WO2016112848A1 - 电子设备及其触摸感测系统、以及触摸感测系统的检测方法 - Google Patents

电子设备及其触摸感测系统、以及触摸感测系统的检测方法 Download PDF

Info

Publication number
WO2016112848A1
WO2016112848A1 PCT/CN2016/070738 CN2016070738W WO2016112848A1 WO 2016112848 A1 WO2016112848 A1 WO 2016112848A1 CN 2016070738 W CN2016070738 W CN 2016070738W WO 2016112848 A1 WO2016112848 A1 WO 2016112848A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
modulation
power
sensing system
Prior art date
Application number
PCT/CN2016/070738
Other languages
English (en)
French (fr)
Inventor
刘雪春
Original Assignee
深圳信炜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52792087&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016112848(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳信炜科技有限公司 filed Critical 深圳信炜科技有限公司
Publication of WO2016112848A1 publication Critical patent/WO2016112848A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving

Definitions

  • the present invention relates to a touch sensing system, an electronic device having the touch sensing system, and a detecting method of a touch sensing system.
  • more and more electronic devices are provided with one or more sensing systems, such as a touch sensing system for sensing touch operations, for sensing human biometrics.
  • a touch sensing system for sensing touch operations
  • the biometric sensing system or the like includes fingerprints, palm prints, and the like, and the touch sensing system and the biometric sensing system mostly perform sensing operations with a capacitive sensing system.
  • the capacitive sensing system typically includes a sensor board for capacitively coupling to a target object, and a capacitance detecting circuit, such as a user's finger.
  • the capacitance detecting circuit provides a driving signal to the sensor board and receives a sensing signal from the output of the sensor board, thereby implementing predetermined information for sensing the target object.
  • the predetermined information is biometric information, touch information, or the like.
  • the capacitance detecting circuit generally includes a power terminal, a ground terminal, and a signal transmission terminal.
  • the power terminal and the ground terminal are configured to receive a power supply voltage to ensure that the capacitance detecting circuit works normally.
  • the signal transmission end is a third end different from the power end and the ground end, and the signal transmission end is configured to transmit a signal between the capacitance detecting circuit and the sensor board, such as the driving signal and the sensing signal.
  • the present invention provides a capacitive sensing system with high sensing accuracy, an electronic device having the capacitive sensing system, and a detecting method of the capacitive sensing system.
  • the present invention provides the following technical solutions:
  • a touch sensing system comprising:
  • a sensor board for capacitively coupling to a target object to perform a sensing operation
  • the capacitance detecting circuit includes a signal transmitting end and a ground end, wherein the capacitance detecting circuit is configured to provide a first excitation signal to the sensor board through the signal transmitting end to drive the sensor board to perform a touch sense
  • the ground of the capacitance detecting circuit is used to load the first modulation signal, and the first excitation signal changes according to the change of the first modulation signal.
  • the first excitation signal changes with the change of the first modulation signal to reduce the charge and discharge power of the parasitic capacitance between the sensor board and the ground.
  • the first modulation signal and the first excitation signal are voltage signals, and a voltage of the first excitation signal increases as a voltage of the first modulation signal increases, along with the first modulation The voltage of the signal is lowered and lowered.
  • the invention further provides an electronic device comprising a touch sensing system.
  • the touch sensing system includes:
  • a sensor board for capacitively coupling to a target object to perform a sensing operation
  • the capacitance detecting circuit includes a signal transmitting end and a ground end, wherein the capacitance detecting circuit is configured to provide a first excitation signal to the sensor board through the signal transmitting end to drive the sensor board to perform a touch sense
  • the ground of the capacitance detecting circuit is used to load the first modulation signal, and the first excitation signal changes according to the change of the first modulation signal.
  • the invention further provides a touch sensing system comprising:
  • a sensor board for coupling to a target object in a capacitive coupling manner to perform a sensing operation
  • the capacitance detecting circuit includes a signal transmitting end and a modulation end, wherein the capacitance detecting circuit is configured to provide a first excitation signal to the sensor board through the signal transmitting end to drive the sensor board to perform a touch sense
  • the modulation end of the capacitance detecting circuit is configured to load the first modulation signal, and the first excitation signal changes according to the change of the first modulation signal.
  • the voltage in the capacitance detecting circuit varies with the voltage of the modulation terminal.
  • the first excitation signal changes with the change of the first modulation signal to reduce the charge and discharge power of the parasitic capacitance between the sensor board and the ground.
  • the first modulation signal and the first excitation signal are voltage signals, and a voltage of the first excitation signal increases as a voltage of the first modulation signal increases, along with the first modulation The voltage of the signal is lowered and lowered.
  • the invention further provides an electronic device comprising a touch sensing system.
  • the touch sensing system includes:
  • a sensor board for coupling to a target object in a capacitive coupling manner to perform a sensing operation
  • the capacitance detecting circuit includes a signal transmitting end and a modulation end, wherein the capacitance detecting circuit is configured to provide a first excitation signal to the sensor board through the signal transmitting end to drive the sensor board to perform sensing Operation, the modulation end of the capacitance detecting circuit is configured to load a first modulation signal, and the first excitation signal changes according to a change of the first modulation signal.
  • the present invention also provides a method for detecting a touch sensing system, the touch sensing system includes a plurality of capacitive sensing plates and a capacitance detecting circuit, the capacitance detecting circuit includes a modulation end, and the detecting method includes:
  • the first excitation signal changes as the first modulation signal changes.
  • the first excitation signal varies with the change of the first modulation signal to reduce the charge and discharge power of the parasitic capacitance between the plurality of capacitive sensing plates and the modulation end.
  • the voltage in the capacitance detecting circuit increases as the voltage of the first modulation signal increases, and decreases as the voltage of the first modulation signal decreases.
  • the touch sensing system, the electronic device and the detecting method of the present invention change the first excitation signal according to the change of the first modulation signal by providing the first modulation signal, thereby improving the sensing precision.
  • FIG. 1 is a block diagram showing the structure of an electronic device according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of the sensor board shown in FIG. 1.
  • FIG. 2 is a schematic structural view of an embodiment of the sensor board shown in FIG. 1.
  • FIG. 3 is a waveform diagram of a first excitation signal and a first modulation signal.
  • FIG. 4 is a waveform diagram of another embodiment of the first modulated signal.
  • FIG. 5 is a schematic structural view of the capacitance detecting circuit shown in FIG. 1.
  • FIG. 6 is a schematic diagram showing the circuit structure of the sensing unit shown in FIG. 5.
  • FIG. 7 is another schematic structural diagram of an electronic device according to the present invention.
  • FIG. 8 is a flow chart of a method for detecting a capacitive sensing system of the present invention.
  • the sensing accuracy of the capacitive sensing system of the existing electronic device is relatively low, and the factors affecting the sensing accuracy of the capacitive sensing system are relatively low, and a large amount of research by the inventors It is found that there is a parasitic capacitance between the ground of the capacitance detecting circuit and the sensor board, and the grounding terminal usually loads a constant voltage signal, and the sensing The device is loaded with a constantly changing voltage signal, so that the parasitic capacitance is charged and discharged. Accordingly, the charge detected by the capacitance detecting circuit includes not only the capacitance formed by the capacitance between the target object and the sensor plate due to the voltage change. It also includes the charge caused by the change of the parasitic capacitance due to the voltage, thereby affecting the sensing accuracy.
  • the inventor correspondingly proposes a capacitive sensing system with high sensing accuracy and has the capacitive feeling through a large amount of creative labor.
  • Measuring the electronic equipment of the system is either a touch sensing system, or a biometric sensing system, or a multi-function sensing system, or other suitable type of sensing system, such as a multi-functional sensing system, for example A system that can perform both a touch sensing function and a biometric sensing function.
  • the biometric sensing system is a sensing system such as a fingerprint, a palm print, or other suitable type of biometric sensing system.
  • the first modulation signal is a modulation signal used for biometric sensing
  • the second modulation signal is a modulation signal for detecting whether there is a touch operation
  • the modulation signal at the time of feature sensing is named as the second modulation signal
  • the modulation signal used to detect whether there is a touch operation is named as the first modulation signal. Therefore, this document does not limit the name "first modulation signal” to only For the modulation signal at the time of biometric sensing, the name "second modulation signal” is used as a modulation signal for detecting whether there is a touch operation.
  • the names of the first power signal and the second power signal are also interchangeable.
  • FIG. 1 is a block diagram of a preferred embodiment of an electronic device according to the present invention.
  • the electronic device 100 is, for example, a mobile phone, a tablet computer, a GPS navigation system, a television, and the like.
  • the electronic device 100 includes a capacitive sensing system 10.
  • the capacitive sensing system 10 is configured to sense predetermined information of the target object 1 and determine whether to perform a corresponding function according to the sensed predetermined information.
  • the predetermined information includes biometric information or/and touch information.
  • the biometric information includes fingerprint information.
  • the touch information is whether a target object approaches or touches the capacitive sensing system 10.
  • the target object 1 may be a finger, or may be other parts of the user's body, such as a toe, etc., or even other suitable types of objects, and is not limited to the human body.
  • the fingerprint sensing system is configured to sense fingerprint information. If the sensed fingerprint information is consistent with the pre-stored fingerprint information, the booting is performed correspondingly. The functions of unlocking, paying, and directly calling a predetermined application; if the sensed fingerprint information is inconsistent with the pre-stored fingerprint information, the function is not performed.
  • the predetermined application program is, for example, Weibo, WeChat, etc., and the predetermined application program can be directly invoked when the electronic device 100 is in a standby state, a lock screen, or the like.
  • the touch sensing system 10 is configured to sense a touch operation, and if a touch or proximity of the target object 1 is sensed, a trigger function is performed correspondingly.
  • a predetermined device in the trigger electronic device 100 starts to work or starts to perform another job.
  • the capacitive sensing system 10 first performs a touch sensing function when sensing a touch. After the operation, the touch sensing function is switched to perform the fingerprint sensing function, and the fingerprint of the target object 1 is sensed. If the sensed fingerprint is consistent with the preset fingerprint, the corresponding function is performed correspondingly. After the fingerprint sensing is correct or after the fingerprint detection is unsuccessful, the capacitive sensing system 10 switches to the touch sensing function to achieve the effect of saving power.
  • the capacitive sensing system 10 includes a sensor board 11 and a capacitance detecting circuit 13.
  • the sensor board 11 is for capacitively coupling to the target object 1 to perform a sensing operation.
  • the capacitance detecting circuit 13 includes a signal transmitting terminal T and a ground terminal 13a.
  • the capacitance detecting circuit 13 is configured to provide a first excitation signal to the sensor board 11 through the signal transmitting end T to drive the sensor 11 board to perform a sensing operation, thereby obtaining predetermined information of the target object 1.
  • the ground terminal 13a of the capacitance detecting circuit 13 is used for loading a modulated signal, the first excitation signal varying with a change in the first modulated signal.
  • the first excitation signal varies with the change of the first modulation signal to reduce the charge and discharge power of the parasitic capacitance between the sensor board and the ground.
  • the first excitation signal changes with the change of the first modulation signal, thereby reducing the parasitic capacitance C1 between the ground terminal 13a and the sensor board 11. Charge and discharge. Further, the effect of the parasitic capacitance C1 on the superposition of the capacitance between the sensor board 11 and the target object 1 is reduced, and the sensing accuracy can be improved.
  • the first modulation signal and the first excitation signal are voltage signals.
  • the voltage of the first excitation signal increases as the voltage of the first modulation signal increases, and decreases as the voltage of the first modulation signal decreases.
  • the magnitude of the amplitude change of the first excitation signal is the same as the magnitude of the amplitude variation of the first modulation signal. Therefore, the charge and discharge electric quantity of the parasitic capacitance C1 between the ground end 13a and the sensor board 11 is made zero, and accordingly, the parasitic capacitance C1 is equivalent to zero. Further, the superimposing effect of the parasitic capacitance C1 on the capacitance between the sensor board 11 and the target object 1 is eliminated, so that the sensing accuracy can be further improved.
  • the first excitation signal and the first modulation signal are periodically changing signals.
  • the present invention does not limit the first excitation signal and the first modulation signal to periodically change signals.
  • the first excitation signal and the first modulation signal may also be non-
  • the periodically changing signal can be reduced in charge and discharge amount of the parasitic capacitance between the ground terminal 13a and the sensor plate 11 as long as the two are synchronously changed.
  • the first excitation signal and the first modulation signal are either co-frequency signals, or co-channel in-phase signals, or co-channel in-phase signals, or co-channel signals, and the
  • the phase of an excitation signal has a certain delay with respect to the phase of the first modulated signal, and the delay is, for example, 1 nanosecond.
  • the capacitance detecting circuit 13 detects predetermined information of the target object 1 by measuring the capacitance between the sensor board 11 and the target object 1.
  • the capacitance detecting circuit 13 loads the first modulation signal through the ground terminal 13a, and provides a first excitation signal that changes with the change of the first modulation signal to the sensor board. 11 Perform self-capacitance detection to achieve sensing operation.
  • FIG. 2 is a schematic structural view of an embodiment of the sensor board 11 shown in FIG.
  • the sensor board 11 includes a plurality of capacitive sensing pads 11a.
  • the plurality of capacitive sensing plates 11a are rectangular.
  • the shape of the plurality of capacitive sensing plates 11a is not limited thereto.
  • the sensing plate 11a can also be of other regular or irregular shapes.
  • the plurality of capacitive sensing pads 11a are arranged in an array of sensing for performing sensing operations. It should be noted that the plurality of capacitive sensing plates 11a may be arranged in a regular array, such as a square matrix, or may be arranged in an irregular manner.
  • each of the capacitive sensing plates 11a forms a self-capacitance.
  • the self-capacitance detection is to detect a change in self-capacitance caused by the input of the capacitive sensing plate 11a due to the target object 1 (for example, a fingerprint).
  • the capacitive sensing system 10 as a fingerprint sensing system and the target object 1 as a finger
  • the voltage on the sensor board 11 changes, and the sensor board 11
  • the amount of charge stored in the capacitor between the finger and the finger changes.
  • the size of the capacitor can be measured. Since the voltage on the sensor board 11 and the ground terminal 13a changes substantially synchronously, the voltage difference between the sensor board 11 and the ground terminal 13a remains unchanged, and the parasitic capacitance C1 is not charged and discharged, so that its equivalent capacitance is zero.
  • the electric charge detected by the capacitance detecting circuit 13 is basically caused by the voltage change of the capacitance directly formed by the sensor board 11 and the finger, and the influence of the parasitic capacitance C1 is reduced.
  • the greater the amplitude of the first modulation signal applied on the ground terminal 13a the greater the voltage change between the sensor board 11 and the finger, and correspondingly, the greater the change in the charge of the capacitor formed by the sensor board 11 and the finger.
  • the change in the amount of charge detected by the capacitance detecting circuit 13 is larger. If the noise does not change, the signal-to-noise ratio detected by the capacitance detecting circuit 13 from the sensing signal output from the sensor board 11 will increase linearly. Therefore, increasing the amplitude peak-to-peak value of the first modulation signal applied to the ground terminal 13a increases the capacitance detecting system.
  • the signal-to-noise ratio of 10 is increased to 10V, 15V, or even 20V.
  • FIG. 3 is a schematic diagram of waveforms of a first excitation signal and a first modulation signal.
  • the letter "M” represents the first excitation signal and the letter “N” represents the first modulation signal.
  • a square wave signal in which the first modulation signal and the first excitation signal are periodically changed will be described as an example.
  • the low level of the first modulation signal is 0V, and the high level is 10V.
  • the low level of the first excitation signal is 1.2V, and the high level is 11.2V.
  • the high level and the low level of the first modulation signal and the first excitation signal may also be other voltages, and other suitable types of signals, such as sine waves.
  • the ground terminal 13 a is used to load a first power signal, and the first power signal includes the first modulation signal.
  • the capacitance detecting circuit 13 further includes a power terminal 13b, the power terminal 13b is loaded with a second power signal, the second power signal is a voltage signal, and the voltage of the power signal is higher than the voltage of the first power signal.
