WO2016112524A1 - 一种无级变速器 - Google Patents

一种无级变速器 Download PDF

Info

Publication number
WO2016112524A1
WO2016112524A1 PCT/CN2015/070837 CN2015070837W WO2016112524A1 WO 2016112524 A1 WO2016112524 A1 WO 2016112524A1 CN 2015070837 W CN2015070837 W CN 2015070837W WO 2016112524 A1 WO2016112524 A1 WO 2016112524A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
unit
coupled
selector
Prior art date
Application number
PCT/CN2015/070837
Other languages
English (en)
French (fr)
Inventor
吴志强
Original Assignee
吴志强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴志强 filed Critical 吴志强
Priority to CN201580068334.5A priority Critical patent/CN107208753B/zh
Priority to PCT/CN2015/070837 priority patent/WO2016112524A1/zh
Publication of WO2016112524A1 publication Critical patent/WO2016112524A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/76Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with an orbital gear having teeth formed or arranged for obtaining multiple gear ratios, e.g. nearly infinitely variable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type

Definitions

  • the invention belongs to the field of transmission, and more specifically, it is used for various ground vehicles, ships, railway locomotives, engineering machinery, various aerospace, aircraft, metallurgy, mining, petroleum, chemical, light industry, food, textile , slewing transport machinery, machine tools, robots and military equipment.
  • the commonly used continuously variable transmissions are designed according to the principles of friction, hydrostatics, etc., which can transmit little power and are not efficient; in addition, these continuously variable transmissions are complicated in structure, troublesome to operate, and need to pass Expensive materials and precision manufacturing can be achieved, so the cost is high.
  • the invention overcomes the deficiencies of the prior art and provides a continuously variable transmission which prolongs the service life of the engine, has a simple structure, is convenient to operate, has low cost, and is energy-saving and high-efficiency.
  • a continuously variable transmission comprising an input shaft (1), a hydraulic actuator (3), a unidirectional element (4), an output shaft (5), a returning moment unit (12), and the unidirectional element (4)
  • the input end (41) is coupled to the stationary element
  • the output end (42) of the unidirectional element (4) is coupled to the output end (32) of the hydrodynamic actuator (3)
  • the dam unit (12) includes a sink moment An input member (125), a manifold coupling member (126), a return moment output member (127), a sinking planetary gear (128), and all of the components in each of the sinking units (12) cooperate with each other, the input shaft ( 1)
  • a plurality of shifting units (2) coupled in series with the output shaft (5), the shifting unit (2) comprising an input element (21), an output element (22), a coupling element (23), a planet Gear (24), all the components in each shifting unit (2) work together, the input element (21) of the first shifting unit (2), the return input element (125) of the returning unit (12), and the hydraulic transmission
  • a continuously variable transmission comprising an input shaft (1), a hydraulic actuator (3), a unidirectional element (4), an output shaft (5), an input gear pair (6), an output gear pair (7), and a sink moment Unit (12), input end (41) of the unidirectional element (4) and solid
  • the component unit (12) includes a manifold input member (125), a manifold coupling member (126), a return moment output member (127), a sinking planetary gear (128), and a respective moment unit.
  • All the components in (12) work together, and a plurality of shifting units (2) are sequentially arranged between the input shaft (1) and the output shaft (5), and the shifting unit (2) includes an input component ( 21), output member (22), coupling member (23), planetary gear (24), all components in each shifting unit (2) work together, input member (21) and sink of the first shifting unit (2)
  • the input torque element (125) of the unit (12) and the input gear (71) of the output gear pair (7) are coupled to the input shaft (1), and the input elements (21) of the remaining shifting units (2) are shifted with the respective previous ones.
  • the output member (22) of the unit (2) is coupled, and the output member (22) of the last shifting unit (2) is coupled to the return coupling member (126) of the sink unit (12), and the sink unit (12)
  • the moment output element (127) is coupled to the output shaft (5), the coupling elements (23) of the respective shifting units (2) are sequentially coupled, and coupled to the output gear (62) of the input gear pair (6), and the input gear pair (6) )
  • the input gear (61) and the output end (42) of the unidirectional element (4) are coupled to the output end (32) of the hydrodynamic actuator (3), the input end (31) of the hydraulic actuator (3) and the output gear
  • the output gear (72) of the sub (7) is coupled.
  • a continuously variable transmission includes an input shaft (1), a hydraulic actuator (3), a unidirectional element (4), an output shaft (5), a first selector (8), a second selector (9), a squeezing unit (12), the second selector (9) comprising an input end (91), a first output end (92), a second output end (93), an input end of the unidirectional element (4) (41) coupled to a stationary element, the dam unit (12) comprising a damming input element (125), a damming coupling element (126), a damming output element (127), and a spur planetary gear (128), All the components in each of the manifold units (12) cooperate with each other, and a plurality of shifting units (2) are sequentially arranged between the input shaft (1) and the output shaft (5), and the shifting unit (2)
  • the input component (21), the output component (22), the coupling component (23), the planetary gear (24), all the components in each of the shifting units (2) work together, and the input components of the first shifting unit (2)
  • a continuously variable transmission comprising an input shaft (1), a hydraulic actuator (3), a unidirectional element (4), an output shaft (5), an input gear pair (6), an output gear pair (7), a first a selector (8), a second selector (9), a coupling gear pair (10), a squaring unit (12), the input end (41) of the unidirectional element (4) is coupled to a fixed element, and the dam unit (12) comprises a damming input element (125) and a damming coupling element (126) ), the damper output element (127), the damper planetary gear (128), all the components of each of the damper units (12) cooperate with each other, and the input shaft (1) and the output shaft (5) are disposed between a plurality of shifting units (2) coupled in series, the shifting unit (2) comprising an input member (21), an output member (22), a coupling member (23), a planetary gear (24), and a shifting unit (2) All components work together, the input gear (71) of the output gear pair (7) and the input (81) of
  • a continuously variable transmission includes an input shaft (1), a hydraulic actuator (3), a unidirectional element (4), an output shaft (5), a first selector (8), a second selector (9), a second unidirectional element (11), a dam unit (12), the second selector (9) includes an input end (91), a first output end (92), and a second output end (93), An input end (41) of the unidirectional element (4) and an input end (111) of the second unidirectional element (11) are coupled to the fixed element, and the dam unit (12) includes a return moment input element (125), The manifold coupling element (126), the return moment output component (127), the manifold planetary gear (128), and all the components in each of the manifold units (12) cooperate with each other, the input shaft (1) and the output shaft ( 5)
  • a plurality of shifting units (2) are sequentially arranged, the shifting unit (2) comprising an input element (21), an output element (22), a coupling element (23), a planetary gear (24), each All the
  • a continuously variable transmission comprising an input shaft (1), a hydraulic actuator (3), a unidirectional element (4), an output shaft (5), an input gear pair (6), an output gear pair (7), a first a selector (8), a second selector (9), a coupling gear pair (10), a second unidirectional element (11), a sink unit (12), an input end of the unidirectional element (4) (41) And the input end (111) of the second unidirectional element (11) is coupled to the fixed element, the dam unit (12) comprising a return input element (125), a sink connection element (126), a return moment output The component (127), the yoke planetary gear (128), all the components in each of the damper units (12) cooperate with each other, and the plurality of shifting speeds are sequentially arranged between the input shaft (1) and the output shaft (5).
  • the shifting unit (2) comprises an input element (21), an output element (22), a coupling element (23), a planetary gear (24), and all of the components of each shifting unit (2) cooperate with each other.
  • the input gear (71) of the output gear pair (7) and the input end (81) of the first selector (8) are coupled to the input shaft (1), and the output end (82) of the first selector (8) is coupled Output gear (102) of gear pair (10), second unidirectional element (11)
  • the output end (112), the return moment input element (125) of the return moment unit (12), and the input element (21) of the first shifting unit (2) are coupled, and the input elements (21) of the remaining shifting unit (2) are
  • the output elements (22) of the respective shifting units (2) are coupled, and the output elements (22) of the last shifting unit (2) are coupled to the returning coupling elements (126) of the returning unit (12), 12)
  • the torque output element (127) is coupled to the output shaft (5), the coupling elements (23) of each shifting unit (2) are sequentially coupled, and coupled to the output gear (62) of the
  • the shifting unit (2) may select a planetary gear transmission mechanism, a small tooth difference transmission mechanism, a cycloidal pinion planetary transmission mechanism or a harmonic gear transmission mechanism, and an input element (21), an output element (22) and a coupling element ( 23) It can be selected from the basic components constituting the above planetary gear transmission mechanism, the small tooth difference transmission mechanism, the cycloidal pinion planetary transmission mechanism or the harmonic gear transmission mechanism, and functions as a converging power.
  • the slewing unit (12) may select a planetary gear transmission mechanism, a small tooth difference transmission mechanism, a cycloidal pinion planetary transmission mechanism or a harmonic gear transmission mechanism, and a return moment input element (125) and a return moment coupling element (126)
  • the output moment component (127) can be selected from the basic components constituting the planetary gear transmission mechanism, the small-tooth difference transmission mechanism, the cycloidal pinion planetary transmission mechanism or the harmonic gear transmission mechanism, and functions as a converging power.
  • the coupling elements (23) of the plurality of shifting units (2) may be the same element, ie a common coupling element (321).
