WO2016111538A2 - 성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법 - Google Patents

성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법 Download PDF

Info

Publication number
WO2016111538A2
WO2016111538A2 PCT/KR2016/000088 KR2016000088W WO2016111538A2 WO 2016111538 A2 WO2016111538 A2 WO 2016111538A2 KR 2016000088 W KR2016000088 W KR 2016000088W WO 2016111538 A2 WO2016111538 A2 WO 2016111538A2
Authority
WO
WIPO (PCT)
Prior art keywords
sex hormone
antibody
sers
detection
magnetic particles
Prior art date
Application number
PCT/KR2016/000088
Other languages
English (en)
French (fr)
Other versions
WO2016111538A3 (ko
Inventor
주재범
전향아
왕루이
이상엽
윤영호
홍성현
Original Assignee
한양대학교 에리카산학협력단
의료법인 이원의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160000759A external-priority patent/KR101860543B1/ko
Application filed by 한양대학교 에리카산학협력단, 의료법인 이원의료재단 filed Critical 한양대학교 에리카산학협력단
Priority to US15/542,432 priority Critical patent/US20180024147A1/en
Publication of WO2016111538A2 publication Critical patent/WO2016111538A2/ko
Publication of WO2016111538A3 publication Critical patent/WO2016111538A3/ko
Priority to US17/523,896 priority patent/US20220178952A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/54333Modification of conditions of immunological binding reaction, e.g. use of more than one type of particle, use of chemical agents to improve binding, choice of incubation time or application of magnetic field during binding reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/743Steroid hormones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2470/00Immunochemical assays or immunoassays characterised by the reaction format or reaction type
    • G01N2470/10Competitive assay format
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/048Pituitary or hypothalamic - pituitary relationships, e.g. vasopressin or ADH related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/38Pediatrics