  • the second power signal changes as the first modulation signal changes, or the second power signal changes as the first power signal changes.
  • the voltage difference between the second power signal and the first power signal is a power voltage at which the capacitance detecting circuit 13 operates.
  • the other voltages in the capacitance detecting circuit 13 increase as the voltage of the first power signal increases, and decrease as the voltage of the first power signal decreases.
  • the voltage of the second power signal increases as the voltage of the first modulation signal increases, decreases as the voltage of the first modulation signal decreases, or the voltage of the second power signal follows The voltage of the first power signal rises and rises, and decreases with the voltage of the first power signal.
  • the second power signal and the first modulated signal are co-frequency signals, or the second power signal and the first power signal are co-frequency signals.
  • the first modulated signal includes only a square wave signal in which two levels of high and low are alternately changed.
  • the first modulated signal is not limited to two levels of high and low. Alternate changes.
  • the first modulation signal is a signal including at least a first level and a second level, and a voltage of the first level is different from a voltage of the second level.
  • the first level is a high level, such as 10V
  • the second level is a low level, such as 0V.
  • the first level may also be a low level
  • the second level is a high level
  • the voltage levels of the high and low levels may also be adjusted according to actual needs.
  • the first modulated signal includes a square wave signal that alternates between a first level and a second level.
  • the first modulated signal is a periodically varying square wave signal.
  • the first modulated signal is not limited to a square wave signal, and may be other suitable types of signals such as a sine wave, a triangular wave, and the like.
  • the voltage conditions of the first level and the second level are any one of the following three cases:
  • the voltage of the first level is a positive voltage, and the voltage of the second level is 0V;
  • the voltage of the first level is 0V, and the voltage of the second level is a negative voltage
  • the voltage of the first level is a positive voltage
  • the voltage of the second level is a negative voltage
  • the absolute value of the voltage of the first level is equal to or not equal to the absolute value of the voltage of the second level.
  • the average external voltage is 0V or close to 0V, for other components or external objects in the electronic device 100.
  • the resulting low frequency excitation will be significantly reduced.
  • the level of the first modulated signal is a square wave of 0 to 10 volts, there is equivalent to a 5V DC signal, which will generate an electric field externally, which may cause current to flow through the human body or increase external radiation or affect Other devices within electronic device 100.
  • the capacitance detecting circuit 13 reads the first signal from the sensor board 11 when the ground terminal 13a is loaded with the first level, and reads from the sensor board 11 when the ground terminal 13a is loaded with the second level. Taking a second signal, obtaining predetermined information of the target object 1 by using the read first signal and the second signal.
  • FIG. 4 is a waveform diagram of another embodiment of the first modulated signal.
  • the first modulation signal includes the first level, the second level, and a third level, and the voltage of the second level is between a voltage of a first level and a voltage of a third level
  • the first modulation signal includes a two-step square wave signal composed of a first level, a second level, and a third level.
  • the capacitance detecting circuit 13 provides a first level to the ground at the ground end 13a At the time of the sensor board 11, the first signal is read from the sensor board 11, and when the ground level 13a provides a second level to the sensor board 11, the second signal is read from the sensor board 11, When the ground terminal 13a provides a third level to the sensor board 11, the third signal is read from the sensor board 11, and when the ground terminal 13a is switched from providing the third level to providing the second level And reading a fourth signal from the sensor board 11, and obtaining predetermined information of the target object 1 by the read first signal, the second signal, the third signal, and the fourth signal.
  • the capacitive sensing system 10 further includes a control circuit 15, the ground terminal 13a of the capacitance detecting circuit 13 is electrically connected to the control circuit 15, and the control circuit 15 is used for applying The first modulation signal is to the ground terminal 13a of the capacitance detecting circuit 13.
  • the power terminal 13b of the capacitance detecting circuit 13 is electrically connected to the control circuit 15, and the control circuit 15 is configured to control the voltage difference between the power terminal 13b and the ground terminal 13a of the capacitance detecting circuit 13 to be maintained. Consistent.
  • the control circuit 15 provides the first power signal to the ground terminal 13a, and provides a second power signal to the power terminal 13b to provide a required power voltage for the capacitor detecting circuit 13 to operate normally.
  • the control circuit 15 includes a ground terminal 15a, a power terminal 15b, a first output terminal 15c, and a second output terminal 15d.
  • the first output end 15c is connected to the ground end 13a of the capacitance detecting circuit 13 for outputting the first power signal to the ground end 13a.
  • the second output terminal 15d is connected to the power terminal 13b of the capacitance detecting circuit 13 for outputting the second power signal to the power terminal 13b.
  • the voltage of the ground terminal 15a of the control circuit 15 is 0 volts, or the system ground voltage of the electronic device 100, or a constant voltage.
  • the power terminal 15b of the control circuit 15 is for receiving a power supply voltage.
  • a communication interface (not labeled) is also provided between the control circuit 15 and the capacitance detecting circuit 13 for information communication.
  • the electronic device 100 further includes a main control chip 20 , and the main control chip 20 is connected to the ground end 15 a and the power end 15 b of the control circuit 15 for the main control.
  • Circuit 15 provides a system ground voltage and a supply voltage to power control circuit 15.
  • the main control chip 20 and the control circuit 15 A communication interface (not labeled) is further provided for information communication.
  • the system ground voltage is typically the voltage of the negative terminal of the power supply of the electronic device 100.
  • the power supply is a battery.
  • FIG. 5 is a schematic structural diagram of the capacitance detecting circuit 13 of FIG.
  • the capacitance detecting circuit 13 further includes a plurality of sensing units 13c and a plurality of selecting units 13d.
  • Each of the sensing units 13c is connected to the plurality of capacitive sensing plates 11a through a selection unit 13d.
  • the selecting unit 13d is configured to control the number of electrical connection between the capacitive sensing plate 11a and the sensing unit 13 when the capacitance detecting circuit 13 operates.
  • each selection unit 13d includes a switch S (not shown).
  • the switch S is respectively connected to the sensing unit 13c and at least one capacitive sensing plate 11a.
  • each of the sensing unit 13c and the connected capacitive sensing plate 11a can be selectively electrically connected through the selecting unit 13d. Thereby, the first excitation signal is simultaneously output to all of the capacitance sensing plates 11a.
  • only the part of the capacitive sensing plate 11a and the plurality of sensing units 13c are electrically connected to each other through the selecting unit 13d, and thus, after multiple selections, each The sensing unit 13c and the connected capacitive sensing plates 11a are both electrically conducted, so that the first excitation signal is time-divisionally outputted to the plurality of capacitive sensing plates 11a.
  • each of the sensing units 13c and each of the capacitive sensing plates are controlled by the selecting unit 13d.
  • 11a is electrically connected to receive the sensing signal.
  • the sensing signals output by all of the capacitive sensing plates 11a are obtained by multiple control.
  • each sensing unit 13c may be electrically connected to a plurality of (eg, two) capacitive sensing pads 11a each time to receive a sensing signal. Accordingly, the capacitance detecting circuit 13 obtains predetermined information of the target object 1 by the received sensing signal.
  • FIG. 6 is a schematic diagram showing the circuit structure of the sensing unit 13c shown in FIG.
  • the sensing unit 13c includes an operational amplifier 131, a feedback branch 133, and a calculation unit 135.
  • the operational amplifier 131 includes an in-phase terminal a, an inverting terminal b, and an output terminal d.
  • the feedback branch 133 is connected between the inverting terminal b and the output terminal d.
  • the calculation unit 135 Connected to the output terminal d.
  • the feedback branch 133 includes a feedback capacitor Cf connected between the inverting terminal b and the output terminal d.
  • the non-inverting terminal a of the operational amplifier 131 receives a reference voltage Vref.
  • the reference voltage Vref is supplied from a reference voltage generating circuit 19. It should be noted that the reference voltage generating circuit 19 may be one circuit in the capacitance detecting system 10 or another circuit in the electronic device 100.
  • the inverting terminal b of the operational amplifier 131 is connected to the capacitive sensing plate 11a via the selection unit 13d.
  • the operational amplifier 131 is further electrically connected to the power terminal 13b and the ground terminal 13a, respectively.
  • the operational amplifier 131 When the capacitance detecting circuit 13 is in operation, the operational amplifier 131 is in a virtual short state, that is, the non-inverting terminal 13a and the inverting terminal 13b are short-circuited, and the potentials of the two are the same, that is, the potential of the non-inverting terminal a is also the reference voltage Vref. Further, the reference voltage Vref varies with the change of the first modulation signal received by the ground terminal 13a. Therefore, when the ground terminal 13a outputs the first modulation signal to the operational amplifier 131, the potentials of the in-phase terminal a and the inverting terminal b vary with the change of the first modulation signal, and accordingly, conductance with the inverting terminal b of the operational amplifier 131. The first excitation signal received by the capacitive sensing plate 11a changes as the first modulation signal changes.
  • the charge change that occurs is transmitted to the calculation unit 135 through the feedback capacitance Cf connected to the inverting terminal b.
  • the calculation unit 135 correspondingly obtains predetermined information of the target object 1 according to the charge change condition.
  • the predetermined information is calculated with the change in charge, and in other embodiments, the predetermined information can also be obtained by calculating the voltage change.
  • each of the capacitive sensing plates 11a can detect the size of a capacitor to which a finger is coupled.
  • the finger prints have ridges and valleys that are closer to the sensor plate 11 than the valleys, and thus have a larger capacitance; the valleys are further away from the sensor plate 11 than the ridges, and thus have a smaller capacitance.
  • the ridges and valleys of the fingerprint on the area corresponding to each of the capacitive sensing plates 11a can be detected.
  • the capacitance detecting system 10 includes two detection modes, a first detection mode and a second detection mode, respectively.
  • Capacitance detecting circuit In addition to driving the sensor board 11 to perform the first detection mode when the first excitation signal that changes with the change of the first modulation signal is provided when the grounding terminal 13a loads the first modulation signal, Still further for driving the sensor board 11 to perform the second detection mode when the second modulation signal is applied to the ground terminal 13a, providing a second excitation signal that varies with the change of the second modulation signal, wherein A modulated signal is different from the second modulated signal, and the second excitation signal is different from the first excitation signal.
  • the first power signal supplied to the ground terminal 13a by the control circuit 15 includes the second modulation signal.
  • the capacitive sensing system 10 can perform at least two different sensing operations by performing the first and second detecting modes respectively, thereby increasing the sensing function of the capacitive sensing system 10 and enhancing Availability of the electronic device 100.
  • the second excitation signal varies with the change of the second modulation signal to reduce the charge and discharge power of the parasitic capacitance between the sensor board and the ground.
  • the second modulation signal and the second excitation signal are both voltage signals.
  • the voltage of the second excitation signal increases as the voltage of the second modulation signal increases, and the second modulation signal The voltage is lowered by a decrease, or the voltage of the second excitation signal increases as the voltage of the first power signal increases, and decreases as the voltage of the first power signal decreases.
  • the magnitude of the amplitude change of the second excitation signal is the same as the magnitude of the amplitude variation of the second modulation signal.
  • the second excitation signal and the second modulation signal are periodically varying signals.
  • the second excitation signal and the second modulation signal are either the same frequency signal, or the same frequency in-phase signal, or the same amplitude same frequency in-phase signal, or the same frequency signal, and the second excitation signal
  • the phase has a certain delay with respect to the phase of the second modulated signal, and the delay is, for example, 1 nanosecond.
  • the second modulation signal includes at least a fourth level and a fifth level, wherein the voltage of the fourth level is different from the voltage of the fifth level.
  • the inventors have found through a large number of studies that there is a parasitic capacitance C2 between the ground terminal 13a and the system ground of the electronic device 100, such as the ground terminal 15a (see FIG. 1). When the ground terminal 13a is excited, the parasitic capacitance C2 is also excited. When the parasitic capacitance C2 is relatively large and the excitation frequency is relatively high, a large power consumption is generated. Through a large number of creative labor discoveries, the inventors can reduce power consumption by the following means.
  • the second detecting mode is first executed, and when the capacitive sensing system senses a predetermined operation of the target object, the first detecting mode is started or the second detecting mode is switched to The first detection mode performs a detection operation, wherein the second detection mode saves power compared to the first detection mode.
  • the second excitation signal changes according to the change of the second modulation signal, and may further reduce the charge and discharge power of the parasitic capacitance C1 between the sensor board 11 and the ground end 13a. It is used to reduce the power consumption of the capacitive sensing system 10.
  • the frequency of the second excitation signal is smaller than the frequency of the first excitation signal, and/or the voltage peak-to-peak value of the second excitation signal is smaller than the voltage peak-to-peak value of the first excitation signal, thereby achieving the purpose of reducing power consumption.
  • the frequency of the second modulation signal is smaller than the frequency of the first modulation signal, or/and the voltage peak-to-peak value of the second modulation signal is smaller than the voltage peak-to-peak value of the first modulation signal, so that power consumption can be further reduced.
  • the first detection mode is the fingerprint sensing mode
  • the second detection mode is the touch detection mode as an example.
  • the capacitance detecting circuit 13 When the capacitive sensing system 10 is in the touch detection mode, the capacitance detecting circuit 13 is configured to drive the sensor board 11 to perform a touch detecting operation, and sense the touch of the target object 1 on the sensor board 11; When the capacitive sensing system 10 is in the fingerprint detecting mode, the capacitance detecting circuit 13 is configured to drive the sensor board 11 to perform a fingerprint detecting operation to sense the fingerprint of the target object 1.
  • the capacitance detecting circuit 13 senses a touch operation by measuring a capacitance between the sensor board 11 and the target object 1.
  • detecting first performing touch detection, detecting that a touch occurs, then starting fingerprint detection or switching touch detection is Fingerprint detection to save power.
  • the capacitance detecting circuit 13 determines whether the sensor board 11 is touched
  • the switching provides the second modulated signal to the grounding terminal 13a, and the second excitation signal is switched to the first excitation signal to the sensor board 11, Perform fingerprint sensing;
  • a second modulation signal is provided to the ground terminal 13a, and a second excitation signal is supplied to the sensor board 11 to perform touch sensing.
  • a voltage peak-to-peak value of 1 V is applied to one or both of the second modulation signal and the second excitation signal for detecting whether a touch occurs, for example,
  • the voltage peak-to-peak value of the second excitation signal is 1V
  • the voltage peak-to-peak value of the second modulation signal is 1V
  • the first modulation signal and the first excitation signal are both One or all of the voltage peaks and peaks of 10V are used for detecting the fingerprint.
  • the voltage peak-to-peak value of the first excitation signal is 10V
  • the voltage peak-to-peak value of the first modulation signal is 10V.
  • the first excitation signal and the second excitation signal are both periodically changing signals, wherein the frequency of the first excitation signal is greater than the frequency of the second excitation signal.
  • the first modulated signal and the second modulated signal are both periodically changing signals, wherein the frequency of the first modulated signal is greater than the frequency of the second modulated signal.
  • the capacitive sensing system 10 When the capacitive sensing system 10 is in the touch detection mode, only detecting whether a touch occurs does not require a high resolution like fingerprint recognition, and therefore, the plurality of capacitive sensing plates 11a or even all of the capacitive sensing plates 11a may Connect together for testing.
  • the capacitive sensing system 10 of the present invention is a sensing system that saves drive loops.
  • a capacitive sensing system includes a driving ring, a sensor board, and a capacitance detecting circuit.
  • the drive ring By applying an excitation on the drive ring, the drive ring directly contacts the finger, and the drive ring is energized to the finger to drive the finger potential to change.
  • This solution on the one hand, requires the addition of a drive ring, which increases the cost; on the other hand, the drive ring cannot apply too high voltage, such as 4V. When the voltage is too high, current flowing through the human body can cause an uncomfortable feeling.
  • the capacitive sensing system 10 of the present invention is relatively flexible in design, has better performance, lower cost, and has a higher comfort when the human body is in contact.
  • the above-mentioned technical solution of multiplexing the shielding electrode 17 by using the conductive element in the capacitive sensing system 10 is not limited to the capacitive sensing system 10 for saving the driving ring, and other suitable capacitive methods are also applicable.