  • Each of the components to be coupled may select a direct connection method or a method of selecting an indirect connection;
  • the direct connection method refers to: when two or more components to be coupled are on the same central axis, the direct selection may be Connection, when separated by several other elements, may be connected by a coupling shaft, hollow or a coupling frame, through or through several other components, or may be selected to connect them together;
  • the method of indirect connection means that when two or more elements that need to be coupled are not on the same central axis, a suitable transmission mechanism can be selected to connect them together; when the coupled elements are gears or ring gears , then mesh or join each other.
  • the element (11), the dam unit (12) and the input shaft (1) may be arranged in different spaces, ie they may be on the same central axis or on different central axes, in which case they should be based on their position. Choose the appropriate connection method.
  • the hydraulic actuator (3) can be selected from a hydraulic torque converter, a fluid coupling, a pressure motor and a hydraulic pump, and various types of electronically controlled or hydraulically controlled clutches.
  • the unidirectional element (4) and the second unidirectional element (11) can select various different types of clutches, and the unidirectional element (4) functions as: due to the input end (41) of the unidirectional element (4)
  • the fixing elements are coupled to limit the steering so that the steering of the coupling elements (123), the coupling elements (223), the coupling elements (323) or the common coupling elements (321) of the respective shifting units (2) cannot be steered with the input.
  • the rotational speed is zero;
  • the function of the second unidirectional element (11) is that since the input end (101) of the second unidirectional element (11) is coupled to the fixed element, the steering is limited to the first shifting unit ( The steering of the input element (21) of 2) cannot be reversed from the steering of the input, and the rotational speed is zero.
  • the present invention When the present invention is applied to a vehicle, the present invention can automatically and steplessly change the gear ratio according to the speed change when the vehicle travels and the magnitude of the resistance.
  • the invention has no other shifting and operating mechanism, and has the advantages of simple structure, convenient operation, favorable cost reduction and easy maintenance;
  • the power of the engine of the present invention is mostly transmitted by a high-efficiency and high-power transmission unit (2), and the variable pitch and shifting are automatically performed, and a high-efficiency, high-power continuously variable transmission can be realized, except for starting. , can work in the optimal range, compared with other hydraulic actuators, under the premise of the engine equivalent, it reduces the manufacturing cost of the engine;
  • the invention realizes the operation of the engine in the economical speed range by the stepless speed change, that is, works in the speed range of very small pollution discharge, and avoids the exhaust of a large amount of exhaust gas when the engine is idle and high speed operation, thereby reducing the exhaust gas. Emissions are conducive to protecting the environment;
  • the invention can utilize the effect of internal speed difference to buffer and overload protection, which is beneficial to prolonging the service life of the engine.
  • the vehicle can automatically slow down, and vice versa, the speed is increased, which is beneficial to improve.
  • the driving performance of the vehicle can utilize the effect of internal speed difference to buffer and overload protection, which is beneficial to prolonging the service life of the engine.
  • the invention is also applicable to various ground vehicles, ships, railway locomotives, engineering machinery, various aerospace, aircraft, metallurgy, mining, petroleum, chemical, light industry, food, textile, lifting and transportation machinery, machine tools. , the robot and the military's continuously variable transmission.
  • FIG. 7 are schematic structural diagrams of Embodiments 1 to 7 of the present invention.
  • the input element 21 of each shifting unit 2 and the return input element 125 of the manifold unit 12 are selected as sun gears;
  • the output member 22 of the second embodiment and the return output member 127 of the manifold unit 12 are selected from the planet carrier;
  • the coupling member 23 of each of the shifting units 2, the common coupling member 321 and the manifold coupling member 126 of the manifold unit 12 are selected as ring gears.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, and a returning unit 12, and an input end 41 of the unidirectional element 4 is fixed
  • the element is coupled, the output 42 of the unidirectional element 4 is coupled to the output 32 of the hydrodynamic actuator 3, the dam unit 12 comprising a return input element 125, a yoke coupling element 126, a return moment output element 127, a sink
  • the moment planetary gear 128, all the components in the torque unit 12 cooperate with each other, and a plurality of shifting units 2 are sequentially arranged between the input shaft 1 and the output shaft 5, and the shifting unit 2 includes an input element 21 and an output.
  • the end 31 is coupled to the input shaft 1
  • the input member 21 of the remaining shifting unit 2 is coupled to the output member 22 of the respective previous shifting unit 2
  • the output member 22 of the last shifting unit 2 is coupled to the sinking coupling member 126 of the sinking unit 12
  • the element 127 is coupled to the output shaft 5
  • each of the coupling elements 2 of the shift unit 23 are sequentially coupled
  • the hydraulic transmission 32 is coupled with the output terminal 3.
  • the input member 121 of the first shifting unit 2 and the coupling member 123 of the first shifting unit 2 merge the power transmitted thereto through the planetary gears 124 on the output member 122 of the first shifting unit 2 to the output member of the first shifting unit 2 122, the output member 122 of the first shifting unit 2 is transferred to the input member 221 of the second shifting unit 2, the input member 221 of the second shifting unit 2, and the coupling member 223 of the second shifting unit 2 are passed through the second
  • the planetary gears 224 on the output member 222 of the shifting unit 2 converge the power transmitted thereto to the output member 222 of the second shifting unit 2, the second shifting slip
  • the output element 222 of the element 2 is again transmitted to the manifold coupling element 126 of the manifold unit 12, and the manifold coupling element 126 of the manifold unit 12 and the manifold input element 125 of the manifold unit 12 are output through the return of the manifold unit 12
  • the planet gears 128 on the element 127 converge the power delivered
  • each shifting unit 2 Since the rotational speed distribution relationship of the respective components of the above-described shifting unit 2 can be changed, the two power flows will vary according to the change of the rotational speed distribution between the two, and when the rotational speed of the coupling element 23 of each shifting unit 2 is zero, each shifting unit The input member 21 of the second speed is reduced in speed.
  • the rotational speed of the coupling member 23 of each of the shifting units 2 is continuously increased, the rotational speed of the output member 22 of each shifting unit 2 also rises, that is, when each shifting speed is applied.
  • the rotational speed of the coupling element 23 of the unit 2 changes, the rotational speeds of the output element 22 and the output shaft 5 of each shifting unit 2 also change.
  • the input power of the input shaft 1 is divided into two paths, the first path flows through the hydraulic actuator 3, flows into the coupling element 123 of each shifting unit 2, and the coupling element 223; the second path flows into the input element 121 of the first shifting unit 2, sinking
  • the input moment element 125 of the moment unit 12, the input element 121 of the first shifting unit 2, and the coupling element 123 of the first shifting unit 2 are converged to the first shifting speed by the planetary gears 124 of the first shifting unit 2
  • the output element 122 of the unit 2, the output element 122 of the first shifting unit 2 is transferred to the input element 221 of the second shifting unit 2, the input element 221 of the second shifting unit 2, and the coupling element of the second shifting unit 2 223 passes the power transmitted thereto through the planetary gears 224 of the second shifting unit 2 to the output member 222 of the second shifting unit 2, and the output member 222 of the second shifting unit 2 is transferred to the sinking unit 12
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, an input gear pair 6, an output gear pair 7, and a sinking unit 12,
  • the input end 41 of the unidirectional element 4 is coupled to a fixed element, and the squeezing unit 12 includes a return input element 125, a return moment coupling element 126, a return moment output element 127, a sinking planetary gear 128, and a sinking moment unit 12 All the components cooperate with each other, and a plurality of shifting units 2 are sequentially arranged between the input shaft 1 and the output shaft 5, and the shifting unit 2 includes an input member 21, an output member 22, a coupling member 23, and a planetary gear 24.
  • each of the shifting units 2 cooperate with each other.
  • the input member 21 of the first shifting unit 2, the returning moment input member 125 of the torque unit 12, and the input gear 71 of the output gear pair 7 are coupled to the input shaft 1, and the remaining shifting units are coupled.
  • the input member 21 of 2 is coupled to the output member 22 of the respective previous shifting unit 2
  • the output member 22 of the last shifting unit 2 is coupled to the sinking coupling member 126 of the sinking unit 12, and the returning output member 127 of the sinking unit 12
  • each The coupling elements 23 of the shifting units 2 are coupled in series and coupled to the output gear 62 of the input gear pair 6, the input gear 61 of the input gear pair 6 and the output 42 of the unidirectional element 4 and the output 32 of the hydrodynamic actuator 3
  • the input end 31 of the hydraulic actuator 3 is coupled to the output gear 72 of the output gear pair 7.
  • the input power of the input shaft 1 is divided into two paths.
  • the first path flows into the hydraulic actuator 3 through the output gear pair 7, and then flows into the coupling member 123 and the coupling member 223 of each shifting unit 2 through the input gear pair 6; the second inflow
  • the input member 121 of the first shifting unit 2, the returning moment input member 125 of the manifold unit 12, the input member 121 of the first shifting unit 2, and the coupling member 123 of the first shifting unit 2 pass through the planetary gear 124 of the first shifting unit 2
  • the power delivered thereto is merged with the output member 122 of the first shifting unit 2, the output member 122 of the first shifting unit 2 is transferred to the input member 221 of the second shifting unit 2, and the input member of the second shifting unit 2
