WO2016110046A1 - 一种降低雷达干扰的方法和装置 - Google Patents

一种降低雷达干扰的方法和装置 Download PDF

Info

Publication number
WO2016110046A1
WO2016110046A1 PCT/CN2015/080896 CN2015080896W WO2016110046A1 WO 2016110046 A1 WO2016110046 A1 WO 2016110046A1 CN 2015080896 W CN2015080896 W CN 2015080896W WO 2016110046 A1 WO2016110046 A1 WO 2016110046A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
radar
dfs
wlan device
working channel
Prior art date
Application number
PCT/CN2015/080896
Other languages
English (en)
French (fr)
Other versions
WO2016110046A9 (zh
Inventor
卢金金
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016110046A1 publication Critical patent/WO2016110046A1/zh
Publication of WO2016110046A9 publication Critical patent/WO2016110046A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This paper deals with the technical field of reducing radar interference, and in particular relates to a method and apparatus for reducing radar interference.
  • the IEEE 802.11 (or WiFi, Wireless Fidelity) wireless network uses two separate frequency bands, 2.4 GHz and 5 GHz.
  • 2.4 GHz the number of devices operating in the 2.4 GHz ISM band is growing rapidly, making this band increasingly crowded and inter-device interference becoming more serious. Therefore, manufacturers are competing to develop wireless communication working in higher frequency bands. In order to comply with this demand, governments have successively opened 5 GHz license-free bands.
  • 5.25 to 5.35 GHz and 5.47 to 5.725 GHz are the operating bands of the global radar system.
  • the requirements for these devices are in addition to conventional items such as power and spectrum.
  • the requirements for the Dynamic Frequency Selection (DFS) feature have also been added in particular.
  • the FCC Federal Communications Commission
  • U-NII Unlicensed National Information Infrastructure
  • FCC Part 15 Subpart E stipulates that U-NII equipment operating at 5.25 to 5.35 GHz and 5.47 to 5.725 GHz should have a DFS radar detection mechanism.
  • the ETSI EN 301 893 standard also sets the same requirements for equipment operating in this band.
  • the DFS function When a radar signal is detected, the DFS function must switch the WLAN (Wireless Local Area Networks) device operating channel. In order to protect the radar, WLAN equipment should check the radar signal during startup and operation to avoid conflicts between the working channel and the radar channel.
  • WLAN Wireless Local Area Networks
  • Start-up time is a key performance indicator for WLAN devices.
  • the lengthy startup process is a product defect that currently requires a relatively long time period for the 5G band to detect a channel that is not used by the radar. For example, each channel is scanned for 1 minute to determine if it is a radar space letter. Road.
  • the area allowable channel is shown in Figure 3.
  • the allowed channel in Japan is in the following frequency range: W52 (5150-5250MHz) 4 channels (5180MHz, 5200MHz, 5220MHz, 5240MHz), W53 (5250-5350MHz) 4 channels and 11 channels of W56 (5470-5725MHz).
  • the current implementation scheme is to determine whether there is a non-DFS channel (ie, a channel without radar interference) in the allowed channel list, and if so, randomly select one, if not, randomly select a DFS channel in the allowed channel list. Perform a 1-minute radar detection scan. If no radar is found, select the channel as the working channel of the device. If a radar channel is detected, continue to randomly select another DFS channel to perform radar detection scanning until the radar idle channel is found.
  • a non-DFS channel ie, a channel without radar interference
  • the above scheme has the following problems: the randomly selected channel in the DFS channel list has great contingency, while frequent channel switching and performing a 1-minute radar detection scan will consume large system resources and time; After the radar signal is detected on the DFS channel, it is still randomly switched to other DFS channels, which may cause the terminal service of the currently connected WLAN device to be interrupted for a long time, and the user experience is not good.
  • the technical problem to be solved by the present invention is to provide a method and device for reducing radar interference, which can optimize the startup time of the WLAN device in the 5G frequency band and optimize the channel switching time after detecting the radar signal.
  • a method of reducing radar interference comprising:
  • a non-DFS channel is determined as the working channel of the WLAN device.
  • the method further includes:
  • a channel switching procedure is initiated, determining another non-DFS channel other than the working channel as a new working channel of the WLAN device, or determining an undetected
  • the DFS channel to the radar signal acts as a new working channel for the WLAN device.
  • the step of acquiring radar channel distribution information in an area where the current location is located includes:
  • the step of determining a non-DFS channel as the new working channel of the WLAN device includes:
  • the non-DFS channel with the smallest noisy is used as the new working channel.
  • the step of determining another non-DFS channel other than the working channel as the new working channel of the WLAN device includes:
  • the other non-DFS channels are arranged in order of channel complexity from low to high, and the non-DFS channel with the lowest noise is used as the new WLAN device.
  • Working channel When there are other non-DFS channels except the working channel, the other non-DFS channels are arranged in order of channel complexity from low to high, and the non-DFS channel with the lowest noise is used as the new WLAN device.
  • Working channel When there are other non-DFS channels except the working channel, the other non-DFS channels are arranged in order of channel complexity from low to high, and the non-DFS channel with the lowest noise is used as the new WLAN device.
  • the step of determining a DFS channel that does not detect the radar signal as the working channel of the WLAN device includes:
  • DFS channels When all non-DFS channels detect radar signals or only DFS channels exist, one or more DFS channels are selected to perform radar scanning, and a DFS channel that does not detect radar signals is determined as the working channel of the WLAN device.
  • the step of selecting one or more DFS channels to perform radar scanning includes:
  • the radar According to the order of the channel idle rate of the DFS channel from high to low or according to the DFS channel
  • the radar generates weights from low to high, and performs radar scanning on one or more DFS channels in turn until a DFS channel in which no radar signals are present is detected.
  • the method further includes:
  • the radar detection history is updated based on the non-DFS channel radar detection result and the DFS channel radar scan result.
  • a device for reducing radar interference comprising an acquisition module and a judgment module, wherein:
  • the acquiring module is configured to: acquire a current location of the WLAN device of the wireless local area network and radar channel distribution information in an area where the current location is located;
  • the determining module is configured to: determine, according to the radar channel distribution information, whether the region has a non-dynamic frequency selection DFS channel;
  • the radar monitoring module is configured to determine a non-DFS channel as a working channel of the WLAN device when there is a non-DFS channel in the area.
  • the radar monitoring module is further configured to:
  • a channel switching procedure is initiated, determining another non-DFS channel other than the working channel as a new working channel of the WLAN device, or determining an undetected