  • a sensing system such as a capacitive sensing system with a driving ring
  • FIG. 7 is another schematic structural diagram of an electronic device 100 according to the present invention.
  • the electronic device 100 further includes a display device 50, a control button 60, and a housing 70.
  • the capacitive sensing system 10 is disposed in the display area of the display device 50 or disposed under the control button 60 or in the housing 70.
  • the first modulation signal may be loaded on the power supply end, and the ground end is correspondingly applied with a signal that changes according to the change of the first modulation signal, and the influence of the parasitic capacitance can also be solved.
  • the reference voltage terminal is loaded with a third power signal, and the voltage of the third power signal is between the voltage of the first power signal and the voltage of the second power signal.
  • the first modulation signal may also be applied to the reference voltage terminal, and the ground terminal is applied with a signal that changes according to the change of the first modulation signal, and the influence of the parasitic capacitance can also be solved.
  • the first modulation signal may also be loaded on some other port in the capacitance detecting circuit of the capacitive sensing system, and the ground terminal is applied with a signal that changes according to the change of the first modulation signal, and the same The effect of the parasitic capacitance can be solved.
  • the capacitance detecting circuit is defined to have a modulation end, and the modulation end is loaded with the first modulation signal which changes with time, and the modulation end is either grounded or other port. When it is another port, the voltage of the ground terminal changes correspondingly with the change of the first modulation signal.
  • the present invention further provides another capacitive sensing system and an electronic device having the capacitive sensing system.
  • the capacitive sensing system and the electronic device described herein are similar to the capacitive sensing system 10 and the electronic device 100 described above. Therefore, for the sake of simplicity, the descriptions of the capacitive sensing system and the electronic device herein are not provided.
  • the capacitive sensing system and the electronic device having the same names as those in the capacitive sensing system 10 and the electronic device 100 can be similarly referred to FIGS. 1-7.
  • the capacitive sensing system includes:
  • a sensor board for coupling to a target object in a capacitive coupling manner to perform a sensing operation
  • the capacitance detecting circuit includes a signal transmitting end and a modulation end, wherein the capacitance detecting circuit is configured to provide a first excitation signal to the sensor board through the signal transmitting end to drive the sensor board to perform sensing Operation, the modulation end of the capacitance detecting circuit is configured to load a first modulation signal, and the first excitation signal changes according to a change of the first modulation signal.
  • the first excitation signal varies with the change of the first modulation signal to reduce the charge and discharge power of the parasitic capacitance between the sensor board and the modulation end.
  • other voltages in the capacitance detecting circuit change with changes in the voltage of the modulation terminal.
  • the other voltages in the capacitance detecting circuit increase as the voltage of the modulation terminal increases, and decrease as the voltage of the modulation terminal decreases.
  • the first modulation signal and the first excitation signal are voltage signals, and a voltage of the first excitation signal increases as a voltage of the first modulation signal increases, along with the first modulation The voltage of the signal is lowered and lowered.
  • the magnitude of the amplitude change of the first excitation signal is the same as the magnitude of the amplitude variation of the first modulation signal.
  • the first excitation signal and the first modulation signal are periodically varying signals.
  • the first excitation signal and the first modulation signal are either co-frequency signals, or co-channel in-phase signals, or co-channel in-phase signals, or co-channel signals, and
  • the phase of the first excitation signal has a certain delay relative to the phase of the first modulated signal.
  • the capacitance detecting circuit includes a power terminal and a ground terminal, and the ground terminal is used for loading a power signal, the power terminal is configured to load a second power signal, and a voltage difference between the second power signal and the first power signal is a power voltage of the capacitance detecting circuit.
  • the modulation end is one of the power terminal and the ground terminal, wherein:
  • the second power signal includes the first modulation signal, and the first power signal changes according to a change of the second power signal
  • the first power signal includes the first modulation signal
  • the voltage of the second power signal increases as the voltage of the first power signal increases, The voltage of the first power signal decreases and decreases.
  • the capacitance detecting circuit further includes a reference voltage terminal, wherein the reference voltage terminal is configured to load a third power signal, and the voltage of the third power signal is between the voltage of the second power signal and the voltage of the first power signal between.
  • the modulation end is one of the power terminal, the ground terminal, and the reference voltage terminal, wherein:
  • the second power signal includes the first modulation signal, and the first power signal and the third power signal all change according to a change of the second power signal;
  • the first power signal includes the first modulation signal, and the second power signal and the third power signal all change according to a change of the first power signal;
  • the third power signal includes the first modulation signal, and the first power signal and the second power signal all change according to the change of the third power signal.
  • the first modulated signal includes at least a first level and a second level, the voltage of the first level being different from the voltage of the second level.
  • the capacitive sensing system is further configured to load at the modulation end, in addition to providing a first excitation signal to drive the sensor board to perform a first detection mode when the modulation end is loaded with the first modulation signal,
  • the second modulation signal is provided to drive the sensor board to perform a second detection mode, wherein the first modulation signal is different from the second modulation The signal, the first excitation signal is different from the second excitation signal.
  • the second excitation signal varies with the change of the second modulation signal to reduce the charge and discharge power of the parasitic capacitance between the sensor board and the ground.
  • the second modulation signal and the second excitation signal are voltage signals, and a voltage of the second excitation signal increases as a voltage of the second modulation signal increases, and the second modulation The voltage of the signal is lowered and lowered.
  • the magnitude of the amplitude change of the second excitation signal is the same as the magnitude of the amplitude variation of the second modulation signal.
  • the second excitation signal and the second modulation signal are periodically varying signals.
  • the second excitation signal and the second modulation signal are either co-frequency signals, or co-channel in-phase signals, or co-channel in-phase signals, or co-channel signals, and
  • the phase of the second excitation signal has a certain delay relative to the phase of the second modulation signal.
  • one of the first detection mode and the second detection mode is a fingerprint detection mode
  • the other is a touch detection mode
  • the capacitance detecting circuit when the capacitive sensing system is in touch detection In the mode, the capacitance detecting circuit is configured to drive the sensor board to perform a touch detecting operation, and sense whether a target object touches the sensor board; when the capacitive sensing system is in a fingerprint detecting mode, The capacitance detecting circuit is configured to drive the sensor board to perform a fingerprint detecting operation, and sense whether the fingerprint of the target object is a preset fingerprint.
  • the capacitance detecting circuit is configured to perform self-capacitance detection on the sensor board.
  • the second modulation signal includes a fourth level and a fifth level, the voltage of the fourth level being different from the voltage of the fifth level.
  • the first modulated signal and the second modulated signal are both periodically varying signals, wherein the frequency of the first modulated signal is greater than the frequency of the second modulated signal.
  • the first excitation signal and the second excitation signal are both periodically varying signals, wherein the frequency of the first excitation signal is greater than the frequency of the second excitation signal.
  • the voltage peak-to-peak value of the first level and the second level of the first modulation signal is greater than the voltage peak-to-peak value of the fourth level and the fifth level of the second modulation signal.
  • Voltage peak of the first excitation signal The peak value is greater than the voltage peak-to-peak value of the second excitation signal.
  • the capacitance detecting circuit senses a touch operation by measuring a capacitance between the sensor board and the target object, and the capacitance detecting circuit determines whether the sensor board is touched;
  • switching provides a second modulated signal to the ground, and provides a second excitation signal as a first excitation signal to the sensor board to perform fingerprint sensing;
  • the touch sensing can be performed first, and then whether the fingerprint sensing is performed according to whether there is a touch operation, thereby saving power consumption.
  • the capacitive sensing system further includes a control circuit, and the control circuit is respectively connected to the power terminal and the ground terminal, and is configured to provide the second power signal to the power terminal to provide a first Power signal.
  • the capacitive sensing system is a fingerprint sensing system that saves a drive loop.
  • the sensor board includes a plurality of capacitive sensing plates, and the capacitance detecting circuit performs a sensing operation by measuring a capacitance between the plurality of capacitive sensing plates and a target object to obtain a predetermined target object. information.
  • the predetermined information includes biometric information and/or touch operation information.
  • the biometric information includes a fingerprint and a palm print.
  • the touch operation information is operation information of whether the sensor board is approached or touched.
  • the modulation terminal is not limited to the ground terminal 13a, but also may be the power terminal 13b and the reference voltage terminal. Or other ports.
  • the capacitive sensing system described herein may be the same as or different from the capacitive sensing system 10 described above.
  • FIG. 8 is a flow chart of a method for detecting a capacitive sensing system according to the present invention.
  • the detection method is applicable to the capacitive sensing system described in the above embodiments. However, other suitable types of capacitive sensing systems are also applicable, and the present invention is not specifically limited.
  • the capacitive sensing system includes a plurality of capacitive sensing plates and a capacitance detecting circuit, and the capacitance detecting circuit includes a modulation end, and the detecting method includes:
  • S1 providing a first excitation signal to the plurality of capacitive sensing plates, and driving the plurality of capacitive sensing plates to perform a sensing operation;
  • the plurality of capacitive sensing plates are used to capacitively couple to a target object, and perform sensing operations to obtain predetermined information of the target object.
  • the first excitation signal varies with the change of the first modulation signal to reduce the charge and discharge power of the parasitic capacitance between the plurality of capacitive sensing plates and the modulation end.
  • the first modulation signal and the first excitation signal are voltage signals, and a voltage of the first excitation signal increases as a voltage of the first modulation signal increases, along with the first modulation The voltage of the signal is lowered and lowered.
  • the magnitude of the amplitude change of the first excitation signal is the same as the magnitude of the amplitude variation of the first modulation signal.
  • the first excitation signal and the first modulation signal are periodically varying signals.
  • the first excitation signal and the first modulation signal are either co-frequency signals, or co-channel in-phase signals, or co-channel in-phase signals, or co-channel signals, and
  • the phase of the first excitation signal has a certain delay relative to the phase of the first modulated signal.
  • the detecting method further includes:
  • a second modulated signal is provided to the modulation terminal, wherein the second excitation signal changes as the second modulation signal changes.
  • the second excitation signal is different from the first excitation signal, and the second modulation signal is different from the first modulation signal.
  • the capacitive sensing system is driven to perform two different detection modes, a first detection mode and a second detection mode, respectively.
  • the first detection mode provides a first excitation signal to the plurality of capacitive sensing plates, and provides a first modulation signal to the modulation end;
  • a second excitation signal should be provided to the plurality of capacitive sensing plates to provide a second modulated signal to the modulation terminal. Accordingly, the capacitive sensing system is caused to increase the sensing function.
  • the second excitation signal varies with the change of the second modulation signal to reduce the charge and discharge power of the parasitic capacitance between the plurality of capacitive sensing plates and the modulation end.
  • the second modulation signal and the second excitation signal are voltage signals, and a voltage of the second excitation signal increases as a voltage of the second modulation signal increases, and the second modulation The voltage of the signal is lowered and lowered.
  • the magnitude of the amplitude change of the second excitation signal is the same as the magnitude of the amplitude variation of the second modulation signal.
  • the second excitation signal and the second modulation signal are periodically varying signals.
  • the second excitation signal and the second modulation signal are either co-frequency signals, or co-channel in-phase signals, or co-channel in-phase signals, or co-channel signals, and
  • the phase of the second excitation signal has a certain delay relative to the phase of the second modulation signal.
  • the second detection mode saves power compared to the first detection mode, and when detecting, first drives the capacitive sensing system to perform a second detection mode, and in the second detection mode, after sensing a predetermined operation of the target object And then restarting the first detection mode or switching the second detection mode to the first detection mode, thereby saving power.
  • the frequency of the first modulated signal is greater than the frequency of the second modulated signal
  • the voltage peak-to-peak value of the first modulation signal is greater than the voltage peak-to-peak value of the second modulation signal.
  • the detecting method provides a first excitation signal to the plurality of capacitive sensing plates for driving the plurality of capacitive sensing plates to perform a fingerprint sensing operation; providing a second excitation signal to the plurality of And a capacitive sensing plate for driving the plurality of capacitive sensing plates to perform a touch operation.
  • the detecting method senses a touch operation of the target object by measuring a capacitance between the plurality of capacitive sensing plates and the target object, and determines whether the plurality of capacitive sensing plates are touched by the target object. ;
  • the voltage peak-to-peak value of the first excitation signal is 10V, and the frequency is 1 MHz.
  • the voltage peak-to-peak value of the first modulation signal is 10V, and the frequency is 1 MHz; relatively, the voltage peak of the second excitation signal The peak value is 1V and the frequency is 100KHz.
  • the voltage peak-to-peak value of the second modulation signal is 1V and the frequency is 100KHz. It can be seen that the capacitive sensing system consumes less power than the fingerprint detection mode capacitive sensing system in the touch detection mode, thereby reducing the power consumption of the capacitive sensing system by performing touch detection and then performing fingerprint detection.
  • the capacitive sensing system further includes a shielding electrode, and the shielding electrode is disposed at least on a periphery of the plurality of capacitive sensing plates.
  • the detecting method further comprises:
  • the detecting method senses predetermined information of the target object by measuring capacitance between the plurality of capacitive sensing plates and the target object.
  • the predetermined information includes biometric information and/or touch operation information of the target object.
  • the biometric information is fingerprint information.
  • the touch operation information is whether a target object approaches or touches the plurality of capacitive sensing plates.
  • the detecting method senses predetermined information of the target object by measuring self-capacitance between the plurality of capacitive sensing plates and the target object.
  • the capacitance detecting circuit includes a ground end and a power end, and the detecting method further includes:
  • the modulation end is one of the power terminal and the ground terminal, wherein:
  • the second power signal includes the first modulation signal, and a voltage of the first power signal increases as a voltage of the second power signal increases Decreasing as the voltage of the second power signal decreases;
  • the first power signal includes the first modulation signal
  • the voltage of the second power signal increases as the voltage of the first power signal increases, The voltage of the first power signal decreases and decreases.
  • the capacitance detecting circuit further includes a reference voltage terminal, and the detecting method further includes:
  • a voltage of the third power signal is between a voltage of the second power signal and a voltage of the first power signal.
  • the modulation end is one of the power terminal, the ground terminal, and the reference voltage terminal:
  • the second power signal includes the first modulation signal, and voltages of the first power signal and the third power signal are all related to a voltage of the second power signal Raising and rising, decreasing as the voltage of the second power signal decreases;
  • the first power signal includes the first modulation signal
  • the voltages of the second power signal and the third power signal are all related to a voltage of the first power signal Raising and rising, decreasing as the voltage of the first power signal decreases;
  • the third power signal includes the first modulation signal, and the voltages of the first power signal and the second power signal are all related to the voltage of the third power signal The rise is increased and decreases as the voltage of the third power signal decreases.
  • the modulation end is a ground terminal.
  • the above detection method of the present invention can make the equivalent capacitance of the parasitic capacitance between the modulation end and the plurality of capacitance sensing plates smaller, thereby improving the sensing accuracy.
  • touch sensing it is determined whether or not fingerprint sensing is performed, so that the power consumption of the capacitive sensing system can be further reduced.

