WO2024017402A1 - 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质 - Google Patents

高温气冷堆控制棒棒位监测方法、装置、设备、存储介质 Download PDF

Info

Publication number
WO2024017402A1
WO2024017402A1 PCT/CN2023/112803 CN2023112803W WO2024017402A1 WO 2024017402 A1 WO2024017402 A1 WO 2024017402A1 CN 2023112803 W CN2023112803 W CN 2023112803W WO 2024017402 A1 WO2024017402 A1 WO 2024017402A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
rod position
control rod
temperature gas
cooled reactor
Prior art date
Application number
PCT/CN2023/112803
Other languages
English (en)
French (fr)
Inventor
张振鲁
许杰
孙惠敏
齐炳雪
肖三平
周振德
Original Assignee
华能核能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能核能技术研究院有限公司 filed Critical 华能核能技术研究院有限公司
Publication of WO2024017402A1 publication Critical patent/WO2024017402A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of equipment monitoring, and in particular to a method, device, equipment and storage medium for monitoring the control rod position of a high-temperature gas-cooled reactor.
  • Modular high-temperature gas-cooled reactor is an advanced reactor type with the characteristics of the fourth generation reactor. It has the advantages of good inherent safety, high power generation efficiency, good economy and wide range of uses. It can replace traditional fossil energy and achieve economic and ecological Environmentally coordinated development.
  • High-temperature gas-cooled reactors generally have two independent reactivity control systems.
  • the main reactivity control system generally adopts the control rod shutdown system
  • the backup reactivity control system generally adopts the absorption ball shutdown system. Since the core power density of the pebble-bed high-temperature gas-cooled reactor is low, in order to achieve more economical electric power, the core volume is large and the overall core structure is slim. This makes the length of the control rod and the length of the control rod driving line reach more than 11 meters. Therefore, the connection between the control rod driving mechanism and the control rod generally uses a soft connection such as a chain or a steel wire rope, which can achieve a longer distance of lifting the rod in a limited space. and stick action.
  • a rod position measuring device In order to obtain the precise position of the control rod inside the reactor core, a rod position measuring device needs to be installed on the control rod driving mechanism.
  • the rod position measuring device is required to operate reliably, measure accurately, and be resistant to radiation and high temperature.
  • the invention provides a high-temperature gas-cooled reactor control rod position monitoring method, device, equipment and storage medium, aiming to achieve accurate and reliable rod position measurement and online calibration functions.
  • the first purpose of the present invention is to propose a method for monitoring the control rod position of high-temperature gas-cooled reactors, which includes:
  • the driving motor action signal includes a motor steering signal, a motor rotation signal and a motor speed signal.
  • the step of determining the actual rod position of the high-temperature gas-cooled reactor control rod based on the motor rotation signal and step detection signal includes:
  • the action mode of the stick position is to lift, add the initial stick position and the number of steps to get the current stick position; if the action mode of the stick position is to push down, subtract the initial stick position and the number of steps to get the current stick position;
  • the current rod position is assigned to the actual rod position, and the actual rod position is output at the same time.
  • the step of determining the logical rod position of the high-temperature gas-cooled reactor control rod based on the motor rotation signal and the step detection signal includes:
  • rod position action mode is lifting, add the actual rod position and the control rod displacement to get the logical rod position; if the rod position action mode is downward insertion, subtract the actual rod position and the control rod displacement to get the logical rod position;
  • the step of determining the backup rod position of the high-temperature gas-cooled reactor control rod based on the motor rotation signal and the step detection signal includes:
  • stick position action mode is to lift, add the current stick position and the backup step number to get the backup stick position; if the stick position action mode is to insert, subtract the current stick position and the backup step number to get the backup stick position ;
  • the current rod position is compared with the preset rod position length. If the deviation is within 50mm, the fault signal is normal. If the deviation exceeds 50mm, the third fault signal is output.
  • the second object of the present invention is to propose a high-temperature gas-cooled reactor control rod position monitoring device, which includes:
  • the signal acquisition module is used to acquire the drive motor action signal, step detection signal and upper limit signal of the high-temperature gas-cooled reactor control rod;
  • the rod position calculation module is used to determine the actual rod position, logical rod position and spare rod position of the high-temperature gas-cooled reactor control rod based on the motor rotation signal and step detection signal;
  • Rod position monitoring module is used to control rods in high-temperature gas-cooled reactors based on actual rod positions, logical rod positions and backup rod positions. Bit zeroing and fault monitoring.
  • the third object of the present invention is to propose an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions that can be executed by at least one processor, and the instructions are at least One processor executes, so that at least one processor can execute each step in the method of the foregoing technical solution.
  • the fourth object of the present invention is to provide a non-transitory computer-readable storage medium storing computer instructions, wherein the computer instructions are used to cause the computer to execute each step in the method according to the foregoing technical solution.
  • the high-temperature gas-cooled reactor control rod position monitoring method acquires the working signal of the stepper motor and combines the step detection signal and the upper limit signal to monitor the action of the high-temperature gas-cooled reactor control rod. Carry out fault monitoring and carry out high temperature gas-cooled reactor control rod position zeroing and fault monitoring based on the calculated actual rod positions, logical rod positions and spare rod positions.
