WO2016107091A1 - 一种自适应频域插值方法、装置和计算机存储介质 - Google Patents

一种自适应频域插值方法、装置和计算机存储介质 Download PDF

Info

Publication number
WO2016107091A1
WO2016107091A1 PCT/CN2015/081327 CN2015081327W WO2016107091A1 WO 2016107091 A1 WO2016107091 A1 WO 2016107091A1 CN 2015081327 W CN2015081327 W CN 2015081327W WO 2016107091 A1 WO2016107091 A1 WO 2016107091A1
Authority
WO
WIPO (PCT)
Prior art keywords
rsrp
value
snr
frequency domain
forgetting
Prior art date
Application number
PCT/CN2015/081327
Other languages
English (en)
French (fr)
Inventor
王俊
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2016107091A1 publication Critical patent/WO2016107091A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present invention relates to channel estimation techniques in the field of wireless communications, and in particular, to an adaptive frequency domain interpolation method, apparatus, and computer storage medium.
  • channel estimation methods are needed to track changes in channel response.
  • the purpose of channel estimation is to estimate the time domain or frequency domain response of the channel based on the pilot signal.
  • the reference information used for channel estimation comes from the pilot, and the pilot cannot occupy too much overhead in the entire resource, otherwise the efficiency of the entire communication system is greatly reduced.
  • the channel estimation is to first estimate the channel response value of the pilot position according to the pilot signal, and then interpolate the channel response value of the pilot to obtain the channel response value of the data (without overlapping with the pilot).
  • the main pilot signals that can be used for demodulation of the Physical Downlink Shared Channel (PDSCH) in the Long Term Evolution (LTE) system are Cell-specific Reference Signal (CRS) and user equipment. (UE, User Equipment) dedicated reference signals (UERS, UE-specific Reference Signals), etc.
  • CRS Cell-specific Reference Signal
  • UERS User Equipment dedicated reference signals
  • the mapping pattern of the CRS is shown in Figure 1.
  • the estimation result of the CRS can directly reflect the current channel condition.
  • the mapping pattern of the UERS is shown in Figure 2. Since the UERS undergoes an additional precoding matrix, the UERS estimation is performed. The result reflects the product of the current channel and the precoding matrix.
  • UERS-based channel estimation mainly includes steps such as descrambling, time domain interpolation (TI, Time Interpolation), and frequency domain interpolation (FI, Frequency Interpolation).
  • TI time domain interpolation
  • FI Frequency Interpolation
  • the schematic of the TI process is shown in Figure 3
  • the schematic of the FI process is shown in Figure 4.
  • UERS FI usually has the following ways:
  • FI0 Average within one resource block
  • FI2 First-order linear interpolation
  • the conventional method is to select a FI mode according to the modulation mode. For example, Quadrature Phase Shift Keying (QPSK) with lower operating point selects FI0, and the working point is higher. 64QAM selects FI2. However, when the number of layers is high or the channel becomes medium-high correlation, the operating point of QPSK will also become high. At this time, if FI0 is still fixedly selected, the optimal performance cannot be obtained. As shown in Fig. 5, the horizontal axis represents SNR and the vertical axis represents throughput; from the relevant examples of this QPSK, 4-layer, Extended Pedestrian A model 5, it can be seen that the signal-to-noise ratio is low.
  • QPSK Quadrature Phase Shift Keying
  • embodiments of the present invention are expected to provide an adaptive frequency domain interpolation method, apparatus, and computer storage medium.
  • An embodiment of the present invention provides an adaptive frequency domain interpolation method, where the method includes:
  • the SNR value of the current channel is obtained by measurement, and the SNR value is compared with the corresponding first threshold value, and the corresponding FI mode is selected according to the comparison result.
  • the determining, by using the first threshold value for selecting the FI mode includes:
  • the performance simulation data of different FI modes is traversed, and the intermediate SNR value of the transition band in the performance simulation data is selected as the first threshold value R.
  • the measuring obtains the SNR value of the current channel, including:
  • the method further includes:
  • the calculating the SNR value of the current channel comprises: calculating an SNR value of the current channel according to the RSRP and the N 0 after the forgetting filtering process.
  • the forgetting filtering process is performed on the measured RSRP and N 0 by the following methods:
  • RSRP old RSRP *(1-alfa)+new RSRP *alfa
  • the old RSRP is the RSRP value obtained after the previous forgetting filtering process
  • the new RSRP is the RSRP value obtained by the current measurement.
  • the forgetting factor is obtained by:
  • the first mean value of the measured SNR value and the first variance ⁇ 1 are statistically measured