Abstract

一种触摸感测系统、电子设备、以及触摸感测系统的检测方法。其中,所述触摸感测系统包括传感器板(11)和电容检测电路(13)。所述传感器板(11)用于以电容方式耦合到目标物体(1)来执行感测操作。所述电容检测电路(13)包括信号传输端(T)和接地端(13a),所述电容检测电路(13)用于通过所述信号传输端(T)提供第一激励信号给所述传感器板(11),以驱动所述传感器板(11)执行触摸感测操作,所述电容检测电路(13)的接地端(13a)用于加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。所述技术方案提高了电子设备的感测精度。

Description

电子设备及其触摸感测系统、以及触摸感测系统的检测方法
本申请要求2015年1月13日提交中国专利局、申请号为201510015704.0、发明名称为“电子设备及其电容式感测系统、以及电容式感测系统的检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种触摸感测系统、具有所述触摸感测系统的电子设备、以及一种触摸感测系统的检测方法。
背景技术
目前,越来越多的电子设备(如:手机、平板电脑等)都会设置有一种或多种感测系统,如用于感测触摸操作的触摸感测系统、用于感测人体生物特征的生物特征感测系统等,所述生物特征包括指纹、掌纹等,而触摸感测系统以及生物特征感测系统多以电容式感测系统来执行感测操作。
所述电容式感测系统通常包括传感器板以及电容检测电路,所述传感器板用于以电容耦合方式耦合到目标物体,所述目标物体如为用户的手指。所述电容检测电路为所述传感器板提供驱动信号,并接收来自传感器板输出的感测信号,进而实现感测目标物体的预定信息。所述预定信息如为生物特征信息、触摸信息等。
所述电容检测电路通常包括电源端、接地端、和信号传输端。所述电源端与接地端用于接收电源电压,以保证所述电容检测电路正常工作。所述信号传输端为不同于所述电源端与接地端的第三端,所述信号传输端用于传输所述电容检测电路与所述传感器板之间的信号,如所述驱动信号、感测信号。
然,所述传感器板与所述接地端之间存在寄生电容,此寄生电容是与目标物体和传感器板之间的电容相叠加的,如果目标物体和传 感器板之间的电容过小,则所述感测信号的质量太差而无法检测,从而影响感测精度。
发明内容
为解决上述技术问题,本发明提供一种感测精度较高的电容式感测系统、具有所述电容式感测系统的电子设备、以及一种电容式感测系统的检测方法。
为实现上述目的,本发明提供如下技术方案:
一种触摸感测系统,包括:
传感器板,用于以电容方式耦合到目标物体来执行感测操作;
电容检测电路,所述电容检测电路包括信号传输端和接地端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给所述传感器板,以驱动所述传感器板执行触摸感测操作,所述电容检测电路的接地端用于加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。
优选地,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
优选地,所述第一调制信号与所述第一激励信号为电压信号,所述第一激励信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低。
本发明进一步提供一种电子设备,包括触摸感测系统。所述触摸感测系统包括:
传感器板,用于以电容方式耦合到目标物体来执行感测操作;
电容检测电路,所述电容检测电路包括信号传输端和接地端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给所述传感器板,以驱动所述传感器板执行触摸感测操作,所述电容检测电路的接地端用于加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。
本发明又提供一种触摸感测系统,包括:
传感器板,用于以电容耦合方式耦合到目标物体来执行感测操作;
电容检测电路,所述电容检测电路包括信号传输端和调制端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给所述传感器板,以驱动所述传感器板执行触摸感测操作,所述电容检测电路的调制端用于加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。
优选地,所述电容检测电路中的电压均随所述调制端的电压的变化而变化。
优选地,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
优选地,所述第一调制信号与所述第一激励信号为电压信号,所述第一激励信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低。
本发明又提供一种电子设备,,包括触摸感测系统。所述触摸感测系统包括:
传感器板,用于以电容耦合方式耦合到目标物体来执行感测操作;
电容检测电路,所述电容检测电路包括信号传输端和调制端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给所述传感器板,以驱动所述传感器板执行感测操作,所述电容检测电路的调制端用于加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。
本发明还提供一种触摸感测系统的检测方法,所述触摸感测系统包括多个电容感测极板和电容检测电路,所述电容检测电路包括调制端,所述检测方法包括:
提供第一激励信号给所述多个电容感测极板,驱动所述多个电容感测极板执行感测操作;
提供第一调制信号给所述调制端;
其中,所述第一激励信号随所述第一调制信号的变化而变化。
优选地,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述多个电容感测极板与所述调制端之间寄生电容的充放电电量。
优选地,所述电容检测电路中的电压均随所述第一调制信号的电压的升高而升高、随第一调制信号的电压的降低而降低。
本发明上述触摸感测系统、电子设备、检测方法通过提供第一调制信号,第一激励信号随第一调制信号的变化而变化,从而提高感测精度较高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明电子设备较佳实施方式的方框结构示意图。
图2为图1所示传感器板的一实施方式的结构示意图。
图3为第一激励信号与第一调制信号的波形示意图。
图4为所述第一调制信号的另一实施方式的波形图。
图5为图1所示电容检测电路的结构示意图。
图6为图5所示感测单元的电路结构示意图。
图7为本发明电子设备的另一结构示意图。
图8为本发明电容式感测系统的检测方法流程图。
具体实施方式
正如背景技术所述,现有的电子设备的电容式感测系统的感测精度较低,而影响所述电容式感测系统的感测精度较低的因素较多,经发明人的大量研究发现:所述电容检测电路的接地端与所述传感器板之间存在寄生电容,且所述接地端通常加载一恒定电压信号,而传感 器板上加载不断变化的电压信号,从而使得所述寄生电容存在充放电,相应地,所述电容检测电路检测到的电荷不仅包括目标物体与传感器板之间构成的电容由于电压变化引起的电荷,还包括所述寄生电容由于电压的变化引起的电荷,进而影响感测精度。
基于上述研究,为解决所述电容式感测系统的感测精度较低的问题,发明人通过大量的创造性劳动,对应提出感测精度较高的电容式感测系统以及具有所述电容式感测系统的电子设备。其中,所述电容式感测系统或为触摸感测系统、或为生物特征感测系统、或为多功能感测系统、或为其它合适类型的感测系统,所述多功能感测系统例如为既可执行触摸感测功能又可执行生物特征感测功能的系统。进一步地,所述生物特征感测系统为指纹、掌纹等感测系统或其它合适类型的生物特征感测系统。
进一步地,在本发明的描述中,需要理解的是,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
下述实施例中第一调制信号为用于生物特征感测时的调制信号,第二调制信号为用于检测是否有触摸操作时的调制信号,但是,可以理解地,也可将用于生物特征感测时的调制信号命名为第二调制信号,将用于检测是否有触摸操作时的调制信号命名为第一调制信号,因此,本文并不局限将名称“第一调制信号”仅限于为用于生物特征感测时的调制信号,将名称“第二调制信号”为用于检测是否有触摸操作时的调制信号。类似地,第一电源信号、第二电源信号的名称也可互换。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。请参考图1,图1为本发明电子设备较佳实施方式的方框结构示意图。所述电子设备100如为手机、平板电脑、GPS导航系统、电视等设备。所述电子设备100包括电容式感测系统 10。所述电容式感测系统10用于感测目标物体1的预定信息,并根据感测到预定信息确定是否执行相应的功能。所述预定信息包括生物特征信息或/和触摸信息。所述生物特征信息包括指纹信息。所述触摸信息为是否有目标物体接近或触摸所述电容式感测系统10。所述目标物体1可以为手指、也可以为用户身体的其它部分,如脚趾等,甚至也可以为其它合适类型的物体,而并不限于人体。
以所述电容式感测系统10为指纹感测系统为例,所述指纹感测系统用于感测指纹信息,若感测到的指纹信息与预先存储的指纹信息一致,则对应执行开机、解锁、支付、直接调用预定应用程序等功能;若感测到的指纹信息与预先存储的指纹信息不一致,则不执行所述功能。所述预定应用程序如为微博、微信等,且在所述电子设备100处于待机、锁屏等状态下均可以直接调用所述预定应用程序。
再或者,以所述电容式感测系统10为触摸感测系统为例,所述触摸感测系统用于感测触摸操作,若感测到目标物体1的触摸或接近,则对应执行触发功能,如触发电子设备100内的一预定装置开始工作或者是开始执行另一工作。
又或者,以所述电容式感测系统10为兼具触摸感测与指纹感测两种功能的系统为例,所述电容式感测系统10首先执行触摸感测功能,当感测到触摸操作后,则切换执行触摸感测功能为指纹感测功能,感测目标物体1的指纹,如感测到的指纹与预设的指纹一致,则对应执行相应的功能。在指纹感测正确之后或在多次检测指纹不成功之后,所述电容式感测系统10再切换为触摸感测功能,从而达到节省电能的效果。
所述电容式感测系统10包括传感器板11和电容检测电路13。所述传感器板11用于以电容方式耦合到目标物体1来执行感测操作。所述电容检测电路13包括信号传输端T和接地端13a。所述电容检测电路13用于通过所述信号传输端T提供第一激励信号给所述传感器板11,以驱动所述传感器11板执行感测操作,从而获得所述目标物体1的预定信息。所述电容检测电路13的接地端13a用于加载第 一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。
所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
由于所述接地端13a加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化,从而减小所述接地端13a与所述传感器板11之间的寄生电容C1的充放电电量。进而,所述寄生电容C1对所述传感器板11与目标物体1之间的电容的叠加效果减小,可以提高感测精度。
所述第一调制信号与所述第一激励信号为电压信号。优选地,所述第一激励信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低。
更优选地,所述第一激励信号的幅度变化大小与所述第一调制信号的幅度变化大小对应相同。从而,使得所述接地端13a与所述传感器板11之间的寄生电容C1的充放电电量为0,相应地,所述寄生电容C1等效为0。进而,所述寄生电容C1对所述传感器板11与目标物体1之间的电容的叠加效果消除,从而可进一步提高感测精度。
在本实施例中,所述第一激励信号与所述第一调制信号为周期性变化的信号。然,本发明并不限制所述第一激励信号与所述第一调制信号为周期性变化的信号,在其它实施例中,所述第一激励信号与所述第一调制信号也可为非周期性变化的信号,只要二者同步变化,能够减小接地端13a与传感器板11之间的寄生电容的充放电电量即可。
优选地,所述第一激励信号与所述第一调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第一激励信号的相位相对第一调制信号的相位具有一定的延迟,延迟如为1纳秒。
在本实施例中,所述电容检测电路13通过量测传感器板11与目标物体1之间的电容,来检测目标物体1的预定信息。优选地,所述电容检测电路13通过所述接地端13a加载所述第一调制信号,并提供随所述第一调制信号变化而变化的第一激励信号对所述传感器板 11进行自电容检测,以实现感测操作。
请参阅图2,图2为图1所示传感器板11的一实施方式的结构示意图。所述传感器板11包括多个电容感测极板11a。在本实施例中,所述多个电容感测极板11a为矩形,然,所述多个电容感测极板11a的形状并不局限于此,在其它实施方式中,所述多个电容感测极板11a也可为其它规则或不规则形状。优选地,所述多个电容感测极板11a排列成感应阵列,用于执行感测操作。需要说明的是,所述多个电容感测极板11a可以成规则阵列排列,如方阵,也可以成非规则排列。
优选地,每一电容感测极板11a形成一自电容。当目标物体1触摸或接近所述电容感测极板11a时,所述电容感测极板11a附近的电场改变,相应地,所述电容感测极板11a的自电容改变。自电容检测即是检测电容感测极板11a由于目标物体1(例如指纹)的输入而导致的自电容变化。
以所述电容式感测系统10为指纹感测系统、目标物体1对应为手指为例,当手指与所述传感器板11之间稳定耦合时,传感器板11上电压的变化,则传感器板11和手指之间的电容所存储的电量发生变化,通过检测这个电量变化量,就可以测出电容的大小。由于传感器板11和接地端13a上的电压基本同步变化,传感器板11和接地端13a之间的电压差保持不变,则寄生电容C1没有充放电,从而其等效电容为零。这样,电容检测电路13所检测到的电荷基本都是由传感器板11和手指直接构成的电容的电压变化而引起的,减少了寄生电容C1的影响。
进一步地,当接地端13a上施加的第一调制信号幅度越大,则传感器板11与手指之间的电压变化越大,对应地,传感器板11与手指构成的电容的电荷变化越大,所述电容检测电路13检测到的电荷量变化越大。如果噪声不变,则电容检测电路13检测到的来自传感器板11所输出的感测信号的信噪比将线性增加。所以,提高施加在接地端13a上的第一调制信号的幅度峰峰值,会增加所述电容检测系统 10的信噪比,比如提高到10V,15V,甚至20V。
请参阅图3,图3为第一激励信号与第一调制信号的波形示意图。其中字母“M”代表第一激励信号,字母“N”代表第一调制信号。在本实施方式中,以所述第一调制信号与第一激励信号均为周期性变化的方波信号为例进行说明。所述第一调制信号的低电平为0V,高电平为10V。所述第一激励信号的低电平为1.2V,高电平为11.2V。然,可以理解地,在其它变更实施方式中,所述第一调制信号、第一激励信号的高电平与低电平也可为其它电压,以及其它合适类型的信号,如正弦波。
