WO2016111500A1 - 선박의 연료가스 공급시스템 - Google Patents
선박의 연료가스 공급시스템 Download PDFInfo
- Publication number
- WO2016111500A1 WO2016111500A1 PCT/KR2015/014503 KR2015014503W WO2016111500A1 WO 2016111500 A1 WO2016111500 A1 WO 2016111500A1 KR 2015014503 W KR2015014503 W KR 2015014503W WO 2016111500 A1 WO2016111500 A1 WO 2016111500A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- fuel gas
- ethane
- engine
- storage tank
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/38—Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/06—Apparatus for de-liquefying, e.g. by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C7/00—Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
- F17C7/02—Discharging liquefied gases
- F17C7/04—Discharging liquefied gases with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the present invention relates to a fuel gas supply system of a ship, and more particularly, to effectively treat the ethane evaporation gas, and at the same time to control the methane number of the fuel gas supplied to the engine fuel gas of the ship It relates to a supply system.
- Natural gas which is widely used among the fuel gas supplied to the ship's propulsion engine, has methane as its main component, and the natural gas is usually cooled to about -162 degrees Celsius for easy storage and transportation. It is managed and operated by phase change into liquefied natural gas, a colorless transparent cryogenic liquid reduced to 1/600.
- the liquefied natural gas is received and stored and transported in a storage tank that is insulated and installed in the hull, the engine of the ship is driven by the supply of liquefied natural gas or boiled off gas (Boiled Off Gas) as fuel gas.
- Liquefied natural gas or evaporated gas is supplied in accordance with the requirements of the engine through a process such as compression and vaporization.
- heterogeneous fuel engines such as DFDE engines are widely used for propulsion of ships or for power generation of ships.
- X-DF engines capable of burning with medium pressure fuel gas have been developed and used.
- natural gas In addition to methane, natural gas includes ethane, propane, butane, etc., and the composition varies depending on the production site.
- natural gas includes ethane, propane, butane, etc.
- the composition varies depending on the production site.
- the engine In order to supply liquefied natural gas or vaporized evaporated gas as fuel gas to an X-DF engine, etc.
- the engine must be supplied in accordance with the methane number requirements of the engine. If the fuel gas supplied to the engine is lower than the proper methane, explosion and combustion may occur before the piston of the engine reaches top dead center, which may cause problems such as wear of the engine piston, deterioration of engine efficiency and knocking. In other words, it is necessary to supply fuel gas at the proper methane value required by the engine so that the engine can produce normal power.
- VLEC Very Large Ethane Carrier
- the liquefied gas carrier may have the same fuel gas and transport object as the natural gas transport ship, but the fuel gas and transport object supplied to the engine may be different from each other, like the ethane gas transport ship.
- the transport object of the ethane gas carrier is liquefied ethane gas having a relatively high boiling point
- the fuel gas supplied to the engine is liquefied natural gas having a relatively low boiling point.
- the ethane evaporation gas is generated in the storage tank for accommodating and storing the liquefied ethane gas, which is a transportation object, by thermal intrusion into the storage tank as in the above-described liquefied natural gas. If the ethane evaporation gas is left as it is, the internal pressure of the storage tank may rise rapidly, which may cause deformation or damage of the storage tank, and may cause a safety accident such as a fire or an explosion.
- the present invention is to provide a fuel gas supply system of a ship that can effectively control the methane value of the fuel gas supplied to the engine, and can effectively treat the ethane evaporation gas generated from the liquefied ethane gas that is the transport target.
- An embodiment of the present invention is to provide a fuel gas supply system of a ship that can efficiently manage the methane of the fuel gas supplied to the engine, and minimize the load on the engine.
- An embodiment of the present invention is to provide a fuel gas supply system of a ship capable of miniaturizing and operating the device for the treatment of ethane evaporation gas.
- the first storage tank for receiving the liquefied natural gas and the natural evaporation gas of the liquefied natural gas
- the second storage tank for receiving the liquefied ethane gas and the ethane evaporation gas of the liquefied ethane gas
- the second A first fuel gas supply line for vaporizing the liquefied natural gas of the storage tank and supplying it to the first engine
- a second fuel gas supply line for supplying ethane evaporation gas of the second storage tank to the first engine
- the gas analyzer may further include a gas analyzer configured to analyze the methane number of the fuel gas supplied to the first engine.
- Reliquefaction apparatus for liquefying the ethane evaporation gas provided in the reliquefaction line and the unliquefied gas discharge line for processing the unliquefied gas not liquefied in the reliquefaction apparatus may be provided.
- the second fuel gas supply line includes a compression unit for pressurizing the ethane evaporation gas of the second storage tank, and a third supplying the partially pressurized ethane evaporation gas in the middle of the compression unit to at least one of the second engine and the GCU. It may be provided further comprising a fuel gas supply line.
- the unliquefied gas discharge line may be provided such that an inlet side end is connected to the reliquefaction device and an outlet side end is joined to the compression unit stop.
- the second fuel gas supply line includes a compression unit that pressurizes the ethane evaporation gas of the second storage tank, and liquefies a portion of the ethane evaporation gas pressurized by the compression unit to supply the second liquefied gas to the second storage tank. It may be provided further including a line.
- the reliquefaction line may further include a reliquefaction apparatus for liquefying a portion of the pressurized ethane evaporation gas and an unliquefied gas discharge line for processing unliquefied gas not liquefied in the reliquefaction apparatus.
- the unliquefied gas discharge line may be provided such that an inlet side end is connected to the reliquefaction apparatus and an outlet side end is joined to the front end of the compression section of the second fuel gas supply line.
- It may further include a third fuel gas supply line for supplying the partially pressurized ethane evaporation gas during the compression unit to at least one of the second engine and the GCU.
- the first fuel gas supply line may be provided with a pressurized pump for pressurizing the liquefied natural gas and a vaporizer for vaporizing the liquefied natural gas pressurized by the pressurized pump.
- the second fuel gas supply line may be connected to the rear end of the vaporizer on the first fuel gas supply line.
- the fuel gas supply system of a ship has the effect of maintaining and supplying the methane value of the fuel gas supplied to the engine at an appropriate level required by the engine.
- Fuel gas supply system of the ship according to an embodiment of the present invention has an effect that can effectively treat and manage the ethane evaporation gas generated in the ethane gas storage tank.
- Fuel gas supply system of the ship according to an embodiment of the present invention has the effect of improving the engine efficiency and minimizing the load on the engine, such as knocking of the engine, wear of the piston, etc. to improve the durability and life of the engine.
- the fuel gas supply system of the ship has the effect of reducing the manufacturing cost of the equipment by promoting the miniaturization and simplification of the apparatus for the ethane evaporation gas treatment, and the efficient operation.
- FIG. 1 is a conceptual diagram showing a fuel gas supply system of a ship according to a first embodiment of the present invention.
- FIG. 2 is a conceptual diagram showing a fuel gas supply system of a ship according to a second embodiment of the present invention.
- FIG. 3 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a third embodiment of the present invention.
- FIG. 4 is a conceptual diagram illustrating a fuel gas supply system of a ship according to a fourth embodiment of the present invention.
- a fuel gas supply system 100 of a ship according to a first embodiment of the present invention includes a first storage tank 110 for receiving natural gas and a second storage tank 120 for receiving ethane gas.
- the first storage tank 110 and the second storage tank 120 accommodates natural gas and ethane gas, respectively.
- the first storage tank 110 accommodates the liquefied natural gas and the natural evaporation gas of the gas state evaporated therefrom
- the second storage tank 120 is a liquid liquefied ethane gas and evaporated therefrom Contains gaseous ethane evaporation gas.
- the first storage tank 110 and the second storage tank 120 may be provided as a cargo hold of the membrane type insulated to minimize the vaporization of liquefied natural gas or liquefied ethane gas due to external heat intrusion, 1 storage tank 110 may be provided in the manner of a pressurized tank (C type, etc.) according to the capacity of the liquefied natural gas.
- the second storage tank 120 receives or stores the liquefied ethane gas from the ethane gas producing place and the like, and stably stores the liquefied ethane gas and ethane evaporation gas until unloading to the destination, or as described later, ethane evaporation.
- the gas may be supplied as fuel gas to the engine through the second fuel gas supply line 140.
- the liquefied natural gas or natural evaporation gas accommodated or stored in the first storage tank 110 is provided to be used as fuel gas, such as a ship's propulsion engine or a ship's power generation engine, as described below.
- the first storage tank 110 and the second storage tank 120 are generally installed insulated, but it is practically difficult to completely block external heat intrusion. Therefore, there are natural evaporation gas and ethane evaporation gas generated by the natural vaporization of liquefied natural gas and liquefied ethane gas inside the first storage tank 110 and the second storage tank 120.
- the natural evaporation gas and ethane evaporation gas increase the internal pressure of the first storage tank 110 and the second storage tank 120, thereby potentially degrading and exploding the storage tanks 110 and 120, and thus, natural evaporation.
- the natural evaporation gas generated inside the first storage tank 110 is supplied as fuel gas to the engine as a liquefied natural gas through a separate fuel gas supply line (not shown), or a vent mast. It can be supplied to (not shown) or GCU (Gas Combustion Unit, not shown) to process the excessively generated natural evaporation gas.
- a separate fuel gas supply line not shown
- GCU Gas Combustion Unit
- the ethane evaporation gas generated in the second storage tank 120 may be supplied as fuel gas to the engine through the second fuel gas supply line 140 or may be reliquefied through the reliquefaction line 150 as described below.
