WO2016112538A1 - 电子式替代型双端直管led日光灯及其安全保护电路 - Google Patents

电子式替代型双端直管led日光灯及其安全保护电路 Download PDF

Info

Publication number
WO2016112538A1
WO2016112538A1 PCT/CN2015/070899 CN2015070899W WO2016112538A1 WO 2016112538 A1 WO2016112538 A1 WO 2016112538A1 CN 2015070899 W CN2015070899 W CN 2015070899W WO 2016112538 A1 WO2016112538 A1 WO 2016112538A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capacitor
resistor
lamp
fluorescent
Prior art date
Application number
PCT/CN2015/070899
Other languages
English (en)
French (fr)
Inventor
邓树兴
刘坚
Original Assignee
邓树兴
刘坚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邓树兴, 刘坚 filed Critical 邓树兴
Priority to PCT/CN2015/070899 priority Critical patent/WO2016112538A1/zh
Publication of WO2016112538A1 publication Critical patent/WO2016112538A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the invention relates to the technical field of illumination, and more particularly to an electronic alternative type double-ended straight tube LED fluorescent lamp and a safety protection circuit thereof.
  • the insulation resistance between the pin or the contact of the lamp cap to the pin or the contact of the other end is not less than 2M ⁇ .
  • the dielectric strength test should be performed immediately after the insulation strength test. In the dielectric strength test, the applied voltage exceeded 1500V.
  • the rectifying and filtering unit connected to the LED module is directly connected with the electronic ballast of the fluorescent lamp, and there is no safety protection circuit in the middle, so the above-mentioned double-ended LED lamp cannot be used. Item security testing has great security risks.
  • the technical problem to be solved by the present invention is to provide a conformity to the above-mentioned drawbacks of the prior art.
  • an electronic alternative double-ended straight tube LED fluorescent lamp safety protection circuit comprising: a fluorescent tube analog cathode circuit connected to a first output end and a second output end of the fluorescent lamp electronic ballast; wherein the fluorescent tube simulation The output end of the cathode circuit is connected to the first anode of a triac, and the second anode of the triac is connected to the high frequency rectification filter circuit of the double-ended straight tube LED fluorescent lamp through the fourth capacitor and the fifth capacitor.
  • a high frequency trigger circuit for triggering conduction in a high frequency state greater than 10 kHz is disposed between the control electrode of the triac and the output end of the fluorescent tube analog cathode circuit;
  • the circuit arrangement of the third output end and the fourth output end of the fluorescent lamp electronic ballast is symmetrical to the circuit arrangement of the first output end and the second output end.
  • the security protection circuit of the present invention wherein the high frequency trigger circuit includes a third capacitor, and the capacitance of the third capacitor ranges from 1P to 10 ⁇ F;
  • the high frequency trigger circuit is composed of a sixth capacitor and a seventh capacitor connected in series, and the capacitance values of the sixth capacitor and the seventh capacitor are all in the range of 1P-10 ⁇ F;
  • the high frequency trigger circuit is composed of an eighth capacitor and a ninth resistor connected in series, the capacitance of the eighth capacitor ranges from 1P to 10 ⁇ F, and the value of the ninth resistor ranges from 1 ⁇ to 10 ⁇ ;
  • the triac is 1-5A and has a withstand voltage greater than 1 kV.
  • the fluorescent tube analog cathode circuit comprises a first resistor connected in series with each other and connected between the first output end and the second output end of the fluorescent lamp electronic ballast a second resistor, a first capacitor is connected in parallel across the first resistor, and a second capacitor is connected in parallel across the second resistor;
  • a connection point between the first resistor and the second resistor is an output end of the fluorescent tube analog cathode circuit.
  • the security protection circuit of the present invention wherein the first resistor and the second resistor have a value ranging from 1 ⁇ to 1 k ⁇ ;
  • the first capacitor and the second capacitor have a value ranging from 0.01 ⁇ F to 10 ⁇ F;
  • the fourth capacitor and the fifth capacitor have a value ranging from 0.01 ⁇ F to 50 ⁇ F.
  • the fluorescent tube analog cathode circuit comprises a first self-recovery connected between the first output end and the second output end of the electronic ballast of the fluorescent lamp electronically connected in series a fuse and a second self-recovering fuse;
  • a connection point between the first self-recovery fuse and the second self-recovery fuse is an output end of the fluorescent tube analog cathode circuit
  • the first self-recovery fuse and the second self-recovery fuse current parameter have a value ranging from 0.25 to 2A.
  • the security protection circuit of the present invention wherein the security protection circuit further comprises an isolation circuit resistance channel for maintaining a small current working state of the system, comprising:
  • the third resistor, the fourth resistor, the fifth resistor, and the sixth resistor have a value ranging from 1 M ⁇ to 10 M ⁇ .
  • the invention also provides an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit, comprising: a fluorescent tube analog cathode circuit connected to the first output end and the second output end of the fluorescent lamp electronic ballast; wherein The output end of the fluorescent tube analog cathode circuit is connected to a triac composed of at least two bidirectional thyristors connected in series and of the same type, and the bidirectional thyristor at the forefront of the triac group a first anode is connected to an output end of the fluorescent tube analog cathode circuit, and a second anode of the triac at the last end of the triac group is connected to the double-ended straight tube LED through a fourth capacitor and a fifth capacitor An input end of a high frequency rectification and filtering circuit of a fluorescent lamp;
  • the control poles of each of the triacs in the two-way thyristor group are connected with a high-frequency trigger circuit that triggers conduction at a high frequency state greater than 10 kHz; wherein the control electrode of the triac located at the rear end passes
  • the high frequency trigger circuit is electrically connected to the control pole of the bidirectional thyristor adjacent to the front end, and the control electrode of the first directional thyristor at the front end passes through the high frequency trigger circuit and the output end of the fluorescent tube analog cathode circuit Electrical connection
  • control electrode of each of the triacs in the triac group is an open state with a distributed capacitance between the output end of the fluorescent tube analog cathode circuit
  • the circuit arrangement of the third output end and the fourth output end of the fluorescent lamp electronic ballast is symmetrical to the circuit arrangement of the first output end and the second output end.
  • the invention also provides an electronic alternative type double-ended straight tube LED fluorescent lamp driven by a fluorescent lamp electronic ballast, comprising a high frequency rectification and filtering circuit connected with the LED lamp group; wherein the output of the fluorescent lamp electronic ballast
  • a safety protection circuit according to any one of the preceding claims is connected between the terminal and the high frequency rectification and filtering circuit.
  • the electronic alternative type double-ended straight tube LED fluorescent lamp of the present invention wherein the high frequency rectification and filtering circuit comprises a first diode, a second diode, a third diode and a fourth diode, and capacitance;
  • first diode and the second diode are connected in series by a seventh resistor or a third self-recovery fuse;
  • the third diode and the fourth diode are connected in series by a seventh resistor or a third self-recovery fuse;
  • a cathode of the first diode is connected to a cathode of the third diode, and a cathode of the second diode is connected to a cathode of the fourth diode;
  • a second anode of the triac is connected to a connection point of the first diode and the seventh resistor through the fourth capacitor;
  • a second anode of the triac is simultaneously connected to a connection point of the second diode and the seventh resistor through the fifth capacitor;
  • the capacitor is connected between a cathode of the third diode and a cathode of the fourth diode;
  • a varistor is connected in parallel across the capacitor.
  • the electronic alternative type double-ended straight tube LED fluorescent lamp of the present invention wherein the high-frequency rectification and filtering circuit is disposed in the form of a first module in two lamp caps of an electronic alternative double-ended straight tube LED fluorescent lamp;
  • the safety protection circuit is disposed in the two modules of the electronic replacement type double-ended straight tube LED fluorescent lamp in the form of a second module, and the structures in the two lamp holders are symmetrical;
  • the first module and the second module in one end of the lamp are electrically connected by a threaded copper column, the threaded copper column is connected at two ends of the seventh resistor, or the threaded copper column is connected at the The two ends of the third self-recovery fuse.
  • the beneficial effects of the present invention are: through the output of the fluorescent electronic ballast of the electronically replaced double-ended straight tube LED fluorescent lamp
  • a bidirectional thyristor is disposed between the high frequency rectifying and filtering circuits, and a high frequency trigger circuit that triggers conduction in a high frequency state of the bidirectional thyristor connected to a high frequency state greater than 10 kHz, or a control electrode of the bidirectional thyristor Fluorescence
  • the open state of the distributed capacitance between the output terminals of the lamp analog cathode circuit makes the signal unable to trigger the triac at low frequency (power frequency 50/60Hz), when it is in the high frequency (greater than 10k Hz) state,
  • the high-frequency trigger circuit is turned on, and the two-way thyristor is triggered immediately, thereby turning on the high-frequency output current of the electronic ballast of the fluorescent lamp and the normal working channel of the LED lamp group, thereby playing a role of safety protection.
  • FIG. 1 is a schematic diagram 1 of an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit and related circuit according to a preferred embodiment of the present invention
  • FIG. 2 is a second embodiment of an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit and related circuit schematic diagram of the preferred embodiment of the present invention