  • the coupling member 223 of the second shifting unit 2 converges the power transmitted thereto through the planetary gears 224 of the second shifting unit 2 to the output member 222 of the second shifting unit 2, and the output of the second shifting unit 2
  • the element 222 is again transferred to the
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, a first selector 8, a second selector 9, and a sink unit 12,
  • the second selector 9 includes an input end 91, a first output end 92, and a second output end 93.
  • the input end 41 of the unidirectional element 4 is coupled to a fixed element, and the dam unit 12 includes a return input.
  • the element 125, the manifold coupling element 126, the return moment output element 127, the spur planetary gear 128, all the components of the squeezing unit 12 cooperate with each other, and the input shaft 1 and the output shaft 5 are provided with a plurality of sequential connections.
  • the shifting unit 2 includes an input member 21, an output member 22, a coupling member 23, and a planetary gear 24. Each of the components of each shifting unit 2 cooperates with each other, and the input member 21 and the sink of the first shifting unit 2
  • the return input element 125 of the unit 12 and the first output 92 of the second selector 9 are coupled to the output 82 of the first selector 8, the input elements 21 of the remaining shifting unit 2 and the output elements of the respective shifting unit 2 22 connection, the output element of the last shifting unit 2
  • the member 22 is coupled to the manifold coupling member 126 of the manifold unit 12, and the manifold output member 127 of the manifold unit 12 is coupled to the output shaft 5, and the coupling members 23 of the respective shifting units 2 are sequentially coupled to the second selector 9
  • the second output 93 is coupled to the output 42 of the unidirectional element 4, the input 91 of the second selector 9 is coupled to the output 32 of the hydrodynamic actuator 3, the input 31 of the hydrodynamic actuator 3 and the input shaft 1 It is coupled to
  • the input power of the input shaft 1 will not be based on the state of engagement or separation of the first selector 8 and the second selector 9. Same, but with multiple different drive routes:
  • the gear ratio is 1, that is, the direct gear
  • the first selector 8 When the first selector 8 is disengaged, the first output end 92 of the second selector 9 is engaged, the second output end 93 is engaged, and the input power of the input shaft 1 is passed through the first selector 8 and the hydraulic actuator 3 The power is transferred to the second selector 9, which splits the power into two paths.
  • the first path flows through the first output terminal 92 into the input element 121 of the first shifting unit 2 and the return input element of the returning unit 12 125, the second way through the second output end 93 into the coupling element 123 of each shifting unit 2, the coupling element 223, at this time, only the hydraulic power flow;
  • the input member 121 of the first shifting unit 2 and the coupling member 123 of the first shifting unit 2 merge the power transmitted thereto through the planetary gears 124 of the first shifting unit 2 to the output member 122 of the first shifting unit 2, and the output member of the first shifting unit 2 122 is further transmitted to the input member 221 of the second shifting unit 2, the input member 221 of the second shifting unit 2, and the coupling member 223 of the second shifting unit 2 are transmitted to the planetary gear 224 of the second shifting unit 2
  • the power of this merges with the output element 222 of the second shifting unit 2, and the output element 222 of the second shifting unit 2 is transferred to the return coupling element 126 of the manifold unit 12, and the manifold coupling element 126 of the manifold unit 12
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, an input gear pair 6, an output gear pair 7, a first selector 8, and a a second selector 9, a coupling gear pair 10, a squeezing unit 12, the input end 41 of the unidirectional element 4 is coupled to a fixed element, and the dam unit 12 includes a damming input element 125, a damming coupling element 126, The damper output element 127, the yoke planetary gear 128, all the components of the squeezing unit 12 cooperate with each other, and a plurality of shifting units 2 are sequentially arranged between the input shaft 1 and the output shaft 5, the shifting unit 2 includes an input member 21, an output member 22, a coupling member 23, and a planetary gear 24.
  • each shifting unit 2 cooperates with each other, the input gear 71 of the output gear pair 7 and the input end 81 of the first selector 8 and the input shaft 1 coupled, the output 82 of the first selector 8 is coupled to the output gear 102 of the coupling gear set 10, the return moment input element 125 of the manifold unit 12, and the input element 21 of the first shifting unit 2, the inputs of the remaining shifting unit 2 Element 21 and each previous shift
  • the output member 22 of the element 2 is coupled, the output member 22 of the last shifting unit 2 is coupled to the manifold coupling member 126 of the manifold unit 12, and the return output member 127 of the manifold unit 12 is coupled to the output shaft 5, each shifting unit 2
  • the coupling elements 23 are coupled in series and coupled to the output gear 62 of the input gear pair 6, the input gear 61 of the input gear pair 6 being coupled to the output 42 of the unidirectional element 4 and the output 92 of the second selector 9, second
  • the output 93 of the selector 9 is coupled to the input gear 101 of the
  • the input power of the input shaft 1 will have a plurality of different transmission routes depending on the conditions of engagement or disengagement of the first selector 8 and the second selector 9:
  • the first selector 8 When the first selector 8 is engaged, the first output 92 of the second selector 9 is engaged, the second output 93 is engaged, the input power of the input shaft 1 is split into two paths, and the first path passes through the first selector 8.
  • the second output end 93 of the second selector 9 and the coupling gear pair 10 flow into the input element 121 of the first shifting unit 2, the return moment input element 125 of the manifold unit 12, and the other passes through the first of the second selector 9.
  • the output end 92 and the input gear pair 6 flow into the coupling element 123 of each shifting unit 2, the coupling element 223;
  • the second selector 9 is divided into two paths, one through the second output end 93 of the second selector 9 and the coupling gear pair 10 flowing into the input element 121 of the first shifting unit 2 and the returning moment input element 125 of the manifold unit 12, The other way passes through the first output end 92 of the second selector 9 and the input gear pair 6, into the coupling element 123 of each shifting unit 2, the coupling element 223;
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, an input gear pair 6, an output gear pair 7, and the unidirectional element 4
  • the input end 41 is coupled to a fixed element, and the shifting unit 2 is sequentially provided between the input shaft 1 and the output shaft 5, and the shifting unit 2 includes an input element 21, an output element 22, a coupling element 23, and a planet.
  • the input member 21 of the shifting unit 2 is coupled to the output member 22 of the respective previous shifting unit 2
  • the output member 222 of the last shifting unit 2 is coupled to the sinking coupling member 126 of the sinking unit 12, and the return moment of the sinking unit 12
  • the element 127 is coupled to the output shaft 5
  • the coupling elements 23 of the respective shifting units 2 are the same element, that is, the common coupling element 321, and are coupled to the output gear 62 of the input gear pair 6, the input gear 61 of the input gear pair 6, and the unidirectional element.
  • the end 42 and hydraulic actuator 32 coupled to the output terminal 3 an input terminal of the output gear 31 of the hydraulic actuator 3 and the output gear 72 is coupled to the sub-7.
  • the input power of the input shaft 1 is split into two paths, and the first path flows into the hydraulic actuator 3 through the output gear pair 7, and then passes through
  • the input gear pair 6 flows into the common coupling member 321; the second passage flows into the input member 121 of the first shifting unit 2, and the input member 121 of the first shifting unit 2 and the common coupling member 321 are transmitted through the planetary gears 124 of the first shifting unit 2
  • the power here is converged to the output element 122 of the first shifting unit 2, the output element 122 of the first shifting unit 2 is transferred to the input element 221 of the second shifting unit 2, the input element 221 of the second shifting unit 2,
  • the common coupling element 321 merges the power transmitted thereto through the planetary gears 224 of the second shifting unit 2 to the output member 222 of the second shifting unit 2, and the output member 222 of the second shifting unit 2 is transferred to the sinking unit
  • the coupling elements 23 of the respective shifting units 2 are the same component, that is, the common coupling component 321, and the working principle of the embodiment is the same as that of the second embodiment.
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, a first selector 8, a second selector 9, and a second unidirectional element 11.
  • a squeezing unit 12 the second selector 9 includes an input end 91, a first output end 92, a second output end 93, an input end 41 of the unidirectional element 4 and an input end of the second unidirectional element 11.
  • 111 is coupled with a fixed element, and the squeezing unit 12 includes a squeezing input element 125, a squeezing element 126, a squeezing output element 127, and a spur planetary gear 128.
  • All components of the squeezing unit 12 cooperate with each other.
  • the shifting unit 2 includes an input member 21, an output member 22, a coupling member 23, a planetary gear 24, and all of the shifting units 2
  • the components cooperate with each other, the input member 21 of the first shifting unit 2, the output 112 of the second unidirectional element 11, the return input member 125 of the manifold unit 12, and the first output 92 of the second selector 9
  • the output 82 of a selector 8 is coupled to the input of the remaining shifting unit 2
  • the member 21 is coupled to the output member 22 of each of the respective shifting units 2
  • the output member 22 of the last shifting unit 2 is coupled to the manifold coupling member 126 of the manifold unit 12, and the returning output member 127 and output shaft of the manifold unit 12 5, the coupling elements 23 of the respective shifting units 2 are sequentially coupled and coupled to the second output end 93 of the second selector 9 and the output end 42 of the unidirectional element 4, the
  • the input power of the input shaft 1 will be different depending on the state of engagement or disengagement of the first selector 8 and the second selector 9, and have a plurality of different transmission routes:
  • the gear ratio is 1, that is, the direct gear