Definitions

  • the present invention provides a reagent for detecting sex hormones based on Surface-Enhanced Raman Sacattering (hereinafter referred to as 'SERS'); A method of detecting sex hormones using this reagent; And it relates to a method for diagnosing precocious puberty using the above method.
  • 'SERS' Surface-Enhanced Raman Sacattering
  • precocious puberty refers to cases in which puberty occurs in girls younger than 8 years old and younger than 9 years old. In girls only Breast development before age 8, and in boys, testicles before age 9 are said to be precocious puberty.
  • precocious puberty has emerged as a social issue.
  • the prevalence of precocious puberty is known to be largely due to the increasing effects of environmental hormones and obesity in children.
  • precocious puberty occurs when mental maturation cannot keep up with physical development, young children may be stressed, and the growth plate may close prematurely, causing serious problems that can stop height growth. Therefore, there is a need for diagnosis and / or treatment of precocious puberty.
  • Testosterone is present in adult males at 4.04 to 7.21 ng / mL, adult females at 0.37 to 0.81 ng / mL, young boys below 2.54 ng / mL, and young girls below 0.20 ng / mL. Plasma testosterone levels vary more than 1,000-fold depending on age, sex and disease.
  • estradiol or testosterone assays include, i) immunoassay by chemiluminescence, ii) radioactivity based immunoassay, and iii) high performance liquid chromatography mass spectrometry (LC / MS / MS).
  • i) Immunoassay by chemiluminescence (ELISA Kit) is a test method using color change, and has the advantage of using high sensitivity and simple operation method. However, if the limit of detection (LOD) is 30-100 pg / mL and the concentration of estradiol (or testosterone) in the sample is low, it is impossible to measure and a lot of diagnostic errors.
  • LOD limit of detection
  • Estradiol radioimmunoassay kit is a method of measuring the amount of estradiol (or testosterone) detected by radioactivity.
  • the detection limit is 10 pg / mL and has a high sensitivity.
  • the concentration of estradiol (or testosterone) in the sample is low, the accuracy is very poor and there is a disadvantage that the sample may be contaminated by radiation exposure.
  • the high performance liquid chromatography mass spectrometry has the advantage that the measurement method is accurate. However, due to the complex examination method, the long detection time, and the high cost of the test, it is not suitable for use as a diagnostic method in the department of diagnostic laboratory medicine.
  • Non Patent Literature 1 (William Rosner, et al., 2013. J Clin Endocrinol Metab , 98 (4) 1376-1387, describes in FIG. 1 that the concentration of estradiol below 10 pg / mL is currently difficult to detect.
  • the estradiol concentration in order to monitor female breast cancer patients treated with hormone inhibitors (aromatase inhibiotors), is usually 10-15 pg / mL before treatment, and is maintained at 1 pg / mL or lower after treatment. It is important to note that accurate determination of estradiol at low concentrations is important (see right column on page 1379).
  • a new sex hormone detection method that can reduce the sex hormone diagnosis time, significantly increase the sensitivity and accuracy, and can be applied to the diagnostic reagent-based automated immunoassay, which is performed in the diagnostic test medicine, and the standard of sex hormone using the same Development of measurement technology for gold standard method is urgently needed.
  • Non-Patent Document 3 Kneipp, J. et al., 1997. Phys. Rev. Lett . 78, pp. 1667-1670
  • Non-Patent Document 4 4. Nie, SM and Emory, SR, 1997. Science 275, pp. 1102-1106
  • An object of the present invention is to provide a reagent kit for detecting sex hormones.
  • Another object of the present invention is to provide a method for detecting sex hormone based on Surface-Enhanced Raman Scattering (SERS).
  • SERS Surface-Enhanced Raman Scattering
  • the present invention includes a first reagent comprising a metal nanoprobe to which sex hormones and Raman reporters are immobilized;
  • It provides a reagent kit for detecting sex hormone comprising a.
  • the term “magnetic particles” used in the present invention is also used as the term “magnetic beads”.
  • the magnetic particles may be composed of a magnetic material.
  • the magnetic material any one can be used as long as it is widely used in the art.
  • one of Fe 2 O 3 , Fe 3 O 4 or FePt may be used, but is not limited thereto.
  • the Raman reporter is fixed to the surface of the metal nanoprobe. Since the Raman reporter shows a specific Raman spectrum, the target material to be detected in the SERS analysis can be analyzed more effectively. Any such Raman reporter molecule may be used as long as it is known in the art.
  • MMITC malachite green isothiocyanate
  • the Raman reporter molecule may be adsorbed onto the surface of the nanoprobe and immobilized by mixing the above-described metal nanoprobe.
  • the sex hormone detection antibody includes a first antibody and a second antibody, wherein the second antibody is immobilized on the magnetic particle, and the first antibody binds to the second antibody and reacts with the sex hormone. have.
  • the first and second antibodies may be used without limitation as long as they are used in the art.
  • the second antibody is an anti-mouse antibody immobilized on the magnetic particles;
  • the first antibody may be an anti-sex hormone antibody that binds to the second antibody and specifically immune to the sex hormone.
  • the conventional immunoassay mainly used the "sandwich immunocomplex".
  • the "sandwich immunocomplex” means an immunocomplex bound through an antibody-antigen-antibody reaction. It is named because the antigen is inserted in the middle of the antibody to form a sandwich.
  • the detectable concentration of the sex hormone may be 0.1 to 1,000 pg / mL. Specifically, the detectable concentration of the sex hormone is preferably 0.1 to 10 pg / mL.
  • the limit of detection of the sex hormone may be 0.1 pg / mL.
  • the sex hormone detection time may be 2 hours or less. Specifically, it may be 1 to 2 hours.
  • the estrogen may be selected from one or more selected from the group consisting of estradiol, estrone, and estriol, but is not necessarily limited thereto.
  • the estradiol may be 17 ⁇ -estradiol (E2).
  • Estradiol is a sex hormone found mainly in women and is the most representative of the estrogens. Estradiol is known to affect the genital changes of the uterus, vagina, fallopian tubes, testicles, breast development, and induce fat dispersion and affect growth disorders. Estradiol levels in women ahead of childbirth are above 60 pg / mL and women receiving ovulation inducers have significant levels of estradiol (250-2000 pg / mL). Estradiol in men, children before puberty, and postmenopausal women is less than 20 pg / mL. In addition, estradiol levels in women with breast cancer administered sex hormone inhibitors are below 1 pg / mL.
  • the present invention solves this problem and provides reagents that can detect sex hormones below 10 pg / mL with high sensitivity.
  • the present invention also provides a detection reagent for which the detection time of sex hormone is 2 hours or less.
  • Detecting the sex hormone by measuring a Surface-Enhanced Raman Scattering (SERS) signal after the laser light irradiation.
  • SERS Surface-Enhanced Raman Scattering
  • the competitive immune response may include an immune response between a sex hormone (antigen) included in the sample solution and a magnetic particle to which an antibody specifically binding to the sex hormone is immobilized (forming the first immune complex of FIG. 2);
  • the immune response (forming the second immune complex of FIG. 2) between the metal nanoprobe bound to the same antigen as the sex hormone contained in the sample solution and the magnetic particles to which the antibody specifically bound to the sex hormone is immobilized is competitive. It may be an immune response that occurs.
  • the sample solution is selected from the group consisting of tissue extract, cell lysate, whole blood, plasma, serum, saliva, ophthalmic fluid, cerebrospinal fluid, sweat, urine, milk, ascites fluid, synovial fluid, peritoneal fluid, and dried blood spot
  • tissue extract cell lysate
  • whole blood plasma, serum, saliva, ophthalmic fluid, cerebrospinal fluid, sweat, urine, milk, ascites fluid, synovial fluid, peritoneal fluid, and dried blood spot
  • a sample solution may be prepared and used by a method well known in the art. Specifically, an extract obtained by extracting blood from blood spots may be used.
  • the second antibody is an anti-mouse antibody immobilized on the magnetic particle;
  • the first antibody may be an anti-sex hormone antibody that binds to the second antibody and specifically immune to the sex hormone.
  • Figure 2 schematically shows a sex hormone detection method according to the present invention.
  • Preparing a sample solution containing sex hormones Preparing a metal nanoprobe to which the sex hormone and Raman reporter are combined; Then, the magnetic particles to which the first and second antibodies for detecting sex hormone are immobilized are prepared.
  • the metal nanoprobe combined with the sample solution and the Raman reporter is simultaneously added to the magnetic particles to which the first antibody and the second antibody are immobilized. With respect to the first antibody immobilized on the magnetic particles, a competitive immune response is induced between the sex hormone in the sample solution and the metal nanoprobe to which the Raman reporter (and sex hormone) is bound to form an immunocomplex.
  • the magnetic particles on which the immunocomplex is formed are separated using magnetism;
  • the surface-enhanced Raman Scattering (SERS) signal is measured by irradiating the separated magnetic particles with laser light.
  • FIG. 4 is a transmission electron microscopy (TEM) image of an immunocomplex formed through the competitive immune response (referred to as an organic substance, sex hormone is not observed by TEM).
  • 4 is a concentration of estradiol, a sex hormone, in the sample solution. As can be seen from Figure 4, it can be seen that the higher the concentration of sex hormone in the sample solution, the amount of the metal nanoprobe binding to the magnetic particles is reduced.
  • the concentration of metal nanoprobe used in the competitive immune reaction of the present invention is optimized for testing.
  • the concentration of the metal nanoprobe used in one embodiment of the present invention is 0.12 nM, when inspecting a sample of 25 ⁇ L, 50 ⁇ L of metal nanoprobe was used. In other words, the amount of metal nanoprobe used in the competitive immune reaction is constant. If the concentration of sex hormones in the sample solution is high, the sex hormones in the sample solution are resistant to the sample solution when the immune response competes with the sex hormones of the metal nanoprobe with the magnetic particles (fixed) in between. The hormones will be more likely to combine with the magnetic particles to form an immune complex.
  • Sex hormones are detected in the extracted sample liquid through the above-described sex hormone detection method.
  • the present invention can be applied to the setting of a normal range of estradiol according to age and gender in children, tracking the onset of pubertal development, prognosis by diagnosing precocious puberty and determining drug effects after treatment of precocious puberty. have.
  • the prognosis of pharmacotherapeutic effects (estradiol should be measured below 1 pg / mL in breast cancer patients), risk factors for osteoporosis and fractures in men and gonadal tumors in breast cancer patients undergoing hormonal therapy
  • the present invention can be applied to diagnosis, to finding the cause of a boy having a feminized breast.
  • the present invention can also be applied to the diagnosis and prognosis of hormone therapy in postmenopausal women, determination of the effects of hypogonadism, determination of hormonal drug effects in patients with prostate cancer, and the like.
  • the present invention can detect sex hormones with high sensitivity, and thus may be used for the study of hormone-related diseases.
  • FIG. 1 schematically shows a first reagent and a second reagent of the present invention.
  • 5a to 5c are graphs showing a Raman signal measurement result through a method for detecting estradiol according to an embodiment of the present invention.
  • 6A to 6C are graphs showing results of measuring Raman signals through a testosterone detection method according to an embodiment of the present invention.
  • spherical gold nanoparticles were synthesized (Frens, 1973, Nature Physical Science 241, 20-22.). After boiling 50 mL of a 0.01% solution of HAuCl 4 , 0.5 mL of a 1% solution of trisodium citrate was added dropwise. The initial HAuCl 4 aqueous solution turned blue when the nanoparticles were formed, and gradually changed to red as the nanoparticles grew over time. Finally, after confirming the color of the nanoparticles to be synthesized, the reaction was terminated by further boiling for 15 minutes. After the reaction was completed, the temperature of the gold nanoparticles was lowered to room temperature, and subjected to aging for 4 hours or more.
  • the synthesized gold nano probe was confirmed to be uniformly and stably synthesized in a size of about 40-50 nm through an electron transmission microscope (TEM) and light scattering (dynamic light scattering) measurement. Then, malachite green isothiocyanate (MGITC), which is a Raman reporter, was coated on the gold nanoparticles to use as a SERS substrate.
  • TEM electron transmission microscope
  • MMITC malachite green isothiocyanate
  • Raman reporter was added dropwise to a final concentration of 50 nM to 1 mL of 0.12 nM 40-nm gold nanoparticles, and then 10 ⁇ M poly (ethylene glycol) 2-mercaptoethyl ether acetic acid ( 60 ⁇ L of HS-PEG-COOH, MW ⁇ 3500) and 120 ⁇ L of 10 ⁇ M poly (ethylene glycol) methyl ether thiol (HS-PEG, MW ⁇ 2000) were added dropwise and reacted for 3 hours.
  • 10 ⁇ M poly (ethylene glycol) 2-mercaptoethyl ether acetic acid 60 ⁇ L of HS-PEG-COOH, MW ⁇ 3500
  • 120 ⁇ L of 10 ⁇ M poly (ethylene glycol) methyl ether thiol (HS-PEG, MW ⁇ 2000) were added dropwise and reacted for 3 hours.
  • estradiol-ovalbumin conjugate E2-OVA
  • testosterone-bovine serum albumin conjugate BSA
  • 25 mM EDC N 5 ⁇ L of-(3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride
  • NHS N-Hydroxysuccinimide
  • the second antibody (anti-mouse antibody, anti-Mouse IgG (Fc specific) antibody produced in goat), EDC (N- (3-Dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride) and NHS (N-Hydroxysuccinimide) are Sigma-Aldrich In the micro-magnetic particles (Dynabeads MyOne TM ), PBS buffer (0.1 mM, pH 7.4), Invitrogen, the first antibody [(anti-estradiol antibody, anti-17 beta Estradiol antibody) or (anti-testosterone antibody, mouse anti-testosterone monoclonal antibody) was purchased from Abcam.
  • the anti-estradiol antibody (or anti-testosterone antibody), which is 0.55 g / mL of the first antibody, is added dropwise to 25 ⁇ L of the magnetic particle having the second antibody fixed therein, and reacted at room temperature for 90 minutes to detect sex hormones.
  • the preparation was completed.
  • the magnetic particles were separated by magnetic force to remove the unreacted residue on the surface of the micro magnetic particles, and the residue was prepared by dissolving the residue in PBS (10 mM, pH 7.4).
  • blood containing estradiol was prepared as a sample solution.
  • the total test time for addition was 90 minutes.
  • Figure 4 is a transmission electron microscopy (TEM) image of an immunocomplex formed through a competitive immune response according to the present invention (concentration value in the upper left of the image is the estradiol concentration in the sample solution). As can be seen from Figure 4, it can be seen that the higher the concentration of sex hormone in the sample solution, the amount of the metal nanoprobe binding to the magnetic particles is reduced.
  • TEM transmission electron microscopy
  • Raman analysis was performed on the separated magnetic particles.
  • Raman analysis was performed as follows. Renishaw Invia Raman spectrometers (Renishaw, UK) were used, and a Spectra Physics He-Ne 632.8 nm laser (Spectra Physics He-Ne 632.8 nm laser) was used as the light source. The Rayleigh line was removed using a haloographic notch filter located in the collection path. The spectra were corrected for peak position by measuring the silicon reference peak position at 520 cm ⁇ 1 before the measurement.
  • Raman spectra were collected in the 630-1730 cm -1 region with a 1 second acquisition time using a laser with an output wavelength of 633 nm and an output intensity of 20 mW. A 20 x objective was used to focus the laser spot. Baseline correction of all spectral data was adjusted with WiRE 4.0 (Renishaw, UK) software. The quantitative results of sex hormones were analyzed based on the 1613 cm -1 signal intensity, the strongest peak of the Raman reporter used.
  • blood containing testosterone was prepared as a sample solution. Then, 25 ⁇ L of the magnetic particles immobilized with the second antibody and the first antibody (anti-testosterone antibody) synthesized in Example 2 and 50 ⁇ L of the gold nanoprobe prepared in Example 1 were simultaneously added to 25 ⁇ L of the sample solution. The total test time was 90 minutes.
  • Enzyme immunoassay is a general medical diagnostic analysis method in which the blood injected with antigen is judged to be the action of an enzyme causing color change. In order to verify the sensitivity of the sex hormone analysis technique using the surface enhanced Raman spectroscopy according to the present invention, it was compared with the results analyzed using the estradiol detection kit (ELISA method) of Abnova.
  • This diagnostic method is a quantitative analysis of a competitive reaction between estradiol and luminescent inducers labeled estradiol.
  • This diagnostic method conjugated an antibody capable of immobilizing estradiol on an assay plate, placed an analytical sample, and allowed the antibody conjugated with a luminescent inducer to conjugate to an immobilized antigen. Diagnosis was confirmed by measuring the degree of color change by the device according to the content of the luminous inducing material. Substances provided for analysis are shown in Table 2 below.
  • Figure 7 compares the surface enhanced Raman scattering based sex hormone detection results (a) and ELISA analysis results (b). Comparing the two detection methods, the SERS based detection method according to the present invention has a detection range of 0.1 to 1,000 pg / mL and a detection limit of 0.1 pg / mL. In contrast, ELISA assays have a detection range of 5-1,000 pg / mL and a detection limit of 5 pg / mL.
  • the SERS based detection method according to the present invention has a detection range of 0.1 to 1,000 pg / mL and a detection limit of 0.1 pg / mL.
  • the SERS-based detection method according to the present invention can also analyze samples in a concentration range of 0.1-5 pg / mL that cannot be analyzed by ELISA.
  • the present invention satisfies this demand.
  • ELISA assays cannot detect low concentrations of sex hormones below 10 pg / mL.
  • the results shown in FIG. 6 show that the SERS-based detection method according to the present invention is an analysis method capable of detecting high sensitivity necessary for diagnosing precocious puberty.
  • ARCHITECT's estradiol detection method is an immunoassay method using a chemiluminescent material is a method capable of quantitative analysis from the chemiluminescence signal according to the amount of sex hormone present in the blood.
  • the detectable range of this method is 10-1000 pg / mL and the detection limit is 10 pg / mL, so no analysis results are provided for samples below 10 pg / mL.
  • Table 4 shows the test results of blood hormone levels in 30 patients who visited the hospital with an estradiol analyzer.
  • Table 4 analyzes the same blood sample using the SERS-based detection method according to the present invention and compares the results. Looking at the analysis results of Table 5, it can be seen that the SERS-based detection results show very significant results with the ARCHITECT's estradiol detection method for all 30 blood. In particular, it can be seen that accurate results can be analyzed even for samples less than 10 pg / mL that were not provided in the estradiol detection result of ARCHITECT. Through this, the clinical effectiveness of the SERS-based detection method according to the present invention has been sufficiently verified. In particular, it can be seen that the analysis performance of low-concentration sex hormone samples less than 10 pg / mL is also superior to the existing hematological analysis equipment. Therefore, it can be seen that the SERS-based detection method according to the present invention is a very suitable method for diagnosing precocious puberty by detecting high sensitivity sex hormone in blood.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Endocrinology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 성호르몬 및 라만 리포터가 고정화된 금속 나노프로브를 포함하는 제1 시약; 그리고 상기 성호르몬 검출용 항체가 고정화된 자성 입자를 포함하는 제2 시약;을 포함하여 이루어지는 성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출방법을 제공한다.