  • the online calibration function of the high-temperature gas-cooled reactor control rod position signal can be realized, the measurement accuracy of the high-temperature gas-cooled reactor control rod position can be improved, and the economy and reliability of the control rod driving mechanism can be improved.
  • Figure 1 is a schematic flow chart of a high-temperature gas-cooled reactor control rod position monitoring method provided by the present invention.
  • Figure 2 is a schematic structural diagram of the monitoring equipment used in a high-temperature gas-cooled reactor control rod position monitoring method provided by the present invention.
  • Figure 3 is a schematic structural diagram of a high-temperature gas-cooled reactor control rod position monitoring device provided by the present invention.
  • Figure 4 is a schematic structural diagram of a non-transitory computer-readable storage medium provided by the present invention.
  • a high-temperature gas-cooled reactor control rod position monitoring method provided by an embodiment of the present invention includes:
  • control rod driver 1 control rod position transmitter 2
  • control rod drive motor 3 transmission mechanism 4, backup step detector 5, hub mechanism 6, step detector 7, upper limit Position switch 8, control rod 9;
  • the control rod drive motor 3, the transmission mechanism 4, the hub mechanism 6, and the upper limit switch 8 are connected in sequence.
  • the control rod drive motor 3 is connected to the control rod driver 1, and the upper limit switch 8 is connected to the control rod 9.
  • the control rod driver 1 is the power control device of the control rod drive motor 3. It contains two power control modules. Each module is independently connected to a winding of the control rod drive motor 3, and both can realize the rotation control of the control rod drive motor 3; The two control modules are mutually backup. When one module fails, the other module is activated immediately.
  • 11 represents the control rod driver output terminal
  • 12 represents the control rod driver input terminal. The motor action signal of the stepper motor is obtained through the control rod driver input terminal 12, the specific type is identified, and is sent to the control rod driver output terminal 11. Control rod position transmitter 2.
  • the control rod position transmitter 2 is a control logic processing device for the control rod 9.
  • 21 represents the control rod position logic processor
  • 22 represents the control rod position transmitter input terminal
  • 23 represents the control rod position transmitter output terminal.
  • the input terminal 22 of the control rod position transmitter receives the motor action signal, the step detection signal and the upper limit signal, and the logic processor inside the control rod position transmitter 2 performs logical processing to obtain the fault signal and limit signal.
  • the output signal and rod position output signal are output through the output terminal 23 of the control rod position transmitter.
  • the control rod drive motor 3 is a double-winding stepper motor or servo motor, which adopts a winding arrangement of one for use and one for backup, and is connected to the input shaft of the transmission mechanism 4 by external splines or flat keys.
  • the transmission mechanism 4 is composed of a planetary gear reducer 41, an electromagnetic clutch 42 and an electromagnetic damper 43, and plays the functions of transmission, speed limiting and rod position maintenance.
  • the backup step detector 5 is an eddy current sensor installed on the side of the gear of the hub mechanism 6; the distance between the top of the gear of the hub mechanism 6 and the eddy current sensor probe occurs periodically as the gear rotates; every time the hub mechanism 6 rotates one tooth pitch, the eddy current sensor The signal undergoes a periodic change; the monitoring signal of the eddy current sensor is transmitted to the control rod position transmitter 2 through the wire, and a periodic change is recognized as a step signal to realize online monitoring of the control rod position; the backup step The detection signal entering the detector 5 is used as a backup comparison signal for the control rod position transmitter 2 to calibrate the accuracy of the main signal and is used as an emergency rod position measurement signal when the main signal fails.
  • the hub mechanism 6 is a stepped cylindrical structure, with a wire rope guide wheel installed at the lower part, and a cable trough on the upper cylinder for guidance when the wire rope is wound; there are gears at both ends of the cylinder, and a spur gear on the left side.
  • the rod position is monitored during operation.
  • the right side is the bevel gear, which meshes with the bevel gear of the transmission device and transmits the rotational motion of the stepper motor to the hub mechanism 6; there is a shaft in the middle, and bearings are installed on both ends of the shaft; the wire rope is finally tightened on on the bevel gear fixing hole on the side of the hub.
  • the step detector 7 is another eddy current sensor installed on the opposite side of the hub mechanism gear; the distance between the top of the gear of the hub mechanism 6 and the eddy current sensor probe occurs periodically as the gear rotates; every time the hub mechanism 6 rotates one tooth pitch, the vortex sensor The signal of the flow sensor undergoes a periodic change; the monitoring signal of the eddy current sensor is transmitted to the control rod position transmitter 2 through the wire, and a periodic change is recognized as a step signal to realize online monitoring of the control rod position; The step detector signal is used as the main rod position detection signal, and the monitoring results are used as the main basis for reactivity control. When the step detector 7 fails, the reactor needs to be shut down for maintenance. The backup step detector 5 is only used as the rod position during shutdown. Use as directed.