  • FIG. 3 is a schematic diagram 1 of a high frequency trigger circuit according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram 2 of a high frequency trigger circuit according to a preferred embodiment of the present invention.
  • 5 is an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit and related circuit using a self-recovering fuse instead of a resistor according to a preferred embodiment of the present invention
  • FIG. 6 is a schematic diagram of an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit and related circuit according to another embodiment of the present invention.
  • FIG. 7 is a schematic view showing the internal structure of an electronic alternative type double-ended straight tube LED fluorescent lamp base according to a preferred embodiment of the present invention.
  • FIG. 1 and 2 illustrate an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit according to a preferred embodiment of the present invention.
  • FIG. 1 and 2 illustrate an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit according to a preferred embodiment of the present invention.
  • the details are as follows:
  • the electronic alternative double-ended straight tube LED fluorescent lamp safety protection circuit comprises a fluorescent tube analog cathode circuit connected to the first output end 1 and the second output end 2 of the fluorescent lamp electronic ballast 100; wherein, the fluorescent The output end of the lamp analog cathode circuit is connected to the first anode of a triac SCR, and the second anode of the triac SCR is connected to the high end of the double-ended straight tube LED lamp through the fourth capacitor C4 and the fifth capacitor C5.
  • the input end of the frequency rectification and filtering circuit 300; the control pole of the triac SCR A high frequency trigger circuit 201 for triggering conduction at a high frequency state greater than 10 kHz is disposed between the output ends of the fluorescent tube analog cathode circuit; or a control electrode and a fluorescent portion of the triac
  • the above protection circuit works as follows: At low frequencies (power frequency 50/60 Hz), the signal cannot trigger the triac SCR When in a high frequency (greater than 10k Hz) state, the high frequency trigger circuit 201 connected to the triac SCR control electrode is turned on, and the conduction current is about 0.1-50 mA, and the bidirectional thyristor is triggered immediately.
  • the current is introduced into the first anode of the triac SCR by the fluorescent tube analog cathode circuit, and then passed through the fourth capacitor C4 And the fifth capacitor C5 to the double-ended straight tube LED fluorescent lamp high-frequency rectification filter circuit 300 for rectification and filtering, and then illuminate the LED lamp group 400 Therefore, the high-frequency output current of the fluorescent lamp electronic ballast 100 and the normal working channel of the LED lamp group 400 are turned on, thereby playing a role of safety protection.
  • the frequency triggering characteristic of the triac SCR is skillfully utilized, and the safety protection circuit can be doubled during the safety specification test or during the installation of the LED fluorescent lamp by the user.
  • the insulation resistance at both ends of the LED tube is greater than 2M ⁇ , when AC1500V, 50/60Hz voltage is applied across the lamp, there will be no flicker and breakdown; at the same time, when one end is connected with AC500V, 50/60Hz power supply, the other end is connected to IEC
  • the contact current of the anthropometric network specified in Appendix G of 60598-1 is less than 0.7 mA.
  • the control electrode and the fluorescence of the triac SCR The open state of the distributed capacitance between the output ends of the cathode circuit of the lamp tube is specifically: the control pole of the triac SCR is opened, no component is connected, but the control is affected by other components of the circuit.
  • Polar and fluorescent There is essentially a circuit distributed capacitance between the output of the lamp analog cathode circuit.
  • the distributed capacitance isolates the low frequency current so that the signal in the low frequency state cannot trigger the triac SCR when it is at high frequency (greater than 10k) In the Hz) state, the high-frequency current immediately triggers the two-way thyristor SCR through the distributed capacitance, thereby turning on the high-frequency output current of the fluorescent lamp electronic ballast 100 and the normal working channel of the LED lamp group 400, thereby playing a role of safety protection.
  • the triac SCR is preferably taken as a value of 1-5 A.
  • the two-way thyristor with a withstand voltage greater than 1KV can be regarded as composed of one PNP tube and one NPN tube. Therefore, the composite tube having the same function composed of the triode tube transformation of the same structure should also be within the protection range of the above embodiment.
  • the lamp analog cathode circuit comprises a first resistor R1 and a second resistor R2 connected in series with each other between the first output end 1 and the second output end 2 of the fluorescent lamp electronic ballast 100.
  • the first resistor R1 is connected in parallel at both ends.
  • There is a first capacitor C1, and a second capacitor C2 is connected in parallel across the second resistor R2; wherein, the connection point between the first resistor R1 and the second resistor R2 is
  • the fluorescent tube simulates the output of the cathode circuit.
  • the first resistor R1 and the second resistor R2 are resistors of the same specification, preferably ranging from 1 ⁇ to 1 k ⁇ ; and the preferred range of the first capacitor C1 and the second capacitor C2 is 0.01 ⁇ F. -10 ⁇ F; the fourth capacitor C4 and the fifth capacitor C5 preferably have a value ranging from 0.01 ⁇ F to 50 ⁇ F.
  • the lamp analog cathode circuit comprises a first self-recovering fuse P1 and a second self-recovering fuse P2 connected in series with each other between the first output end 1 and the second output end 2 of the fluorescent lamp electronic ballast 100; the first self-recovery The connection point between the fuse P1 and the second self-recovering fuse P2 is Fluorescence
  • the lamp simulates the output of the cathode circuit; the current values of the first self-recovery fuse P1 and the second self-recovery fuse P2 are both 0.25-2A.
  • the first self-recovering fuse P1 and the second self-recovering fuse P2 are used, and it is not necessary to connect the first capacitor C1 and the second capacitor C2.
  • the self-recovery fuse is composed of a polymer matrix and carbon black particles which make it conductive, and since the material has a certain conductivity, current flows therethrough.
  • the heat generated will cause it to expand, so that the carbon black particles will separate and their resistance will rise. This will cause the thermistor to generate more heat, expand more, and further increase the resistance.
  • the temperature reaches 125 ° C, the resistance changes significantly, so that the current is significantly reduced.
  • the small current flowing through the thermistor at this point is sufficient to keep it at this temperature and in a high impedance state.
  • the thermistor shrinks to its original shape and reconnects the carbon black particles, so that the polymer PTC thermistor cools quickly and returns to the original low resistance state, which can be cycled.
  • the high frequency trigger circuit 201 includes a specific third capacitor C3, and one end of the third capacitor C3 is connected to the output end of the analog cathode circuit of the fluorescent tube. The other end is connected to the control pole of the triac, and the third capacitor C3 has a capacitance ranging from 1P to 10 ⁇ F. At low frequencies (power frequency 50/60 Hz), the third capacitor C3 isolates the low frequency current. The signal cannot trigger the triac SCR. When it is in the high frequency (greater than 10k Hz) state, the high frequency current immediately triggers the triac SCR through the third capacitor C3. Therefore, the high-frequency output current of the fluorescent lamp electronic ballast 100 and the normal working channel of the LED lamp group 400 are turned on, thereby playing a role of safety protection.
  • the high frequency trigger circuit 201 is composed of a sixth capacitor C6 and a seventh capacitor C7 connected in series, and a preferred value of the capacitance of the sixth capacitor C6 and the seventh capacitor C7.
  • the range is 1P-10 ⁇ F.
  • the series circuit composed of the sixth capacitor C6 and the seventh capacitor C7 isolates the low-frequency current, and the signal cannot trigger the triac SCR when it is at high frequency (greater than 10k) In the Hz) state, the high frequency current immediately triggers the triac SCR through the sixth capacitor C6 and the seventh capacitor C7. Therefore, the high-frequency output current of the fluorescent lamp electronic ballast 100 and the normal working channel of the LED lamp group 400 are turned on, thereby playing a role of safety protection.
  • the high frequency trigger circuit is composed of an eighth capacitor C8 and a ninth resistor R9 connected in series, and the capacitance of the eighth capacitor C8 preferably ranges from 1P to 10 ⁇ F.
  • the preferred range of the nine resistor R9 is 1 ⁇ - 10 ⁇ . .
  • the series circuit consisting of the eighth capacitor C8 and the ninth resistor R9 isolates the low frequency current, and the signal cannot trigger the triac SCR when it is at high frequency (greater than 10k).
  • the high-frequency current is composed of the eighth capacitor C8 and the ninth resistor R9, which immediately triggers the triac SCR. Therefore, the high-frequency output current of the electronic ballast of the fluorescent lamp and the normal working channel of the LED lamp group are turned on, thereby playing a role of safety protection.
  • the high-frequency trigger circuit 201 in the above embodiments may have other transformation forms, and only needs to satisfy the isolation current in the low-frequency state, and the conduction may be triggered at the high-frequency, which is not enumerated here.
  • the safety protection circuit 200 further includes an isolation circuit resistance channel for maintaining a small current operating state of the system, including: a third resistor R3 between the first output end 1 of the fluorescent electronic ballast 100 and the second anode of the triac SCR; a fourth resistor R4 between the second output end 2 of the fluorescent electronic ballast 100 and the second anode of the triac SCR; a fifth resistor R5 connected in parallel across the fourth capacitor C4; and, connected in parallel The sixth resistor R6 at both ends of the capacitor C5; wherein the third resistor R3, the fourth resistor R4, the fifth resistor R5, and the sixth resistor R6 preferably have a value ranging from 1 M ⁇ to 10 M ⁇ .