Description

성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법
본 발명은 표면-증강 라만 산란(Surface-Enhanced Raman Sacattering; 이하, 'SERS'라고 함)에 기반하여 성호르몬을 검출하는 시약; 이 시약을 이용하여 성호르몬을 검출하는 방법; 그리고 상기 방법을 이용하여 성조숙증을 진단하는 방법에 대한 것이다.
사춘기 현상은 정상적으로 대한민국 여아에서는 평균 10-11세, 남아에서는 13-14세에 나타나며 여아에서는 평균 15세, 남아에서는 평균 18세에 성적 성숙도가 어른 수준에 도달하게 되어 성장이 멈춘다.
성조숙증이란, 일반적으로 이러한 사춘기 현상이 여아에서는 8세 미만 남아에서는 9세 미만에 발생하는 경우를 말한다. 즉 여아에서는 만 8세 이전에 유방발달이, 남아에서는 만 9세 이전에 고환이 커지면 성조숙증이라고 말한다.
최근 성조숙증(precocious puberty)이 사회적 이슈로 급부상하고 있다. 성조숙증 환자가 급증하는 이유는 크게 환경 호르몬의 영향과 아동 비만이 증가하고 있기 때문이라고 알려져 있다.
정신적인 성숙이 신체 발달을 따라가지 못하는 성조숙증이 발생하면, 어린아이들은 스트레스를 받게 되고, 성장판이 일찍 닫혀서 키의 성장이 멈추는 심각한 문제가 발생할 수 있다. 따라서 성조숙증을 진단 및/또는 치료가 필요한 상황이다.
최근 대한민국 건강보험심사평가원(Health Insurance Review & Assessment Service)이 성조숙증환자 자료를 분석한 결과에 따르면, 대한민국의 성조숙증 환자가 2009년 2만1712명에서, 2013년 6만6395명으로 3배 이상 증가한 것으로 나타났다. 대부분의 성조죽증 환자는 호르몬 치료로 개선이 가능하지만, 정확한 진단을 받는 것이 가장 중요하다. 즉, 아동의 성조숙증을 조기에 진단할 필요가 있다.
성조숙증과 관련된 대표적인 성호르몬은 에스트라디올(Estradiol)이다. 보통 여성의 체내 에스트라디올의 함유량은 60 pg/mL이상이나, 남성, 폐경 후의 여성, 사춘기 전의 어린이의 경우 일반적으로 10 pg/mL 이하로 존재한다.
테스토스테론의 경우, 성인 남자의 경우 4.04 ~ 7.21 ng/mL, 성인 여자의 경우 0.37 ~ 0.81 ng/mL, 어린 남자아이는 2.54 ng/mL 이하, 어린 여자아이는 0.20 ng/mL 이하로 존재한다. 플라스마의 테스토스테론 농도대는 연령, 성별 및 질병의 유무에 따라 1,000배 이상 다양하게 나타난다.
기존의 에스트라디올 또는 테스토스테론 검사방법은, i) 화학적 발광에 의한 면역분석법, ii) 방사능 기반의 면역분석법 그리고 iii) 고속 액체 크로마토그래피 질량분석법(LC/MS/MS)이 있다. i) 화학적 발광에 의한 면역분석법(ELISA Kit)은 색 변화를 이용한 검사방법으로, 높은 민감도와 간단한 조작 방식을 이용하는 것이 장점이다. 그러나 검출한계(limit of detection:LOD)가 30-100 pg/mL이고 시료 내 에스트라디올(또는 테스토스테론)의 농도가 낮은 경우 측정이 불가능하고 진단 오류가 많이 발생하는 것이 단점이다. ii) 방사능 기반 면역분석법(Estradiol radioimmunoassay kit)은 방사능으로 에스트라디올(또는 테스토스테론) 검출량을 측정하는 방법으로, 검출한계는 10 pg/mL이고 높은 민감도를 가지는 것이 장점이다. 그러나 시료 내 에스트라디올(또는 테스토스테론)의 농도가 낮은 경우 정확성이 매우 떨어지고 방사능 노출에 의해 시료가 오염될 수 있는 단점이 있다. iii) 고속 액체 크로마토그래피 질량분석법은 측정방법이 정확한 것이 장점이다. 그러나 검사방식이 복잡하고 검출시간이 매우 길고 검사 비용이 많이 들기 때문에 병원의 진단검사의학과에서 진단법으로 이용하기에는 부적절하다.
현재 대부분의 대학병원 진단검사의학과에서 성조숙증 진단을 위하여 화학발광을 이용한 자동화 면역분석법이 널리 이용되고 있다. 대표적 상용화 장비로는 Abbott Architect, Beckmann, Roche Covas, Siemens ADVIA Centaur, Tosoh ST, Vitros 등이 있다. 그러나 현재 상용화된 진단 장비 측정 결과는 아래 표 1(출처: College of American Pathologists, www.cap.org/ 미국 병리학회 에스트라디올 정보)에서 보는 바와 같이 50-200 pg/mL 정도의 에스트라디올 농도 범위에서도 큰 표준편차(S.D.) 와 변동계수(C.V.) 값을 가지며, 10 pg/mL 이하의 에스트라디올의 농도는 검출할 수 없다. 따라서, 현재의 면역진단기술로는 성조숙증의 정확한 진단이 불가능하며, 이를 진단하기 위한 표준분석법(gold standard method)도 전무한 실정이다.
[표 1]
Figure PCTKR2016000088-appb-I000001
비특허문헌 1(William Rosner, et al., 2013. J Clin Endocrinol Metab, 98(4) 1376-1387)을 보면, 도 1에서 현재 10 pg/mL 이하의 에스트라디올의 농도를 검출하기 어렵다고 기술하고 있다. 또한 비특허문헌 1에서는 호르몬 저해제(aromatase inhibiotors) 처치를 받은 유방암 여성 환자를 모니터링하기 위해서는, 치료 전 에스트라디올 농도가 보통 10-15 pg/mL인데 , 치료 후에는 1 pg/mL 이하로 유지시켜주는 것이 중요하므로, 낮은 농도에서의 에스트라디올의 정확한 농도측정이 중요하다고 언급 하고 있다(1379 페이지 오른쪽 컬럼 참고).
앞서 기술한 바와 같이, 현재까지는 성호르몬, 예를 들면, 에스트라디올 또는 테스토스테론 농도가 10 pg/ml 이하인 경우 정확히 측정할 수 있는 방법이 없다. 또한 성조숙증 아이들의 호르몬 치료 후에는 성호르몬의 농도가 억제되어 낮은 농도로 유지되어야 하므로, 낮은 농도에서의(10 pg/ml 이하) 정확한 성호르몬 농도 측정이 필요하다. 임상의들이 약물 치료 효과를 판정하기 위해서는 환자의 정확한 성호르몬 농도 정보를 제공할 필요가 있다.
또한 현재까지 어린이들의 성조숙증 진단을 위한 적절한 성호르몬 검출 방법이 연구되지 않고 있어서 이러한 연구가 매우 필요하다는 것을 역설하고 있다(비특허문헌 1의 1380 페이지 오른쪽 컬럼 참고). 또한 비특허문헌 1에서는 매우 낮은 농도의 이하의 에스트라디올을 측정할 수 있는 측정방법의 필요성을 강하게 주장하고 있다(비특허문헌 1의 1384 페이지의 결론 부분 참고).
미국 진단의학회에서 발간한 비특허문헌 2(Genna Rollins, May 2013, Clinical Laboratory News, Vol. 39, No. 5)에서는 “The current platform assays can't distinguish between 10 and 60 pg /mL.”라고 하면서, 현재의 성조숙증 진단법의 한계를 밝히고 있다. 비특허문헌 2에서는 10 pg /mL 이하 농도의 에스트라디올을 정확하고 신뢰도 있게 정량하여 일상적인 임상 진단에 적용할 수 있는 새로운 기술 개발의 필요성을 강조하고 있다. 비특허문헌 2를 통해, 현재 필요한 기술은, 비특허문헌 2의 타이틀처럼, “A Call for Better Estradiol Measurement”임을 알 수 있다. 구체적으로, 성호르몬 진단 시간을 줄이고 민감도 및 정확도를 획기적으로 높여주는 동시에 진단검사의학과에서 시행되고 있는 진단시약 기반의 자동화 면역분석법을 적용할 수 있는 새로운 성호르몬 검출 방법과, 이를 이용한 성호르몬의 표준분석법(gold standard method)을 위한 측정기술의 개발이 절실한 실정이다.
표면증강 라만 산란(Surface-enhanced Raman scattering; SERS) 기반 검출 방법은, 라만 분광법의 검출 감도 한계를 극복할 수 있는 분석법이다. 이 분석법은 라만 리포터 분자의 증폭된 특징적인 SERS 피크의 세기(intensity) 변화를 측정하여 타겟 물질을 정량할 수 있는 방법이다. 리포터 분자가 거친 금속 표면에 흡착되고 여기광(레이저 광)에 노출되면, “측정 접점(hot junction)”이라고 알려진 리포터 분자의 SERS 활성 사이트에서 전자기적이고 화학적인 증강이 발생하여 SERS 신호가 대폭 증가한다(비특허문헌 3, 4 및 5). 이 증강 효과는 종래 라만 검출법이 가지는 단점인 저감도성의 문제를 해결해 줄 것으로 기대되며, 종래의 화학발광분석법, 방사능 기반 면역분석법의 정확도와 검출한계를 뛰어 넘을 수 있을 것으로 판단된다.
이에 본 발명자들은 상기 언급한 종래기술의 한계를 극복하기 위해 연구를 계속하였다. 그 결과 기존 성호르몬의 면역분석에 이용되는 방사면역분석, 효소면역분석, 화학발광분석과는 검출 방식이 다른 새로운 개념의 나노플라즈모닉스 기반의 SERS를 이용하여 성호르몬을 고감도로 신뢰도 있게 분석할 수 있는 새로운 성호르몬 면역분석방법을 개발하였다. 본 발명은 기존의 성호르몬 검출을 통한 성조숙증 진단의 문제점(검출 감도 및 정확성)을 극복할 수 있는 신개념의 성호르몬 진단 기술로 평가된다.
(비특허문헌 1)1. William Rosner, et al., April 2013. J Clin Endocrinol Metab, 98(4) pp. 1376-1387
(비특허문헌 2)2. Genna Rollins, May 2013, Clinical Laboratory News, Vol. 39, No. 5
(비특허문헌 3)3. Kneipp, J. et al., 1997. Phys. Rev. Lett. 78, pp. 1667-1670
(비특허문헌 4)4. Nie, S. M. and Emory, S. R., 1997. Science 275, pp. 1102-1106
(비특허문헌 5)5. Kneipp, J. et al., 2006. Nano Lett . 6(10), pp. 2225-2231
본 발명의 목적은 성호르몬 검출용 시약 키트를 제공하기 위한 것이다.
본 발명의 다른 목적은 표면증강 라만 산란(Surface-Enhanced Raman Scattering: SERS) 기반의 성호르몬 검출 방법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 상기 성호르몬 검출 방법을 이용하여 성조숙증을 진단하는 방법을 제공하기 위한 것이다.