  • the values of the different forgetting factors that are tried are selected such that the minimum forgetting factor of the ratio of the measured SNR values falling within the range of [R-L, R+L] reaches a predetermined threshold.
  • An embodiment of the present invention further provides an adaptive frequency domain interpolation apparatus, where the apparatus includes:
  • a parameter determining unit configured to determine a first threshold value for frequency domain interpolation FI mode selection
  • the FI selection unit is configured to measure and obtain a signal to noise ratio SNR value of the current channel, compare the SNR value with a corresponding first threshold value, and select a corresponding FI mode according to the comparison result.
  • the parameter determining unit is configured to traverse performance simulation data of different FI modes, and select an intermediate SNR value of the transition band in the performance simulation data as the first threshold value R.
  • the FI selection unit is configured to
  • the FI selecting unit is configured to perform forgetting filtering processing on the measured RSRP and N 0 respectively after measuring RSRP and N 0 of the current channel;
  • the calculating the SNR value of the current channel comprises: calculating an SNR value of the current channel according to the RSRP and the N 0 after the forgetting filtering process.
  • the FI selection unit is configured to perform forgetting filtering processing on the measured RSRP and N 0 respectively by:
  • RSRP old RSRP *(1-alfa)+new RSRP *alfa
  • the old RSRP is the RSRP value obtained after the previous forgetting filtering process
  • the new RSRP is the RSRP value obtained by the current measurement.
  • the parameter determining unit is configured to obtain the forgetting factor by:
  • the first mean value of the measured SNR value and the first variance ⁇ 1 are statistically measured
  • the values of the different forgetting factors that are tried are selected such that the minimum forgetting factor of the ratio of the measured SNR values falling within the range of [R-L, R+L] reaches a predetermined threshold.
  • the embodiment of the invention further provides a computer storage medium, the storage medium comprising a set of computer executable instructions for performing the adaptive frequency domain interpolation method according to the embodiment of the invention.
  • An adaptive frequency domain interpolation method, device and computer storage medium provided by an embodiment of the present invention adaptively selects an appropriate frequency domain interpolation method according to the measured SNR value, and solves the conventional method with a low implementation complexity.
  • the problem of low SNR scenarios and high SNR scenarios enables optimal throughput performance in both low SNR scenarios and high SNR scenarios.
  • 1 is a schematic diagram of a mapping pattern of CRSs of two antenna ports in the related art
  • FIG. 2 is a schematic diagram of a mapping pattern of UERS of two antenna ports in the related art
  • FIG. 3 is a schematic diagram of a UERS-based TI process in the related art
  • FIG. 5 is a schematic diagram of throughput performance of a QPSK-related channel in the related art
  • FIG. 6 is a flowchart of an adaptive frequency domain interpolation method according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of an adaptive frequency domain interpolation apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a range of SNR measurement values in a forgetting filtering process according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of a performance curve of an embodiment of the present invention.
  • Embodiment 1 of the present invention An adaptive frequency domain interpolation method is provided in Embodiment 1 of the present invention. As shown in FIG. 6, the method mainly includes:
  • step 101 a first threshold value for FI mode selection is determined.
  • the determining, by using the first threshold value for selecting the FI mode includes:
  • the performance simulation data of different FI modes is traversed, and the intermediate SNR value of the transition band in the performance simulation data is selected as the first threshold value R.
  • Step 102 Measure a signal to noise ratio (SNR) value of the current channel, compare the SNR value with a corresponding first threshold, and select a corresponding FI mode according to the comparison result.
  • SNR signal to noise ratio
  • the measurement obtains the SNR value of the current channel, including:
  • the method may further include: after measuring the RSRP and the N 0 of the current channel, the method may further include:
  • the calculating the SNR value of the current channel comprises: calculating an SNR value of the current channel according to the RSRP and the N 0 after the forgetting filtering process.
  • the forgetting filtering process can be performed on the measured RSRP and N 0 by the following methods:
  • RSRP old RSRP *(1-alfa)+new RSRP *alfa
  • the old RSRP is the RSRP value obtained after the previous forgetting filtering process