  • the upper limit switch 8 is a ring casing structure equipped with a travel switch.
  • the middle opening of the ring casing is large enough to pass the wire rope, but cannot pass the control rod 9.
  • a limit switch is set inside the ring casing to lift the control rod to the upper limit position. When touching the limit switch, the upper limit signal is triggered.
  • the control rod 9 used in the present invention has a chain-link section rod structure; double verification of the backup rod position and the logical rod position is used to ensure the accuracy of the rod position measurement; the rod position drift monitoring is realized through the upper limit switch to correct the creep due to high temperature The elongation of the wire rope caused by other reasons makes the reactivity control more precise; the setup adopts a double-winding motor and a double drive module to improve the reliability of the drive mechanism and ensure the safety of the reactor.
  • the control rod driver 1 obtains the motor steering signal X1, the motor rotation signal X2 and the motor speed signal X3 of the control rod drive motor 3 from the control rod drive motor 3, and outputs the three-phase signal of the control rod drive motor 3 through processing by the control module.
  • the pulse signal drives the control rod to drive the motor to rotate, thereby realizing the lifting and lowering of the control rod.
  • the control rod position transmitter 2 obtains the motor steering signal X1, the motor rotation signal X2, and the motor speed signal X3 of the control rod drive motor 3. It obtains the step signal Z0 from the control rod step detector 7 and the backup step detector 7. 5. Obtain the backup step signal Z1, and obtain the upper limit signal Z2 from the upper limit switch 8.
  • S120 Based on the motor rotation signal and step detection signal, determine the actual rod position, logical rod position and spare rod position of the high-temperature gas-cooled reactor control rod.
  • the action mode of the stick position is to lift, add the initial stick position and the number of steps to get the current stick position; if the action mode of the stick position is to push down, subtract the initial stick position and the number of steps to get the current stick position;
  • the current rod position is assigned to the actual rod position, and the actual rod position is output at the same time.
  • the step number A0 is obtained through the step signal Z0, and the rod position is judged to be raised or lowered according to the motor rotation signal X2. If it is a lifting signal, the initial rod position B0 and the step number A0 are added to obtain the current rod position B1. When inserting the signal, the initial rod position B0 and the step number A0 are subtracted to obtain the current rod position B1. When the fault signal G0 is the normal value 0, the current rod position B1 is assigned to the rod position B0, and the rod position B0 signal is output to Reactive control systems.
  • rod position action mode is lifting, add the actual rod position and the control rod displacement to get the logical rod position; if the rod position action mode is downward insertion, subtract the actual rod position and the control rod displacement to get the logical rod position;
  • the rotation distance D1 of the stepper motor is obtained based on the integral of the duration of the motor rotation signal X2 and the motor rotation speed signal ), the control rod displacement L1 is obtained.
  • the control rod downward insertion and lifting status are obtained according to the stepper motor steering signal Subtract B0 and L1 to obtain the logic stick position B2; compare the B1 stick position with the B2 stick position. If the deviation is within 3 steps, the fault signal G1 is assigned a value of 0. If the deviation exceeds 3 steps, the fault signal G1 is assigned a value of 1.
  • stick position action mode is to lift, add the current stick position and the backup step number to get the backup stick position; if the stick position action mode is to insert, subtract the current stick position and the backup step number to get the backup stick position ;
  • the step number A1 is obtained through the backup step signal Z1, and the rod position is judged to be raised or lowered according to the motor rotation signal X2.
  • the initial rod position B0 and the step number A1 are added to obtain the backup rod position B3.
  • control rod When the control rod is raised to the upper limit position, it contacts the travel switch and triggers the upper limit signal.
  • the fault signal G3 is assigned a value of 0; if the deviation exceeds 50mm, the fault signal G3 is assigned a value of 1.
  • the G1 signal is obtained from the logic rod position processing
  • the G2 signal is obtained from the rod position calibration
  • the G3 signal is obtained from the rod position zero adjustment
  • the three groups of signals are ORed
  • the G0 signal is output, and an alarm is issued based on the G0 signal.
  • the output signals of the control rod position transmitter are fault signal G0, normal rod position signal B0, backup rod position signal B2, and limit signal Z2 to the reactive control system (not shown in the figure).
  • the present invention also provides a high-temperature gas-cooled reactor control rod position monitoring device, which includes:
  • the signal acquisition module 310 is used to acquire the drive motor action signal, step detection signal and upper limit signal of the high-temperature gas-cooled reactor control rod;
  • the rod position calculation module 320 is used to determine the actual rod position, logical rod position and backup rod position of the high-temperature gas-cooled reactor control rod based on the motor rotation signal and the step detection signal;
  • the rod position monitoring module 330 is used to perform zero adjustment and fault monitoring of high-temperature gas-cooled reactor control rod positions based on actual rod positions, logical rod positions, and backup rod positions.
  • the present invention also proposes an electronic device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores instructions that can be executed by at least one processor, and the instructions are at least One processor executes, so that at least one processor can execute each step in the high-temperature gas-cooled reactor control rod position monitoring method of the aforementioned technical solution.