  • the first selector 8 When the first selector 8 is disengaged, the first output end 92 of the second selector 9 is engaged, the second output end 93 is engaged, and the input power of the input shaft 1 is passed through the first selector 8 and the hydraulic actuator 3 The power is transferred to the second selector 9, which splits the power into two paths.
  • the first path flows through the first output terminal 92 into the input element 121 of the first shifting unit 2 and the return input element of the returning unit 12 125, the second way through the second output end 93 into the coupling element 123 of each shifting unit 2, the coupling element 223, at this time, only the hydraulic power flow;
  • the fixing elements are coupled to limit the steering so that the steering of the input member 121 of the first shifting unit 2 or the coupling member 123 and the coupling member 223 of each shifting unit 2 cannot be reversed from the input steering, and the rotational speed is zero.
  • the input member 121 and the coupling member 123 of the first shifting unit 2 merge the power transmitted thereto through the planetary gears 124 of the first shifting unit 2 to the output member 122 of the first shifting unit 2, and the output of the first shifting unit 2
  • the component 122 is transferred to the input member 221 of the second shifting unit 2, the input member 221 of the second shifting unit 2, and the coupling member 223 of the second shifting unit 2 are transmitted through the planetary gears 224 of the second shifting unit 2.
  • the power here is converged to the output element 222 of the second shifting unit 2, the output element 222 of the second shifting unit 2 is transferred to the return coupling element 126 of the manifold unit 12, and the return coupling element of the manifold unit 12 126.
  • the return input element 125 of the manifold unit 12 merges the power transmitted thereto through the planetary gears 128 of the manifold unit 12 to the return output member 127 of the manifold unit 12, and the return output member 127 of the manifold unit 12 Pass it to The shaft 5 is output so that the power of the engine is externally outputted through the output shaft 5.
  • a continuously variable transmission includes an input shaft 1, a hydraulic actuator 3, a unidirectional element 4, an output shaft 5, an input gear pair 6, an output gear pair 7, a first selector 8, and a second a selector 9, a coupling gear pair 10, a second unidirectional element 11, a dam unit 12, the input end 41 of the unidirectional element 4 and the input end 111 of the second unidirectional element 11 are coupled to the fixed element,
  • the manifold unit 12 includes a manifold input member 125, a manifold coupling member 126, a return moment output member 127, and a sinking planetary gear 128.
  • All of the components of the sink unit 12 cooperate with each other, and the input shaft 1 and the output shaft 5
  • each shifting unit 2 cooperates with each other, and the output gear pair 7
  • the input gear 71 and the input end 81 of the first selector 8 are coupled to the input shaft 1, the output end 82 of the first selector 8 and the output gear 102 of the coupling gear pair 10, the output end 112 of the second unidirectional element 11,
  • the return moment input element 125 of the manifold unit 12 and the first The input member 21 of the speed unit 2 is coupled, the input member 21 of the remaining shifting unit 2 is coupled to the output member 22 of the respective previous shifting unit 2, and the output member 22 of the last shifting unit 2 and the returning coupling member 126 of the sinking unit 12 Coupling, the return moment output element 127 of the manifold unit 12 is coupled to the output shaft 5, and the coupling elements 23 of the respective shifting units 2 are sequentially coupled and coupled with the output gear 62 of the input gear pair 6, inputting the input gear 61 of the gear pair 6 and The output 42 of the unidirectional element 4 and the output 92 of the second selector 9 are coupled, the output gear
  • the input power of the input shaft 1 will have a plurality of different transmission routes depending on the conditions of engagement or disengagement of the first selector 8 and the second selector 9:
  • the first selector 8 When the first selector 8 is engaged, the first output 92 of the second selector 9 is engaged, the second output 93 is separated, the input power of the input shaft 1 is split into two paths, and the first path passes through the first selector 8.
  • the input gear pair 6 flows into the coupling element 123 of each of the shifting units 2, the coupling element 223;
  • the first selector 8 When the first selector 8 is engaged, the first output 92 of the second selector 9 is engaged, the second output 93 is engaged, the input power of the input shaft 1 is split into two paths, and the first path passes through the first selector 8.
  • the second output end 93 of the second selector 9 and the coupling gear pair 10 flow into the input element 121 of the first shifting unit 2, the return moment input element 125 of the manifold unit 12, and the other passes through the first of the second selector 9.
  • the output end 92 and the input gear pair 6 flow into the coupling element 123 of each shifting unit 2, the coupling element 223;
  • the second selector 9 is divided into two paths, one through the second output end 93 of the second selector 9 and the coupling gear pair 10 flowing into the input element 121 of the first shifting unit 2 and the returning moment input element 125 of the manifold unit 12, The other way through the first output end 92 of the second selector 9 and the input gear pair 6 into the coupling element 123 of each shifting unit 2, the coupling element 223;
  • the fixing elements are coupled to limit the steering so that the steering of the input member 121 of the first shifting unit 2 or the coupling member 123 and the coupling member 223 of each shifting unit 2 cannot be reversed from the input steering, and the rotational speed is zero.
  • the input member 121 and the coupling member 123 of the first shifting unit 2 merge the power transmitted thereto through the planetary gears 124 of the first shifting unit 2 to the output member 122 of the first shifting unit 2, and the output of the first shifting unit 2
  • the component 122 is transferred to the input member 221 of the second shifting unit 2, the input member 221 of the second shifting unit 2, and the coupling member 223 of the second shifting unit 2 are transmitted through the planetary gears 224 of the second shifting unit 2.
  • the power here is converged to the output element 222 of the second shifting unit 2, the output element 222 of the second shifting unit 2 is transferred to the return coupling element 126 of the manifold unit 12, and the return coupling element of the manifold unit 12 126.
  • the return input element 125 of the manifold unit 12 merges the power transmitted thereto through the planetary gears 128 of the manifold unit 12 to the return output member 127 of the first moment unit 12, and the return output unit of the return unit 12 127 and then pass To the output shaft 5, the power of the engine is externally outputted through the output shaft 5.
  • the hydraulic actuator 3 when the rotational speed of the input shaft 1 is constant, the torque on the output member 22 and the output shaft 5 of each shifting unit 2 varies with the change in the rotational speed thereof, and the lower the rotational speed, the output member 22 that is transmitted to each shifting unit 2 And the torque on the output shaft 5 is larger, and conversely, the smaller, in the process, the hydraulic actuator 3 also acts as a torque, thereby realizing the change of torque and speed according to the driving resistance of the vehicle. Continuously variable transmission.
  • the input power, the input rotational speed and the load of the engine are unchanged, that is, the rotational speed and torque of the input shaft 1 are constant, and before the vehicle starts, the rotational speed of the output shaft 5 is zero, and the input power of the engine passes through the input shaft 1
  • other components only when being transmitted to the input element 121 of the first shifting unit 2 and the returning moment input element 125 of the manifold unit 12, since the input end 41 of the unidirectional element 4 is coupled with the fixed element, the function of limiting the steering is enabled.
  • the steering of the coupling element 123, the coupling element 223 or the common coupling element 321 of each shifting unit 2 cannot be reversed from the input steering, and the rotational speed is zero, at which time the power transmitted to the input element 121 of the first shifting unit 2 passes.
  • the planetary gears 124 of the first shifting unit 2 are transmitted to the output member 122 of the first shifting unit 2, the output member 122 of the first shifting unit 2 is transferred to the input member 221 of the second shifting unit 2, and the second shifting unit 2
  • the input member 221 transmits power to the output member 222 of the second shifting unit 2 through the planetary gears 224 of the second shifting unit 2, and the output member 222 of the second shifting unit 2 Delivered to the Department of
  • the return moment output element 127 is again transmitted to the output shaft 5; or only to the coupling element 123, the coupling element 223 or the common coupling element 321 of each shifting unit 2, due to the input end 101 and the fixed element of the second unidirectional element 11
  • the coupling acts
  • the power transmitted to the coupling member 123 of the first shifting unit 2 passes.
  • the planetary gears 124 of the first shifting unit 2 are transmitted to the output member 122 of the first shifting unit 2, the output member 122 of the first shifting unit 2 is transferred to the input member 221 of the second shifting unit 2, and the second shifting unit 2
  • the input member 221 and the coupling member 223 of the second shifting unit 2 converge the power transmitted thereto through the planetary gears 224 of the second shifting unit 2 to the output member 222 of the second shifting unit 2, the second shifting
  • the output element 222 of the unit 2 is again transferred to the manifold coupling element 126 of the manifold unit 12, the manifold coupling element 126 of the manifold unit 12, the manifold input element 125 of the manifold unit 12, and the planetary gear 128 of the manifold unit 12
  • the power transmitted thereto is merged into the return output element 127 of the manifold unit 12, and the return output element 127 of the manifold unit 12 is transferred to the output shaft
  • the shaft 5 is externally outputted.
  • the output end 32 of the hydraulic actuator 3 The rotational speed is also gradually increased, and the rotational speed of the coupling element 23 or the common coupling element 321 of each of the shifting units 2 associated therewith is gradually increased, so that the torque of the output member 22 and the output shaft 5 of each shifting unit 2 is increased with the rotational speed. Increase and decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5),首个输入元件(21)、汇矩输入元件(125),液力传动器(3)与输入轴(1)联接,其余输入元件与各自上一个输出元件联接,最后一个输出元件与汇矩联接元件(126)联接,汇矩输出元件(127)与输出轴联接,各个联接元件依次联接,并与液力传动器联接。该变速器结构简单,操控方便,节能高效。