  • the new RSRP is the RSRP value obtained by the current measurement.
  • the forgetting factor can be obtained by:
  • the first mean value of the measured SNR value and the first variance ⁇ 1 are statistically measured
  • the values of the different forgetting factors that are tried are selected such that the minimum forgetting factor of the ratio of the measured SNR values falling within the range of [R-L, R+L] reaches a predetermined threshold.
  • the second embodiment of the present invention provides an adaptive frequency domain interpolation apparatus.
  • the apparatus includes:
  • a parameter determining unit 10 configured to determine a first threshold value for FI mode selection
  • the FI selection unit 20 is configured to measure the SNR value of the current channel, compare the SNR value with a corresponding first threshold, and select a corresponding FI mode according to the comparison result.
  • the parameter determining unit 10 is configured to traverse performance simulation data of different FI modes, and select an intermediate SNR value of the transition band in the performance simulation data as the first threshold value R.
  • the FI selection unit 20 is configured to measure a reference signal received power RSRP and a noise power N 0 of the current channel;
  • the FI selection unit 20 is configured to perform forgetting filtering processing on the measured RSRP and N 0 respectively after measuring RSRP and N 0 of the current channel;
  • the calculating the SNR value of the current channel comprises: calculating an SNR value of the current channel according to the RSRP and the N 0 after the forgetting filtering process.
  • the FI selection unit 20 is configured to perform forgetting filtering processing on the measured RSRP and N 0 respectively by:
  • RSRP old RSRP *(1-alfa)+new RSRP *alfa
  • the old RSRP is the RSRP value obtained after the previous forgetting filtering process
  • the new RSRP is the RSRP value obtained by the current measurement.
  • the parameter determination unit 10 is configured to obtain the forgetting factor by:
  • the first mean value of the measured SNR value and the first variance ⁇ 1 are statistically measured
  • the values of the different forgetting factors that are tried are selected such that the minimum forgetting factor of the ratio of the measured SNR values falling within the range of [R-L, R+L] reaches a predetermined threshold.
  • an adaptive frequency domain interpolation method is adaptively selected according to the measured SNR value, and the problem that the conventional method cannot balance the low SNR scenario and the high SNR scenario is solved with a low implementation complexity, so that The optimal throughput performance can be obtained in a low SNR scenario or in a high SNR scenario.
  • the performance simulations of FI0, FI1, and FI2 are performed separately.
  • the simulation results are shown in Fig. 5.
  • the curves are almost coincident; the intermediate value of 9-11dB is selected as the intermediate value of 10dB.
  • the SNR value measured in 200,000 subframes is saved, and the average value is 10.02, and the variance ⁇ 1 is 7.6 dB.
  • QPSK/16QAM/64QAM Traversing different modulation schemes (QPSK/16QAM/64QAM), layer number (v), and various typical channels, respectively obtaining a threshold value for QPSK/16QAM/64QAM, and 16QAM/64QAM determining the threshold value and forgetting factor Same as QPSK above.
  • the final adaptive frequency domain interpolation strategy is derived by combining various layers and typical channels.
  • the first step is to measure the RSRP and N 0 of the current channel.
  • the fourth step is to select the FI method:
  • the modulation method is 64QAM, and FI2 is selected. Where v represents the number of layers.
  • the fifth step is to execute the selected FI.
  • the performance curve after using the adaptive frequency domain interpolation method is shown in the adaptive (adaptive) curve in FIG. 9, and it can be seen that the low frequency signal to noise ratio and the high signal to noise ratio are used after the adaptive frequency domain interpolation method of the embodiment of the present invention is used. Both have achieved optimal performance. That is to say, the embodiment of the present invention adaptively selects an appropriate frequency domain interpolation method according to the measured SNR value, and solves the problem that the conventional method cannot balance the low SNR scene and the high SNR scene with a low implementation complexity. So that it is at low signal noise Optimal throughput performance can be achieved in scenarios such as high SNR scenarios.
  • the embodiment of the invention further provides a computer storage medium, the storage medium comprising a set of computer executable instructions for performing the adaptive frequency domain interpolation method according to the embodiment of the invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种自适应频域插值方法、装置和计算机存储介质,方法包括:确定用于选择频域插值(FI)方式的第一门限值;测量获得当前信道的信噪比(SNR)值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。

