WO2016111320A1 - 濾過器、体腔液処理システム及び体腔液処理方法 - Google Patents

濾過器、体腔液処理システム及び体腔液処理方法 Download PDF

Info

Publication number
WO2016111320A1
WO2016111320A1 PCT/JP2016/050277 JP2016050277W WO2016111320A1 WO 2016111320 A1 WO2016111320 A1 WO 2016111320A1 JP 2016050277 W JP2016050277 W JP 2016050277W WO 2016111320 A1 WO2016111320 A1 WO 2016111320A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
filter
membrane bundle
ascites
Prior art date
Application number
PCT/JP2016/050277
Other languages
English (en)
French (fr)
Inventor
洋介 秦
康子 佐藤
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to CN201680004171.9A priority Critical patent/CN106999855B/zh
Priority to JP2016568741A priority patent/JP6480956B2/ja
Publication of WO2016111320A1 publication Critical patent/WO2016111320A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules

Definitions

  • the present invention relates to a filter for ascites, pleural effusion, pericardial fluid and the like, a body cavity fluid processing system, and a body cavity fluid processing method.
  • ascites is collected from a patient, the ascites is filtered to remove pathogenic substances such as cancer cells and bacteria, and then a filtrate containing a useful substance of protein such as albumin.
  • pathogenic substances such as cancer cells and bacteria
  • a filtrate containing a useful substance of protein such as albumin
  • ascites filtration concentration reinfusion method Cell-free and Concentrated Ascites Reinfusion ⁇ ⁇ Therapy
  • an ascites treatment system is usually used.
  • the ascites treatment system includes an ascites bag, a filter, a concentrator, and a concentrated ascites bag in this order in series. It has a connected liquid circuit.
  • hollow fiber membrane bundles as filtration membranes are arranged inside the cylindrical container, and both ends of the hollow fiber membrane bundle are potted by potting material at both ends of the cylindrical container. Processed to form an open end face.
  • this filter has been generally used in an internal pressure system in which ascites is flowed from the inside to the outside of the hollow fiber membrane to perform filtration, but in recent years, the reverse method, that is, ascites is used in the hollow fiber membrane. It has been proposed to use an external pressure method in which filtration is performed by flowing from the outside to the inside (see Patent Documents 1 and 2).
  • Ascites contains relatively large substances such as cancer cells and has a very high viscosity, and the hollow fiber membrane is easily clogged even when the filter is used for a short time. Therefore, by using an external pressure method, ascites is flowed from the outside to the inside of the hollow fiber membrane having a relatively large surface area to perform filtration, thereby reducing the clogging of the hollow fiber membrane and extending the lifetime of the filter. I can do it.
  • the hollow fiber membranes located on the center side (in the bundle) of the hollow fiber membrane bundle are closely packed together, and the hollow fiber membranes located on the outer peripheral side (outside the bundle) of the bundle Since it is covered, when the viscosity is high like ascites, ascites does not reach the hollow fiber membrane at the center of the bundle, resulting in a decrease in filtration capacity.
  • the present application has been made in view of the above points, and in a filter that filters body cavity fluid such as ascites, while reducing the clogging of the hollow fiber membrane using an external pressure method, the filtration capacity of the filter is reduced.
  • the purpose is to suppress this.
  • the inventors of the present invention have found that the filtration ability is increased by dispersing and arranging the hollow fiber membrane bundles in the cylindrical container of the filter in the tubular container of the filter, and have completed the present invention. That is, the aspect of this invention contains the following. (1) It has a cylindrical container provided with a hollow fiber membrane bundle inside, and the body cavity fluid is passed through the hollow fiber membrane bundle from the outside to the inside in the cylindrical container so that a specific in the body cavity fluid A filter for removing a substance, wherein the hollow fiber membranes are dispersed and arranged so that a filling rate of the hollow fiber membrane bundle is 20% or more and 41% or less in an inner cross section of the cylindrical container. The filter.
  • the present invention in a filter that filters body cavity fluid, it is possible to suppress a decrease in the filtering ability of the filter while reducing clogging of the hollow fiber membrane using an external pressure method.
  • FIG. 1 is an explanatory diagram showing an outline of the configuration of an ascites treatment system 1 as a body cavity fluid treatment system including a filter 21 according to the present embodiment.
  • the ascites treatment system 1 includes an ascites treatment circuit 10 as a liquid circuit, for example.
  • the ascites treatment circuit 10 connects the ascites bag 20 as a body cavity fluid reservoir, a filter 21, a concentrator 22, a concentrated ascites bag 23 as a concentrate reservoir, and the ascites bag 20 and the filter 21.
  • the ascites bag 20 is a container made of a soft resin such as polyvinyl chloride, and can store ascites as a body cavity fluid collected from a patient.
  • the first flow path 24 is a soft tube such as polyvinyl chloride, for example, and is connected from the outlet of the ascites bag 20 to a port 45 on a side surface described later of the filter 21.
  • a tube pump 30 is provided in the first flow path 24, and ascites in the ascites bag 20 can be sent to the filter 21. Note that the ascites in the ascites bag 20 may be supplied to the filter 21 by gravity drop without providing the tube pump 30.
  • the filter 21 has a cylindrical container 40, and inside the cylindrical container 40, a hollow fiber membrane bundle (a bundle of hollow fiber membranes 41) 42 is disposed along the longitudinal direction thereof.
  • the hollow fiber membrane 41 can remove predetermined pathogenic substances such as cancer cells and bacteria from the ascites, and allow other components containing useful substances such as albumin to pass therethrough.
  • Ports 43 and 44 leading to the inner side (space) of the hollow fiber membrane 41 are provided in the upper and lower portions of the cylindrical container 40, and the outer side (space) of the hollow fiber membrane 41 is provided on the side surface of the cylindrical container 40.
  • Two ports 45 and 46 are provided. The port 45 on the side surface of the filter 21 communicates with the ascites bag 20.
  • the port 46 on the side surface of the filter 21 communicates with a drainage unit (not shown) from which components that do not pass through the hollow fiber membrane 41 are drained.
  • An upper port 43 of the filter 21 communicates with a concentrator 22 described later, and a lower port 44 of the filter 21 is closed, for example. Details of the content configuration of the cylindrical container 40 of the filter 21 will be described later.
  • the second flow path 25 is a soft tube such as polyvinyl chloride, and is connected to the port 63 of the concentrator 22 from the port 43 at the top of the filter 21.
  • a tube pump 50 is provided in the second flow path 25, and the filtrate filtered by the filter 21 can be sent to the concentrator 22.
  • the concentrator 22 has a cylindrical container 60, and inside the cylindrical container 60, a hollow fiber membrane bundle (a hollow fiber membrane 61 of the hollow fiber membrane 61) as a concentrated membrane along the longitudinal direction thereof. 62) is arranged.