  • the isolation circuit resistance channel can allow the system to flow a small current, thus taking into account the different ignition characteristics of various types of electronic ballasts, and thus protecting the circuit.
  • the present invention further provides another embodiment of an electronic alternative type double-ended straight tube LED fluorescent lamp safety protection circuit, a fluorescent tube analog cathode circuit including a first output end 1 and a second output end 2 connected to the fluorescent electronic ballast 100; wherein, the fluorescent The output of the lamp analog cathode circuit is connected to a triac SCR ⁇ consisting of at least two bidirectional thyristor SCRs connected in series and of the same type.
  • the two-way controllable at the forefront of the triac SCR ⁇ The first anode of silicon Fluorescence
  • the output end of the lamp analog cathode circuit is connected, and the second anode of the triac of the second-stage thyristor group SCR ⁇ is connected to the high frequency of the double-ended straight tube LED fluorescent lamp through the fourth capacitor C4 and the fifth capacitor C5.
  • the input end of the rectifying and filtering circuit 300; the control pole of each bidirectional thyristor in the triac SCR ⁇ is connected with a high frequency trigger circuit 201 that triggers conduction in a high frequency state greater than 10 kHz;
  • the control pole of the triac of the terminal is electrically connected to the control pole of the triac of the adjacent front end through the high frequency trigger circuit 201, and the control pole of the bidirectional thyristor located at the front end passes the high frequency trigger circuit 201 and Fluorescent tube simulates the output of the cathode circuit electrically connected; or, the control pole of each triac in the triac group is fluorescent
  • An open circuit state of the distributed capacitance exists between the output ends of the lamp analog cathode circuit; the circuit of the third output end 3 and the fourth output end 4 of the fluorescent lamp electronic ballast 100 is disposed with the first output end 1 and the second output end 2 Relative circuit setting .
  • the above safety protection circuit works as follows: At low frequencies (power frequency 50/60 Hz), the signal cannot trigger the triac.
  • the group SCR ⁇ when in the high frequency (greater than 10k Hz) state, causes the high frequency trigger circuit 201 connected to the SCR ⁇ control pole of the triac group to be turned on, and the conduction current is about 0.1-50mA.
  • the current is introduced into the first anode of the triac SCR ⁇ by the fluorescent tube analog cathode circuit, and then passed through the fourth capacitor C4 And the fifth capacitor C5 to the double-ended straight tube LED fluorescent lamp high-frequency rectification filter circuit 300 for rectification and filtering, and then illuminate the LED lamp group 400 Therefore, the high-frequency output current of the fluorescent lamp electronic ballast 100 and the normal working channel of the LED lamp group 400 are turned on, thereby playing a role of safety protection.
  • the safety protection circuit can make the insulation resistance at both ends of the double-ended LED tube greater than 2M ⁇ .
  • AC1500V, 50/60Hz voltage is applied across the lamp, there will be no flicker and breakdown.
  • one end is connected with AC500V, 50/60Hz power supply, the other end is connected to IEC.
  • the contact current of the anthropometric network specified in Appendix G of 60598-1 is less than 0.7 mA.
  • the single-way thyristor group SCR ⁇ The triac SCR is 1-5A and the withstand voltage is greater than 1KV.
  • a second anode of the first triac Connecting a first anode of the second triac, a second anode of the second triac is connected to the first anode of the third triac; and a control pole of the third triac located at the last end passes a high frequency
  • the trigger circuit 201 is connected to the control electrode of the second triac; the control electrode of the second triac is connected to the control electrode of the first triac through another high frequency trigger circuit 201; the first at the front end
  • the control electrode of the triac is connected to the high frequency trigger circuit 201 through another high frequency trigger circuit 201
  • the fluorescent tube simulates the output of
  • the safety circuit shown in Figure 6 The high frequency trigger circuit 201 includes a third capacitor C3, and the capacitance of the third capacitor C3 ranges from 1P to 10 ⁇ F.
  • the high frequency trigger circuit 201 is composed of a sixth capacitor C6 and a seventh capacitor C7 connected in series.
  • the capacitance values of the sixth capacitor C6 and the seventh capacitor C7 are all in the range of 1P-10 ⁇ F; or the high frequency trigger circuit 201 is composed of the eighth capacitor C8 and the ninth resistor R9 connected in series, and the capacitance of the eighth capacitor C8
  • the value ranges from 1P to 10 ⁇ F
  • the ninth resistor R9 ranges from 1 ⁇ to 10 ⁇ .
  • the isolation circuit resistance channel for maintaining the low current working state of the system and the principle description of the isolation circuit resistance channel are also referred to the foregoing embodiments, and details are not described herein again.
  • the invention also provides an embodiment of an electronic alternative double-ended straight tube LED fluorescent lamp
  • FIG. 7 referring to FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6, the electronic alternative double-ended straight tube LED fluorescent lamp is driven by the fluorescent lamp electronic ballast 100, including with the LED.
  • Light set 400 connected The high frequency rectifying and filtering circuit 300; wherein the output of the fluorescent electronic ballast 100 and the high frequency rectifying and filtering circuit 300 are connected with the safety protection circuit 200 as described in any of the foregoing embodiments.
  • the safety protection circuit 200 functions as a safety switch between the output of the fluorescent electronic ballast and the high frequency rectification filter circuit 300, and the safety switch is a frequency sensitive safety switch at a low frequency. (Power frequency 50/60Hz) Disconnected and turned on at high frequency (greater than 10k Hz).
  • Power frequency 50/60Hz Disconnected and turned on at high frequency (greater than 10k Hz).
  • the frequency triggering characteristic of the triac SCR is skillfully utilized, and the safety specification test or the user installation is performed.
  • the safety protection circuit can make the insulation resistance at both ends of the double-ended LED tube greater than 2M. ⁇ , when AC1500V, 50/60Hz voltage is applied across the lamp, there will be no flicker and breakdown; at the same time, when one end is connected with AC500V, 50/60Hz power supply, the other end is connected to IEC
  • the contact current of the anthropometric network specified in Appendix G of 60598-1 is less than 0.7 mA.
  • the electronic alternative type double-ended straight tube LED fluorescent lamp of the invention can prevent electric shock accidents and damage the lamp tube during the replacement installation process and normal work, thereby ensuring personal and property safety.
  • the double-ended LED fluorescent lamp can directly replace the fluorescent tube without changing the fluorescent lamp lighting circuit driven by the original electronic ballast, achieving the purpose of energy saving, safety, environmental protection and long life.
  • the live line L and the neutral line N of the fluorescent electronic ballast 100 are connected to the city AC AC (voltage is 220V, frequency is 50Hz or 60Hz), and the fluorescent lamp electronic ballast 100 passes its internal AC-DC patent circuit and DC-
  • the AC conversion circuit converts the AC mains AC into a high-frequency alternating current and outputs it to the safety protection circuit 200 of the present invention, and the current frequency range is 20KHz-80. KHz.
  • the high frequency rectification and filtering circuit 300 includes a first diode D1, a second diode D2, a third diode D3 and a fourth diode D4, and a capacitor Co; wherein the first diode D1 and the second diode
  • the pole tube D2 passes through the seventh resistor R7 (or the third The self-recovering fuse P3, as shown in Figure 5) is connected in series; the third diode D3 and the fourth diode D4 pass through the seventh resistor R7 ⁇ (or the third self-recovery fuse P3 ⁇ , as shown in FIG.
  • the negative electrode of the first diode D1 is connected to the negative electrode of the third diode D3, the positive electrode of the second diode D2 is connected to the positive electrode of the fourth diode D4;
  • the second anode of the SCR is connected to the connection point of the first diode D1 and the seventh resistor through the fourth capacitor C4;
  • the second anode of the triac SCR is simultaneously connected to the second diode D2 through the fifth capacitor C5
  • the capacitor Co is connected between the cathode of the third diode D3 and the anode of the fourth diode D4.
  • a varistor of 100V-200V is connected in parallel to both ends of the LED lamp group 400, Prevent the user from accidentally connecting the lamp to the inductive fluorescent lamp to avoid damage to the LED lamp bead caused by the instantaneous back EMF of the starter (jumping).
  • the high frequency rectification and filtering circuit 300 is disposed in the form of the first module A in the two lamp caps 501 of the electronically replaced double-ended straight tube LED fluorescent lamp; the security protection circuit 200 is disposed in the form of the second module B.
  • the structure of the two lamp caps is symmetrical;
  • the first module A and the second module B in one end of the lamp are electrically connected by a threaded copper post 504, the threaded copper post 504 is connected at both ends of the seventh resistor R7, or the threaded copper post 504 is connected to the third self-recovering fuse. Both ends of P3.
  • the LED lamp group 400 is formed by connecting a plurality of LED lighting units (L1-Ln) in parallel, and the input ends of the plurality of LED lighting units (L1-Ln) are commonly connected to the output end of the high-frequency rectifying and filtering circuit 300, and the plurality of LEDs emit light.
  • the outputs of the units (L1-Ln) are commonly connected to the loop ends of the high frequency rectification and filtering circuit 300, and each of the LED lighting units is formed by connecting a plurality of LED chips in series.
  • the number of the plurality of LED lighting units (L1-Ln) ranges from 2 to 20; in each LED lighting unit, the number of the plurality of LED chips ranges from 10 to 50.
  • the above embodiment The total length of the glass tube 503 of the electronic alternative type double-ended straight tube LED fluorescent lamp is preferably 1178 mm or 1478 mm, the length of the light bar 502 is preferably 1170 mm or 1466 mm, and the base 501 is lengthened by 6 mm to avoid dark spots at the exposed line or the lamp cap.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