Description

一种自适应频域插值方法、装置和计算机存储介质 技术领域
本发明涉及无线通信领域的信道估计技术,尤其涉及一种自适应频域插值方法、装置和计算机存储介质。
背景技术
无线通信系统中,为了保证系统性能不受信道多径和衰落效应的影响,需要采用信道估计的方法来跟踪信道响应的变化。信道估计的目的就是根据导频信号估计出信道的时域或频域响应。
用于信道估计的参考信息来自于导频,而导频在整个资源中不可能占用太多开销,否则会大大降低整个通信系统的效率。信道估计,是先根据导频信号估计出导频位置的信道响应值,再通过对导频的信道响应值进行插值从而获取数据(与导频无重叠)位置的信道响应值。
长期演进(LTE,Long Term Evolution)系统中可用于数据物理下行共享信道(PDSCH,Physical Downlink Shared Channel)解调的主要导频信号有小区专用参考信号(CRS,Cell-specific Reference Signal)和用户设备(UE,User Equipment)专用参考信号(UERS,UE-specific Reference Signals)等。CRS固定在全带宽内发送,UERS则仅在本UE的数据带宽内发送。其中,CRS的映射图样如图1所示,对CRS的估计结果可以直接反映当前的信道情况;UERS的映射图样如图2所示,由于UERS经过了额外的预编码矩阵,因此对UERS的估计结果反映的是当前信道和预编码矩阵的乘积结果。
基于UERS的信道估计主要包括解扰、时域插值(TI,Time Interpolation)、频域插值(FI,Frequency Interpolation)等步骤。TI过程的示意如图3所示,FI过程的示意如图4所示。UERS的FI通常有以下几种方式:
1个资源块(RB,Resource Block)内平均(简称FI0);
半个RB内平均(简称FI1);
一阶线性插值(简称FI2)。
在LTE基于UERS的信道估计中,常规方法是根据调制方式来固定选择一个FI方式,例如工作点较低的正交相移键控(QPSK,Quadrature Phase Shift Keying)选择FI0,工作点较高的64QAM选择FI2。但是当层数较高或信道变为中高相关时,QPSK的工作点也会变高,此时如果仍然固定地选择FI0就不能获得最优性能。如图5所示,图中横轴代表SNR,纵轴代表throughput;从这个QPSK、4层、扩展步行模型(EPA,Extended Pedestrian A model)5中相关的例子可以看出,在低信噪比(SNR,Signal Noise Ratio)(图5中SNR低于9dB)下FI0的性能最好,在高信噪比(图5中SNR高于11dB)下FI2的性能最好,那么无论是固定选择FI0还是固定FI2都不能取得最优的吞吐量(throughput)性能。也就是说,常规的固定选择FI的方法始终无法获得最优的吞吐量性能。
发明内容
为解决现有存在的技术问题,本发明实施例期望提供一种自适应频域插值方法、装置和计算机存储介质。
本发明实施例提供了一种自适应频域插值方法,所述方法包括:
确定用于频域插值FI方式选择的第一门限值;
测量获得当前信道的信噪比SNR值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。
上述方案中,所述确定用于选择FI方式的第一门限值,包括:
遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的中间SNR值为所述第一门限值R。
上述方案中,所述测量获得当前信道的SNR值,包括:
测量当前信道的参考信号接收功率RSRP和噪声功率N0
通过以下方式计算得到所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
上述方案中,在测量当前信道的RSRP和N0后,所述方法还包括:
分别对测量所得的RSRP和N0进行遗忘滤波处理;
相应的,所述计算当前信道的SNR值包括:根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值。
上述方案中,通过以下方式分别对测量所得的RSRP和N0进行遗忘滤波处理:
RSRP=oldRSRP*(1-alfa)+newRSRP*alfa,
Figure PCTCN2015081327-appb-000001
其中,oldRSRP为前一次遗忘滤波处理后得到的RSRP值,newRSRP为本次测量所得的RSRP值,
Figure PCTCN2015081327-appb-000002
为前一次遗忘滤波处理后得到的N0值,
Figure PCTCN2015081327-appb-000003
为本次测量所得的N0值,alfa为遗忘因子。
上述方案中,通过以下方式获得所述遗忘因子:
遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的SNR值范围的一半长度为L;
在所述性能仿真数据中的RSRP和N0不做遗忘滤波时,统计测量所得SNR值的第一均值和第一方差σ1
在所述性能仿真数据中的RSRP和N0做遗忘滤波时,分别尝试不同的遗忘因子取值,并分别统计相应测量所得SNR值的第二均值和第二方差σ2
选取所尝试的不同遗忘因子取值中,使落在[R-L,R+L]范围内的测量所得SNR值的比例达到预定阈值的最小遗忘因子取值。
本发明实施例又提供了一种自适应频域插值装置,所述装置包括:
参数确定单元,配置为确定用于频域插值FI方式选择的第一门限值;
