WO2016110628A1 - Procédé de calibration de la position d'un faisceau de lumière d'une source mobile par rapport à l'axe optique d'une caméra - Google Patents

Procédé de calibration de la position d'un faisceau de lumière d'une source mobile par rapport à l'axe optique d'une caméra Download PDF

Info

Publication number
WO2016110628A1
WO2016110628A1 PCT/FR2015/053532 FR2015053532W WO2016110628A1 WO 2016110628 A1 WO2016110628 A1 WO 2016110628A1 FR 2015053532 W FR2015053532 W FR 2015053532W WO 2016110628 A1 WO2016110628 A1 WO 2016110628A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
mark
light beam
camera
image
Prior art date
Application number
PCT/FR2015/053532
Other languages
English (en)
Inventor
Lucien Stee
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Publication of WO2016110628A1 publication Critical patent/WO2016110628A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/06Testing the alignment of vehicle headlight devices
    • G01M11/068Testing the alignment of vehicle headlight devices with part of the measurements done from inside the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/06Testing the alignment of vehicle headlight devices
    • G01M11/064Testing the alignment of vehicle headlight devices by using camera or other imaging system for the light analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • the invention relates to light sources which participate in at least one photometric function and which are movable so as to deliver a light beam in several directions.
  • the mobility of the light source may result either because it is coupled to displacement means responsible for causing it to move (for example to cause it to rotate about at least one axis), or because of it comprises at least one moving part, such as for example a reflector, able to return its light beam in several different directions.
  • photometric function is understood to mean a light function provided by a “dynamic” light source and intended to participate in lighting the environment of a system, such as for example a vehicle. Therefore, in the case of a vehicle it may be in particular a low beam function (or code), a fog lamp function, a high beam function, or a obstacle illumination function detected in the area in front of this vehicle by onboard detection means.
  • certain systems such as certain vehicles or buildings or certain spaces (interior or exterior), include a camera capable of recording images of an area which is illuminated by at least a light beam produced by a mobile source (possibly forming part of an optical block).
  • This camera provides images in which one seeks to detect, for example, ground marks (such as lines delimiting the traffic lanes), or living beings or obstacles.
  • ground marks such as lines delimiting the traffic lanes
  • living beings or obstacles For example, when we detect in a vehicle that lines on the ground become curved, we can change the direction of the beams of light produced by the mobile sources of the front optical blocks which participate in the low beam or road function.
  • this obstacle can be illuminated with at least one beam of light produced by a mobile source, possibly dedicated, of a front optical unit.
  • the positions within the images of obstacles or ground marks are defined with respect to its optical axis which is generally located in the center of its field of view. Therefore, if it is desired to control the position of a light beam as a function of what has been detected, the main axis of this light beam must be calibrated precisely with respect to the optical axis of the light beam. camera.
  • this calibration is performed only very roughly according to the tolerance intervals of assembly and manufacture of the parts concerned. In the field of production vehicles this situation results mainly from the fact that the calibration requires precise manual adjustments which are time-consuming and require technical means that are not present on an assembly line.
  • the invention is therefore particularly intended to improve the situation.
  • a second step in which the source is moved so that its light beam at least partially sweeps the area and at the same time images are acquired with the camera, and at least one image is stored in which the mark is is illuminated by the beam of light, in correspondence of the position of the source, and
  • a third step in which the position of the next mark in at least one direction of the space is determined in this stored image, and this position is associated within this image with the position of the source stored in correspondence of this image.
  • This association of the position of the mark in an image at the position of the light beam makes it possible to match the optical axis of the camera with the main axis of the light beam, and thus precise control of the beam position. of light according to what is detected in the images acquired by the camera.
  • the calibration method according to the invention may comprise other characteristics that can be taken separately or in combination, and in particular:
  • the mark can be at least partially reflective
  • the mark in the first step, can be accurately positioned with respect to an optical axis of the camera;
  • a calibration panel in the first step, can be positioned in the zone that includes the predefined mark in a predefined place;
  • At least one image can be stored, in which the mark is illuminated by a main axis of the light beam, in correspondence of the position of the source;
  • the source in the second step, can be moved so that its beam of light sweeps the area along a first direction of the space, then along a second direction of the space perpendicular to the first direction of the space, and at least one first image is stored, in which the mark is illuminated by the light beam, in correspondence of the angular position of the source with respect to the first direction of the space, and at least one second image, in which the mark is illuminated by the light beam, in correspondence of the angular position of the source relative to the second direction of the space.
  • the system may be a vehicle, possibly of automotive type, and comprising at least one optical block comprising the mobile source.
  • FIG. 1 schematically and functionally illustrates an example of a motor vehicle having a front optical unit comprising a light source whose position is being calibrated by means of a calibration method according to the invention
  • FIG. 2 schematically illustrates a portion of the motor vehicle of FIG. 1 at the beginning of the calibration of the position of a light source of one of its front optical units by means of a calibration method according to FIG. invention
  • FIG. 3 schematically illustrates a portion of the motor vehicle of FIG. 1 at an intermediate stage of the calibration of the position of a light source of one of its front optical units by means of a calibration method according to the invention.
  • the object of the invention is in particular to propose a method for calibrating the position of a light beam FL produced by a moving source SL of a system V also comprising a camera CO capable of recording images of a zone ZF which is illuminated at least by this beam of light FL.
  • the light source SL is intended to equip a system V arranged in the form of a motor vehicle.
  • the invention is not limited to this type of system. It concerns indeed any type of system that can (or must) be equipped with at least one mobile (or dynamic) light source, that is to say, able to deliver a light beam in several different directions. Thus, it concerns vehicles (land, sea (or fluvial) or air), facilities (possibly industrial type), buildings and public or private spaces.
  • the light source SL is intended to equip an optical unit BO before a vehicle, such as a projector.
  • a vehicle such as a projector.
  • the invention is not limited to this application.
  • FIG. 1 schematically and functionally illustrates a system V arranged in the form of a motor vehicle (here a car), and comprising in a front part two optical blocks BO, each equipped with a (light) source SL mobile (or dynamic), and a CO observation camera.
  • a motor vehicle here a car
  • BO optical blocks