  • the hollow fiber membrane 61 can remove moisture by allowing moisture in the filtrate to pass therethrough and concentrate the filtrate.
  • Ports 63 and 64 that communicate with the inner space of the hollow fiber membrane 61 are provided at the upper and lower portions of the cylindrical container 60, and two ports that communicate with the outer space of the hollow fiber membrane 61 are provided on the side surface of the cylindrical container 60. 65 and 66 are provided.
  • the upper port 63 of the concentrator 22 communicates with the port 43 of the filter 21, and the lower port 64 of the concentrator 22 communicates with the concentrated ascites bag 23.
  • One port 65 on the side surface of the concentrator 22 communicates with a drainage part from which water discharged from the filtrate is drained, and the port 66 is closed.
  • the concentrator 22 uses an internal pressure method, but may use an external pressure method.
  • the third flow path 26 is a soft tube such as polyvinyl chloride, and is connected to the concentrated ascites bag 23 through the port 64 at the lower part of the concentrator 22.
  • the concentrated ascites bag 23 is a container made of a soft resin such as polyvinyl chloride, and can contain a concentrated liquid containing useful substances concentrated by the concentrator 22.
  • FIG. 2 is an explanatory view of a longitudinal section showing an outline of the configuration of the filter 21.
  • the filter 21 has the cylindrical container 40 as described above, and the hollow fiber membrane bundle 42 is disposed along the longitudinal direction inside the cylindrical container 40.
  • the cylindrical container 40 includes a cylindrical container body 40a and a header 40b that closes both end openings of the container body 40a.
  • the ports 43 and 44 are formed in the header 40b, and the ports 45 and 46 are formed in the container body 40a.
  • the both ends of the hollow fiber membrane bundle 42 are potted with a potting material 70 of a curable resin at both ends of the cylindrical container 40. Thereby, the both ends of the hollow fiber membrane bundle 42 are fixed to the cylindrical container 40, and the open end surfaces 71 in which the inner sides of the hollow fiber membranes 41 of the hollow fiber membrane bundle 42 are opened at both ends of the cylindrical container 40. Is formed.
  • the outer space of the hollow fiber membrane 41 inside the cylindrical container 40 communicates with the port 45 on the side surface of the cylindrical container 40.
  • the inner space of the hollow fiber membrane 41 communicates with the port 43 through the open end surface 71.
  • ascites flows into the outer space of the hollow fiber membrane 41 from the port 45, flows into the inner space of the hollow fiber membrane 41 through the hollow fiber membrane 41, and the pathogenic substance can be filtered and removed from the ascites.
  • the filtrate flowing into the inner space of the hollow fiber membrane 41 can be discharged from the port 43 through the open end surface 71.
  • the hollow fiber membrane 41 has a filling rate J of the hollow fiber membrane bundle 42 of 20% to 41%, preferably 22% to 41%, more preferably 25% to 41% in the inner cross section of the cylindrical container 40.
  • a filling rate J of the hollow fiber membrane bundle 42 of 20% to 41%, preferably 22% to 41%, more preferably 25% to 41% in the inner cross section of the cylindrical container 40.
  • the total number of hollow fiber membrane bundles 42 is N Is expressed by the following equation (1).
  • Filling rate of hollow fiber membrane bundle 42 J s ⁇ N / S ⁇ 100 (%) (1)
  • drum 40a is taken as the area of the minimum part, when changing along the longitudinal direction of the container trunk
  • the hollow fiber membranes 41 are distributed and arranged so as not to be densely packed with each other.
  • “dispersed and arranged” means a state in which the hollow fiber membranes are arranged so as not to be in close contact with each other.
  • the hollow fiber membranes are arranged substantially uniformly in a certain range by blowing air or the like.
  • the state processed as mentioned above is mentioned.
  • the distances from the nearest four hollow fiber membranes to any hollow fiber membrane 41 are D1, D2, D3, and D4 (shown in FIG. 4).
  • the maximum value when this is measured for five hollow fiber membranes is defined as the maximum distance between the hollow fiber membranes. In the present invention, the maximum distance between the hollow fiber membranes is 300 ⁇ m or more.
  • the hollow distance is set so that the average distance between the hollow fiber membranes is 150 ⁇ m or more.
  • the thread film 41 is dispersed.
  • the “maximum hollow fiber membrane distance” and the “average hollow fiber membrane distance” described in the present invention are present in a region indicated by a circle having a radius of 5 mm centered on the central point of the inner cross section of the container. This holds at least for hollow fiber membranes. When the radius of the inner cross section of the container is 5 mm or less, this is true for all hollow fiber membranes.
  • the above-mentioned D1, D2, D3, and D4 shown in FIG.
  • the portions D1, D2, D3, and D4 that have the smallest cross-sectional area are employed. That is, based on the values of D1, D2, D3, and D4 measured on the potting material opening end surface 71 and their cross-sectional areas, the portions D1, D2, D3, and D4 where the cross-sectional area is minimum are obtained by proportional calculation.
  • the ratio between the cross-sectional area of the potting material opening end surface 71 and the cross-sectional area of the minimum portion is obtained, and D1, D2, D3, and D4 in the potting material opening end surface 71 are multiplied by the ratio to obtain the module.
  • D1, D2, D3, and D4 in the potting material opening end surface 71 are multiplied by the ratio to obtain the module.
  • D1, D2, D3, and D4 are defined as D1, D2, D3, and D4.
  • the distance L between both open end faces 71 of the hollow fiber membrane bundle 42 shown in FIG. 2 is 50 mm to 300 mm, preferably 100 mm to 280 mm, more preferably 150 mm to 240 mm, and still more preferably 200 mm to 240 mm. Is set. If the distance L is smaller than 50 mm, the number N of the hollow fiber membranes 41 is increased when the membrane area is designed to be equal, and ascites does not reach the bundle, which is not preferable. If the distance L is greater than 300 mm, the flow path of the module as a whole becomes narrow, so that the pressure rises easily when the ascites entering from the port 45 is clogged somewhere until it exits from the port 43. Therefore, it is not preferable.
  • the effective membrane area of the hollow fiber membrane bundle 42 is: 0.7 m 2 or more 3.0 m 2 or less, preferably set to 1.0 m 2 or more 2.5 m 2.
  • the effective membrane area of the hollow fiber membrane bundle 42 is smaller than 0.7 m 2 , the filtration ability of the entire filter is lowered, which is not preferable.
  • the effective membrane area of the hollow fiber membrane bundle 42 is larger than 3.0 m 2 , the loss increases when treating a small amount of ascites, which is not preferable.
  • the inner diameter d of the hollow fiber membrane 41 is set to 50 ⁇ m or more and 500 ⁇ m or less, preferably 100 ⁇ m or more and 450 ⁇ m or less. In addition, it is not preferable that the inner diameter d is smaller than 50 ⁇ m because clogging easily occurs when proteins or the like are deposited inside the hollow fiber membrane. On the other hand, when the inner diameter d is larger than 500 ⁇ m, the yield at the time of producing the hollow fiber is remarkably lowered.