  • the non-transitory computer-readable storage medium includes a memory 810 and an interface 830 for instructions that can be executed by a processor 820 based on high-temperature gas-cooled reactor control rod position monitoring to complete the method.
  • the storage medium may be a non-transitory computer-readable storage medium.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc. .
  • the present invention also proposes a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the high-temperature gas-cooled reactor control rod position monitoring is implemented as in the embodiments of the present invention. .
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, schematic expressions of the terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of the present invention, the meaning of "plurality” is at least two, such as two, Three, etc., unless otherwise expressly and specifically limited.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present invention may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: discrete logic gate circuits with logic functions for implementing data signals; Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in various embodiments of the present invention can be integrated into a processing module, or each unit can exist physically alone, or two or more units can be integrated into one module.
  • the integrated modules can be implemented in the form of hardware or software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable from the storage medium.
  • the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种高温气冷堆控制棒棒位监测方法、装置、设备、存储介质,棒位监测方法包括:获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号(S110);基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位(S120);基于实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测(S130)。通过高温气冷堆控制棒棒位监测方法,能够实现高温气冷堆控制棒棒位信号的在线校准功能,提高高温气冷堆控制棒棒位测量准确性,提高了控制棒驱动机构的经济性和可靠性。

Description

高温气冷堆控制棒棒位监测方法、装置、设备、存储介质 技术领域
本发明涉及设备监测技术领域,尤其涉及一种高温气冷堆控制棒棒位监测方法、装置、设备、存储介质。
背景技术
模块式高温气冷堆是一种具备第四代反应堆特征的先进堆型,它具有固有安全性好、发电效率高、经济性好和用途广泛等优势,能够代替传统化石能源,实现经济和生态环境协调发展。高温气冷堆一般设置两套独立的反应性控制系统。主要反应性控制系统一般采用控制棒停堆系统,备用反应性控制系统一般采用吸收球停堆系统。由于球床式高温气冷堆堆芯功率密度底,为实现更为经济性的电功率,堆芯体积大,整体呈瘦长型的堆芯结构。使得控制棒长度和控制棒驱动线长度达到11米以上,因此控制棒驱动机构与控制棒的连接件一般采用环链或钢丝绳等软性连接,可以在有限的空间内实现较长距离的提棒和插棒动作。
为了得到控制棒在堆芯内部的精确位置,需要在控制棒驱动机构上安装棒位测量装置,要求棒位测量装置运行可靠、测量准确、耐辐照、耐高温。
发明内容
本发明提供一种高温气冷堆控制棒棒位监测方法、装置、设备、存储介质,旨在实现准确可靠的棒位测量和在线校准功能。
为此,本发明的第一个目的在于提出一种高温气冷堆控制棒棒位监测方法,包括:
获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号;
基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位;
基于实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测。
其中,驱动电机动作信号包括电机转向信号、电机转动信号和电机转速信号。
其中,在基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位的步骤中,包括:
基于步进检测信号确定步进电机的步进数,根据电机转动信号判断高温气冷堆控制棒 的棒位行动方式;
若棒位行动方式为提升时,将初始棒位与步进数相加得到当前棒位;若棒位行动方式为下插时,将初始棒位与步进数相减得到当前棒位;
在故障信号为正常时,将当前棒位赋值给实际棒位,同时输出实际棒位。
其中,在基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的逻辑棒位的步骤中,包括:
根据电机转动信号持续时间与电机转速信号的积分,计算步进电机的转动距离;
通过步进电机转动距离与控制棒位移的常数关系,计算控制棒位移;根据步进电机转向信号X1得到控制棒棒位行动方式;
若棒位行动方式为提升时,将实际棒位与控制棒位移相加得到逻辑棒位;若棒位行动方式为下插时,将实际棒位与控制棒位移相减得到逻辑棒位;
将逻辑棒位与实际棒位进行比对,偏差3步以内,故障信号为正常,偏差超过3步,输出第一故障信号。
其中,在基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的备用棒位的步骤中,包括:
获取备用步进检测信号,基于备用步进检测信号确定步进电机的备用步进数,根据电机转动信号判断棒位行动方式;
若棒位行动方式为提升时,将当前棒位与备用步进数相加得到备用棒位,若棒位行动方式为下插时,将当前棒位与备用步进数相减得到备用棒位;
将备用棒位与逻辑棒位进行比对,偏差3步以内,故障信号为正常,偏差超过3步,输出第二故障信号。
其中,在对高温气冷堆控制棒进行棒位调零的步骤中,当上极限位信号为触发时,将当前棒位与预设棒位长度进行对比,偏差50mm以内,故障信号为正常,偏差超过50mm,输出第三故障信号。
其中,在对高温气冷堆控制棒进行棒位调零的步骤中,若接收到第一故障信号、第二故障信号及第三故障信号其中至少一者时,进行故障警报。
本发明的第二个目的在于提出一种高温气冷堆控制棒棒位监测装置,包括:
信号获取模块,用于获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号;
棒位计算模块,用于基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位;
棒位监测模块,用于基于实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒 位调零和故障监测。
本发明的第三个目的在于提出一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行前述技术方案的方法中的各步骤。
本发明的第四个目的在于提出存储有计算机指令的非瞬时计算机可读存储介质,其中,计算机指令用于使计算机执行根据前述技术方案的方法中的各步骤。
区别于现有技术,本发明提供的高温气冷堆控制棒棒位监测方法,通过获取步进电机的工作信号,结合步进检测信号和上极限位信号,对高温气冷堆控制棒的动作进行故障监测,基于计算得到的实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测。通过本发明,能够实现高温气冷堆控制棒棒位信号的在线校准功能,提高高温气冷堆控制棒棒位测量准确性,提高了控制棒驱动机构的经济性和可靠性。
附图说明
本发明的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明提供的一种高温气冷堆控制棒棒位监测方法的流程示意图。
图2是本发明提供的一种高温气冷堆控制棒棒位监测方法中采用的监测设备的结构示意图。
图3是本发明提供的一种高温气冷堆控制棒棒位监测装置的结构示意图。
图4是本发明提供的一种非临时性计算机可读存储介质的结构示意图。
图2中,1-控制棒驱动器,2-控制棒棒位变送器,3-控制棒驱动电机,4-传动机构,5-备用步进检测器,6-轮毂机构,7-步进检测器,8-上极限位开关,9-控制棒,11-控制棒驱动器输出端子,12-控制棒驱动器输入端子,21-控制棒棒位逻辑处理器,22-控制棒棒位变送器输入端子,23-控制棒棒位变送器输出端子,41-行星减速器,42-电磁联轴器,43-电涡流限速器。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1所示,为本发明实施例所提供的一种高温气冷堆控制棒棒位监测方法,包括:
S110:获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号。
本发明的方法在进行高温气冷堆控制棒棒位监测时,依托于如图2所示的监测装置进行。具体的,该装置包括:控制棒驱动器1、控制棒棒位变送器2、控制棒驱动电机3、传动机构4、备用步进检测器5、轮毂机构6、步进检测器7、上极限位开关8、控制棒9;
控制棒驱动电机3、传动机构4、轮毂机构6、上极限位开关8顺次连接,控制棒驱动电机3连接控制棒驱动器1,上极限位开关8连接控制棒9。
控制棒驱动器1为控制棒驱动电机3的动力控制装置,内部包含两个动力控制模块,每个模块独立连接到控制棒驱动电机3的一个绕组,均可实现控制棒驱动电机3的转动控制;两个控制模块互为备用,一个模块出现故障后,另一模块立即启用。图2中,11表示控制棒驱动器输出端子,12表示控制棒驱动器输入端子,通过控制棒驱动器输入端子12获取步进电机的电机动作信号,识别具体类型,并通过控制棒驱动器输出端子11发送至控制棒棒位变送器2。
控制棒棒位变送器2为控制棒9控制逻辑处理装置。图2中,21表示控制棒棒位逻辑处理器,22表示控制棒棒位变送器输入端子,23表示控制棒棒位变送器输出端子。通过控制棒棒位变送器输入端子22接收电机动作信号、步进检测信号及上极限位信号,通过控制棒棒位变送器2内部的逻辑处理器进行逻辑处理,得到故障信号、限位输出信号及棒位输出信号,并通过控制棒棒位变送器输出端子23输出。
控制棒驱动电机3为双绕组步进电机或伺服电机,采用一用一备的绕组设置,采用外花键或平键与传动机构4的输入轴连接。
传动机构4由行星轮减速器41、电磁离合器42和电磁阻尼器43组成,起到传动、限速和棒位保持功能。
备用步进检测器5为安装在轮毂机构6齿轮侧边的涡流传感器;轮毂机构6齿轮顶部与涡流传感器探头之间距离随着齿轮转动发生周期性;轮毂机构6每转动一个齿间距,涡流传感器的信号发生一个周期性的变化;涡流传感器的监测信号通过导线传递给控制棒棒位变送器2,将一个周期性变化识别为一个步进信号,实现控制棒棒位的在线监测;备用步进检测器5的检测信号作为控制棒棒位变送器2的备用比对信号,校准主信号的准确度并在主信号故障时作为紧急棒位测量信号使用。
轮毂机构6为阶梯状圆筒形结构,下部安装有钢丝绳导轮,上部圆筒上开有导缆槽,用于钢丝绳缠绕时的导向;圆筒两端有齿轮,左侧为平齿轮,用于运行过程中棒位监测,右侧为锥齿轮,与传动装置的锥齿轮啮合,将步进电机的旋转运动传递到轮毂机构6;中间有轴,轴两端安装轴承;钢丝绳最终紧固在轮毂一侧的锥齿轮固定孔上。
步进检测器7为安装在轮毂机构齿轮对侧的另一个涡流传感器;轮毂机构6齿轮顶部与涡流传感器探头之间距离随着齿轮转动发生周期性;轮毂机构6每转动一个齿间距,涡 流传感器的信号发生一个周期性的变化;涡流传感器的监测信号通过导线传递给控制棒棒位变送器2,将一个周期性变化识别为一个步进信号,实现控制棒棒位的在线监测;步进检测器信号作为主要棒位检测信号,监测结果作为反应性控制的主要依据,在步进检测器7故障时,需进行停堆检修,备用步进检测器5仅作为停堆时棒位指示使用。