본 명세서는 다수의 논문 및 인용문헌을 참조하였고 그 인용을 표시하였다. 인용된 논문 및 특허문헌에 개시된 내용은 그 전체가 본 명세서 내용의 일부로 삽입되어 본 발명의 기술수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명은 성호르몬 및 라만 리포터가 고정화된 금속 나노프로브를 포함하는 제1 시약; 그리고
상기 성호르몬 검출용 항체가 고정화된 자성 입자를 포함하는 제2 시약;
을 포함하여 이루어지는 성호르몬 검출용 시약 키트를 제공한다.
도 1은 본 발명의 제1 시약 및 제2 시약을 모식적으로 나타낸 것이다.
본 발명에서 사용하는 용어인 “금속 나노프로브”는 “금속 나노입자” 또는 “금속 나노구체” 등의 용어로도 이용된다. 상기 금속 나노프로브는 금속 나노구조체를 의미하는 말로, 이 기술분야에서 널리 사용되는 용어이다.
본 발명에서 사용하는 용어인 “자성 입자”는 “자성 비드”라는 용어로도 사용된다. 상기 자성 입자는 자성 재료로 구성될 수 있다. 상기 자성 재료로는, 이 기술분야에서 널리 사용하는 것이면 어느 것이나 사용할 수 있다. 예를 들면, Fe2O3, Fe3O4 또는 FePt 중 하나를 사용할 수 있으나 이에 제한되는 것은 아니다.
본 발명에서 사용하는 자성 입자 및 금속 나노프로브 (예: 금 나노입자)는 이 기술분야에 널리 알려져 있다(H. Chon, et. al., Chem. Commun., 2011, 47, 12515-12517 및 Frens, 1973, Nature Physical Science 241, 20-22. 등).
상기 라만 리포터는 상기 금속 나노프로브의 표면에 고정된다. 상기 라만 리포터는 특정 라만 스펙트럼을 보여주기 때문에 SERS 분석에서 검출하고자 하는 표적 물질을 보다 효과적으로 분석할 수 있다. 이러한 라만 리포터 분자로서 이 기술분야에 공지된 것이라면 어느 것이나 사용할 수 있다. 구체적으로 예를 들면, 4,4'-디피리딜(DP), 크리스탈 바이올렛(CV), 4-머캅토 톨루엔(4-MT), 3,5-디메틸 벤젠티올(3,5-DMT), 티오페놀(TP), 4-아미노 티오페놀(4-ATP), 벤젠티올(BT), 4-브로모 벤젠티올(4-BBT), 2-브로모 벤젠티올(2-BBT), 4-이소프로필 벤젠티올(4-IBT), 2-나프탈렌 티올(2-NT), 3,4-디클로로 벤젠티올(3,4-DCT), 3,5-디클로로 벤젠티올(3,5-DCT), 4-클로로 벤젠티올(4-CBT), 2-클로로 벤젠티올(2-CBT), 2-플루오로 벤젠티올(2-FBT), 4-플루오로 벤젠티올(4-FBT), 4-메톡시 벤젠티올(4-MOBT), 3,4-디메톡시 벤젠티올(3,4-DMOBT), 2-머캅토 피리미딘(2-MPY), 2-머캅토-1-메틸 이미다졸(2-MMI), 2-머켑토-5-메틸 벤즈이미다졸(2-MBI), 2-아미노-4-(트리플루오로메틸) 벤젠티올(2-ATFT), 벤질 머켑탄(BZMT), 벤질 디설파이드(BZDSF), 2-아미노-4-클로로 벤젠티올(2-ACBT), 3-머켑토 벤조산(3-MBA), 1-페닐테트라졸-5-티올(1-PTET), 5-페닐-1,2,3-트리아졸-3-티올(5-PTRT), 2-아이오도아닐린(2-IAN),페닐 이소티오시아네이트(PITC), 4-니트로페닐 디설파이드(4-NPDSF), 4-아지도-2-브로모아세토페논(ABAPN), X-로다민-5-아이소티오시아네이트(X-rhodamine-5-(and-6)-isothiocyanate, XRITC), 크리스탈 바이올렛(crystal violet, CV) 또는 말라카이트 그린 아이소티오시아네이트(malachite green isothiocyanate, MGITC) 등을 들 수 있으나, 반드시 이로 제한되는 것은 아니다.
본 발명의 일 실시 예에서는, 전술한 금 나노입자를 사용하는 경우, 라만 리포터로 말라카이트 그린 아이소티오시아네이트(malachite green isothiocyanate, MGITC) 를 사용할 수 있다. 본 발명의 일 실시예에 따르면, 상기 라만 리포터 분자를 전술한 금속 나노프로브와 혼합하여 나노 프로브의 표면에 흡착시켜(adsorbed) 고정화시킬 수 있다.
상기 성호르몬 검출용 항체는, 제1항체 및 제2항체를 포함하고, 상기 제2항체는 상기 자성입자에 고정화되고, 상기 제1항체는 상기 제2항체와 결합하고 상기 성호르몬과 반응할 수 있다.
상기 제1항체 및 제2항체는 이 기술분야에서 사용하는 것이라면 어느 것이나 제한 없이 사용할 수 있다. 구체적으로, 상기 제2항체는 상기 자성 입자에 고정화되는 항-마우스 항체이고; 상기 제1항체는 상기 제2항체에 결합하고 상기 성호르몬과 특이적으로 면역반응을 하는 항-성호르몬 항체일 수 있다.
종래의 면역분석법은 “샌드위치 면역복합체”를 주로 이용하였다. 상기 “샌드위치 면역복합체”란 항체-항원-항체 반응을 통해 결합된 면역복합체를 의미한다. 항원이 항체 중간에 삽입되어 샌드위치 모양을 나타내기 때문에 붙여진 이름이다.
샌드위치 면역분석법을 사용하려면 타겟(항원)에 2개의 항체가 샌드위치 형식으로 결합하여야 한다. 그러나 본 발명의 성호르몬(항원)은 소분자(small molecule)이다. 성호르몬(항원)에는 2개의 항체가 “항체-항원(성호르몬)-항체”의 샌드위치 모양으로 결합할 수 있는 2개의 에피토프 바인딩 사이트(epitope binding site)가 없다. 따라서 본 발명에서는 성호르몬의 1개의 에피토프 바인딩 사이트를 이용하여 어세이가 가능하도록 경쟁 면역반응(이에 대해서는 후술함)을 이용하였다. 또한 자성 입자에 성호르몬 항체를 고정화시킬 때는 항체의 로딩 밀도(loading density)를 증가시키기 위하여 제2항체를 먼저 고정화한 다음 다시 성호르몬 특이적인 제1 항체를 고정시켰다.
상기 성호르몬은 에스트로겐 또는 테스토스테론일 수 있으나, 반드시 이로 제한되는 것은 아니다.
상기 성호르몬의 검출 가능 농도는 0.1 내지 1,000 pg/mL일 수 있다. 구체적으로, 상기 성호르몬의 검출 가능 농도는 0.1 내지 10 pg/mL인 것이 바람직하다.
만약 성호르몬의 농도가 1,000 pg/mL 이상일 경우, 예를 들면, 3,000 pg/mL인 경우라면, 이를 1,000 pg/mL로 희석하여 이용할 수 있다.
상기 성호르몬의 검출한계(limit of detection)는 0.1 pg/mL일 수 있다.
상기 성호르몬 검출 시간은 2 시간 이하일 수 있다. 구체적으로 1 내지 2 시간일 수 있다.
상기 에스트로겐은 에스트라디올(estradiol), 에스트론(estrone) 및 에스트리올(estriol)로 이루어진 군으로부터 1종 이상 선택될 수 있으나, 반드시 이로 제한되는 것은 아니다. 상기 에스트라디올은 17β-에스트라디올(17β-estradiol, E2)일 수 있다.
상기 에스트로겐은 체내에서 콜레스테롤로부터 합성되어 난소, 부신피질 등으로 분비되는 여성호르몬으로 에스트라디올(estradiol), 에스트론(estrone), 에스트리올(estriol) 등을 총칭하는 용어이다. 에스트로겐은 핵 내에서 수용체와 결합한 후 여성 특유의 성징을 유발함으로써 난자의 성숙, 유선의 성장 및 발달 등과 같은 생리작용에 중요한 역할을 한다.
에스트라디올은 여성에 주로 존재하는 성호르몬으로, 에스트로겐 중 가장 대표적인 호르몬이다. 에스트라디올은 자궁, 질, 나팔관, 고환 등의 생식기 변화, 유방의 발달에 영향을 주고 또한 지방 분산을 유도하여 성장 장애에 영향을 주는 것으로 알려져 있다. 출산을 앞둔 여성의 에스트라디올 수치는 60 pg/mL 이상이고, 배란 유도제를 투여하는 여성은 상당한 수치의 에스트라디올 값을 갖는다(250~2000 pg/mL). 남성, 사춘기 이전의 어린이, 폐경 후의 여성이 가지는 에스트라디올은 20 pg/mL 이하이다. 또한 성호르몬 저해제를 투여하는 유방암 여성 환자의 에스트라디올 수치는 1 pg/mL 이하이다.
종래의 진단 기술로는 10 pg/mL 이하의 성호르몬을 고감도로 검출하기 어려웠다. 본 발명은 이러한 문제점을 해결하고 10 pg/mL 이하의 성호르몬도 고감도로 검출할 수 있는 시약을 제공한다. 또한 본 발명은 성호르몬의 검출 시간이 2시간 이하인 시간인 검출 시약을 제공한다.
다른 측면에서 본 발명은 다음 단계를 포함하는 SERS 기반의 성호르몬 검출 방법을 제공한다:
성호르몬이 포함된 시료액을 준비하고;
상기 성호르몬과 라만 리포터가 결합된 금속 나노프로브를 준비하고;
상기 시료액에 상기 금속 나노프로브와 상기 제1항체 및 제2 항체가 고정화된 자성 입자를 동시에 첨가하고;
상기 시료액 내의 성호르몬과 상기 금속 나노프로브의 성호르몬이, 각각, 상기 자성입자에 고정된 제1항체와 경쟁적으로 면역반응을 하여 상기 자성입자와 면역복합체를 형성하고;
상기 면역복합체가 형성된 자성 입자를 자성을 이용하여 분리하고;
상기 분리된 자성 입자에 레이저광을 조사하고; 그리고
상기 레이저광 조사 이후에 표면-증강 라만 산란(Surface-Enhanced Raman Scattering: SERS) 신호를 측정하여 상기 성호르몬을 검출하는 단계.
앞서 언급한 것과 같이, 종래에는 “샌드위치 면역복합체”를 주로 이용하였다. 그러나 본 발명에서는 자성 입자에 고정화된 항체에, 금속 나노프로브에 결합된 항원(성호르몬)과 환자의 혈액(시료액)에 존재하는 항원(성호르몬)이 경쟁적으로 반응하게 하는 “경쟁 면역반응”을 이용하였다. 즉, 본 발명은 샌드위치 면역복합체를 형성하지 않고 진단 절차를 단순화하여 진단 시간을 단축시켰다.
상기 경쟁 면역반응은, 상기 시료액에 포함된 성호르몬(항원) 및 상기 성호르몬에 특이적으로 결합하는 항체가 고정화된 자성 입자 사이의 면역반응과(도 2의 제1 면역복합체 형성); 상기 시료액에 포함된 성호르몬과 동일한 항원이 결합된 금속 나노프로브 및 상기 성호르몬에 특이적으로 결합하는 항체가 고정화된 자성 입자 사이의 면역반응(도 2의 제2 면역복합체 형성)이 경쟁적으로 일어나는 면역반응일 수 있다.
상기 시료액은 조직 추출물, 세포 용해물, 전혈, 혈장, 혈청, 침, 안구액, 뇌척수액, 땀, 뇨, 젖, 복수액, 활액, 복막액 및 혈액여지(dried blood spot)으로 이루어진 군에서 선택될 수 있으나, 반드시 이로 제한되는 것은 아니다. 상기 혈액여지의 경우, 이 기술분야에 널리 알려진 방법으로 시료액을 만들어서 이용할 수 있다. 구체적으로, 혈액 여지의 혈액을 추출한 추출액을 이용할 수 있다.