  • the number N of the hollow fiber membranes 41 is, for example, 2000 or more and 10,000 or less, preferably 3000 or more and 9000 or less. Moreover, the diameter of the hole of the hollow fiber membrane 41 is 0.010 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m. The outer diameter of the hollow fiber membrane 41 is not less than 200 ⁇ m and not more than 600 ⁇ m, preferably not less than 300 ⁇ m and not more than 500 ⁇ m. In addition, when the number N of the hollow fiber membranes 41 is less than 2000, it is not preferable because the filtering ability of the entire module is lowered. If the number N is larger than 10,000, the filling rate increases and clogging is likely to occur.
  • the diameter of the hole of the hollow fiber membrane 41 is smaller than 0.010 micrometer, it is unpreferable. If the diameter of the hole of the hollow fiber membrane 41 is larger than 10 ⁇ m, it is not preferable because most of the cancer cells and bacteria cannot be filtered.
  • an ascites bag 20 containing ascites collected from a patient is connected to the first flow path 24.
  • the tube pumps 30 and 50 are driven, and the ascites in the ascites bag 20 is supplied from the port 45 of the filter 21 to the outer space of the hollow fiber membrane 41 of the cylindrical container 40 through the first flow path 24.
  • the Ascites flows into the inner space from the outer space of the hollow fiber membrane 41 through the hole of the hollow fiber membrane 41, and at this time, predetermined pathogenic substances such as cancer cells and bacteria are removed and filtered.
  • the filtrate that has passed through the hollow fiber membrane 41 flows out from the port 43 to the second flow path 25, passes through the second flow path 25, and flows into the inner space of the hollow fiber membrane 61 from the port 63 of the concentrator 22. .
  • the filtrate passes through the inner space of the hollow fiber membrane 61, moisture in the filtrate is discharged to the outer space of the hollow fiber membrane 61 through the hollow fiber membrane 61 of the concentrate membrane, and the filtrate is concentrated. .
  • the concentrated liquid containing a useful substance such as albumin concentrated by the concentrator 22 is discharged from the port 64 to the third flow path 26, and sent to the concentrated ascites bag 23 through the third flow path 26 to be stored.
  • the ascites in the ascites bag 20 is filtered and concentrated, the ascites treatment is completed. Thereafter, the concentrated solution in the concentrated ascites bag 23 is reinjected into the patient.
  • the cancer cells and bacteria which exist in the outer space of the hollow fiber membrane 41 can also be washed.
  • the port 43 and the port 45 are closed, and after a cleaning solution such as physiological saline is supplied from the port 44, the liquid is discharged from the port 46, thereby enabling cleaning.
  • the hollow fiber membrane 41 of the filtrate 21 is dispersed and arranged so that the filling rate J of the hollow fiber membrane bundle 42 is 20% or more and 41% or less in the inner cross section of the cylindrical container 40. Therefore, ascites that has flowed into the outer space of the hollow fiber membrane 41 reaches the hollow fiber membrane 41 on the center side of the hollow fiber membrane bundle 42, and ascites can be efficiently filtered through the entire hollow fiber membrane bundle 42. As a result, in the filter 21 that filters the ascites, it is possible to suppress a decrease in the filtration capacity of the filter 21 while reducing clogging of the hollow fiber membrane 41 using an external pressure method.
  • the hollow fiber membrane 41 of the filtration membrane 21 may have a crimp shape. That is, the hollow fiber membrane 41 may be curved in a wave shape as shown in FIG.
  • the crimp amplitude is preferably 0.2 mm to 1.2 mm, and the wavelength is preferably 3.0 mm to 16 mm.
  • a gap is easily formed between the hollow fiber membranes 41, and ascites easily enters the center of the hollow fiber membrane bundle 42.
  • the crimp amplitude and wavelength are irregular in the filter 22 because ascites easily enters the center of the hollow fiber membrane bundle 42.
  • the configuration of the cylindrical container 40 in the above embodiment is not limited to this, and may have other configurations.
  • the configurations of the ascites treatment system 1 and the ascites treatment circuit 10 are not limited to this, and the present invention can be applied even if they have other configurations.
  • the present invention can also be applied to a pleural effusion treatment system that treats body cavity fluid other than ascites, such as pleural effusion.
  • this pleural effusion processing system may have the same structure as the above ascites processing system, and may have a different structure.
  • this hollow fiber membrane bundle intermediate product is immersed in an EVAL coating solution (trade name: Soreserin Nippon Synthetic Chemical Co., Ltd.) dissolved in 58% 1-propanol aqueous solution for 1 hour and then dried at 60 ° C.
  • EVAL coating solution trade name: Soreserin Nippon Synthetic Chemical Co., Ltd.
  • the obtained hollow fiber membrane bundle is loaded into a cylindrical container made of polycarbonate (inner diameter of container body 50.5 mm), both ends are potted with polyurethane resin, and then ⁇ sterilized with a dose of 25 kGy to obtain a filter Got.
  • Time to clogging is 20 minutes or more: ⁇ Time to clogging is less than 20 minutes: ⁇
  • Example 1 A filter was produced using a hollow fiber bundle of 7200 hollow fibers without crimp.
  • the distance L between the opening end faces was 240 mm, the filling rate J was 41%, and the membrane area was 1.5 m 2 .
  • the maximum distance between the hollow fiber membranes was 340 ⁇ m, and the average distance between the hollow fiber membranes was 120 ⁇ m.
  • Example 2 A filter was prepared using a hollow fiber membrane bundle of 3600 hollow fibers without crimp.
  • the distance L between the opening end faces was 240 mm, the filling rate J was 20%, and the membrane area was 0.7 m 2 .
  • the maximum distance between the hollow fiber membranes was 520 ⁇ m, and the average distance between the hollow fiber membranes was 210 ⁇ m.
  • Example 3 A filter was produced using a hollow fiber bundle of 7200 hollow fibers without crimp.
  • the distance L between the opening end faces was 200 mm, the filling rate J was 41%, and the membrane area was 1.3 m 2 .
  • the maximum distance between the hollow fiber membranes was 330 ⁇ m, and the average distance between the hollow fiber membranes was 110 ⁇ m.
  • Example 4 A filter was produced using a hollow fiber membrane bundle of 7200 hollow fibers having a crimp of amplitude 0.7 mm and wavelength 9.0 mm.
  • the distance L between the opening end faces was 240 mm, the filling rate J was 41%, and the membrane area was 1.5 m 2 .
  • the maximum distance between the hollow fiber membranes was 350 ⁇ m, and the average distance between the hollow fiber membranes was 140 ⁇ m.
  • a filter was prepared using a hollow fiber membrane bundle having 11,000 hollow fibers without crimps.
  • the distance between the opening end faces was 250 mm, the filling rate was 65%, and the membrane area was 2.3 m 2 .
  • the maximum distance between the hollow fiber membranes was 190 ⁇ m, and the average distance between the hollow fiber membranes was 90 ⁇ m.
  • the present invention is useful in a filter for filtering body cavity fluid, while suppressing clogging of the hollow fiber membrane using an external pressure method, while suppressing a decrease in the filter capacity of the filter.