- the second storage tank 120 may be supplied again.
- a vent mast (not shown) or a GCU (Gas Combustion Unit, not shown) may be provided in the second storage tank 120 to treat ethane evaporated gas generated excessively.
- the engine is supplied with fuel gas such as liquefied natural gas contained in the first storage tank 110 or ethane evaporation gas contained in the second storage tank 120 to generate propulsion of the ship or power generation for power generation such as internal equipment of the ship. Can be generated.
- the engine may include a first engine receiving a relatively high pressure fuel gas to generate an output, and a second engine receiving a relatively low pressure fuel gas to generate an output.
- the first engine is composed of an X-DF engine (about 16 bar to 18 bar) capable of generating output with relatively high pressure fuel gas
- the second engine is capable of generating output with relatively low pressure fuel gas.
- DFDE engine about 5 bar to 8 bar
- the first engine is composed of an X-DF engine
- natural gas when natural gas is used as the fuel gas supplied to the first engine, the methane number of the fuel gas must be supplied according to the condition methane value required by the first engine. do.
- Natural gas is mainly composed of methane. In addition to methane, natural gas includes ethane, propane, butane, etc. Knocking must be supplied according to the methane value required by the first engine. The first engine efficiency can be prevented, and the first engine piston can be prevented from being worn, and the first engine can exhibit normal output.
- the first fuel gas supply line 130 is provided to supply liquefied natural gas contained or stored in the first storage tank 110 to the first engine as fuel gas.
- One end of the first fuel gas supply line 130 is provided to be connected to the inside of the first storage tank 110, and the other end of the first fuel gas supply line 140 is joined to the first engine. .
- One end of the first fuel gas supply line 130 may be disposed below the first storage tank 110, and a delivery pump 133 may be provided to supply the liquefied natural gas to the first engine side.
- a pressure build-up unit (PBU) is installed in the first storage tank 110 instead of the delivery pump 133 to increase the internal pressure of the first storage tank 110 to remove the liquefied natural gas. It may be provided to supply to the fuel gas supply line 130.
- PBU pressure build-up unit
- a vaporizer 132 or the like for vaporizing the liquefied natural gas pressurized by 131 may be provided.
- the first fuel gas supply line 130 and the second fuel gas supply line 140 may be connected to the rear end of the vaporizer 132, the first fuel gas supply line 130 and the second fuel gas supply line 140
- the gas analyzer 170 to be described later may be provided on the line after the point where)) joins.
- the first fuel gas supply line 130 compresses and vaporizes liquefied natural gas contained or stored in the first storage tank 110 to supply the fuel as a fuel gas to the first engine.
- the first fuel gas supply line 130 is a fuel to the first engine by compressing and vaporizing the natural evaporation gas accommodated or stored in the first storage tank 110 In the case of supplying the gas and the case of supplying the liquefied natural gas and natural evaporation gas of the first storage tank 110 together with the first engine as fuel gas.
- the liquefied natural gas supplied to the first engine through the first fuel gas supply line 130 includes methane as a main component and other components such as ethane, propane and butane.
- methane value of the fuel gas flowing along the first fuel gas supply line 130 exceeds the methane value required by the first engine.
- the boiling point of methane is -161.5 degrees Celsius, which is lower than ethane (boiling point -89 degrees Celsius), propane (boiling point -45 degrees Celsius), which is a natural component of natural gas, and thus, the first storage tank 110.
- Natural evaporation gas generated inside has a relatively high content of methane.
- the amount of naturally occurring natural evaporation gas also increases, thus reliquefying natural evaporation gas or natural evaporation gas.
- the methane value of the fuel gas passing through the first fuel gas supply line 130 may be higher than the condition methane value required by the first engine by mixing with the liquefied natural gas. This is an inefficient fuel gas consumption as supplying fuel gas of methane number higher than the condition methane value in which the first engine can exhibit sufficient power and performance.
- the second fuel gas supply line 140 is provided to supply ethane evaporation gas generated by vaporization in the second storage tank 120 to the first engine as fuel gas.
- One end of the second fuel gas supply line 140 is connected to the inside of the second storage tank 120, and the other end is connected to the first fuel gas supply line 130 to be connected to the first engine.
- One end of the second fuel gas supply line 140 may be disposed above the second storage tank 120, and the inlet side end of the reliquefaction line 150 to be described later may be branched.
- the second fuel gas supply line 140 additionally includes a processing facility such as a compressor or a cooler (not shown) to process and supply ethane evaporation gas in accordance with the conditions of the fuel gas required for the first engine. It may be provided.
- a processing facility such as a compressor or a cooler (not shown) to process and supply ethane evaporation gas in accordance with the conditions of the fuel gas required for the first engine. It may be provided.
- the natural gas supplied as the fuel gas to the first engine may contain an ethane component in addition to the main component methane.
- the first engine requests the methane number of the fuel gas supplied to the first engine by supplying ethane evaporation gas generated in the second storage tank 120 to the first engine as fuel gas together with natural gas. Conditions can be properly adjusted to a level corresponding to methane number.
- equipment such as a reliquefaction device 151 for treating ethane evaporation gas in the second storage tank 120 is unnecessary. It can be built up or downsized, so it is possible to improve the efficiency of facility operation.
- the reliquefaction line 150 is provided to re-liquefy and process the ethane evaporation gas in the second storage tank 120.
- the reliquefaction line 150 may be provided branched from the second fuel gas supply line 140, and includes a reliquefaction device 151 that receives ethane evaporation gas from the second storage tank 120 and reliquefies it.
- the reliquefaction apparatus 151 may be provided to cool the ethane evaporation gas to change the phase into a liquid state and then resupply the second storage tank 120.
- the reliquefaction apparatus 151 may be configured as a heat exchanger that performs heat exchange. Although not shown in detail, the reliquefaction apparatus 151 re-liquefies the ethane evaporation gas by mutually exchanging ethane evaporation gas passing through the reliquefaction line 150 and the liquefied natural gas accommodated in the first storage tank 110. It may consist of a heat exchanger.
- the reliquefaction apparatus 151 may include an unliquefied gas discharge line 152 in addition to the reliquefaction line 150.
- the ethane evaporation gas may contain trace amounts of methane other than ethane, and since the boiling point of methane is lower than that of ethane, the unliquefied gas containing unliquefied methane is in a gaseous state after passing through the reliquefaction apparatus 151. You can remain.
- the unliquefied gas and the ethane evaporation gas are mixed, the mixed gas is supplied to the reliquefaction apparatus 151, so that the reliquefaction energy for the unliquefied gas inflow amount may be additionally consumed.
- the open / close valve 160 may be provided on the second fuel gas supply line 140.
- the on-off valve 160 controls the flow rate and opening / closing of ethane evaporation gas passing through the second fuel gas supply line 140 to control the methane value of the fuel gas supplied to the first engine, and supply to the first engine. It is possible to selectively use the kind of fuel gas to be used.
- the opening and closing valve 160 may be controlled by the control unit (not shown) to be described later, or may be manually opened and closed by an operator.
- the gas analyzer 170 is provided to analyze the methane number of the fuel gas supplied to the first engine.
- the gas analyzer 170 may be a methane detector to analyze the methane content of the fuel gas.
- the gas analyzer 170 is located at the rear of the point where the first fuel gas supply line 130 and the second fuel gas supply line 140 are joined or on the fuel gas supply line immediately before being supplied to the first engine for accurate analysis. Can be provided.
- the gas analyzer 170 may analyze the methane value of the fuel gas at regular intervals or continuously, and transmit the methane value data to a passenger or a controller (not shown) of the ship.
- the controller may be provided to adjust the opening and closing operation of the on-off valve 160.
- the controller may control the opening / closing operation of the opening / closing valve 160 after comparing the methane value data received from the gas analyzer 170 with a pre-input condition methane value.
- the control unit may be composed of a system that collectively controls the operation of the other components, such as the above-described pressure pump 131, vaporizer 132 or reliquefaction apparatus 151, the fuel supplied to the first engine by the automation system It can be arranged to comprehensively analyze and control the gas supply amount and methane number.
- the gas analyzer 170 analyzes the methane value of the fuel gas supplied to the first engine through the first fuel gas supply line 130 and the second fuel gas supply line 140, and transmits the methane value data to the controller.
- the control unit compares the received methane price data with a pre-input condition methane value, and when the methane value of the fuel gas is larger than the condition methane value required by the first engine, the opening / closing valve 160 provided on the second fuel gas supply line 140. Open).
- ethane evaporation gas generated in the second storage tank 120 containing ethane gas which is a ship object of the ship, passes through the second fuel gas supply line 140 to be the first fuel gas.
- Natural gas which is the main fuel gas of the first engine passing through the first fuel gas supply line 130, contains a lot of methane, and thus mixed with ethane evaporation gas supplied along the second fuel gas supply line 140. The methane number is then adjusted to a level corresponding to the condition methane number required by the first engine.
- the liquefaction gas for treating the ethane evaporation gas in the second storage tank 120 is liquefied. Since the operation rate of the line 150 can be reduced or stopped, unnecessary power consumption can be reduced. This makes it possible to efficiently consume fuel gas composed of ethane evaporation gas and natural gas.
- the controller closes the on / off valve 160 provided on the second fuel gas supply line 140. .