상기 제2항체는 상기 자성 입자에 고정화되는 항-마우스 항체이고; 상기 제1항체는 상기 제2항체에 결합하고 상기 성호르몬과 특이적으로 면역반응을 하는 항-성호르몬 항체일 수 있다.
상기 면역복합체를 형성하는 단계에서, 상기 시료액 내의 성호르몬 농도가 높을수록 상기 자성입자와 면역복합체를 형성하는 금속 나노프로브의 양이 감소하여 SERS 신호 세기가 낮게 측정되고; 그리고/ 또는 상기 시료액 내의 성호르몬 농도가 낮을수록 상기 자성입자와 면역복합체를 형성하는 금속 나노프로브의 양이 증가하여 SERS 신호 세기가 높게 측정될 수 있다.
도 2는 본 발명에 따른 성호르몬 검출방법을 모식적으로 나타낸 것이다.
성호르몬이 포함된 시료액을 준비하고; 상기 성호르몬과 라만 리포터가 결합된 금속 나노프로브를 준비하고; 그리고 상기 성호르몬 검출용 제1항체 및 제2 항체가 고정화된 자성 입자를 준비한다. 상기 제1항체 및 제2 항체가 고정화된 자성 입자에 상기 시료액과 라만 리포터가 결합된 금속 나노프로브를 동시에 첨가한다. 자성입자에 고정된 제 1 항체에 대하여, 상기 시료액 내의 성호르몬과 상기 라만 리포터(와 성호르몬)가 결합된 금속 나노프로브의 경쟁 면역반응을 유도하여 면역복합체를 형성한다. 이 때, 상기 시료액 내의 성호르몬과 상기 자성 입자의 제1항체가 결합한 제1 면역복합체와 상기 금속 나노프로브의 성호로믄과 상기 자성 입자의 제1항체가 결합한 제2 면역복합체가 동시에 형성된다.
상기 면역복합체가 형성된 후, 상기 면역복합체가 형성된 자성 입자를 자성을 이용하여 분리하고; 상기 분리된 자성 입자에 레이저광을 조사하여 표면증강 라만 산란(Surface-Enhanced Raman Scattering: SERS) 신호를 측정한다.
만약 시료액 내 성호르몬의 농도가 높다면 라만 리포터가 결합된 금속 나노프로브와 자성입자의 제1항체가 결합한 제2 면역복합체는 적은 양이 생성될 것이다. 도 4와 함께 구체적으로 설명한다. 도 4는, 상기 경쟁 면역반응을 통하여 형성된 면역복합체에 대한 TEM(Transmission electron microscopy) 이미지이다(참고로, 유기물인 성호르몬은 TEM으로 관찰되지 않는다). 도 4의 왼쪽 상단의 수치는 시료액 내 성호르몬인 에스트라디올의 농도이다. 도 4를 통해 알 수 있는 바와 같이, 시료액 내의 성호르몬 농도가 높을수록 자성 입자에 결합하는 금속 나노프로브의 양은 감소함을 알 수 있다. 본 발명의 경쟁면역반응에 이용하는 금속 나노프로브의 농도는 테스트에 맞게 최적화되어 있다. 본 발명의 일 실시예에서 사용된 금속 나노프로브의 농도는 0.12 nM 이고, 25 μL의 시료를 검사 할 때, 50 μL의 금속 나노프로브가 사용되었다. 즉, 경쟁면역반응에 이용되는 금속 나노프로브의 양은 일정하다. 만약 시료액 내의 성호르몬 농도가 높다면, 시료액 내 성호르몬들이, (항체가 고정된) 자성 입자를 사이에 두고, 금속 나노프로브의 성호르몬과 경쟁적으로 면역반응을 할 때, 시료액 내 성호르몬들이 자성 입자와 결합하여 면역복합체를 형성할 확률이 더 높을 것이다. 그 결과, 자성 입자에 부착된 금속 나노프로브의 양이 적을 것이고(즉, 제2 면역복합체의 양이 제1 면역복합체의 양보다 적고), 따라서 SERS 신호의 세기가 약하게 측정될 것이다. 반대로, 시료액 내의 성호르몬 농도가 낮다면 시료액 내의 성호르몬과 자성 입자와의 제1 면역복합체는 적게 형성될 것이다. 그리고 금속 나노프로브와 자성 입자의 제1항체가 결합한 제2복합체의 양이 상대적으로 많을 것이다. 이 경우 자성 입자에 금속 나노프로브가 많이 부착되므로 SERS 신호의 세기는 증가할 것이다.
따라서 상기 시료액 내의 성호르몬 농도가 높으면 상기 SERS 신호의 세기가 낮게 측정될 수 있고, 상기 시료액 내의 성호르몬 농도가 낮으면 상기 SERS 신호 세기가 높게 측정될 수 있다.
또 다른 측면에서, 본 발명은,
피검체로부터 시료액을 추출하고;
상기 추출된 시료액을 대상으로, 상기 기술한 성호르몬 검출 방법을 통해 성호르몬을 검출하고; 그리고
상기 검출된 성호르몬의 농도를 확인하는 단계;
를 포함하는, 피검체의 성조숙증 진단에 필요한 정보를 제공하기 위한 방법을 제공한다.
상기 피검체는 포유동물, 구체적으로 인간이 바람직하며, 더욱 구체적으로는 8세 미만의 여자 어린이 또는 9세 미만의 남자 어린이인 것이 바람직하다.
상기 검출된 성호르몬의 농도는 0.1 내지 1000 pg/mL일 수 있다.
상기 검출된 성호르몬의 농도를 확인하는 단계 이후에, 상기 검출된 성호르몬의 농도가 10 pg/mL 이상인 경우, 상기 시료액을 제공한 피검체가 성조숙증인 것으로 진단하는 단계를 더 포함할 수 있다.
본 발명에 따른 성호르몬 검출용 시약 키트 및 성호르몬 검출 방법을 이용하여 성조숙증 진단이 가능하다. 이외에도 본 발명은 매우 낮은 농도의 성호르몬 검출이 가능하므로, 성호르몬과 관련된 다양한 적응증에 본 발명에 따른 시약 키트 및 성호르몬 검출방법을 이용할 수 있다.
예를 들면, 어린이에서 나이와 성별에 따른 에스트라디올의 정상치 범위를 설정하거나, 사춘기 발달의 온셋(onset)을 추적하거나, 성조숙증 진단 및 성조숙증 치료후 약물 효과 판정에 의한 예후 등에 본 발명을 적용할 수 있다. 또한 호르몬 치료를 받고 있는 유방암 환자에서 약물 치료 효과의 예후(유방암 환자의 경우 에스트라디올이 1 pg/mL 이하로 측정되어야 함), 남자의 골다공 및 골절의 위험도 예측인자, 고환 종양(gonadal tumor)의 진단, 여성화 유방을 갖고 있는 소년의 원인 파악 등에 본 발명을 적용할 수 있다. 폐경기 여성의 호르몬 치료시 약물 치료효과 판정, 성선기능저하증(hypogonadism)의 원인파악, 전립선암 환자의 호르몬 약물치료 효과 판정 등의 진단 및 예후 파악에도 본 발명을 적용할 수 있다.
본 발명에 따른 성 호르몬 검출 시약 및 검출 방법을 이용하면 매우 적은 농도의 성호르몬을 검출할 수 있다. 따라서 본 발명을 이용하면 정확한 성조숙증 진단이 가능하다. 또한 본 발명은 성호르몬을 고감도로 검출할 수 있으므로 호르몬 관련 질환의 연구에도 이용될 수 있다.
도 1은 본 발명의 제1 시약 및 제2 시약을 모식적으로 나타낸 것이다.
도 2는 본 발명에 따른 성호르몬 검출방법을 모식적으로 나타낸 것이다.
도 3은 합성된 금 나노 프로브의 전자투과현미경(Transmission Electron Microscope, TEM) 이미지(a)와 광산란(dynamic light scattering, DLS) 측정 분석 결과이다(b).
도 4는 본 발명에 따른 경쟁 면역반응을 통하여 형성된 면역복합체에 대한 TEM 이미지이다(이미지 왼쪽 상단의 농도 수치는 시료액 내의 에스트라디올 농도이다).
도 5a 내지 5c는 본 발명의 일 실시예에 따른 에스트라디올의 검출방법을 통한 라만 신호 측정 결과를 나타낸 그래프이다.
도 6a 내지 6c는 본 발명의 일 실시예에 따른 테스토스테론의 검출방법을 통한 라만 신호 측정 결과를 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 따른 SERS 기반 검출방법에 의한 에스트라디올 검출 결과와, 비교예로서 ELISA 분석을 통한 에스트라디올 검출 결과를 나타낸 그래프이다.
도 8은 비교예로서 ELISA 분석을 통한 테스토스테론 검출 결과를 나타낸 그래프이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 이 기술분야의 통상의 기술자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1: 제1시약 제조-금속 나노프로브 제조
염화금산(HAuCl4), 구연산 삼화나트륨(trisodium citrate), poly(ethylene glycol) 2-mercaptoethyl ether acetic acid(HS-PEG-COOH, MW ~3500), poly(ethylene glycol) methyl ether thiol(HS-PEG, MW ~2000), EDC(N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride)와 NHS(N-Hydroxysuccinimide)는 Sigma-Aldrich에서, 말라카이트 그린 아이소티오시아네이트(malachite green isothiocyanate, MGITC)는 Invitrogen에서, 에스트라디올-오브알부민(Estradiol-ovalbumin conjugate, E2-OVA)는 Cusabio에서 구매하였다.
금속 나노프로브를 합성하기 위하여, 구 형태 금 나노 입자를 합성하였다 (Frens, 1973, Nature Physical Science 241, 20-22.). HAuCl4 0.01% 용액 50 mL를 끓인 후, 구연산 삼화나트륨(trisodium citrate) 1% 용액 0.5 mL를 적가하였다. 초기 HAuCl4 수용액은 나노 입자 시 (seed) 형성시 푸른색으로 변하였으며, 시간의 경과에 따라 나노 입자가 성장하면서 점차 붉은 색으로 변하였다. 최종적으로 합성하고자 하는 나노 입자의 색을 확인한 후, 15 분간 더 끓여 반응을 종료하였다. 반응이 종료된 금 나노 입자의 온도를 상온까지 낮추며, 4 시간 이상의 숙성(aging) 과정을 거치도록 하였다. 도 3과 같이, 상기 합성된 금 나노 프로브는 전자투과현미경 (Transmission Electron Microscope, TEM)과 광산란(dynamic light scattering) 측정을 통하여 약 40-50 nm 정도 크기로 균일하고 안정하게 합성되었음을 확인하였다. 이후, SERS 기질로 사용하기 위하여 금 나노 입자에 라만 리포터인 말라카이트 그린 아이소티오시아네이트 (malachite green isothiocyanate, MGITC)를 도포하였다. 0.12 nM 40-nm 금 나노입자 1 mL에 라만 리포터가 최종 농도가 50 nM이 되도록 적가한 후, 금 나노 입자 표면에 카르복실 작용기 도입을 위하여 10 μM poly(ethylene glycol) 2-mercaptoethyl ether acetic acid(HS-PEG-COOH, MW ~3500) 60 μL와 10 μM poly(ethylene glycol) methyl ether thiol(HS-PEG, MW ~2000) 120 μL를 적가하여 3시간 동안 반응시켰다. 이후, 금 나노입자 표면의 카르복시 작용기를 이용하여 에스트라디올-오브알부민(Estradiol-ovalbumin conjugate, E2-OVA) 또는 테스토스테론-BSA(Testosterone-bovine serum albumin conjugate)을 고정화 하였으며, 이를 위해 25 mM EDC(N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride)와 NHS (N-Hydroxysuccinimide)를 5 μL씩 적가한 후 15 분 반응 시킨 후 1 mg/mL 에스트라디올-오브알부민을 2 μL 적가하고 상온에서 2시간 반응한 후, 4 ℃에서 12시간 동안 반응시켰다. 이후, 금 나노 입자 표면에 반응하지 못한 잔여물은 원심분리를 통해 제거되었다(7200 rpm, 10 분).