Abstract

 腹水を濾過する濾過器において、外圧方式を用いて中空糸膜の目詰まりを緩和しつつも、濾過器の濾過能力の低下を抑制する。濾過器21は、中空糸膜束42を内部に備えた筒状容器40を有し、腹水を中空糸膜束42の中空糸膜41の外側から内側に通過させて腹水中の特定の物質を除去する。中空糸膜41は、筒状容器40の内部横断面において中空糸膜束42の充填率が20%以上41%以下になるように分散されて配置されている。

Description

濾過器、体腔液処理システム及び体腔液処理方法
 本発明は、腹水、胸水、心嚢液等の濾過器、並びに体腔液処理システム及び体腔液処理方法に関する。
 例えば難治性腹水症の治療法として、患者から腹水を採取し、当該腹水を濾過して癌細胞や細菌などの病因物質を除去し、次に、そのアルブミンなどのタンパク質の有用物質を含む濾過液を濃縮し、その後、当該濃縮液を体内に再注入する腹水濾過濃縮再静注法(Cell-free and Concentrated Ascites Reinfusion Therapy)がある。
 かかる治療法には、通常腹水処理システムが用いられ、当該腹水処理システムは、代表的な例としては、腹水バッグと、濾過器と、濃縮器と、濃縮腹水バッグとをこの順番で直列的に接続した液体回路を備えている。
 ところで、腹水処理システムの濾過器は、筒状容器の内部に濾過膜としての中空糸膜束が配置されており、中空糸膜束の両端部は、筒状容器の両端部にポッティング材によりポッティング加工され、開口端面を形成している。この濾過器は、従来より、腹水を中空糸膜の内側から外側に流して濾過を行う内圧方式で用いるのが一般的であったが、近年、その逆の方式、すなわち腹水を中空糸膜の外側から内側に流して濾過を行う外圧方式で用いることが提案されている(特許文献1、2参照)。
特開2009-297242号公報 特開2011-172797号公報
 腹水は、癌細胞等の比較的大きな物質を含み極めて粘度が高く、濾過器の短時間の使用でも、中空糸膜に目詰まりが生じやすい。そこで、外圧方式を用いて、腹水を相対的に表面積の大きい中空糸膜の外側から内側に流して濾過を行うことにより、中空糸膜の目詰まりを緩和させて、濾過器のライフタイムを延すことができる。
 しかしながら上述の外圧方式で濾過した場合、中空糸膜束の中心部側(束中)に位置する中空糸膜は、互いに密集し、束の外周部側(束外)に位置する中空糸膜に覆われているため、腹水のように粘度が高いと、束の中心部の中空糸膜まで腹水が届かず、結果として濾過能力が低下してしまう。
 本出願はかかる点に鑑みてなされたものであり、腹水などの体腔液を濾過する濾過器において、外圧方式を用いて中空糸膜の目詰まりを緩和しつつも、濾過器の濾過能力の低下を抑制することをその目的とする。
 本発明者らは、上記課題について濾過器の筒状容器において中空糸膜束の中空糸膜を分散配置することにより濾過能力が上がることを見出し、本発明を完成するに至った。
 即ち、本発明の態様は以下を含む。
(1)中空糸膜束を内部に備えた筒状容器を有し、当該筒状容器において体腔液を前記中空糸膜束の中空糸膜の外側から内側に通過させて体腔液中の特定の物質を除去する濾過器であって、前記中空糸膜は、前記筒状容器の内部横断面において前記中空糸膜束の充填率が20%以上41%以下になるように分散されて配置されている、濾過器。
(2)前記中空糸膜束における最大中空糸膜間距離が、300μm以上である、(1)に記載の濾過器。
(3)前記中空糸膜束における平均中空糸膜間距離が、150μm以上である、(1)又は(2)に記載の濾過器。
(4)前記中空糸膜束の両端部は、ポッティング材により前記筒状容器の両端部にポッティング加工され、前記筒状容器の両端部には、前記中空糸膜束の開口端面が形成され、前記中空糸膜束の両開口端面間の距離は50mm以上300mm以下である、(1)~(3)のいずれかに記載の濾過器。
(5)前記中空糸膜束の有効膜面積が0.7m2以上3.0m2以下である、(1)~(4)のいずれかに記載の濾過器。
(6)前記中空糸膜の内径が50um以上500um以下である、(1)~(5)のいずれかに記載の濾過器。
(7)前記中空糸膜が、クリンプ形状を有する、(1)~(6)のいずれかに記載の濾過器。
(8)(1)~(7)のいずれかに記載の濾過器と、前記濾過器で濾過された濾過液を濃縮する濃縮器と、を少なくとも備え、少なくとも前記濾過器において外圧方式によって体腔液が処理される体腔液処理システム。
(9)(1)~(7)のいずれかに記載の濾過器を用いる体腔液処理方法であって、前記濾過器において外圧方式によって体腔液を処理するステップと、前記濾過器で濾過された濾過液を濃縮するステップとを含む、体腔液処理方法。
 本発明によれば、体腔液を濾過する濾過器において、外圧方式を用いて中空糸膜の目詰まりを緩和しつつも、濾過器の濾過能力の低下を抑制することができる。
腹水処理システムの構成の概略を示す説明図である。 濾過器の縦断面の説明図である。 筒状容器の横断面を示す説明図である。 中空糸膜間の距離を示す説明図である。 中空糸膜の径を示す説明図である。 中空糸膜のクリンプ形状を説明するための説明図である。 実施例の腹水処理システムを示す説明図である。
 以下、図面を参照して、本発明の好ましい実施の形態について説明する。なお、図面の上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。図面の寸法比率は、図示の比率に限定されるものではない。さらに、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。
 図1は、本実施の形態に係る濾過器21を備えた体腔液処理システムとしての腹水処理システム1の構成の概略を示す説明図である。