请继续参阅图1,所述接地端13a用于加载第一电源信号,所述第一电源信号包括所述第一调制信号。所述电容检测电路13进一步包括电源端13b,所述电源端13b加载第二电源信号,所述第二电源信号为电压信号,且所述电源信号的电压高于第一电源信号的电压,所述第二电源信号随所述第一调制信号的变化而变化,或者所述第二电源信号随所述第一电源信号的变化而变化。
所述第二电源信号与所述第一电源信号之间的电压差为所述电容检测电路13工作的电源电压。优选地,所述电容检测电路13中的其它电压均随所述第一电源信号的电压的升高而升高、随所述第一电源信号的电压的降低而降低。
相应地,所第二电源信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低,或者所第二电源信号的电压随所述第一电源信号的电压的升高而升高、随所述第一电源信号的电压的降低而降低。
更优选地,所述第二电源信号与所述第一调制信号为同频信号,或者所述第二电源信号与所述第一电源信号为同频信号。
在上述中,以所述第一调制信号仅包括高、低两个电平交替变化的方波信号为例进行了说明,然,所述第一调制信号并不仅限于高、低两个电平交替变化。所述第一调制信号是至少包括第一电平与第二电平、且所述第一电平的电压不同于所述第二电平的电压的信号。在 另一实施方式中,第一电平为高电平,例如为10V,第二电平为低电平,例如为0V。可变更地,第一电平也可为低电平,第二电平为高电平,且高、低电平的电压大小也可根据实际需要对应调整。
所述第一调制信号包括第一电平与第二电平交替出现的方波信号。优选地,所述第一调制信号为周期性变化的方波信号。然,所述第一调制信号并不限于方波信号,也可以为正弦波,三角波等其它合适类型的信号。其中,所述第一电平与第二电平的电压情况为下述三种情况中的任意一种:
第一:第一电平的电压为正电压,第二电平的电压为0V;
第二:第一电平的电压为0V,第二电平的电压为负电压;
第三:第一电平的电压为正电压,第二电平的电压为负电压,所述第一电平的电压的绝对值等于或者不等于所述第二电平的电压的绝对值。
对于上述第三种情况,当正负电压的中心值恰好或者接近为电子设备100的系统地电压时,则其平均对外电压为0V或者接近为0V,对电子设备100内的其它元件或者外部物体所造成的低频激励将显著减少。例如,当第一调制信号的电平为0到10伏的方波时,等效有一个5V的直流信号,这个直流信号将对外产生电场,可能引起电流流过人体或增加对外辐射或者影响到电子设备100内的其它器件。
所述电容检测电路13在所述接地端13a加载第一电平时,从所述传感器板11读取第一信号,并在所述接地端13a加载第二电平时,从所述传感器板11读取第二信号,通过所述读取的第一信号与第二信号获得所述目标物体1的预定信息。
请参阅图4,图4为所述第一调制信号的另一实施方式的波形图。所述第一调制信号包括所述第一电平、所述第二电平、和第三电平,所述第二电平的电压介于第一电平的电压与第三电平的电压之间,所述第一调制信号包括由第一电平、第二电平、第三电平三者构成的二级阶梯方波信号。
所述电容检测电路13在所述接地端13a提供第一电平给所述传 感器板11时,从所述传感器板11读取第一信号,在所述接地端13a提供第二电平给所述传感器板11时,从所述传感器板11读取第二信号,在所述接地端13a提供第三电平给所述传感器板11时,从所述传感器板11读取第三信号,并在所述接地端13a从提供第三电平切换为提供第二电平时,从所述传感器板11读取第四信号,通过所述读取的第一信号、第二信号、第三信号与第四信号获得目标物体1的预定信息。
请再参阅图1,优选地,所述电容式感测系统10进一步包括控制电路15,所述电容检测电路13的接地端13a与所述控制电路15电连接,所述控制电路15用于施加所述第一调制信号到所述电容检测电路13的接地端13a。
进一步地,所述电容检测电路13的电源端13b与所述控制电路15电连接,所述控制电路15用于控制所述电容检测电路13的电源端13b与接地端13a之间的电压差保持一致。所述控制电路15提供所述第一电源信号给所述接地端13a,提供第二电源信号给所述电源端13b,从而为所述电容检测电路13正常工作提供所需的电源电压。
所述控制电路15包括接地端15a、电源端15b、第一输出端15c、第二输出端15d。其中,第一输出端15c与所述电容检测电路13的接地端13a连接,用于输出所述第一电源信号给所述接地端13a。所述第二输出端15d与所述电容检测电路13的电源端13b连接,用于输出所述第二电源信号给所述电源端13b。所述控制电路15的接地端15a的电压为0伏、或者为所述电子设备100的系统地电压、或者为恒定电压。所述控制电路15的电源端15b用于接收电源电压。另外,所述控制电路15与所述电容检测电路13之间也设置通信接口(未标示),以进行信息通信。
请继续参阅图1,优选地,所述电子设备100进一步包括主控芯片20,所述主控芯片20与所述控制电路15的接地端15a、电源端15b连接,用于为所述主控电路15提供系统地电压与电源电压,为所述控制电路15供电。另外,所述主控芯片20与所述控制电路15 之间进一步设置有通信接口(未标示),以进行信息通信。所述系统地电压通常为电子设备100的供电电源的负极的电压。供电电源如为电池。
请参阅图5,图5为图1所示电容检测电路13的结构示意图。所述电容检测电路13进一步包括多个感测单元13c和多个选择单元13d。每一感测单元13c分别通过一选择单元13d连接至多个电容感测极板11a。所述选择单元13d用于在电容检测电路13工作时,对应控制电容感测极板11a与感测单元13电连接的数量。在本实施方式中,每一选择单元13d包括开关S(图未示)。所述开关S分别与所述感测单元13c和至少一电容感测极板11a连接。
当所述电容检测电路13提供第一激励信号给所述电容感测电极11a时,通过所述选择单元13d,可选择每一感测单元13c与相连接的电容感测极板11a均电导通,从而,使得所述第一激励信号同时输出给所有电容感测极板11a。然,在其它实施方式中,也可通过所述选择单元13d,每次只控制部分电容感测极板11a与所述多个感测单元13c电导通,如此,通过多次选择之后,每一感测单元13c与相连接的电容感测极板11a均电导通过,从而,使得所述第一激励信号分时输出给所述多个电容感测极板11a。
当所述电容检测电路13接收所述多个电容感测极板11a输出的感测信号时,通过所述选择单元13d,每次只控制每一感测单元13c分别与一电容感测极板11a电连接,来接收感测信号。如此,通过多次控制,获得所有电容感测极板11a输出的感测信号。然,在其它实施方式中,也可每次控制每一感测单元13c分别与多个(如2个)电容感测极板11a电连接,来接收感测信号。相应地,所述电容检测电路13通过接收到的感测信号获得目标物体1的预定信息。
请参阅图6,图6为图5所示感测单元13c的电路结构示意图。所述感测单元13c包括运算放大器131、反馈支路133、和计算单元135。所述运算放大器131包括同相端a、反相端b、和输出端d。所述反馈支路133连接于反相端b与输出端d之间。所述计算单元135 与所述输出端d连接。所述反馈支路133包括一反馈电容Cf,所述反馈电容Cf连接于反相端b与输出端d之间。
所述运算放大器131的同相端a接收一参考电压Vref。所述参考电压Vref由一参考电压产生电路19提供。需要说明的是,所述参考电压产生电路19可为所述电容检测系统10中的一电路,也可为所述电子设备100中的另一电路。所述运算放大器131的反相端b则通过所述选择单元13d与电容感测极板11a连接。所述运算放大器131进一步与所述电源端13b和接地端13a分别电连接。
当电容检测电路13工作时,所述运算放大器131处于虚短状态,即同相端13a与反相端13b相当于短接,二者电位相同,即同相端a的电位也为参考电压Vref。进一步地,所述参考电压Vref随接地端13a所接收到的第一调制信号的变化而变化。从而,当接地端13a输出第一调制信号给运算放大器131时,同相端a与反相端b的电位随第一调制信号的变化而变化,相应地,与运算放大器131的反相端b电导通的电容感测极板11a则接收到的第一激励信号随第一调制信号的变化而变化。
当目标物体1接近或触摸所述电容感测极板11a时,则发生的电荷变化通过与反相端b相连接的反馈电容Cf传输给计算单元135。所述计算单元135根据电荷变化情况对应获得目标物体1的预定信息。在本实施例中,是以电荷变化来计算预定信息的,在其它实施方式中,也可通过计算电压变化来获得预定信息。
以所述电容式感测系统10为指纹感测系统为例,每个电容感测极板11a都可以检测手指与其相耦合的电容的大小。手指指纹存在脊和谷,脊相比谷更靠近所述传感器板11,因而电容更大;谷相比脊更远离所述传感器板11,因而电容更小。根据电容感测极板11a与手指指纹形成电容的大小,可以检测每一电容感测极板11a所对应区域上的指纹的脊和谷。
进一步地,在其它实施方式中,所述电容检测系统10包括两种检测模式,分别为第一检测模式和第二检测模式。所述电容检测电路 10除用于在所述接地端13a加载所述第一调制信号时、提供随所述第一调制信号的变化而变化的第一激励信号驱动所述传感器板11来执行第一检测模式外,还进一步用于在所述接地端13a加载第二调制信号时、提供随所述第二调制信号的变化而变化的第二激励信号驱动所述传感器板11来执行第二检测模式,其中,第一调制信号不同于第二调制信号,第二激励信号不同于第一激励信号。所述控制电路15提供给所述接地端13a的第一电源信号包括所述第二调制信号。
所述电容式感测系统10通过分别执行所述第一、第二检测模式,进而可执行至少二种功能不同的感测操作,从而增加所述电容式感测系统10的感测功能,增强电子设备100的可用性。
优选地,所述第二激励信号随所述第二调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
所述第二调制信号、第二激励信号均为电压信号,优选地,所述第二激励信号的电压随所述第二调制信号的电压的升高而升高、随所述第二调制信号的电压的降低而降低,或者所述第二激励信号的电压随所述第一电源信号的电压的升高而升高、随所述第一电源信号的电压的降低而降低。
更优选地,所述第二激励信号的幅度变化大小与第二调制信号的幅度变化大小相同。
优选地,所述第二激励信号与所述第二调制信号为周期性变化的信号。
所述第二激励信号与所述第二调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第二激励信号的相位相对第二调制信号的相位具有一定的延迟,延迟如为1纳秒。
所述第二调制信号至少包括第四电平与第五电平,其中,第四电平的电压不同于第五电平的电压。
更进一步地,发明人通过大量研究发现问题:接地端13a和电子设备100的系统地,如接地端15a,之间还存在寄生电容C2(见图1), 当激励接地端13a时,同时会激励这个寄生电容C2,当寄生电容C2比较大,激励频率比较高时,则会产生较大的功耗。发明人通过大量的创造性的劳动发现,可以通过如下方式来降低功耗。
所述电容式感测系统10工作时,先执行第二检测模式,当所述电容式感测系统感测到的目标物体的预定操作时,才启动第一检测模式或切换第二检测模式为第一检测模式进行检测操作,其中,第二检测模式相较于第一检测模式节省功耗。
相应地,所述第二激励信号随所述第二调制信号的变化而变化,除用以减小所述传感器板11与所述接地端13a之间寄生电容C1的充放电电量,还可进一步用以减小电容式感测系统10的功耗。
优选地,第二激励信号的频率小于第一激励信号的频率,或/和第二激励信号的电压峰峰值小于第一激励信号的电压峰峰值,从而达到减小功耗的目的。
对应地,第二调制信号的频率小于第一调制信号的频率,或/和第二调制信号的电压峰峰值小于第一调制信号的电压峰峰值,从而还可进一步减小功耗。例如,以第一检测模式为指纹感测模式、第二检测模式为触摸检测模式为例进行说明。当所述电容式感测系统10处于触摸检测模式时,所述电容检测电路13用于驱动所述传感器板11执行触摸检测操作,感测目标物体1对所述传感器板11的触摸;当所述电容式感测系统10处于指纹检测模式时,所述电容检测电路13用于驱动所述传感器板11执行指纹检测操作,感测目标物体1的指纹。
所述电容检测电路13通过量测传感器板11与目标物体1之间的电容来感测触摸操作,检测时:先进行触摸检测,检测到有触摸发生时,再启动指纹检测或切换触摸检测为指纹检测,以达到节省功耗的目的。
具体地,所述电容检测电路13判断所述传感器板11是否被触摸;
若是,则切换提供第二调制信号为第一调制信号给所述接地端13a、切换提供第二激励信号为第一激励信号给所述传感器板11,来 执行指纹感测;
若否,则提供第二调制信号给所述接地端13a、提供第二激励信号给所述传感器板11,来执行触摸感测。当所述电容式感测系统10处于触摸检测模式时,对所述第二调制信号、第二激励信号这二者其中之一或全部采用1V电压峰峰值,用于检测是否有触摸发生,例如,第二激励信号的电压峰峰值为1V,第二调制信号的电压峰峰值为1V;当容式感测系统10处于指纹检测模式时,对第一调制信号、第一激励信号这二者其中之一或全部采用10V电压峰峰值,用于检测指纹,例如,第一激励信号的电压峰峰值为10V,第一调制信号的电压峰峰值为10V。从而,达到减小所述电容式感测系统10的功耗的目的,相应地,具有所述电容式感测系统10的电子设备100的功耗也较小。
另外,优选地,所述第一激励信号与所述第二激励信号均为周期性变化的信号,其中,第一激励信号的频率大于第二激励信号的频率。对应地,第一调制信号与第二调制信号均为周期性变化的信号,其中,第一调制信号的频率大于第二调制信号的频率。在执行触摸检测时,第二激励信号与第二调制信号的频率如为100KHz。在执行指纹检测时,第一激励信号与第一调制信号的频率如为1MHz。从而,使得所述电容式感测系统10的功耗进一步减小。
当电容式感测系统10处于触摸检测模式时,仅仅检测触摸是否发生,不需要像指纹识别那么高的分辨率,因此,多个电容感测极板11a甚至所有的电容感测极板11a可以连接到一起进行检测。
优选地,本发明的电容式感测系统10为节省驱动环的感测系统。现有技术中,一种电容式感测系统包括驱动环、传感器板、电容检测电路。通过在驱动环上施加激励,驱动环直接接触手指,驱动环上激励传导到手指,驱动手指电位改变。这个方案,一方面需要增加一个驱动环,增加了成本;另一方面驱动环是无法施加太高电压,比如4V。当电压过高时,电流流过人体会造成不舒服的感觉。通常,电压越高,则信号能量越大,则接收到的信号的信噪比越高,系统性能 越好。这个方案限制了整个系统方案的性能。相对地,本发明的电容式感测系统10设计比较灵活,性能较好,成本较低,人体也接触时的舒适感较高。
需要说明的是,上述利用电容式感测系统10中本身导电元件复用屏蔽电极17的技术方案也并不局限于节省驱动环的电容式感测系统10中,也可适用其它合适的电容式感测系统中,如带有驱动环的这种电容式感测系统中,对于本领域的一般技术人员而言,其根据本发明的指导、教导是可以合理推出相关的技术方案的,应均属于本发明所揭示的保护范围。