Description

一种无级变速器 技术领域
本发明属于变速器领域,更具体地说,它是一种用于各种地面车辆、船舶、铁道机车、工程机械、各种航天、航空器、冶金、矿山、石油、化工、轻工、食品、纺织、起重运输机械、机床、机械人以及军工的无级变速器。
背景技术
目前,常用的无级变速器都是根据摩擦、流体静力学等原理来设计的,它所能传递的功率不大,并且效率不高;另外,这些无级变速器结构复杂,操控麻烦,并需通过昂贵的材料和精密的制造才能实现,因此成本高。
发明内容
本发明克服了现有技术的不足,提供了一种延长发动机的使用寿命,结构简单,操控方便,低成本,节能高效的无级变速器。
为了实现本发明的目的,本发明采用的技术方案以下:
一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、汇矩单元(12),所述单向元件(4)的输入端(41)与固定元件联接,单向元件(4)的输出端(42)与液力传动器(3)的输出端(32)联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、汇矩单元(12)的汇矩输入元件(125)以及液力传动器(3)的输入端(31)与输入轴(1)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与液力传动器(3)的输出端(32)联接。
一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、输入齿轮副(6)、输出齿轮副(7)、汇矩单元(12),所述单向元件(4)的输入端(41)与固 定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、汇矩单元(12)的汇矩输入元件(125)以及输出齿轮副(7)的输入齿轮(71)与输入轴(1)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与输入齿轮副(6)的输出齿轮(62)联接,输入齿轮副(6)的输入齿轮(61)以及单向元件(4)的输出端(42)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)与输出齿轮副(7)的输出齿轮(72)联接。
一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、第一选择器(8)、第二选择器(9)、汇矩单元(12),所述第二选择器(9)包括输入端(91)、第一输出端(92)、第二输出端(93),所述单向元件(4)的输入端(41)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、汇矩单元(12)的汇矩输入元件(125)以及第二选择器(9)的第一输出端(92)与第一选择器(8)的输出端(82)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与第二选择器(9)的第二输出端(93)以及单向元件(4)的输出端(42)联接,第二选择器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)以及输入轴(1)与第一选择器(8)的输入端(81)联接。
一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、输入齿轮副(6)、输出齿轮副(7)、第一选择器(8)、第二选择器(9)、联接齿轮副(10)、 汇矩单元(12),所述单向元件(4)的输入端(41)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,输出齿轮副(7)的输入齿轮(71)以及第一选择器(8)的输入端(81)与输入轴(1)联接,第一选择器(8)的输出端(82)与联接齿轮副(10)的输出齿轮(102)、汇矩单元(12)的汇矩输入元件(125)以及首个变速单元(2)的输入元件(21)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与输入齿轮副(6)的输出齿轮(62)联接,输入齿轮副(6)的输入齿轮(61)与单向元件(4)的输出端(42)以及第二选择器(9)的输出端(92)联接,第二选择器(9)的输出端(93)与联接齿轮副(10)的输入齿轮(101)联接,第二选择器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)与输出齿轮副(7)的输出齿轮(72)联接。
一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、第一选择器(8)、第二选择器(9)、第二单向元件(11)、汇矩单元(12),所述第二选择器(9)包括输入端(91)、第一输出端(92)、第二输出端(93),所述单向元件(4)的输入端(41)以及第二单向元件(11)的输入端(111)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、第二单向元件(11)的输出端(112)、汇矩单元(12)的汇矩输入元件(125)以及第二选择器(9)的第一输出端(92)与第一选择器(8)的输出端(82)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与第二选择器(9)的第二输出端(93)以及单向元件(4)的输出端(42)联接,第二选择 器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)以及输入轴(1)与第一选择器(8)的输入端(81)联接。
一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、输入齿轮副(6)、输出齿轮副(7)、第一选择器(8)、第二选择器(9)、联接齿轮副(10)、第二单向元件(11)、汇矩单元(12),所述单向元件(4)的输入端(41)以及第二单向元件(11)的输入端(111)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,输出齿轮副(7)的输入齿轮(71)以及第一选择器(8)的输入端(81)与输入轴(1)联接,第一选择器(8)的输出端(82)与联接齿轮副(10)的输出齿轮(102)、第二单向元件(11)的输出端(112)、汇矩单元(12)的汇矩输入元件(125)以及首个变速单元(2)的输入元件(21)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与输入齿轮副(6)的输出齿轮(62)联接,输入齿轮副(6)的输入齿轮(61)与单向元件(4)的输出端(42)以及第二选择器(9)的输出端(92)联接,第二选择器(9)的输出端(93)与联接齿轮副(10)的输入齿轮(101)联接,第二选择器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)与输出齿轮副(7)的输出齿轮(72)联接。
所述变速单元(2)可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或者谐波齿轮传动机构,其输入元件(21)、输出元件(22)和联接元件(23)可以从构成上述行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或者谐波齿轮传动机构的基本元件中选用,其起到汇合功率的作用。
所述汇矩单元(12)可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构,其汇矩输入元件(125)、汇矩联接元件(126)和汇矩输出元件(127)可以从构成行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构的基本元件中选用,其起到汇合功率的作用。
所述若干变速单元(2)的联接元件(23)可为同一元件,即共用联接元件(321)。
所述各个需要联接的元件,可以选择直接连接的方法或者选择间接连接的方法;所述直接连接的方法指的是:当需要联接的两个或者以上元件在同一中心轴线上时,可以选择直接连接,当被其它若干元件分隔时,可采用联接轴、中空或者联接架的方法,穿过或者跨过其它若干元件,与之连接,也可以选择合适的传动机构,使它们连接在一起;所述间接连接的方法指的是:当需要联接的两个或者以上元件不是在同一中心轴线上时,可以选择合适的传动机构,使它们连接在一起;所述联接的元件是齿轮或者齿圈时,则相互啮合或者联接。
所述各个变速单元(2)、液力传动器(3)、单向元件(4)、输出轴(5)、第一选择器(8)、第二选择器(9)、第二单向元件(11)、汇矩单元(12)以及输入轴(1)可以布置在不同的空间,即它们可以是在同一中心轴线,或者是在不同的中心轴线上,此时,应当根据它们位置,选择合适的联接方法。
所述液力传动器(3)可以选用液力变矩器、液力偶合器、压马达和液压泵以及各种不同类型的电控或者液控离合器。
所述单向元件(4)、第二单向元件(11)可以选择各种不同类型的离合器,单向元件(4)的作用是:由于单向元件(4)的输入端(41)与固定元件联接,起限制转向的作用,使各个变速单元(2)的联接元件(123)、联接元件(223)、联接元件(323)或者以及共用联接元件(321)的转向不能与输入的转向相反,转速为零;第二单向元件(11)的作用是:由于第二单向元件(11)的输入端(101)与固定元件联接,起限制转向的作用,使首个变速单元(2)的输入元件(21)的转向不能与输入的转向相反,转速为零。
本发明应用于车辆时,本发明能够根据车辆行驶时的速度变化以及受到阻力大小,自动地、无级地改变传动比。
本发明具有以下的优点:
(1)本发明无其它换档和操纵机构,结构简单、操控方便,有利于降低成本,易于维修;
(2)本发明发动机的功率大部分由高效率以及能传递大功率的变速单元(2)传递,变距和变速是自动完成,能实现高效率、大功率的无级变速传动,除起步以外,都能在最佳范围内工作,与其它液力传动器相比,在发动机等效的前提下,它降低了发动机的制造成本;
(3)本发明通过无级变速,使发动机处于经济转速区域内运转,也就是在非常小污染排放的转速范围内工作,避免了发动机在怠速和高速运行时,排放大量废气,从而减少了废气的排放,有利于保护环境;
(4)本发明能利用内部转速差起缓冲和过载保护的作用,有利于延长发动机的使用寿命,另外,当行驶阻力增大,则能使车辆自动降速,反之则升速,有利于提高车辆的行驶性能。
另外,本发明是一种还可用于各种地面车辆、船舶、铁道机车、工程机械、各种航天、航空器、冶金、矿山、石油、化工、轻工、食品、纺织、起重运输机械、机床、机械人以及军工的无级变速器。
附图说明
图1至图7为本发明实施例一至实施例七的结构示意图,在各个结构示意图中,各个变速单元2的输入元件21、汇矩单元12的汇矩输入元件125选用太阳轮;各个变速单元2的输出元件22、汇矩单元12的汇矩输出元件127选用行星架;各个变速单元2的联接元件23、共用联接元件321以及汇矩单元12的汇矩联接元件126选用齿圈。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步的详细说明:
实施例一:
如图1中所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、汇矩单元12,所述单向元件4的输入端41与固定元件联接,单向元件4的输出端42与液力传动器3的输出端32联接,所述的汇矩单元12包括汇矩输入元件125、汇矩联接元件126、汇矩输出元件127、汇矩行星齿轮128,汇矩单元12中所有元件相互配合工作,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,首个变速单元2的输入元件21、汇矩单元12的汇矩输入元件125以及液力传动器3的输入端31与输入轴1联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件22与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各个变速单元2的联接元件23依次联接,并与液力传动器3的输出端32联接。
首个变速单元2的输入元件121、首个变速单元2的联接元件123通过首个变速单元2的输出元件122上的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的输出元件222上的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单 元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的汇矩输出元件127上的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127。
由于上述变速单元2的各个元件的转速分配关系可以改变,两路功率流将根据两者之间转速分配的变化而变化,当各个变速单元2的联接元件23的转速为零时,各个变速单元2的输入元件21则降速增矩,当各个变速单元2的联接元件23的转速不断升高时,各个变速单元2的输出元件22的转速也随之升高,也就是说,当各个变速单元2的联接元件23的转速发生变化时,各个变速单元2的输出元件22以及输出轴5的转速也随之变化。