电子式替代型双端直管LED日光灯及其安全保护电路,其中安全保护电路包括连接在荧光灯电子镇流器(100)的第一输出端(1)和第二输出端(2)的荧光灯管模拟阴极电路;荧光灯管模拟阴极电路的输出端与一双向可控硅(SCR)的第一阳极连接,双向可控硅(SCR)的第二阳极通过第四电容(C4)和第五电容(C5)连接至双端直管LED日光灯的高频整流滤波电路(300)的输入端;双向可控硅(SCR)的控制极与荧光灯管模拟阴极电路的输出端之间设置有在大于10kHz的高频状态下触发导通的高频触发电路(201);或者,双向可控硅(SCR)的控制极与荧光灯管模拟阴极电路的输出端之间为存在分布电容的开路状态;荧光灯电子镇流器(100)的第三输出端(3)和第四输出端(4)的电路设置与第一输出端(1)和第二输出端(2)的电路设置相对称。

Description

电子式替代型双端直管LED日光灯及其安全保护电路 技术领域
本发明涉及照明技术领域,更具体地说,涉及一种电子式替代型双端直管LED日光灯及其安全保护电路。
背景技术
LED 日光灯管因其具备发光效率高和能耗低的优点,已逐步取代传统荧光灯管,越来越广泛的被应用到各种场合,以实现高效照明及节能的目的。目前用于直接替换传统型荧光灯管的双端替代型LED灯管,不需对原有灯具结构做出修改即能实现替换。请参见专利申请CN 103929858 A,该申请中公开了一种利用荧光灯电子镇流器驱动的LED日光灯管和照明灯具,其中通过采用高频整流滤波单元与荧光灯电子镇流器的荧光灯灯丝阻抗实现匹配,并由LED模组实现发光,使得不需要对灯具进行改进施工即可达到LED日光灯管适配荧光灯电子镇流器实现照明的目的。
根据 国际IEC62776-2012和IEC62776-2014规定要求 ,需要对用于替代传统荧光灯的双端LED灯进行多项安全测试。其中规定,当仅一端灯头插入到灯座时,电会传递到另一还未插入的灯头端,此时不应引起电击,采用以下检测方法来验证其符合性:对灯的电路接通额定电压,且仅让灯座的一端进电,灯管一端灯头插入灯座,按照IEC 60598-1附录A要求来检测未插入灯座的另一端灯头没有导电部件会引起电击。另外,还规定了按照IEC61347-1附录A的要求,灯头pin脚或接点到另一端灯头pin脚或接点之间的绝缘电阻不少于2MΩ。进行绝缘电阻测试时,在潮湿箱内施加大约500V直流电压。在进行绝缘强度测试后应立即进行介电强度测试。介电强度试验时,施加电压超过1500V。
但在上述现有技术的LED日光灯管电路方案中,连接LED模组的整流滤波单元与荧光灯电子镇流器直接连接,中间无任何安全保护电路,因此无法通过上述对双端LED灯进行的多项安全测试,存在极大的安全隐患。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种符合 国际IEC62776-2012和IEC62776-2014安全规定要求的电子式替代型双端直管LED日光灯及其安全保护电路 。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
构造一种电子式替代型双端直管LED日光灯安全保护电路,其中,包括连接在荧光灯电子镇流器的第一输出端和第二输出端的荧光灯管模拟阴极电路;其中,所述荧光灯管模拟阴极电路的输出端与一双向可控硅的第一阳极连接,所述双向可控硅的第二阳极通过第四电容和第五电容连接至双端直管LED日光灯的高频整流滤波电路的输入端;
所述双向可控硅的控制极与所述荧光灯管模拟阴极电路的输出端之间设置有在大于10kHz的高频状态下触发导通的高频触发电路;
或者,所述双向可控硅的控制极与所述荧光灯管模拟阴极电路的输出端之间为存在分布电容的开路状态;
所述荧光灯电子镇流器的第三输出端和第四输出端的电路设置与所述第一输出端和所述第二输出端的电路设置相对称。
本发明所述的安全保护电路,其中,所述高频触发电路包括第三电容,所述第三电容的电容量取值范围为1P-10µF;
或者,所述高频触发电路由相互串联的第六电容和第七电容组成,所述第六电容和第七电容的电容量取值范围均为1P-10µF;
或者,所述高频触发电路由串联连接的第八电容和第九电阻组成,第八电容的电容量取值范围为1P-10µF,所述第九电阻的取值范围为1Ω-10Ω;
所述双向可控硅为1-5A且耐压大于1KV。
本发明所述的安全保护电路,其中,所述荧光灯管模拟阴极电路包括相互串联后连接在荧光灯电子镇流器的所述第一输出端和所述第二输出端之间的第一电阻和第二电阻,所述第一电阻两端并联连接有第一电容,所述第二电阻两端并联连接有第二电容;其中,
所述第一电阻和所述第二电阻之间的连接点为所述荧光灯管模拟阴极电路的输出端。
本发明所述的安全保护电路,其中,所述第一电阻和所述第二电阻取值范围为1Ω-1kΩ;
所述第一电容和所述第二电容取值范围为0.01µF -10µF;
所述第四电容和所述第五电容取值范围为0.01µF -50µF。
本发明所述的安全保护电路,其中,所述荧光灯管模拟阴极电路包括相互串联后连接在荧光灯电子镇流器的所述第一输出端和所述第二输出端之间的第一自恢复保险丝和第二自恢复保险丝;
所述第一自恢复保险丝和所述第二自恢复保险丝之间的连接点为所述荧光灯管模拟阴极电路的输出端;
所述第一自恢复保险丝和所述第二自恢复保险丝电流参数取值范围为0.25-2A。
本发明所述的安全保护电路,其中,所述安全保护电路还包括用于维持系统小电流工作状态的隔离电路电阻通道,包括:
连接于所述荧光灯电子镇流器的第一输出端与所述双向可控硅的第二阳极之间的第三电阻;
连接于所述荧光灯电子镇流器的第二输出端与所述双向可控硅的第二阳极之间的第四电阻;
并联连接在所述第四电容两端的第五电阻;以及,并联连接在所述第五电容两端的第六电阻;
其中,所述第三电阻、所述第四电阻、所述第五电阻和所述第六电阻取值范围为1MΩ-10MΩ。
本发明还提供了一种电子式替代型双端直管LED日光灯安全保护电路,其中,包括连接在荧光灯电子镇流器的第一输出端和第二输出端的荧光灯管模拟阴极电路;其中,所述荧光灯管模拟阴极电路的输出端与由至少两个串联连接且型号相同的双向可控硅组成的双向可控硅组连接,所述双向可控硅组中位于最前端的双向可控硅的第一阳极与所述荧光灯管模拟阴极电路的输出端连接,所述双向可控硅组中位于最后端的双向可控硅的第二阳极通过第四电容和第五电容连接至双端直管LED日光灯的高频整流滤波电路的输入端;
所述双向可控硅组中每个双向可控硅的控制极均连接有在大于10kHz的高频状态下触发导通的高频触发电路;其中,位于后端的双向可控硅的控制极通过所述高频触发电路与相邻前端的双向可控硅的控制极电连接,位于最前端的双向可控硅的控制极通过所述高频触发电路与所述荧光灯管模拟阴极电路的输出端电连接;
或者,所述双向可控硅组中每个双向可控硅的控制极均为与所述荧光灯管模拟阴极电路的输出端之间存在分布电容的开路状态;
所述荧光灯电子镇流器的第三输出端和第四输出端的电路设置与所述第一输出端和所述第二输出端的电路设置相对称。
本发明还提供了一种电子式替代型双端直管LED日光灯,由荧光灯电子镇流器驱动,包括与LED灯组连接的高频整流滤波电路;其中,所述荧光灯电子镇流器的输出端与所述高频整流滤波电路之间连接有如前述任一项所述的安全保护电路。
本发明所述的电子式替代型双端直管LED日光灯,其中,所述高频整流滤波电路包括第一二极管、第二二极管、第三二极管和第四二极管以及电容;
其中,所述第一二极管和所述第二二极管通过第七电阻或第三自恢复保险丝串联连接;
所述第三二极管和所述第四二极管通过第七一电阻或第三一自恢复保险丝串联连接;
所述第一二极管的负极连接所述第三二极管的负极,所述第二二极管的正极连接所述第四二极管的正极;
所述双向可控硅的第二阳极通过所述第四电容连接至所述第一二极管和所述第七电阻的连接点处;
所述双向可控硅的第二阳极同时通过所述第五电容连接至所述第二二极管和所述第七电阻的连接点处;
所述电容连接在所述第三二极管的负极与所述第四二极管的正极之间;
所述电容两端并联连接有压敏电阻。
本发明所述的电子式替代型双端直管LED日光灯,其中,所述高频整流滤波电路以第一模块的形式设置于电子式替代型双端直管LED日光灯的两灯头内;
所述安全保护电路以第二模块的形式设置于所述电子式替代型双端直管LED日光灯的两灯头内,且两灯头内结构对称;
其中一端灯头内的所述第一模块与所述第二模块之间通过螺纹铜柱电连接,所述螺纹铜柱连接在所述第七电阻的两端,或者所述螺纹铜柱连接在所述第三自恢复保险丝的两端。
有益效果