请参阅图7,图7为本发明电子设备100的另一结构示意图。所述电子设备100进一步包括显示装置50、控制按钮60、壳体70。所述电容式感测系统10或者设置于所述显示装置50的显示区域中,或者设置于所述控制按钮60下方,或者设置于所述壳体70内。
(一)此外,可变更地,也可在所述电源端加载第一调制信号,所述接地端对应施加有随第一调制信号变化而变化的信号,同样可解决所述寄生电容的影响。
(二)另外,在有的电容检测电路中,还存在参考电压端。所述参考电压端加载第三电源信号,且第三电源信号的电压介于所述第一电源信号的电压与第二电源信号的电压之间。
类似地,也可在所述参考电压端加载第一调制信号,所述接地端施加有随第一调制信号变化而变化的信号,同样可解决所述寄生电容的影响。
(三)类似地,也可在电容式感测系统的电容检测电路中的其它某一端口加载所述第一调制信号,所述接地端施加有随第一调制信号变化而变化的信号,同样可解决所述寄生电容的影响。
鉴于上述(一)(二)(三),定义电容检测电路存在一调制端,此调制端加载随所述随时间变化的第一调制信号,所述调制端或为接地端,或为其它端口,当为其它端口时,所述接地端的电压随所述第一调制信号的变化而对应变化。
对应地,本发明进一步提供另一种电容式感测系统以及具有所述电容式感测系统的电子设备。此处所述的电容式感测系统、电子设备与上述电容式感测系统10、电子设备100类似,因此,为了简便说明,关于此处的电容式感测系统、电子设备的说明未配有相关附图,下述内容涉及的电容式感测系统以及电子设备中与电容式感测系统10、电子设备100中名称相同的元件可同样参考附图1-7。
所述电容式感测系统包括:
传感器板,用于以电容耦合方式耦合到目标物体来执行感测操作;
电容检测电路,所述电容检测电路包括信号传输端和调制端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给所述传感器板,以驱动所述传感器板执行感测操作,所述电容检测电路的调制端用于加载第一调制信号,所述第一激励信号随所述第一调制信号的变化而变化。
其中,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述传感器板与所述调制端之间寄生电容的充放电电量。
进一步地,所述电容检测电路中的其它电压均随所述调制端的电压的变化而变化。优选地,所述电容检测电路中的其它电压均随所述调制端的电压的升高而升高、随所述调制端的电压的降低而降低。
优选地,所述第一调制信号与所述第一激励信号为电压信号,所述第一激励信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低。
更优选地,所述第一激励信号的幅度变化大小与所述第一调制信号的幅度变化大小对应相同。优选地,所述第一激励信号与所述第一调制信号为周期性变化的信号。
更优选地,所述第一激励信号与所述第一调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第一激励信号的相位相对第一调制信号的相位具有一定的延迟。
所述电容检测电路包括电源端、接地端,所述接地端用于加载第 一电源信号,所述电源端用于加载第二电源信号,第二电源信号与第一电源信号之间的电压差为所述电容检测电路工作的电源电压。
在一实施方式中,所述调制端为所述电源端与所述接地端二者中之一者,其中:
当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号随所述第二电源信号的变化而变化;或
当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号的电压随所述第一电源信号的电压升高而升高、随所述第一电源信号的电压降低而降低。
所述电容检测电路进一步包括参考电压端,所述参考电压端用于加载第三电源信号,所述第三电源信号的电压介于所述第二电源信号的电压与第一电源信号的电压之间。
在另一实施方式中,所述调制端为所述电源端、所述接地端、所述参考电压端三者中之一者,其中:
当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号、第三电源信号均随所述第二电源信号的变化而变化;或
当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号、第三电源信号均随所述第一电源信号的变化而变化;或
当所述参考电压端为所述调制端时,所述第三电源信号包括所述第一调制信号,所述第一电源信号、第二电源信号均随所述第三电源信号的变化而变化。
所述第一调制信号至少包括第一电平与第二电平,所述第一电平的电压不同于所述第二电平的电压。
所述电容式感测系统除用于在所述调制端加载第一调制信号时、提供第一激励信号驱动所述传感器板来执行第一检测模式外,还进一步用于在所述调制端加载第二调制信号时,提供第二激励信号驱动所述传感器板来执行第二检测模式,其中,第一调制信号不同于第二调 制信号、第一激励信号不同于第二激励信号。
其中,所述第二激励信号随所述第二调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
优选地,所述第二调制信号与所述第二激励信号为电压信号,所述第二激励信号的电压随所述第二调制信号的电压的升高而升高、随所述第二调制信号的电压的降低而降低。
更优选地,所述第二激励信号的幅度变化大小与所述第二调制信号的幅度变化大小对应相同。
优选地,所述第二激励信号与所述第二调制信号为周期性变化的信号。
更优选地,所述第二激励信号与所述第二调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第二激励信号的相位相对第二调制信号的相位具有一定的延迟。
其中,在一实施方式中,所述第一检测模式与所述第二检测模式中一种为指纹检测模式,另一种为触摸检测模式,其中,当所述电容式感测系统处于触摸检测模式时,所述电容检测电路用于驱动所述传感器板执行触摸检测操作,感测是否有目标物体对所述传感器板进行触摸;当所述电容式感测系统处于指纹检测模式时,所述电容检测电路用于驱动所述传感器板执行指纹检测操作,感测目标物体的指纹是否为预设指纹。
所述电容检测电路用于对所述传感器板执行自电容检测。
所述第二调制信号包括第四电平与第五电平,所述第四电平的电压不同于所述第五电平的电压。
第一调制信号与第二调制信号均为周期性变化的信号,其中,第一调制信号的频率大于第二调制信号的频率。所述第一激励信号与第二激励信号均为周期性变化的信号,其中,第一激励信号的频率大于第二激励信号的频率。
第一调制信号的第一电平与第二电平的电压峰峰值大于第二调制信号的第四电平与第五电平的电压峰峰值。第一激励信号的电压峰 峰值大于第二激励信号的电压峰峰值。
所述电容检测电路通过量测传感器板与目标物体之间的电容来感测触摸操作,所述电容检测电路判断所述传感器板是否被触摸;
若是,则切换提供第二调制信号为第一调制信号给所述接地端、切换提供第二激励信号为第一激励信号给所述传感器板来执行指纹感测;
若否,则提供第二调制信号给所述接地端、提供第二激励信号给所述传感器板,执行触摸检测。从而,可以先执行触摸感测,再根据是否有触摸操作来决定是否执行指纹感测,进而节省功耗。
所述电容式感测系统进一步包括控制电路,所述控制电路与所述电源端、接地端分别连接,用于为所述电源端提供所述第二电源信号,为所述接地端提供第一电源信号。所述电容式感测系统为节省驱动环的指纹感测系统。
所述传感器板包括多个电容感测极板,所述电容检测电路通过量测所述多个电容感测极板与目标物体之间的电容大小来执行来感测操作,获得目标物体的预定信息。
所述预定信息包括生物特征信息和/或触摸操作信息。
所述生物特征信息包括指纹、掌纹。
所述触摸操作信息为所述传感器板是否有被接近或触摸的操作信息。
需要说明的是,此处所述的电容感测系统与上述电容感测系统10的主要区别在于:所述调制端并不限于所述接地端13a、也可能是电源端13b、参考电压端、或者其它端口。而对于其它结构,此处所述电容感测系统可与上述电容感测系统10相同或者不同均可。
请参阅图8,图8为本发明电容式感测系统的检测方法流程图。所述检测方法适用于上述各实施方式所述的电容式感测系统,然,也适用其它合适类型的电容式感测系统,本发明并不做具体限制。所述电容式感测系统包括多个电容感测极板和电容检测电路,所述电容检测电路包括调制端,所述检测方法包括:
S1:提供第一激励信号给所述多个电容感测极板,驱动所述多个电容感测极板执行感测操作;
S2:提供第一调制信号给所述调制端,其中,所述第一激励信号随所述第一调制信号的变化而变化。
需要说明的是,所述多个电容感测极板用于以电容方式耦合到目标物体,通过执行感测操作,以获得所述目标物体的预定信息。
优选地,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述多个电容感测极板与所述调制端之间寄生电容的充放电电量。
进一步地,所述电容检测电路中的其它电压均随所述第一调制信号的电压的变化而变化。
优选地,所述第一调制信号与所述第一激励信号为电压信号,所述第一激励信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低。
更优选地,所述第一激励信号的幅度变化大小与所述第一调制信号的幅度变化大小对应相同。
优选地,所述第一激励信号与所述第一调制信号为周期性变化的信号。
更优选地,所述第一激励信号与所述第一调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第一激励信号的相位相对第一调制信号的相位具有一定的延迟。
所述检测方法进一步包括:
提供第二激励信号给所述多个电容感测极板执行感测操作;
提供第二调制信号给所述调制端,其中,所述第二激励信号随所述第二调制信号的变化而变化。所述第二激励信号不同于所述第一激励信号,所述第二调制信号不同于所述第一调制信号。从而,驱动所述电容式感测系统执行两种不同检测模式,分别为第一检测模式与第二检测模式。具体地,第一检测模式对应提供第一激励信号给所述多个电容感测极板,提供第一调制信号给所述调制端;第二检测模式对 应提供第二激励信号给所述多个电容感测极板,提供第二调制信号给所述调制端。相应地,使得所述电容式感测系统增加感测功能。
优选地,所述第二激励信号随所述第二调制信号的变化而变化,用以减小所述多个电容感测极板与所述调制端之间寄生电容的充放电电量。
优选地,所述第二调制信号与所述第二激励信号为电压信号,所述第二激励信号的电压随所述第二调制信号的电压的升高而升高、随所述第二调制信号的电压的降低而降低。
更优选地,所述第二激励信号的幅度变化大小与所述第二调制信号的幅度变化大小对应相同。
优选地,所述第二激励信号与所述第二调制信号为周期性变化的信号。
更优选地,所述第二激励信号与所述第二调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第二激励信号的相位相对第二调制信号的相位具有一定的延迟。
优选地,第二检测模式较第一检测模式省电,在检测时,先驱动所述电容式感测系统执行第二检测模式,在第二检测模式下,感测到目标物体的预定操作之后,再启动第一检测模式或切换第二检测模式为第一检测模式,从而节省电能。
为了节省功耗,优选地,第一调制信号的频率大于第二调制信号的频率;或/和
第一调制信号的电压峰峰值大于第二调制信号的电压峰峰值。
例如,所述检测方法提供第一激励信号给所述多个电容感测极板,用于驱动所述多个电容感测极板执行指纹感测操作;提供第二激励信号给所述多个电容感测极板,用于驱动所述多个电容感测极板执行触摸操作。
具体地,所述检测方法通过量测所述多个电容感测极板与目标物体之间的电容来感测目标物体的触摸操作,判断所述多个电容感测极板是否被目标物体触摸;
若是,则切换提供第二调制信号为第一调制信号给所述接地端、切换提供第二激励信号为第一激励信号给传感器板,来执行指纹感测;
若否,则提供第二调制信号给所述接地端、提供第二激励信号给所述传感器板,来执行触摸感测。
其中,执行触摸检测时,第一激励信号的电压峰峰值为10V,频率为1MHz,对应地,第一调制信号的电压峰峰值为10V,频率为1MHz;相对地,第二激励信号的电压峰峰值为1V,频率为100KHz,对应地,第二调制信号的电压峰峰值为1V,频率为100KHz。可见,触摸检测模式下电容式感测系统消耗的电能小于指纹检测模式电容式感测系统消耗的电能,从而通过先执行触摸检测再执行指纹检测来降低电容式感测系统的功耗。
所述电容式感测系统进一步包括屏蔽电极,所述屏蔽电极至少设置在所述多个电容感测极板的外围,优选地,所述检测方法进一步包括:
提供所述第一调制信号给所述屏蔽电极。从而可以提高所述多个电容感测极板所获得的目标物体的预定信息的准确度。
优选地,所述检测方法通过量测所述多个电容感测极板与目标物体之间的电容,来感测目标物体的预定信息。
所述预定信息包括目标物体的生物特征信息和/或触摸操作信息。
其中,所述生物特征信息为指纹信息。
其中,所述触摸操作信息为是否有目标物体接近或触摸所述多个电容感测极板。
更优选地,所述检测方法通过量测所述多个电容感测极板与目标物体之间的自电容,来感测目标物体的预定信息。
所述电容检测电路包括接地端与电源端,所述检测方法进一步包括:
提供第一电源信号给所述接地端;
提供第二电源信号给所述电源端,所述第二电源信号与所述第一电源信号的电压差为所述电容检测电路工作的电源电压。
在一实施方式中,所述调制端为所述电源端与所述接地端二者中之一者,其中:
当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号的电压随所述第二电源信号的电压的升高而升高、随所述第二电源信号的电压的降低而降低;或
当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号的电压随所述第一电源信号的电压升高而升高、随所述第一电源信号的电压降低而降低。
所述电容检测电路进一步包括参考电压端,所述检测方法进一步包括:
提供第三电源信号给所述参考电压端,所述第三电源信号的电压介于所述第二电源信号的电压与第一电源信号的电压之间。
在另一实施方式中,所述调制端为所述电源端、所述接地端、所述参考电压端三者中之一者:
当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号、第三电源信号的电压均随所述第二电源信号的电压的升高而升高、随所述第二电源信号的电压的降低而降低;或
当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号、第三电源信号的电压均随所述第一电源信号的电压的升高而升高、随所述第一电源信号的电压的降低而降低;或
当所述参考电压端为所述调制端时,所述第三电源信号包括所述第一调制信号,所述第一电源信号、第二电源信号的电压均随所述第三电源信号的电压的升高而升高、随所述第三电源信号的电压的降低而降低。
优选地,上述调制端为接地端。
本发明上述检测方法可使得所述调制端与所述多个电容感测极板之间的寄生电容的等效电容变小,从而提高感测精度。另外,通过先执行触摸感测,再决定是否执行指纹感测,从而还可进一步减小电容式感测系统的功耗。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (87)