FI选择单元,配置为测量获得当前信道的信噪比SNR值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。
上述方案中,所述参数确定单元配置为,遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的中间SNR值为所述第一门限值R。
上述方案中,所述FI选择单元配置为,
测量当前信道的参考信号接收功率RSRP和噪声功率N0
通过以下方式计算得到所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
上述方案中,所述FI选择单元配置为,在测量当前信道的RSRP和N0后,分别对测量所得的RSRP和N0进行遗忘滤波处理;
相应的,所述计算当前信道的SNR值包括:根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值。
上述方案中,所述FI选择单元配置为通过以下方式分别对测量所得的RSRP和N0进行遗忘滤波处理:
RSRP=oldRSRP*(1-alfa)+newRSRP*alfa,
Figure PCTCN2015081327-appb-000004
其中,oldRSRP为前一次遗忘滤波处理后得到的RSRP值,newRSRP为本次测量所得的RSRP值,
Figure PCTCN2015081327-appb-000005
为前一次遗忘滤波处理后得到的N0值,
Figure PCTCN2015081327-appb-000006
为本次测量所得的N0值,alfa为遗忘因子。
上述方案中,所述参数确定单元配置为通过以下方式获得所述遗忘因子:
遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的SNR值范围的一半长度为L;
在所述性能仿真数据中的RSRP和N0不做遗忘滤波时,统计测量所得SNR值的第一均值和第一方差σ1
在所述性能仿真数据中的RSRP和N0做遗忘滤波时,分别尝试不同的遗忘因子取值,并分别统计相应测量所得SNR值的第二均值和第二方差σ2
选取所尝试的不同遗忘因子取值中,使落在[R-L,R+L]范围内的测量所得SNR值的比例达到预定阈值的最小遗忘因子取值。
本发明实施例还提供了一种计算机存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行本发明实施例所述的自适应频域插值方法。
本发明实施例提供的一种自适应频域插值方法、装置和计算机存储介质,根据测量的SNR值来自适应地选择合适的频域插值方式,以较低的实现复杂度解决了常规方法不能兼顾低信噪比场景和高信噪比场景的问题,使得无论是在低信噪比场景下还是在高信噪比场景下,都能获得最优的吞吐量性能。
附图说明
图1为相关技术中两天线端口的CRS的映射图样示意图;
图2为相关技术中两天线端口的UERS的映射图样示意图;
图3为相关技术中基于UERS的TI过程示意图;
图4为相关技术中基于UERS的FI过程示意图;
图5为相关技术中QPSK相关信道的吞吐量性能示意图;
图6为本发明实施例一的自适应频域插值方法的流程图;
图7为本发明实施例二的自适应频域插值装置组成结构示意图;
图8为本发明实施例的遗忘滤波过程中的SNR测量值范围示意图;
图9为本发明实施例的性能曲线示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。
实施例一
本发明实施例一提供的一种自适应频域插值方法,如图6所示,该方法主要包括:
步骤101,确定用于FI方式选择的第一门限值。
其中,所述确定用于选择FI方式的第一门限值,包括:
遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的中间SNR值为所述第一门限值R。
步骤102,测量获得当前信道的信噪比(SNR)值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。
其中,所述测量获得当前信道的SNR值,包括:
测量当前信道的参考信号接收功率RSRP和噪声功率N0
通过以下方式计算得到所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
其中,在测量当前信道的RSRP和N0后,所述方法还可包括:
分别对测量所得的RSRP和N0进行遗忘滤波处理;
相应的,所述计算当前信道的SNR值包括:根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值。
可以通过以下方式分别对测量所得的RSRP和N0进行遗忘滤波处理:
RSRP=oldRSRP*(1-alfa)+newRSRP*alfa,
Figure PCTCN2015081327-appb-000007
其中,oldRSRP为前一次遗忘滤波处理后得到的RSRP值,newRSRP为本次测量所得的RSRP值,
Figure PCTCN2015081327-appb-000008
为前一次遗忘滤波处理后得到的N0值,
Figure PCTCN2015081327-appb-000009
为本次测量所得的N0值,alfa为遗忘因子。
其中,可以通过以下方式获得所述遗忘因子:
遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的SNR值范围的一半长度为L;
在所述性能仿真数据中的RSRP和N0不做遗忘滤波时,统计测量所得SNR值的第一均值和第一方差σ1