输入轴1的输入功率分流为两路,第一路经液力传动器3,流入各个变速单元2的联接元件123、联接元件223;第二路流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,首个变速单元2的输入元件121、首个变速单元2的联接元件123通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
实施例二:
如图2中所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、输入齿轮副6、输出齿轮副7、汇矩单元12,所述单向元件4的输入端41与固定元件联接,所述的汇矩单元12包括汇矩输入元件125、汇矩联接元件126、汇矩输出元件127、汇矩行星齿轮128,汇矩单元12中所有元件相互配合工作,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,首个变速单元2的输入元件21、汇矩单元12的汇矩输入元件125以及输出齿轮副7的输入齿轮71与输入轴1联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件22与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各 个变速单元2的联接元件23依次联接,并与输入齿轮副6的输出齿轮62联接,输入齿轮副6的输入齿轮61以及单向元件4的输出端42与液力传动器3的输出端32联接,液力传动器3的输入端31与输出齿轮副7的输出齿轮72联接。
输入轴1的输入功率分流为两路,第一路通过输出齿轮副7流入液力传动器3,再通过输入齿轮副6流入各个变速单元2的联接元件123、联接元件223;第二路流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,首个变速单元2的输入元件121、首个变速单元2的联接元件123通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
实施例三:
如图3中所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、第一选择器8、第二选择器9、汇矩单元12,所述第二选择器9包括输入端91、第一输出端92、第二输出端93,所述单向元件4的输入端41与固定元件联接,所述的汇矩单元12包括汇矩输入元件125、汇矩联接元件126、汇矩输出元件127、汇矩行星齿轮128,汇矩单元12中所有元件相互配合工作,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,首个变速单元2的输入元件21、汇矩单元12的汇矩输入元件125以及第二选择器9的第一输出端92与第一选择器8的输出端82联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件22与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各个变速单元2的联接元件23依次联接,并与第二选择器9的第二输出端93以及单向元件4的输出端42联接,第二选择器9的输入端91与液力传动器3的输出端32联接,液力传动器3的输入端31以及输入轴1与第一选择器8的输入端81联接。
输入轴1的输入功率将根据第一选择器8以及第二选择器9的接合或者分离的状况不 同,而具有多个不同的传动路线:
1.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93分离,输入轴1的输入功率则通过第一选择器8把功率传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有机械功率流;
2.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率则通过第一选择器8把功率传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有机械功率流;
3.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率则通过第一选择器8把功率分流为两路,第一路流入传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路流入液力传动器3,再通过第二选择器9的第二输出端93流入各个变速单元2的联接元件123、联接元件223;
4.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93接合,此时,传动比为1,即为直接挡;
5.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93接合,输入轴1的输入功率则通过第一选择器8、液力传动器3把功率传递到第二选择器9,第二选择器9把功率分流为两路,第一路通过第一输出端92流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过第二输出端93流入各个变速单元2的联接元件123、联接元件223,此时,只有液力功率流;
6.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率则通过第一选择器8、液力传动器3把功率传递到第二选择器9,再通过第一输出端92流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有液力功率流;
7.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93接合,此时,为空挡;
8.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93分离,此时,为空挡。
当只有功率传递到首个变速单元2的输入元件121时,由于单向元件4的输入端41与固定元件联接,起限制转向的作用,使各个变速单元2的联接元件123、联接元件223的转向不能与输入的转向相反,转速为零。
当输入轴1的输入功率传递到首个变速单元2的输入元件121和各个变速单元2的联接元件123、联接元件223,此两路功率流中的一路或者两路时;首个变速单元2的输入元件121、首个变速单元2的联接元件123通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
实施例四:
如图4中所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、输入齿轮副6、输出齿轮副7、第一选择器8、第二选择器9、联接齿轮副10、汇矩单元12,所述单向元件4的输入端41与固定元件联接,所述的汇矩单元12包括汇矩输入元件125、汇矩联接元件126、汇矩输出元件127、汇矩行星齿轮128,汇矩单元12中所有元件相互配合工作,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,输出齿轮副7的输入齿轮71以及第一选择器8的输入端81与输入轴1联接,第一选择器8的输出端82与联接齿轮副10的输出齿轮102、汇矩单元12的汇矩输入元件125以及首个变速单元2的输入元件21联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件22与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各个变速单元2的联接元件23依次联接,并与输入齿轮副6的输出齿轮62联接,输入齿轮副6的输入齿轮61与单向元件4的输出端42以及第二选择器9的输出端92联接,第二选择器9的输出端93与联接齿轮副10的输入齿轮101联接,第二选择器9的输入端91与液力传动器3的输出端32联接,液力传动器3的输入端31与输出齿轮副7的输出齿轮72联接。
本实施例与实施例三的不同在于液力传动器3、第一选择器8以及第二选择器9的位置不同,所以选择间接连接的方法,本实施例选择输入齿轮副6、输出齿轮副7以及联接齿轮副10连接,其工作原理相同。
输入轴1的输入功率将根据第一选择器8以及第二选择器9的接合或者分离的状况不同而具有多个不同的传动路线:
1.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93分离,输入轴1的输入功率则通过第一选择器8把功率传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有机械功率流;
2.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率分流为两路,第一路通过第一选择器8流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第一输出端92以及输入齿轮副6,流入各个变速单元2的联接元件123、联接元件223;
3.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率分流为两路,第一路通过第一选择器8流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125;
4.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93接合,输入轴1的输入功率分流为两路,第一路通过第一选择器8流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路经输出齿轮副7以及液力传动器3,再通过第二选择器9分流为两路,一路通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,另一路通过第二选择器9的第一输出端92以及输入齿轮副6流入各个变速单元2的联接元件123、联接元件223;
5.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93接合,输入轴1的输入功率通过输出齿轮副7流入液力传动器3,再通过第二选择器9分流为两路,一路通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,另一路通过第二选择器9的第一输出端92以及输入齿轮副6,流入各个变速单元2的联接元件123、联接元件223;
6.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93分离,此时,为空挡;
7.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第二输出端93以及 联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125;
8.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93分离,此时,为空挡。
当只有功率传递到首个变速单元2的输入元件121时,由于单向元件4的输入端41与固定元件联接,起限制转向的作用,使各个变速单元2的联接元件123、联接元件223的转向不能与输入的转向相反,转速为零;当输入轴1的输入功率传递到首个变速单元2的输入元件121和各个变速单元2的联接元件123、联接元件223,此两路功率流中的一路或者两路时;首个变速单元2的输入元件121、首个变速单元2的联接元件123则通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
实施例五:
如图5中所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、输入齿轮副6、输出齿轮副7,所述单向元件4的输入端41与固定元件联接,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125以及输出齿轮副7的输入齿轮71与输入轴1联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件222与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各个变速单元2的联接元件23为同一元件,即共用联接元件321,并与输入齿轮副6的输出齿轮62联接,输入齿轮副6的输入齿轮61以及单向元件4的输出端42与液力传动器3的输出端32联接,液力传动器3的输入端31与输出齿轮副7的输出齿轮72联接。
输入轴1的输入功率分流为两路,第一路通过输出齿轮副7流入液力传动器3,再通过 输入齿轮副6流入共用联接元件321;第二路流入首个变速单元2的输入元件121,首个变速单元2的输入元件121、共用联接元件321通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、共用联接元件321通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
本实施例与实施例二的不同在于各个变速单元2的联接元件23为同一元件,即共用联接元件321,本实施例与实施例二的工作原理相同。
实施例六