上极限位开关8是安装有行程开关的环套管结构,环套管中间开孔尺寸可以通过钢丝绳,但无法通过控制棒9,在环套管内部设置行程开关,使控制棒提升至上极限位置时接触行程开关,触发上极限位信号。
本发明采用的控制棒9为链节式节棒结构;采用备用棒位和逻辑棒位双重验证,确保棒位测量的准确性;通过上极限位开关实现棒位漂移监测,修正因高温蠕变等原因导致的钢丝绳伸长,使反应性控制更为精准;设置采用双绕组电机和双驱动模块设置,使驱动机构可靠性提高,保证反应堆的安全性。
下面结合装置具体结构,对方法的实施过程进行说明。
具体的,控制棒驱动器1从控制棒驱动电机3获得控制棒驱动电机3的电机转向信号X1、电机转动信号X2和电机转速信号X3,通过控制模块的处理输出为控制棒驱动电机3的三相脉冲信号,驱动控制棒驱动电机转动,实现控制棒提升和下插。控制棒棒位变送器2获得控制棒驱动电机3的电机转向信号X1、电机转动信号X2、电机转速信号X3,从控制棒步进检测器7获得步进信号Z0,从备用步进检测器5获得备用步进信号Z1,从上极限位开关8获得上极限位信号Z2。
S120:基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位。
在基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位时,包括如下步骤:
基于步进检测信号确定步进电机的步进数,根据电机转动信号判断高温气冷堆控制棒的棒位行动方式;
若棒位行动方式为提升时,将初始棒位与步进数相加得到当前棒位;若棒位行动方式为下插时,将初始棒位与步进数相减得到当前棒位;
在故障信号为正常时,将当前棒位赋值给实际棒位,同时输出实际棒位。
具体的,通过步进信号Z0获得步进数A0,根据电机转动信号X2判断棒位提升或下插,若为提升信号,将初始棒位B0与步进数A0相加得到当前棒位B1,下插信号时,将初始棒位B0与步进数A0相减得到当前棒位B1,在故障信号G0为正常值0时将当前棒位B1赋值给棒位B0,同时输出棒位B0信号给反应性控制系统。
在基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的逻辑棒位时,包括如 下步骤:
根据电机转动信号持续时间与电机转速信号的积分,计算步进电机的转动距离;
通过步进电机转动距离与控制棒位移的常数关系,计算控制棒位移;根据步进电机转向信号X1得到控制棒棒位行动方式;
若棒位行动方式为提升时,将实际棒位与控制棒位移相加得到逻辑棒位;若棒位行动方式为下插时,将实际棒位与控制棒位移相减得到逻辑棒位;
将逻辑棒位与实际棒位进行比对,偏差3步以内,故障信号为正常,偏差超过3步,输出第一故障信号。
具体的,根据电机转动信号X2持续时间与电机转速信号X3的积分获得步进电机的转动距离D1,通过电机转动距离与控制棒位移L1的常数关系L1=n*D1(n根据减速机构设计确定),得出控制棒位移L1,根据步进电机转向信号X1得到控制棒下插和提升状态,提升时,将初始棒位B0与L1相加得到逻辑棒位B2,下插时将初始棒位B0与L1相减得到逻辑棒位B2;将B1棒位与B2棒位进行比对,偏差3步以内,故障信号G1赋值为0,偏差超过3步,故障信号G1赋值为1。
在基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的备用棒位时,包括如下步骤:
获取备用步进检测信号,基于备用步进检测信号确定步进电机的备用步进数,根据电机转动信号判断棒位行动方式;
若棒位行动方式为提升时,将当前棒位与备用步进数相加得到备用棒位,若棒位行动方式为下插时,将当前棒位与备用步进数相减得到备用棒位;
将备用棒位与逻辑棒位进行比对,偏差3步以内,故障信号为正常,偏差超过3步,输出第二故障信号。
具体的,通过备用步进信号Z1获得步进数A1,根据电机转动信号X2判断棒位提升或下插,提升信号时,将初始棒位B0与步进数A1相加得到备用棒位B3,下插信号时,将初始棒位B0与步进数相减得到备用棒位B3;将B3棒位与B1棒位进行比对,偏差3步以内,故障信号G2赋值为0,偏差超过3步,故障信号G2赋值为1。
S130:基于实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测。
控制棒提升至上极限位置时接触行程开关,触发上极限位信号。
在对高温气冷堆控制棒进行棒位调零的步骤中,当上极限位信号Z2触发为1时,将B0棒位与常数Bmax(根据控制棒驱动机构行程确定,最少为11000)比对,偏差50mm以内,故障信号G3赋值为0,偏差超过50mm,故障信号G3赋值为1。
若接收到第一故障信号、第二故障信号及第三故障信号其中至少一者时,进行故障警报。即从逻辑棒位处理取得G1信号,从棒位校准获得G2信号,从棒位调零获得G3信号,三组信号取或运算,输出G0信号,根据G0信号发出警报。
控制棒棒位变送器输出信号为故障信号G0,正常棒位信号B0,备用棒位信号B2,限位信号Z2到反应性控制系统(图未示)。
如图3所示,本发明还提供了一种高温气冷堆控制棒棒位监测装置,包括:
信号获取模块310,用于获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号;
棒位计算模块320,用于基于电机转动信号和步进检测信号,确定高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位;
棒位监测模块330,用于基于实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测。
为了实现实施例,本发明还提出一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行前述技术方案的高温气冷堆控制棒棒位监测方法中的各步骤。
如图4所示,非临时性计算机可读存储介质包括指令的存储器810,接口830,指令可由根据高温气冷堆控制棒棒位监测处理器820执行以完成方法。可选地,存储介质可以是非临时性计算机可读存储介质,例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