  1. 一种触摸感测系统,包括:
    传感器板,用于以电容方式耦合到目标物体来执行感测操作;
    电容检测电路,所述电容检测电路包括信号传输端和接地端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给传感器板,以驱动传感器板执行触摸感测操作,所述电容检测电路的接地端用于加载第一调制信号,所述第一激励信号随第一调制信号的变化而变化。
  2. 根据权利要求1所述的触摸感测系统,其特征在于,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
  3. 根据权利要求1所述的触摸感测系统,其特征在于,所述第一调制信号与所述第一激励信号为电压信号,所述第一激励信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低。
  4. 根据权利要求3所述的触摸感测系统,其特征在于,所述第一激励信号的幅度变化大小与第一调制信号的幅度变化大小对应相同。
  5. 根据权利要求1所述的触摸感测系统,其特征在于,所述第一激励信号与所述第一调制信号为周期性变化的信号。
  6. 根据权利要求1所述的触摸感测系统,其特征在于,所述第一激励信号与所述第一调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第一激励信号的相位相对第一调制信号的相位具有一定的延迟。
  7. 根据权利要求3所述的触摸感测系统,其特征在于,所述接地端用于加载第一电源信号,所述第一电源信号包括所述第一调制信号,所述电容检测电路进一步包括电源端,所述电源端用于加载第二电源信号,第二电源信号的电压高于第一电源信号的电压,所述第二电源信号随所述第一调制信号的变化而变化,或者所述第二电源信号随所述第一电源信号的变化而变化。
  8. 根据权利要求7所述的触摸感测系统,其特征在于,所述第二电源信号与所述第一调制信号为同频信号,或者所述第二电源信号与所述第一电源信号为同频信号。
  9. 根据权利要求7所述的触摸感测系统,其特征在于,所述第一电源信号、所述第二电源信号均为电压信号,所第二电源信号的电压随所述第一调制信号的电压的升高而升高、随所述第一调制信号的电压的降低而降低,或者所第二电源信号的电压随所述第一电源信号的电压的升高而升高、随所述第一电源信号的电压的降低而降低。
  10. 根据权利要求7所述的触摸感测系统,其特征在于,第二电源信号与第一电源信号之间的电压差为电容检测电路工作的电源电压。
  11. 根据权利要求10所述的触摸感测系统,其特征在于,所述电容检测电路中的电压均随所述第一电源信号的电压的升高而升高、随所述第一电源信号的电压的降低而降低。
  12. 根据权利要求1所述的触摸感测系统,其特征在于,所述第一调制信号至少包括第一电平与第二电平,所述第一电平的电压不同于所述第二电平的电压。
  13. 根据权利要求12所述的触摸感测系统,其特征在于,所述第一调制信号包括第一电平与第二电平交替出现的方波信号,其中,所述第一电平与第二电平的电压情况为下述三种情况中的任意一种:
    第一:第一电平的电压为正电压,第二电平的电压为0伏;
    第二:第一电平的电压为0伏,第二电平的电压为负电压;
    第三:第一电平的电压为正电压,第二电平的电压为负电压,第一电平的电压的绝对值等于或者不等于第二电平的电压的绝对值。
  14. 根据权利要求12所述的触摸感测系统,其特征在于,所述电容检测电路在所述接地端的电平为第一电平时,从传感器板读取第一信号,并在所述接地端的电平为第二电平时,从传感器板读取第二信号,通过所述读取的第一信号与第二信号获得目标物体的预定信息。
  15. 根据权利要求12所述的触摸感测系统,其特征在于,所述第一调制信号进一步包括第三电平,所述第二电平的电压介于第一电平的 电压与第三电平的电压之间,所述第一调制信号包括由第一电平、第二电平、第三电平三者构成的二级阶梯方波信号。
  16. 根据权利要求15所述的触摸感测系统,其特征在于,其中,所述电容检测电路在所述接地端的电平为第一电平时,从所述传感器板读取第一信号,在所述接地端的电平为第二电平时,从所述传感器板读取第二信号,在所述接地端的电平为第三电平时,从所述传感器板读取第三信号,并在所述接地端的电平从第三电平切换为第二电平时,从所述传感器板读取第四信号,通过所述读取的第一信号、第二信号、第三信号与第四信号获得目标物体的预定信息。
  17. 根据权利要求1或7所述的触摸感测系统,其特征在于,所述触摸感测系统进一步包括控制电路,所述电容检测电路的接地端与所述控制电路电连接,所述控制电路用于施加所述第一调制信号到所述电容检测电路的接地端。
  18. 根据权利要求17所述的触摸感测系统,其特征在于,所述电容检测电路进一步包括电源端,所述电源端与所述控制电路电连接,所述控制电路用于施加第一电源信号给所述接地端,施加第二电源信号给所述电源端。
  19. 根据权利要求18所述的触摸感测系统,其特征在于,所述控制电路包括接地端,所述控制电路的接地端的电压为0伏、或者为所述触摸感测系统所在的电子设备的系统地电压、或者为一电子设备的系统地电压、或者为恒定电压。
  20. 根据权利要求1所述的触摸感测系统,其特征在于,所述电容检测电路通过提供所述第一激励信号对所述传感器板进行自电容检测,以实现感测操作。
  21. 根据权利要求2所述的触摸感测系统,其特征在于,所述传感器板包括多个电容感测极板,所述电容检测电路包括多个感测单元和多个选择单元,每一感测单元通过一选择单元与至少一电容感测极板连接,每一感测单元进一步与所述接地端电连接,每一感测单元通过选择单元给所述电容感测极板提供第一激励信号,并接收来自电容感测 极板的感测信号,通过所述感测信号获得目标物体的预定信息。
  22. 根据权利要求21所述的触摸感测系统,其特征在于,所述选择单元用于选择感测单元与哪些电容感测极板电导通,其中,通过所述多个选择单元,所述电容检测电路同时或分时输出所述第一激励信号给所述多个电容感测极板。
  23. 根据权利要求21所述的触摸感测系统,其特征在于,所述感测单元包括运算放大器和反馈支路,所述运算放大器包括同相端、反相端、和输出端,所述反相端通过一选择单元连接至少一电容感测极板,所述反馈支路连接于反相端与输出端之间,所述运算放大器进一步连接所述接地端。
  24. 根据权利要求23所述的触摸感测系统,其特征在于,所述运算放大器的同相端接收一参考电压,所述参考电压随所述第一调制信号的电压升高而升高、随所述第一调制信号的电压下降而下降。
  25. 根据权利要求24所述的触摸感测系统,其特征在于,所述反相端输出所述第一激励信号给所述电容感测极板。
  26. 根据权利要求25所述的触摸感测系统,其特征在于,所述运算放大器工作时处于虚短状态。
  27. 根据权利要求25所述的触摸感测系统,其特征在于,所述反馈支路包括一反馈电容,所述反馈电容连接于反相端与输出端之间,所述感测单元进一步包括计算单元,所述计算单元与所述输出端连接,所述计算单元通过所述反馈电容上的电荷或电压变化来确定是否有目标物体接近或触摸所述多个电容感测极板。
  28. 根据权利要求1所述的触摸感测系统,其特征在于,所述传感器板包括多个电容感测极板,所述电容检测电路通过量测多个电容感测极板与所述目标物体之间的电容,来确定是否有目标物体接近或触摸所述多个电容感测极板。
  29. 根据权利要求1所述的触摸感测系统,其特征在于,所述电容检测电路除用于在所述接地端加载所述第一调制信号时、提供所述第一激励信号驱动所述传感器板来执行第一检测模式外,还进一步用于在 所述接地端加载第二调制信号时、提供第二激励信号驱动所述传感器板来执行第二检测模式,其中,第一调制信号不同于第二调制信号,第一激励信号不同于第二激励信号。
  30. 根据权利要求29所述的触摸感测系统,其特征在于,所述第二激励信号随所述第二调制信号的变化而变化。
  31. 根据权利要求30所述的触摸感测系统,其特征在于,所述第二激励信号随所述第二调制信号的变化而变化,用以减小所述传感器板与所述接地端之间寄生电容的充放电电量。
  32. 根据权利要求30所述的触摸感测系统,其特征在于,第二调制信号与第二激励信号为电压信号,第二激励信号的电压随第二调制信号的电压的升高而升高、随第二调制信号的电压的降低而降低。
  33. 根据权利要求32所述的触摸感测系统,其特征在于,第二激励信号的幅度变化大小与第二调制信号的幅度变化大小对应相同。
  34. 根据权利要求30所述的触摸感测系统,其特征在于,所述第二激励信号与所述第二调制信号为周期性变化的信号。
  35. 根据权利要求34所述的触摸感测系统,其特征在于,所述第二激励信号与所述第二调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第二激励信号的相位相对第二调制信号的相位具有一定的延迟。
  36. 根据权利要求29所述的触摸感测系统,其特征在于,所述第二调制信号至少包括第四电平与第五电平,其中,第四电平的电压不同于第五电平的电压。
  37. 根据权利要求29-36中任意一项所述的触摸感测系统,其特征在于,第一调制信号与第二调制信号均为周期性变化的信号,其中,第一调制信号的频率大于第二调制信号的频率。
  38. 根据权利要求29-36中任意一项所述的触摸感测系统,其特征在于,第一调制信号的电压峰峰值大于第二调制信号的电压峰峰值。
  39. 根据权利要求29-36中任意一项所述的触摸感测系统,其特征在于,第一激励信号与第二激励信号均为周期性变化的信号,其中,第 一激励信号的频率大于第二激励信号的频率。
  40. 根据权利要求29-36中任意一项所述的触摸感测系统,其特征在于,第一激励信号的电压峰峰值大于第二激励信号的电压峰峰值。
  41. 一种电子设备,其特征在于:所述电子设备包括权利要求1-40中任意一项所述的触摸感测系统。
  42. 一种触摸感测系统,包括:
    传感器板,用于以电容耦合方式耦合到目标物体来执行感测操作;
    电容检测电路,所述电容检测电路包括信号传输端和调制端,所述电容检测电路用于通过所述信号传输端提供第一激励信号给传感器板,以驱动传感器板执行触摸感测操作,所述电容检测电路的调制端用于加载第一调制信号,所述第一激励信号随第一调制信号的变化而变化。
  43. 根据权利要求42所述的触摸感测系统,其特征在于,所述电容检测电路中的电压均随所述调制端的电压的变化而变化。
  44. 根据权利要求42所述的触摸感测系统,其特征在于,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述传感器板与所述调制端之间寄生电容的充放电电量。
  45. 根据权利要求42所述的触摸感测系统,其特征在于,第一调制信号与第一激励信号为电压信号,第一激励信号的电压随第一调制信号的电压的升高而升高、随第一调制信号的电压的降低而降低。
  46. 根据权利要求45所述的触摸感测系统,其特征在于,第一激励信号的幅度变化大小与第一调制信号的幅度变化大小对应相同。
  47. 根据权利要求42所述的触摸感测系统,其特征在于,所述第一激励信号与所述第一调制信号为周期性变化的信号。
  48. 根据权利要求47所述的触摸感测系统,其特征在于,所述第一激励信号与所述第一调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第一激励信号的相位相对第一调制信号的相位具有一定的延迟。
  49. 根据权利要求45所述的触摸感测系统,其特征在于,所述电容 检测电路包括电源端、接地端,所述接地端用于加载第一电源信号,所述电源端用于加载第二电源信号,第二电源信号与第一电源信号之间的电压差为所述电容检测电路工作的电源电压。
  50. 根据权利要求49所述的触摸感测系统,其特征在于,所述调制端为所述电源端与所述接地端二者中之一者,其中:
    当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号的电压随所述第二电源信号的电压的升高而升高、随所述第二电源信号的电压的降低而降低;或
    当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号的电压随所述第一电源信号的电压升高而升高、随所述第一电源信号的电压降低而降低。
  51. 根据权利要求49所述的触摸感测系统,其特征在于,所述电容检测电路进一步包括参考电压端,所述参考电压端用于加载第三电源信号,所述第三电源信号的电压介于所述第二电源信号的电压与第一电源信号的电压之间,所述调制端为所述电源端、所述接地端、所述参考电压端三者中之一者,其中:
    当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号、第三电源信号的电压均随第二电源信号的电压的升高而升高、随第二电源信号的电压的降低而降低;或
    当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号、第三电源信号的电压均随第一电源信号的电压的升高而升高、随第一电源信号的电压的降低而降低;或
    当所述参考电压端为所述调制端时,所述第三电源信号包括所述第一调制信号,所述第一电源信号、第二电源信号的电压均随第三电源信号的电压的升高而升高、随第三电源信号的电压的降低而降低。
  52. 根据权利要求42所述的触摸感测系统,其特征在于:所述第一调制信号至少包括第一电平与第二电平,所述第一电平的电压不同于所述第二电平的电压。
  53. 根据权利要求50所述的触摸感测系统,其特征在于,所述触摸 感测系统进一步包括控制电路,所述控制电路与所述电源端、接地端分别连接,用于为所述电源端提供所述第二电源信号,为所述接地端提供第一电源信号。
  54. 根据权利要求42所述的触摸感测系统,其特征在于,所述电容检测电路用于对所述传感器板执行自电容检测。
  55. 根据权利要求42所述的触摸感测系统,其特征在于,所述传感器板包括多个电容感测极板,所述电容检测电路通过量测所述多个电容感测极板与目标物体之间的电容大小来执行触摸感测操作。
  56. 根据权利要求42所述的触摸感测系统,其特征在于:所述触摸感测系统除用于在所述调制端加载第一调制信号时、提供第一激励信号驱动所述传感器板来执行第一检测模式外,还进一步用于在所述调制端加载第二调制信号时,提供第二激励信号驱动所述传感器板来执行第二检测模式,其中,第一调制信号不同于第二调制信号,第一激励信号不同于第二激励信号。
  57. 根据权利要求56所述的触摸感测系统,其特征在于,所述第二激励信号随所述第二调制信号的变化而变化。
  58. 根据权利要求57所述的触摸感测系统,其特征在于,所述第二激励信号随所述第二调制信号的变化而变化,用以减小所述传感器板与所述调制端之间寄生电容的充放电电量。
  59. 根据权利要求57所述的触摸感测系统,其特征在于,所述第二调制信号与所述第二激励信号为电压信号,所述第二激励信号的电压随所述第二调制信号的电压的升高而升高、随所述第二调制信号的电压的降低而降低。
  60. 根据权利要求59所述的触摸感测系统,其特征在于,第二激励信号的幅度变化大小与第二调制信号的幅度变化大小对应相同。
  61. 根据权利要求57所述的触摸感测系统,其特征在于,所述第二激励信号与所述第二调制信号为周期性变化的信号。
  62. 根据权利要求61所述的触摸感测系统,其特征在于,所述第二激励信号与所述第二调制信号或为同频信号,或为同频同相信号,或 为同幅同频同相信号,或为同频信号、且所述第二激励信号的相位相对第二调制信号的相位具有一定的延迟。
  63. 根据权利要求56-62中任意一项所述的触摸感测系统,其特征在于,第一调制信号与第二调制信号均为周期性变化的信号,其中,第一调制信号的频率大于第二调制信号的频率。
  64. 根据权利要求56-62中任意一项所述的触摸感测系统,其特征在于,第一调制信号的电压峰峰值大于第二调制信号的电压峰峰值。
  65. 根据权利要求56-62中任意一项所述的触摸感测系统,其特征在于,第一激励信号与第二激励信号均为周期性变化的信号,其中,第一激励信号的频率大于第二调激励信号的频率。
  66. 根据权利要求56-62中任意一项所述的触摸感测系统,其特征在于,第一激励信号的电压峰峰值大于第二激励信号的电压峰峰值。
  67. 一种电子设备,其特征在于:所述电子设备包括权利要求42-66中任意一项所述的触摸感测系统。
  68. 一种触摸感测系统的检测方法,所述触摸感测系统包括多个电容感测极板和电容检测电路,所述电容检测电路包括调制端,所述检测方法包括:
    提供第一激励信号给所述多个电容感测极板,驱动所述多个电容感测极板执行触摸感测操作;
    提供第一调制信号给所述调制端;
    其中,所述第一激励信号随所述第一调制信号的变化而变化。
  69. 根据权利要求68所述的检测方法,其特征在于,所述第一激励信号随所述第一调制信号的变化而变化,用以减小所述多个电容感测极板与所述调制端之间寄生电容的充放电电量。
  70. 根据权利要求68所述的检测方法,其特征在于,所述电容检测电路中的电压均随所述第一调制信号的电压的变化而变化。
  71. 根据权利要求68所述的检测方法,其特征在于,第一调制信号与第一激励信号为电压信号,第一激励信号的电压随第一调制信号的电压的升高而升高、随第一调制信号的电压的降低而降低。
  72. 根据权利要71所述的检测方法,其特征在于,第一激励信号的幅度变化大小与第一调制信号的幅度变化大小对应相同。
  73. 根据权利要求68所述的检测方法,其特征在于,所述第一激励信号与所述第一调制信号为周期性变化的信号。
  74. 根据权利要求73所述的检测方法,其特征在于,所述第一激励信号与所述第一调制信号或为同频信号,或为同频同相信号,或为同幅同频同相信号,或为同频信号、且所述第一激励信号的相位相对第一调制信号的相位具有一定的延迟。
  75. 根据权利要求68所述的检测方法,其特征在于,所述检测方法通过量测所述多个电容感测极板与目标物体之间的电容,来感测是否有目标物体接近或触摸所述多个电容感测极板。
  76. 根据权利要求68所述的检测方法,其特征在于,所述检测方法通过量测所述多个电容感测极板的自电容,来感测是否有目标物体接近或触摸所述多个电容感测极板。
  77. 根据权利要求68所述的检测方法,其特征在于,所述检测方法进一步包括:
    提供第二激励信号给所述多个电容感测极板执行感测操作;
    提供第二调制信号给所述调制端;
    其中,所述第二激励信号随所述第二调制信号的变化而变化。
  78. 根据权利要求77所述的检测方法,其特征在于,第二激励信号不同于第一激励信号,第二调制信号不同于第一调制信号。
  79. 根据权利要求78所述的检测方法,其特征在于,所述第二激励信号随所述第二调制信号的变化而变化,用以减小所述多个电容感测极板与所述调制端之间寄生电容的充放电电量。
  80. 根据权利要求78所述的检测方法,其特征在于,第二调制信号与第二激励信号为电压信号,第二激励信号的电压随第二调制信号的电压的升高而升高、随第二调制信号的电压的降低而降低。
  81. 根据权利要求80所述的检测方法,其特征在于,所述第二激励信号的幅度变化大小与第二调制信号的幅度变化大小对应相同。
  82. 根据权利要求78所述的检测方法,其特征在于,所述第二激励信号与所述第二调制信号为周期性变化的信号。
  83. 根据权利要求80所述的检测方法,其特征在于,第一调制信号与第二调制信号均为周期性变化的信号,其中,第一调制信号的频率大于第二调制信号的频率。
  84. 根据权利要求80所述的检测方法,其特征在于,第一调制信号的电压峰峰值大于第二调制信号的电压峰峰值。
  85. 根据权利要求68所述的检测方法,其特征在于,所述电容检测电路包括接地端与电源端,所述检测方法进一步包括:
    提供第一电源信号给所述接地端;
    提供第二电源信号给所述电源端,所述第二电源信号与所述第一电源信号的电压差为所述电容检测电路工作的电源电压。
  86. 根据权利要求85所述的检测方法,其特征在于,所述调制端为所述电源端与所述接地端二者中之一者,其中:
    当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号的电压随所述第二电源信号的电压的升高而升高、随所述第二电源信号的电压的降低而降低;或
    当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制信号,所述第二电源信号的电压随所述第一电源信号的电压升高而升高、随所述第一电源信号的电压降低而降低。
  87. 根据权利要求85所述的检测方法,其特征在于,所述电容检测电路进一步包括参考电压端,所述检测方法进一步包括:
    提供第三电源信号给所述参考电压端,所述第三电源信号的电压介于所述第二电源信号的电压与第一电源信号的电压之间;
    其中,调制端为电源端、接地端、参考电压端三者中之一者:
    当所述电源端为所述调制端时,所述第二电源信号包括所述第一调制信号,所述第一电源信号、第三电源信号的电压均随第二电源信号的电压的升高而升高、随第二电源信号的电压的降低而降低;或
    当所述接地端为所述调制端时,所述第一电源信号包括所述第一调制 信号,所述第二电源信号、第三电源信号的电压均随第一电源信号的电压的升高而升高、随第一电源信号的电压的降低而降低;或
    当所述参考电压端为所述调制端时,所述第三电源信号包括所述第一调制信号,所述第一电源信号、第二电源信号的电压均随第三电源信号的电压的升高而升高、随第三电源信号的电压的降低而降低。
PCT/CN2016/070738 2015-01-13 2016-01-12 电子设备及其触摸感测系统、以及触摸感测系统的检测方法 WO2016112848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510015704.0A CN104516716A (zh) 2015-01-13 2015-01-13 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
CN201510015704.0 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016112848A1 true WO2016112848A1 (zh) 2016-07-21