在所述性能仿真数据中的RSRP和N0做遗忘滤波时,分别尝试不同的遗忘因子取值,并分别统计相应测量所得SNR值的第二均值和第二方差σ2
选取所尝试的不同遗忘因子取值中,使落在[R-L,R+L]范围内的测量所得SNR值的比例达到预定阈值的最小遗忘因子取值。
实施例二
对应本发明实施例一所述的自适应频域插值方法,本发明实施例二提供了一种自适应频域插值装置,如图7所示,该装置包括:
参数确定单元10,配置为确定用于FI方式选择的第一门限值;
FI选择单元20,配置为测量获得当前信道的SNR值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。
其中,所述参数确定单元10配置为,遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的中间SNR值为所述第一门限值R。
所述FI选择单元20配置为,测量当前信道的参考信号接收功率RSRP和噪声功率N0
通过以下方式计算得到所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
所述FI选择单元20配置为,在测量当前信道的RSRP和N0后,分别对测量所得的RSRP和N0进行遗忘滤波处理;
相应的,所述计算当前信道的SNR值包括:根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值。
所述FI选择单元20配置为通过以下方式分别对测量所得的RSRP和N0进行遗忘滤波处理:
RSRP=oldRSRP*(1-alfa)+newRSRP*alfa,
Figure PCTCN2015081327-appb-000010
其中,oldRSRP为前一次遗忘滤波处理后得到的RSRP值,newRSRP为本次测量所得的RSRP值,
Figure PCTCN2015081327-appb-000011
为前一次遗忘滤波处理后得到的N0值,
Figure PCTCN2015081327-appb-000012
为本次测量所得的N0值,alfa为遗忘因子。
所述参数确定单元10配置为通过以下方式获得所述遗忘因子:
遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的SNR值范围的一半长度为L;
在所述性能仿真数据中的RSRP和N0不做遗忘滤波时,统计测量所得SNR值的第一均值和第一方差σ1
在所述性能仿真数据中的RSRP和N0做遗忘滤波时,分别尝试不同的遗忘因子取值,并分别统计相应测量所得SNR值的第二均值和第二方差σ2
选取所尝试的不同遗忘因子取值中,使落在[R-L,R+L]范围内的测量所得SNR值的比例达到预定阈值的最小遗忘因子取值。
本发明实施例,根据测量的SNR值来自适应地选择合适的频域插值方式,以较低的实现复杂度解决了常规方法不能兼顾低信噪比场景和高信噪比场景的问题,使得无论是在低信噪比场景下还是在高信噪比场景下,都能获得最优的吞吐量性能。
下面再结合具体示例对上述自适应频域插值方法和装置进一步详细阐述。
本示例中,确定门限值和遗忘因子的过程如下:
第一步,分别进行FI0、FI1、FI2的性能仿真,仿真结果如图5所示,在9-11dB的范围内,各条曲线几乎是重合的;选择过渡带9-11dB的中间值10dB为门限值R,过渡带的一半长度为L=(11-9)/2=1dB。
第二步,RSRP和N0不做遗忘滤波且真实信噪比为10dB时,保存20万子帧中测量得到的SNR值,统计得到均值为10.02,方差σ1为7.6dB。
第三步,RSRP和N0做遗忘滤波且真实信噪比为10dB时,分别尝试alfa=0.1/0.01/0.005/0.001,分别保存20万子帧中测量得到的SNR值,分别统计方差σ2。发现alfa=0.001时3σ=1.12dB,如图8所示,这时绝大多数的测量SNR值都落在10dB的周围±1dB范围内,从而选定0.001为遗忘因子。
遍历不同的调制方式(QPSK/16QAM/64QAM)、层数(v)以及各种典型信道,对QPSK/16QAM/64QAM分别得出一个门限值,16QAM/64QAM确定门限值和遗忘因子的过程与上面QPSK相同。综合各种层数和典型信道得出最终的自适应频域插值策略。
LTE UERS自适应频域插值的过程如下:
第一步,测量当前信道的RSRP和N0
第二步,分别对测量所得的RSRP和N0做遗忘滤波,遗忘因子alfa=0.001。
第三步,根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
第四步,选择FI方法:
调制方式为QPSK,如果v>=3且SNR>=10dB,则选FI2,否则选FI0;
调制方式为16QAM,如果v>=3且SNR>=11.7dB,则选FI1,否则选FI0
调制方式为64QAM,选FI2。其中,v代表层数。
第五步,执行所选的FI。
采用自适应频域插值方法后的性能曲线见图9中的adaptive(自适应)曲线所示,可见使用本发明实施例的自适应频域插值方法后,低信噪比和高信噪比下都获得了最优的性能。也就是说,本发明实施例根据测量的SNR值来自适应地选择合适的频域插值方式,以较低的实现复杂度解决了常规方法不能兼顾低信噪比场景和高信噪比场景的问题,使得无论是在低信噪 比场景下还是在高信噪比场景下,都能获得最优的吞吐量性能。
本发明实施例还提供了一种计算机存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行本发明实施例所述的自适应频域插值方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (13)