- the ethane evaporation gas is stopped as fuel gas to the first engine. Only natural gas passing through the first fuel gas supply line 130 is supplied as fuel gas to the first engine. The content of the ethane component of the fuel gas supplied to the first engine is reduced, and the methane value of the fuel gas is increased by increasing the content ratio of the methane component of the fuel gas. In this case, since the ethane evaporation gas is not processed by the second fuel gas supply line 140, the operation rate of the reliquefaction line 150 is increased to increase the internal pressure of the second storage tank 120 by the ethane evaporation gas. Can be prevented.
- FIG. 2 is a conceptual diagram illustrating a fuel gas supply system 200 according to a second embodiment of the present invention.
- the fuel gas supply system 200 may include natural gas.
- the first fuel tank supply line 130 for supplying the first storage tank 110 to accommodate, the second storage tank 120 to accommodate the ethane gas, the liquefied natural gas of the first storage tank 110 to the first engine
- the second fuel gas supply line 240 including the compression unit 241 to supply the ethane evaporation gas of the second storage tank 120 to the engine, and the ash to reliquefy the ethane evaporation gas of the second storage tank 120.
- Control unit for controlling the operation of the liquefied line 150, the gas analyzer 170 for analyzing the methane value of the fuel gas supplied to the first engine, the opening and closing valve 160 provided in the second fuel gas supply line 140 ( Not shown) and a third station receiving ethane evaporation gas pressurized by the compression unit 241 and supplying it to the second engine It may be provided, including a gas supply line 280.
- Fuel gas supply system 100 according to the first embodiment described above except for the additional description of the fuel gas supply system 200 according to the second embodiment of the present invention will be described below.
- the description is the same as, and description is omitted to avoid duplication of contents.
- the second fuel gas supply line 240 is provided to supply ethane evaporation gas generated in the second storage tank 120 to the engine as fuel gas.
- One end of the second fuel gas supply line 240 may be connected to the inside of the second storage tank 120, and the other end may be provided to be connected to the first engine.
- the second fuel gas supply line 240 may include a compression unit 241 including a plurality of compressors to supply ethane evaporation gas in accordance with pressure and temperature conditions required by the engine.
- the compression unit 241 may include a compressor 241a for compressing the ethane evaporation gas and a cooler 241b for cooling the ethane evaporation gas heated while being compressed.
- the compression unit 241 may pressurize the ethane evaporation gas supplied to the second fuel gas supply line to supply the first engine and the second engine.
- a third fuel gas supply line to be described later from the stop of the compression unit 241. 280 may be branched to provide the pressurized boil-off gas to the second engine and the GCU.
- the compression unit 241 is illustrated as being composed of three stages of the compressor 241a and the cooler 241b.
- the compression unit 241 may include various numbers of compression units according to a required pressure condition and temperature of the engine. It can consist of a compressor and a cooler.
- the third fuel gas supply line 280 is branched from the stop of the compression unit 241 of the second fuel gas supply line 240 to provide some pressurized ethane evaporation gas to at least one of the second engine and the GCU. do.
- the third fuel gas supply line 280 may be provided in which the inlet side end is connected to the stop of the compression unit 241, and the outlet side end is branched so that one side is connected to the second engine and the other side is connected to the GCU. .
- the second engine Since the second engine is supplied with fuel gas having a relatively low pressure to generate an output, the second engine is branched from the stop portion of the compression unit 241 that compresses the ethane evaporation gas, thereby receiving some pressurized ethane evaporation gas as the fuel gas. Can work.
- the GCU is supplied with a surplus part of pressurized ethane evaporation gas when the amount of partially pressurized boil-off gas supplied through the third fuel gas supply line 280 is larger than the amount of fuel gas required by the second engine. It is prepared to.
- the fuel gas supply system 200 according to the above-described second embodiment except for the case where the fuel gas supply system 300 according to the third embodiment of the present invention will be described below will be additionally described.
- the description is the same as, and description is omitted to avoid duplication of contents.
- the fuel gas supply system 300 supplies a portion of unliquefied gas not liquefied by the reliquefaction apparatus 151 to the stop part of the compression unit 241 of the second fuel gas supply line 240.
- Liquefied gas discharge line 352 may be further provided.
- ethane evaporation gas may contain trace amounts of methane other than ethane, and since the boiling point of methane is lower than that of ethane, unliquefied methane containing unliquefied methane even after the reliquefaction unit 151 is passed.
- the gas may remain in gaseous state.
- the liquefaction process of ethane evaporation gas may include a pressurization process of ethane evaporation gas, and the unliquefied gas that is not liquefied in the reliquefaction apparatus 151 may have a predetermined pressure.
- the unliquefied gas discharge line 352 supplies the unliquefied gas discharged from the reliquefaction apparatus 151 to the compressor side of the compression unit 241 at a pressure level corresponding to the pressure of the unliquefied gas, thereby supplying the unliquefied gas smoothly. And stable operation of the facility can be achieved.
- the unliquefied gas discharge line is shown to supply the unliquefied gas to the rear end of the second stage compressor 241a of the compression unit 241, but this is an example of the confluence of the compression unit 241 as the unliquefied gas. It can be changed variously according to the pressure level of
- Fuel gas according to the first and second embodiments described above except for the additional description of the fuel gas supply system 400 according to the fourth embodiment of the present invention will be described below.
- the description of the supply system (100, 200, 200 ')
- the description is omitted to prevent duplication of contents.
- the fuel gas supply system 400 includes a first storage tank 110 for accommodating natural gas, a second storage tank 120 for accommodating ethane gas, and The first fuel gas supply line 130 for supplying the liquefied natural gas of the first storage tank 110 to the first engine, the compression unit 241 to supply the ethane evaporation gas of the second storage tank 120 to the engine Analyze the second fuel gas supply line 240, a reliquefaction line 450 for receiving a part of the ethane evaporation gas pressurized by the compression unit 241 to reliquefy, the methane value of the fuel gas supplied to the first engine Supply the pressurized ethane evaporation gas by the control unit (not shown) and the compression unit 241 for controlling the operation of the on-off valve 160 provided in the gas analyzer 170, the second fuel gas supply line 140. It may be
- the reliquefaction line 450 is provided to receive a portion of the ethane evaporation gas pressurized by the compression unit 241 of the second fuel gas supply line 240 to reliquefy.
- the reliquefaction line 450 may be provided branched from the rear end of the compression unit 241 of the second fuel gas supply line 240, and includes a reliquefaction apparatus 151 that receives and reliquefies the pressurized ethane evaporation gas. .
- the reliquefaction apparatus 151 may be provided to re-liquefy the pressurized ethane evaporation gas to change the phase into a liquid state and then resupply the second storage tank 120.
- the reliquefaction apparatus 151 may be provided by connecting the unliquefied gas discharge line 452 in addition to the reliquefaction line 150.
- the ethane evaporation gas may contain a small amount of methane in addition to the ethane, since the boiling point of the methane is lower than the boiling point of the ethane, the unliquefied gas containing methane not liquefied even after the reliquefaction unit 151 May remain gaseous.
- the unliquefied gas discharge line 452 is provided to circulate the unliquefied gas separated from the reliquefaction apparatus 151 to the second fuel gas supply line 240.
- the unliquefied gas discharge line 452 is provided with an inlet side end connected to the reliquefaction apparatus 151, and an outlet side end of the compression section 241 on the second fuel gas supply line 240 or a second storage tank. It may be provided in connection with 120.
- the unliquefied gas discharge line 452 is shown to supply the unliquefied gas of the reliquefaction apparatus 151 to the second fuel gas supply line 240, but also to the second storage tank 120. In the case of supplying or re-supplying together with the second fuel gas supply line 240 and the second storage tank 120 will also be understood.
- Fuel gas supply system (100, 200, 300, 400) of the ship according to an embodiment of the present invention having such a configuration is the ethane evaporation gas generated in the second storage tank 120 for receiving the ethane gas as a transport object It has an effect that can be efficiently processed and consumed.
- the methane value of the fuel gas supplied to the first engine can be maintained at an appropriate level required by the engine, the load applied to the first engine can be minimized, and the performance of the first engine can be effectively exhibited.
- the ethane evaporation gas can be efficiently processed by the second fuel gas supply lines 140 and 240, miniaturization and simplification of the reliquefaction apparatus 151 for reliquefaction of the ethane evaporation gas becomes possible, and unnecessary power consumption. It has an effect to reduce. Furthermore, since a simple structure enables effective fuel gas management, efficient operation can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
선박의 연료가스 공급시스템이 개시된다. 본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 액화천연가스 및 액화천연가스의 천연증발가스를 수용하는 제1저장탱크, 액화에탄가스 및 액화에탄가스의 에탄증발가스를 수용하는 제2저장탱크, 제1저장탱크의 액화천연가스를 기화시켜 제1엔진으로 공급하는 제1연료가스 공급라인 및 제2저장탱크의 에탄증발가스를 제2엔진으로 공급하는 제2연료가스 공급라인을 포함하여 제공될 수 있다.
Description
본 발명은 선박의 연료가스 공급시스템에 관한 것으로서, 더욱 상세하게는 에탄(Ethane)증발가스를 효과적으로 처리함과 동시에, 엔진에 공급되는 연료가스의 메탄가(Methane number)를 조절할 수 있는 선박의 연료가스 공급시스템에 관한 것이다.
선박의 추진 엔진에 공급되는 연료가스 중에서 널리 이용되는 천연가스(Natural Gas)는 메탄(methane)을 주성분으로 하며, 통상적으로 저장 및 수송의 용이성을 위해 천연가스를 약 섭씨 -162도로 냉각해 그 부피를 1/600로 줄인 무색 투명한 초저온 액체인 액화천연가스(Liquefied Natural Gas)로 상변화하여 관리 및 운용을 수행하고 있다.