  • the direction X is a so-called longitudinal direction, substantially parallel to the lateral doors of the vehicle V
  • the direction Y is a so-called transverse direction, perpendicular to the direction X
  • the direction Z is a so-called vertical direction, perpendicular to the longitudinal X and transverse Y directions.
  • each source SL may comprise at least one light-emitting diode (or LED) or a laser diode or a gas laser or a lamp (or bulb), for example xenon.
  • each source SL may result from the fact that it is coupled to displacement means which are responsible for moving it (for example rotating it about at least one axis). But this mobility could result from the fact that it comprises at least one moving part, such as for example a reflector, able to return its light beam FL in several different directions.
  • the (observation) camera CO can be secured to the inner rearview mirror RI of the vehicle V.
  • it could, for example, be secured to the roof (or roof) or to a ceiling lamp in a part located at the interface with the upper edge of the windshield.
  • the CO camera is here responsible for acquiring images of a zone ZF which is located in front of the vehicle V. These images are intended to be analyzed by means of analysis MA which are part of the CO camera, or an on-board computer CA in the vehicle V, as illustrated in non-limiting manner in FIG.
  • this CA computer is one that is dedicated to the management of lighting within the vehicle V, and therefore which is responsible for transmitting to the optical blocks BO operating commands and positioning of their source (s) SL.
  • this transmission can be done either directly or indirectly via a communication network RC of the vehicle V, possibly of the multiplexed type, as illustrated without limitation in FIG.
  • the camera CO can also be connected to the communication network RC in order to transmit to the analysis means MA the data that defines the digital images that it acquires in the area ZF.
  • the analysis means MA may, for example, be arranged in the form of software modules (or computer or "software”), or a combination of electronic circuits (or “hardware”) and software modules. They can possibly perform detection by shape recognition.
  • the invention proposes a calibration method for calibrating the position of the light beam FL produced by a mobile source SL of the vehicle V with respect to the optical axis A0 of the camera CO.
  • Such a method comprises three steps.
  • the method according to the invention is positioned in the ZF zone a predefined mark MC at a selected distance from the vehicle V.
  • the mark MC is positioned in front of the vehicle V.
  • the mark can be defined on a wall or on a PC calibration panel, as illustrated. not limited to FIGS. 1 to 3.
  • the mark MC is defined on a PC calibration panel.
  • the mark MC is precisely positioned at a predefined location with respect to the optical axis AO of the camera CO.
  • This optical axis AO is generally located in the center of the field of view of the camera CO, that is to say at the intersection between two field axes A Y and A z perpendicular to each other (here respectively parallel to the transverse directions Y and vertical Z).
  • the distance d Y which separates the optical axis AO from a chosen part of the mark MC, following at least one direction of space (here the transverse direction Y) is precisely fixed. This makes it possible to know in advance, with great precision, the position of the MC mark within each image acquired by the CO camera. In addition, this also makes it possible to take into account and / or correct any drift of information from the CO camera.
  • the mark MC may advantageously be reflective, at least in part, so as to facilitate its detection by the analysis means MA within the images acquired by the camera CO.
  • the mark MC may optionally comprise a sub-part MM intended to facilitate its detection, for example by shape recognition, by the analysis means MA.
  • This MM sub-part may, for example, be a test pattern. It is this MM target that can be possibly reflective.
  • the distance d Y may, for example, be that which separates its center from the optical axis AO.
  • the source SL (object of the calibration) is moved so that its light beam FL scans the zone ZF (arrow F1), at least partially, and at the same time acquires images with the CO camera. Then, at least one acquired image is stored in which the mark MC is illuminated by the light beam FL, corresponding to the position of this source SL.
  • the displacements of the source SL are, for example, controlled by the computer CA by means of commands (or instructions), for example transmitted via the communication network RC.
  • commands or instructions
  • a computer possibly portable
  • the analysis means MA can possibly store several images in which they detect the mark MC (and more precisely its possible subpart MM), and each of these images is then stored in correspondence of the precise position that the source SL when it was acquired.
  • Each position of the source SL is, a priori, known to the computer CA at each moment since it is he who controls it.
  • the computer CA provides the analysis means MA the successive positions of the source SL (and more specifically its possible subpart MM).
  • the scanning of the zone ZF by the light beam FL, during the calibration, is preferably step-by-step. This scan is not intended to illuminate the entire ZF area. It is enough that it allows at a certain moment to illuminate the brand MC. It should be noted that this scanning can be done in two opposite directions (for example from right to left, then from left to right). This round-trip scanning of a part of the zone ZF makes it possible to precisely deduce the average position of the main axis AP of the beam of light. FL. Indeed, the position of the main axis AP may vary according to the direction of scanning due to possible mechanical clearances, especially at the means of displacement of the source SL.
  • the source SL can be moved so that its light beam FL scans the zone ZF, at least partially, in a first direction of the space (for example Y), then in a second direction space (for example Z) perpendicular to this first direction of space.
  • This double scan can be done through rotations around two perpendicular axes.
  • at least a first image is stored in which the mark MC is illuminated by the light beam FL, in correspondence of the angular position of the source SL with respect to the first direction of the space (Y), and at least one second image, in which the mark MC is illuminated by the light beam FL, in correspondence of the angular position of the source SL with respect to the second direction of the space (Z).
  • the method according to the invention determines in each stored image the position, along at least one direction of space, of the mark MC, and this position is associated within this image at the position of the source SL stored in correspondence of this image.
  • the optical axis AO of the camera CO is matched to this main axis AP, and therefore the position of the light beam FL can be accurately controlled as a function of what is detected by the analysis means in the images acquired by the camera CO.
  • each position of the source SL can be defined by absolute coordinates in the reference frame (X, Y, Z) or by at least one angle with respect to an image acquired by the camera CO.
  • the source SL when it is moved with respect to two directions of space (for example Y and Z) to store first (s) and second (s) images, it determines in these first and second stored images, in the third step, the position of the mark MC following these first and second directions of space, and this position is associated within of these first and second images at the angular positions of the source SL which are stored in correspondence of these first and second images. This makes it possible to further improve the accuracy of the calibration of the position of the light beam FL.
  • two directions of space for example Y and Z
  • the calibration of a mobile source (or dynamic) can now be done automatically, quickly, without manual adjustment, and regardless of the tolerance intervals of assembly and manufacturing of the parts concerned.

Abstract

Un procédé permet de calibrer la position d'un faisceau de lumière (FL) d'une source (SL) mobile d'un système (V) comportant une caméra (CO) enregistrant des images d'une zone (ZF). Ce procédé comprend une première étape dans laquelle on positionne dans la zone (ZF) une marque (MC) à une distance choisie du système (V), une deuxième étape dans laquelle on déplace la source (SL) pour que son faisceau de lumière (FL) balaye la zone (ZF), on acquiert des images avec la caméra (CO) et on stocke une image, dans laquelle la marque (MC) est éclairée par le faisceau de lumière (FL), en correspondance de la position de la source (SL), et une troisième étape dans laquelle on détermine dans cette image stockée la position de la marque (MC), et on associe cette position à la position de la source (SL) stockée en correspondance de cette image.

Description

PROCÉDÉ DE CALIBRATION DE LA POSITION D'UN FAISCEAU DE LUMIÈRE D'UNE SOURCE MOBILE PAR RAPPORT À L'AXE OPTIQUE D'UNE CAMÉRA
L'invention concerne les sources de lumière qui participent à au moins une fonction photométrique et qui sont mobiles de manière à délivrer un faisceau de lumière suivant plusieurs directions.
On notera que la mobilité de la source de lumière peut résulter soit du fait qu'elle est couplée à des moyens de déplacement chargés de la faire bouger (par exemple l'entraîner en rotation autour d'au moins un axe), soit du fait qu'elle comprend au moins une pièce mobile, comme par exemple un réflecteur, propre à renvoyer son faisceau de lumière dans plusieurs directions différentes.
Par ailleurs, on entend ici par « fonction photométrique » une fonction lumineuse assurée par une source lumineuse « dynamique » et destinée à participer à l'éclairage de l'environnement d'un système, comme par exemple un véhicule. Par conséquent, dans le cas d'un véhicule il pourra notamment s'agir d'une fonction de feu de croisement (ou code), d'une fonction de feu antibrouillard, d'une fonction de feu de route, ou d'une fonction d'éclairement d'obstacle détecté dans la zone située devant ce véhicule par des moyens de détection embarqués.
Comme le sait l'homme de l'art, certains systèmes, comme par exemple certains véhicules ou certains bâtiments ou encore certains espaces (intérieurs ou extérieurs), comprennent une caméra propre à enregistrer des images d'une zone qui est éclairée par au moins un faisceau de lumière produit par une source mobile (faisant éventuellement partie d'un bloc optique). Cette caméra fournit des images dans lesquelles on cherche à détecter, par exemple, des marques au sol (comme par exemple des lignes délimitant les voies de circulation), ou des êtres vivants ou des obstacles. Par exemple, lorsque l'on détecte dans un véhicule que des lignes au sol deviennent courbes, on peut modifier la direction des faisceaux de lumière produits par les sources mobiles des blocs optiques avant qui participent à la fonction de feu de croisement ou de route. De même, lorsque l'on détecte un obstacle devant un véhicule, on peut éclairer cet obstacle avec au moins un faisceau de lumière produit par une source mobile, éventuellement dédiée, d'un bloc optique avant.
La caméra étant installée fixement, les positions au sein des images des obstacles ou marques au sol sont définies par rapport à son axe optique qui est généralement situé au centre de son champ d'observation. Par conséquent, si l'on souhaite contrôler la position d'un faisceau de lumière en fonction de ce qui a été détecté, il faut que l'axe principal de ce faisceau de lumière soit calibré précisément par rapport à l'axe optique de la caméra. Or, dans de nombreux systèmes, cette calibration n'est réalisée que de façon très approximative en fonction des intervalles de tolérance de montage et de fabrication des pièces concernées. Dans le domaine des véhicules de série cette situation résulte principalement du fait que la calibration nécessite des réglages manuels précis qui sont chronophages et requièrent des moyens techniques qui ne sont pas présents sur une ligne de montage.
L'invention a donc notamment pour but d'améliorer la situation.
Elle propose notamment à cet effet un procédé destiné à permettre la calibration de la position d'un faisceau de lumière produit par une source mobile d'un système comportant une caméra propre à enregistrer des images d'une zone éclairée par ce faisceau de lumière.
Ce procédé de calibration se caractérise par le fait qu'il comprend :
- une première étape dans laquelle on positionne dans la zone une marque prédéfinie à une distance choisie du système,
- une deuxième étape dans laquelle on déplace la source de sorte que son faisceau de lumière balaye au moins partiellement la zone et dans le même temps on acquiert des images avec la caméra, et l'on stocke au moins une image, dans laquelle la marque est éclairée par le faisceau de lumière, en correspondance de la position de la source, et
- une troisième étape dans laquelle on détermine dans cette image stockée la position de la marque suivant au moins une direction de l'espace, et on associe cette position au sein de cette image à la position de la source stockée en correspondance de cette image.
Cette association de la position de la marque dans une image à la position du faisceau de lumière, permet d'apparier l'axe optique de la caméra à l'axe principal du faisceau de lumière, et donc un contrôle précis de la position du faisceau de lumière en fonction de ce qui est détecté dans les images acquises par la caméra.
Le procédé de calibration selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- la marque peut être au moins en partie réfléchissante ;
- dans la première étape on peut positionner précisément la marque par rapport à un axe optique de la caméra ;
- dans la première étape on peut positionner dans la zone un panneau de calibration qui comporte la marque prédéfinie en un endroit prédéfini ;
- dans la deuxième étape on peut stocker au moins une image, dans laquelle la marque est éclairée par un axe principal du faisceau de lumière, en correspondance de la position de la source ;
- dans la deuxième étape on peut déplacer la source de sorte que son faisceau de lumière balaye la zone suivant une première direction de l'espace, puis suivant une seconde direction de l'espace perpendiculaire à la première direction de l'espace, et l'on stocke au moins une première image, dans laquelle la marque est éclairée par le faisceau de lumière, en correspondance de la position angulaire de la source par rapport à la première direction de l'espace, et au moins une seconde image, dans laquelle la marque est éclairée par le faisceau de lumière, en correspondance de la position angulaire de la source par rapport à la seconde direction de l'espace. Dans ce cas, dans la troisième étape on peut déterminer dans ces première et seconde images stockées la position de la marque suivant les première et seconde directions de l'espace, et on peut associer cette position au sein de ces première et seconde images aux positions angulaires de la source stockées en correspondance de ces première et seconde images ; - le système peut être un véhicule, éventuellement de type automobile, et comprenant au moins un bloc optique comportant la source mobile.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la figure 1 illustre de façon schématique et fonctionnelle un exemple de véhicule automobile ayant un bloc optique avant comprenant une source de lumière dont la position est en cours de calibration au moyen d'un procédé de calibration selon l'invention,
- la figure 2 illustre de façon schématique une partie du véhicule automobile de la figure 1 au début de la calibration de la position d'une source de lumière de l'un de ses blocs optiques avant au moyen d'un procédé de calibration selon l'invention, et
- la figure 3 illustre de façon schématique une partie du véhicule automobile de la figure 1 à un stade intermédiaire de la calibration de la position d'une source de lumière de l'un de ses blocs optiques avant au moyen d'un procédé de calibration selon l'invention.
L'invention a notamment pour but de proposer un procédé destiné à permettre la calibration de la position d'un faisceau de lumière FL produit par une source SL mobile d'un système V comportant également une caméra CO propre à enregistrer des images d'une zone ZF qui est éclairée au moins par ce faisceau de lumière FL.
Dans ce qui suit, on considère, à titre d'exemple non limitatif, que la source de lumière SL est destinée à équiper un système V agencé sous la forme d'un véhicule automobile. Mais l'invention n'est pas limitée à ce type de système. Elle concerne en effet tout type de système pouvant (ou devant) être équipé d'au moins une source de lumière mobile (ou dynamique), c'est-à-dire propre à délivrer un faisceau de lumière selon plusieurs directions différentes. Ainsi, elle concerne les véhicules (terrestres, maritimes (ou fluviaux) ou aériens), les installations (éventuellement de type industriel), les bâtiments et les espaces publics ou privés.
Par ailleurs, on considère dans ce qui suit, à titre d'exemple non limitatif, que la source de lumière SL est destinée à équiper un bloc optique BO avant d'un véhicule, comme par exemple un projecteur. Mais l'invention n'est pas limitée à cette application.
On a schématiquement et fonctionnellement illustré sur la figure 1 un système V agencé sous la forme d'un véhicule automobile (ici une voiture), et comprenant dans une partie avant deux blocs optiques BO, équipés chacun d'une source (de lumière) SL mobile (ou dynamique), et d'une caméra d'observation CO.
Sur les figures 1 à 3, la direction X est une direction dite longitudinale, sensiblement parallèle aux portes latérales du véhicule V, la direction Y est une direction dite transversale, perpendiculaire à la direction X, et la direction Z est une direction dite verticale, perpendiculaire aux directions longitudinale X et transversale Y.
Par exemple, chaque source SL peut comporter au moins une diode électroluminescente (ou LED) ou une diode laser ou un laser à gaz ou encore une lampe (ou ampoule), par exemple au xénon.
Egalement par exemple, la mobilité de chaque source SL peut résulter du fait qu'elle est couplée à des moyens de déplacement qui sont chargés de la faire bouger (par exemple l'entraîner en rotation autour d'au moins un axe). Mais cette mobilité pourrait résulter du fait qu'elle comprend au moins une pièce mobile, comme par exemple un réflecteur, propre à renvoyer son faisceau de lumière FL dans plusieurs directions différentes.
Egalement par exemple, et comme illustré non limitativement, la caméra (d'observation) CO peut être solidarisée au rétroviseur central intérieur RI du véhicule V. En variante, elle pourrait, par exemple, être solidarisée au toit (ou pavillon) ou à un plafonnier dans une partie située à l'interface avec le bord supérieur du pare-brise.
La caméra CO est donc ici chargée d'acquérir des images d'une zone ZF qui est située devant le véhicule V. Ces images sont destinées à être analysées par des moyens d'analyse MA qui font partie soit de la caméra CO, soit d'un calculateur CA embarqué dans le véhicule V, comme illustré non limitativement sur la figure 1 . Par exemple, ce calculateur CA est celui qui est dédié à la gestion de l'éclairage au sein du véhicule V, et donc qui est chargé de transmettre aux blocs optiques BO des commandes de fonctionnement et de positionnement de leur(s) source(s) SL. On notera que cette transmission peut se faire soit directement, soit indirectement via un réseau de communication RC du véhicule V, éventuellement de type multiplexé, comme illustré non limitativement sur la figure 1 . Dans cette dernière alternative, la caméra CO peut être également connectée au réseau de communication RC afin de transmettre aux moyens d'analyse MA les données qui définissent les images numériques qu'elle acquiert dans la zone ZF.
Les moyens d'analyse MA peuvent, par exemple, être agencés sous la forme de modules logiciels (ou informatiques ou encore « software »), ou bien d'une combinaison de circuits électroniques (ou « hardware ») et de modules logiciels. Ils peuvent éventuellement réaliser une détection par reconnaissance de forme.
Comme indiqué précédemment, l'invention propose un procédé de calibration destiné à permettre la calibration de la position du faisceau de lumière FL produit par une source SL mobile du véhicule V par rapport à l'axe optique AO de la caméra CO. Un tel procédé (de calibration) comprend trois étapes.
Dans une première étape, du procédé selon l'invention, on positionne dans la zone ZF une marque MC prédéfinie à une distance choisie du véhicule V.
On notera que ce positionnement est relatif. En effet, soit on positionne le véhicule V devant la marque MC, soit on vient positionner la marque MC devant le véhicule V. Dans la première alternative, la marque peut être définie sur un mur ou bien sur un panneau de calibration PC, comme illustré non limitativement sur les figures 1 à 3. Dans la seconde alternative, la marque MC est définie sur un panneau de calibration PC.
De préférence, dans la première étape on positionne précisément la marque MC en un endroit prédéfini par rapport à l'axe optique AO de la caméra CO. Cet axe optique AO est généralement situé au centre du champ d'observation de la caméra CO, c'est-à-dire à l'intersection entre deux axes de champ AY et Az perpendiculaires entre eux (ici respectivement parallèles aux directions transversale Y et verticale Z). Dans ce cas, la distance dY qui sépare l'axe optique AO d'une partie choisie de la marque MC, suivant au moins une direction de l'espace (ici la direction transversale Y), est précisément fixée. Cela permet en effet de connaître à l'avance, avec une grande précision, la position de la marque MC au sein de chaque image acquise par la caméra CO. De plus, cela permet également de prendre en compte et/ou de corriger une éventuelle dérive des informations issues de la caméra CO.
On notera également que la marque MC peut être avantageusement réfléchissante, au moins en partie, de manière à faciliter sa détection par les moyens d'analyse MA au sein des images acquises par la caméra CO.
On notera également, comme illustré non limitativement sur la figure 3, que la marque MC peut éventuellement comprendre une sous-partie MM destinée à faciliter sa détection, par exemple par reconnaissance de forme, par les moyens d'analyse MA. Cette sous-partie MM peut, par exemple, être une mire. C'est cette mire MM qui peut être éventuellement réfléchissante. En présence d'une telle mire MM, la distance dY peut, par exemple, être celle qui sépare son centre de l'axe optique AO.
Dans une deuxième étape, du procédé selon l'invention, on déplace la source SL (objet de la calibration) de sorte que son faisceau de lumière FL balaye la zone ZF (flèche F1 ), au moins partiellement, et dans le même temps on acquiert des images avec la caméra CO. Ensuite, on stocke au moins une image acquise, dans laquelle la marque MC est éclairée par le faisceau de lumière FL, en correspondance de la position de cette source SL.
Les déplacements de la source SL (et plus précisément de son faisceau de lumière FL) sont, par exemple, contrôlés par le calculateur CA au moyen de commandes (ou instructions), par exemple transmises via le réseau de communication RC. A cet effet, on peut, par exemple, prévoir dans le véhicule V une fonction de calibration, sélectionnable via une interface homme/machine, et destinée, d'une part, à ordonner au calculateur CA de démarrer une calibration d'au moins une source SL, et, d'autre part, à demander à la caméra CO d'acquérir des images et aux moyens d'analyse MA d'analyser ces images afin de sauver l'une au moins de celles dans laquelle la marque MC apparaît nettement. En variante, on peut connecter temporairement un ordinateur (éventuellement portable) à une prise couplée au réseau de communication RC afin d'adresser, d'une part, au calculateur CA des instructions destinées à lui demander de déplacer au moins une source SL sur une course choisie, et, d'autre part, à la caméra CO et aux moyens d'analyse MA des instructions destinées à leur demander respectivement d'acquérir des images et d'analyser ces images afin de sauver l'une au moins de celles dans laquelle la marque MC apparaît nettement.
On comprendra que ce sont les moyens d'analyse MA qui détectent la marque MC (et plus précisément son éventuelle sous-partie MM) parmi les images acquises par la caméra CO, et qu'une telle détection ne peut survenir qu'à condition que la marque MC soit effectivement éclairée par le faisceau de lumière FL, comme illustré sur la figure 3. Le caractère réfléchissant de la marque MC et plus précisément de sa sous-partie MM, est destiné à augmenter encore plus la précision de la calibration. En effet, lorsque la sous- partie MM n'est pas éclairée par l'axe principal AP du faisceau de lumière FL, comme illustré sur la figure 2, cette sous-partie MM est quasiment invisible sur les images acquises.
On notera que les moyens d'analyse MA peuvent éventuellement stocker plusieurs images dans lesquelles ils détectent la marque MC (et plus précisément son éventuelle sous-partie MM), et chacune de ces images est ensuite stockée en correspondance de la position précise que possédait la source SL au moment où elle a été acquise. Chaque position de la source SL est, a priori, connue du calculateur CA à chaque instant puisque c'est lui qui la contrôle. Dans ce cas, le calculateur CA fournit aux moyens d'analyse MA les positions successives de la source SL (et plus précisément de son éventuelle sous-partie MM).
Le balayage de la zone ZF par le faisceau de lumière FL, pendant la calibration, se fait de préférence pas-à-pas. Ce balayage n'est en effet pas destiné à éclairer l'intégralité de la zone ZF. Il suffit qu'il permette à un certain moment d'éclairer la marque MC. On notera que ce balayage peut se faire selon deux sens opposés (par exemple de droite à gauche, puis de gauche à droite). Ce balayage aller/retour d'une partie de la zone ZF permet de déduire précisément la position moyenne de l'axe principal AP du faisceau de lumière FL. En effet, la position de l'axe principal AP peut varier selon le sens du balayage du fait d'éventuels jeux mécaniques, notamment au niveau des moyens de déplacement de la source SL.
On notera également que dans la deuxième étape on peut déplacer la source SL de sorte que son faisceau de lumière FL balaye la zone ZF, au moins partiellement, suivant une première direction de l'espace (par exemple Y), puis suivant une seconde direction de l'espace (par exemple Z) perpendiculaire à cette première direction de l'espace. Ce double balayage peut se faire grâce à des rotations autour de deux axes perpendiculaires. Dans ce cas, on stocke au moins une première image, dans laquelle la marque MC est éclairée par le faisceau de lumière FL, en correspondance de la position angulaire de la source SL par rapport à la première direction de l'espace (Y), et au moins une seconde image, dans laquelle la marque MC est éclairée par le faisceau de lumière FL, en correspondance de la position angulaire de la source SL par rapport à la seconde direction de l'espace (Z).
Dans une troisième étape, du procédé selon l'invention, on détermine dans chaque image stockée la position, suivant au moins une direction de l'espace, de la marque MC, et on associe cette position au sein de cette image à la position de la source SL stockée en correspondance de cette image. Ces déterminations et associations peuvent être réalisées par les moyens d'analyse MA ou bien par des moyens de traitement dédiés à la calibration (et faisant par exemple partie du calculateur CA).
On comprendra qu'en associant la position de la marque MC dans une image à la position de l'axe principal AP du faisceau de lumière FL, on réalise un appariement de l'axe optique AO de la caméra CO à cet axe principal AP, et donc on peut contrôler précisément la position du faisceau de lumière FL en fonction de ce qui est détecté par les moyens d'analyse dans les images acquises par la caméra CO.
On notera également que chaque position de la source SL peut être définie par des coordonnées absolues dans le référentiel (X, Y, Z) ou par au moins un angle par rapport à une image acquise par la caméra CO.
On notera également que lorsque l'on déplace la source SL par rapport à deux directions de l'espace (par exemple Y et Z) pour stocker des première(s) et seconde(s) images, on détermine dans ces première et seconde images stockées, dans la troisième étape, la position de la marque MC suivant ces première et seconde directions de l'espace, et on associe cette position au sein de ces première et seconde images aux positions 5 angulaires de la source SL qui sont stockées en correspondance de ces première et seconde images. Cela permet d'améliorer encore plus la précision de la calibration de la position du faisceau de lumière FL.
Grâce à l'invention, la calibration d'une source mobile (ou dynamique) peut désormais se faire de façon automatique, rapidement, sans réglage î o manuel, et indépendamment des intervalles de tolérance de montage et de fabrication des pièces concernées.

Claims

REVENDICATIONS
1 . Procédé de calibration de la position d'un faisceau de lumière (FL) produit par une source (SL) mobile d'un système (V) comportant une caméra (CO) propre à enregistrer des images d'une zone (ZF) éclairée par ledit faisceau de lumière (FL), caractérisé en ce qu'il comprend une première étape dans laquelle on positionne dans ladite zone (ZF) une marque (MC) prédéfinie à une distance choisie dudit système (V), une deuxième étape dans laquelle on déplace ladite source (SL) de sorte que son faisceau de lumière (FL) balaye au moins partiellement ladite zone (ZF) et dans le même temps on acquiert des images avec ladite caméra (CO), et l'on stocke au moins une image, dans laquelle ladite marque (MC) est éclairée par ledit faisceau de lumière (FL), en correspondance de la position de ladite source (SL), et une troisième étape dans laquelle on détermine dans cette image stockée la position de ladite marque (MC) suivant au moins une direction de l'espace, et on associe cette position au sein de cette image à la position de la source (SL) stockée en correspondance de cette image.
2. Procédé selon la revendication 1 , caractérisé en ce que ladite marque (MC) est au moins en partie réfléchissante.
3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que dans ladite première étape on positionne précisément ladite marque (MC) par rapport à un axe optique (AO) de ladite caméra (CO).
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que dans ladite première étape on positionne dans ladite zone (ZF) un panneau de calibration (PC) comportant ladite marque (MC) prédéfinie en un endroit prédéfini.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que dans ladite deuxième étape on stocke au moins une image, dans laquelle ladite marque (MC) est éclairée par un axe principal (AP) dudit faisceau de lumière (FL), en correspondance de la position de ladite source (SL).
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que dans ladite deuxième étape on déplace ladite source (SL) de sorte que son faisceau de lumière (FL) balaye ladite zone (ZF) suivant une première direction de l'espace, puis suivant une seconde direction de l'espace perpendiculaire à ladite première direction de l'espace, et l'on stocke au moins une première image, dans laquelle ladite marque (MC) est éclairée par 5 ledit faisceau de lumière (FL), en correspondance de la position angulaire de ladite source (SL) par rapport à ladite première direction de l'espace, et au moins une seconde image, dans laquelle ladite marque (MC) est éclairée par ledit faisceau de lumière (FL), en correspondance de la position angulaire de ladite source (SL) par rapport à ladite seconde direction de l'espace, et dans î o ladite troisième étape on détermine dans ces première et seconde images stockées la position de ladite marque (MC) suivant lesdites première et seconde directions de l'espace, et on associe cette position au sein de ces première et seconde images aux positions angulaires de la source (SL) stockées en correspondance de ces première et seconde images.
15 7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que ledit système (V) est un véhicule comprenant au moins un bloc optique (BO) comportant ladite source (SL) mobile.
8. Procédé selon la revendication 7, caractérisé en ce que ledit véhicule (V) est de type automobile.
PCT/FR2015/053532 2015-01-07 2015-12-16 Procédé de calibration de la position d'un faisceau de lumière d'une source mobile par rapport à l'axe optique d'une caméra WO2016110628A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550083A FR3031409B1 (fr) 2015-01-07 2015-01-07 Procede de calibration de la position d’un faisceau de lumiere d’une source mobile par rapport a l’axe optique d’une camera
FR1550083 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016110628A1 true WO2016110628A1 (fr) 2016-07-14