本发明的有益效果在于:通过在电子式替代型双端直管LED日光灯的 荧光灯电子镇流器的输出端与 高频整流滤波电路之间设置双向可控硅,并在双向可控硅的控制极连接在大于10kHz的高频状态下触发导通的高频触发电路,或者,双向可控硅的控制极与 荧光 灯管模拟阴极电路的输出端之间为存在分布电容的开路状态,使得在低频 (工频50/60Hz)时,信号无法触发双向可控硅,当处于高频(大于10k Hz)状态时, 高频触发电路导通, 即刻触发双向可控硅,从而接通荧光灯电子镇流器高频输出电流与LED灯组正常工作通道,起到安全保护的作用。
附图说明
图1是本发明较佳实施例的电子式替代型双端直管LED日光灯安全保护电路及相关电路原理图一;
图2是本发明较佳实施例的电子式替代型双端直管LED日光灯安全保护电路及相关电路原理图二;
图3是本发明较佳实施例的高频触发电路原理图一;
图4是本发明较佳实施例的高频触发电路原理图二;
图5是本发明较佳实施例的采用自恢复保险丝替代电阻的电子式替代型双端直管LED日光灯安全保护电路及相关电路;
图6是本发明另一实施例的电子式替代型双端直管LED日光灯安全保护电路及相关电路原理图;
图7是本发明较佳实施例的电子式替代型双端直管LED日光灯灯头内部结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1和图2示出了本发明 较佳实施例的电子式替代型双端直管LED日光灯安全保护电路 ,为了便于说明,其中仅示出了与本发明实施例相关的部分,详述如下:
电子式替代型双端直管LED日光灯安全保护电路包括连接在荧光灯电子镇流器100的第一输出端1和第二输出端2的 荧光 灯管模拟阴极电路;其中, 荧光 灯管模拟阴极电路的输出端与一双向可控硅SCR的第一阳极连接,双向可控硅SCR的第二阳极通过第四电容C4和第五电容C5连接至双端直管LED日光灯的高频整流滤波电路300的输入端;双向可控硅SCR的控制极与 荧光 灯管模拟阴极电路的输出端之间设置有在大于10kHz的高频状态下触发导通的高频触发电路201;或者,双向可控硅的控制极与 荧光 灯管模拟阴极电路的输出端之间为存在分布电容的开路状态;荧光灯电子镇流器100的第三输出端3和第四输出端4的电路设置与第一输出端1和第二输出端2的电路设置相对称 。
上述保护电路工作原理为: 在低频 (工频50/60Hz)时,信号无法触发双向可控硅 SCR ,当处于高频(大于10k Hz)状态时,使得连接于双向可控硅 SCR 控制极的 高频触发电路201导通,导通电流 大约0.1-50mA , 即刻触发双向可控硅 SCR ,电流由荧光 灯管模拟阴极电路 引入到双向可控硅 SCR 的第一阳极 ,再分别经第四电容 C4 和第五电容C5至双端直管LED日光灯的高频整流滤波电路300进行整流滤波,再点亮LED灯组400 ,从而接通荧光灯电子镇流器100高频输出电流与LED灯组400正常工作通道,起到安全保护的作用。
上述实施例中,不同于一般使用时的电流触发方式,巧妙的利用了双向可控硅SCR的频率触发特性,在进行安全规范测试、或在用户安装LED日光灯过程中,安全保护电路能使双端LED灯管两端绝缘电阻大于2M Ω ,当在灯管两端施加AC1500V、50/60Hz电压时,不会出现闪烁和击穿现象;同时在其中一端加上AC500V、50/60Hz电源时,另一端接入IEC 60598-1附录G规定的人体测量网络的接触电流小于0.7mA。
上述实施例中, 如图2所示,双向可控硅SCR的控制极与 荧光 灯管模拟阴极电路的输出端之间为存在分布电容的开路状态,具体是指:将双向可控硅SCR的控制极开路,不连接任何元件,但由于电路其他各元器件影响,在该控制极与 荧光 灯管模拟阴极电路的输出端之间实质存在电路分布电容。该分布电容隔离低频电流,使得低频状态下 信号无法触发双向可控硅 SCR ,当处于高频(大于10k Hz)状态时,高频电流经过该分布电容即刻触发双向可控硅SCR,从而接通荧光灯电子镇流器100高频输出电流与LED灯组400正常工作通道,起到安全保护的作用。
上述实施例中,双向可 控硅SCR优选采用取值为1-5 A 且耐压大于1KV的双向可控硅。其中,双向可控硅SCR可以看作由一个PNP管和一个NPN管所组成,因此,采用同样结构的三极管变换组成的具有相同功能的复合管也应在上述实施例的保护范围内。
在进一步的实施例中,如图1所示,上述 荧光 灯管模拟阴极电路包括相互串联后连接在荧光灯电子镇流器100的第一输出端1和第二输出端2之间的第一电阻R1和第二电阻R2,第一电阻R1两端并联连接有第一电容C1,第二电阻R2两端并联连接有第二电容C2;其中,第一电阻R1和第二电阻R2之间的连接点为 荧光 灯管模拟阴极电路的输出端。
优选地,上述第一电阻R1和第二电阻R2为相同规格的电阻,优选取值范围为1Ω-1kΩ;第一电容C1和第二电容C2的优选取值范围为0.01µF -10µF;第四电容C4和第五电容C5的优选取值范围为0.01µF -50µF。
在进一步的实施例中,如图5所示,上述 荧光 灯管模拟阴极电路包括相互串联后连接在荧光灯电子镇流器100的第一输出端1和第二输出端2之间的第一自恢复保险丝P1和第二自恢复保险丝P2;第一自恢复保险丝P1和第二自恢复保险丝P2之间的连接点为 荧光 灯管模拟阴极电路的输出端;第一自恢复保险丝P1和第二自恢复保险丝P2电流参数取值范围均为0.25-2A。即,采用第一自恢复保险丝P1和第二自恢复保险丝P2替代前面实施例中的第一电阻R1和第二电阻R2,不需要连接第一电容C1和第二电容C2。
其中,自恢复保险丝是由聚合物基体和使其导电的碳黑粒子组成,由于这种材料具有一定的导电能力,因而其上会有电流通过。当有过电流通过热敏电阻时,产生的热量将使其膨胀,从而碳黑粒子将分离、其电阻将上升。这将促使热敏电阻更快的产生热量,膨胀得更大,进一步使电阻升高。当温度达到125℃时,电阻变化显著,从而使电流明显减小。此时流过热敏电阻的小电流足以使其保持在这个温度和处于高阻状态。当故障排除后,热敏电阻收缩至原来的形状重新将碳黑粒子联结起来,从而使高分子PTC热敏电阻很快冷却并回复到原来的低电阻状态,这样又可以循环工作了。
在进一步的实施例中,如图1所示,上述高频触发电路201包括具体第三电容C3,第三电容C3一端连接在荧光灯管模拟阴极电路的输出端, 另一端连接双向可控硅的控制极,且 第三电容C3电容量的优选取值范围为1P-10µF。在低频 (工频50/60Hz)时, 第三电容C3隔离低频电流, 信号无法触发双向可控硅 SCR ,当处于高频(大于10k Hz)状态时,高频电流经过 第三电容C3 即刻触发双向可控硅 SCR ,从而接通荧光灯电子镇流器100高频输出电流与LED灯组400正常工作通道,起到安全保护的作用。
在进一步的实施例中,如图3所示,上述高频触发电路201由相互串联的第六电容C6和第七电容C7组成,第六电容C6和第七电容C7的电容量的优选取值范围均为1P-10µF。同样,在低频 (工频50/60Hz)时, 第六电容C6和第七电容C7组成的串联电路隔离低频电流, 信号无法触发双向可控硅 SCR ,当处于高频(大于10k Hz)状态时,高频电流经过 第六电容C6和第七电容C7 即刻触发双向可控硅 SCR ,从而接通荧光灯电子镇流器100高频输出电流与LED灯组400正常工作通道,起到安全保护的作用。
在进一步的实施例中,如图4所示,上述高频触发电路由串联连接的第八电容C8和第九电阻R9组成,第八电容C8的电容量优选取值范围为1P-10µF,第九电阻R9的优选取值范围为1Ω-10Ω 。 同样,在低频 (工频50/60Hz)时, 第八电容C8和第九电阻R9组成的串联电路隔离低频电流, 信号无法触发双向可控硅 SCR ,当处于高频(大于10k Hz)状态时,高频电流经过 第八电容C8和第九电阻R9组成 即刻触发双向可控硅 SCR ,从而接通荧光灯电子镇流器高频输出电流与LED灯组正常工作通道,起到安全保护的作用。
可以理解,上述各实施例中的高频触发电路201还可以有其他变换形式,只需满足在低频状态下隔离电流,在高频触发导通即可,在此不一一列举。
在进一步的实施例中,上述电子式替代型双端直管LED日光灯 安全保护电路200还包括用于维持系统小电流工作状态的隔离电路电阻通道,包括:连接于 荧光灯电子镇流器100的第一输出端1与双向可控硅SCR的第二阳极之间的第三电阻R3; 连接于 荧光灯电子镇流器100的第二输出端2与双向可控硅SCR的第二阳极之间的第四电阻R4;并联连接在第四电容C4两端的第五电阻R5;以及,并联连接在第五电容C5两端的第六电阻R6;其中,第三电阻R3、第四电阻R4、第五电阻R5和第六电阻R6的优选取值范围为1MΩ-10MΩ。