이러한 액화천연가스는 선체에 단열 처리되어 설치되는 저장탱크에 수용되어 저장 및 수송되며, 선박의 엔진은 액화천연가스 또는 증발가스(Boiled Off Gas) 등을 연료가스로 공급받아 구동된다. 액화천연가스 또는 증발가스는 압축 및 기화 등의 처리과정을 거쳐 엔진이 요구하는 조건에 맞추어 공급된다.
한편 오늘날에는 선박의 추진용 또는 선박의 발전용으로 DFDE 엔진 등과 같은 이종연료 엔진이 널리 이용되고 있으며, 특히 최근에는 중압의 연료가스로 연소가 가능한 X-DF 엔진이 개발되어 이용되고 있다.
천연가스는 메탄 외에도 에탄(Ethane), 프로판(Propane), 부탄(Butane) 등을 포함하며, 생산지에 따라 조성이 달라지는데 액화천연가스 또는 기화된 증발가스를 X-DF 엔진 등에 연료가스로서 공급하기 위해서는 엔진에서 요구하는 메탄가(methane number)의 조건에 맞추어 공급해야 한다. 엔진으로 공급되는 연료가스가 적정 메탄가보다 낮은 경우에는 엔진의 피스톤이 상사점에 도달하기 이전에 폭발 및 연소가 이루어져 엔진 피스톤의 마모, 엔진 효율 저하, 노킹(Knocking) 등의 문제가 야기될 수 있으며, 엔진이 요구하는 적정 메탄가에 맞추어 연료가스를 공급해야 엔진이 정상적인 출력을 낼 수 있기 때문이다.
한편 최근에는 셰일가스(Shale gas)의 연료 효율성이 부각되고, 활용 가능분야가 다양해지면서 생산이 증가하고 있다. 이에 따라 액화천연가스뿐만 아니라 액화에탄가스 등을 운송하는 VLEC(Very Large Ethane Carrier) 등과 같은 액화가스 운송선의 수요가 점점 증가하고 있다. 액화가스 운송선은 천연가스 운송선처럼 엔진에 공급되는 연료가스와 운송 대상물이 동일한 경우도 있지만, 에탄가스 운송선과 같이 엔진에 공급되는 연료가스와 운송 대상물이 서로 다른 경우도 있다. 즉 에탄가스 운송선의 운송 대상물은 상대적으로 끓는 점이 높은 액화에탄가스이며, 엔진에 공급되는 연료가스는 상대적으로 끓는 점이 낮은 액화천연가스인 경우이다.
에탄가스 운송선의 경우, 운송 대상물인 액화에탄가스를 수용 및 저장하는 저장탱크에는 전술한 액화천연가스와 마찬가지로 저장탱크로의 열 침입에 의해 에탄증발가스가 발생한다. 이러한 에탄증발가스를 그대로 방치할 경우에는 저장탱크의 내부압력이 급격히 상승하여 저장탱크의 변형 또는 훼손을 유발할 수 있으며, 화재나 폭발 등의 안전사고를 유발할 수 있다.
본 발명은 엔진에 공급되는 연료가스의 메탄가를 효과적으로 조절하고, 운송 대상물인 액화에탄가스로부터 발생하는 에탄증발가스를 효과적으로 처리할 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 실시 예는 엔진에 공급되는 연료가스의 메탄가를 효율적으로 관리하며, 엔진에 가해지는 부하를 최소화할 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 실시 예는 에탄증발가스의 처리를 위한 장치의 소형화 및 운용의 효율성을 도모할 수 있는 선박의 연료가스 공급시스템을 제공하고자 한다.
본 발명의 일 측면에 따르면, 액화천연가스 및 상기 액화천연가스의 천연증발가스를 수용하는 제1저장탱크, 액화에탄가스 및 상기 액화에탄가스의 에탄증발가스를 수용하는 제2저장탱크, 상기 제1저장탱크의 액화천연가스를 기화시켜 제1엔진으로 공급하는 제1연료가스 공급라인 및 상기 제2저장탱크의 에탄증발가스를 상기 제1엔진으로 공급하는 제2연료가스 공급라인을 포함하여 제공될 수 있다.
상기 제1엔진으로 공급되는 연료가스의 메탄가를 분석하는 가스 애널라이져를 더 포함하여 제공될 수 있다.
상기 제2연료가스 공급라인에 구비되어, 상기 가스 애널라이져에 의해 분석된 메탄가에 기초하여 상기 제1엔진으로 공급되는 에탄증발가스의 양을 조절하는 개폐밸브를 더 포함하여 제공될 수 있다.
상기 제2저장탱크의 에탄증발가스를 액화하여 상기 제2저장탱크로 공급하는 재액화라인을 더 포함하여 제공될 수 있다.
상기 재액화라인에 마련되어 공급된 에탄증발가스를 액화시키는 재액화장치 및 상기 재액화장치에서 액화되지 않은 미액화가스를 처리하는 미액화가스 방출라인을 더 포함하여 제공될 수 있다.
상기 제2연료가스 공급라인은 상기 제2저장탱크의 에탄증발가스를 가압하는 압축부를 구비하고, 상기 압축부 도중의 일부 가압된 에탄증발가스를 제2엔진 및 GCU 중 적어도 어느 하나로 공급하는 제3연료가스 공급라인을 더 포함하여 제공될 수 있다.
상기 미액화가스 방출라인은 입구 측 단부가 상기 재액화장치에 연결되어 마련되고, 출구 측 단부가 상기 압축부 중단으로 합류하도록 연결되어 마련될 수 있다.
상기 제2연료가스 공급라인은 상기 제2저장탱크의 에탄증발가스를 가압하는 압축부를 구비하고, 상기 압축부에 의해 가압된 에탄증발가스의 일부를 액화하여 상기 제2저장탱크로 공급하는 재액화라인을 더 포함하여 제공될 수 있다.
상기 재액화라인에 마련되어 상기 가압된 에탄증발가스의 일부를 액화시키는 재액화장치 및 상기 재액화장치에서 액화되지 않은 미액화가스를 처리하는 미액화가스 방출라인을 더 포함하여 제공될 수 있다.
상기 미액화가스 방출라인은 입구 측 단부가 상기 재액화장치에 연결되어 마련되고, 출구 측 단부가 제2연료가스 공급라인의 압축부 전단으로 합류하도록 연결되어 마련될 수 있다.
상기 압축부 도중의 일부 가압된 에탄증발가스를 제2엔진 및 GCU 중 적어도 어느 하나로 공급하는 제3연료가스 공급라인을 더 포함하여 제공될 수 있다.
상기 제1연료가스 공급라인은 액화천연가스를 가압하는 가압펌프 및 상기 가압펌프에 의해 가압된 액화천연가스를 기화시키는 기화기를 구비하여 제공될 수 있다.
상기 제2연료가스 공급라인은 상기 제1연료가스 공급라인 상의 상기 기화기 후단에 합류되어 연결되어 제공될 수 있다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 엔진에 공급되는 연료가스의 메탄가를 엔진이 요구하는 적정 수준으로 유지하여 공급할 수 있는 효과를 가진다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 에탄가스 저장탱크에 발생하는 에탄증발가스를 효과적으로 처리 및 관리할 수 있는 효과를 가진다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 엔진의 효율을 향상시키고 엔진의 노킹, 피스톤의 마모 등 엔진에 가해지는 부하를 최소화하여 엔진의 내구성 및 수명을 향상시킬 수 있는 효과를 가진다.
본 발명의 실시 예에 의한 선박의 연료가스 공급시스템은 에탄증발가스 처리를 위한 장치의 소형화 및 단순화를 도모하여 설비의 제조원가를 저감하고, 효율적인 운용을 도모할 수 있는 효과를 가진다.
도 1은 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 2는 본 발명의 제2 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 3은 본 발명의 제3 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
도 4는 본 발명의 제4 실시 예에 의한 선박의 연료가스 공급시스템을 나타내는 개념도이다.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
도 1은 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템(100)을 나타내는 개념도이다. 도 1을 참조하면, 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템(100)은 천연가스를 수용하는 제1저장탱크(110), 에탄가스를 수용하는 제2저장탱크(120), 제1저장탱크(110)의 액화천연가스를 제1엔진으로 공급하는 제1연료가스 공급라인(130), 제2저장탱크(120)의 에탄증발가스를 제1엔진으로 공급하는 제2연료가스 공급라인(140), 제2저장탱크(120)의 에탄증발가스를 재액화시키는 재액화라인(150), 제1엔진으로 공급되는 연료가스의 메탄가를 분석하는 가스 애널라이져(170), 제2연료가스 공급라인(140)에 마련되는 개폐밸브(160)의 작동을 제어하는 제어부(미도시)를 포함하여 마련될 수 있다.
제1저장탱크(110) 및 제2저장탱크(120)는 각각 천연가스 및 에탄가스를 수용한다. 구체적으로 제1저장탱크(110)는 액체 상태인 액화천연가스 및 이로부터 증발된 기체 상태의 천연증발가스를 수용하며, 제2저장탱크(120)는 액체 상태인 액화에탄가스 및 이로부터 증발된 기체 상태의 에탄증발가스를 수용한다.