如图6所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、第一选择器8、第二选择器9、第二单向元件11、汇矩单元12,所述第二选择器9包括输入端91、第一输出端92、第二输出端93,所述单向元件4的输入端41以及第二单向元件11的输入端111与固定元件联接,所述的汇矩单元12包括汇矩输入元件125、汇矩联接元件126、汇矩输出元件127、汇矩行星齿轮128,汇矩单元12中所有元件相互配合工作,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,首个变速单元2的输入元件21、第二单向元件11的输出端112、汇矩单元12的汇矩输入元件125以及第二选择器9的第一输出端92与第一选择器8的输出端82联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件22与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各个变速单元2的联接元件23依次联接,并与第二选择器9的第二输出端93以及单向元件4的输出端42联接,第二选择器9的输入端91与液力传动器3的输出端32联接,液力传动器3的输入端31以及输入轴1与第一选择器8的输入端81联接。
输入轴1的输入功率将根据第一选择器8以及第二选择器9的接合或者分离的状况不同,而具有多个不同的传动路线:
1.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93分离,输入轴1 的输入功率则通过第一选择器8把功率传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有机械功率流;
2.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率则通过第一选择器8把功率传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有机械功率流;
3.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率则通过第一选择器8把功率分流为两路,第一路流入传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路流入液力传动器3,再通过第二选择器9的第二输出端93流入各个变速单元2的联接元件123、联接元件223;
4.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93接合,此时,传动比为1,即为直接挡;
5.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93接合,输入轴1的输入功率则通过第一选择器8、液力传动器3把功率传递到第二选择器9,第二选择器9把功率分流为两路,第一路通过第一输出端92流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过第二输出端93流入各个变速单元2的联接元件123、联接元件223,此时,只有液力功率流;
6.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率则通过第一选择器8、液力传动器3把功率传递到第二选择器9,再通过第一输出端92流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有液力功率流;
7.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率则通过第一选择器8、液力传动器3把功率传递到第二选择器9,再通过第二输出端93流入各个变速单元2的联接元件123、联接元件223,此时,只有液力功率流;
8.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93分离,此时,为空挡。
当只有功率传递到首个变速单元2的输入元件121或者各个变速单元2的联接元件123、联接元件223时,由于单向元件4的输入端41以及第二单向元件11的输入端111与固定元件联接,起限制转向的作用,使首个变速单元2的输入元件121或者各个变速单元2的联接元件123、联接元件223的转向不能与输入的转向相反,转速为零。
当输入轴1的输入功率传递到首个变速单元2的输入元件121和各个变速单元2的联接元件123、联接元件223,此两路功率流中的一路或者两路时;首个变速单元2的输入元件121、首个变速单元2的联接元件123则通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
实施例七
如图7所示,一种无级变速器,包括输入轴1、液力传动器3、单向元件4、输出轴5、输入齿轮副6、输出齿轮副7、第一选择器8、第二选择器9、联接齿轮副10、第二单向元件11、汇矩单元12,所述单向元件4的输入端41以及第二单向元件11的输入端111与固定元件联接,所述的汇矩单元12包括汇矩输入元件125、汇矩联接元件126、汇矩输出元件127、汇矩行星齿轮128,汇矩单元12中所有元件相互配合工作,所述的输入轴1与输出轴5之间设有若干依次联接的变速单元2,所述的变速单元2包括输入元件21、输出元件22、联接元件23、行星齿轮24,各个变速单元2中所有元件相互配合工作,输出齿轮副7的输入齿轮71以及第一选择器8的输入端81与输入轴1联接,第一选择器8的输出端82与联接齿轮副10的输出齿轮102、第二单向元件11的输出端112、汇矩单元12的汇矩输入元件125以及首个变速单元2的输入元件21联接,其余变速单元2的输入元件21与各自上一个变速单元2的输出元件22联接,最后一个变速单元2的输出元件22与汇矩单元12的汇矩联接元件126联接,汇矩单元12的汇矩输出元件127与输出轴5联接,各个变速单元2的联接元件23依次联接,并与输入齿轮副6的输出齿轮62联接,输入齿轮副6的输入齿轮61与单向元件4的输出端42以及第二选择器9的输出端92联接,第二选择器9的输出端93与联接齿轮副10的输入齿轮101联接,第二选择器9的输入端91与液力传动器3的输出端32联接,液力传动器3的输入端31与输出齿轮副7的输出齿轮72联接。
输入轴1的输入功率将根据第一选择器8以及第二选择器9的接合或者分离的状况不同而具有多个不同的传动路线:
1.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93分离,输入轴1的输入功率则通过第一选择器8把功率传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,此时,只有机械功率流;
2.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率分流为两路,第一路通过第一选择器8流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第一输出端92以及输入齿轮副6流入各个变速单元2的联接元件123、联接元件223;
3.当第一选择器8接合,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率分流为两路,第一路通过第一选择器8流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125;
4.当第一选择器8接合,第二选择器9的第一输出端92接合、第二输出端93接合,输入轴1的输入功率分流为两路,第一路通过第一选择器8流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,第二路通过输出齿轮副7流入液力传动器3,再通过第二选择器9分流为两路,一路通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,另一路通过第二选择器9的第一输出端92以及输入齿轮副6流入各个变速单元2的联接元件123、联接元件223;
5.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93接合,输入轴1的输入功率通过输出齿轮副7流入液力传动器3,再通过第二选择器9分流为两路,一路通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125,另一路通过第二选择器9的第一输出端92以及输入齿轮副6流入各个变速单元2的联接元件123、联接元件223;
6.当第一选择器8分离,第二选择器9的第一输出端92接合、第二输出端93分离,输入轴1的输入功率通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第一输出端92以及输入齿轮副6流入各个变速单元2的联接元件123、联接元件223;
7.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93接合,输入轴1的输入功率通过输出齿轮副7流入液力传动器3,再通过第二选择器9的第二输出端93以及联接齿轮副10流入首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125;
8.当第一选择器8分离,第二选择器9的第一输出端92分离、第二输出端93分离,此时,为空挡。
当只有功率传递到首个变速单元2的输入元件121或者各个变速单元2的联接元件123、联接元件223时,由于单向元件4的输入端41以及第二单向元件11的输入端111与固定元件联接,起限制转向的作用,使首个变速单元2的输入元件121或者各个变速单元2的联接元件123、联接元件223的转向不能与输入的转向相反,转速为零。
当输入轴1的输入功率传递到首个变速单元2的输入元件121和各个变速单元2的联接元件123、联接元件223,此两路功率流中的一路或者两路时;首个变速单元2的输入元件121、首个变速单元2的联接元件123则通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于第汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5,从而实现把发动机的功率通过输出轴5对外输出。
对于本发明,当输入轴1的转速不变,各个变速单元2的输出元件22以及输出轴5上的扭矩随其转速的变化而变化,转速越低,传递到各个变速单元2的输出元件22以及输出轴5上的扭矩就越大,反之,则越小,在此过程中,液力传动器3也起变矩的作用,从而实现本发明能随车辆行驶阻力的不同而改变力矩以及速度的无级变速器。
本发明使用时,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,输出轴5的转速为零,发动机的输入功率经输入轴1以及其他元件,只是传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125时,由于单向元件4的输入端41与固定元件联接,起限制转向的作用,使各个变速单元2的联接元件123、联接元件223或者以及共用联接元件321的转向不能与输入的转向相反,转速为零,此时,传递到首个变速单元2的输入元件121的功率,则通过首个变速单元2的行星齿轮124传递到首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221再通过第二个变速单元2的行星齿轮224把功率传递到第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇 矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126再通过汇矩单元12的行星齿轮128把功率传递到汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5;或者只是传递到各个变速单元2的联接元件123、联接元件223或者以及共用联接元件321时,由于第二单向元件11的输入端101与固定元件联接,起限制转向的作用,使首个变速单元2的输入元件21的转向不能与输入的转向相反,转速为零,此时,传递到首个变速单元2的联接元件123的功率,则通过首个变速单元2的行星齿轮124传递到首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到汇矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5;或者同时传递到首个变速单元2的输入元件121、汇矩单元12的汇矩输入元件125和各个变速单元2的联接元件123、联接元件223或者以及共用联接元件321时,首个变速单元2的输入元件121、首个变速单元2的联接元件123则通过首个变速单元2的行星齿轮124把传递到此的功率汇流于首个变速单元2的输出元件122,首个变速单元2的输出元件122再传递到第二个变速单元2的输入元件221,第二个变速单元2的输入元件221、第二个变速单元2的联接元件223通过第二个变速单元2的行星齿轮224把传递到此的功率汇流于第二个变速单元2的输出元件222,第二个变速单元2的输出元件222再传递到矩单元12的汇矩联接元件126,汇矩单元12的汇矩联接元件126、汇矩单元12的汇矩输入元件125通过汇矩单元12的行星齿轮128把传递到此的功率汇流于汇矩单元12的汇矩输出元件127,汇矩单元12的汇矩输出元件127再传递到输出轴5;从而实现把发动机的功率通过输出轴5对外输出,当传递到输出轴5上的扭矩,经传动系统传动到驱动轮上产生的牵引力足以克服汽车起步阻力时,汽车则起步并开始加速,液力传动器3的输出端32的转速也逐渐增加,与之相联的各个变速单元2的联接元件23或者共用联接元件321的转速也随之逐渐增加,从而使各个变速单元2的输出元件22以及输出轴5的扭矩随着转速的增加而减少。