为了实现实施例,本发明还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如本发明实施例的高温气冷堆控制棒棒位监测。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对所述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个, 三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在所述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现所述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。所述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读 取存储介质中。
所述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,所述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对所述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种高温气冷堆控制棒棒位监测方法,其特征在于,包括:
    获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号;
    基于所述电机转动信号和步进检测信号,确定所述高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位;
    基于所述实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测。
  2. 根据权利要求1所述的高温气冷堆控制棒棒位监测方法,其特征在于,所述驱动电机动作信号包括电机转向信号、电机转动信号和电机转速信号。
  3. 根据权利要求1所述的高温气冷堆控制棒棒位监测方法,其特征在于,在基于所述电机转动信号和步进检测信号,确定所述高温气冷堆控制棒的实际棒位的步骤中,包括:
    基于所述步进检测信号确定步进电机的步进数,根据所述电机转动信号判断所述高温气冷堆控制棒的棒位行动方式;
    若所述棒位行动方式为提升时,将初始棒位与步进数相加得到所述当前棒位;若所述棒位行动方式为下插时,将初始棒位与步进数相减得到当前棒位;
    在故障信号为正常时,将当前棒位赋值给实际棒位,同时输出实际棒位。
  4. 根据权利要求3所述的高温气冷堆控制棒棒位监测方法,其特征在于,在基于所述电机转动信号和步进检测信号,确定所述高温气冷堆控制棒的逻辑棒位的步骤中,包括:
    根据所述电机转动信号持续时间与电机转速信号的积分,计算步进电机的转动距离;
    通过步进电机转动距离与控制棒位移的常数关系,计算控制棒位移;根据步进电机转向信号X1得到控制棒棒位行动方式;
    若所述棒位行动方式为提升时,将所述实际棒位与所述控制棒位移相加得到逻辑棒位;若所述棒位行动方式为下插时,将所述实际棒位与所述控制棒位移相减得到逻辑棒位;
    将逻辑棒位与实际棒位进行比对,偏差3步以内,故障信号为正常,偏差超过3步,输出第一故障信号。
  5. 根据权利要求4所述的高温气冷堆控制棒棒位监测方法,其特征在于,在基于所述电机转动信号和步进检测信号,确定所述高温气冷堆控制棒的备用棒位的步骤中,包括:
    获取备用步进检测信号,基于所述备用步进检测信号确定步进电机的备用步进数,根据电机转动信号判断棒位行动方式;
    若所述棒位行动方式为提升时,将当前棒位与备用步进数相加得到备用棒位,若所述棒位行动方式为下插时,将当前棒位与备用步进数相减得到备用棒位;
    将所述备用棒位与逻辑棒位进行比对,偏差3步以内,故障信号为正常,偏差超过3步,输出第二故障信号。
  6. 根据权利要求5所述的高温气冷堆控制棒棒位监测方法,其特征在于,在对所述高温气冷堆控制棒进行棒位调零的步骤中,当所述上极限位信号为触发时,将所述当前棒位与预设棒位长度进行对比,偏差50mm以内,故障信号为正常,偏差超过50mm,输出第三故障信号。
  7. 根据权利要求6所述的高温气冷堆控制棒棒位监测方法,其特征在于,在对所述高温气冷堆控制棒进行棒位调零的步骤中,若接收到所述第一故障信号、所述第二故障信号及所述第三故障信号其中至少一者时,进行故障警报。
  8. 一种高温气冷堆控制棒棒位监测装置,其特征在于,包括:
    信号获取模块,用于获取高温气冷堆控制棒的驱动电机动作信号、步进检测信号和上极限位信号;
    棒位计算模块,用于基于所述电机转动信号和步进检测信号,确定所述高温气冷堆控制棒的实际棒位、逻辑棒位和备用棒位;
    棒位监测模块,用于基于所述实际棒位、逻辑棒位和备用棒位,进行高温气冷堆控制棒棒位调零和故障监测。
  9. 一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的方法中的各步骤。
  10. 一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-7中任一项所述的方法中的各步骤。
PCT/CN2023/112803 2022-07-21 2023-08-14 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质 WO2024017402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210868184.8 2022-07-21
CN202210868184.8A CN115171930A (zh) 2022-07-21 2022-07-21 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Publications (1)

Publication Number Publication Date
WO2024017402A1 true WO2024017402A1 (zh) 2024-01-25

Family

ID=83497359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112803 WO2024017402A1 (zh) 2022-07-21 2023-08-14 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Country Status (2)

Country Link
CN (1) CN115171930A (zh)
WO (1) WO2024017402A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115171930A (zh) * 2022-07-21 2022-10-11 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018195A2 (de) * 1994-12-08 1996-06-13 Siemens Aktiengesellschaft System und verfahren zur steuerung von steuerstäben einer kernkraftanlage