제1저장탱크(110) 및 제2저장탱크(120)는 외부의 열 침입에 의한 액화천연가스 또는 액화에탄가스의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있으며, 제1저장탱크(110)는 액화천연가스의 수용량에 따라 가압식 탱크(C 타입 등)의 방식으로 마련될 수 있다. 제2저장탱크(120)는 에탄가스의 생산지 등으로부터 액화에탄가스를 공급받아 수용 또는 저장하며, 목적지에 이르러 하역하기까지 액화에탄가스 및 에탄증발가스를 안정적으로 보관하거나, 후술하는 바와 같이 에탄증발가스는 제2연료가스 공급라인(140)을 통해 엔진에 연료가스로서 공급될 수 있다. 제1저장탱크(110)에 수용 또는 저장되는 액화천연가스 또는 천연증발가스는 후술하는 바와 같이 선박의 추진용 엔진 또는 선박의 발전용 엔진 등의 연료가스로 이용되도록 마련된다.
제1저장탱크(110) 및 제2저장탱크(120)는 일반적으로 단열 처리되어 설치되나, 외부의 열 침입을 완전히 차단하는 것은 실질적으로 어렵다. 따라서 제1저장탱크(110) 및 제2저장탱크(120)의 내부에는 액화천연가스 및 액화에탄가스가 자연적으로 기화하여 발생하는 천연증발가스 및 에탄증발가스가 존재하게 된다. 이러한 천연증발가스 및 에탄증발가스는 제1저장탱크(110) 및 제2저장탱크(120)의 내부압력을 상승시켜 저장탱크(110, 120)의 변형 및 폭발 등의 위험을 잠재하고 있으므로 천연증발가스 및 에탄증발가스를 각 저장탱크(110, 120)로부터 제거할 필요성이 있다.
이에 따라 도면에는 도시하지 않았으나, 제1저장탱크(110) 내부에 발생된 천연증발가스는 별도의 연료가스 공급라인(미도시)을 통해 액화천연가스와 마찬가지로 엔진에 연료가스로서 공급하거나, 벤트마스트(미도시) 또는 GCU(Gas Combustion Unit, 미도시)로 공급하여 과도하게 발생하는 천연증발가스를 처리할 수 있다.
제2저장탱크(120) 내부에 발생되는 에탄증발가스는 후술하는 바와 같이, 제2연료가스 공급라인(140)을 통해 엔진에 연료가스로서 공급하거나, 재액화라인(150)을 통해 재액화시켜 제2저장탱크(120)에 재공급할 수 있다. 또한 제1저장탱크(110)와 마찬가지로 벤트마스트(미도시) 또는 GCU(Gas Combustion Unit, 미도시)가 제2저장탱크(120)에도 마련되어 과도하게 발생하는 에탄증발가스를 처리할 수 있다.
엔진은 제1저장탱크(110)에 수용된 액화천연가스 또는 제2저장탱크(120)에 수용된 에탄증발가스 등의 연료가스를 공급받아 선박의 추진력을 발생시키거나 선박의 내부 설비 등의 발전용 전원을 발생시킬 수 있다. 엔진은 상대적으로 고압의 연료가스를 공급받아 출력을 발생시키는 제1엔진과, 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키는 제2엔진을 포함할 수 있다. 일 예로 제1엔진은 상대적으로 고압의 연료가스로 출력을 발생시킬 수 있는 X-DF 엔진(약 16 bar 내지 18 bar)으로 이루어지고, 제2엔진은 상대적으로 저압의 연료가스로 출력을 발생시킬 수 있는 DFDE 엔진(약 5 bar 내지 8 bar) 등으로 이루어질 수 있다. 그러나 이에 한정되는 것은 아니며, 다양한 수의 엔진 및 다양한 종류의 엔진이 이용되는 경우에도 동일하게 이해되어야 할 것이다.
제1엔진이 X-DF 엔진으로 이루어지는 경우, 제1엔진에 공급되는 연료가스로 천연가스가 이용되는 경우에, 연료가스의 메탄가(Methane number)를 제1엔진이 요구하는 조건 메탄가로 맞추어 공급해 주어야 한다. 천연가스는 주성분이 메탄(Methane)으로서, 메탄 외에도 에탄(Ethane), 프로판(Propane), 부탄(Butane) 등을 포함하는데 제1엔진이 요구하는 조건 메탄가에 맞추어 연료가스를 공급해야 노킹(Knocking), 제1엔진 효율 저하, 제1엔진 피스톤의 마모를 방지할 수 있으며, 제1엔진이 정상적인 출력을 발휘할 수 있다.
제1연료가스 공급라인(130)은 제1저장탱크(110)에 수용 또는 저장된 액화천연가스를 제1엔진에 연료가스로서 공급하도록 마련된다. 제1연료가스 공급라인(130)은 그 일단이 제1저장탱크(110)의 내부에 연결되어 마련되고, 타단 측에는 후술하는 제2연료가스 공급라인(140)이 합류되어 제1엔진으로 연결된다. 제1연료가스 공급라인(130)의 일단은 제1저장탱크(110) 내부의 하측에 배치될 수 있으며, 액화천연가스를 제1엔진 측으로 공급하기 위해 송출펌프(133)가 마련될 수 있다. 이와는 달리, 송출펌프(133) 대신 제1저장탱크(110)에 압력생성장치(Pressure Build-up Unit, PBU)가 설치되어 제1저장탱크(110)의 내부압력을 상승시켜 액화천연가스를 제1연료가스 공급라인(130)으로 공급하도록 마련될 수도 있다.
제1연료가스 공급라인(130) 상에는 송출펌프(133)에 의해 공급된 액화천연가스를 제1엔진이 요구하는 조건에 맞추어 처리할 수 있도록 액화천연가스를 가압하는 가압펌프(131) 및 가압펌프(131)에 의해 가압된 액화천연가스를 기화시키는 기화기(132) 등을 구비할 수 있다. 제1연료가스 공급라인(130)과 제2연료가스 공급라인(140)은 기화기(132) 후단에 합류되어 연결될 수 있으며, 제1연료가스 공급라인(130)과 제2연료가스 공급라인(140)이 합류한 지점 이후의 라인에 후술하는 가스 애널라이져(170)가 마련될 수 있다.
본 실시 예 및 도 1에서는 제1연료가스 공급라인(130)이 제1저장탱크(110)에 수용 또는 저장된 액화천연가스를 압축 및 기화하여 제1엔진에 연료가스로서 공급하는 경우로 적용하여 설명하고 있으나, 이는 본 발명에 대한 이해를 돕기 위한 일 예로서, 제1연료가스 공급라인(130)이 제1저장탱크(110)에 수용 또는 저장된 천연증발가스를 압축 및 기화하여 제1엔진에 연료가스로 공급하는 경우 및 제1저장탱크(110)의 액화천연가스 및 천연증발가스를 함께 제1엔진에 연료가스로서 공급하는 경우에도 동일하게 이해되어야 한다.
한편 제1연료가스 공급라인(130)을 통해 제1엔진으로 공급되는 액화천연가스는 전술한 바와 같이, 메탄을 주성분으로 하여 그 외에도 에탄, 프로판, 부탄 등의 성분을 함유하고 있다. 이 때 제1연료가스 공급라인(130)을 따라 흐르는 연료가스의 메탄가가 제1엔진이 요구하는 메탄가를 상회하는 경우가 존재할 수 있다. 일 예로 메탄의 끓는 점은 섭씨 -161.5도로써, 천연가스의 기타 성분인 에탄(끓는 점 섭씨 -89도), 프로판(끓는 점 섭씨 -45도) 등에 비해 낮으므로, 제1저장탱크(110) 내부에서 발생되는 천연증발가스에는 상대적으로 메탄의 함유량이 많다. 이에 따라 제1저장탱크(110)에 액화천연가스를 가득 실은 가득 실은 만선항해(Laden Voyage) 시에는 자연적으로 발생하는 천연증발가스의 발생량도 많아지게 되므로, 천연증발가스의 재액화 또는 천연증발가스와 액화천연가스의 혼합에 의해 제1연료가스 공급라인(130)을 통과하는 연료가스의 메탄가가 제1엔진이 요구하는 조건 메탄가를 상회하는 경우가 발생될 수 있다. 이는 제1엔진이 충분한 출력 및 및 성능을 발휘할 수 있는 조건 메탄가보다 높은 메탄가의 연료가스를 공급하는 것으로서 비효율적인 연료가스 소비이다.
제2연료가스 공급라인(140)은 제2저장탱크(120)에 기화되어 발생된 에탄증발가스를 제1엔진에 연료가스로서 공급하도록 마련된다. 제2연료가스 공급라인(140)은 그 일단이 제2저장탱크(120)의 내부에 연결되어 마련되고, 타단은 제1연료가스 공급라인(130)과 합류하여 제1엔진으로 연결되어 마련된다. 제2연료가스 공급라인(140)의 일단은 제2저장탱크(120) 내부의 상측에 배치될 수 있으며, 후술하는 재액화라인(150)의 입구 측 단부가 분기되어 마련될 수 있다. 제2연료가스 공급라인(140)은 도면에는 도시하지 않았으나, 제1엔진에 요구하는 연료가스의 조건에 맞추어 에탄증발가스를 처리하여 공급할 수 있도록 컴프레서 또는 쿨러(미도시) 등의 처리 설비가 추가적으로 구비될 수 있다.