  • the DFS channel to the radar signal acts as a new working channel for the WLAN device.
  • the obtaining module includes an access unit, a configuration file acquiring unit, a history acquiring unit, and an updating unit, where:
  • the access unit is configured to: acquire a current location of the WLAN device of the wireless local area network;
  • the configuration file obtaining unit is configured to: obtain a radar configuration list in an area where the current location is located;
  • the history acquisition unit is configured to: acquire a radar detection history record in an area where the current location is located;
  • the updating unit is configured to: obtain the radar channel distribution information by updating the radar configuration list according to the radar detection history.
  • the radar monitoring module is configured to determine a non-DFS channel as the working channel of the WLAN device as follows:
  • the non-DFS channel with the smallest annoyance is determined as the working channel.
  • the radar monitoring module is configured to determine another non-DFS channel other than the working channel as a new working channel of the WLAN device as follows:
  • the other non-DFS channels are arranged in order of channel complexity from low to high, and the non-DFS channel with the lowest noise is used as the new WLAN device.
  • Working channel When there are other non-DFS channels except the working channel, the other non-DFS channels are arranged in order of channel complexity from low to high, and the non-DFS channel with the lowest noise is used as the new WLAN device.
  • Working channel When there are other non-DFS channels except the working channel, the other non-DFS channels are arranged in order of channel complexity from low to high, and the non-DFS channel with the lowest noise is used as the new WLAN device.
  • the radar monitoring module is configured to determine a DFS channel that does not detect the radar signal as a new working channel of the WLAN device as follows:
  • one or more DFS channels are selected to perform a radar scan, and a DFS channel that does not detect the radar signal is determined as a new working channel of the WLAN device.
  • the radar monitoring module is configured to perform one or more DFS channels to perform radar scanning as follows:
  • Performing a radar scan on one or more DFS channels in descending order of the channel idle rate of the DFS channel in descending order or in descending order of the radar generation weight of the DFS channel until no non-existence is detected The DFS channel of the radar signal.
  • the updating unit is further configured to: update the radar detection history according to the non-DFS channel radar detection result and the DFS channel radar scan result.
  • a computer program comprising program instructions that, when executed by a computer, cause the computer to perform any of the above methods of reducing radar interference.
  • a carrier carrying the computer program A carrier carrying the computer program.
  • the method and device for reducing radar interference are based on radar
  • the configuration list and the history of radar detection generate a radar channel distribution list, which enables the device to start up quickly during the startup phase, realizes fast switching after detecting the radar signal in the operation phase, reduces the probability of radar interference, improves the channel security and improves the security. user experience.
  • FIG. 1 is a flow chart of a method for reducing radar interference according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an apparatus for reducing radar interference according to an embodiment of the present invention
  • 3 is a WLAN channel diagram of a part of countries and regions in the 5 GHz band of the related art
  • FIG. 4 is a flow chart of a preferred method for reducing radar interference according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for reducing radar interference according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for reducing radar interference, including:
  • the channel switching procedure is started, another non-DFS channel other than the working channel is determined as the working channel of the WLAN device, or one is not detected.
  • the DFS channel to the radar signal acts as the working channel of the WLAN device.
  • Obtaining radar channel distribution information in the area where the current location is located includes:
  • Determining a non-DFS channel as the working channel of the WLAN device includes:
  • the non-DFS channel with the smallest annoyance is determined as the working channel.
  • Determining another non-DFS channel other than the working channel as the working channel of the WLAN device includes:
  • the channels are sequentially switched according to the channel tones of the non-DFS channels from low to high, and another non-DFS channel is determined as the working channel of the WLAN device. .
  • Determining a DFS channel that does not detect a radar signal as a working channel of the WLAN device includes:
  • DFS channels When all non-DFS channels detect radar signals or only DFS channels exist, one or more DFS channels are selected to perform radar scanning, and a DFS channel that does not detect radar signals is determined as the working channel of the WLAN device.
  • Selecting one or more DFS channels to perform radar scanning includes:
  • Performing a radar scan on one or more DFS channels in descending order of the channel idle rate of the DFS channel in descending order or in descending order of the radar generation weight of the DFS channel until no non-existence is detected The DFS channel of the radar signal.
  • the method further includes:
  • the radar detection history is updated based on the non-DFS channel radar detection result and the DFS channel radar scan result.
  • the method for reducing radar interference provided by the embodiments of the present invention may be executed cyclically, and the method includes the following steps:
  • Step 1 Obtain a radar configuration list in an area where the WLAN device is located;
  • Step 2 obtaining radar channel distribution information according to a combination of a radar detection history record and a radar configuration list
  • Step 3 determining whether there is a non-DFS channel in the radar channel distribution information, if yes, executing step 5; otherwise, performing step 4;
  • Step 4 selecting a DFS channel with the lowest radar occurrence weight or the highest channel idle rate in the radar distribution channel table
  • Step 5 determining the current channel as the working channel, determining whether the current channel detects the radar signal, and if yes, starting the channel switching process and updating the radar detection history, performing step 2; otherwise, continuing to work on the current channel;
  • Step 6 Perform step 2 for the next WLAN device.
  • an embodiment of the present invention provides an apparatus for reducing radar interference, including:
  • the obtaining module 201 is configured to: acquire a current location of the WLAN device of the wireless local area network and radar channel distribution information in an area where the current location is located;
  • the determining module 202 is configured to: determine, according to the radar channel distribution information, whether a non-dynamic frequency selection DFS channel exists in the area;
  • the radar monitoring module 203 determines a non-DFS channel as the working channel of the WLAN device when there is a non-DFS channel.
  • the radar monitoring module 203 is further configured to: when the radar signal is detected by the non-DFS channel as the working channel, start a channel switching procedure, and determine another non-DFS channel other than the working channel as the The working channel of the WLAN device, or a DFS channel that does not detect the radar signal is used as the working channel of the WLAN device.