在低频状态下时,由于双向可控硅 SCR 处于截止状态,由较大阻值的 第三电阻R3、第四电阻R4、第五电阻R5和第六电阻R6组成的 隔离电路电阻通道可以允许系统小电流流过,从而兼顾各类型的电子镇流器不同的启辉特性,起到电路安全保护作用。
如图6所示,本发明还提供了 电子式替代型双端直管LED日光灯安全保护电路 的另一实施例, 包括连接在荧光灯电子镇流器100的第一输出端1和第二输出端2的 荧光 灯管模拟阴极电路;其中, 荧光 灯管模拟阴极电路的输出端与由至少两个串联连接且型号相同的双向可控硅SCR组成的双向可控硅组SCR´连接,双向可控硅组SCR´中位于最前端的双向可控硅的第一阳极与 荧光 灯管模拟阴极电路的输出端连接,双向可控硅组SCR´中位于最后端的双向可控硅的第二阳极通过第四电容C4和第五电容C5连接至双端直管LED日光灯的高频整流滤波电路300的输入端;双向可控硅组SCR´中每个双向可控硅的控制极均连接有在大于10kHz的高频状态下触发导通的高频触发电路201;其中,位于后端的双向可控硅的控制极通过高频触发电路201与相邻前端的双向可控硅的控制极电连接,位于最前端的双向可控硅的控制极通过高频触发电路201与 荧光 灯管模拟阴极电路的输出端电连接;或者,双向可控硅组中每个双向可控硅的控制极均为与 荧光 灯管模拟阴极电路的输出端之间存在分布电容的开路状态;荧光灯电子镇流器100的第三输出端3和第四输出端4的电路设置与第一输出端1和第二输出端2的电路设置相对称 。
参阅图6,上述安全保护电路工作原理为: 在低频 (工频50/60Hz)时,信号无法触发双向可控硅 组SCR´ ,当处于高频(大于10k Hz)状态时,使得连接于双向可控硅 组SCR´ 控制极的 高频触发电路201导通,导通电流 大约0.1-50mA , 即刻触发双向可控硅 组SCR´ ,电流由荧光 灯管模拟阴极电路 引入到双向可控硅 组SCR´的第一阳极 ,再分别经第四电容 C4 和第五电容C5至双端直管LED日光灯的高频整流滤波电路300进行整流滤波,再点亮LED灯组400 ,从而接通荧光灯电子镇流器100高频输出电流与LED灯组400正常工作通道,起到安全保护的作用。
由于采用了两个以上(例如两个、三个、四个)的双向可控硅串联构成双向可控硅组 SCR´ ,使得保护电路耐压性能更好。在进行安全规范测试、或在用户安装LED日光灯过程中,安全保护电路能使双端LED灯管两端绝缘电阻大于2M Ω ,当在灯管两端施加AC1500V、50/60Hz电压时,不会出现闪烁和击穿现象;同时在其中一端加上AC500V、50/60Hz电源时,另一端接入IEC 60598-1附录G规定的人体测量网络的接触电流小于0.7mA。
图6所示的 安全保护电路 中, 双向可控硅组 SCR´ 中单个 双向可控硅SCR为1-5A且耐压大于1KV。以三个双向可控硅串联连接为例,包括位于前端的第一双向可控硅、第二双向可控硅和位于后端的第三双向可控硅,第一双向可控硅的第二阳极连接第二双向可控硅的第一阳极,第二双向可控硅的第二阳极连接第三双向可控硅的第一阳极;位于最后端的第三双向可控硅的控制极通过一高频触发电路201连接至第二双向可控硅的控制极;第二双向可控硅的控制极通过另一高频触发电路201连接至第一双向可控硅的控制极;位于最前端的第一双向可控硅的控制极再通过另一高频触发电路201连接至 荧光 灯管模拟阴极电路的输出端。
图6所示的 安全保护电路 中,高频触发电路201包括第三电容C3,第三电容C3的电容量取值范围为1P-10µF;或者,高频触发电路201由相互串联的第六电容C6和第七电容C7组成,第六电容C6和第七电容C7的电容量取值范围均为1P-10µF;或者,高频触发电路201由串联连接的第八电容C8和第九电阻R9组成,第八电容C8的电容量取值范围为1P-10µF,第九电阻R9的取值范围为1Ω-10Ω。高频触发电路201原理的详细描述请参阅前述各实施例,在此不再赘述。
图6所示的 安全保护电路 中, 荧光 灯管模拟阴极电路原理参阅前述各实施例,各元器件参数值也参阅前述各实施例,在此不再赘述。
图6所示的电子式替代型双端直管LED日光灯 安全保护电路200 中,进一步地, 还包括用于维持系统小电流工作状态的隔离电路电阻通道,隔离电路电阻通道的原理描述也请参阅前述各实施例,在此不再赘述。
本发明还提供了一种 电子式替代型双端直管LED日光灯的具体实施方式 ,如图7所示,同时参阅图1、图2、图3、图4、图5和图6,该 电子式替代型双端直管LED日光灯 由荧光灯电子镇流器100驱动,包括与LED灯组400连接的 高频整流滤波电路300 ;其中,荧光灯电子镇流器100的输出端与 高频整流滤波电路300之间连接有如前述任一实施例中所描述的安全保护电路200。该 安全保护电路200在荧光灯电子镇流器的输出端与 高频整流滤波电路300之间起到安全开关的作用,且该安全开关是对频率敏感的安全开关,在低频 (工频50/60Hz) 状态下断开,高频 (大于10k Hz) 状态下导通。其中,安全保护电路200工作原理参见前述各实施例,在此不再赘述。
上述实施例的电子式替代型双端直管LED日光灯中,不同于一般使用时的电流触发方式,巧妙的利用了双向可控硅SCR的频率触发特性,在进行安全规范测试、或在用户安装LED日光灯过程中,安全保护电路能使双端LED灯管两端绝缘电阻大于2M Ω ,当在灯管两端施加AC1500V、50/60Hz电压时,不会出现闪烁和击穿现象;同时在其中一端加上AC500V、50/60Hz电源时,另一端接入IEC 60598-1附录G规定的人体测量网络的接触电流小于0.7mA。
因此,采用本发明的电子式替代型双端直管LED日光灯,在替换安装过程和正常工作时,不会发生触电事故和损坏灯管,从而确保人身及财产安全。同时,双端LED日光灯能不改动原电子镇流器驱动的荧光灯照明灯具电路而直接替代荧光灯管,达到节能、安全、环保和长寿命工作的目的。
上述实施例的 电子式替代型双端直管LED日光灯中,如图1和图2所示, 荧光灯电子镇流器100的火线端L和零线端N接入市交流电AC(电压为220V,频率为50Hz或60Hz),荧光灯电子镇流器100通过其内部的AC-DC专利电路和DC-AC转换电路将交流市电AC转换为高频交流电后输出至本发明的安全保护电路200,其电流频率范围为20KHz-80 KHz。
上述实施例中,如图1和图2所示, 高频整流滤波电路300包括第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4以及电容Co;其中,第一二极管D1和第二二极管D2通过第七电阻R7(或第三 自恢复保险丝 P3 ,如图5所示)串联连接;第三二极管D3和第四二极管D4通过第七一电阻R7´(或第三一 自恢复保险丝 P3´ ,如图5所示)串联连接;第一二极管D1的负极连接第三二极管D3的负极,第二二极管D2的正极连接第四二极管D4的正极;双向可控硅SCR的第二阳极通过第四电容C4连接至第一二极管D1和第七电阻的连接点处;双向可控硅SCR的第二阳极同时通过第五电容C5连接至第二二极管D2和第七电阻的连接点处;电容Co连接在第三二极管D3的负极与第四二极管D4的正极之间。
优选地,上述LED灯组400两端并联连接有 100V-200V 的压敏电阻,以 防止用户误将灯管接入电感式荧光灯具,避免启辉器(跳泡)断开瞬间反电势造成的LED灯珠损坏 。
优选地,上述 电子式替代型双端直管LED日光灯 中,如图7所示,同时参阅图1和图2, 高频整流滤波电路300以第一模块A的形式设置于 电子式替代型双端直管LED日光灯的两灯头501内 ;安全保护电路200以第二模块B的形式设置于 电子式替代型双端直管LED日光灯的两灯头501内,两灯头内结构对称; 其中一端灯头内的第一模块A与第二模块B之间通过螺纹铜柱504电连接,螺纹铜柱504连接在第七电阻 R7 的两端,或者 螺纹铜柱504连接在第三自恢复保险丝 P3 的两端 。
上述实施例的 电子式替代型双端直管LED日光灯中,如图1所示, LED灯组400由多个LED发光单元(L1-Ln)并联连接而成,多个LED发光单元(L1-Ln)的输入端共同连接至高频整流滤波电路300的输出端,多个LED发光单元(L1-Ln)的输出端共同连接于高频整流滤波电路300的回路端,每个LED发光单元由多个LED芯片串联连接而成。 其中,多个LED发光单元 (L1-Ln)的数量取值范围为2-20个;在每个LED发光单元中,多个LED芯片的数量取值范围为10-50。