  1. 一种自适应频域插值方法,所述方法包括:
    确定用于频域插值FI方式选择的第一门限值;
    测量获得当前信道的信噪比SNR值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。
  2. 根据权利要求1所述自适应频域插值方法,其中,所述确定用于选择FI方式的第一门限值,包括:
    遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的中间SNR值为所述第一门限值R。
  3. 根据权利要求1所述自适应频域插值方法,其中,所述测量获得当前信道的SNR值,包括:
    测量当前信道的参考信号接收功率RSRP和噪声功率N0
    通过以下方式计算得到所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
  4. 根据权利要求3所述自适应频域插值方法,其中,在测量当前信道的RSRP和N0后,所述方法还包括:
    分别对测量所得的RSRP和N0进行遗忘滤波处理;
    相应的,所述计算当前信道的SNR值包括:根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值。
  5. 根据权利要求4所述自适应频域插值方法,其中,通过以下方式分别对测量所得的RSRP和N0进行遗忘滤波处理:
    RSRP=oldRSRP*(1-alfa)+newRSRP*alfa,
    Figure PCTCN2015081327-appb-100001
    其中,oldRSRP为前一次遗忘滤波处理后得到的RSRP值,newRSRP为本次测量所得的RSRP值,
    Figure PCTCN2015081327-appb-100002
    为前一次遗忘滤波处理后得到的N0值,
    Figure PCTCN2015081327-appb-100003
    为本次 测量所得的N0值,alfa为遗忘因子。
  6. 根据权利要求5所述自适应频域插值方法,其中,通过以下方式获得所述遗忘因子:
    遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的SNR值范围的一半长度为L;
    在所述性能仿真数据中的RSRP和N0不做遗忘滤波时,统计测量所得SNR值的第一均值和第一方差σ1
    在所述性能仿真数据中的RSRP和N0做遗忘滤波时,分别尝试不同的遗忘因子取值,并分别统计相应测量所得SNR值的第二均值和第二方差σ2
    选取所尝试的不同遗忘因子取值中,使落在[R-L,R+L]范围内的测量所得SNR值的比例达到预定阈值的最小遗忘因子取值。
  7. 一种自适应频域插值装置,所述装置包括:
    参数确定单元,配置为确定用于频域插值FI方式选择的第一门限值;
    FI选择单元,配置为测量获得当前信道的信噪比SNR值,并将所述SNR值与相应的第一门限值进行比较,根据比较结果选择相应的FI方式。
  8. 根据权利要求7所述自适应频域插值装置,其中,所述参数确定单元配置为,遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的中间SNR值为所述第一门限值R。
  9. 根据权利要求7所述自适应频域插值装置,其中,所述FI选择单元配置为,
    测量当前信道的参考信号接收功率RSRP和噪声功率N0
    通过以下方式计算得到所述当前信道的SNR值:SNR=10log10(RSRP/N0)。
  10. 根据权利要求9所述自适应频域插值装置,其中,所述FI选择单元配置为,在测量当前信道的RSRP和N0后,分别对测量所得的RSRP和N0进行遗忘滤波处理;
    相应的,所述计算当前信道的SNR值包括:根据遗忘滤波处理后的RSRP和N0计算所述当前信道的SNR值。
  11. 根据权利要求10所述自适应频域插值装置,其中,所述FI选择单元配置为通过以下方式分别对测量所得的RSRP和N0进行遗忘滤波处理:
    RSRP=oldRSRP*(1-alfa)+newRSRP*alfa,
    Figure PCTCN2015081327-appb-100004
    其中,oldRSRP为前一次遗忘滤波处理后得到的RSRP值,newRSRP为本次测量所得的RSRP值,
    Figure PCTCN2015081327-appb-100005
    为前一次遗忘滤波处理后得到的N0值,
    Figure PCTCN2015081327-appb-100006
    为本次测量所得的N0值,alfa为遗忘因子。
  12. 根据权利要求11所述自适应频域插值装置,其中,所述参数确定单元配置为通过以下方式获得所述遗忘因子:
    遍历不同FI方式的性能仿真数据,选择所述性能仿真数据中过渡带的SNR值范围的一半长度为L;
    在所述性能仿真数据中的RSRP和N0不做遗忘滤波时,统计测量所得SNR值的第一均值和第一方差σ1
    在所述性能仿真数据中的RSRP和N0做遗忘滤波时,分别尝试不同的遗忘因子取值,并分别统计相应测量所得SNR值的第二均值和第二方差σ2
    选取所尝试的不同遗忘因子取值中,使落在[R-L,R+L]范围内的测量所得SNR值的比例达到预定阈值的最小遗忘因子取值。
  13. 一种计算机存储介质,所述存储介质包括一组计算机可执行指令,所述指令用于执行权利要求1-6任一项所述的自适应频域插值方法。
PCT/CN2015/081327 2014-12-29 2015-06-12 一种自适应频域插值方法、装置和计算机存储介质 WO2016107091A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410848542.4 2014-12-29
CN201410848542.4A CN105812296B (zh) 2014-12-29 2014-12-29 一种自适应频域插值方法和系统