  • the obtaining module 201 includes:
  • the access unit 2011 is configured to: acquire a current location of the WLAN device of the wireless local area network;
  • the configuration file obtaining unit 2012 is configured to: obtain a radar configuration list in an area where the current location is located;
  • the history obtaining unit 2013 is configured to: acquire a radar detection history record in an area where the current location is located;
  • the updating unit 2014 is configured to: obtain the radar channel distribution information by updating the radar configuration list according to the radar detection history.
  • the radar monitoring module 203 is configured to determine a non-DFS channel as the working channel of the WLAN device as follows:
  • the non-DFS channel with the smallest annoyance is determined as the working channel.
  • the radar monitoring module is configured to determine another non-DFS channel other than the working channel as a working channel of the WLAN device as follows:
  • the channels are sequentially switched according to the channel tones of the non-DFS channels from low to high, and another non-DFS channel is determined as the working channel of the WLAN device. .
  • the radar monitoring module is configured to determine a DFS channel that does not detect a radar signal as a working channel of the WLAN device as follows:
  • DFS channels When all non-DFS channels detect radar signals or only DFS channels exist, one or more DFS channels are selected to perform radar scanning, and a DFS channel that does not detect radar signals is determined as the working channel of the WLAN device.
  • the radar monitoring module is configured to select one or more DFS channels to perform radar scanning as follows:
  • the updating unit is further configured to: update the radar detection history according to the non-DFS channel radar detection result and the DFS channel radar scan result.
  • the access unit is responsible for acquiring the current location information of the device; the configuration file acquisition unit is responsible for acquiring and updating the radar configuration list configuration file; the radar detection module is responsible for scanning the radar channel and detecting the radar signal, according to the radar channel distribution information and the radar channel.
  • the scan information selects a working channel and a switch of the device; the device may further include a setting module, which is responsible for setting the working channel of the WLAN device and other WLAN parameters, and the setting module may adopt a related technology.
  • the present embodiment provides a main process of selecting a channel during the initialization phase of the WLAN device and switching the channel after detecting the radar signal in the operation phase, and describes and describes in detail according to various steps in the process.
  • the configuration file obtaining unit communicates with an external configuration server to obtain a radar configuration list of an area where the WLAN device is located.
  • the configuration server is arranged by an operator or a third-party company to sample and collect radar channel distribution information of the area.
  • the configuration server may notify the profile acquisition unit to update the radar configuration list in real time if there is a content update.
  • the configuration server and the profile acquisition unit adopt private message communication, and the radar configuration list includes but is not limited to the following: 1) country code; 2) allowed channel list (including non-DFS channel and DFS channel); 3) channel name ; 4) Radar information present on the channel.
  • the radar information may include radar power, radar generation weight, location ID (acquired by 3G/4G/LTE cellular network cell ID or operator wireless access point ID), and the like.
  • the access unit acquires current location information by registering the 3G/4G/LTE cellular network in the initialization phase, or by accessing the location information corresponding to the operator wireless access point.
  • the update unit obtains radar channel distribution information in the area according to the radar configuration list integrated radar detection history combination; the radar channel distribution information may be stored in a list, and the content format may be consistent with the radar configuration list, and the main update allowed channel Ray of each channel in the list The weight of the occurrence.
  • the update unit may acquire the radar channel distribution information in the corresponding region in the radar configuration list more accurately according to the location ID of the current region obtained by the access unit.
  • the WLAN device detects the radar signal during the operation phase, the channel name and the location ID are stored in the non-erased storage area of the device.
  • the determining module determines whether there is a non-DFS channel in the radar channel distribution information table, if yes, executing S108; otherwise, executing S104;
  • the non-DFS channel does not need to perform a radar scan for a fixed time (for example, 1 minute), which is beneficial for the device to perform fast and uninterrupted channel switching.
  • a non-DFS channel eliminates a lengthy boot process.
  • the radar monitoring module selects a DFS channel with the highest idle rate or the lowest radar generated weight in the radar channel distribution information table, and performs radar scanning on the current channel.
  • the radar detection module determines whether the current channel detects the radar signal, and if so, executes S 102;
  • the radar detection module selects a current channel as a working channel according to the scan result, and updates a working channel of the WLAN device by using a setting module.
  • the radar detection module detects the radar signal of the current working channel in real time
  • the radar detection module determines whether there is a radar signal in the current working channel, if not, proceed to step 7; otherwise, execute S109;
  • the update unit updates the radar detection history, starts the channel switching process, and performs step S102.
  • the embodiment of the invention also discloses a computer program, comprising program instructions, which when executed by a computer, enable the computer to perform any of the above methods for reducing radar interference.
  • the embodiment of the invention also discloses a carrier carrying the computer program.
  • the above embodiment dynamically generates a radar channel distribution information list through a preset radar configuration list and a radar detection history record, thereby effectively reducing the probability of radar interference of the device during the startup and operation phases, improving the channel security and improving the user experience.
  • the method and device of the embodiment of the present invention generate a radar channel distribution list based on the radar configuration list and the radar detection history record, so that the device can be quickly started in the startup phase, and the radar signal is detected in the operation phase to achieve fast switching, thereby reducing the probability of radar interference. Improves channel security and improves user experience. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种降低雷达干扰的方法和装置,涉及无线通讯领域,包括:获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;根据所述雷达信道分布信息确定所在区域是否存在非动态频率选择DFS信道;当存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工作信道。该方法和装置基于雷达配置列表和雷达检测的历史记录生成雷达信道分布列表,实现设备在开机阶段快速启动,在运行阶段检测到雷达信号后实现快速切换,降低了雷达干扰的概率,提高了信道的安全性并提升了用户体验。