Claims (10)

  1. 一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、汇矩单元(12),所述单向元件(4)的输入端(41)与固定元件联接,单向元件(4)的输出端(42)与液力传动器(3)的输出端(32)联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,其特征在于:所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、汇矩单元(12)的汇矩输入元件(125)以及液力传动器(3)的输入端(31)与输入轴(1)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与液力传动器(3)的输出端(32)联接。
  2. 一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、输入齿轮副(6)、输出齿轮副(7)、汇矩单元(12),所述单向元件(4)的输入端(41)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,其特征在于:所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、汇矩单元(12)的汇矩输入元件(125)以及输出齿轮副(7)的输入齿轮(71)与输入轴(1)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与输入齿轮副(6)的输出齿轮(62)联接,输入齿轮副(6)的输入齿轮(61)以及单向元件(4)的输出端(42)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)与输出齿轮副(7)的输出齿轮(72)联接。
  3. 一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、第一选择器(8)、第二选择器(9)、汇矩单元(12),所述第二选择器(9)包括输入端(91)、第 一输出端(92)、第二输出端(93),所述单向元件(4)的输入端(41)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,其特征在于:所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、汇矩单元(12)的汇矩输入元件(125)以及第二选择器(9)的第一输出端(92)与第一选择器(8)的输出端(82)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与第二选择器(9)的第二输出端(93)以及单向元件(4)的输出端(42)联接,第二选择器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)以及输入轴(1)与第一选择器(8)的输入端(81)联接。
  4. 一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、输入齿轮副(6)、输出齿轮副(7)、第一选择器(8)、第二选择器(9)、联接齿轮副(10)、汇矩单元(12),所述单向元件(4)的输入端(41)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,其特征在于:所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,输出齿轮副(7)的输入齿轮(71)以及第一选择器(8)的输入端(81)与输入轴(1)联接,第一选择器(8)的输出端(82)与联接齿轮副(10)的输出齿轮(102)、汇矩单元(12)的汇矩输入元件(125)以及首个变速单元(2)的输入元件(21)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与输入齿轮副(6)的输出齿轮(62)联接,输入齿轮副(6)的输入齿轮(61)与单向元件(4)的输出端(42)以及第二选择器(9)的输出端(92)联接,第二选择器(9)的输出端(93)与联接齿轮副(10)的输入齿轮(101)联接,第二选择器(9)的输入端(91)与液力传动器(3) 的输出端(32)联接,液力传动器(3)的输入端(31)与输出齿轮副(7)的输出齿轮(72)联接。
  5. 一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、第一选择器(8)、第二选择器(9)、第二单向元件(11)、汇矩单元(12),所述第二选择器(9)包括输入端(91)、第一输出端(92)、第二输出端(93),所述单向元件(4)的输入端(41)以及第二单向元件(11)的输入端(111)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,其特征在于:所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,首个变速单元(2)的输入元件(21)、第二单向元件(11)的输出端(112)、汇矩单元(12)的汇矩输入元件(125)以及第二选择器(9)的第一输出端(92)与第一选择器(8)的输出端(82)联接,其余变速单元(2)的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与第二选择器(9)的第二输出端(93)以及单向元件(4)的输出端(42)联接,第二选择器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)以及输入轴(1)与第一选择器(8)的输入端(81)联接。
  6. 一种无级变速器,包括输入轴(1)、液力传动器(3)、单向元件(4)、输出轴(5)、输入齿轮副(6)、输出齿轮副(7)、第一选择器(8)、第二选择器(9)、联接齿轮副(10)、第二单向元件(11)、汇矩单元(12),所述单向元件(4)的输入端(41)以及第二单向元件(11)的输入端(111)与固定元件联接,所述的汇矩单元(12)包括汇矩输入元件(125)、汇矩联接元件(126)、汇矩输出元件(127)、汇矩行星齿轮(128),各个汇矩单元(12)中所有元件相互配合工作,其特征在于:所述的输入轴(1)与输出轴(5)之间设有若干依次联接的变速单元(2),所述的变速单元(2)包括输入元件(21)、输出元件(22)、联接元件(23)、行星齿轮(24),各个变速单元(2)中所有元件相互配合工作,输出齿轮副(7)的输入齿轮(71)以及第一选择器(8)的输入端(81)与输入轴(1)联接,第一选择器(8)的输出端(82)与联接齿轮副(10)的输出齿轮(102)、第二单向元件(11)的输出端(112)、汇矩单元(12)的汇矩输入元件(125)以及首个变速单元(2)的输入元件(21)联接,其余变速单元(2) 的输入元件(21)与各自上一个变速单元(2)的输出元件(22)联接,最后一个变速单元(2)的输出元件(22)与汇矩单元(12)的汇矩联接元件(126)联接,汇矩单元(12)的汇矩输出元件(127)与输出轴(5)联接,各个变速单元(2)的联接元件(23)依次联接,并与输入齿轮副(6)的输出齿轮(62)联接,输入齿轮副(6)的输入齿轮(61)与单向元件(4)的输出端(42)以及第二选择器(9)的输出端(92)联接,第二选择器(9)的输出端(93)与联接齿轮副(10)的输入齿轮(101)联接,第二选择器(9)的输入端(91)与液力传动器(3)的输出端(32)联接,液力传动器(3)的输入端(31)与输出齿轮副(7)的输出齿轮(72)联接。
  7. 根据权利要求1至6任一项所述的无级变速器,其特征在于:所述变速单元(2)可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或者谐波齿轮传动机构,其输入元件(21)、输出元件(22)和联接元件(23)可以从构成行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或者谐波齿轮传动机构的基本元件中选用。
  8. 根据权利要求1至6任一项所述的无级变速器,其特征在于:所述汇矩单元(12)可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或者谐波齿轮传动机构,其汇矩输入元件(125)、汇矩联接元件(126)和汇矩输出元件(127)可以从构成行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或者谐波齿轮传动机构的基本元件中选用。
  9. 根据权利要求1至6任一项所述的无级变速器,其特征在于:所述若干变速单元(2)的联接元件(23)可为同一元件,即共用联接元件(321)。
  10. 根据权利要求1至6任一项所述的无级变速器,其特征在于:所述各个需要联接的元件,可以选择直接连接的方法或者选择间接连接的方法;所述直接连接的方法,指的是:当需要联接的两个或者以上元件在同一中心轴线上时,可以选择直接连接,当被其它若干元件分隔时,可采用联接轴、中空或者联接架的方法,穿过或者跨过其它若干元件,与之连接,也可以选择合适的传动机构,使它们连接在一起;所述间接连接的方法,指的是:当需要联接的两个或者以上元件不是在同一中心轴线上时,可以选择合适的传动机构,使它们连接在一起;所述联接的元件是齿轮或者齿圈时,则相互啮合或者联接。
PCT/CN2015/070837 2015-01-16 2015-01-16 一种无级变速器 WO2016112524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580068334.5A CN107208753B (zh) 2015-01-16 2015-01-16 一种无级变速器
PCT/CN2015/070837 WO2016112524A1 (zh) 2015-01-16 2015-01-16 一种无级变速器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070837 WO2016112524A1 (zh) 2015-01-16 2015-01-16 一种无级变速器

Publications (1)

Publication Number Publication Date
WO2016112524A1 true WO2016112524A1 (zh) 2016-07-21

Family

ID=56405124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070837 WO2016112524A1 (zh) 2015-01-16 2015-01-16 一种无级变速器

Country Status (2)

Country Link
CN (1) CN107208753B (zh)
WO (1) WO2016112524A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074296A (en) * 1957-08-29 1963-01-22 Ebert Heinrich Infinitely adjustable fluid transmission
EP0234136B1 (en) * 1986-02-24 1989-12-27 Shimadzu Corporation Hydromechanical transmission
US20040242357A1 (en) * 2003-05-27 2004-12-02 Komatsu Ltd. Hydromechanical transmission
CN102312967A (zh) * 2010-07-07 2012-01-11 吴志强 一种无级变速器
CN102927231A (zh) * 2012-11-08 2013-02-13 华南农业大学 一种无极变速方法及无极变速器
CN103953705A (zh) * 2014-05-07 2014-07-30 吴志强 一种无级变速器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773142A (zh) * 2005-04-01 2006-05-17 杨国辉 速度反馈无级变速器
CN102661371B (zh) * 2005-11-11 2014-10-22 吴志强 一种复合型无级变速器
CN101235877B (zh) * 2007-02-02 2012-12-19 吴志强 一种无级变速器
CN101070901A (zh) * 2007-04-23 2007-11-14 龙宏元 行星齿轮多路传动无级变速器
CN101598201B (zh) * 2008-06-06 2013-07-24 吴志强 一种复合型多盘式无级变速器
CN202188076U (zh) * 2011-08-05 2012-04-11 南京工程学院 一种行星齿轮无级变速器
CN103075475A (zh) * 2013-01-19 2013-05-01 龙宏元 行星系列受控传动路径转速无级控制式无级变速器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074296A (en) * 1957-08-29 1963-01-22 Ebert Heinrich Infinitely adjustable fluid transmission
EP0234136B1 (en) * 1986-02-24 1989-12-27 Shimadzu Corporation Hydromechanical transmission
US20040242357A1 (en) * 2003-05-27 2004-12-02 Komatsu Ltd. Hydromechanical transmission
CN102312967A (zh) * 2010-07-07 2012-01-11 吴志强 一种无级变速器
CN102927231A (zh) * 2012-11-08 2013-02-13 华南农业大学 一种无极变速方法及无极变速器
CN103953705A (zh) * 2014-05-07 2014-07-30 吴志强 一种无级变速器

Also Published As

Publication number Publication date
CN107208753B (zh) 2021-01-15
CN107208753A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
CN1793702B (zh) 一种无级变速器
CN105626812A (zh) 一种复合型综合式液力变矩器
CN105626813A (zh) 一种复合型双导轮式液力变矩器的无级变速器
CN105422787B (zh) 一种复合型叶轮式液力变矩器
CN102022491B (zh) 一种无级变速器
CN106246859A (zh) 一种复合液力变矩器的无级变速器
CN103939558B (zh) 一种复合型向心涡轮式液力变矩器以及无级变速器
CN103939565B (zh) 一种复合型溢流阀外置式液力变矩器以及无级变速器
WO2016112524A1 (zh) 一种无级变速器
WO2017004782A1 (zh) 一种复合型液力传动器
WO2016112525A1 (zh) 一种复合型液力传动器
CN104595437A (zh) 一种复合型无级变速器
WO2016112806A1 (zh) 一种复合型溢流阀外置式液力变矩器以及无级变速器
WO2017004781A1 (zh) 一种无级变速器
WO2016112805A1 (zh) 一种复合型双涡轮液力变矩器以及无级变速器
WO2015168884A1 (zh) 一种无级变速器
WO2016112807A1 (zh) 一种复合型向心涡轮式液力变矩器以及无级变速器
WO2016112801A1 (zh) 一种复合型多元件工作轮液力变矩器以及无级变速器
WO2016112811A1 (zh) 一种复合型双导轮式液力变矩器以及无级变速器
CN102661371B (zh) 一种复合型无级变速器
CN105003616A (zh) 一种复合型液力传动器
WO2015168885A1 (zh) 一种复合型液力传动器
CN105422784A (zh) 一种复合型多元件工作轮液力变矩器的无级变速器
CN103953707A (zh) 一种复合型可调液力变矩器以及无级变速器
CN104295680A (zh) 一种紧凑型行星传动变速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15877443

Country of ref document: EP

Kind code of ref document: A1