltd. | Magnetic field angle measurement device, rotation angle measurement device and rotation machine, system, vehicle and vehicle drive device, each using the same rotation angle measuring device |
DE102015121717A1 (en) * | 2014-12-16 | 2016-06-16 | Toyota Jidosha Kabushiki Kaisha | Electric power steering system for a vehicle |
DE102015122522A1 (en) * | 2014-12-23 | 2016-06-23 | Infineon Technologies Ag | Fail-safe operation of a mixed bridge angle sensor having separate power supplies |
DE102014119531A1 (en) * | 2014-12-23 | 2016-06-23 | Infineon Technologies Ag | A sensor circuit, a sensor device, and a method of forming a sensor circuit |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11231297B2 (en) | 2020-01-09 | 2022-01-25 | Robert Bosch Gmbh | Providing availability of rotary position sensor information after hardware failures |
DE102021205125A1 (en) | 2021-05-20 | 2022-11-24 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for monitoring a condition of a sensor magnet of a steering device |
CN113295881A (en) * | 2021-06-17 | 2021-08-24 | 工业互联网创新中心(上海)有限公司 | High-precision wire feeding speed measuring device and method for general industrial welding machine |
Also Published As
Publication number | Publication date |
---|---|
WO2017148625A1 (en) | 2017-09-08 |
DE102016103518B4 (en) | 2024-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009042473B4 (en) | Method for evaluating signals of an angle sensor | |
DE102011081389B4 (en) | Rotating field sensor | |
DE102016102927B4 (en) | Sensor error detection | |
DE102016102929B4 (en) | Sensor error detection | |
EP1049908A1 (en) | System for detecting the angle of rotation of a rotatable element | |
EP3884239B1 (en) | Angle sensor with multipole magnet for motor vehicle steering | |
EP3721175B1 (en) | Sensor system for determining at least one rotational property of an element rotating around at least one rotation axis | |
DE102017116297A1 (en) | Angle sensor and angle sensor system | |
DE102017111979A1 (en) | Angle sensor, correction method for use with the angle sensor and angle sensor system | |
EP1300651A2 (en) | Method for offset compensation of a magnetoresistive displacement or angular measurement system | |
DE102016103518B4 (en) | Method and device for rotor position diagnosis in an electric motor drive | |
DE102009055275A1 (en) | Sensor arrangement for combined speed-torque detection | |
DE102016212173A1 (en) | Method and device for determining a number of revolutions and an angular position of a component rotatable about an axis of rotation | |
DE112018003016T5 (en) | POSITION SENSOR | |
DE102017112623A1 (en) | A state determining apparatus and method, physical quantity information generating apparatus, and an angle sensor | |
EP1853927B1 (en) | Motion sensor equipped with encoder monitoring circuit and corresponding encoder monitoring method | |
EP3833936B1 (en) | Sensor system for determining at least one rotation characteristic of a rotating element | |
EP1135695B1 (en) | Method and circuit arrangement for determining the direction of an external magnetic field | |
EP1511973B1 (en) | Method and device for detection of the movement of an element | |
DE202018103038U1 (en) | Magnetoresistive angle sensor | |
DE102012223581A1 (en) | Apparatus and method for monitoring signal levels | |
DE102009047633A1 (en) | Method and apparatus for interference field compensation of sensor signals in an electric power steering system | |
WO2020030319A1 (en) | Sensor system for determining at least one rotation characteristic of a rotating element | |
DE102015200475A1 (en) | Method and measuring signal processing unit for generating a multi-channel measuring signal for a rotational speed measurement and sensor unit | |
WO2013092369A1 (en) | Apparatus and method for determining a position of an element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R012 | Request for examination validly filed | ||
R081 | Change of applicant/patentee |
Owner name: ROBERT BOSCH GMBH, DE Free format text: FORMER OWNER: ROBERT BOSCH AUTOMOTIVE STEERING GMBH, 73527 SCHWAEBISCH GMUEND, DE |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division |