Description

一种降低雷达干扰的方法和装置 技术领域
本文涉及降低雷达干扰的技术领域,尤其涉及一种降低雷达干扰的方法和装置。
背景技术
IEEE 802.11(或称为WiFi,无线保真)无线网络使用两个独立的频段,2.4GHz和5GHz。随着无线通信技术的蓬勃发展,工作在2.4GHz ISM频段的设备数量快速增长,使得这一频段日渐拥挤,设备间干扰也越发严重,因此,各厂商都竞相开发工作在更高频段的无线通信设备,为顺应这一需求,各国政府陆续开放了5GHz的免许可频段。
然而,5.25~5.35GHz和5.47~5.725GHz是全球雷达系统的工作频段,为了避免工作在5GHz频段的无线通信设备对雷达系统造成干扰,因此对这些设备的要求除了功率、频谱等常规项目以外,还特别增加了对动态频率选择(DFS:Dynamic Frequency Selection)特性的要求。FCC(Federal Communications Commission,美国联邦通讯委员会)在2006年2月公布,凡是2006年7月20日之后申请的5GHz频段U-NII(Unlicensed National Information Infrastructure,未经批准的全国性信息基础设施)设备,必须满足FCC Part 15.407中规定的DFS要求。FCC Part 15Subpart E规定,工作在5.25~5.35GHz和5.47~5.725GHz的U-NII设备,应当具备DFS雷达检测机制。ETSI EN 301 893标准也对工作在此频段的设备做出了相同的要求。检测到雷达信号时,DFS功能必须切换WLAN(Wireless Local Area Networks,无线局域网络)设备运行信道。为了保护雷达工作,WLAN设备应该在启动和运行阶段都必须检查雷达信号,避免工作信道与雷达信道相冲突。
启动时间是WLAN设备一个关键性能指标。冗长的启动流程是一个产品缺陷,目前规定5G频段要求相对较长的时间周期,以检测雷达不用的一个信道。例如,每个信道要扫描1分钟,以确定它是否是雷达空间用的信 道。而区域允许信道如图3所示,以日本地区允许信道为例,是在下列频率范围内:W52(5150-5250MHz)4个信道(5180MHz、5200MHz、5220MHz、5240MHz),W53(5250-5350MHz)4个信道以及W56(5470-5725MHz)11个信道。则启动时间是(4+4+11)*1=19分钟,在设备启动阶段如此漫长的加载时间将是不可接受的。目前的实现方案是在允许的信道列表中判断是否有非DFS信道(即不会存在雷达干扰的信道),如果有,则随机选择一个,如果没有则在允许的信道列表中随机选择一个DFS信道执行1分钟的雷达检测扫描,如果没有发现雷达,则选择该信道为设备的工作信道,如果检测到雷达信道,则继续随机选择另外一个DFS信道执行雷达检测扫描,直到发现雷达空闲信道为止。
以上方案存在以下问题:在DFS信道列表中随机选择的信道存在很大的偶然性,而频繁执行信道切换和执行1分钟的雷达检测扫描将耗费较大的系统资源和时间;在设备运行阶段,如果在DFS信道检测到雷达信号后仍随机切换到其他的DFS信道,将有可能长时间导致当前连接WLAN设备的终端业务中断,用户体验不好。
发明内容
本发明要解决的技术问题是提供一种降低雷达干扰的方法和装置,能够优化WLAN设备在5G频段的启动时间,以及优化检测到雷达信号后信道切换时间。
为了达到本发明目的,采用如下技术方案:
一种降低雷达干扰的方法,包括:
获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;
根据所述雷达信道分布信息确定所述区域是否存在非动态频率选择DFS信道;
当所述区域存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工作信道。
可选地,该方法还包括:
当作为工作信道的所述非DFS信道检测到雷达信号时,启动信道切换流程,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道,或者确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道。
可选地,所述获取当前位置所在区域内的雷达信道分布信息的步骤包括:
获取当前位置所在区域内的雷达配置列表和雷达检测历史记录;
根据所述雷达检测历史记录更新所述雷达配置列表,获得雷达信道分布信息。
可选地,所述确定一个非DFS信道作为所述WLAN设备的新的工作信道的步骤包括:
对非DFS信道执行扫描,根据每个非DFS信道上的WLAN设备的个数和信号强度计算每个非DFS信道的嘈杂度;
将嘈杂度最小的非DFS信道作为新的工作信道。
可选地,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道的步骤包括:
当存在除所述工作信道外的其他非DFS信道时,将其他所述非DFS信道按照信道嘈杂度由低到高进行顺序排列,将嘈杂度最低的非DFS信道作为所述WLAN设备的新的工作信道。
可选地,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道的步骤包括:
当全部非DFS信道均检测到雷达信号或者仅存在DFS信道时,选择一个或者多个DFS信道执行雷达扫描,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道。
可选地,所述选择一个或者多个DFS信道执行雷达扫描的步骤包括:
按照所述DFS信道的信道空闲率由高到低的顺序或者按照所述DFS信道 的雷达发生权值由低到高的顺序,依次对一个或者多个DFS信道执行雷达扫描,直到检测到不存在雷达信号的DFS信道。
可选地,该方法还包括:
根据非DFS信道雷达检测结果和DFS信道雷达扫描结果更新所述雷达检测历史记录。
一种降低雷达干扰的装置,包括获取模块和判断模块,其中:
所述获取模块设置成:获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;
所述判断模块设置成:根据所述雷达信道分布信息确定所述区域是否存在非动态频率选择DFS信道;
所述雷达监测模块设置成:当所述区域存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工作信道。
可选地,所述雷达监测模块还设置成:
当作为工作信道的所述非DFS信道检测到雷达信号时,启动信道切换流程,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道,或者确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道。
可选地,所述获取模块包括接入单元、配置文件获取单元、历史记录获取单元和更新单元,其中:
所述接入单元设置成:获取无线局域网络WLAN设备的当前位置;
所述配置文件获取单元设置成:获取当前位置所在区域内的雷达配置列表;
所述历史记录获取单元设置成:获取当前位置所在区域内的雷达检测历史记录;
所述更新单元设置成:根据所述雷达检测历史记录更新所述雷达配置列表获得雷达信道分布信息。
可选地,所述雷达监测模块设置成按照如下方式在确定一个非DFS信道作为所述WLAN设备的工作信道:
对非DFS信道执行扫描,根据每个非DFS信道上的WLAN设备的个数和信号强度计算每个非DFS信道的嘈杂度;
确定嘈杂度最小的非DFS信道作为工作信道。
可选地,所述雷达监测模块设置成按照如下方式确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道:
当存在除所述工作信道外的其他非DFS信道时,将其他所述非DFS信道按照信道嘈杂度由低到高进行顺序排列,将嘈杂度最低的非DFS信道作为所述WLAN设备的新的工作信道。
可选地,所述雷达监测模块设置成按照如下方式确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道:
当全部非DFS信道均检测到雷达信号或者仅存在DFS信道时,选择一个或者多个DFS信道执行雷达扫描,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道。
可选地,所述雷达监测模块设置成按照如下方式选择一个或者多个DFS信道执行雷达扫描:
按照所述DFS信道的信道空闲率由高到低的顺序或者按照所述DFS信道的雷达发生权值由低到高的顺序,依次对一个或者多个DFS信道执行雷达扫描,直到检测到不存在雷达信号的DFS信道。
可选地,所述更新单元还设置成:根据非DFS信道雷达检测结果和DFS信道雷达扫描结果更新所述雷达检测历史记录。
一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述任意的降低雷达干扰的方法。
一种载有所述计算机程序的载体。
与相关技术相比,本发明实施例的降低雷达干扰的方法和装置基于雷达 配置列表和雷达检测的历史记录生成雷达信道分布列表,实现设备在开机阶段快速启动,在运行阶段检测到雷达信号后实现快速切换,降低了雷达干扰的概率,提高了信道的安全性并提升了用户体验。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例的降低雷达干扰的方法的流程图;
图2为本发明实施例的降低雷达干扰的装置的结构示意图;
图3为相关技术5GHz频段部分国家和地区WLAN信道图;
图4为本发明实施例的降低雷达干扰的优选方法的流程图;
图5为本发明实施例一降低雷达干扰的方法的流程图。
本发明的较佳实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,本发明实施例提供了一种降低雷达干扰的方法,包括:
获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;
根据所述雷达信道分布信息确定所在区域是否存在非动态频率选择DFS信道;
当存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工 作信道。
其中,当作为工作信道的所述非DFS信道检测到雷达信号时,启动信道切换流程,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的工作信道,或者确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道。
获取当前位置所在区域内的雷达信道分布信息包括:
获取当前位置所在区域内的雷达配置列表和雷达检测历史记录;
根据所述雷达检测历史记录更新所述雷达配置列表获得雷达信道分布信息。
确定一个非DFS信道作为所述WLAN设备的工作信道包括:
对非DFS信道执行扫描,根据每个非DFS信道上的WLAN设备的个数和信号强度计算每个非DFS信道的嘈杂度;
确定嘈杂度最小的非DFS信道作为工作信道。
确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的工作信道包括:
当存在除所述工作信道外的其他非DFS信道时,按照所述非DFS信道的信道嘈杂度由低到高的顺序,依次切换信道,确定另一个非DFS信道作为所述WLAN设备的工作信道。
确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道包括:
当全部非DFS信道均检测到雷达信号或者仅存在DFS信道时,选择一个或者多个DFS信道执行雷达扫描,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道。
选择一个或者多个DFS信道执行雷达扫描包括:
按照所述DFS信道的信道空闲率由高到低的顺序或者按照所述DFS信道的雷达发生权值由低到高的顺序,依次对一个或者多个DFS信道执行雷达扫描,直到检测到不存在雷达信号的DFS信道。
所述方法还包括:
根据非DFS信道雷达检测结果和DFS信道雷达扫描结果更新雷达检测历史记录。
如图4所示,对于多个WLAN设备或者执行多次雷达扫描的情况,本发明实施例提供的降低雷达干扰的方法可以循环执行,主要包括如下步骤:
步骤1,获取WLAN设备所在区域内的雷达配置列表;
步骤2,根据雷达检测历史记录与雷达配置列表组合获得雷达信道分布信息;
步骤3,判断雷达信道分布信息中是否存在非DFS信道,如果存在,则执行步骤5;否则,执行步骤4;
步骤4,在雷达分布信道表内选择一个雷达发生权值最小或者信道空闲率最高的DFS信道;
步骤5,将当前信道作为工作信道,判断当前信道是否检测到雷达信号,如果是,则启动信道切换流程并更新雷达检测历史记录,执行步骤2;否则,继续工作在当前信道;
步骤6,针对下一个WLAN设备执行步骤2。
如图2所示,本发明实施例提供一种降低雷达干扰的装置,包括:
获取模块201,设置成:获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;
判断模块202,设置成:根据所述雷达信道分布信息确定所在区域是否存在非动态频率选择DFS信道;
雷达监测模块203,当存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工作信道。
其中,所述雷达监测模块203,还设置成:当作为工作信道的所述非DFS信道检测到雷达信号时,启动信道切换流程,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的工作信道,或者确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道。
所述获取模块201包括:
接入单元2011,设置成:获取无线局域网络WLAN设备的当前位置;
配置文件获取单元2012,设置成:获取当前位置所在区域内的雷达配置列表;
历史记录获取单元2013,设置成:获取当前位置所在区域内的雷达检测历史记录;
更新单元2014,设置成:根据所述雷达检测历史记录更新所述雷达配置列表获得雷达信道分布信息。
所述雷达监测模块203设置成按照如下方式在确定一个非DFS信道作为所述WLAN设备的工作信道:
对非DFS信道执行扫描,根据每个非DFS信道上的WLAN设备的个数和信号强度计算每个非DFS信道的嘈杂度;
确定嘈杂度最小的非DFS信道作为工作信道。
所述雷达监测模块设置成按照如下方式确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的工作信道:
当存在除所述工作信道外的其他非DFS信道时,按照所述非DFS信道的信道嘈杂度由低到高的顺序,依次切换信道,确定另一个非DFS信道作为所述WLAN设备的工作信道。
所述雷达监测模块设置成按照如下方式确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道:
当全部非DFS信道均检测到雷达信号或者仅存在DFS信道时,选择一个或者多个DFS信道执行雷达扫描,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道。
所述雷达监测模块设置成按照如下方式选择一个或者多个DFS信道执行雷达扫描:
按照所述DFS信道的信道空闲率由高到低的顺序或者按照所述DFS信道的雷达发生权值由低到高的顺序,依次对一个或者多个DFS信道执行雷达扫 描,直到检测到不存在雷达信号的DFS信道。
所述更新单元还设置成:根据非DFS信道雷达检测结果和DFS信道雷达扫描结果更新雷达检测历史记录。
其中,接入单元负责获取设备当前的位置信息;配置文件获取单元负责雷达配置列表配置文件的获取和更新;雷达检测模块负责雷达信道的扫描和雷达信号的检测,根据雷达信道分布信息和雷达信道扫描信息选择设备的工作信道和切换;所述装置还可以包括设置模块,负责WLAN设备工作信道及其他WLAN参数的设置,所述设置模块可以采用相关技术。
实施例一
如图5所示,本实施例给出WLAN设备初始化阶段选择信道以及运行阶段检测到雷达信号后切换信道的主要过程,按照流程中的各个步骤进行较详细的描述与说明。
S101,初始化阶段,配置文件获取单元与外置的配置服务器通讯获取WLAN设备所在区域的雷达配置列表。
可选地,该配置服务器由运营商或第三方公司布置,通过采样和收集本区域的雷达信道分布信息,
可选地,在运行阶段,配置服务器如有内容更新可以通知配置文件获取单元实时更新雷达配置列表。
可选地,配置服务器和配置文件获取单元采用私有消息通信,雷达配置列表包含但不限于以下内容:1)国家码;2)允许信道列表(包括非DFS信道和DFS信道);3)信道名称;4)该信道存在的雷达信息。
本实施例中雷达信息可以包括雷达的功率,雷达发生权值,位置ID(通过3G/4G/LTE的蜂窝网络小区ID或运营商无线接入点ID获取)等。
可选地,接入单元在初始化阶段通过注册3G/4G/LTE的蜂窝网络获取当前位置信息,或者通过接入运营商无线接入点对应的位置信息。
S102,更新单元根据雷达配置列表综合雷达检测历史记录组合获得该区域内的雷达信道分布信息;该雷达信道分布信息可以以列表的形式存储,内容格式可以与上述雷达配置列表一致,主要更新允许信道列表中各信道的雷 达发生权值。
本实施例中更新单元可以根据接入单元获取当前区域的位置ID后,更精确地获取雷达配置列表中对应的该区域内的雷达信道分布信息。
可选地,WLAN设备在运行阶段如果检测到雷达信号,会将信道名称和位置ID存储到设备的非擦除存储区域中。
S103,判断模块判断雷达信道分布信息表中是否存在非DFS信道,如果存在,则执行S108;否则,执行S104;
可选地,根据相关要求,非DFS信道无需进行一个定长时间(例如,1分钟)的雷达扫描,有利于设备执行快速和无中断的信道切换。使用非DFS信道可消除一个冗长的启动程序。
可选地,如果存在多个非DFS信道,则需要根据信道嘈杂度(其他WLAN设备个数和信号强度加权计算)选择一个嘈杂度最小的信道作为工作信道。
S104,雷达监测模块在雷达信道分布信息表内选择一个空闲率最高的或者雷达发生权值最小的DFS信道,对当前信道执行雷达扫描;
S105,雷达检测模块判断当前信道是否检测到雷达信号,如果是,则执行S 102;
S106,雷达检测模块根据扫描结果选择当前信道为工作信道,并将通过设置模块更新WLAN设备的工作信道;
S107,雷达检测模块实时检测当前工作信道的雷达信号;
S108,雷达检测模块判断当前工作信道是否存在雷达信号,如果否,则执行步骤7;否则,执行S109;
S109,更新单元更新雷达检测历史记录,启动信道切换流程,执行步骤S102。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述任意的降低雷达干扰的方法。
本发明实施例还公开了一种载有所述计算机程序的载体。
以上实施例通过预置的雷达配置列表和雷达检测的历史记录动态生成雷达信道分布信息列表,有效降低了设备在开机和运行阶段雷达干扰的概率,提高了信道的安全性并提升了用户体验。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的方法和装置基于雷达配置列表和雷达检测的历史记录生成雷达信道分布列表,实现设备在开机阶段快速启动,在运行阶段检测到雷达信号后实现快速切换,降低了雷达干扰的概率,提高了信道的安全性并提升了用户体验。因此本发明具有很强的工业实用性。