전술한 바와 같이, 제1엔진에 연료가스로서 공급되는 천연가스는 주성분인 메탄 외에도 에탄 성분을 함유할 수 있다. 이 점을 이용하여, 제2저장탱크(120)에 발생되는 에탄증발가스를 천연가스와 함께 연료가스로 제1엔진에 공급함으로써, 제1엔진으로 공급되는 연료가스의 메탄가를 제1엔진이 요구하는 조건 메탄가에 상응하는 수준으로 적절하게 조절할 수 있다. 나아가 제2저장탱크(120) 내부에 발생되는 에탄증발가스를 연료가스로서 소비하게 되므로, 제2저장탱크(120) 내부의 에탄증발가스 처리를 위한 재액화장치(151) 등의 설비가 불필요해지거나, 소형화 될 수 있으므로 설비 운용의 효율성을 도모할 수 있게 된다.
재액화라인(150)은 제2저장탱크(120) 내부의 에탄증발가스를 재액화시켜 처리하도록 마련된다. 재액화라인(150)은 제2연료가스 공급라인(140)으로부터 분기되어 마련될 수 있으며, 제2저장탱크(120)의 에탄증발가스를 공급받아 재액화시키는 재액화장치(151)를 구비한다. 재액화장치(151)는 에탄증발가스를 냉각시켜 액체 상태로 상 변화시킨 후 제2저장탱크(120)로 재공급하도록 마련될 수 있다.
재액화장치(151)는 열교환을 수행하는 열교환장치로 이루어질 수 있다. 구체적으로 도면에는 도시하지 않았으나, 재액화장치(151)는 재액화라인(150)을 통과하는 에탄증발가스와 제1저장탱크(110)에 수용되는 액화천연가스를 상호 열교환하여 에탄증발가스를 재액화시키는 열교환기로 이루어질 수 있다.
재액화장치(151)는 재액화라인(150) 외에 미액화가스 방출라인(152)을 구비할 수 있다. 에탄증발가스 내에는 에탄 외 미량의 메탄이 포함될 수 있으며, 메탄의 끓는 점은 에탄의 끓는 점보다 낮기 때문에 재액화장치(151)를 거친 이후에도 액화되지 않은 메탄을 포함하는 미액화가스가 기체 상태로 남을 수 있다. 미액화가스와 에탄증발가스가 섞일 경우 재액화장치(151)에 혼합된 가스가 공급되어 미액화가스 유입량에 대한 재액화 에너지가 추가로 소비될 수 있다. 이에 미액화가스 방출라인(152)을 통해 미액화가스를 제2저장탱크(120)로부터 분리함으로써, 미액화가스와 에탄증발가스가 섞이는 것을 방지하고, 재액화장치(151)의 설비 운용의 효율성을 도모할 수 있게 된다.
개폐밸브(160)는 제2연료가스 공급라인(140) 상에 마련될 수 있다. 개폐밸브(160)는 제2연료가스 공급라인(140)을 통과하는 에탄증발가스의 유량 및 개폐여부를 조절하여, 제1엔진에 공급되는 연료가스의 메탄가를 조절할 수 있으며, 제1엔진에 공급되는 연료가스의 종류를 선택적으로 사용할 수 있게 한다. 개폐밸브(160)는 후술하는 제어부(미도시)에 의해 개폐 작동이 조절되거나, 작업자에 의해 수동으로 개폐 작동 될 수 있다.
가스 애널라이져(170)는 제1엔진으로 공급되는 연료가스의 메탄가를 분석하도록 마련된다. 가스 애널라이져(170)는 연료가스의 메탄 함유량을 분석할 수 있도록 메탄 검지기로 이루어질 수 있다. 가스 애널라이져(170)는 정확한 분석을 위해 제1연료가스 공급라인(130) 및 제2연료가스 공급라인(140)이 합류된 지점의 후단 또는 제1엔진으로 공급되기 직전의 연료가스 공급라인 상에 마련될 수 있다. 가스 애널라이져(170)는 연료가스의 메탄가를 일정 주기로 또는 연속적으로 분석하여 메탄가 데이터를 선박의 탑승자 또는 제어부(미도시)로 송출할 수 있다.
제어부(미도시)는 개폐밸브(160)의 개폐 작동을 조절하도록 마련될 수 있다. 제어부는 가스 애널라이져(170)로부터 수신된 메탄가 데이터를 기 입력된 조건 메탄가와 비교한 후 개폐밸브(160)의 개폐 작동을 제어할 수 있다. 제어부는 이외에도 전술한 가압펌프(131), 기화기(132) 또는 재액화장치(151) 등의 기타 구성의 작동을 총괄적으로 제어하는 시스템으로 이루어질 수 있으며, 자동화시스템에 의해 제1엔진에 공급되는 연료가스의 공급량 및 메탄가를 종합적으로 분석 및 제어하도록 마련될 수 있다.
이하에서는 본 발명의 제1 실시 예에 의한 선박의 연료가스 공급시스템(100)의 작동에 대해 설명한다.
가스 애널라이져(170)는 제1연료가스 공급라인(130) 및 제2연료가스 공급라인(140)을 통해 제1엔진으로 공급되는 연료가스의 메탄가를 분석하고, 메탄가 데이터를 제어부로 송출한다. 제어부는 수신된 메탄가 데이터를 기 입력된 조건 메탄가와 비교하여, 연료가스의 메탄가가 제1엔진이 요구하는 조건 메탄가보다 큰 경우에는 제2연료가스 공급라인(140) 상에 마련되는 개폐밸브(160)를 개방시킨다.
개폐밸브(160)가 개방됨으로써, 선박의 운송 대상물인 에탄가스를 수용하는 제2저장탱크(120) 내부에 발생하는 에탄증발가스가 제2연료가스 공급라인(140)을 통과하여 제1연료가스 공급라인(130)과 합류한다. 제1연료가스 공급라인(130)을 통과하는 제1엔진의 주 연료가스인 천연가스는 메탄 성분을 상대적으로 많이 함유하고 있으므로 제2연료가스 공급라인(140)을 따라 공급되는 에탄증발가스와 혼합되어, 메탄가가 제1엔진이 요구하는 조건 메탄가에 상응하는 수준으로 조절된다. 이 경우에는 제2연료가스 공급라인(140)을 통해 제2저장탱크(120) 내부의 에탄증발가스가 연료가스로서 소비되므로, 제2저장탱크(120)의 에탄증발가스를 처리하기 위한 재액화라인(150)의 가동율을 감소하거나 작동을 중지시킬 수 있으므로 불필요한 전력 소모를 저감할 수 있다. 이로써 에탄증발가스 및 천연가스로 이루어지는 연료가스를 효율적으로 소비할 수 있게 된다.
이와는 반대로, 제어부는 가스 애널라이져(170)로부터 수신된 메탄가 데이터가 제1엔진이 요구하는 조건 메탄가보다 작은 경우에는 제2연료가스 공급라인(140) 상에 마련되는 개폐밸브(160)를 폐쇄시킨다.
개폐밸브(160)가 폐쇄됨으로써, 에탄증발가스는 제1엔진에 연료가스로서 공급이 중단되며. 제1연료가스 공급라인(130)을 통과한 천연가스만이 제1엔진에 연료가스로서 공급된다. 제1엔진으로 공급되는 연료가스의 에탄 성분의 함량이 감소하게 되고, 이에 상대적으로 연료가스의 메탄 성분의 함량비가 증가하여 연료가스의 메탄가가 상승하게 된다. 이 경우에는 제2연료가스 공급라인(140)에 의해 에탄증발가스가 처리되지 못하므로, 재액화라인(150)의 가동율을 증가시켜 에탄증발가스에 의한 제2저장탱크(120)의 내부압력 상승을 방지할 수 있게 된다.
이상 실시 예에서는 본 발명에 대한 이해를 돕기 위해, 개폐밸브(160)가 개방 또는 폐쇄되는 경우 만을 적용하여 설명하였으나, 개폐밸브(160)의 개방정도 또는 폐쇄정도를 조절하여 제2연료가스 공급라인(140)을 통과하는 에탄증발가스의 유량을 단계적으로 조절하는 경우에도 동일하게 이해되어야 할 것이다.
이하에서는 본 발명의 제2 실시 예에 의한 연료가스 공급시스템(200)에 대해 설명한다.
도 2는 본 발명의 제2 실시 예에 의한 연료가스 공급시스템(200)을 나타내는 개념도로서, 도 2를 참조하면, 본 발명의 제2 실시 예에 의한 연료가스 공급시스템(200)은 천연가스를 수용하는 제1저장탱크(110), 에탄가스를 수용하는 제2저장탱크(120), 제1저장탱크(110)의 액화천연가스를 제1엔진으로 공급하는 제1연료가스 공급라인(130), 제2저장탱크(120)의 에탄증발가스를 엔진으로 공급하도록 압축부(241)를 구비하는 제2연료가스 공급라인(240), 제2저장탱크(120)의 에탄증발가스를 재액화시키는 재액화라인(150), 제1엔진으로 공급되는 연료가스의 메탄가를 분석하는 가스 애널라이져(170), 제2연료가스 공급라인(140)에 마련되는 개폐밸브(160)의 작동을 제어하는 제어부(미도시) 및 압축부(241)에 의해 일부 가압된 에탄증발가스를 공급받아 제2엔진으로 공급하는 제3연료가스 공급라인(280)을 포함하여 마련될 수 있다.
이하에서 설명하는 본 발명의 제2 실시 예에 의한 연료가스 공급시스템(200)에 대한 설명 중 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 제1 실시 예에 의한 연료가스 공급시스템(100)에 대한 설명과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
제2연료가스 공급라인(240)은 제2저장탱크(120)에서 발생된 에탄증발가스를 엔진에 연료가스로서 공급하도록 마련된다. 제2연료가스 공급라인(240)은 그 일단이 제2저장탱크(120)의 내부에 연결되어 마련되고, 타단은 제1엔진에 연결되어 마련될 수 있다. 제2연료가스 공급라인(240)은 에탄증발가스를 엔진이 요구하는 압력 및 온도조건에 맞추어 공급할 수 있도록 복수 단의 컴프레서를 구비하는 압축부(241)를 구비할 수 있다.