실시예 2: 제2시약 제조-자성 입자 제조
제2항체(항-마우스항체, anti-Mouse IgG(Fc specific) antibody produced in goat), EDC(N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride)와 NHS(N-Hydroxysuccinimide)는 Sigma-Aldrich에서, 마이크로 자성 입자(Dynabeads  MyOne), PBS 버퍼(0.1 mM, pH 7.4)는 Invitrogen에서, 제1항체[(항-에스트라디올항체, anti-17 beta Estradiol antibody) 또는 (항-테스토스테론항체, mouse anti-testosterone monoclonal antibody)]는 Abcam에서 구매하였다.
제2항체(항-마우스항체)는 마이크로 자성 입자 표면의 카르복시 작용기를 이용하여 고정하였다. 이를 위해 마이크로 자성 입자 표면의 카르복시 작용기는 0.1 M EDC 와 NHS를 5 μL씩 적가하여 30 분간 활성화시켰다. 이후 2 mg/mL 제2항체(항-마우스항체) 2.5 μL를 적가하여 상온에서 2시간 반응한 후, 마이크로 자성 입자 표면에 반응하지 못한 잔여물을 제거하기 위해 자력을 이용해 자성 입자를 분리하고 잔여액을 PBS (10 mM, pH 7.4)에 용해하여 4 ℃에서 보관하였다. 이후, 제2항체가 고정된 자성 입자 25 μL에 0.55 g/mL의 제1항체인 항-에스트라디올 항체(또는 항-테스토스테론 항체) 25 μL를 적가하고 90분간 상온 반응하여 성호르몬 검출용 자성 입자 준비를 완료하였다. 반응 후 마이크로 자성 입자 표면에 반응하지 못한 잔여물을 제거하기 위해 자력을 이용해 자성입자를 분리하고 잔여액을 PBS (10 mM, pH 7.4)에 용해하여 준비하였다.
실시예 3: 표면 증강 라만 산란 기술 기반 성호르몬 검출
3-1: 에스트라디올 검출
먼저, 에스트라디올이 포함된 혈액을 시료액으로 준비하였다. 그 다음으로 상기 시료액 25 μL에 실시예 2에서 합성한 제2항체 및 제1항체(항-에스트라디올항체)가 고정화된 자성 입자 25 μL 및 실시예 1에서 제조한 금 나노프로브 50 μL를 동시에 첨가하여 총 검사 소요 시간은 90분이었다.
도 4는 본 발명에 따른 경쟁 면역반응을 통하여 형성된 면역복합체에 대한 TEM(Transmission electron microscopy) 이미지이다(이미지 왼쪽 상단의 농도 수치는 시료액 내의 에스트라디올 농도이다). 도 4를 통해 알 수 있는 바와 같이, 시료액 내의 성호르몬 농도가 높을수록 자성 입자에 결합하는 금속 나노프로브의 양은 감소함을 알 수 있다.
그 다음, 제 1 및 제2 면역복합체가 형성된 자성 입자를 자력을 이용하여 분리하고, 분리된 자성 입자를 대상으로 라만 분석을 수행하였다. 라만 분석은 다음과 같이 수행하였다. 레니쇼 인비아 라만 스펙트로미터(Renishaw Invia Raman spectrometers, Renishaw, U.K.)를 이용하였으며, 스펙트라 피직스 He-Ne 632.8 nm 레이저(Spectra Physics He-Ne 632.8 nm laser)를 광원으로 사용되었다. 콜렉션 패스(collection path)에 위치한 할로그래픽 노치 필터를 사용하여 레일레이 선(Rayleigh line)을 제거하였다. 스펙트럼은 측정 전에, 520 cm-1에서 실리콘 레퍼런스 피크 위치를 측정하여 피크 위치를 보정하였다. 출력 파장이 633 nm이고 출력 세기가 20 mW인 레이저를 이용하여 1초간 수집시간으로 630-1730 cm-1영역에서 라만 스펙트럼을 수집하였다. 20 x 대물렌즈를 사용하여 레이저 스팟에 초점을 맞추었다. 모든 스펙트럼 데이터의 기준선 보정(baseline correction)은 WiRE 4.0 (Renishaw, UK) 소프트웨어로 조정하였다. 성호르몬의 정량적 결과는 사용한 라만 리포터의 가장 강한 피크인 1613 cm-1 신호 세기를 기준으로 분석하였다.
그 결과, 도 5a 내지 5c에서 보는 바와 같이, 라만 신호 결과가 나타났다. 최소 검출 가능 농도는 0.1 pg/mL로 나타났다.
3-2: 테스토스테론 검출
먼저, 테스토스테론이 포함된 혈액을 시료액으로 준비하였다. 그 다음으로 상기 시료액 25 μL에 실시예 2에서 합성한 제2항체 및 제1항체(항-테스토스테론항체)가 고정화된 자성 입자 25 μL 및 실시예 1에서 제조한 금 나노프로브 50 μL를 동시에 첨가하여 총 검사 소요 시간은 90분이었다.
실시예 3-1에 개시된 라만 분석 방법을 이용하여 라만 분석을 수행하였다. 그 결과, 도 6a 내지 6c에서 보는 바와 같이, 라만 신호 결과가 나타났다. 최소 검출 가능 농도는 0.1 pg/mL로 나타났다.
비교예 : ELISA 진단 방법과의 비교
1: 에스트리라디올 검출을 위한 ELISA 분석
효소면역분석법(ELISA) 분석 방법은 항원을 투입한 혈액이 색 변화를 일으키는 효소의 작용으로 판단하는 일반적인 의료 진단 분석 방법이다. 본 발명에 따른 표면증강 라만분광법을 이용한 성호르몬 분석기술의 민감도를 검증하기 위하여, Abnova사의 에스트라디올 검출 키트(ELISA 방식)를 이용하여 분석한 결과와 비교하였다. 이 진단법은 분석 시료의 에스트라디올과 발광 유도 물질이 표지된 에스트라디올 사이의 양의 경쟁적인 반응을 통해 정량분석 하는 방법이다. 이 진단법은 분석용 플레이트에 에스트라디올을 고정할 수 있는 항체를 접합시키고 분석시료를 넣은 뒤, 발광 유도 물질이 접합된 항체가 기존에 고정된 항원에 접합할 수 있도록 하였다. 발광 유도 물질이 있는 함량에 따라 색 변화의 정도를 기기를 통해 측정하여 진단을 확증하였다. 분석에 제공된 물질은 하기 표 2와 같다.
[표 2]
Figure PCTKR2016000088-appb-I000002
도 7은 표면증강 라만 산란 기반 성호르몬 검출 결과(a)와 ELISA 분석 결과(b)를 비교한 것이다. 두 검출 방법을 비교하면, 본 발명에 따른 SERS 기반 검출 방법은 검출 범위가 0.1~1,000 pg/mL이고 검출 한계는 0.1 pg/mL이다. 반면, ELISA 분석법은 검출 범위가 5-1,000 pg/mL이고 검출 한계는 5 pg/mL이다.
2: 테스토스테론 검출을 위한 ELISA 분석
ELISA 분석에 제공된 물질은 하기 표 3과 같다.
[표 3]
Figure PCTKR2016000088-appb-I000003
도 8은 테스토스테론의 ELISA 분석 결과를 비교한 것이다. 본 발명의 SERS 기반 검출 방법과 비교하면, 본 발명에 따른 SERS 기반 검출 방법은 검출 범위가 0.1~1,000 pg/mL이고 검출 한계는 0.1 pg/mL이다. 반면, ELISA 분석법은 검출 범위가 1~100 ng/mL이고 검출 한계는 0.18 ng/mL (= 180 pg/mL)이다.
이 결과로부터 본 발명에 따른 SERS 기반 검출법은 ELISA 분석법으로 분석이 불가능한 0.1-5 pg/mL 농도 범위의 시료도 분석이 가능함을 알 수 있다. 특히 성조숙증 진단을 위해서는 10 pg/mL 미만 저농도 성호르몬 시료를 검출하는 것이 필요한데, 본 발명은 이러한 수요를 충족시키고 있다. 하지만 ELISA 분석법은 10 pg/mL 미만 저농도 성호르몬 시료를 검출하는 것이 불가능하다. 도 6에 나타난 결과를 통해 본 발명에 의한 SERS 기반 검출 방법은 성조숙증 진단에 필요한 고감도 검출이 가능한 분석법임을 알 수 있다.
실시예 4: 임상 유효성 평가
ARCHITECT사의 에스트라디올 분석방법(자동분석방식)을 이용하여 실제 환자 30명의 혈액을 분석하였다. ARCHITECT사의 에스트라디올 검출 방법은 화학 발광물질을 이용한 면역분석방법으로 혈액 내에 존재하는 성호르몬의 양에 따른 화학적 발광신호로부터 정량분석이 가능한 방법이다. 이 방법의 검출 가능 범위는 10~1000 pg/mL이고, 검출 한계는 10 pg/mL이며, 따라서 10 pg/mL 미만 시료에 대해서는 분석 결과가 제공되지 않는다. 표 4은 ARCHITECT사의 에스트라디올 분석 장비로 병원을 내원한 30명의 혈중 성호르몬의 농도를 검사한 결과이다. 그리고 표 4는 본 발명에 따른 SERS 기반 검출 방법을 이용하여 동일 혈액 시료에 대한 분석을 실시하고 그 결과를 비교한 것이다. 표 5의 분석 결과를 살펴보면 SERS 기반 검출 결과는 30명 혈액에 대하여 모두 ARCHITECT사의 에스트라디올 검출방법과 매우 유의한 결과를 나타낸다는 것을 확인할 수 있다. 특히 ARCHITECT사의 에스트라디올 검출 결과에서 제공되지 않았던 10 pg/mL 미만 시료에 대해서도 정확한 결과 값 분석이 가능하다는 사실을 알 수 있다. 이를 통해 본 발명에 따른 SERS 기반 검출 방법의 임상 유효성은 충분히 검증되었다. 특히 10 pg/mL 미만 저농도 성호르몬 시료의 분석 성능 또한 기존 혈액분석 분석 장비에 비해 매우 뛰어난 것을 알 수 있다. 따라서 본 발명에 의한 SERS 기반 검출 방법은 혈액 내 고감도 성호르몬 검출을 통한 성조숙증 진단에 매우 적합한 방법임을 알 수 있다.
[표 4]
Figure PCTKR2016000088-appb-I000004
[표 5]
Figure PCTKR2016000088-appb-I000005