Claims (16)

  1. 一种降低雷达干扰的方法,包括:
    获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;
    根据所述雷达信道分布信息确定所述区域是否存在非动态频率选择DFS信道;
    当所述区域存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工作信道。
  2. 根据权利要求1所述的降低雷达干扰的方法,该方法还包括:
    当作为工作信道的所述非DFS信道检测到雷达信号时,启动信道切换流程,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道,或者确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道。
  3. 根据权利要求1或2所述的降低雷达干扰的方法,其中,所述获取当前位置所在区域内的雷达信道分布信息的步骤包括:
    获取当前位置所在区域内的雷达配置列表和雷达检测历史记录;
    根据所述雷达检测历史记录更新所述雷达配置列表,获得雷达信道分布信息。
  4. 根据权利要求1所述的降低雷达干扰的方法,其中,所述确定一个非DFS信道作为所述WLAN设备的新的工作信道的步骤包括:
    对非DFS信道执行扫描,根据每个非DFS信道上的WLAN设备的个数和信号强度计算每个非DFS信道的嘈杂度;
    将嘈杂度最小的非DFS信道作为新的工作信道。
  5. 根据权利要求2所述的降低雷达干扰的方法,其中,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道的步骤包括:
    当存在除所述工作信道外的其他非DFS信道时,将其他所述非DFS信 道按照信道嘈杂度由低到高进行顺序排列,将嘈杂度最低的非DFS信道作为所述WLAN设备的新的工作信道。
  6. 根据权利要求2所述的降低雷达干扰的方法,其中,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道的步骤包括:
    当全部非DFS信道均检测到雷达信号或者仅存在DFS信道时,选择一个或者多个DFS信道执行雷达扫描,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的工作信道。
  7. 根据权利要求6所述的降低雷达干扰的方法,其中,所述选择一个或者多个DFS信道执行雷达扫描的步骤包括:
    按照所述DFS信道的信道空闲率由高到低的顺序或者按照所述DFS信道的雷达发生权值由低到高的顺序,依次对一个或者多个DFS信道执行雷达扫描,直到检测到不存在雷达信号的DFS信道。
  8. 根据权利要求2所述的降低雷达干扰的方法,该方法还包括:
    根据非DFS信道雷达检测结果和DFS信道雷达扫描结果更新所述雷达检测历史记录。
  9. 一种降低雷达干扰的装置,包括获取模块和判断模块,其中:
    所述获取模块设置成:获取无线局域网络WLAN设备的当前位置和当前位置所在区域内的雷达信道分布信息;
    所述判断模块设置成:根据所述雷达信道分布信息确定所述区域是否存在非动态频率选择DFS信道;
    所述雷达监测模块设置成:当所述区域存在非DFS信道时,确定一个非DFS信道作为所述WLAN设备的工作信道。
  10. 根据权利要求9所述的装置,其中,所述雷达监测模块还设置成:
    当作为工作信道的所述非DFS信道检测到雷达信号时,启动信道切换流程,确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道,或者确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道。
  11. 根据权利要求9或10所述的装置,其中,所述获取模块包括接入单元、配置文件获取单元、历史记录获取单元和更新单元,其中:
    所述接入单元设置成:获取无线局域网络WLAN设备的当前位置;
    所述配置文件获取单元设置成:获取当前位置所在区域内的雷达配置列表;
    所述历史记录获取单元设置成:获取当前位置所在区域内的雷达检测历史记录;
    所述更新单元设置成:根据所述雷达检测历史记录更新所述雷达配置列表获得雷达信道分布信息。
  12. 根据权利要求9所述的装置,其中,所述雷达监测模块设置成按照如下方式在确定一个非DFS信道作为所述WLAN设备的工作信道:
    对非DFS信道执行扫描,根据每个非DFS信道上的WLAN设备的个数和信号强度计算每个非DFS信道的嘈杂度;
    确定嘈杂度最小的非DFS信道作为工作信道。
  13. 根据权利要求10所述的装置,其中,所述雷达监测模块设置成按照如下方式确定除所述工作信道外的另一个非DFS信道作为所述WLAN设备的新的工作信道:
    当存在除所述工作信道外的其他非DFS信道时,将其他所述非DFS信道按照信道嘈杂度由低到高进行顺序排列,将嘈杂度最低的非DFS信道作为所述WLAN设备的新的工作信道。
  14. 根据权利要求10所述的装置,其中,所述雷达监测模块设置成按照如下方式确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道:
    当全部非DFS信道均检测到雷达信号或者仅存在DFS信道时,选择一个或者多个DFS信道执行雷达扫描,确定一个未检测到雷达信号的DFS信道作为所述WLAN设备的新的工作信道。
  15. 根据权利要求14所述的装置,其中,所述雷达监测模块设置成按照如下方式选择一个或者多个DFS信道执行雷达扫描:
    按照所述DFS信道的信道空闲率由高到低的顺序或者按照所述DFS信道的雷达发生权值由低到高的顺序,依次对一个或者多个DFS信道执行雷达扫描,直到检测到不存在雷达信号的DFS信道。
  16. 根据权利要求11所述的装置,其中,所述更新单元还设置成:根据非DFS信道雷达检测结果和DFS信道雷达扫描结果更新所述雷达检测历史记录。
PCT/CN2015/080896 2015-01-06 2015-06-05 一种降低雷达干扰的方法和装置 WO2016110046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510005665.6A CN105824013B (zh) 2015-01-06 2015-01-06 一种降低雷达干扰的方法和装置
CN201510005665.6 2015-01-06

Publications (2)

Publication Number Publication Date
WO2016110046A1 true WO2016110046A1 (zh) 2016-07-14
WO2016110046A9 WO2016110046A9 (zh) 2016-12-15

Family

ID=56355458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080896 WO2016110046A1 (zh) 2015-01-06 2015-06-05 一种降低雷达干扰的方法和装置

Country Status (2)

Country Link
CN (1) CN105824013B (zh)
WO (1) WO2016110046A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605033A (zh) * 2016-12-01 2018-09-28 华为技术有限公司 一种信道选择方法及设备
CN110870368A (zh) * 2017-06-13 2020-03-06 舒尔获得控股公司 并行使用及扫描无线信道
US11405793B2 (en) 2019-09-30 2022-08-02 Shure Acquisition Holdings, Inc. Concurrent usage and scanning of wireless channels for direct DFS to DFS channel switching