Publications (1)

Publication Number Publication Date
WO2016107091A1 true WO2016107091A1 (zh) 2016-07-07

Family

ID=56284083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081327 WO2016107091A1 (zh) 2014-12-29 2015-06-12 一种自适应频域插值方法、装置和计算机存储介质

Country Status (2)

Country Link
CN (1) CN105812296B (zh)
WO (1) WO2016107091A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106254001A (zh) * 2016-09-13 2016-12-21 京信通信技术(广州)有限公司 一种srs信道质量测量方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129009A1 (en) * 2009-11-30 2011-06-02 Qualcomm Incorporated Method and system for efficient channel estimation
CN102710561A (zh) * 2003-11-13 2012-10-03 艾利森电话股份有限公司 自适应插值的信道估算
CN103237311A (zh) * 2013-05-08 2013-08-07 西安电子科技大学 基于ofdm频域内插导频的循环平稳特征频谱感知方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150337B (zh) * 2006-09-19 2011-03-16 大唐移动通信设备有限公司 闭环功率、同步控制方法及系统
CN103813374A (zh) * 2012-11-13 2014-05-21 中兴通讯股份有限公司 一种参考信号接收功率测量方法、装置和终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710561A (zh) * 2003-11-13 2012-10-03 艾利森电话股份有限公司 自适应插值的信道估算
US20110129009A1 (en) * 2009-11-30 2011-06-02 Qualcomm Incorporated Method and system for efficient channel estimation
CN103237311A (zh) * 2013-05-08 2013-08-07 西安电子科技大学 基于ofdm频域内插导频的循环平稳特征频谱感知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106254001A (zh) * 2016-09-13 2016-12-21 京信通信技术(广州)有限公司 一种srs信道质量测量方法及装置

Also Published As

Publication number Publication date
CN105812296A (zh) 2016-07-27
CN105812296B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
JP5612052B2 (ja) 無線通信システムにおける信号伝送
JP5976877B2 (ja) 動的アップリンク電力制御
CN106255190B (zh) 功率控制方法及功率控制装置
CN110495219B (zh) 上行功率控制方法、设备及系统
US20130196699A1 (en) Coordinated multipoint configuration based on channel state information reference signals
JP2011517203A (ja) スケジューリングおよびリンクアダプテーションによる通信ネットワークにおける干渉の低減
EP2594032A1 (en) Method and apparatus for determining ue mobility status
US20140086371A1 (en) Interference cancellation apparatus and receiver
JP6604378B2 (ja) 適応変調コーディングの方法および装置
WO2017097109A1 (zh) 多点协同传输中终端定时偏差估计方法、装置及设备
US20150139003A1 (en) Mobile station device, path loss calculation method, program, and integrated circuit
JP2016536838A (ja) 信号測定方法、ユーザ装置及び基地局
WO2013007169A1 (zh) 一种采用导频测速的方法及装置
US20210029551A1 (en) System and method of signaling spectrum flatness configuration
JP5695737B2 (ja) 有効信号対雑音比の決定方法及び装置
WO2016119475A1 (zh) 信道质量指示cqi估计方法及装置
WO2022078460A1 (zh) 一种有效测量子帧的接收方法、装置及相关设备
CN106105360A (zh) 调制编码方式的选择方法及基站
KR102093266B1 (ko) 신호 감지 방법 및 장치
WO2016107091A1 (zh) 一种自适应频域插值方法、装置和计算机存储介质
CN104253771B (zh) 多参数联合估计方法和装置
CN103178937B (zh) 一种物理信道资源管理方法及基站
WO2014194655A1 (zh) 频偏估计的方法、装置和计算机可读存储介质
KR20130064522A (ko) 적응형 변조 및 코딩 스킴 선택 방법 및 장치
CN104468052B (zh) 信道质量指示信息的选择方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874782

Country of ref document: EP

Kind code of ref document: A1