 図1に示すように腹水処理システム1は、例えば液体回路としての腹水処理回路10を備えている。腹水処理回路10は、体腔液貯留部としての腹水バッグ20と、濾過器21と、濃縮器22と、濃縮液貯留部としての濃縮腹水バッグ23と、腹水バッグ20と濾過器21を接続する第1の流路24と、濾過器21と濃縮器22を接続する第2の流路25と、濃縮器22と濃縮腹水バッグ23を接続する第3の流路26とを有している。
 腹水バッグ20は、例えばポリ塩化ビニルなどの軟質性の樹脂からなる容器であり、患者から採取された体腔液としての腹水を収容できる。
 第1の流路24は、例えばポリ塩化ビニルなどの軟質性のチューブであり、腹水バッグ20の出口から濾過器21の後述の側面部のポート45に接続されている。第1の流路24には、例えばチューブポンプ30が設けられ、腹水バッグ20の腹水を濾過器21に送ることができる。なお、チューブポンプ30を設けずに、腹水バッグ20の腹水を重力落下により濾過器21に供給するようにしてもよい。
 濾過器21は、筒状容器40を有し、筒状容器40の内部には、その長手方向に沿って中空糸膜束(中空糸膜41の束)42が配置されている。中空糸膜41は、腹水から癌細胞、細菌などの所定の病因物質を除去し、それ以外のアルブミンなどのタンパク質の有用物質を含む成分を通過させることができる。筒状容器40の上部及び下部には、中空糸膜41の内側(空間)に通じるポート43、44が設けられ、筒状容器40の側面部には、中空糸膜41の外側(空間)に通じる2つのポート45、46が設けられている。濾過器21の側面部のポート45は、腹水バッグ20に通じている。濾過器21の側面部のポート46は、中空糸膜41を通過しない成分が排液される図示しない排液部に連通している。濾過器21の上部のポート43は、後述の濃縮器22に連通し、濾過器21の下部のポート44は、例えば閉鎖されている。濾過器21の筒状容器40の内容構成の詳細は後述する。
 第2の流路25は、例えばポリ塩化ビニルなどの軟質性チューブであり、濾過器21の上部のポート43から濃縮器22のポート63に接続されている。第2の流路25には、例えばチューブポンプ50が設けられ、濾過器21で濾過された濾過液を濃縮器22に送ることができる。
 濃縮器22は、上記濾過器21と同様に、筒状容器60を有し、筒状容器60の内部には、その長手方向に沿って濃縮膜としての中空糸膜束(中空糸膜61の束)62が配置されている。中空糸膜61は、濾過液中の水分を通過させて水分を除去し、濾過液を濃縮することができる。筒状容器60の上部及び下部には、中空糸膜61の内側空間に通じるポート63、64が設けられ、筒状容器60の側面部には、中空糸膜61の外側空間に通じる2つのポート65、66が設けられている。濃縮器22の上部のポート63は、濾過器21のポート43に連通し、濃縮器22の下部のポート64は、濃縮腹水バッグ23に連通している。濃縮器22の側面部の一つのポート65は、濾過液から排出された水分が排液される排液部に連通し、ポート66は閉鎖されている。なお、かかる濃縮器22は、内圧方式を用いるものであるが、外圧方式を用いるものであってもよい。
 第3の流路26は、例えばポリ塩化ビニルなどの軟質性チューブであり、濃縮器22の下部のポート64から濃縮腹水バッグ23に接続されている。
 濃縮腹水バッグ23は、例えばポリ塩化ビニルなどの軟質性の樹脂からなる容器であり、濃縮器22で濃縮された有用物質を含む濃縮液を収容できる。
 次に、濾過器21の筒状容器40の内部構成について説明する。図2は、濾過器21の構成の概略を示す縦断面の説明図である。
 濾過器21は、上述のように筒状容器40を有し、筒状容器40の内部にその長手方向に沿って中空糸膜束42が配置されている。筒状容器40は、円筒状の容器胴部40aと、容器胴部40aの両端開口を閉鎖するヘッダー40bにより構成されている。ポート43、44は、ヘッダー40bに形成され、ポート45、46は、容器胴部40aに形成されている。
 中空糸膜束42の両端部は、筒状容器40の両端部において硬化性樹脂のポッティング材70によりポッティング加工されている。これにより、中空糸膜束42の両端部は、筒状容器40に固定され、筒状容器40の両端部には、中空糸膜束42の各中空糸膜41の内側が開口する開口端面71が形成される。筒状容器40の内部の中空糸膜41の外側空間は、筒状容器40の側面部のポート45に連通している。中空糸膜41の内側空間は、開口端面71を通じて、ポート43に連通している。かかる構成により、腹水がポート45から中空糸膜41の外側空間に流入し、中空糸膜41を介して中空糸膜41の内側空間に流入して、腹水から病因物質を濾過して除去できる。中空糸膜41の内側空間に流入した濾過液は、開口端面71を通じてポート43から排出できる。
 中空糸膜41は、筒状容器40の内部横断面において中空糸膜束42の充填率Jが20%以上41%以下、好ましくは22%以上41%以下、さらに好ましくは25%以上41%以下になるように分散されて配置されている。また、21%、23%、24%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%でもよい。中空糸膜束42の充填率Jは、図3に示すように容器胴部40aの内部の横断面面積をS(容器胴部40aの内径Kとした場合、S=(K/2)2×π)、1本の中空糸膜41の断面積s(中空糸1本の外径をRとした場合、s=(R/2)2×π)、中空糸膜束42の総本数をNとした場合、次式(1)で表せられる。
 中空糸膜束42の充填率J=s×N/S×100(%)・・・・(式1)