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255120B (zh) * 2016-08-24 2019-06-28 重庆邮电大学 一种与异构网on/off算法相结合的动态频谱选择方法
US10271264B2 (en) * 2017-08-31 2019-04-23 Hewlett Packard Enterprise Development Lp Identifying as access point operating on a particular wireless communication channel that fails to detect a particular radar event
CN108668378A (zh) * 2018-05-31 2018-10-16 北京橙鑫数据科技有限公司 信道选择方法、装置以及电子设备
CN109769274B (zh) * 2018-12-27 2021-06-25 普联技术有限公司 无线组网系统中信道切换的方法、设备及可读存储介质
WO2021077324A1 (zh) * 2019-10-23 2021-04-29 华为技术有限公司 一种数据传输方法以及相关设备
US11489558B2 (en) * 2020-01-09 2022-11-01 Mediatek Inc. Wireless communication circuitry and wireless communication method
CN112105070B (zh) * 2020-08-31 2022-05-27 新华三技术有限公司 一种信道切换方法及装置
CN114466458A (zh) * 2022-02-18 2022-05-10 深圳市联洲国际技术有限公司 实现动态频率选择的方法与装置
CN117835350A (zh) * 2024-03-01 2024-04-05 武汉昊一源科技有限公司 信道切换方法、设备、计算机程序产品及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053726A (ja) * 2005-07-21 2007-03-01 Sharp Corp 通信チャンネル選択装置、無線通信装置、無線通信システム、通信チャンネル選択方法、通信チャンネル選択プログラムおよび記録媒体
CN1926815A (zh) * 2004-03-26 2007-03-07 英特尔公司 用于避免雷达干扰的无线网络动态频率选择
US7231215B2 (en) * 2002-11-07 2007-06-12 Infineon Technologies Wireless Solutions Sweden Ab Method and a central control unit for channel switching in a packet-based wireless communication network
CN1992978A (zh) * 2005-12-27 2007-07-04 汤姆逊许可公司 无线局域网中动态选择信道的方法
CN102378184A (zh) * 2010-08-18 2012-03-14 西门子公司 用于在无线通信网络中进行信道交换的方法
CN103237355A (zh) * 2013-04-25 2013-08-07 京信通信系统(中国)有限公司 无线通信信道的自动分配方法和系统
CN104066185A (zh) * 2013-03-19 2014-09-24 巴法络股份有限公司 无线通信装置以及无线通信用信道选择方法
CN104170429A (zh) * 2012-05-29 2014-11-26 三菱电机株式会社 无线通信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606193B2 (en) * 2003-01-30 2009-10-20 Atheros Communications, Inc. Methods for implementing a dynamic frequency selection (DFS) feature for WLAN devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231215B2 (en) * 2002-11-07 2007-06-12 Infineon Technologies Wireless Solutions Sweden Ab Method and a central control unit for channel switching in a packet-based wireless communication network
CN1926815A (zh) * 2004-03-26 2007-03-07 英特尔公司 用于避免雷达干扰的无线网络动态频率选择
JP2007053726A (ja) * 2005-07-21 2007-03-01 Sharp Corp 通信チャンネル選択装置、無線通信装置、無線通信システム、通信チャンネル選択方法、通信チャンネル選択プログラムおよび記録媒体
CN1992978A (zh) * 2005-12-27 2007-07-04 汤姆逊许可公司 无线局域网中动态选择信道的方法
CN102378184A (zh) * 2010-08-18 2012-03-14 西门子公司 用于在无线通信网络中进行信道交换的方法
CN104170429A (zh) * 2012-05-29 2014-11-26 三菱电机株式会社 无线通信装置
CN104066185A (zh) * 2013-03-19 2014-09-24 巴法络股份有限公司 无线通信装置以及无线通信用信道选择方法
CN103237355A (zh) * 2013-04-25 2013-08-07 京信通信系统(中国)有限公司 无线通信信道的自动分配方法和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605033A (zh) * 2016-12-01 2018-09-28 华为技术有限公司 一种信道选择方法及设备
EP3541035A4 (en) * 2016-12-01 2019-09-25 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR CHANNEL SELECTION
CN110870368A (zh) * 2017-06-13 2020-03-06 舒尔获得控股公司 并行使用及扫描无线信道
US10743328B2 (en) 2017-06-13 2020-08-11 Shure Acquisition Holdings, Inc. Concurrent usage and scanning of wireless channels
US11405793B2 (en) 2019-09-30 2022-08-02 Shure Acquisition Holdings, Inc. Concurrent usage and scanning of wireless channels for direct DFS to DFS channel switching

Also Published As

Publication number Publication date
WO2016110046A9 (zh) 2016-12-15
CN105824013A (zh) 2016-08-03
CN105824013B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2016110046A9 (zh) 一种降低雷达干扰的方法和装置
DE102013104532B4 (de) Kommunikationsvorrichtungen und Verfahren zum Auswählen eines Funkzugangsmodus
AU2011292475B2 (en) Methods and arrangements in cellular communication systems
US20140071854A1 (en) System and Methods for Dual Mode Network Selection
US8538469B2 (en) Method for initial scanning of frequencies, frequency scanning controller, and apparatus
US8830858B2 (en) Utilizing scanned radio access technology information
US11082861B2 (en) Methods and apparatus for facilitating configuration, testing and/or deployment of a wireless system including a wireless extender
CN103634881B (zh) 频点搜索方法及装置、终端
CN103139821B (zh) Wlan网络中干扰源的判断方法及装置
US11812516B2 (en) User apparatus and base station apparatus for indicating a band combination that can be applied to dual connectivity
EP3621347B1 (en) User equipment, base station, and random access method
JP6577135B2 (ja) 信号処理方法および関連装置
US20210289509A1 (en) Base station and signal transmission method
EP2903350B1 (en) Device and method for public land mobile network searching
CN106413042B (zh) 用户终端及其频点搜索方法
CN105792301A (zh) 一种切换网络的终端、方法及系统
US10064113B2 (en) Method and apparatus for migrating from licensed spectrum to unlicensed spectrum
CN111132352B (zh) 一种wlan天线的信道控制方法和移动终端
WO2019191619A1 (en) Licensed assisted access based on low utilization of unlicensed channels
CN103916873A (zh) 一种现网补站的邻区配置方法和装置
JP2011193101A (ja) 無線lanシステム,アクセスポイント,およびそれらに用いるチャネル制御方法並びにそのプログラム
KR20200001344A (ko) 무선 통신 시스템에서 액세스 포인트에 접속하는 방법 및 단말
US20190313313A1 (en) Method and device for roaming of wireless network device
CN111543075B (zh) 一种频段选择方法及装置
EP2725828B1 (en) Method for automatic search and addition of neighbor cells by terminal in long term evolution system, and such terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876552

Country of ref document: EP

Kind code of ref document: A1