압축부(241)는 에탄증발가스를 압축하는 컴프레서(241a)와 압축되면서 가열된 에탄증발가스를 냉각시키는 쿨러(241b)를 포함할 수 있다. 압축부(241)는 제2연료가스 공급라인으로 공급되는 에탄증발가스를 가압하여 제1엔진 및 제2엔진으로 공급시켜줄 수 있다. 전술한 바와 같이 제1엔진 및 제2엔진이 서로 다른 압력조건을 갖는 복수개의 엔진으로 이루어지는 경우에는 도 2에 도시된 바와 같이, 압축부(241)의 중단부로부터 후술하는 제3연료가스 공급라인(280)이 분기되어 제2엔진 및 GCU로 일부 가압된 증발가스를 공급하도록 마련될 수 있다.
도 2에서는 압축부(241)가 3단의 컴프레서(241a) 및 쿨러(241b)로 이루어진 것으로 도시되어 있으나, 이는 일 예로서 엔진의 요구 압력조건 및 온도에 따라 압축부(241)는 다양한 수의 컴프레서 및 쿨러로 이루어질 수 있다.
제3연료가스 공급라인(280)은 제2연료가스 공급라인(240)의 압축부(241) 중단부로부터 분기되어 마련되어 일부 가압된 에탄증발가스를 제2엔진 및 GCU중 적어도 어느 하나로 공급하도록 마련된다. 제3연료가스 공급라인(280)은 입구 측 단부가 압축부(241)의 중단부에 연결되어 마련되고, 출구 측 단부는 분기되어 일측은 제2엔진, 타측은 GCU에 연결되어 마련될 수 있다.
제2엔진은 상대적으로 저압의 연료가스를 공급받아 출력을 발생시키므로, 에탄증발가스를 압축하는 압축부(241)의 중단부로부터 분기되어 마련됨으로써, 일부 가압된 에탄증발가스를 연료가스로 공급받아 작동될 수 있다. GCU는 제2엔진이 요구하는 연료가스의 공급량보다 제3연료가스 공급라인(280)을 통해 공급되는 일부 가압된 증발가스의 공급량이 더 많은 경우, 잉여의 일부 가압된 에탄증발가스를 공급받아 소비시키도록 마련된다.
이하에서는 본 발명의 제3 실시 예에 의한 연료가스 공급시스템(200)에 대해 설명한다.
이하에서 설명하는 본 발명의 제3 실시 예에 의한 연료가스 공급시스템(300)에 대한 설명 중 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 제2 실시 예에 의한 연료가스 공급시스템(200)에 대한 설명과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
제3 실시 예에 의한 연료가스 공급시스템(300)은 재액화장치(151)에서 액화되지 않은 일부의 미액화가스를 제2연료가스 공급라인(240)의 압축부(241) 중단부로 공급하는 미액화가스 방출라인(352)을 더 포함하여 마련될 수 있다.
전술한 바와 같이, 에탄증발가스 내에는 에탄 외 미량의 메탄이 포함될 수 있으며, 메탄의 끓는 점은 에탄의 끓는 점보다 낮기 때문에 재액화장치(151)를 거친 이후에도 액화되지 않은 메탄을 포함하는 미액화가스가 기체 상태로 남을 수 있다. 또한 일반적으로 에탄증발가스의 재액화 공정에는 에탄증발가스의 가압공정이 포함될 수 있는 바, 재액화장치(151)에서 액화되지 않은 미액화가스 역시 소정의 압력을 가질 수 있다. 이에 미액화가스 방출라인(352)이 재액화장치(151)로부터 배출된 미액화가스를 미액화가스의 압력과 상응하는 압력수준의 압축부(241)의 컴프레서 측으로 공급하여 미액화가스의 원활한 공급 및 설비의 안정적인 운용을 도모할 수 있다. 도 3에서는 미액화가스 방출라인이 미액화가스를 압축부(241)의 2단 컴프레서(241a) 후단으로 공급하는 것으로 도시되어 있으나, 이는 일 예로서 압축부(241)의 합류 지점은 미액화가스의 압력수준에 따라 다양하게 변경될 수 있다.
이하에서는 본 발명의 제4 실시 예에 의한 연료가스 공급시스템(400)에 대해 설명한다.
이하에서 설명하는 본 발명의 제4 실시 예에 의한 연료가스 공급시스템(400)에 대한 설명 중 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 제1 실시 예 및 제2 실시 예에 의한 연료가스 공급시스템(100, 200, 200')에 대한 설명과 동일한 것으로서, 내용의 중복을 방지하기 위해 설명을 생략한다.
도 4는 본 발명의 제4 실시 예에 의한 연료가스 공급시스템(400)을 나타내는 개념도이다. 도 4를 참조하면, 본 발명의 제4 실시 예에 의한 연료가스 공급시스템(400)은 천연가스를 수용하는 제1저장탱크(110), 에탄가스를 수용하는 제2저장탱크(120), 제1저장탱크(110)의 액화천연가스를 제1엔진으로 공급하는 제1연료가스 공급라인(130), 제2저장탱크(120)의 에탄증발가스를 엔진으로 공급하도록 압축부(241)를 구비하는 제2연료가스 공급라인(240), 압축부(241)에 의해 가압된 에탄증발가스의 일부를 공급받아 재액화시키는 재액화라인(450), 제1엔진으로 공급되는 연료가스의 메탄가를 분석하는 가스 애널라이져(170), 제2연료가스 공급라인(140)에 마련되는 개폐밸브(160)의 작동을 제어하는 제어부(미도시) 및 압축부(241)에 의해 일부 가압된 에탄증발가스를 공급받아 제2엔진으로 공급하는 제3연료가스 공급라인(280)을 포함하여 마련될 수 있다.
재액화라인(450)은 제2연료가스 공급라인(240)의 압축부(241)에 의해 가압된 에탄증발가스의 일부를 공급받아 재액화시키도록 마련된다.
재액화라인(450)은 제2연료가스 공급라인(240)의 압축부(241) 후단으로부터 분기되어 마련될 수 있으며, 가압된 에탄증발가스를 공급받아 재액화시키는 재액화장치(151)를 구비한다. 재액화장치(151)는 가압된 에탄증발가스를 재액화하여 액체 상태로 상변화시킨 후 제2저장탱크(120)로 재공급하도록 마련될 수 있다.
재액화장치(151)는 재액화라인(150) 외에 미액화가스 방출라인(452)이 연결되어 마련될 수 있다. 전술한 바와 같이, 에탄증발가스는 에탄 외에 미량의 메탄이 포함될 수 있으며, 메탄의 끓는 점은 에탄의 끓는 점보다 낮기 때문에 재액화장치(151)를 거친 이후에도 액화되지 않은 메탄을 포함하는 미액화가스가 기체 상태로 남을 수 있다. 이러한 미액화가스를 처리 및 순환시키도록 미액화가스 방출라인은(452) 재액화장치(151)에서 분리된 미액화가스를 제2연료가스 공급라인(240) 측으로 순환시키도록 마련된다. 미액화가스 방출라인(452)은 입구 측 단부가 재액화장치(151)에 연결되어 마련되되, 출구 측 단부가 제2연료가스 공급라인(240) 상의 압축부(241) 전단 또는 제2저장탱크(120)와 연결되어 마련될 수 있다.
도 4에서는 미액화가스 방출라인(452)이 재액화장치(151)의 미액화가스를 제2연료가스 공급라인(240)으로 공급하는 것으로 도시되어 있으나, 이 외에도 제2저장탱크(120)로 공급하거나, 제2연료가스 공급라인(240) 및 제2저장탱크(120)로 함께 재공급하는 경우에도 동일하게 이해되어야 할 것이다.
이와 같은 구성을 갖는 본 발명의 실시 예에 의한 선박의 연료가스 공급시스템(100, 200, 300, 400)은 운송 대상물인 에탄가스를 수용하는 제2저장탱크(120)에 발생되는 에탄증발가스를 효율적으로 처리 및 소비할 수 있는 효과를 가진다. 또한 제1엔진에 공급되는 연료가스의 메탄가를 엔진이 요구하는 적정 수준으로 유지하여 공급할 수 있으므로 제1엔진에 가해지는 부하를 최소화하고, 제1엔진의 성능을 효과적으로 발휘할 수 있다.
또한 제2연료가스 공급라인(140, 240)에 의해 에탄증발가스를 효율적으로 처리할 수 있으므로, 에탄증발가스의 재액화를 위한 재액화장치(151)의 소형화 및 단순화가 가능해지고, 불필요한 전력소모를 저감할 수 있는 효과를 가진다. 나아가 단순한 구조로서 효과적인 연료가스의 관리가 가능해지므로 효율적인 운용을 도모할 수 있는 효과를 가진다.
이상 실시 예에서는 본 발명에 대한 이해를 돕기 위한 일 예로서, 액화천연가스와 액화에탄가스의 상대적 관계 및 이로부터 발생하는 증발가스를 적용하여 설명하였으나, 이에 한정되는 것은 아니며 액화천연가스와 액화메틸렌 등과 같이 메탄 성분의 비율이 상대적으로 차이가 나는 이종의 액화가스들에 대하여 동일한 기술적 사상으로 동일하게 적용이 가능하다.