Claims (19)

  1. 성호르몬 및 라만 리포터가 고정화된 금속 나노프로브를 포함하는 제1 시약; 그리고
    상기 성호르몬 검출용 항체가 고정화된 자성 입자를 포함하는 제2 시약;
    을 포함하여 이루어지는 성호르몬 검출용 시약 키트.
  2. 제1항에 있어서,
    상기 성호르몬 검출용 항체는 제1항체 및 제2항체를 포함하여 이루어지고, 상기 제2항체는 상기 자성입자에 고정화되고, 상기 제1항체는 상기 제2항체와 결합하고 상기 성호르몬과 반응하는 것인, 성호르몬 검출용 시약 키트.
  3. 제1항에 있어서,
    상기 성호르몬은 에스트로겐 또는 테스토스테론인 성호르몬 검출용 시약 키트.
  4. 제3항에 있어서,
    상기 에스트로겐은 에스트라디올(estradiol), 에스트론(estrone) 및 에스트리올(estriol)로 이루어진 군으로부터 1종 이상 선택되는 것인 성호르몬 검출용 시약 키트.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 성호르몬의 검출 가능 농도는 0.1 내지 1,000 pg/mL인 성호르몬 검출용 시약 키트.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 성호르몬의 검출한계(limit of detection)는 0.1 pg/mL인 성호르몬 검출용 시약 키트.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 성호르몬 검출 시간은 2 시간 이하인 성호르몬 검출용 시약 키트.
  8. 성호르몬이 포함된 시료액을 준비하고;
    상기 성호르몬과 라만 리포터가 결합된 금속 나노프로브를 준비하고;
    상기 성호르몬 검출용 제1항체 및 제2 항체가 고정화된 자성 입자를 준비하고;
    상기 시료액에 상기 금속 나노프로브와 상기 제1항체 및 제2 항체가 고정화된 자성 입자를 동시에 첨가하고;
    상기 시료액 내의 성호르몬과 상기 금속 나노프로브의 성호르몬이, 각각, 상기 자성입자에 고정된 제1항체와 경쟁적으로 면역반응을 하여 상기 자성입자와 면역복합체를 형성하고;
    상기 면역복합체가 형성된 자성 입자를 자성을 이용하여 분리하고;
    상기 분리된 자성 입자에 레이저광을 조사하고; 그리고
    상기 레이저광 조사 이후에 표면-증강 라만 산란(Surface-Enhanced Raman Scattering: SERS) 신호를 측정하여 상기 성호르몬을 검출하는 단계;
    를 포함하는 SERS 기반의 성호르몬 검출 방법.
  9. 제8항에 있어서,
    상기 면역복합체를 형성하는 단계에서,
    상기 시료액 내의 성호르몬 농도가 높을수록 상기 자성입자와 면역복합체를 형성하는 금속 나노프로브의 양이 감소하여 SERS 신호 세기가 낮게 측정되고; 또는
    상기 시료액 내의 성호르몬 농도가 낮을수록 상기 자성입자와 면역복합체를 형성하는 금속 나노프로브의 양이 증가하여 SERS 신호 세기가 높게 측정되는 것인 SERS 기반의 성호르몬 검출 방법.
  10. 제8항에 있어서,
    상기 성호르몬은 에스트로겐 또는 테스토스테론인 SERS 기반의 성호르몬 검출 방법.
  11. 제10항에 있어서,
    상기 에스트로겐은 에스트라디올(estradiol), 에스트론(estrone) 및 에스트리올(estriol)로 이루어진 군으로부터 1종 이상 선택되는 것인 SERS 기반의 성호르몬 검출 방법.
  12. 제8항에 있어서,
    상기 시료액은 조직 추출물, 세포 용해물, 전혈, 혈장, 혈청, 침, 안구액, 뇌척수액, 땀, 뇨, 젖, 복수액, 활액, 복막액 및 혈액여지(dried blood spot)로 이루어진 군에서 선택되는 것인 SERS 기반의 성호르몬 검출 방법.
  13. 제8항에 있어서,
    상기 제2항체는 상기 자성 입자에 고정화되는 항-마우스 항체이고; 상기 제1항체는 상기 제2항체에 결합하고 상기 성호르몬과 특이적으로 면역반응을 하는 항-성호르몬 항체인 SERS 기반의 성호르몬 검출 방법.
  14. 제8항 내지 제13항 중 어느 한 항에 있어서,
    상기 성호르몬의 검출 가능 농도는 0.1 내지 1,000 pg/mL인 SERS 기반의 성호르몬 검출 방법.
  15. 제8항 내지 제13항 중 어느 한 항에 있어서,
    상기 성호르몬의 검출한계(limit of detection)는 0.1 pg/mL인 SERS 기반의 성호르몬 검출 방법.
  16. 제8항 내지 제13항 중 어느 한 항에 있어서,
    상기 성호르몬 검출 시간은 2 시간 이하인 SERS 기반의 성호르몬 검출 방법.
  17. 피검체로부터 시료액을 추출하고;
    상기 추출된 시료액을 대상으로, 제8항에 따른 성호르몬 검출 방법을 통해 성호르몬을 검출하고; 그리고
    상기 검출된 성호르몬의 농도를 확인하는 단계;
    를 포함하는, 피검체의 성조숙증 진단에 필요한 정보를 제공하기 위한 방법.
  18. 제17항에 있어서,
    상기 검출된 성호르몬의 농도는 0.1 내지 1000 pg/mL인 것을 특징으로 하는 방법.
  19. 제17항에 있어서,
    상기 검출된 성호르몬의 농도를 확인하는 단계 이후에,
    상기 검출된 성호르몬의 농도가 10 pg/mL 이상인 경우, 성조숙증으로 진단하는 단계를 더 포함하는 것인, 방법.
PCT/KR2016/000088 2015-01-09 2016-01-06 성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법 WO2016111538A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/542,432 US20180024147A1 (en) 2015-01-09 2016-01-06 Reagent kit for detecting sex hormone and method for detecting sex hormone using same
US17/523,896 US20220178952A1 (en) 2015-01-09 2021-11-10 Reagent kit for detecting sex hormone and method for detecting sex hormone using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0003433 2015-01-09
KR20150003433 2015-01-09
KR1020160000759A KR101860543B1 (ko) 2015-01-09 2016-01-05 성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법
KR10-2016-0000759 2016-01-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/542,432 A-371-Of-International US20180024147A1 (en) 2015-01-09 2016-01-06 Reagent kit for detecting sex hormone and method for detecting sex hormone using same
US17/523,896 Division US20220178952A1 (en) 2015-01-09 2021-11-10 Reagent kit for detecting sex hormone and method for detecting sex hormone using same