上述实施例的 电子式替代型双端直管LED日光灯的玻璃管503总长优选为1178mm或1478mm,灯条502长度优选为1170mm或1466mm;灯头501加长6mm,以免露线或灯头处暗区。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种 电子式替代型双端直管LED日光灯安全保护电路,其特征在于,包括连接在荧光灯电子镇流器(100)的第一输出端(1)和第二输出端(2)的 荧光 灯管模拟阴极电路;其中,所述 荧光 灯管模拟阴极电路的输出端与一双向可控硅(SCR)的第一阳极连接,所述双向可控硅(SCR)的第二阳极通过第四电容(C4)和第五电容(C5)连接至双端直管LED日光灯的高频整流滤波电路(300)的输入端;
    所述双向可控硅(SCR)的控制极与所述 荧光 灯管模拟阴极电路的输出端之间设置有在大于10kHz的高频状态下触发导通的高频触发电路(201);
    或者,所述双向可控硅(SCR)的控制极与所述 荧光 灯管模拟阴极电路的输出端之间为存在分布电容的开路状态;
    所述 荧光灯电子镇流器(100)的第三输出端(3)和第四输出端(4)的电路设置与所述第一输出端(1)和所述第二输出端(2)的电路设置相对称 。
  2. 根据权利要求1所述的 安全保护电路 ,其特征在于,所述 高频触发电路(201)包括第三电容(C3),所述第三电容(C3)的电容量取值范围为1P-10µF;
    或者,所述高频触发电路(201)由相互串联的第六电容(C6)和第七电容(C7)组成,所述第六电容(C6)和第七电容(C7)的电容量取值范围均为1P-10µF;
    或者, 所述 高频触发电路(201)由串联连接的第八电容(C8)和第九电阻(R9)组成,第八电容(C8)的电容量取值范围为1P-10µF,所述第九电阻(R9)的取值范围为1Ω-10Ω ;
    所述双向可控硅(SCR)为1-5A且耐压大于1KV。
  3. 根据权利要求1所述的 安全保护电路 ,其特征在于,所述 荧光 灯管模拟阴极电路包括相互串联后连接在荧光灯电子镇流器(100)的所述第一输出端(1)和所述第二输出端(2)之间的第一电阻(R1)和第二电阻(R2),所述第一电阻(R1)两端并联连接有第一电容(C1),所述第二电阻(R2)两端并联连接有第二电容(C2);其中,
    所述第一电阻(R1)和所述第二电阻(R2)之间的连接点为所述 荧光 灯管模拟阴极电路的输出端。
  4. 根据权利要求3所述的 安全保护电路 ,其特征在于, 所述第一电阻(R1)和所述第二电阻(R2)取值范围为1Ω-1kΩ;
    所述第一电容(C1)和所述第二电容(C2)取值范围为0.01µF -10µF;
    所述 第四电容(C4)和所述第五电容(C5)取值范围为0.01µF -50µF。
  5. 根据权利要求1所述的 安全保护电路 ,其特征在于,所述 荧光 灯管模拟阴极电路包括相互串联后连接在荧光灯电子镇流器的所述第一输出端(1)和所述第二输出端(2)之间的第一自恢复保险丝(P1)和第二自恢复保险丝(P2);
    所述第一自恢复保险丝(P1)和所述第二自恢复保险丝(P2)之间的连接点为所述 荧光 灯管模拟阴极电路的输出端;
    所述第一自恢复保险丝(P1)和所述第二自恢复保险丝(P2)电流参数取值范围均为0.25-2A。
  6. 根据权利要求1所述的 安全保护电路 ,其特征在于,所述安全保护电路(200)还包括用于维持系统小电流工作状态的隔离电路电阻通道,包括:
    连接于所述 荧光灯电子镇流器 (100) 的第一输出端 (1) 与所述双向可控硅(SCR)的第二阳极之间的第三电阻(R3);
    连接于所述 荧光灯电子镇流器 (100) 的第二输出端 (2) 与所述双向可控硅(SCR)的第二阳极之间的第四电阻(R4);
    并联连接在所述第四电容(C4)两端的第五电阻(R5);以及,并联连接在所述第五电容(C5)两端的第六电阻(R6);
    其中,所述第三电阻(R3)、所述第四电阻(R4)、所述第五电阻(R5)和所述第六电阻(R6)取值范围为1MΩ-10MΩ。
  7. 一种 电子式替代型双端直管LED日光灯安全保护电路,其特征在于,包括连接在荧光灯电子镇流器(100)的第一输出端(1)和第二输出端(2)的 荧光 灯管模拟阴极电路;其中,所述 荧光 灯管模拟阴极电路的输出端与由至少两个串联连接且型号相同的双向可控硅(SCR)组成的双向可控硅组(SCR´)连接,所述双向可控硅组(SCR´)中位于最前端的双向可控硅的第一阳极与所述 荧光 灯管模拟阴极电路的输出端连接,所述双向可控硅组(SCR´)中位于最后端的双向可控硅的第二阳极通过第四电容(C4)和第五电容(C5)连接至双端直管LED日光灯的高频整流滤波电路(300)的输入端;
    所述双向可控硅组(SCR´)中每个双向可控硅的控制极均连接有在大于10kHz的高频状态下触发导通的高频触发电路(201);其中,位于后端的双向可控硅的控制极通过所述高频触发电路(201)与相邻前端的双向可控硅的控制极电连接,位于最前端的双向可控硅的控制极通过所述高频触发电路(201)与所述 荧光 灯管模拟阴极电路的输出端电连接;
    或者,所述双向可控硅组(SCR´)中每个双向可控硅的控制极均为与所述 荧光 灯管模拟阴极电路的输出端之间存在分布电容的开路状态;
    所述 荧光灯电子镇流器(100)的第三输出端(3)和第四输出端(4)的电路设置与所述第一输出端(1)和所述第二输出端(2)的电路设置相对称 。
  8. 一种 电子式替代型双端直管LED日光灯 ,由荧光灯电子镇流器(100)驱动,包括与LED灯组(400)连接的 高频整流滤波电路 (300);其特征在于, 所述 荧光灯电子镇流器(100)的输出端与所述 高频整流滤波电路 (300) 之间连接有如权利要求1-7中任一项所述的安全保护电路 (200)。
  9. 根据权利要求8所述的 电子式替代型双端直管LED日光灯 ,其特征在于,所述 高频整流滤波电路 (300) 包括第一二极管(D1)、第二二极管(D2)、第三二极管(D3)和第四二极管(D4)以及电容(Co);
    其中,所述第一二极管(D1)和所述第二二极管(D2)通过第七电阻(R7)或第三 自恢复保险丝 (P3)串联连接;
    所述第三二极管(D3)和所述第四二极管(D4)通过第七一电阻(R7´)或第三一 自恢复保险丝 (P3´)串联连接;
    所述第一二极管(D1)的负极连接所述第三二极管(D3)的负极,所述第二二极管(D2)的正极连接所述第四二极管(D4)的正极;
    所述双向可控硅(SCR)的第二阳极通过所述第四电容(C4)连接至所述第一二极管(D1)和所述第七电阻(R7)的连接点处;
    所述双向可控硅(SCR)的第二阳极同时通过所述第五电容(C5)连接至所述第二二极管(D2)和所述第七电阻(R7)的连接点处;
    所述电容(Co)连接在所述第三二极管(D3)的负极与所述第四二极管(D4)的正极之间;
    所述电容(Co)两端并联连接有 压敏电阻 (R8)。
  10. 根据权利要求9所述的 电子式替代型双端直管LED日光灯 ,其特征在于,所述 高频整流滤波电路(300)以第一模块(A)的形式设置于 电子式替代型双端直管LED日光灯的两灯头(501)内 ;
    所述安全保护电路 (200) 以第二模块(B)的形式设置于所述 电子式替代型双端直管LED日光灯的两灯头 (501) 内,且两灯头 (501) 内结构对称;
    其中一端灯头 (501) 内的所述第一模块(A)与所述第二模块(B)之间通过螺纹铜柱 (504) 电连接,所述螺纹铜柱 (504) 连接在所述第七电阻 (R7)的两端,或者 所述螺纹铜柱 (504) 连接在所述第三自恢复保险丝 (P3)的两端 。
PCT/CN2015/070899 2015-01-16 2015-01-16 电子式替代型双端直管led日光灯及其安全保护电路 WO2016112538A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070899 WO2016112538A1 (zh) 2015-01-16 2015-01-16 电子式替代型双端直管led日光灯及其安全保护电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070899 WO2016112538A1 (zh) 2015-01-16 2015-01-16 电子式替代型双端直管led日光灯及其安全保护电路