본 발명은 첨부된 도면에 도시된 일 실시 예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
이상과 같이 본 발명에 의한 실시 예를 살펴보았으며, 앞서 설명된 실시 예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시 예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.
Claims (13)
- 액화천연가스 및 상기 액화천연가스의 천연증발가스를 수용하는 제1저장탱크;액화에탄가스 및 상기 액화에탄가스의 에탄증발가스를 수용하는 제2저장탱크;상기 제1저장탱크의 액화천연가스를 기화시켜 제1엔진으로 공급하는 제1연료가스 공급라인; 및상기 제2저장탱크의 에탄증발가스를 상기 제1엔진으로 공급하는 제2연료가스 공급라인을 포함하는 선박의 연료가스 공급시스템.
- 제1항에 있어서,상기 제1엔진으로 공급되는 연료가스의 메탄가를 분석하는 가스 애널라이져를 더 포함하는 선박의 연료가스 공급시스템.
- 제2항에 있어서,상기 제2연료가스 공급라인에 구비되어, 상기 가스 애널라이져에 의해 분석된 메탄가에 기초하여 상기 제1엔진으로 공급되는 에탄증발가스의 양을 조절하는 개폐밸브를 더 포함하는 선박의 연료가스 공급시스템.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 제2저장탱크의 에탄증발가스를 액화하여 상기 제2저장탱크로 공급하는 재액화라인을 더 포함하는 선박의 연료가스 공급시스템.
- 제4항에 있어서,상기 재액화라인에 마련되어 공급된 에탄증발가스를 액화시키는 재액화장치; 및상기 재액화장치에서 액화되지 않은 미액화가스를 처리하는 미액화가스 방출라인을 더 포함하는 선박의 연료가스 공급시스템.
- 제5항에 있어서,상기 제2연료가스 공급라인은 상기 제2저장탱크의 에탄증발가스를 가압하는 압축부를 구비하고,상기 압축부 도중의 일부 가압된 에탄증발가스를 제2엔진 및 GCU 중 적어도 어느 하나로 공급하는 제3연료가스 공급라인을 더 포함하는 선박의 연료가스 공급시스템.
- 제5항에 있어서,상기 미액화가스 방출라인은입구 측 단부가 상기 재액화장치에 연결되어 마련되고, 출구 측 단부가 상기 압축부 중단으로 합류하도록 연결되어 마련되는 선박의 연료가스 공급시스템.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 제2연료가스 공급라인은 상기 제2저장탱크의 에탄증발가스를 가압하는 압축부를 구비하고,상기 압축부에 의해 가압된 에탄증발가스의 일부를 액화하여 상기 제2저장탱크로 공급하는 재액화라인을 더 포함하는 선박의 연료가스 공급시스템.
- 제8항에 있어서,상기 재액화라인에 마련되어 상기 가압된 에탄증발가스의 일부를 액화시키는 재액화장치; 및상기 재액화장치에서 액화되지 않은 미액화가스를 처리하는 미액화가스 방출라인을 더 포함하는 선박의 연료가스 공급시스템.
- 제9항에 있어서,상기 미액화가스 방출라인은입구 측 단부가 상기 재액화장치에 연결되어 마련되고, 출구 측 단부가 제2연료가스 공급라인의 압축부 전단으로 합류하도록 연결되어 마련되는 선박의 연료가스 공급시스템.
- 제10항에 있어서,상기 압축부 도중의 일부 가압된 에탄증발가스를 제2엔진 및 GCU 중 적어도 어느 하나로 공급하는 제3연료가스 공급라인을 더 포함하는 선박의 연료가스 공급시스템.
- 제4항에 있어서,상기 제1연료가스 공급라인은액화천연가스를 가압하는 가압펌프 및상기 가압펌프에 의해 가압된 액화천연가스를 기화시키는 기화기를 구비하는 선박의 연료가스 공급시스템.
- 제12항에 있어서,상기 제2연료가스 공급라인은상기 제1연료가스 공급라인 상의 상기 기화기 후단에 합류되어 연결되는 선박의 연료가스 공급시스템.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0003279 | 2015-01-09 | ||
KR20150003279 | 2015-01-09 | ||
KR1020150141548A KR20160086254A (ko) | 2015-01-09 | 2015-10-08 | 선박의 연료가스 공급시스템 |
KR10-2015-0141548 | 2015-10-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016111500A1 true WO2016111500A1 (ko) | 2016-07-14 |
Family
ID=56356143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/014503 WO2016111500A1 (ko) | 2015-01-09 | 2015-12-30 | 선박의 연료가스 공급시스템 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016111500A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017796A1 (en) * | 2017-07-21 | 2019-01-24 | Wärtsilä Gas Solutions Norway AS | LOW-EMISSION OIL SHIP, SUPPLIED IN EXCESS OF VOLATILE ORGANIC COMPOUND (VOC) |
CN110553143A (zh) * | 2018-06-01 | 2019-12-10 | 株式会社神户制钢所 | 气体供应系统 |
WO2023024301A1 (zh) * | 2021-08-26 | 2023-03-02 | 中国石油大学(华东) | 基于中间介质换热的lng双燃料船voc回收系统及工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010018833A1 (en) * | 2000-01-26 | 2001-09-06 | Josef Pozivil | Apparatus for reliquefying compressed vapour |
KR20060123675A (ko) * | 2006-10-04 | 2006-12-04 | 신영중공업주식회사 | Lng bog 재액화 장치 및 방법 |
WO2009136793A1 (en) * | 2008-05-08 | 2009-11-12 | Hamworthy Gas Systems As | Gas supply systems for gas engines |
KR101277833B1 (ko) * | 2013-03-06 | 2013-06-21 | 현대중공업 주식회사 | Lng 연료 공급 시스템 |
KR20150001597A (ko) * | 2013-06-26 | 2015-01-06 | 대우조선해양 주식회사 | 증발가스 처리 시스템 |
-
2015
- 2015-12-30 WO PCT/KR2015/014503 patent/WO2016111500A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010018833A1 (en) * | 2000-01-26 | 2001-09-06 | Josef Pozivil | Apparatus for reliquefying compressed vapour |
KR20060123675A (ko) * | 2006-10-04 | 2006-12-04 | 신영중공업주식회사 | Lng bog 재액화 장치 및 방법 |
WO2009136793A1 (en) * | 2008-05-08 | 2009-11-12 | Hamworthy Gas Systems As | Gas supply systems for gas engines |
KR101277833B1 (ko) * | 2013-03-06 | 2013-06-21 | 현대중공업 주식회사 | Lng 연료 공급 시스템 |
KR20150001597A (ko) * | 2013-06-26 | 2015-01-06 | 대우조선해양 주식회사 | 증발가스 처리 시스템 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017796A1 (en) * | 2017-07-21 | 2019-01-24 | Wärtsilä Gas Solutions Norway AS | LOW-EMISSION OIL SHIP, SUPPLIED IN EXCESS OF VOLATILE ORGANIC COMPOUND (VOC) |
CN110553143A (zh) * | 2018-06-01 | 2019-12-10 | 株式会社神户制钢所 | 气体供应系统 |
WO2023024301A1 (zh) * | 2021-08-26 | 2023-03-02 | 中国石油大学(华东) | 基于中间介质换热的lng双燃料船voc回收系统及工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016200089A1 (ko) | 연료가스 공급시스템 | |
WO2010101356A2 (ko) | 재액화 기능을 가지는 전기추진 lng 운반선의 증발가스 처리장치 및 방법 | |
JP6475871B2 (ja) | 船舶の燃料ガス供給システム | |
KR101386543B1 (ko) | 선박의 증발가스 처리 시스템 | |
KR101356003B1 (ko) | 선박의 증발가스 처리 시스템 | |
WO2014065617A1 (ko) | 선박용 엔진의 하이브리드 연료공급 시스템 및 방법 | |
WO2015130122A1 (ko) | 증발가스 처리 시스템 | |
WO2021015399A1 (ko) | 선박의 연료가스 관리시스템 | |
KR20190135982A (ko) | 해상 구조물의 증발가스 처리 시스템 | |
KR20010060256A (ko) | 액화천연가스 운반선에서의 카고탱크의 압력제어장치 및그 압력제어방법 | |
KR20140076490A (ko) | 선박의 액화가스 처리 시스템 | |
KR101519537B1 (ko) | 선박의 증발가스 처리 시스템 | |
WO2016111500A1 (ko) | 선박의 연료가스 공급시스템 | |
KR20170011239A (ko) | 증발가스 처리 시스템 | |
KR20180125086A (ko) | 연료가스 공급시스템 | |
KR20160086254A (ko) | 선박의 연료가스 공급시스템 | |
KR20160095475A (ko) | 연료가스 공급시스템 | |
WO2022158736A1 (ko) | 선박용 재액화 시스템의 냉매 사이클 압력 조절 시스템 | |
WO2023043030A1 (ko) | 증발가스 재액화 시스템 및 이를 포함하는 선박 | |
KR20190042293A (ko) | 휘발성 유기화합물 처리 시스템 및 선박 | |
KR101356004B1 (ko) | 선박의 증발가스 처리 방법 | |
KR20210008452A (ko) | 선박의 연료가스 관리시스템 | |
KR20160142421A (ko) | 연료가스 공급시스템 | |
KR102189796B1 (ko) | 연료가스 공급시스템 | |
KR101661938B1 (ko) | 연료가스 공급시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15877220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15877220 Country of ref document: EP Kind code of ref document: A1 |