 なお、容器胴部40aの断面積Sは、容器胴部40aの長手方向に沿って変化する場合には最小部分の面積とする。
 中空糸膜41は、互いに密集しないように分散されて配置されている。ここで「分散されて配置」とは、中空糸膜同士が密着しないように配置された状態であり、例えばエアーを吹き付けるなどして、一定の範囲中に略均一に中空糸膜が配置されるよう処理された状態が挙げられる。具体的には、中空糸膜束42において、任意の中空糸膜41に対して、最も近い4つの中空糸膜との距離をD1、D2、D3、D4(図4に示す)とする。これを5つの中空糸膜について測定した際の最大値を、最大中空糸膜間距離と定義し、本発明においては、最大中空糸膜間距が300μm以上になるように分散されている。同様に、任意の5つ中空糸膜のD1~D4を全て平均したものを平均中空糸膜間距離と定義した際、本発明においては、平均中空糸膜間距離は150μm以上になるように中空糸膜41が分散されている。尚、本発明で述べている「最大中空糸膜間距離」および「平均中空糸膜間距離」については、容器の内部横断面の中心点を中心とする半径5mmの円が示す領域内に存在する中空糸膜について少なくとも成立する。容器の内部横断面の半径が5mm以下であった場合は、すべての中空糸膜について成立する。尚、前述のD1、D2、D3、D4(図4に示す)は、容器胴部40aの断面積が長手方向に沿って変化しないモジュールの場合は、ポッティング材開口端面71上で計測できる。一方、容器胴部40aの断面積が長手方向に沿って変化する場合は、その断面積が最小となる部分のD1、D2、D3、D4を採用する。つまり、ポッティング材開口端面71上で計測したD1、D2、D3、D4の値とその断面積をもとに、断面積が最小となる部分のD1、D2、D3、D4を比例計算によって求める。具体的には、ポッティング材開口端面71の断面積と最少部分の断面積との比率を求め、ポッティング材開口端面71におけるD1、D2、D3、D4に、前記比率を乗じたものを、当該モジュールにおけるD1、D2、D3、D4と定義する。
 さらに、図2に示す中空糸膜束42の両開口端面71間の距離Lは、50mm以上300mm以下、好ましくは100mm以上280mm以下、より好ましくは150mm以上240mm以下、さらに好ましくは200mm以上240mm以下に設定されている。なお、距離Lが50mmよりも小さいと、膜面積が等しくなるように設計した場合に、中空糸膜41の本数Nが大きくなり、かえって束中まで腹水が到達しなくなるので好ましくない。距離Lが300mmよりも大きいと、モジュール全体としての流路が狭くなるため、ポート45から入った腹水がポート43から出ていくまでのどこかで目詰まりを起こした際に圧力上昇しやすくなるため好ましくない。
 中空糸膜束42の有効膜面積(中空糸膜41の内周(中空糸膜41の内径d(図5に示す)×π)×開口端面間距離L×中空糸膜の本数N)は、0.7m2以上3.0m2以下、好ましくは1.0m2以上2.5m2に設定されている。なお、中空糸膜束42の有効膜面積が0.7m2よりも小さいと、濾過器全体としての濾過能力が低下するので好ましくない。中空糸膜束42の有効膜面積が3.0m2よりも大きいと、少量の腹水を処理する際にロスが大きくなるので好ましくない。
 中空糸膜41の内径dは、50μm以上500μm以下、好ましくは100μm以上450μm以下に設定されている。なお、内径dが50μmよりも小さいと、中空糸膜内部でタンパク質等が堆積した際に目詰まりしやすくなるので好ましくない。また、内径dが500μmよりも大きいと、中空糸製造時の収率が著しく低下するので好ましくない。
 なお、中空糸膜41の本数Nは、例えば2000本以上10000本以下、好ましくは3000本以上9000本以下である。また、中空糸膜41の孔の直径は、0.010μm以上10μm以下、好ましくは、0.05μm以上5μm以下である。中空糸膜41の外径は、200μm以上600μm以下、好ましくは300μm以上500μm以下である。なお、中空糸膜41の本数Nが2000本よりも少ないと、モジュール全体としての濾過能力が低下するため好ましくない。本数Nが10000本よりも大きいと充填率が増加し目詰まりしやすくなるので好ましくない。また、中空糸膜41の孔の直径が0.010μmよりも小さいと、目詰まりしやすくなるので好ましくない。中空糸膜41の孔の直径が10μmよりも大きいと、癌細胞や細菌などのほとんどを濾過できなくなるので好ましくない。
 次に、腹水処理システム1で行われる腹水処理について説明する。
 先ず、患者から採取した腹水を収容した腹水バッグ20が第1の流路24に接続される。次に、チューブポンプ30、50が駆動し、腹水バッグ20の腹水が、第1の流路24を通って濾過器21のポート45から筒状容器40の中空糸膜41の外側空間に供給される。腹水は、中空糸膜41の外側空間から中空糸膜41の孔を通って内側空間に流入し、この際に、癌細胞や細菌などの所定の病因物質が除去され濾過される。中空糸膜41を通過した濾過液は、ポート43から第2の流路25に流出し、第2の流路25を通って濃縮器22のポート63から中空糸膜61の内側空間に流入する。濃縮器22では、濾過液が中空糸膜61の内側空間を通過し、濾過液中の水分が濃縮膜の中空糸膜61を通じて中空糸膜61の外側空間に排出され、濾過液が濃縮される。濃縮器22で濃縮されたアルブミンなどの有用物質を含む濃縮液は、ポート64から第3の流路26に排出され、第3の流路26を通じて濃縮腹水バッグ23に送られ収容される。こうして、腹水バッグ20内の全ての腹水が、濾過濃縮されると、腹水処理が終了する。その後、濃縮腹水バッグ23の濃縮液は、患者に再注入される。尚、中空糸膜41の外側空間に存在する癌細胞や細菌を洗浄することもできる。例えば、ポート43およびポート45を閉じ、ポート44から生理食塩水などの洗浄液を送液後、ポート46から排液することで、洗浄が可能となる。