Publications (1)

Publication Number Publication Date
WO2016112538A1 true WO2016112538A1 (zh) 2016-07-21

Family

ID=56405138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070899 WO2016112538A1 (zh) 2015-01-16 2015-01-16 电子式替代型双端直管led日光灯及其安全保护电路

Country Status (1)

Country Link
WO (1) WO2016112538A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499973A (zh) * 2016-10-28 2017-03-15 邓树兴 双端供电安全隔离的电子兼容型led灯管及供电模块
CN107529713A (zh) * 2017-07-27 2018-01-02 邓树兴 通用型led灯管及其模组
CN107734740A (zh) * 2017-09-15 2018-02-23 深圳实现创新科技有限公司 符合安全标准的通用型双端led灯管及其模组
CN109307814A (zh) * 2018-10-16 2019-02-05 江西合力泰科技有限公司 一种电容可靠性测试电路
US10798794B2 (en) 2017-11-21 2020-10-06 Current Lighting Solutions, Llc LED lighting assembly and drive circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201813587U (zh) * 2010-03-21 2011-04-27 姜俊旗 一种通用照明led驱动电路
CN102065617A (zh) * 2011-01-20 2011-05-18 南京云泰电气制造有限公司 Led照明灯用限流供电系统
JP2011124163A (ja) * 2009-12-14 2011-06-23 Minebea Co Ltd Led駆動回路
CN102752895A (zh) * 2012-06-18 2012-10-24 陈国富 具有恒流、恒压及保护功能的电容降压led照明
CN103841697A (zh) * 2012-11-23 2014-06-04 罗正华 电子镇流器直接驱动led的ic芯片及其控制电路
JP2014130698A (ja) * 2012-12-28 2014-07-10 Panasonic Corp 発光素子点灯装置、および照明器具
CN203859899U (zh) * 2014-03-14 2014-10-01 张秀红 用荧光灯电子镇流器驱动led灯的替换装置
CN104540304A (zh) * 2015-01-16 2015-04-22 邓树兴 电子式替代型双端直管led日光灯及其安全保护电路
CN204350393U (zh) * 2015-01-16 2015-05-20 邓树兴 电子式替代型双端直管led日光灯及其安全保护电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124163A (ja) * 2009-12-14 2011-06-23 Minebea Co Ltd Led駆動回路
CN201813587U (zh) * 2010-03-21 2011-04-27 姜俊旗 一种通用照明led驱动电路
CN102065617A (zh) * 2011-01-20 2011-05-18 南京云泰电气制造有限公司 Led照明灯用限流供电系统
CN102752895A (zh) * 2012-06-18 2012-10-24 陈国富 具有恒流、恒压及保护功能的电容降压led照明
CN103841697A (zh) * 2012-11-23 2014-06-04 罗正华 电子镇流器直接驱动led的ic芯片及其控制电路
JP2014130698A (ja) * 2012-12-28 2014-07-10 Panasonic Corp 発光素子点灯装置、および照明器具
CN203859899U (zh) * 2014-03-14 2014-10-01 张秀红 用荧光灯电子镇流器驱动led灯的替换装置
CN104540304A (zh) * 2015-01-16 2015-04-22 邓树兴 电子式替代型双端直管led日光灯及其安全保护电路
CN204350393U (zh) * 2015-01-16 2015-05-20 邓树兴 电子式替代型双端直管led日光灯及其安全保护电路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499973A (zh) * 2016-10-28 2017-03-15 邓树兴 双端供电安全隔离的电子兼容型led灯管及供电模块
CN107529713A (zh) * 2017-07-27 2018-01-02 邓树兴 通用型led灯管及其模组
CN107529713B (zh) * 2017-07-27 2024-02-02 邓树兴 通用型led灯管及其模组
CN107734740A (zh) * 2017-09-15 2018-02-23 深圳实现创新科技有限公司 符合安全标准的通用型双端led灯管及其模组
US10798794B2 (en) 2017-11-21 2020-10-06 Current Lighting Solutions, Llc LED lighting assembly and drive circuit
CN109307814A (zh) * 2018-10-16 2019-02-05 江西合力泰科技有限公司 一种电容可靠性测试电路
CN109307814B (zh) * 2018-10-16 2024-04-12 江西合力泰科技有限公司 一种电容可靠性测试电路

Similar Documents

Publication Publication Date Title
WO2016112538A1 (zh) 电子式替代型双端直管led日光灯及其安全保护电路
JP6636497B2 (ja) 管状led
JP6058828B2 (ja) 様々なバラスト上での安全な動作のための安全モジュールを有するledランプ
WO2014189298A1 (ko) 발광다이오드 구동장치
CN104540304B (zh) 电子式替代型双端直管led日光灯及其安全保护电路
JP2016530670A (ja) 電磁バラストによる安全な動作のためのled置換えランプ
CN109076671B (zh) 用于安装至管状灯具的管状设备
JP6516313B2 (ja) 管状照明取り付け具に取り付けるための管状デバイス
WO2015149585A1 (zh) 具有浪涌防护功能的光控器
JPH0473278B2 (zh)
KR920002765B1 (ko) 고휘도의 백열램프 점등용 전력공급장치
JP6391690B2 (ja) 故障状態における安全な動作のためのled置換えランプ
CN204905855U (zh) 浪涌保护器及具有该浪涌保护器的led照明装置
CN203119475U (zh) 防感应雷电路及室外灯具
KR101118963B1 (ko) 조명기구 보호용 전원품질 개선회로를 구비한 조명기구
CN205596428U (zh) 装饰灯串及装饰灯串组
CN204350393U (zh) 电子式替代型双端直管led日光灯及其安全保护电路
KR100717272B1 (ko) 서어지 보호장치를 가지는 조명기구
CN203590539U (zh) 一种新型led灯管
CN205005317U (zh) 镇流器驱动的led灯管保护电路
CN204887597U (zh) Led灯管的防电弧电路
CN204291540U (zh) 荧光灯电感镇流器主动保护电路
CN220511290U (zh) 一种开路监测一灭全灭led控制电路
CN2585449Y (zh) 一种自动通断开关的电源插座
CN105120580B (zh) 镇流器驱动的led灯管保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15877456

Country of ref document: EP

Kind code of ref document: A1