KR20100079034A (ko) * 2008-12-30 2010-07-08 한국전기연구원 제어봉 위치 검출기의 고장 진단장치 및 그것을 포함한 노심보호 연산기 계통, 및 그 고장 진단방법
CN101877250A (zh) * 2010-05-31 2010-11-03 中国核动力研究设计院 基于plc平台的核电站控制棒棒位处理装置
CN102214489A (zh) * 2011-05-18 2011-10-12 清华大学 棒位测量装置及方法
WO2016110171A1 (zh) * 2015-01-09 2016-07-14 中广核研究院有限公司 反应堆控制棒控制系统
CN206363768U (zh) * 2016-11-14 2017-07-28 广东核电合营有限公司 核电站棒控系统测试装置
WO2022105356A1 (zh) * 2020-11-20 2022-05-27 西安热工研究院有限公司 带有增量式调节功能的核电机组控制棒调节方法及系统
CN115171930A (zh) * 2022-07-21 2022-10-11 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018195A2 (de) * 1994-12-08 1996-06-13 Siemens Aktiengesellschaft System und verfahren zur steuerung von steuerstäben einer kernkraftanlage
KR20100079034A (ko) * 2008-12-30 2010-07-08 한국전기연구원 제어봉 위치 검출기의 고장 진단장치 및 그것을 포함한 노심보호 연산기 계통, 및 그 고장 진단방법
CN101877250A (zh) * 2010-05-31 2010-11-03 中国核动力研究设计院 基于plc平台的核电站控制棒棒位处理装置
CN102214489A (zh) * 2011-05-18 2011-10-12 清华大学 棒位测量装置及方法
WO2016110171A1 (zh) * 2015-01-09 2016-07-14 中广核研究院有限公司 反应堆控制棒控制系统
CN206363768U (zh) * 2016-11-14 2017-07-28 广东核电合营有限公司 核电站棒控系统测试装置
WO2022105356A1 (zh) * 2020-11-20 2022-05-27 西安热工研究院有限公司 带有增量式调节功能的核电机组控制棒调节方法及系统
CN115171930A (zh) * 2022-07-21 2022-10-11 华能核能技术研究院有限公司 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, HUIZHONG ET AL.: "Verification Test of Control Rod System for HTR-10", NUCLEAR POWER ENGINEERING, 28 February 2002 (2002-02-28), XP009552079 *

Also Published As

Publication number Publication date
CN115171930A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024017402A1 (zh) 高温气冷堆控制棒棒位监测方法、装置、设备、存储介质
CN102654100B (zh) 用于操作风力涡轮机的方法和系统
KR100788826B1 (ko) 디지털 원자로 보호계통 및 디지털 원자로 보호계통의 시험 방법
CN102207513B (zh) 转子流速仪的检定方法
US20180025802A1 (en) Radionuclide generation system
JP2012013546A (ja) 移動式炉内計装系駆動装置およびそれを用いた案内管内部の摩擦抵抗監視方法
CN109270458A (zh) 智能故障诊断方法、系统、风电机组及存储介质
JP2013205119A (ja) 移動式原子炉出力測定装置およびその移動式検出器の引抜き制御方法
CN102214489B (zh) 棒位测量装置及方法
US5179515A (en) Neutron flux detector positioning
EP2639796B1 (en) Traversing in core power monitoring system and method for monitoring the driving torque
JP2017049012A (ja) 原子炉計装システム及び原子炉
US5096658A (en) Detector path insertion verification system
JP5762839B2 (ja) Tipシステムおよびtip監視制御装置
JPS6112236B2 (zh)
RU2661761C1 (ru) Пороговый блок управления режимом работы исполнительного механизма или технологического оборудования с функцией диагностики входного сигнала
JP2006349577A (ja) 原子炉の流量計測装置
CN117685174A (zh) 一种风力发电机组机舱位置测控系统和方法
JPH01150894A (ja) モータ駆動制御装置
Kima et al. Device configuration for correction of neutron generation in Tokamak
JPH0530238B2 (zh)
JPS61230091A (ja) 制御棒駆動装置の異常検出装置
CN117029905A (zh) 一种适用于大型卷筒轴系结构的预警方法及系统
JPH0456956B2 (zh)
JPS592879B2 (ja) 局所出力領域モニタ代用値設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842464

Country of ref document: EP

Kind code of ref document: A1