 本実施の形態によれば、濾過液21の中空糸膜41が筒状容器40の内部横断面において中空糸膜束42の充填率Jが20%以上41%以下になるように分散されて配置されているので、中空糸膜41の外側空間に流入した腹水が、中空糸膜束42の中心部側の中空糸膜41まで届き、中空糸膜束42全体で腹水を効率的に濾過できる。この結果、腹水を濾過する濾過器21において、外圧方式を用いて中空糸膜41の目詰まりを緩和しつつ、濾過器21の濾過能力の低下を抑制できる。
 上記実施の形態において、濾過膜21の中空糸膜41が、クリンプ形状を有していてもよい。すなわち、中空糸膜41が、図6に示すように波状に湾曲していてもよい。クリンプの振幅は、0.2mm以上~1.2mm以下、波長が3.0mm以上~16mm以下が好ましい。かかる場合、中空糸膜41間に隙間ができやすく、腹水が中空糸膜束42の中心部側に侵入しやすくなる。なお、クリンプの振幅及び波長は、濾過器22内で不規則になっている方が、中空糸膜束42の中心部側に腹水が侵入しやすいので好ましい。
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば上記実施の形態における筒状容器40の構成は、これに限られず他の構成を有するものであってもよい。また、腹水処理システム1や腹水処理回路10の構成は、これに限られず他の構成を有するものであっても、本発明は適用できる。また、腹水以外の他の体腔液、例えば胸水を処理する胸水処理システムにも本発明は適用できる。なお、この胸水処理システムは、以上の腹水処理システムと同じ構成を有していてもよいし、異なる構成を有していてもよい。
 以下の実施例において、本発明の濾過器における目詰まりの緩和、濾過能力の維持について検証した実験結果を示す。
<濾過器の作製>
 高密度ポリエチレン(商品名サンテックHDJ240 旭化成ケミカルズ(株)社製)のペレットを147℃で加熱し、ポンプで押出したものに対して、22mL/minの流量で窒素を通気させ、冷却することにより中空状の原糸を得た。続いて、温度70℃~120℃、ロール速度5~30m/minで延伸後巻き取り、330mmに切断することで微多孔を有する中空糸膜束中間品を得た。さらに、この中空糸膜束中間品を、58%の1-プロパノール水溶液に溶解させたEVALコート液(商品名ソアレジン 日本合成化学(株)社製)に1時間浸漬後、60℃で乾燥させることで、中空糸膜束を得た。中空糸膜の内径は280μm、膜厚は50μm、外径は380μmであり、孔の直径は0.2μmであった。得られた中空糸膜束を、ポリカーボネート製(容器胴部の内径50.5mm)の筒状容器に装填し、両端をポリウレタン樹脂でポッティング加工後、25kGyの線量でγ滅菌することで、濾過器を得た。
<目詰まりまでの所要時間>
 アルブミン濃度を3g/dLに調整した牛血漿3Lを擬似腹水とした。擬似腹水3Lを腹水バッグに入れ、濾過器、濃縮器、濃縮腹水バッグの順で、外圧濾過方式となるように腹水処理回路で接続した(図7)。ポンプAには、毎分50mLの流量となるように設定し、ポンプBには、毎分5mLの流量となるように設定し濾過濃縮処理を行った。濾過濃縮処理中に圧力計Cの圧力が500mmHgに達したことをもって「目詰まりした」と判断して、処理開始から目詰まりまでの時間を以下の様に判定した。
 目詰まりまでの時間が20分以上 :〇
 目詰まりまでの時間が20分未満 :×
<最大中空糸膜間距離、平均中空糸膜間距離の測定>
 ポッティング加工面を光学顕微鏡(商品名IX70 オリンパス(株)社製)で目視観察し、視野が10mm×10mmとなるように撮影された画像をもって、任意の5つの中空糸膜の最大中空糸膜間距離および平均中空糸膜間距離を計測した。
(実施例1)
 クリンプの無い中空糸本数7200本の中空糸膜束を用いて濾過器を作製した。開口端面間距離Lは240mm、充填率Jは41%、膜面積は1.5m2であった。また、最大中空糸膜間距離は340μm、平均中空糸膜間距離は120μmであった。
(実施例2)
 クリンプの無い中空糸本数3600本の中空糸膜束を用いて濾過器を作製した。開口端面間距離Lは240mm、充填率Jは20%、膜面積は0.7m2であった。また、最大中空糸膜間距離は520μm、平均中空糸膜間距離は210μmであった。
(実施例3)
 クリンプの無い中空糸本数7200本の中空糸膜束を用いて濾過器を作製した。開口端面間距離Lは200mm、充填率Jは41%、膜面積は1.3m2であった。また、最大中空糸膜間距離は330μm、平均中空糸膜間距離は110μmであった。
(実施例4)
 振幅0.7mm、波長9.0mmのクリンプの有る中空糸本数7200本の中空糸膜束を用いて濾過器を作製した。開口端面間距離Lは240mm、充填率Jは41%、膜面積は1.5m2であった。また、最大中空糸膜間距離は350μm、平均中空糸膜間距離は140μmであった。
(比較例1)
 クリンプの無い中空糸本数11000本の中空糸膜束を用いて濾過器を作製した。開口端面間距離は250mm、充填率は65%、膜面積は2.3m2であった。また、最大中空糸膜間距離は190μm、平均中空糸膜間距離は90μmであった。
(比較例2)
 クリンプの無い中空糸本数2300本の中空糸膜束を用いて濾過器を作製した。開口端面間距離Lは250mm、充填率Jは13%、膜面積は0.5m2であった。また、最大中空糸膜間距離は610μm、平均中空糸膜間距離は280μmであった。
Figure JPOXMLDOC01-appb-T000001
 