Family

ID=52792087

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/099560 WO2016112781A1 (zh) 2015-01-13 2015-12-29 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
PCT/CN2016/070738 WO2016112848A1 (zh) 2015-01-13 2016-01-12 电子设备及其触摸感测系统、以及触摸感测系统的检测方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099560 WO2016112781A1 (zh) 2015-01-13 2015-12-29 电子设备及其电容式感测系统、以及电容式感测系统的检测方法

Country Status (2)

Country Link
CN (1) CN104516716A (zh)
WO (2) WO2016112781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917938A (zh) * 2017-12-12 2019-06-21 深圳深微创芯科技有限公司 触摸显示装置和电子设备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793869A (zh) * 2015-01-13 2016-07-20 深圳信炜科技有限公司 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
CN104516716A (zh) * 2015-01-13 2015-04-15 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
TWI598827B (zh) * 2015-04-24 2017-09-11 速博思股份有限公司 生物特徵辨識裝置及方法
TWM520166U (zh) * 2015-04-27 2016-04-11 瑞鼎科技股份有限公司 電容式指紋感測裝置
TWI528212B (zh) * 2015-05-21 2016-04-01 速博思股份有限公司 具偏向電極之生物辨識裝置及生物辨識裝置之偵測控制方法
CN104866834B (zh) * 2015-05-29 2018-08-10 上海箩箕技术有限公司 电容式指纹传感器和指纹成像模组
US9836636B2 (en) * 2015-06-25 2017-12-05 Sunasic Technologies Inc. Capacitive image sensor that obtains a noise-reduced image of a finger
CN105138986A (zh) * 2015-08-25 2015-12-09 敦泰电子有限公司 一种指纹检测电路、指纹检测装置及触控面板
WO2017079912A1 (en) * 2015-11-11 2017-05-18 Shanghai Oxi Technology Co., Ltd Fingerprint recognition system
CN105353919B (zh) * 2015-12-03 2023-08-08 敦泰科技(深圳)有限公司 触摸显示装置的驱动电路
CN105931360B (zh) * 2016-04-01 2019-04-09 威海华菱光电股份有限公司 膜厚的检测装置
GB2550967A (en) * 2016-06-03 2017-12-06 Brandenburg (Uk) Ltd Sensing of objects
TWI602100B (zh) * 2016-07-29 2017-10-11 義隆電子股份有限公司 指紋感測裝置的操作方法及指紋感測系統
WO2018027595A1 (zh) * 2016-08-09 2018-02-15 深圳信炜科技有限公司 电容式传感器、电容式传感装置和电子设备
CN106469303B (zh) 2016-09-18 2019-07-09 京东方科技集团股份有限公司 指纹光电流检测单元、指纹识别器、驱动方法和显示装置
WO2018076283A1 (zh) * 2016-10-28 2018-05-03 敦泰电子有限公司 一种指纹感测芯片及终端设备
CN109407867B (zh) * 2017-08-15 2021-01-26 京东方科技集团股份有限公司 触控检测系统及其检测方法、触控装置
CN107480502A (zh) * 2017-09-07 2017-12-15 广东欧珀移动通信有限公司 指纹识别方法、装置、移动终端及存储介质
CN109343731B (zh) * 2018-09-03 2020-07-10 深圳市华星光电技术有限公司 触控显示器及其触控检测方法
CN111573457B (zh) * 2020-04-13 2021-09-24 北京他山科技有限公司 一种悬停按钮传感器单元及提供悬停按钮触发的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207711A (zh) * 2012-01-13 2013-07-17 深圳市汇春科技有限公司 自电容触摸检测电路及方法
WO2013135576A1 (fr) * 2012-03-13 2013-09-19 Nanotec Solution Procede de mesure capacitive entre un objet et un plan d'electrodes par demodulation synchrone partielle
CN103392162A (zh) * 2011-02-25 2013-11-13 马克西姆综合产品公司 电容式触摸感测构架
CN104516716A (zh) * 2015-01-13 2015-04-15 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
CN204595830U (zh) * 2015-01-13 2015-08-26 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9740343B2 (en) * 2012-04-13 2017-08-22 Apple Inc. Capacitive sensing array modulation
US8618865B1 (en) * 2012-11-02 2013-12-31 Palo Alto Research Center Incorporated Capacitive imaging device with active pixels
US20140204053A1 (en) * 2013-01-22 2014-07-24 Pixart Imaging Inc. Concurrent driving capacitive touch sensing device and transmission system
US8766950B1 (en) * 2013-09-30 2014-07-01 Synaptics Incorporated Modulated power supply for reduced parasitic capacitance
CN103745194B (zh) * 2013-12-20 2017-11-28 深圳市汇顶科技股份有限公司 指纹检测装置和移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392162A (zh) * 2011-02-25 2013-11-13 马克西姆综合产品公司 电容式触摸感测构架
CN103207711A (zh) * 2012-01-13 2013-07-17 深圳市汇春科技有限公司 自电容触摸检测电路及方法
WO2013135576A1 (fr) * 2012-03-13 2013-09-19 Nanotec Solution Procede de mesure capacitive entre un objet et un plan d'electrodes par demodulation synchrone partielle
CN104516716A (zh) * 2015-01-13 2015-04-15 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
CN204595830U (zh) * 2015-01-13 2015-08-26 深圳市亚耕电子科技有限公司 电子设备及其电容式感测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917938A (zh) * 2017-12-12 2019-06-21 深圳深微创芯科技有限公司 触摸显示装置和电子设备

Also Published As

Publication number Publication date
CN104516716A (zh) 2015-04-15
WO2016112781A1 (zh) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2016112848A1 (zh) 电子设备及其触摸感测系统、以及触摸感测系统的检测方法
US10241597B2 (en) Active stylus pen and touch sensing system including the same
US11113497B2 (en) Multiphase fingerprint sensor layout and construction
US9898128B2 (en) Sensor signal processing circuit and sensor signal processing method
US8773405B1 (en) Stylus and related human interface devices with dynamic power control circuits
US9024893B2 (en) Controlling system and a controlling method of a touch panel, and a stylus pen for applying to the touch panel
US10969857B2 (en) Touch sensor mode transitioning
US20180053029A1 (en) Fingerprint recognition component, pressure detection method and fingerprint recognition ic
US10095948B2 (en) Modulation scheme for fingerprint sensing
TWI569186B (zh) 觸控感測方法及觸控顯示裝置
US9645672B2 (en) Touch sensor driver with selectable charge source
JP2018185559A (ja) タッチ検出装置及び方法
TWI526944B (zh) 指紋感測裝置及其手指觸碰偵測方法
CN204595830U (zh) 电子设备及其电容式感测系统
JP2015515681A (ja) 送信器の電力消費を低減させるシステム及び方法
CN105793869A (zh) 电子设备及其电容式感测系统、以及电容式感测系统的检测方法
US20230161435A1 (en) Touch apparatus and touch detection method thereof
CN215298209U (zh) 触摸唤醒检测电路、指纹识别装置、显示面板及电子设备
US11422663B1 (en) Stylus sensing on touchscreens
CN114487784A (zh) 电容检测电路、触控芯片及电子设备
KR102170298B1 (ko) 터치 장치 및 이의 터치 검출 방법
CN111782074A (zh) 触控面板及电子设备
KR20200005874A (ko) 터치 장치 및 이의 터치 검출 방법
US20230229272A1 (en) Touch device and touch detection method thereof
US20160328003A1 (en) Power saving apparatus of capacitive pointer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737073

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE