WO2016110171A1 - 反应堆控制棒控制系统 - Google Patents

反应堆控制棒控制系统 Download PDF

Info

Publication number
WO2016110171A1
WO2016110171A1 PCT/CN2015/097238 CN2015097238W WO2016110171A1 WO 2016110171 A1 WO2016110171 A1 WO 2016110171A1 CN 2015097238 W CN2015097238 W CN 2015097238W WO 2016110171 A1 WO2016110171 A1 WO 2016110171A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
signal
control
module
coil
Prior art date
Application number
PCT/CN2015/097238
Other languages
English (en)
French (fr)
Inventor
李涛
许育周
周琦
王春生
吴日升
穆昌洪
李腾龙
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Publication of WO2016110171A1 publication Critical patent/WO2016110171A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/12Means for moving control elements to desired position
    • G21C7/14Mechanical drive arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the field of nuclear power, and in particular to reactor control rod control.
  • the reactor's reactivity is controlled by controlling the lifting, inserting and holding movement of the control rod to ensure that the reactor is always in a controlled state.
  • the control rods are usually grouped (such as a temperature rod group, a power rod group, a shutdown rod group, etc.), and the four control rods in the same subgroup are symmetric in the core. Arrangement (control rods in the center of the core are individually 1 subgroup) and linked at runtime.
  • the lifting, inserting and holding movement of the control rod is achieved by a control rod drive mechanism (magnetic coil, CRDM) which is coupled to the control rod by a drive rod assembly.
  • a control rod drive mechanism magnetic coil, CRDM
  • the coil assembly generally includes three electromagnetic coils, namely: a lifting coil, a moving coil, and a holding coil.
  • the electromagnetic coil of the coil assembly and the core member corresponding to the yoke and the hook assembly constitute three “electromagnets", which are "lifting electromagnet", "moving electromagnet” and “holding electromagnet” from top to bottom.
  • the control rod control system sends different currents to the three electromagnetic coils in the set order to control the excitation and demagnetization of the coils, so that three "electromagnet" core components in the corresponding hook assemblies can be made. Put into operation, thereby controlling the movement of the drive rod assembly to drive the control rod to lift, insert or hold. When all three coils are de-energized, the drive rod assembly loses the clamping force, and the drive rod assembly and the control rod are free to fall under the force of gravity, so that the control rod is quickly inserted into the core.
  • the procedure for the drive mechanism to lift one step from the holding state is as follows: 1.
  • the moving coil is energized and moved.
  • the armature pulls in. Move the claws into the groove of the drive rod. 2.
  • Keep the hooks down with the drive rod during the opening process of the armature in this process, the moving hooks only move in a straight line without swinging), descend to the drive rod and hang on the moving hooks, and then continue to descend for a distance, then swing out the drive rod Annular groove.
  • 3. Raise the coil to energize and raise the armature. When lifting the armature, the driving rod is lifted by moving the hook to raise a step. 4.
  • the drive rod is lowered by one step with the lifting armature. 5.
  • the hook claw is first placed in the circular groove of the driving rod to be in a vertical state, and then the upward linear motion is continued, and the driving rod is hung on the holding hook, and then continues to move for a distance to move the hook claw tooth.
  • the moving coil is powered off and the moving armature is opened.
  • the moving armature is opened, the moving hooks are swung out of the driving rod annular groove. After the moving hooks are placed in the annular groove of the driving rod, the mechanism can perform the next insertion process.
  • the control rod control system controls the excitation and demagnetization of the drive mechanism electromagnetic coil by generating different levels of current.
  • Each electromagnetic coil requires three kinds of current: ZC: zero current, demagnetize the electromagnetic coil; RC: half current, to reduce The current keeps the electromagnetic coil energized, reducing the heat generated by the coil; FC: full current, causing the electromagnetic coil to be excited (the full current cannot be maintained for a long time, otherwise the electromagnetic coil will be burnt).
  • control rod control systems currently used in many nuclear power plants were developed in the 1960s and 1970s. These systems still use conventional thyristors as current control components, and a current control circuit controls four electromagnetic coils simultaneously.
  • the "one-to-four" structure is prone to occur due to the dispersion of the coiling of the drive mechanism, resulting in uneven current distribution, causing the control rod to slide or drop the rod, and each coil requires a different control module, the system structure is complex, and the control method is more It is cumbersome, has a low degree of digitization, has poor performance indicators, and has poor maintainability and high maintenance costs.
  • the present invention discloses a reactor control rod control system for controlling electromagnetic coil action in a control rod driving mechanism in a reactor, which comprises a control module and a plurality of currents corresponding to the plurality of electromagnetic coils.
  • a conversion module and a power module each of the current conversion modules is connected to the electromagnetic coil, and the control module is respectively connected to the plurality of current conversion modules and respectively outputs corresponding coil control signals to the plurality of current conversion modules.
  • the current conversion module converts the coil control signal into a corresponding driving current, and controls a corresponding electromagnetic coil according to the driving current, and the power module supplies power to the control module and the current conversion module.
  • each current conversion module of the present invention controls an electromagnetic coil correspondingly, avoids a set of current control circuits simultaneously controlling four electromagnetic coils, causing the control rod to slide or drop the rod problem, the control is stable, the system structure is simple, and the performance is simple. superior.
  • any current conversion module fails, it is only necessary to replace the current conversion module, and the maintainability is high.
  • the input terminal of the control module is connected to the logic cabinet to receive the control rod control command of the logic cabinet, and generates the coil control signal according to the control rod control command, and the control module acquires the reactor control rod control
  • the system status information of the system generates a fault alarm signal according to the system status information, and sends the system status information and the fault alarm signal to the logic cabinet.
  • the reactor control rod control system further includes an operation display module, the operation display module inputs an external manual operation command and displays system status information and a failure alarm signal; the control module is further connected to the operation display module and The operation command generates the coil control signal, and the control module further acquires system status information of the reactor control rod control system and generates a fault alarm signal according to the system status information, and sends the system status to the operation display module. Information and fault alarm signals.
  • the input end of the control module is further connected to the reactor protection system to receive the shutdown signal output by the reactor protection system, and generate a corresponding coil control signal according to the shutdown signal, corresponding to the shutdown signal according to the shutdown signal
  • the coil control signal controls the corresponding solenoid action to trigger the control rod drop.
  • the electromagnetic coil is divided into a lifting coil, a moving coil and a holding coil according to a type, and each current conversion module is correspondingly connected to the electromagnetic coil, and comprises a lifting coil, a moving coil and a holding coil respectively.
  • the associated three sets of parameters, the current conversion module automatically identifies the type of electromagnetic coil connected to the current conversion module through the plug interface, and automatically selects a corresponding parameter group according to the electromagnetic coil type.
  • the solution makes the three electromagnetic coils of the invention use the same current conversion module, has high versatility, wide application range, and further improves the maintainability of the system.
  • the current conversion module includes a constant value circuit, an adjustment circuit, a current sensor, and a current drive circuit
  • the constant value circuit receives a coil control signal output by the control module and converts the coil control signal processing into Corresponding level signal, the current transmission
  • the sensor collects a current signal of the electromagnetic coil
  • the adjustment circuit receives the level signal and the current signal, and performs differential amplification processing on the level signal and the current signal to generate a square wave driving signal
  • the current driving circuit generates the driving current according to the square wave driving signal to drive the electromagnetic coil to operate.
  • the current driving circuit includes a first insulated gate bipolar transistor and a second insulated gate bipolar transistor, and gates of the first insulated gate bipolar transistor and the second insulated gate bipolar transistor respectively Connecting the square wave driving signal, the collector of the first insulated gate bipolar transistor is connected to the positive electrode that is always flowing, and the emitter of the second insulated gate bipolar transistor is connected to the negative electrode of the direct current, the electromagnetic The two ends of the coil are respectively connected to the emitter of the first insulated gate bipolar transistor and the collector of the second insulated gate bipolar transistor.
  • the invention adopts an insulated gate bipolar transistor (IGBT) as a current control component, so that the current conversion circuit has a simple structure and improves the reliability of the circuit, and the current rises and falls down time is short, the current ripple is small, and the system generates less heat.
  • IGBT insulated gate bipolar transistor
  • the current conversion module further includes a current detecting circuit and a display module, wherein the setting circuit further determines whether the coil control signal is normal and outputs fixed value fault information when the coil control signal is abnormal, the setting value
  • the circuit also delivers a current setpoint signal in the coil control signal to a current sense circuit, the current sense circuit being coupled to the current sensor and the setpoint circuit, respectively, to receive the current signal and the current setpoint a signal, and the current detecting circuit determines a predetermined working state of the electromagnetic coil according to the current setting signal, determines an actual working state of the electromagnetic coil according to the current signal, and according to the predetermined working state and a current signal Determining whether the current signal is faulty to generate current fault information, thereby outputting corresponding state information, the state information including the predetermined working state, an actual working state, and current fault information; the display module and the determining circuit respectively And connected to the current detecting circuit and displaying the status information and the fixed value fault information.
  • the current detecting circuit acquires the state information by: the current detecting circuit determines a predetermined working state of the electromagnetic coil according to the current setting signal, and invokes a corresponding preset threshold and a preset delay. Time, and generating jump state information according to the preset delay time of the call when the current scheduled working state and the previous predetermined working state are different, the jump state information being information for determining that the current signal is in a jump state;
  • the current detecting circuit determines an actual working state of the electromagnetic coil according to the current signal, and the current detecting circuit compares the current signal with a preset threshold when the current signal is not in a jump state, and at the current Generating current fault information when the signal exceeds a preset threshold range; the current detecting circuit compares the current signal with a preset threshold after the preset time is delayed when the current signal is in a jump state, and the current signal exceeds the pre-control Generating current fault information when the threshold range is set; the state information further includes the jump state information;
  • the display module locks the display state according to the current fault information and the fixed value fault information
  • the reactor control rod control system further includes a fault clearing button, the fault clearing button outputs a fault clearing command, the display module According to the fault clear command Unlock the display state.
  • the display module further includes a test interface for testing an actual current value of the electromagnetic coil, and the communication interface for externally controlling the terminal device to adjust the control parameter online.
  • the control module acquires system status information of the reactor control rod control system and generates a fault alarm signal according to the system status information, and generates a coil control signal including a double hold command according to the type of the fault alarm signal.
  • the current conversion module controls the moving coil and the holding coil in the electromagnetic coil to be in a double hold state according to the coil control signal including the double hold command.
  • the reactor control rod control system further comprises a mounting cabinet, the mounting cabinet is provided with a mounting bracket and a plugging interface disposed on the mounting bracket, and the modules of the reactor control rod control system are modularized
  • the structure is respectively installed on the mounting bracket and is connected to the corresponding plugging and unplugging interface, wherein the plugging and unplugging interface is used for connecting each module in the reactor control rod control system, and the plugging and unplugging interface corresponding to the current converting module is further Connecting the electromagnetic coil and identifying the electromagnetic coil type, and calling corresponding control programs and control parameters according to the electromagnetic coil type.
  • the power module includes a power power module and a control power module, and the power module converts 260V AC into three-phase half-wave rectification into 220V DC power, and is connected to the current conversion module to the current conversion module.
  • Provide power supply if the nuclear power plant directly provides 220V DC power, the power supply module can remove the three-phase half-wave rectifier circuit, retain only the filter circuit; or directly remove the power supply module, directly from the nuclear power plant 220V DC power
  • the current conversion module is connected; the control power module converts 220V alternating current into 24V direct current, and is connected to the current conversion module and the control module to provide control power to the current conversion module and the control module.
  • the solution makes the invention applicable to a wide range of power sources, and can use different levels of power sources for different nuclear power plants.
  • FIG. 1 is a block diagram showing the structure of a current conversion module according to the present invention.
  • FIG. 2 is a circuit diagram of a current driving circuit of the present invention.
  • Figure 3 is a block diagram showing the structure of the reactor control rod control system of the present invention.
  • FIG. 4 is a schematic diagram of the detection of the current detecting circuit of the present invention.
  • FIG. 5 is a schematic structural view of a display module according to the present invention.
  • Figure 6 is a layout view of the reactor control rod control system of the present invention.
  • the invention discloses a reactor control rod control system for controlling the action of a control rod drive mechanism in a reactor.
  • the control rod drive mechanism comprises a plurality of coil assemblies and corresponding drive rod assemblies (not shown), with reference to FIG. 1 And FIG. 3, each of the coil assemblies includes three electromagnetic coils (CRDM coils) 200, and the three electromagnetic coils 200 are classified into a lift coil 201, a moving coil 202, and a holding coil 203 by type.
  • the coil assembly is coupled to the drive rod assembly and controls the actuation of the drive rod assembly in accordance with the action of the electromagnetic coil 200 to control the corresponding control rod for corresponding lifting, lowering or holding.
  • the reactor control rod control system 100 includes a control module 11, a plurality of current conversion modules 12 corresponding to the plurality of the electromagnetic coils 200, and a power supply module for supplying power to the current conversion module 12.
  • a current conversion module 12 is connected to the electromagnetic coil 200, and the control module 11 is respectively connected to the plurality of current conversion modules 12 and outputs corresponding coil control signals U C to the plurality of current conversion modules 12 respectively.
  • the current conversion module 12 converts the coil control signal U C into a corresponding driving current I 0 , and controls the corresponding electromagnetic coil 200 to operate according to the driving current I 0 , the power module is opposite to the control module 11 and The current conversion module 12 supplies power.
  • each current conversion module 12 of the present invention controls an electromagnetic coil 200 correspondingly, avoiding a set of current control circuits simultaneously controlling four electromagnetic coils, causing the control rod to slide or drop the rod problem, the control is stable, and the system structure is simple. Moreover, in the case of any current conversion module 12 failure, the present invention only needs to replace the faulty current conversion module 12, and the maintainability is high.
  • the current conversion module 12 adopts a standardized design, and each current conversion module 12 includes three sets of parameters associated with each of the lift coil 201, the moving coil 202, and the holding coil 203, respectively, the current conversion module. 12 automatically identifies the types of electromagnetic coils 201, 202, 203 connected to the current conversion module 12 through the plug-in interface, and automatically selects corresponding parameter sets according to the electromagnetic coil types 201, 202, 203.
  • the solution enables the same current conversion module 12 to be used for all three types of electromagnetic coils, and has high versatility and wide application range, thereby further improving maintainability.
  • the power module includes a power module 151 and a control power module 152.
  • the power module 151 converts 260V AC into three-phase half-wave rectification to 220V DC, and the current conversion module 12 Connected to provide power to the current conversion module 12;
  • the control power module 152 converts 220V AC to 24V DC, and is coupled to the current conversion module 12 and the control module 11 to the current conversion module 12 and the control module 11 Provide control power.
  • the current conversion module 12 includes a constant value circuit 21, an adjustment circuit 22, a current sensor 24, and a current drive circuit 23.
  • the setting circuit 21 receives the coil control signal U C outputted by the control module 11, and the setting circuit 21 processes and converts the coil control signal U C into a corresponding level signal U d .
  • the current sensor 24 collects a current of the electromagnetic coil 200 to generate a current signal I f , and the adjustment circuit 22 receives the level signal U d and the current signal I f , and the level signal U d Differentially amplifying the current signal I f to generate a square wave driving signal U n , the current driving circuit 23 generating the driving current I o according to the square wave driving signal U n , the driving current I o driving the
  • the electromagnetic coil 200 is energized and demagnetized, so that the control rod drive mechanism (CRDM) action drives the control rod to operate.
  • the current sensor 24 has two.
  • the setting circuit 21 includes a digital potentiometer, and the present invention adjusts the level signal U d outputted by the setting circuit by a digital potentiometer, thereby adjusting the driving current, thereby avoiding oxidation drift of the mechanical potentiometer, Digital control is achieved due to problems such as low precision and misoperation.
  • the current driving circuit 23 includes a first insulated gate bipolar transistor VT1 and a second insulated gate bipolar transistor VT2, the first insulated gate bipolar transistor VT1 and the second insulated gate bipolar type.
  • the gate of the transistor VT2 is respectively connected to the square wave driving signal U n (G1-S1, G2-S2), the collector of the first insulated gate bipolar transistor VT1 is connected to the positive current positive electrode, and the second insulated gate
  • the emitter of the bipolar transistor VT2 is connected to the negative pole of the direct current, and the two ends of the electromagnetic coil CRDM are respectively connected to the emitter of the first insulated gate bipolar transistor and the second insulated gate bipolar transistor. collector.
  • the invention adopts an insulated gate bipolar transistor (IGBT) as a current control component, so that the structure of the current conversion circuit is simplified, the reliability of the circuit is improved, the current rise and fall time is short, the current ripple is small, and the system generates less heat.
  • the DC power is provided by the power source module 151.
  • the current driving circuit 23 further includes a filter capacitor C3, a first diode VD1, and a second diode VD2.
  • the filter capacitor C3 is connected to the positive pole of the three-phase direct current and the second insulated gate. Between the emitters of the pole type transistor VT2, the first diode VD1 and the second diode VD2 are both fast recovery diodes.
  • the current driving circuit 23 further includes a protection circuit including a first resistor R1 and a first capacitor C1 connected in series with each other, and a second resistor R2 and a second capacitor C2 connected in series with each other.
  • a resistor R1 and a first capacitor C1 are connected in series between the collector and the emitter of the first insulated gate bipolar transistor VT1 to avoid voltage between the collector and the emitter of the first insulated gate bipolar transistor VT1.
  • the second resistor R2 and the second capacitor C2 are connected in series between the collector and the emitter of the second insulated gate bipolar transistor VT2 to avoid the second insulated gate bipolar transistor VT2.
  • the voltage between the collector and the emitter rises rapidly for some reason.
  • the current conversion module 12 further includes a current detecting circuit 25 and a display module 26, and the setting circuit 21 further determines whether the coil control signal U C is normal and is in the coil control signal.
  • the fixed value fault information Sw is output (for example, two current fixed value signals, three current fixed value signals or no current fixed value signals, etc.), and the fixed value circuit 21 also outputs the coil control signal.
  • the current setting signal in U C is supplied to a current detecting circuit 25, which is connected to the current sensor 24 and the setting circuit 21, respectively, to receive the current signal I f and the current setting signal And the current detecting circuit 25 determines a predetermined working state of the electromagnetic coil 200 according to the current setting signal, and determines an actual working state of the electromagnetic coil 200 according to the current signal I f according to the predetermined working state.
  • I f current signal and determining whether said current signal to generate a fault current fault information, status information corresponding to the output Sv, Sv the status information includes a predetermined operating state, the actual working conditions Fault current information, the display module 26 and the current detection circuit 21 respectively 25 connected to the circuit value, and displaying the status information, and setting the failure information Sv Sw.
  • the current detecting circuit 25 acquires the state information Sv by: the current detecting circuit 25 determines a predetermined working state of the electromagnetic coil 200 according to the current setting signal and invokes a corresponding preset threshold. And a preset delay time, and generating jump state information according to the preset preset delay time when the current predetermined working state and the previous predetermined working state are different, the jump state information is determining that the current signal is in a jump state Information, each set of parameters associated with the electromagnetic coil includes the preset threshold and the delayed preset time.
  • the current detecting circuit 25 determines the actual working state of the electromagnetic coil 200 according to the current signal I f , and when the current signal I f is in a steady state (when not in the jumping state), the current signal I f and The preset threshold is compared and generates current fault information when the current signal I f exceeds the preset threshold range, and the current signal I f is preset to a preset threshold after the preset time is delayed when the current signal I f is in the jump state comparing and generating a current fault information when a preset threshold range, the status information further includes a jumping Sv status information beyond the current signal I f.
  • the current detecting circuit 25 determines whether the current predetermined working state and the previous predetermined working state are the same, and can determine according to the current setting signal: comparing whether the current current setting signal and the previous current setting signal are the same, The judgment may be made according to the predetermined working state: comparing whether the current predetermined working state and the previous predetermined working state are the same.
  • the current signal I f is in a steady state (non-jump state) / the jump state does not mean that the current signal I f is actually in a steady state / jump state, but refers to the expected current signal I f is in a steady state / jump state, the current signal I f is in a steady state/jump state is determined according to the jump state information.
  • the jump state information is not generated, it is determined that the current signal I f is in a stable state, and when the jump state information is generated, the current signal I f is determined. In the jump state.
  • the current setting signal represents a signal for controlling the current signal I f of the electromagnetic coil 200 to be in a certain state (for example, “full current”, “half current” or “zero current”), so the current detecting circuit 25 can be based on the current
  • the set value signal determines a predetermined operational state of the electromagnetic coil 200, and the predetermined operational state is a control operating state to be achieved by the electromagnetic coil 200, including a "full current” state, a "half current” state, and a "zero current” state.
  • the display module 26 displays a predetermined working state of the electromagnetic coil: the display module 26 is provided with three indicators of "full current”, “half current” and “zero current”, respectively indicating the reservation of the electromagnetic coil.
  • the working state is in the "full current” state, the "half current” state or the “zero current” state.
  • the current setting signal controls the current signal I f to transition between any of “full current”, “half current” and “zero current” (eg, the current setting signal controls the predetermined operating state from the "full current” state Converting to this transition of the "half current” state)
  • the current detecting circuit 25 calls the corresponding delay preset time to determine that the current signal I f is in the jump state within the preset preset time, so at the start of the jump
  • the jump state information is generated until the preset time is delayed. Referring to FIG.
  • the display module 26 includes a "fixed value change" indicator indicating that the current signal I f is in a jump state, for example, when the current setting signal controls the current signal I f to jump, the current detecting circuit 25 generates jump state information within a predetermined conversion time, and the display module 26 controls the "fixed value change" indicator to be illuminated according to the jump state information.
  • the actual working state of the electromagnetic coil 200 is the actual size of the current signal I f of the electromagnetic coil 200.
  • the display module 26 displays the electromagnetic coil according to the actual working state and current fault information in the state information Sv.
  • the actual working condition of the 200 in order to facilitate the operator to accurately understand the actual working state of the electromagnetic coil 200, the display module 26 includes "full current”, “full current”, “large current”, “small current””,” zero current large “,” normal insertion "6 I f current signal representative of the actual size of the indicator signal representative of the current I f exceeds a preset threshold range" fault current "indicator.
  • the display module 26 also locks the display state according to the current fault information. For example, when the current detecting circuit 25 determines that the current signal I f exceeds a preset threshold range, the “current fault” indicator lights up, and “the total current is large. The status of the seven indicators, “all current is small”, “semi-current is large”, “semi-current is small”, “zero current is large”, “plugged normally", and “fixed value change” are locked for maintenance personnel to confirm At which stage the current fails and whether the fault occurs during the current jump or during the current stabilization period.
  • the reactor control rod control system 100 further includes a fault clearing button (not shown), the fault clearing button outputs a fault clearing command, and the display module 26 releases the locking of the display state according to the fault clearing command, of course, releasing
  • a fault clearing button (not shown)
  • the fault clearing button outputs a fault clearing command
  • the display module 26 releases the locking of the display state according to the fault clearing command, of course, releasing
  • the premise of the alarm state is that the current fault information has disappeared, and when the current fault information has not disappeared, the display module 26 still locks the display state according to the current fault information.
  • the display module 26 also displays the fixed value fault information Sw: the display module 26 is provided with a “fixed value fault” indicator, so as to indicate a fixed value fault according to the fixed value fault information Sw.
  • the display module 26 also locks the display state according to the fixed value fault information Sw.
  • the reactor control rod control system 100 further includes a fault clearing button (not shown), and the fault clearing button outputs a fault clearing.
  • the display module 26 releases the lock of the display state according to the fault clear command.
  • the premise of releasing the alarm state is that the fixed value fault information Sw has disappeared, and when the fixed value fault information Sw has not disappeared, The display module 26 still locks the display state according to the fixed value fault information Sw.
  • the display module 26 is further provided with an "internal fault”, a "fuse blow”, a “double hold” indicator, and an "internal fault”.
  • the indicator light is used to indicate the internal hardware failure of the current conversion module 12; the "fuse blow” indicator is used to indicate whether the power insurance of the electromagnetic coil 200 is blown; the “double hold” indicator is used to indicate Whether the electromagnetic coil 200 is in the double holding state (ie, moving the hook and holding the hook while grasping the driving rod prevents the control rod from falling off the rod).
  • the display module 26 is further provided with a "waveform” detecting hole, and the “waveform” detecting hole is connected to both ends of the electromagnetic coil 200, and the actual current value of the electromagnetic coil 200 can be measured.
  • the display module 26 is further provided with a “communication interface”, and the “communication interface” is connected to the current conversion module 12, and the “communication interface” can modify the control parameters online through the external control terminal device.
  • the control parameter includes a parameter of the digital potentiometer in the current conversion module 12 and a parameter group associated with the electromagnetic coil 200, thereby adjusting the level signal U d output by the setting circuit 21 and modifying the electromagnetic a parameter set associated with the coil 200 (such as a preset threshold of the current detecting circuit 25 and a delay preset time)
  • control state of the electromagnetic coil illustrates the operation of the current detecting circuit 25 and the display module 26:
  • the predetermined operating state obtained by the current detecting circuit 25 according to the current setting signal is FC ("full current” state), and the display module 26 controls according to the predetermined working state.
  • the "full current” indicator lights up.
  • the current detecting circuit 25 calls the preset threshold and the preset delay time according to the current setting signal or the predetermined working state. Since the current working value signal and the previous working current signal corresponding to the predetermined working state are both FC, the full current is called.
  • FC current predetermined working state
  • FC max and FC min the current predetermined working state is the same as the previous predetermined working state, so no jump state information is generated, the current signal I f is in a steady state (not jumped state), and the display module 26
  • the “fixed value change” indicator is off, and the current detecting circuit 25 compares the current signal I f with preset threshold values FC max and FC min , and generates current fault information when the current signal I f exceeds a preset threshold range, assuming that The current signal I f is between the preset thresholds FC max and FC min , that is, the current signal I f is within a preset threshold range, the current detecting circuit 25 does not generate current fault information, and the “current fault” indication of the display module 26
  • the current signal exceeds the preset threshold FC min and does not exceed the preset threshold FC max , so the display module 26 has “small total current”, “semi-current is large”, “semi-current is small”, The “zero current is large”
  • the current signal I f When the current signal I f is in a jump state (including six transition states from ZC-FC, from ZC-RC, from RC-FC, from FC-RC, from FC-ZC, from RC-ZC), for example when The current signal I f is in the RC-FC jump state (as shown in part A of FIG. 4 ), and the current detecting circuit 25 obtains the current predetermined operating state as FC (“full current” state) according to the current setting signal, and displays The module 26 controls the "full current” indicator to illuminate in accordance with the predetermined operational state.
  • a jump state including six transition states from ZC-FC, from ZC-RC, from RC-FC, from FC-RC, from FC-ZC, from RC-ZC
  • the current detecting circuit 25 calls the preset threshold and the preset delay time according to the current setting signal or the predetermined working state: since the current predetermined working state is FC, the previous predetermined working state is RC, so the preset threshold value called is FC. Max and FC min , the predetermined delay time of the call is t RC-FC , the current predetermined operating state and the previous predetermined operating state are changed, and the current detecting circuit 25 also generates a jump state within the predetermined delay time t RC-FC
  • the information display module 26 controls the "fixed value change" indicator to be illuminated according to the jump state information, and the current detecting circuit 25 passes the current signal I f with the preset thresholds FC max and FC min after a predetermined delay time t RC-FC For comparison, current fault information is generated when the current signal I f exceeds a preset threshold range.
  • fault current indicator light since the signal current I f is between the predetermined threshold value RC max and FC min, it represents “half current is large” actual working conditions, “half Small stream “and” zero current is large “,” plug normal “indicator light,” full current big “,” full current small “light is off.
  • the current detecting circuit 25 determines that the predetermined operating state is ZC according to the current setting signal, the previous predetermined operating state.
  • the FC is, zero current call (the ZC) ZC max preset threshold value and the ZC min, a predetermined delay time t RC-ZC, generates the jump state information in FC-ZC t within a predetermined delay time after a predetermined delay time t FC-ZC
  • the current signal I f is compared with a preset threshold ZC max , and current fault information is generated when the current signal I f exceeds a preset threshold range; for the FC-RC jump state (as shown in part D of FIG.
  • the current detecting circuit 25 determines that the predetermined operating state is RC according to the current setting signal, the previous predetermined operating state is FC, and calls the preset thresholds RC max and RC min of the half current (RC), the predetermined delay time t FC-RC , The jump state information is generated in the predetermined delay time t FC-RC , and after the predetermined delay time t FC-RC, the current signal I f is compared with the preset thresholds RC max and RC min , and the current signal I f exceeds the preset threshold range.
  • the current detection circuit 25 determines based on a current set point signal for the predetermined operating state of the ZC, before a predetermined operating state, RC, zero current call (the ZC) ZC max preset threshold value and the ZC min, the predetermined delay time t RC-ZC, generates the jump state information RC-ZC t at a predetermined time delay, compared t RC-ZC signal after the I f current with a preset threshold value after the predetermined delay time ZC max, exceeds the current signal I f
  • the current fault information is generated when the threshold range is preset; for the ZC-RC jump state (shown in part F of FIG.
  • the current detecting circuit 25 determines that the predetermined working state is RC according to the current setting signal, the previous predetermined work.
  • the state is ZC
  • the preset thresholds RC max and RC min of the half current (RC) are called
  • the predetermined delay time t ZC-RC the predetermined delay time t ZC-RC
  • the jump state information is generated within the predetermined delay time t ZC-RC after the predetermined delay time t ZC-
  • the current signal I f is compared with preset thresholds RC max and RC min , and current fault information is generated when the current signal I f exceeds a preset threshold range.
  • the principle of monitoring is the same for all solenoids 200.
  • the current detecting circuit 25 determines that the predetermined operating state is FC according to the current setting signal, and the previous predetermined operating state is ZC, and the half current is called (RC). a preset threshold RC max , a preset threshold FC max and FC min of the full current (FC), a first predetermined delay time t ZC-FC-1 and a second predetermined delay time t ZC-FC-2 , in the second The jump state information is generated within the predetermined delay time t ZC-FC-2 , and the current detecting circuit 25 compares the current signal I f with the preset threshold RC max after the first predetermined delay time t ZC-FC-1 Generating current fault information when the current signal I f does not reach the preset threshold RC max (beyond the preset threshold range), and after the second predetermined delay time t ZC-FC-2 , the current signal I f and the preset valve The values FC max and FC min are compared and current
  • the reactor control rod control system further includes an operation display module 14 for inputting an external operation command and displaying system status information Sm and a failure alarm signal
  • the control The module 11 is further connected to the operation display module 14 and generates the coil control signal according to the operation command, the control module 11 acquires system state information Sm and generates a fault alarm signal according to the system state information Sm, and
  • the operation display module 14 transmits system status information Sm and a failure alarm signal.
  • the system state information Sm includes state information Sv of the electromagnetic coil 200, fixed value fault information S w , and other fault information of the reactor control rod control system, for example, the power module (151, 152).
  • control module 11 Generating and outputting fault information and fault information generated by the control module 11 itself, the control module 11 being respectively connected to the power module (151, 152), the setting circuit 21, and the current detecting circuit 25 to receive the The status information Sv, the fixed value fault information S w and the fault information generated and output by the power supply module (151, 152).
  • the input terminal of the control module 11 is connected to the logic cabinet 301 to receive the control rod control command of the logic cabinet 301, and generates the coil control signal according to the control command of the logic cabinet 301, while the The control module 11 transmits the system status information Sm of the control stick control system and the fault alarm signal to the logic cabinet 301.
  • the logic cabinet 301 is a host computer of the control module 11, and is configured to provide a corresponding control rod control command to the control module 11, and monitor, analyze, and process the system status information Sm and the fault alarm signal of the control rod control system.
  • control module 11 further generates a coil control signal Uc including a double hold command according to the type of the fault alarm signal, and the current conversion module 12 controls the electromagnetic coil according to the coil control signal Uc including the double hold command.
  • the moving coil 202 and the holding coil 203 in 200 are in a double hold state.
  • the display module 26 controls the "double hold" indicator to light according to the double hold command.
  • the input end of the control module 11 is further connected to the reactor protection system 302 to receive the reactor protection system 302 to receive the shutdown signal output by the reactor protection system 302, and generate corresponding signals according to the shutdown signal.
  • coil control signal U C according to the trip signal to the coil corresponding to the control signal U C corresponding control solenoid 200 operates in the trigger control rod scram.
  • the reactor control rod control system 100 further includes a mounting cabinet 31, and the mounting cabinet 31 is provided with a mounting bracket and a plugging interface provided on the mounting bracket, the reactor control rod
  • Each module in the control system 100 is separately mounted on the mounting frame in a modular structure and interfaces with a corresponding plug-in interface for connecting each module in the reactor control rod control system, and the The plugging interface corresponding to the current conversion module 12 is further connected to the electromagnetic coil 200 and identifies the type of the electromagnetic coil 200, and calls a corresponding control program according to the type of the electromagnetic coil 200 (for example, according to the holding coil command, the holding coil 203 is controlled) and Control parameters (such as the size of a specific level signal corresponding to the operating state of the electromagnetic coil, the size of the preset comparison threshold and the predetermined delay time, etc.).
  • the control module 11 is installed in the installation cabinet 31 and behind the operation display module 14.
  • the power supply module 32 and the switch module 33 are further disposed on the mounting cabinet 31 , and the power module 32 receives the 24V power supply sent by the control power module 152 to provide the current conversion module 12 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种反应堆控制棒控制系统,用于控制反应堆内控制棒驱动机构的电磁线圈动作,其包括控制模块(11)、与所述电磁线圈(200)对应的数个电流转换模块(12)以及电源模块,每一电流转换模块(12)对应连接一所述电磁线圈(200),所述控制模块(11)分别与数个所述电流转换模块(12)相连并分别向数个所述电流转换模块(12)输出相应的线圈控制信号,所述电流转换模块(12)将所述线圈控制信号转换为相应的驱动电流,并依据所述驱动电流控制对应的电磁线圈(200)动作。与现有技术相比,该控制系统中每一电流转换模块对应控制一电磁线圈,控制稳定、性能优越,系统结构简单。另一方面,三种电磁线圈可使用相同的电流转换模块,通用性高、可维护性高。

Description

反应堆控制棒控制系统 技术领域
本发明涉及一种核电领域,尤其涉及反应堆控制棒控制。
背景技术
在核电站启堆、功率转换和停堆过程中,通过控制控制棒的提升、插入和保持运动,从而控制反应堆的反应性,保证反应堆始终工作在受控状态。根据控制棒在堆芯中的不同位置和功能,通常将控制棒分组(如温度棒组、功率棒组、停堆棒组等等),同一子组内的4根控制棒在堆芯中对称布置(堆芯中心的控制棒单独为1个子组),且在运行时联动。
控制棒的提升、插入和保持运动是通过控制棒驱动机构(磁性线圈,CRDM)来实现的,控制棒驱动机构通过驱动杆组件与控制棒连接。当前中国、法国、美国运行的压水堆核电站,控制棒驱动机构一般采用步进式磁力提升型,其线圈组件一般包含3个电磁线圈,即:提升线圈、移动线圈、保持线圈。线圈组件的电磁线圈和磁轭与钩爪组件对应的铁芯部件构成了3个“电磁铁”,从上到下分别是“提升电磁铁”、“移动电磁铁”和“保持电磁铁”。其作用如下:提升线圈激磁,使提升衔铁吸合,带动移动钩爪提升一个步距;去磁使提升衔铁打开,带动移动钩爪复位。移动线圈激磁,使移动衔铁吸合,带动连杆向上移动,使移动钩爪摆入驱动杆环形槽中,与驱动杆环形齿啮合;去磁使移动衔铁打开,带动连杆下降,使移动钩爪摆出驱动杆环形槽,与驱动杆环形齿脱离啮合。保持线圈激磁,使保持衔铁吸合,带动连杆向上移动,使保持钩爪摆入驱动杆环形槽中,与驱动杆环形齿啮合;去磁使保持衔铁打开,带动连杆下降,使保持钩爪摆出驱动杆环形槽,与驱动杆环形齿脱离啮合。
控制棒控制系统按照设定好的顺序分别给3个电磁线圈发送不同的电流从而控制线圈的激磁和去磁,就可以使与之对应的钩爪组件中的3个“电磁铁”铁芯部件投入运行,从而控制驱动杆组件的运动带动控制棒提升、插入或者保持。当3个线圈都断电时,驱动杆组件失去夹持力,驱动杆组件和控制棒在重力作用下自由下落,使控制棒快速插入堆芯。
驱动机构从保持状态(驱动杆挂在保持钩爪上)开始提升一步的程序如下:1、移动线圈通电,移动 衔铁吸合。移动钩爪摆入驱动杆环形槽中。2、保持线圈断电,保持衔铁打开。保持衔铁打开过程中,保持钩爪随驱动杆一起下降(此过程中移动钩爪只作直线运动不作摆动),下降到驱动杆挂到移动钩爪上,再继续下降一段距离后,摆出驱动杆环形槽。3、提升线圈通电,提升衔铁吸合。提升衔铁吸合时,通过移动钩爪带动驱动杆提升一个步距。4、保持线圈通电,保持衔铁吸合。保持衔铁吸合时,保持钩爪先摆入驱动杆环形槽中呈竖直状态,再继续作向上的直线运动,运动到驱动杆挂在保持钩爪上,再继续运动一段距离使移动钩爪齿处于驱动杆环形槽中间。5、移动线圈断电,移动衔铁打开。移动衔铁打开时,移动钩爪摆出驱动杆环形槽。6、提升线圈断电,提升衔铁打开。提升衔铁打开时,移动钩爪随提升衔铁一起,下降到初始位置。移动衔铁和移动钩爪回复到初始位置后,机构又可以进行下一步提升程序。
驱动机构从保持状态(驱动杆挂在保持钩爪上)开始下插一步的程序如下:
1、提升线圈通电,提升衔铁吸合。提升衔铁吸合时,移动钩爪随提升衔铁一起,提升一个步距。2、移动线圈通电,移动衔铁吸合。移动衔铁吸合时,移动钩爪摆入驱动杆环形槽中。3、保持线圈断电,保持衔铁打开。保持衔铁打开过程中,保持钩爪随驱动杆一起下降(此过程中移动钩爪只作直线运动不作摆动),下降到驱动杆挂到移动钩爪上,再继续下降一段距离后,摆出驱动杆环形槽。4、提升线圈断电,提升衔铁打开。提升衔铁打开时,驱动杆随提升衔铁一起,下降一个步距。5、保持线圈通电,保持衔铁吸合。保持衔铁吸合时,保持钩爪先摆入驱动杆环形槽中呈竖直状态,再继续作向上的直线运动,运动到驱动杆挂在保持钩爪上,再继续运动一段距离使移动钩爪齿处于驱动杆环形槽中间。6、移动线圈断电,移动衔铁打开。移动衔铁打开时,移动钩爪摆出驱动杆环形槽。移动钩爪摆出驱动杆环形槽后,机构可以进行下一步的下插程序。
控制棒控制系统通过产生不同等级的电流来控制驱动机构电磁线圈的激磁和去磁,每个电磁线圈需要3种电流:ZC:零电流,使电磁线圈去磁;RC:半电流,以减少的电流保持电磁线圈激磁,减少线圈的发热量;FC:全电流,使电磁线圈激磁(全电流不能长时间保持,否则会烧坏电磁线圈)。
目前用于许多核电站的控制棒控制系统设计是在20世纪60、70年代开发的,这些系统仍然使用传统的可控硅作为电流控制元件,而且一套电流控制电路同时控制四个电磁线圈,此种“一拖四”结构容易发生由于驱动机构线圈加工的离散性导致电流分配不均而引起控制棒滑步或者掉棒现象,而且每种线圈需要不同的控制模块,系统结构复杂,控制方式较繁琐,数字化程度低,性能指标差,而且可维护性差,维护成本高。
发明内容
本发明的目的是提供一种控制稳定、性能优越、可维护性高的反应堆控制棒控制系统。
为了实现上有目的,本发明公开了一种反应堆控制棒控制系统,用于控制反应堆内控制棒驱动机构中的电磁线圈动作,其包括控制模块、与数个所述电磁线圈对应的数个电流转换模块以及电源模块,每一电流转换模块对应连接一所述电磁线圈,所述控制模块分别与数个所述电流转换模块相连并分别向数个所述电流转换模块输出相应的线圈控制信号,所述电流转换模块将所述线圈控制信号转换为相应的驱动电流,并依据所述驱动电流控制对应的电磁线圈动作,所述电源模块对所述控制模块和电流转换模块供电。
与现有技术相比,本发明每一电流转换模块对应控制一电磁线圈,避免一套电流控制电路同时控制四个电磁线圈引起控制棒滑步或者掉棒问题,控制稳定,系统结构简单、性能优越。另一方面,任一电流转换模块故障后,只需换掉该电流转换模块即可,可维护性高。
较佳地,所述控制模块的输入端接逻辑柜以接收所述逻辑柜的控制棒控制命令,并依据所述控制棒控制命令生成所述线圈控制信号,所述控制模块获取反应堆控制棒控制系统的系统状态信息并依据所述系统状态信息生成故障报警信号,且向所述逻辑柜发送所述系统状态信息和故障报警信号。
具体地,所述反应堆控制棒控制系统还包括操作显示模块,所述操作显示模块输入外部的手动操作命令以及显示系统状态信息和故障报警信号;所述控制模块还接所述操作显示模块并依据所述操作命令生成所述线圈控制信号,所述控制模块还获取反应堆控制棒控制系统的系统状态信息并依据所述系统状态信息生成故障报警信号,并向所述操作显示模块发送所述系统状态信息和故障报警信号。
较佳地,所述控制模块的输入端还接反应堆保护系统以接收所述反应堆保护系统输出的停堆信号,并依据所述停堆信号生成相应的线圈控制信号,依据所述停堆信号对应的线圈控制信号控制相应的电磁线圈动作以触发控制棒落棒。
较佳地,所述电磁线圈按类型分为提升线圈、移动线圈和保持线圈,所述每一电流转换模块对应连接一所述电磁线圈,并且包含分别与所述提升线圈、移动线圈和保持线圈相关联的三组参数,所述电流转换模块通过插拔接口自动识别与所述电流转换模块相连接的电磁线圈类型,并根据所述电磁线圈类型自动选择相应的参数组。该方案使得本发明三种电磁线圈可使用相同的电流转换模块,通用性高、应用范围广,并进一步提高了系统的可维护性。
在本方案中,所述电流转换模块包括定值电路、调节电路、电流传感器和电流驱动电路,所述定值电路接收所述控制模块输出的线圈控制信号并将所述线圈控制信号处理转换为对应的电平信号,所述电流传 感器采集所述电磁线圈的电流信号,所述调节电路接收所述电平信号和所述电流信号,并对所述电平信号和电流信号进行差分放大处理以产生方波驱动信号,所述电流驱动电路依据所述方波驱动信号生成所述驱动电流以驱动所述电磁线圈动作。
具体地,所述电流驱动电路包括第一绝缘栅双极型晶体管和第二绝缘栅双极型晶体管,所述第一绝缘栅双极型晶体管和第二绝缘栅双极型晶体管的栅极分别接所述方波驱动信号,所述第一绝缘栅双极型晶体管的集电极接一直流电的正极,所述第二绝缘栅双极型晶体管的发射级接所述直流电的负极,所述电磁线圈的两端分别接所述第一绝缘栅双极型晶体管的发射极和所述第二绝缘栅双极型晶体管的集电极。本发明采用绝缘栅双极型晶体管(IGBT)作为电流控制元件,使得电流转换电路结构简单、提高了电路的可靠性,而且电流上升、下降时间短,电流纹波小,系统发热量少。
具体地,所述电流转换模块还包括电流检测电路和显示模块,所述定值电路还判断所述线圈控制信号是否正常并在所述线圈控制信号异常时输出定值故障信息,所述定值电路还将所述线圈控制信号中的电流定值信号输送至电流检测电路,所述电流检测电路分别与所述电流传感器和所述定值电路相连以接收所述电流信号和所述电流定值信号,且所述电流检测电路依据所述电流定值信号判断所述电磁线圈的预定工作状态,依据所述电流信号判断所述电磁线圈的实际工作状态,并依据所述预定工作状态和电流信号判断所述电流信号是否故障以生成电流故障信息,从而输出相应的状态信息,所述状态信息包括所述预定工作状态、实际工作状态和电流故障信息;所述显示模块分别与所述定值电路和电流检测电路相连并显示所述状态信息和定值故障信息。
更具体地,所述电流检测电路获取所述状态信息的方法为:所述电流检测电路依据所述电流定值信号判断所述电磁线圈的预定工作状态并调用对应的预设阈值和预设延迟时间,并在当前预定工作状态和前一预定工作状态不同时依据调用的预设延迟时间生成跳转状态信息,所述跳转状态信息为判断所述电流信号处于跳转状态的信息;所述电流检测电路依据所述电流信号判断所述电磁线圈的实际工作状态,且所述电流检测电路在电流信号未处于跳转状态时将所述电流信号与预设阈值进行比较,并在所述电流信号超出预设阈值范围时生成电流故障信息;所述电流检测电路在电流信号处于跳转状态时延迟预设时间后将所述电流信号与预设阈值进行比较,并在所述电流信号超出预设阈值范围时生成电流故障信息;所述状态信息还包括所述跳转状态信息;与电磁线圈相关联的每组参数均包括所述预设阈值和所述延迟预设时间。
更具体地,所述显示模块依据所述电流故障信息和定值故障信息锁定显示状态,所述反应堆控制棒控制系统还包括故障清除按钮,所述故障清除按钮输出故障清除命令,所述显示模块依据所述故障清除命令 解除显示状态的锁定。
具体地,所述显示模块还包括测试接口和通讯接口,所述测试接口用于测试所述电磁线圈的实际电流值,所述通讯接口用于外接控制终端设备以在线调节控制参数。
较佳地,所述控制模块获取反应堆控制棒控制系统的系统状态信息并依据所述系统状态信息生成故障报警信号,并依据所述故障报警信号的类型产生包含双保持命令的线圈控制信号,所述电流转换模块依据所述包含双保持命令的线圈控制信号控制电磁线圈中的移动线圈和保持线圈处于双保持状态。
较佳地,所述反应堆控制棒控制系统还包括安装柜,所述安装柜上设有安装架和设于所述安装架上的插拔接口,所述反应堆控制棒控制系统内各个模块以模块化的结构分别安装于所述安装架上并与对应的插拔接口对接,所述插拔接口用于连接所述反应堆控制棒控制系统内各个模块,且所述电流转换模块对应的插拔接口还连接所述电磁线圈并识别所述电磁线圈类型,依据所述电磁线圈类型调用相应的控制程序和控制参数。该方案使得本发明实现了模块化设计,某一模块故障时,可直接带电插拔故障模块进行在线更换,便于维修。
较佳地,所述电源模块包括动力电源模块和控制电源模块,所述动力电源模块将260V交流电通过三相半波整流转换为220V的直流电,并与所述电流转换模块相连以向电流转换模块提供动力电源(如果核电站直接提供220V直流动力电,所述动力电源模块可以去掉三相半波整流电路,仅保留滤波电路;或者直接去掉动力电源模块,由所述核电站220V直流动力电直接与所述电流转换模块相连);所述控制电源模块将220V交流电转换为24V直流电,并与所述电流转换模块和控制模块相连以向所述电流转换模块和控制模块提供控制电源。该方案使得本发明适用范围广,可针对不同核电站使用不同等级的动力电源。
附图说明
图1是本发明所述电流转换模块的结构框图。
图2是本发明所述电流驱动电路的电路图。
图3是本发明所述反应堆控制棒控制系统的结构框图。
图4是本发明所述电流检测电路检测原理图。
图5是本发明所述显示模块的结构示意图。
图6是本发明所述反应堆控制棒控制系统的布局图。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
本发明公开了一种反应堆控制棒控制系统,用于控制反应堆内控制棒驱动机构动作,所述控制棒驱动机构包括数个线圈组件和对应的驱动杆组件(图中未示),参考图1和图3,每一所述线圈组件包括三个电磁线圈(CRDM线圈)200,三个所述电磁线圈200按类型分为提升线圈201、移动线圈202和保持线圈203。所述线圈组件与所述驱动杆组件相连,并依据电磁线圈200的动作控制驱动杆组件动作,从而控制对应的控制棒进行相应的提升、下插或保持。
参考图1和图3,所述反应堆控制棒控制系统100包括控制模块11、与数个所述电磁线圈200对应的数个电流转换模块12、对所述电流转换模块12供电的电源模块,每一电流转换模块12对应连接一所述电磁线圈200,所述控制模块11分别与数个所述电流转换模块12相连并分别向数个所述电流转换模块12输出相应的线圈控制信号UC,所述电流转换模块12将所述线圈控制信号UC转换为相应的驱动电流I0,并依据所述驱动电流I0控制对应的电磁线圈200动作,所述电源模块对所述控制模块11和电流转换模块12供电。与现有技术相比,本发明每一电流转换模块12对应控制一电磁线圈200,避免一套电流控制电路同时控制四个电磁线圈引起控制棒滑步或者掉棒问题,控制稳定,系统结构简单;且本发明在任一电流转换模块12故障时,只需换掉故障的电流转换模块12即可,可维护性高。
较佳者,所述电流转换模块12采用标准化设计,每一电流转换模块12均包含分别与提升线圈201、移动线圈202和保持线圈203的每种相关联的三组参数,所述电流转换模块12通过插拔接口自动识别与所述电流转换模块12相连接的电磁线圈201、202、203类型,并根据所述电磁线圈类型201、202、203自动选择相应的参数组。该方案使三种电磁线圈均可使用相同的电流转换模块12,通用性高、适用范围广,进一步提高可维护性。
其中,参考图3,所述电源模块包括动力电源模块151和控制电源模块152,所述动力电源模块151将260V交流电通过三相半波整流转换为220V的直流电,并与所述电流转换模块12相连以向电流转换模块12提供动力电源;所述控制电源模块152将220V交流电转换为24V直流电,并与所述电流转换模块12和控制模块11相连以向所述电流转换模块12和控制模块11提供控制电源。
较佳者,继续参考图1,所述电流转换模块12包括定值电路21、调节电路22、电流传感器24和电流驱动电路23。所述定值电路21接收所述控制模块11输出的线圈控制信号UC,所述定值电路21将所述线 圈控制信号UC处理并转换为对应的电平信号Ud。所述电流传感器24采集所述电磁线圈200的电流以生成电流信号If,所述调节电路22接收所述电平信号Ud和所述电流信号If,并对所述电平信号Ud和电流信号If进行差分放大处理以产生方波驱动信号Un,所述电流驱动电路23依据所述方波驱动信号Un生成所述驱动电流Io,所述驱动电流Io驱动所述电磁线圈200激磁和去磁,使得控制棒驱动机构(CRDM)动作带动控制棒动作。其中,在本实施例中,所述电流传感器24有两个。
其中,所述定值电路21包括数字电位器,本发明通过数字电位器调节所述定值电路输出的电平信号Ud,从而对所述驱动电流进行调节,避免了机械电位器氧化漂移、精度低、误操作等问题,实现了数字化控制。
参考图2,所述电流驱动电路23包括第一绝缘栅双极型晶体管VT1和第二绝缘栅双极型晶体管VT2,所述第一绝缘栅双极型晶体管VT1和第二绝缘栅双极型晶体管VT2的栅极分别接所述方波驱动信号Un(G1-S1、G2-S2),所述第一绝缘栅双极型晶体管VT1的集电极接一直流电正极,所述第二绝缘栅双极型晶体管VT2的发射级接所述直流电的负极,所述电磁线圈CRDM的两端分别接所述第一绝缘栅双极型晶体管的发射极和所述第二绝缘栅双极型晶体管的集电极。本发明采用绝缘栅双极型晶体管(IGBT)作为电流控制元件,使得电流转换电路结构简化、提高了电路的可靠性,而且电流上升、下降时间短,电流纹波小,系统发热量少。其中,本实施例中,所述直流电由动力电源模块151提供。
较佳者,所述电流驱动电路23还包括滤波电容C3、第一二极管VD1、第二二极管VD2,所述滤波电容C3接于三相直流电的正极和所述第二绝缘栅双极型晶体管VT2的发射极之间,所述第一二极管VD1和第二二极管VD2均为快恢复二极管。较佳者,所述电流驱动电路23还包括保护电路,所述保护电路包括相互串联的第一电阻R1和第一电容C1、相互串联接的第二电阻R2和第二电容C2,所述第一电阻R1和第一电容C1串接于第一绝缘栅双极型晶体管VT1的集电极和发射极之间,避免第一绝缘栅双极型晶体管VT1的集电极和发射极之间的电压由某种原因而快速升高,所述第二电阻R2和第二电容C2串接于第二绝缘栅双极型晶体管VT2的集电极和发射极之间,避免第二绝缘栅双极型晶体管VT2的集电极和发射极之间的电压由某种原因而快速升高。
较佳者,继续参考图1,所述电流转换模块12还包括电流检测电路25和显示模块26,所述定值电路21还判断所述线圈控制信号UC是否正常并在所述线圈控制信号UC异常时输出定值故障信息Sw(例如同时出现2个电流定值信号、3个电流定值信号或者无电流定值信号等等),所述定值电路21还将所述线圈控制信号UC中的电流定值信号输送至电流检测电路25内,所述电流检测电路25分别与所述电流传感器24 和定值电路21相连以接收所述电流信号If和所述电流定值信号,且所述电流检测电路25依据所述电流定值信号判断所述电磁线圈200的预定工作状态,依据所述电流信号If判断所述电磁线圈200的实际工作状态,依据所述预定工作状态和电流信号If判断所述电流信号是否故障以生成电流故障信息,输出相应的状态信息Sv,所述状态信息Sv包括预定工作状态、实际工作状态和电流故障信息,所述显示模块26分别与所述定值电路21和电流检测电路25相连,并显示所述状态信息Sv和定值故障信息Sw。
较佳者,所述电流检测电路25获取所述状态信息Sv的方法为:所述电流检测电路25依据所述电流定值信号判断所述电磁线圈200的预定工作状态并调用对应的预设阈值和预设延迟时间,并在当前预定工作状态和前一预定工作状态不同时依据调用的预设延迟时间生成跳转状态信息,所述跳转状态信息为判断所述电流信号处于跳转状态的信息,与电磁线圈相关联的每组参数均包括所述预设阈值和所述延迟预设时间。所述电流检测电路25依据所述电流信号If判断所述电磁线圈200的实际工作状态,在电流信号If处于稳定状态时(未处于跳转状态时),将所述电流信号If与预设阈值进行比较并在所述电流信号If超出预设阈值范围时生成电流故障信息,在电流信号If处于跳转状态时延迟预设时间后将所述电流信号If与预设阈值进行比较并在所述电流信号If超出预设阈值范围时生成电流故障信息,所述状态信息Sv还包括跳转状态信息。其中,所述电流检测电路25判断当前预定工作状态和前一预定工作状态是否相同时,可以依据电流定值信号进行判断:比较当前的电流定值信号和前一电流定值信号是否相同,也可以依据预定工作状态进行判断:比较当前的预定工作状态和前一预定工作状态是否相同。电流信号If处于稳定状态(非跳转状态)/跳转状态并非指电流信号If实际处于稳定状态/跳转状态,而是指预计电流信号If处于稳定状态/跳转状态,电流信号If处于稳定状态/跳转状态是依据跳转状态信息判断的,在未生成跳转状态信息时判断所述电流信号If处于稳定状态,生成跳转状态信息时判断所述电流信号If处于跳转状态。
其中,电流定值信号代表控制电磁线圈200的电流信号If处于某一状态(例如“全电流”、“半电流”或“零电流”)的信号,故所述电流检测电路25可依据电流定值信号判断电磁线圈200的预定工作状态,预定工作状态为控制电磁线圈200所要达到的工作状态,包括“全电流”状态、“半电流”状态和“零电流”状态。参考图5,所述显示模块26显示电磁线圈的预定工作状态:所述显示模块26上设有“全电流”、“半电流”、“零电流”三个指示灯,分别指示电磁线圈的预定工作状态处于“全电流”状态、“半电流”状态还是“零电流”状态。当电流定值信号控制电流信号If在“全电流”、“半电流”和“零电流”中任一两状态之间转变时(例如电流定值信号控制预定工作状态从“全电流”状态转换为“半电流”状态的这一转变),所述电流检测电路25调用对应的延迟预设时间,判断电流信号If在延迟预设时间内处于跳转状 态,故在跳转的起始时间直至延迟预设时间内生成跳转状态信息。参考图5,所述显示模块26上包括代表电流信号If处于跳转状态的“定值变化”指示灯,例如当电流定值信号控制电流信号If进行跳转时,所述电流检测电路25在预定的转换时间内生成跳转状态信息,显示模块26依据跳转状态信息控制“定值变化”指示灯亮。
其中,电磁线圈200的实际工作状态为电磁线圈200的电流信号If实际大小所在区域,参考图5,所述显示模块26依据状态信息Sv中的实际工作状态和电流故障信息显示所述电磁线圈200的实际工作情况,为了便于操作人员准确了解电磁线圈200的实际工作状态,故所述显示模块26上包括“全电流大”、“全电流小”、“半电流大”、“半电流小”、“零电流大”、“插接正常”6个代表电流信号If实际大小的指示灯,代表电流信号If超出预设阈值范围的“电流故障”指示灯。例如当电流信号If达到显示模块26上“全电流大”(超出对应阈值FCmax)、“全电流小”(超出对应阈值FCmin)、“半电流大”(超出对应阈值RCmax)、“半电流小”(超出对应阈值RCmin)、“零电流大”(超出对应阈值ZCmax)、“插接正常”(超出对应阈值ZCmin)相应的预设阀值时,相应指示灯亮,未到达相应预设阀值时相应的指示灯灭,以显示所述电磁线圈200的实际电流大小;当电流信号If超出预设阈值范围时,显示模块26上的“电流故障”指示灯亮。
较佳者,所述显示模块26还依据所述电流故障信息锁定显示状态,例如当电流检测电路25判断电流信号If超出预设阈值范围时,“电流故障”指示灯亮,并且“全电流大”、“全电流小”、“半电流大”、“半电流小”、“零电流大”、“插接正常”、“定值变化”7个指示灯的状态被锁定,以便维修人员确认哪个阶段的电流发生故障以及该故障是发生在电流跳转期间还是电流稳定期间。所述反应堆控制棒控制系统100还包括故障清除按钮(图中未示),所述故障清除按钮输出故障清除命令,所述显示模块26依据所述故障清除命令解除显示状态的锁定,当然,解除报警状态的前提是所述电流故障信息已消失,当所述电流故障信息未消失时,所述显示模块26依然依据所述电流故障信息锁定显示状态。
继续参考图5,所述显示模块26还显示所述定值故障信息Sw:所述显示模块26上设有“定值故障”指示灯,从而依据所述定值故障信息Sw指示定值故障。
较佳者,所述显示模块26还依据所述定值故障信息Sw锁定显示状态,所述反应堆控制棒控制系统100还包括故障清除按钮(图中未示),所述故障清除按钮输出故障清除命令,所述显示模块26依据所述故障清除命令解除显示状态的锁定,当然,解除报警状态的前提是所述定值故障信息Sw已消失,当所述定值故障信息Sw未消失时,所述显示模块26依然依据所述定值故障信息Sw锁定显示状态。
继续参考图5,所述显示模块26还设有“内部故障”、“熔丝烧断”、“双重保持”指示灯,“内部故障” 指示灯用来指示所述电流转换模块12的内部硬件故障;“熔丝烧断”指示灯用来指示所述电磁线圈200的动力保险是否烧断;“双重保持”指示灯用来指示所示电磁线圈200是否处于双保持状态(即移动钩爪和保持钩爪同时抓住了驱动杆,防止控制棒掉棒)。
继续参考图5,所述显示模块26上还设有“波形”检测孔,所述“波形”检测孔与电磁线圈200的两端相连,可测量所述电磁线圈200的实际电流值。所述显示模块26上还设有“通讯接口”,所述“通讯接口”与电流转换模块12相连,所述“通讯接口”可通过外接的控制终端设备以在线修改控制参数。所述控制参数包括所述电流转换模块12中的数字电位器的参数和所述电磁线圈200相关联的参数组,从而调节所述定值电路21输出的电平信号Ud和修改所述电磁线圈200相关联的参数组(如所述电流检测电路25的预设阈值和延迟预设时间)
参考图4和图5,电磁线圈的控制状态举例说明所述电流检测电路25和显示模块26的工作过程:
当电流信号If处于全电流稳定状态时:例如,所述电流检测电路25依据电流定值信号获得的预定工作状态为FC(“全电流”状态),显示模块26依据所述预定工作状态控制“全电流”指示灯亮。所述电流检测电路25依据电流定值信号或预定工作状态调用预设阈值和预设延迟时间,由于当前电流定值信号和前一电流定值信号对应的预定工作状态均为FC,调用全电流(FC)的预设阈值FCmax和FCmin,当前预定工作状态和前一预定工作状态相同,故不产生跳转状态信息,电流信号If处于稳定状态(未跳转状态),显示模块26“定值变化”指示灯灭,所述电流检测电路25将电流信号If与预设阈值FCmax和FCmin进行比较,在电流信号If超出预设阈值范围时生成电流故障信息,假设此时电流信号If处于预设阈值FCmax和FCmin之间,即电流信号If处于预设阈值范围内,所述电流检测电路25不生成电流故障信息,显示模块26的“电流故障”指示灯灭,由于电流信号超出了预设阈值FCmin且未超出预设阈值FCmax,故显示模块26的“全电流小”、“半电流大”、“半电流小”、“零电流大”、“插接正常”指示灯亮,“全电流大”指示灯灭。
当电流信号If处于跳转状态时(包括从ZC-FC、从ZC-RC、从RC-FC、从FC-RC、从FC-ZC、从RC-ZC六种跳转状态),例如当电流信号If处于RC-FC跳转状态(如图4中A部分所示),所述电流检测电路25依据电流定值信号获得当前的预定工作状态为FC(“全电流”状态),显示模块26依据所述预定工作状态控制“全电流”指示灯亮。所述电流检测电路25依据电流定值信号或预定工作状态调用预设阈值和预设延迟时间:由于当前的预定工作状态为FC,前一预定工作状态为RC,故调用的预设阈值为FCmax和FCmin,调用的预定延迟时间为tRC-FC,当前的预定工作状态和前一预定工作状态有变动,所述电流检测电路25还在预定延迟时间tRC-FC内生成跳转状态信息,显示模块26依据所述跳转状态信息控制“定值变化”指示灯 亮,所述电流检测电路25经过预定延迟时间tRC-FC后将电流信号If与预设阈值FCmax和FCmin进行比较,在电流信号If超出预设阈值范围时生成电流故障信息,假设电流信号If此时低于FCmin,电流检测电路25生成电流故障信息,显示模块26依据所述电流故障信息控制“电流故障”指示灯亮,由于电流信号If处于预设阈值RCmax和FCmin之间,故表示实际工作状态的“半电流大”、“半电流小”、“零电流大”、“插接正常”指示灯亮,“全电流大”、“全电流小”指示灯灭。
与RC-FC跳转状态相似,对于FC-ZC跳转状态(如图4中B部分所示),所述电流检测电路25依据电流定值信号判断预定工作状态为ZC,前一预定工作状态为FC,调用零电流(ZC)的预设阈值ZCmax和ZCmin、预定延迟时间tRC-ZC,在预定延迟时间tFC-ZC内生成跳转状态信息,经过预定延迟时间tFC-ZC后将电流信号If与预设阈值ZCmax进行比较,在电流信号If超出预设阈值范围时生成电流故障信息;对于FC-RC跳转状态(如图4中D部分所示),所述电流检测电路25依据电流定值信号判断预定工作状态为RC,前一预定工作状态为FC,调用半电流(RC)的预设阈值RCmax和RCmin、预定延迟时间tFC-RC,在预定延迟时间tFC-RC内生成跳转状态信息,经过预定延迟时间tFC-RC后将电流信号If与预设阈值RCmax和RCmin进行比较,在电流信号If超出预设阈值范围时生成电流故障信息;对于RC-ZC跳转状态(如图4中E部分所示),所述电流检测电路25依据电流定值信号判断预定工作状态为ZC,前一预定工作状态为RC,调用零电流(ZC)的预设阈值ZCmax和ZCmin、预定延迟时间tRC-ZC,在预定延迟时间tRC-ZC内生成跳转状态信息,经过预定延迟时间tRC-ZC后将电流信号If与预设阈值ZCmax进行比较,在电流信号If超出预设阈值范围时生成电流故障信息;对于ZC-RC跳转状态(如图4中F部分所示),所述电流检测电路25依据电流定值信号判断预定工作状态为RC,前一预定工作状态为ZC,调用半电流(RC)的预设阈值RCmax和RCmin、预定延迟时间tZC-RC,在预定延迟时间tZC-RC内生成跳转状态信息,经过预定延迟时间tZC-RC后将电流信号If与预设阈值RCmax和RCmin进行比较,在电流信号If超出预设阈值范围时生成电流故障信息。监视原理对所有电磁线圈200都相同。
当处于ZC-FC跳转状态时,如图4中C部分所示,所述电流检测电路25依据电流定值信号判断预定工作状态为FC,前一预定工作状态为ZC,调用半电流(RC)的预设阈值RCmax、全电流(FC)的预设阈值FCmax和FCmin、第一预定延迟时间tZC-FC-1和第二预定延迟时间tZC-FC-2,在第二预定延迟时间tZC-FC-2内生成跳转状态信息,所述电流检测电路25经过第一预定延迟时间tZC-FC-1后,将电流信号If与预设阀值RCmax进行比较,在电流信号If未达到预设阀值RCmax(超出预设阈值范围)时生成电流故障信息,经过第二预定延迟时间tZC-FC-2后,将电流信号If与预设阀值FCmax和FCmin进行比较,在电流信号If不处于预设阀值FCmax和FCmin之间(超出预设阈值范围)时生成电流故障信息。
较佳者,继续参考图1,所述反应堆控制棒控制系统还包括操作显示模14,所述操作显示模块14用于输入外部的操作命令以及显示系统状态信息Sm和故障报警信号,所述控制模块11还接所述操作显示模块14并依据所述操作命令生成所述线圈控制信号,所述控制模块11获取系统状态信息Sm并依据所述系统状态信息Sm生成故障报警信号,且向所述操作显示模块14发送系统状态信息Sm和故障报警信号。其中,在本实施例中,所述系统状态信息Sm包括电磁线圈200的状态信息Sv、定值故障信息Sw,以及反应堆控制棒控制系统的其他故障信息,例如所述电源模块(151、152)产生并输出的故障信息和所述控制模块11自身产生的故障信息,所述控制模块11分别与所述电源模块(151、152)、定值电路21、电流检测电路25相连以接收所述状态信息Sv、定值故障信息Sw和所述电源模块(151、152)产生并输出的故障信息。
继续参考图1,所述控制模块11的输入端接逻辑柜301以接收所述逻辑柜301的控制棒控制命令,并依据所述逻辑柜301的控制命令生成所述线圈控制信号,同时所述控制模块11向所述逻辑柜301发送控制棒控制系统的系统状态信息Sm和故障报警信号。其中,逻辑柜301是控制模块11的上位机,用于对控制模块11提供相应的控制棒控制命令,以及监控、分析、处理控制棒控制系统的系统状态信息Sm和故障报警信号。
较佳者,所述控制模块11还依据所述故障报警信号的类型产生包含双保持命令的线圈控制信号Uc,所述电流转换模块12依据所述包含双保持命令的线圈控制信号Uc控制电磁线圈200中的移动线圈202和保持线圈203处于双保持状态。此时,所述显示模块26依据所述双保持命令控制“双重保持”指示灯亮。
较佳者,所述控制模块11的输入端还接反应堆保护系统302以接收所述反应堆保护系统302以接收所述反应堆保护系统302输出的停堆信号,并依据所述停堆信号生成相应的线圈控制信号UC,依据所述停堆信号对应的线圈控制信号UC控制相应的电磁线圈200动作以触发控制棒落棒。
较佳者,参考图6,所述反应堆控制棒控制系统100还包括安装柜31,所述安装柜31上设有安装架和设于所述安装架上的插拔接口,所述反应堆控制棒控制系统100内各个模块以模块化的结构分别安装于所述安装架上并与对应的插拔接口对接,所述插拔接口用于连接所述反应堆控制棒控制系统内各个模块,且所述电流转换模块12对应的插拔接口还连接所述电磁线圈200并识别所述电磁线圈200类型,依据所述电磁线圈200类型调用相应的控制程序(例如依据保持线圈命令控制保持线圈203动作)和控制参数(例如对应电磁线圈工作状态的具体电平信号的大小、预设比较阈值和预定延迟时间等的大小等等)。其中,在本实施例中,所述控制模块11安装于安装柜31内并位于所述操作显示模块14后面。
较佳者,参考图6,所述安装柜31上还设有电源模块32和开关模块33,所述电源模块32接收所述控制电源模块152发送的24V电源,为所述电流转换模块12提供±15V、10V、±5V等直流电源;所述开关模块33主要作用是控制所述电源模块32发送给所述电流转换模块12的直流电的通断。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (14)

  1. 一种反应堆控制棒控制系统,用于控制反应堆内控制棒驱动机构内的数个电磁线圈动作,其特征在于,所述反应堆控制棒控制系统包括控制模块、与数个所述电磁线圈对应的数个电流转换模块以及电源模块,每一电流转换模块对应连接一所述电磁线圈,所述控制模块分别与数个所述电流转换模块相连并分别向数个所述电流转换模块输出相应的线圈控制信号,所述电流转换模块将所述线圈控制信号转换为相应的驱动电流,并依据所述驱动电流控制对应的电磁线圈动作,所述电源模块对所述控制模块和电流转换模块供电。
  2. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述控制模块的输入端接逻辑柜以接收所述逻辑柜的控制棒控制命令,并依据所述控制棒控制命令生成所述线圈控制信号,所述控制模块获取反应堆控制棒控制系统的系统状态信息并依据所述系统状态信息生成故障报警信号,且向所述逻辑柜发送所述系统状态信息和故障报警信号。
  3. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述反应堆控制棒控制系统还包括操作显示模块,所述操作显示模块输入外部的手动操作命令以及显示反应堆控制棒控制系统的系统状态信息和故障报警信号;所述控制模块还接所述操作显示模块并依据所述操作命令生成所述线圈控制信号,所述控制模块还获取反应堆控制棒控制系统的系统状态信息并依据所述系统状态信息生成故障报警信号,并向所述操作显示模块发送所述系统状态信息和故障报警信号。
  4. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述控制模块的输入端还接反应堆保护系统以接收所述反应堆保护系统输出的停堆信号,并依据所述停堆信号生成相应的线圈控制信号,依据所述停堆信号对应的线圈控制信号控制相应的电磁线圈动作以触发控制棒落棒。
  5. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述电磁线圈按类型分为提升线圈、移动线圈和保持线圈,所述每一电流转换模块包含分别与所述提升线圈、移动线圈和保持线圈相关联的三组参数,所述电流转换模块通过插拔接口自动识别与所述电流转换模块相连接的电磁线圈类型,并根据所述电磁线圈类型自动选择相应的参数组。
  6. 如权利要求5所述的反应堆控制棒控制系统,其特征在于,所述电流转换模块包括定值电路、调节电路、电流传感器和电流驱动电路,所述定值电路接收所述控制模块输出的线圈控制信号并将所述线圈控制信号处理转换为对应的电平信号,所述电流传感器采集所述电磁线圈的电流信号,所述调节电路接收所述电平信号和所述电流信号,并对所述电平信号和电流信号进行差分放大处理以产生方波驱动信号,所 述电流驱动电路依据所述方波驱动信号生成所述驱动电流并驱动所述电磁线圈动作。
  7. 如权利要求6所述的反应堆控制棒控制系统,其特征在于,所述电流驱动电路包括第一绝缘栅双极型晶体管和第二绝缘栅双极型晶体管,所述第一绝缘栅双极型晶体管和第二绝缘栅双极型晶体管的栅极分别接所述方波驱动信号,所述第一绝缘栅双极型晶体管的集电极接一直流电的正极,所述第二绝缘栅双极型晶体管的发射级接所述直流电的负极,所述电磁线圈的两端分别接所述第一绝缘栅双极型晶体管的发射极和所述第二绝缘栅双极型晶体管的集电极。
  8. 如权利要求6所述的反应堆控制棒控制系统,其特征在于,所述电流转换模块还包括电流检测电路和显示模块,所述定值电路还判断所述线圈控制信号是否正常并在所述线圈控制信号异常时输出定值故障信息,所述定值电路还将所述线圈控制信号中的电流定值信号输送至所述电流检测电路,所述电流检测电路分别与所述电流传感器和所述定值电路相连以接收所述电流信号和所述电流定值信号,且所述电流检测电路依据所述电流定值信号判断所述电磁线圈的预定工作状态,依据所述电流信号判断所述电磁线圈的实际工作状态,并依据所述预定工作状态和电流信号判断所述电流信号是否故障以生成电流故障信息,从而输出相应的状态信息,所述状态信息包括所述预定工作状态、实际工作状态和电流故障信息;所述显示模块分别与所述定值电路和所述电流检测电路相连并显示所述定值故障信息和所述状态信息。
  9. 如权利要求8所述的反应堆控制棒控制系统,其特征在于,所述电流检测电路获取所述状态信息的方法为:所述电流检测电路依据所述电流定值信号判断所述电磁线圈的预定工作状态并调用对应的预设阈值和预设延迟时间,并在当前预定工作状态和前一预定工作状态不同时依据调用的预设延迟时间生成跳转状态信息,所述跳转状态信息为判断所述电流信号处于跳转状态的信息;所述电流检测电路依据所述电流信号判断所述电磁线圈的实际工作状态,且所述电流检测电路在电流信号未处于跳转状态时将所述电流信号与预设阈值进行比较,并在所述电流信号超出预设阈值范围时生成电流故障信息;所述电流检测电路在电流信号处于跳转状态时延迟预设时间后将所述电流信号与预设阈值进行比较,并在所述电流信号超出预设阈值范围时生成电流故障信息;所述状态信息还包括所述跳转状态信息;与电磁线圈相关联的每组参数均包括所述预设阈值和所述延迟预设时间。
  10. 如权利要求8或9所述的反应堆控制棒控制系统,其特征在于,所述显示模块依据所述电流故障信息和定值故障信息锁定显示状态,所述反应堆控制棒控制系统还包括故障清除按钮,所述故障清除按钮输出故障清除命令,所述显示模块依据所述故障清除命令解除显示状态的锁定。
  11. 如权利要求8所述的反应堆控制棒控制系统,其特征在于,所述显示模块还包括测试接口和通讯 接口,所述测试接口用于测试所述电磁线圈的实际电流值,所述通讯接口用于外接控制终端设备以在线调节控制参数。
  12. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述控制模块获取反应堆控制棒控制系统的系统状态信息并依据所述系统状态信息生成故障报警信号,并依据所述故障报警信号的类型产生包含双保持命令的线圈控制信号,所述电流转换模块依据所述包含双保持命令的线圈控制信号控制电磁线圈中的移动线圈和保持线圈处于双保持状态。
  13. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述反应堆控制棒控制系统还包括安装柜,所述安装柜上设有安装架和设于所述安装架上的插拔接口,所述反应堆控制棒控制系统内各个模块以模块化的结构分别安装于所述安装架上并与对应的插拔接口对接,所述插拔接口用于连接所述反应堆控制棒控制系统内各个模块,且所述电流转换模块对应的插拔接口还连接所述电磁线圈并识别所述电磁线圈类型,依据所述电磁线圈类型调用相应的控制程序和控制参数。
  14. 如权利要求1所述的反应堆控制棒控制系统,其特征在于,所述电源模块包括动力电源模块和控制电源模块,所述动力电源模块将260V交流电通过三相半波整流转换为220V的直流电,并与所述电流转换模块相连以向电流转换模块提供动力电源;所述控制电源模块将220V交流电转换为24V直流电,并与所述电流转换模块和控制模块相连以向所述电流转换模块和控制模块提供控制电源。
PCT/CN2015/097238 2015-01-09 2015-12-14 反应堆控制棒控制系统 WO2016110171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510012898.9 2015-01-09
CN201510012898.9A CN104616705B (zh) 2015-01-09 2015-01-09 反应堆控制棒控制系统

Publications (1)

Publication Number Publication Date
WO2016110171A1 true WO2016110171A1 (zh) 2016-07-14

Family

ID=53151122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097238 WO2016110171A1 (zh) 2015-01-09 2015-12-14 反应堆控制棒控制系统

Country Status (2)

Country Link
CN (1) CN104616705B (zh)
WO (1) WO2016110171A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599263A (zh) * 2020-12-05 2021-04-02 核电运行研究(上海)有限公司 一种不需切断激励电源的控制棒落棒时间测量方法
CN112611309A (zh) * 2020-12-10 2021-04-06 中核核电运行管理有限公司 一种控制棒位置精准测量方法
WO2024017402A1 (zh) * 2022-07-21 2024-01-25 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616705B (zh) * 2015-01-09 2017-08-29 中广核研究院有限公司 反应堆控制棒控制系统
CN105403773B (zh) * 2015-10-22 2018-06-01 上海发电设备成套设计研究院 一种实时在线监测控制棒驱动机构电磁线圈电感值的方法
CN106899200A (zh) * 2015-12-17 2017-06-27 上海昱章电气成套设备有限公司 棒控系统的电源装置
CN105702303B (zh) * 2016-01-20 2017-12-22 中广核研究院有限公司 反应堆控制棒运动控制装置
CN106128519B (zh) * 2016-06-28 2018-03-13 上海发电设备成套设计研究院 一种核电控制棒驱动系统及方法
CN106409348B (zh) * 2016-10-21 2018-03-20 中国核动力研究设计院 一种降低意外落棒几率的驱动机构控制方法
CN106409347B (zh) * 2016-10-31 2018-04-24 中国核动力研究设计院 一种摩擦锁紧型磁力提升器及其控制方法
CN107256728A (zh) * 2017-05-22 2017-10-17 福建福清核电有限公司 一种基于fpga的核电厂数字化控制棒电流监测卡件
CN111489838B (zh) * 2019-01-25 2022-07-26 中国核动力研究设计院 一种基于plc+fpga/dsp+igbt控制构架的控制棒驱动机构电源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054486A (en) * 1974-12-11 1977-10-18 Commissariat A L'energie Atomique Nuclear reactor fail-safe unit having the function of control relay and current regulation
JP2005156459A (ja) * 2003-11-27 2005-06-16 Mitsubishi Electric Corp 原子炉制御棒駆動用コイルの電流制御回路
CN101206928A (zh) * 2006-12-21 2008-06-25 数据系统及解决技术公司 核反应堆棒控制机构控制系统
CN102103894A (zh) * 2010-09-30 2011-06-22 中科华核电技术研究院有限公司 一种基于igbt的控制棒控制系统驱动电路
CN202735877U (zh) * 2012-05-17 2013-02-13 上海核工程研究设计院 基于fpga和dsp控制器的核电厂数字化控制棒控制系统
CN104616705A (zh) * 2015-01-09 2015-05-13 中科华核电技术研究院有限公司 反应堆控制棒控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999291A (ja) * 1982-11-29 1984-06-07 三菱電機株式会社 原子炉制御棒制御装置
CN100481271C (zh) * 2006-01-10 2009-04-22 上海浦核科技有限公司 一种核电站反应堆控制棒驱动电路
US8670515B2 (en) * 2009-07-29 2014-03-11 Westinghouse Electric Company Llc Digital nuclear control rod control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054486A (en) * 1974-12-11 1977-10-18 Commissariat A L'energie Atomique Nuclear reactor fail-safe unit having the function of control relay and current regulation
JP2005156459A (ja) * 2003-11-27 2005-06-16 Mitsubishi Electric Corp 原子炉制御棒駆動用コイルの電流制御回路
CN101206928A (zh) * 2006-12-21 2008-06-25 数据系统及解决技术公司 核反应堆棒控制机构控制系统
CN102103894A (zh) * 2010-09-30 2011-06-22 中科华核电技术研究院有限公司 一种基于igbt的控制棒控制系统驱动电路
CN202735877U (zh) * 2012-05-17 2013-02-13 上海核工程研究设计院 基于fpga和dsp控制器的核电厂数字化控制棒控制系统
CN104616705A (zh) * 2015-01-09 2015-05-13 中科华核电技术研究院有限公司 反应堆控制棒控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599263A (zh) * 2020-12-05 2021-04-02 核电运行研究(上海)有限公司 一种不需切断激励电源的控制棒落棒时间测量方法
CN112599263B (zh) * 2020-12-05 2023-02-14 核电运行研究(上海)有限公司 一种不需切断激励电源的控制棒落棒时间测量方法
CN112611309A (zh) * 2020-12-10 2021-04-06 中核核电运行管理有限公司 一种控制棒位置精准测量方法
WO2024017402A1 (zh) * 2022-07-21 2024-01-25 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Also Published As

Publication number Publication date
CN104616705A (zh) 2015-05-13
CN104616705B (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2016110171A1 (zh) 反应堆控制棒控制系统
CN204578386U (zh) 同步整流器控制器和半导体器件
CN105468051B (zh) 一种温度控制器
US20140229126A1 (en) Fault detection method and device
CN107276036B (zh) 一种开关电源的cs采样电阻短路保护装置
CN205294577U (zh) 一种防止电梯轿门锁短接的装置
CN107659134B (zh) 一种轻型机械臂的电源管理装置及其控制方法
CN104122790A (zh) 冷却系统
KR20080058256A (ko) 원자로 로드 제어 기구 제어 시스템
CN107275157A (zh) 一种继电器运动部件检测电路及具有该电路的继电器
CN203535514U (zh) 一种具有自检测功能的干式变压器温度控制装置
CN201966862U (zh) 一种基于单片机的小型发电机励磁控制装置
CN103529876A (zh) 一种具有自检测功能的干式变压器温度控制装置及其工作方法
CN107068488B (zh) 电流源式接触器防晃电装置及其控制方法
CN213125995U (zh) 多个机电联锁装置的驱动控制设备
CN103019148A (zh) 一种双继电器控制单体设备启停的方法
CN103427475A (zh) 核电厂控制棒控制系统维护母线
CN108899757A (zh) 一种具有电流缓起功能激光器电源系统的激光器
CN112289619B (zh) 一种用于接地开关的控制装置
CN218510283U (zh) 一种可监测动作电流的电磁阀驱动电路
CN105035886B (zh) 一种施工升降机及其控制装置
CN202265289U (zh) 一种自动扶梯控制柜温控系统
CN207845804U (zh) 一种电解槽操控装置
CN105702303B (zh) 反应堆控制棒运动控制装置
CN202737564U (zh) 核电厂控制棒控制系统维护母线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15876671

Country of ref document: EP

Kind code of ref document: A1