Family

ID=53177596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053532 WO2016110628A1 (fr) 2015-01-07 2015-12-16 Procédé de calibration de la position d'un faisceau de lumière d'une source mobile par rapport à l'axe optique d'une caméra

Country Status (2)

Country Link
FR (1) FR3031409B1 (fr)
WO (1) WO2016110628A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026247A2 (fr) * 2007-08-17 2009-02-18 Magna Electronics Inc. Système de contrôle automatique de phare
FR2945774A1 (fr) * 2009-05-25 2010-11-26 Valeo Vision Procede de reglage de projecteurs pour vehicule automobile
EP2657077A2 (fr) * 2012-04-23 2013-10-30 Audi Ag Procédé et installation de phare destinés à compenser les erreurs d'alignement d'un phare
US20130286670A1 (en) * 2010-10-18 2013-10-31 Hella Kgaa Hueck & Co. Method and a device for testing a lighting driving assistance system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026247A2 (fr) * 2007-08-17 2009-02-18 Magna Electronics Inc. Système de contrôle automatique de phare
FR2945774A1 (fr) * 2009-05-25 2010-11-26 Valeo Vision Procede de reglage de projecteurs pour vehicule automobile
US20130286670A1 (en) * 2010-10-18 2013-10-31 Hella Kgaa Hueck & Co. Method and a device for testing a lighting driving assistance system
EP2657077A2 (fr) * 2012-04-23 2013-10-30 Audi Ag Procédé et installation de phare destinés à compenser les erreurs d'alignement d'un phare

Also Published As

Publication number Publication date
FR3031409B1 (fr) 2017-01-13
FR3031409A1 (fr) 2016-07-08

Similar Documents

Publication Publication Date Title
EP1437258B1 (fr) Système de commande de l'orientation en site d'un projecteur de véhicule et procédé de mise en oeuvre
KR102327997B1 (ko) 주위 감지 시스템
US8480270B2 (en) Headlamp aiming system
EP1437259B1 (fr) Système de commande de l'orientation en site d'un projecteur de véhicule et procédé de mise en oeuvre
EP0642950B1 (fr) Dispositif de commande automatique de l'orientation des projecteurs d'un véhicule automobile en fonction des variations d'assiette de celui-ci
US20230109225A1 (en) Device and method for calibrating a light projector
WO2015185749A1 (fr) Dispositif de detection a plans croises d'un obstacle et procede de detection mettant en oeuvre un tel dispositif
CN114056225A (zh) 用于操作机动车辆的远光辅助系统的方法以及机动车辆
FR3001028A1 (fr) Torche d'eclairage pour vehicule automobile
EP1515293A1 (fr) Dispositif de détection d'obstacle comportant un système d'imagerie stéréoscopique incluant deux capteurs optiques
WO2016110627A1 (fr) Procédé de calibration, par détection de lumière, de la position d'un faisceau de lumière d'une source mobile par rapport à l'axe optique d'une caméra
JP2024506184A (ja) マイクロレンズアレイ投影装置、照明装置、および車両
WO2016110628A1 (fr) Procédé de calibration de la position d'un faisceau de lumière d'une source mobile par rapport à l'axe optique d'une caméra
EP2102441A1 (fr) Dispositif et procede de detection de corps sur la course d'un ouvrant, vehicule muni du dispositif
CN218489560U (zh) 车辆
EP2988972B1 (fr) Procede de commande d'un systeme d'eclairage reglable pour un vehicule porteur et systeme d'eclairage reglable
FR3104675A1 (fr) Procédé de contrôle d’un système d’éclairage d’un véhicule automobile
FR3066731A1 (fr) Dispositif et procede d’assistance par eclairage orientable en fonction de la position d’un etre vivant situe devant un vehicule
EP2208963B1 (fr) Procédé de mesure de jeux et d'affleurements
WO2019092335A1 (fr) Dispositif d'éclairage à faisceau principal et faisceau étroit produit par un ensemble orientable en fonction de la position d'un obstacle détecté devant un véhicule
EP3455102B1 (fr) Systeme et procede d'eclairage pour vehicule automobile
FR3104674A1 (fr) Procédé de commande d’un système d’éclairage d’un véhicule automobile
FR3058690B1 (fr) Systeme d'eclairage assiste pour vehicule et procede de formation d'une image hybride
CN117545982A (zh) 具有自动前灯对准的车辆
FR3098620A1 (fr) Procédé de génération d’une représentation visuelle de l’environnement de conduite d’un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821138

Country of ref document: EP

Kind code of ref document: A1