 本発明は、体腔液を濾過する濾過器において、外圧方式を用いて中空糸膜の目詰まりを緩和しつつも、濾過器の濾過能力の低下を抑制する際に有用である。
  1 腹水処理システム
 10 腹水処理回路
 20 腹水バッグ
 21 濾過器
 22 濃縮器
 23 濃縮腹水バッグ
 40 筒状容器
 41 中空糸膜
 42 中空糸膜束

Claims (9)

  1.  中空糸膜束を内部に備えた筒状容器を有し、当該筒状容器において体腔液を前記中空糸膜束の中空糸膜の外側から内側に通過させて体腔液中の特定の物質を除去する濾過器であって、
     前記中空糸膜は、前記筒状容器の内部横断面において前記中空糸膜束の充填率が20%以上41%以下になるように分散されて配置されている、濾過器。
  2.  前記中空糸膜束における最大中空糸膜間距離が、300μm以上である、請求項1に記載の濾過器。
  3.  前記中空糸膜束における平均中空糸膜間距離が、150μm以上である、請求項1又は2に記載の濾過器。
  4.  前記中空糸膜束の両端部は、ポッティング材により前記筒状容器の両端部にポッティング加工され、前記筒状容器の両端部には、前記中空糸膜束の開口端面が形成され、
     前記中空糸膜束の両開口端面間の距離は50mm以上300mm以下である、請求項1~3のいずれかに記載の濾過器。
  5.  前記中空糸膜束の有効膜面積が0.7m2以上3.0m2以下である、請求項1~4のいずれかに記載の濾過器。
  6.  前記中空糸膜の内径が50μm以上500μm以下である、請求項1~5のいずれかに記載の濾過器。
  7.  前記中空糸膜が、クリンプ形状を有する、請求項1~6のいずれかに記載の濾過器。
  8.  請求項1~7のいずれかに記載の濾過器と、前記濾過器で濾過された濾過液を濃縮する濃縮器と、を少なくとも備え、少なくとも前記濾過器において外圧方式によって体腔液が処理される体腔液処理システム。
  9.  請求項1~7のいずれかに記載の濾過器を用いる体腔液処理方法であって、前記濾過器において外圧方式によって体腔液を処理するステップと、前記濾過器で濾過された濾過液を濃縮するステップとを含む、体腔液処理方法。
PCT/JP2016/050277 2015-01-07 2016-01-06 濾過器、体腔液処理システム及び体腔液処理方法 WO2016111320A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680004171.9A CN106999855B (zh) 2015-01-07 2016-01-06 过滤器、体腔液处理系统以及体腔液处理方法
JP2016568741A JP6480956B2 (ja) 2015-01-07 2016-01-06 濾過器、腹水処理システム及び腹水処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-001497 2015-01-07
JP2015001497 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016111320A1 true WO2016111320A1 (ja) 2016-07-14

Family

ID=56356006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050277 WO2016111320A1 (ja) 2015-01-07 2016-01-06 濾過器、体腔液処理システム及び体腔液処理方法

Country Status (4)

Country Link
JP (1) JP6480956B2 (ja)
CN (1) CN106999855B (ja)
TW (1) TWI584868B (ja)
WO (1) WO2016111320A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053507A (zh) * 2017-07-07 2022-02-18 旭化成医疗株式会社 体腔液处理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703022A (zh) * 2018-08-18 2021-04-23 国立大学法人德岛大学 原液处理装置、原液处理装置的操作方法以及器具的清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229126A (ja) * 1998-12-09 2000-08-22 Jms Co Ltd 輸液フィルター
JP2011172797A (ja) * 2010-02-25 2011-09-08 Keisuke Matsuzaki 腹水処理システムおよびその洗浄方法
WO2013147001A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 血液製剤浄化用のポリスルホン系中空糸膜及び中空糸膜モジュール
WO2014079681A2 (en) * 2012-11-26 2014-05-30 Gambro Lundia Ab Liver support system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616928A (en) * 1969-10-02 1971-11-02 Du Pont Permeation separation device for separating fluids
DE69902986D1 (de) * 1998-12-09 2002-10-24 Jms Co Ltd Infusionsfilter
DE10007327A1 (de) * 2000-02-17 2001-08-30 Fresenius Medical Care De Gmbh Filtervorrichtung, vorzugsweise Hohlfaserdialysator mit gelockten Hohlfasern
JP6231733B2 (ja) * 2011-05-23 2017-11-15 旭化成メディカル株式会社 中空糸膜型医療用具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229126A (ja) * 1998-12-09 2000-08-22 Jms Co Ltd 輸液フィルター
JP2011172797A (ja) * 2010-02-25 2011-09-08 Keisuke Matsuzaki 腹水処理システムおよびその洗浄方法
WO2013147001A1 (ja) * 2012-03-28 2013-10-03 東レ株式会社 血液製剤浄化用のポリスルホン系中空糸膜及び中空糸膜モジュール
WO2014079681A2 (en) * 2012-11-26 2014-05-30 Gambro Lundia Ab Liver support system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114053507A (zh) * 2017-07-07 2022-02-18 旭化成医疗株式会社 体腔液处理装置

Also Published As

Publication number Publication date
JP6480956B2 (ja) 2019-03-13
TW201634112A (zh) 2016-10-01
CN106999855A (zh) 2017-08-01
TWI584868B (zh) 2017-06-01
CN106999855B (zh) 2019-09-20
JPWO2016111320A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
EP2701762B1 (en) Combination oxygenator and arterial filter device with a fiber bundle of continuously wound hollow fibers for treating blood in an extracorporeal blood circuit
EP2701763B1 (en) Combination oxygenator and arterial filter device for treating blood in an extracorporeal blood circuit
US4911846A (en) Fluid treating apparatus and method of using it
EP2663347B1 (de) Blutbehandlungseinheit für eine extrakorporale blutbehandlungsvorrichtung
JP5856821B2 (ja) 腹水濾過濃縮装置
JP6298649B2 (ja) 洗浄血小板の製造方法
US20080035568A1 (en) Apparatus and Method for Filtering Fluids
WO2004094047A1 (ja) 中空糸膜型流体処理器
JP6480956B2 (ja) 濾過器、腹水処理システム及び腹水処理方法
JP6558199B2 (ja) 逆浸透水処理方法
WO1984001522A1 (en) Filter
US7354392B2 (en) Structurally optimized hollow fiber membranes
EP3107643B1 (en) Filtration element
JPH02109572A (ja) 中空糸型流体処理用装置
WO2018092342A1 (ja) 濾過モジュール及び濾過装置
JP6341353B1 (ja) 中空糸膜モジュール
JP2007014666A (ja) 外部灌流型血液浄化器
EP2363196A1 (en) Diffusion and/or filtration device
JP2018086137A (ja) 血液透析濾過器およびその製造方法
JP7131038B2 (ja) 腹水濾過用の中空糸膜
JP4269227B2 (ja) 中空糸膜型血液浄化器
JP2023041514A (ja) 血液浄化器及びその製造方法
JP2023154449A (ja) 体腔液処理装置及び濃縮器
TW202128233A (zh) 腹水過濾濃縮裝置
EP3473327A1 (en) Integrated fluid treatment device, and process using such device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735059

Country of ref document: EP

Kind code of ref document: A1