Publications (2)

Publication Number Publication Date
WO2016111538A2 true WO2016111538A2 (ko) 2016-07-14
WO2016111538A3 WO2016111538A3 (ko) 2016-09-09

Family

ID=56356559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000088 WO2016111538A2 (ko) 2015-01-09 2016-01-06 성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법

Country Status (2)

Country Link
US (1) US20220178952A1 (ko)
WO (1) WO2016111538A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067815A (zh) * 2020-09-03 2020-12-11 南昌大学 一种检测小分子半抗原的均相免疫方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0809138B8 (pt) * 2007-03-20 2021-07-27 Becton Dickinson Co método para detectar a presença ou quantidade de um ou mais analitos em uma amostra biológica
KR100979727B1 (ko) * 2008-06-30 2010-09-03 한양대학교 산학협력단 금 할로우 나노입자 및 광학 이미징 기술을 이용한 암세포판별법
KR101195957B1 (ko) * 2009-03-26 2012-10-30 한양대학교 에리카산학협력단 표면증강 라만 산란 복합 프로브 및 이를 이용하여 표적 물질을 검출하는 방법
CN101639478A (zh) * 2009-08-27 2010-02-03 清华大学 一种利用磁微粒化学发光免疫技术检测雌二醇的试剂盒

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067815A (zh) * 2020-09-03 2020-12-11 南昌大学 一种检测小分子半抗原的均相免疫方法
CN112067815B (zh) * 2020-09-03 2022-03-18 南昌大学 一种检测小分子半抗原的均相免疫方法

Also Published As

Publication number Publication date
WO2016111538A3 (ko) 2016-09-09
US20220178952A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
KR101860543B1 (ko) 성호르몬 검출용 시약 키트 및 이를 이용한 성호르몬 검출 방법
EP3281014B1 (en) A test device for detecting an analyte in a saliva sample and method of use
Spencer et al. Technology Insight: measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer
JP6400012B2 (ja) 診断装置および方法
US20120295814A1 (en) CA-125 Immune Complexes as Biomarkers of Ovarian Cancer
Massart et al. Serum insulin-like growth factor-I measurement in the follow-up of treated acromegaly: comparison of four immunoassays
Lund et al. Sports drug testing using immuno-MS: clinical study comprising administration of human chorionic gonadotropin to males
Liu et al. Development and evaluation of a rapid lateral flow immunochromatographic strip assay for screening 19‐nortestosterone
Pugeat et al. Recommendations for investigation of hyperandrogenism
Yavasoglu et al. A novel association between polycystic ovary syndrome and Helicobacter pylori
French Clinical utility of laboratory developed mass spectrometry assays for steroid hormone testing
Butch et al. Urine reference intervals for human chorionic gonadotropin (hCG) isoforms by immunoextraction–tandem mass spectrometry to detect hCG use
US20220178952A1 (en) Reagent kit for detecting sex hormone and method for detecting sex hormone using same
Farquharson et al. Rapid identification of buprenorphine in patient saliva
Serei et al. Heterophile antibody interference affecting multiple Roche immunoassays: A case study
Yin et al. Establishment of a rapid and simple liquid chromatography tandem mass spectrometry method for measuring aldosterone in urine
Hussein et al. Comparison of three progesterone quantification methods using blood samples drawn from bitches during the periovulatory phase
Cappy et al. Falsely elevated serum antimüllerian hormone level in a context of heterophilic interference
CN106460056A (zh) 新型试样内检测对象物的检测方法及利用其的检测试剂盒
JP2015055568A (ja) 生体分子分析方法及び生体分子分析装置
Liu et al. A point-of-care chemiluminescence immunoassay for pepsinogen I enables large-scale community health screening
Chin et al. Heterophile antibody interference with thyroid assay
Ondieki et al. Biomarker Raman bands of estradiol, follicle-stimulating, luteinizing, and progesterone hormones in blood
Clark Laboratory services for thyroglobulin and implications for monitoring of differentiated thyroid cancer
Daves et al. Fully-automated, chemiluminescence IgA and IgG anti-tissue transglutaminase (tTG) antibodies serum assays for the screening of celiac disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735159

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15542432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735159

Country of ref document: EP

Kind code of ref document: A2